WO2018155961A1 - 세균 메타게놈 분석을 통한 파킨슨병 진단방법 - Google Patents

세균 메타게놈 분석을 통한 파킨슨병 진단방법 Download PDF

Info

Publication number
WO2018155961A1
WO2018155961A1 PCT/KR2018/002281 KR2018002281W WO2018155961A1 WO 2018155961 A1 WO2018155961 A1 WO 2018155961A1 KR 2018002281 W KR2018002281 W KR 2018002281W WO 2018155961 A1 WO2018155961 A1 WO 2018155961A1
Authority
WO
WIPO (PCT)
Prior art keywords
disease
bacteria
extracellular vesicles
parkinson
derived
Prior art date
Application number
PCT/KR2018/002281
Other languages
English (en)
French (fr)
Inventor
김윤근
Original Assignee
주식회사 엠디헬스케어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠디헬스케어 filed Critical 주식회사 엠디헬스케어
Priority to CN201880026915.6A priority Critical patent/CN110546280A/zh
Priority to EP18758093.1A priority patent/EP3587597B1/en
Priority to US16/488,263 priority patent/US20200056226A1/en
Priority to JP2019546206A priority patent/JP6914554B2/ja
Publication of WO2018155961A1 publication Critical patent/WO2018155961A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2531/00Reactions of nucleic acids characterised by
    • C12Q2531/10Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
    • C12Q2531/113PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a method for diagnosing Parkinson's disease through bacterial metagenome analysis. More specifically, Parkinson's disease is analyzed by performing a bacterial metagenome analysis using a sample derived from a subject to analyze the increase or decrease in the content of specific bacterial-derived extracellular vesicles. It is about how to diagnose.
  • Parkinson's Disease is a progressive neurodegenerative disorder characterized by Parkinson's symptoms such as slow movement, trembling at rest, muscle stiffness, dragging and bending, and bending. This is mainly due to the reduction of motor neuronal stimulation due to incomplete production and action of incomplete dopamine in the substantia nigra. Severe cognitive impairment and mild language impairment also occur and are chronic and progressive. It can also occur when you have Japanese encephalitis, brain syphilis, carbon dioxide poisoning, manganese poisoning or Wilson's disease. The likelihood of developing a disease is about 1 in 1,000, but the older the person, the higher the frequency. And movement disorders occur and it becomes uncomfortable to move.
  • Parkinson's disease is relatively low in heredity. Most patients do not have relatives with Parkinson's disease. If one of the identical twins has the disease, there is less than a 10% chance that the other will. This is obviously higher than the 0.1% chance that others will get it, but it's not so high. Possible developmental environmental factors include blockage of blood flow to specific areas of the brain, prolonged exposure to certain drugs and poisons, and past history of encephalitis or other viruses.
  • the symbiosis of the human body reaches 100 trillion times 10 times more than human cells, the number of genes of the microorganism is known to be more than 100 times the number of human genes.
  • a microbiota is a microbial community, including bacteria, archaea, and eukarya that exist in a given settlement.
  • the intestinal microbiota plays an important role in human physiology.
  • it is known to have a great effect on human health and disease through interaction with human cells.
  • the symbiotic bacteria secrete nanometer-sized vesicles to exchange information about genes and proteins in other cells.
  • the mucous membrane forms a physical protective film that particles larger than 200 nanometers (nm) in size can't pass through, so that the symbiotic bacteria cannot pass through the mucosa, but bacterial-derived vesicles are usually less than 100 nanometers in size. It freely speaks to the mucous membrane and is absorbed by our body.
  • Metagenomics also called environmental genomics, can be said to be an analysis of metagenomic data obtained from samples taken from the environment (Korean Patent Publication No. 2011-0073049). Recently, it has become possible to list the bacterial composition of the human microflora by a method based on 16s ribosomal RNA (16s rRNA) sequencing. Next generation sequencing of 16s rDNA sequencing gene of 16s ribosomal RNA is performed. , NGS) platform to analyze.
  • NGS Next generation sequencing of 16s rDNA sequencing gene of 16s ribosomal RNA
  • the present inventors In order to diagnose the cause factors and risk of developing Parkinson's disease in advance, the present inventors extracted a gene from a bacterial-derived extracellular vesicle present in a sample-derived urine and performed a metagenome analysis on it. Bacterial-derived extracellular vesicles that can act as causative factors have been identified, and thus the present invention has been completed.
  • an object of the present invention is to provide an information providing method for diagnosing Parkinson's disease through metagenomic analysis of bacterial extracellular vesicles.
  • the present invention provides an information providing method for diagnosing Parkinson's disease, comprising the following steps:
  • the present invention provides a method for diagnosing Parkinson's disease, comprising the following steps:
  • the present invention also provides a method for predicting the risk of developing Parkinson's disease, comprising the following steps:
  • the subject sample may be urine.
  • step (c) Proteobacteria, Cyanobacteria, Gemmatimonadetes, Chloroflexi, Synergistetes, Acidobacteria, Planctomycetes, OD1, WS3, Parvarchaeota, OP1, Chlorobi, OP9, Hyd24-12, and Thermotogae It may be to compare the increase or decrease in the content of one or more phylum bacteria-derived extracellular vesicles selected.
  • step (c) Coriobacteriia, Gammaproteobacteria, Verrucomicrobiae, Actinobacteria, Alphaproteobacteria, Chloroplast, Saprospirae, Deltaproteobacteria, Epsilonproteobacteria, Ellin6529, Chloracidobacteria, Opitutae, Thermoleophilia, Synergistia, Gemmatitomycesade, Gemmaobericees de ceil , Anaerolineae, Chloroflexi, Phycisphaerae, Synechococcophycideae, TM7-1, Acidimicrobiia, Acidobacteria-6, Spartobacteria, ABY1, Pedosphaerae, ZB2, PRR-12, Ktedonobacteria, JS1, WM88, Dehalococcoidetes, SAR202, and MSBL6 It may be to compare the increase or
  • step (c) in the step (c) RF39, Turicibacterales, Pseudomonadales, Coriobacteriales, Pasteurellales, Enterobacteriales, Verrucomicrobiales, Gemellales, Neisseriales, Saprospirales, Actinomycetales, Streptophyta, Rhizobiales, Rhodoactales ,, Xantlobicorals, , Solirubrobacterales, Opitutales, RB41, Rickettsiales, Pirellulales, Synergistales, Planctomycetales, Acidobacteriales, Solibacterales, Gaiellales, Gemmatales, Acidimicrobiales, WD2101, Chthoniobacterales, Thermoanaerobacterales, Pedosphaerales, Phycidiphyta, -Increase or decrease the content of one or more order bacterial-derived extracellular vesicles selected from the group consisting of KF-AS
  • step (c) Exiguobacteraceae, Enterococcaceae, Turicibacteraceae, Mogibacteriaceae, Moraxellaceae, Porphyromonadaceae, Burkholderiaceae, Actinomycetaceae, Coriobacteriaceae, Methylobacteriaceae, Streptococcaceae, Pseudomonacaceae, Peperudococcaceae, Pelopurocoaceae , Leuconostocaceae, Bradyrhizobiaceae, Rikenellaceae, Tissierellaceae, Bacteroidaceae, Chitinophagaceae, Corynebacteriaceae, Xanthomonadaceae, Rhizobiaceae, Propionibacteriaceae, Desulfobacteraceae, Barnesiellaceae, Comamonadaceae, mitochondria, Hyphomicrobiaceae, Alteromonadaceae
  • step (c) in the step (c), Collinsella, Adlercreutzia, SMB53, Proteus, Exiguobacterium, Enterococcus, Acinetobacter, Turicibacter, Klebsiella, Lautropia, Akkermansia, Parabacteroides, Rhizobium, Actinomyces, Lactocococillonus, Blautia Velaumonas, Blautia , Rothia, Dorea, Streptococcus, Haemophilus, Enhydrobacter, Rhodococcus, Coprococcus, Oscillospira, Ruminococcus, Bacteroides, Corynebacterium, Weissella, Propionibacterium, Lysinibacillus, Stenotrophomonas, Arthrobacter, Comamonas, Marinobacter Planicac Clopis D.
  • a genus of bacteria from the group consisting of Gemmata, Coprobacillus, Arcobacter, Helicobacter, Candidatus Solibacter, Methanosarcina, Thermacetogenium, Synechococcus, Desulfomicrobium, Chthoniobacter, Aminobacterium, Gallicola, Anaeromyxobacter, Muricauda, and Candidatus Koribacter Comparing the increase or decrease in the content of vesicles Can.
  • Extracellular vesicles secreted by microorganisms such as bacteria and archaea in the environment can be absorbed into the body and directly affect the development of inflammation.
  • Parkinson's disease which is characterized by an inflammatory response, is difficult to diagnose early before symptoms appear. Since the situation is difficult, by pre-diagnosing the risk of developing Parkinson's disease through metagenomic analysis of bacteria-derived extracellular vesicles using a human-derived sample according to the present invention, the risk group of Parkinson's disease can be diagnosed and predicted early and developed through appropriate management. It can delay the timing or prevent the onset, and it can be diagnosed early after the onset, thus reducing the incidence of Parkinson's disease and improving the treatment effect.
  • metagenome analysis in patients diagnosed with Parkinson's disease can be used to avoid causative factors and improve the course of cancer or prevent recurrence.
  • Figure 1a is a photograph of the distribution of bacteria and vesicles by time after the oral administration of enteric bacteria and bacteria-derived vesicles (EV) to the mouse
  • Figure 1b is 12 hours after oral administration, urine, And several organs were extracted to evaluate the distribution of bacteria and vesicles in the body.
  • Figure 2 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating the bacteria-derived vesicles in Parkinson's disease patients and normal urine.
  • EVs bacteria-derived vesicles
  • Figure 3 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the class level by separating bacteria-derived vesicles in Parkinson's disease patients and normal urine, and performing a metagenome analysis.
  • EVs bacteria-derived vesicles
  • Figure 4 shows the distribution of bacteria-derived vesicles (EVs) of significant diagnostic performance at the order (order) level after separating the bacterial-derived vesicles in Parkinson's disease patients and normal urine.
  • EVs bacteria-derived vesicles
  • FIG. 5 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level by separating bacteria-derived vesicles from Parkinson's disease patients and normal urine, and performing a metagenome analysis.
  • EVs bacteria-derived vesicles
  • FIG. 6 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level after separation of bacteria-derived vesicles in Parkinson's disease patients and normal urine.
  • EVs bacteria-derived vesicles
  • the present invention relates to a method for diagnosing Parkinson's disease through bacterial metagenome analysis.
  • the present inventors extracted a gene from a bacterial-derived extracellular vesicle using a sample derived from a subject and performed a metagenome analysis on the Bacterial-derived extracellular vesicles that could act as causative factors were identified.
  • the present invention comprises the steps of (a) extracting DNA from the extracellular vesicles isolated from the subject sample;
  • (c) providing an information providing method for diagnosing Parkinson's disease, comprising comparing the increase and decrease of the content of the normal-derived sample and the bacterial-derived extracellular vesicles by sequencing the PCR product.
  • the term "diagnosed Parkinson's disease” used in the present invention means to determine whether Parkinson's disease is likely to develop, Parkinson's disease is relatively high, or whether Parkinson's disease has already occurred in a patient. .
  • the method of the present invention can be used to prevent or delay the onset of the disease through special and appropriate management as a patient at high risk of developing Parkinson's disease for any particular patient.
  • the methods of the present invention can be used clinically to determine treatment by early diagnosis of Parkinson's disease and selecting the most appropriate treatment regimen.
  • metagenome used in the present invention, also referred to as “metagenome”, refers to the total of the genome including all viruses, bacteria, fungi, etc. in an isolated area such as soil, animal intestine, It is mainly used as a concept of genome explaining the identification of many microorganisms at once using sequencer to analyze microorganisms which are not cultured.
  • metagenome does not refer to one species of genome or genome, but refers to a kind of mixed dielectric as the genome of all species of one environmental unit. This is a term from the point of view of defining a species in the course of the evolution of biology in terms of functional species as well as various species that interact with each other to create a complete species.
  • rapid sequencing is used to analyze all DNA and RNA, regardless of species, to identify all species in one environment, and to identify interactions and metabolism.
  • metagenome analysis was preferably performed using bacterial-derived extracellular vesicles isolated from serum.
  • bacteria-derived vesicle is a concept including, but not limited to, extracellular vesicles derived from bacteria or archaea.
  • the subject sample may be urine, but is not limited thereto.
  • the metagenome analysis of the bacterial-derived extracellular vesicles was performed, and analyzed at the phylum, class, order, family, and genus levels, respectively. By identifying bacterial vesicles that can actually cause the development of Parkinson's disease.
  • the bacterial metagenome of the vesicles present in the subject-derived urine sample at the gate level Proteobacteria, Cyanobacteria, Gemmatimonadetes, Chloroflexi, Synergistetes, Acidobacteria, Planctomycetes, OD1, WS3,
  • the content of extracellular vesicles derived from Parvarchaeota, OP1, Chlorobi, OP9, Hyd24-12, and Thermotogae door bacteria was significantly different between Parkinson's disease patients and normal subjects (see Example 4).
  • the present invention as a result of analyzing the bacterial metagenome at the level of the vesicles present in the urine sample derived from the subject, Coriobacteriia, Gammaproteobacteria, Verrucomicrobiae, Actinobacteria, Alphaproteobacteria, Chloroplast, Saprospirae, Deltaproteobacteria, Epsilonproteobacteria, Ellin6529, Chloracidobacteria, Opitutae, Thermoleophilia, Synergistia, Gemmatimonadetes, Planctomycetia, Acidobacteriia, Solibacteres, Anaerolineae, Chloroflexi, Phycisphaerae, Synechococcophycideae, TM7-1, Acidimicrobiia, Acidobacteriated A, SpartoBeth, Bacteria There was a significant difference in the content of extracellular vesicles
  • RF39 Turicibacterales, Pseudomonadales, Coriobacteriales, Pasteurellales, Enterobacteriales, Verrucomicrobiales, Gemellales, Neisseriales, Saprospirales, Actinomycetales, Streptophyta, Rhizobiales, Rhodospirillales, Xanthomonadales, Myxococcales, Campylobacterales, Desulfovibrionales, Solirubrobacterales, Opitutales, RB41, Rickettsiales, Pirellulales, Synergistales, Planctomycetales, Acidobacteriales, Solibacterales, Gaiellales, Gemmatales, Acidimicrobiales, WD2101, Chthoniobacterales, Thermoanaerobacterales,
  • the bacterial metagenome of the vesicles present in the subject-derived urine sample at an exaggerated level Exiguobacteraceae, Enterococcaceae, Turicibacteraceae, Mogibacteriaceae, Moraxellaceae, Porphyromonadaceae, Burkholderiaceae, Actinomycetaceae, Coriobacteriaceae, Methylobacteriaceae, Streptococcaceae, Pseudomonadaceae, Pasteurellaceae, Veillonellaceae, Peptostreptococcaceae, Enterobacteriaceae, Verrucomicrobiaceae, Lachnospiraceae, Leuconostocaceae, Bradyrhizobiaceae, Rikenellaceae, Tissierellaceae, Bacteroidaceae, Chitinophagaceae, Corynebacteriaceae, Xanthomonadaceae, Rh
  • the bacterial metagenome of the vesicles present in the subject-derived urine sample at the genus level Collinsella, Adlercreutzia, SMB53, Proteus, Exiguobacterium, Enterococcus, Acinetobacter, Turicibacter, Klebsiella, Lautropia, Akkermansia, Parabacteroides, Rhizobium, Actinomyces, Lactococcus, Blautia, Veillonella, Pseudomonas, Rothia, Dorea, Streptococcus, Haemophilus, Enhydrobacter, Rhodococcus, Coprococcus, Oscillospira, Ruminococcus, Bactbaceroium bis bacterium bacterium bacterium bacterium Comamonas, Marinobacter, Clostridium, Planctomyces, Luteolibacter, Delftia, Agrobacterium, Rhodoplanes, DA101,
  • the fluorescently labeled 50 ⁇ g of bacteria and bacteria-derived vesicles were administered in the same manner as above 12 hours.
  • Blood, Heart, Lung, Liver, Kidney, Spleen, Adipose tissue, and Muscle were extracted from mice.
  • the intestinal bacteria (Bacteria) were not absorbed in each organ, whereas the intestinal bacteria-derived extracellular vesicles (EVs) were urine, heart, lung as shown in FIG. And distribution in liver, kidney, spleen, adipose tissue, and muscle.
  • the urine was first placed in a 10 ml tube and centrifuged (3,500 x g, 10 min, 4 ° C.) to settle the suspended solids to recover only the supernatant and then transferred to a new 10 ml tube. After removing the bacteria and foreign substances from the recovered supernatant using a 0.22 ⁇ m filter, transfer to centripreigugal filters (50 kD) and centrifuged at 1500 xg, 4 °C for 15 minutes to discard the material smaller than 50 kD and 10 ml Concentrated until.
  • centripreigugal filters 50 kD
  • PCR was performed using the 16S rDNA primer shown in Table 1 to amplify the gene and perform sequencing (Illumina MiSeq sequencer). Output the result as a Standard Flowgram Format (SFF) file, convert the SFF file into a sequence file (.fasta) and a nucleotide quality score file using GS FLX software (v2.9), check the credit rating of the lead, and window (20 bps) The part with the average base call accuracy of less than 99% (Phred score ⁇ 20) was removed.
  • SFF Standard Flowgram Format
  • the Operational Taxonomy Unit performed UCLUST and USEARCH for clustering according to sequence similarity. Specifically, the clustering is based on 94% genus, 90% family, 85% order, 80% class, and 75% sequence similarity. OTU's door, river, neck, family and genus level classifications were performed, and bacteria with greater than 97% sequence similarity were analyzed using BLASTN and GreenGenes' 16S DNA sequence database (108,453 sequences) (QIIME).
  • Example 3 By the method of Example 3, the vesicles were isolated from the urine of 39 Parkinson's disease patients and 76 urine of age and sex matched to the metagenome sequencing. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
  • the method for providing information on the diagnosis of Parkinson's disease through bacterial metagenomic analysis is carried out by performing bacterial metagenomic analysis using a sample derived from a subject to analyze the increase or decrease in the content of specific bacterial-derived extracellular vesicles to develop Parkinson's disease. It can be used to predict risk and diagnose Parkinson's disease.
  • Extracellular vesicles secreted by microorganisms such as bacteria and archaea in the environment are absorbed into the body and distributed to the brain, which can directly affect inflammatory reactions and brain function. Parkinson's disease is characterized by inflammation before symptoms appear.
  • the risk group of Parkinson's disease can be diagnosed and predicted early by predicting the risk of Parkinson's disease in advance through metagenomic analysis of the bacterial-derived extracellular vesicles using the human-derived sample according to the present invention. Proper management can delay the onset or prevent the onset, and early diagnosis even after the onset of Parkinson's disease can reduce the incidence of Parkinson's disease and increase the therapeutic effect.
  • bacterial metagenomic analysis according to the present invention in patients diagnosed with Parkinson's disease can be used to improve the progression of Parkinson's disease or to prevent recurrence by avoiding causative agent exposure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 세균 메타게놈 분석을 통해 파킨슨병을 진단하는 방법에 관한 것으로서, 보다 구체적으로는 피검체 유래 샘플을 이용해 세균 메타게놈 분석을 수행하여 특정 세균 유래 세포밖 소포의 함량 증감을 분석함으로써 파킨슨병을 진단하는 방법에 관한 것이다. 환경에 존재하는 세균, 고세균 등의 미생물에서 분비되는 세포밖 소포는 체내에 흡수되어 뇌로 분포하여, 염증반응 및 뇌기능에 직접적인 영향을 미칠 수 있으며, 염증을 특징으로 하는 파킨슨병은 증상이 나타나기 전 조기진단이 어려워 효율적인 치료가 어려운 실정이므로, 본 발명에 따른 인체 유래 샘플을 이용한 세균 유래 세포밖 소포의 메타게놈 분석을 통해 파킨슨병 발병의 위험도를 미리 예측함으로써 파킨슨병의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 조기진단 할 수 있어 파킨슨병의 발병률을 낮추고 치료효과를 높일 수 있다.

Description

세균 메타게놈 분석을 통한 파킨슨병 진단방법
본 발명은 세균 메타게놈 분석을 통해 파킨슨병을 진단하는 방법에 관한 것으로서, 보다 구체적으로는 피검체 유래 샘플을 이용해 세균 메타게놈 분석을 수행하여 특정 세균 유래 세포밖 소포의 함량 증감을 분석함으로써 파킨슨병을 진단하는 방법에 관한 것이다.
파킨슨병(Parkinson's Disease)은 느린 운동, 정지시 떨림, 근육 강직, 질질 끌며 걷기, 굽은 자세와 같은 파킨슨 증상들을 특징으로 하는 진행형 신경 퇴행성 질환이다. 주로 흑질(substantia nigra)의 불완전한 도파민의 생성 및 작용으로 운동신경 피질의 자극이 감소되어 일어난다. 심각한 인식 장애와 미약한 언어 장애도 발생하는데 만성적이고 진행적이다. 일본뇌염, 뇌매독, 이산화탄소 중독, 망간 중독이나 윌슨병에 걸렸을 때도 나타날 수 있다. 발병할 수 있는 확률은 1천 명 중 1명꼴이지만 나이가 많을수록 발생빈도가 높다. 그리고 운동장애가 발생하여 움직이는 것이 불편하게 된다.
대부분의 다른 심각한 신경학적 또는 심리학적 장애들과 달리 파킨슨병은 유전성이 비교적 낮다. 대개의 환자들에겐 파킨슨병에 걸린 친척들이 없다. 일란성 쌍둥이 중 한 사람이 이 병에 걸린 경우 다른 한 사람도 그럴 확률은 10%도 되지 않는다. 이는 물론 다른 사람들이 그 병에 걸리는 확률인 0.1%보다는 분명히 높지만, 그렇게 엄청나게 높은 건 아니다. 발생관련 환경 요인들로 가능한 것에는 뇌의 특정 부위로 가는 혈류의 차단, 특정 약물과 독에 대한 장기간의 노출, 그리고 뇌염이나 기타 바이러스에 의해 감염되었던 과거력이 포함된다.
한편, 인체에 공생하는 미생물은 100조에 이르러 인간 세포보다 10배 많으며, 미생물의 유전자수는 인간 유전자수의 100배가 넘는 것으로 알려지고 있다. 미생물총(microbiota)은 주어진 거주지에 존재하는 세균(bacteria), 고세균(archaea), 진핵생물(eukarya)을 포함한 미생물 군집(microbial community)을 말하고, 장내 미생물총은 사람의 생리현상에 중요한 역할을 하며, 인체 세포와 상호작용을 통해 인간의 건강과 질병에 큰 영향을 미치는 것으로 알려져 있다. 우리 몸에 공생하는 세균은 다른 세포로의 유전자, 단백질 등의 정보를 교환하기 위하여 나노미터 크기의 소포(vesicle)를 분비한다. 점막은 200 나노미터(nm) 크기 이상의 입자는 통과할 수 없는 물리적인 방어막을 형성하여 점막에 공생하는 세균인 경우에는 점막을 통과하지 못하지만, 세균 유래 소포는 크기가 대개 100 나노미터 크기 이하라서 비교적 자유롭게 점막을 통화하여 우리 몸에 흡수된다.
환경 유전체학이라고도 불리는 메타게놈학은 환경에서 채취한 샘플에서 얻은 메타게놈 자료에 대한 분석학이라고 할 수 있다(국내공개특허 제2011-0073049호). 최근 16s 리보솜 RNA(16s rRNA) 염기서열을 기반으로 한 방법으로 인간의 미생물총의 세균 구성을 목록화하는 것이 가능해졌으며, 16s 리보솜 RNA의 유전자인 16s rDNA 염기서열을 차세대 염기서열분석 (next generation sequencing, NGS) platform을 이용하여 분석한다. 그러나 파킨슨병 발병에 있어서, 소변 등의 인체 유래물에서 세균 유래 소포에 존재하는 메타게놈 분석을 통해 파킨슨병의 원인인자를 동정하고 파킨슨병을 진단하는 방법에 대해서는 보고된 바가 없다.
본 발명자들은 파킨슨병의 원인인자 및 발병 위험도를 미리 진단하기 위하여, 피검체 유래 샘플인 소변에 존재하는 세균 유래 세포밖 소포로부터 유전자를 추출하고 이에 대하여 메타게놈 분석을 수행하였으며, 그 결과 파킨슨병의 원인인자로 작용할 수 있는 세균 유래 세포밖 소포를 동정하였는바, 이에 기초하여 본 발명을 완성하였다.
이에, 본 발명은 세균 유래 세포밖 소포에 대한 메타게놈 분석을 통해 파킨슨병을 진단하기 위한 정보제공방법을 제공하는 것을 목적으로 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 하기의 단계를 포함하는, 파킨슨병 진단을 위한 정보제공방법을 제공한다:
(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
그리고, 본 발명은 하기의 단계를 포함하는, 파킨슨병 진단방법을 제공한다:
(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
또한, 본 발명은 하기의 단계를 포함하는, 파킨슨병의 발병 위험도 예측방법을 제공한다:
(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
본 발명의 일구현예로, 상기 피검체 샘플은 소변일 수 있다.
본 발명의 다른 구현예로, 상기 (c) 단계에서 Proteobacteria, Cyanobacteria, Gemmatimonadetes, Chloroflexi, Synergistetes, Acidobacteria, Planctomycetes, OD1, WS3, Parvarchaeota, OP1, Chlorobi, OP9, Hyd24-12, 및 Thermotogae로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 Coriobacteriia, Gammaproteobacteria, Verrucomicrobiae, Actinobacteria, Alphaproteobacteria, Chloroplast, Saprospirae, Deltaproteobacteria, Epsilonproteobacteria, Ellin6529, Chloracidobacteria, Opitutae, Thermoleophilia, Synergistia, Gemmatimonadetes, Planctomycetia, Acidobacteriia, Solibacteres, Anaerolineae, Chloroflexi, Phycisphaerae, Synechococcophycideae, TM7-1, Acidimicrobiia, Acidobacteria-6, Spartobacteria, ABY1, Pedosphaerae, ZB2, PRR-12, Ktedonobacteria, JS1, WM88, Dehalococcoidetes, SAR202, 및 MSBL6로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 RF39, Turicibacterales, Pseudomonadales, Coriobacteriales, Pasteurellales, Enterobacteriales, Verrucomicrobiales, Gemellales, Neisseriales, Saprospirales, Actinomycetales, Streptophyta, Rhizobiales, Rhodospirillales, Xanthomonadales, Myxococcales, Campylobacterales, Desulfovibrionales, Solirubrobacterales, Opitutales, RB41, Rickettsiales, Pirellulales, Synergistales, Planctomycetales, Acidobacteriales, Solibacterales, Gaiellales, Gemmatales, Acidimicrobiales, WD2101, Chthoniobacterales, Thermoanaerobacterales, Pedosphaerales, Phycisphaerales, Sediment-1, Chlorophyta, iii1-15, Synechococcales, Roseiflexales, JG30-KF-AS9, Ellin329, Anaerolineales, Ellin5290, SC-I-84, Cryptophyta, MBNT15, envOPS12, B07_WMSP1, UA01, 및 Thermotogales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 Exiguobacteraceae, Enterococcaceae, Turicibacteraceae, Mogibacteriaceae, Moraxellaceae, Porphyromonadaceae, Burkholderiaceae, Actinomycetaceae, Coriobacteriaceae, Methylobacteriaceae, Streptococcaceae, Pseudomonadaceae, Pasteurellaceae, Veillonellaceae, Peptostreptococcaceae, Enterobacteriaceae, Verrucomicrobiaceae, Lachnospiraceae, Leuconostocaceae, Bradyrhizobiaceae, Rikenellaceae, Tissierellaceae, Bacteroidaceae, Chitinophagaceae, Corynebacteriaceae, Xanthomonadaceae, Rhizobiaceae, Propionibacteriaceae, Desulfobacteraceae, Barnesiellaceae, Comamonadaceae, mitochondria, Hyphomicrobiaceae, Alteromonadaceae, Sinobacteraceae, Pirellulaceae, Dethiosulfovibrionaceae, Acidobacteriaceae, Planctomycetaceae, Isosphaeraceae, Gaiellaceae, Koribacteraceae, Helicobacteraceae, Chthoniobacteraceae, Gemmataceae, C111, Solibacteraceae, Pelagibacteraceae, PRR-10, Ellin515, Thermoanaerobacteraceae, Methanoregulaceae, Synechococcaceae, Desulfomicrobiaceae, Kouleothrixaceae, OCS155, Alicyclobacillaceae, Myxococcaceae, EB1017, Anaerolinaceae, 및 Desulfohalobiaceae로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 Collinsella, Adlercreutzia, SMB53, Proteus, Exiguobacterium, Enterococcus, Acinetobacter, Turicibacter, Klebsiella, Lautropia, Akkermansia, Parabacteroides, Rhizobium, Actinomyces, Lactococcus, Blautia, Veillonella, Pseudomonas, Rothia, Dorea, Streptococcus, Haemophilus, Enhydrobacter, Rhodococcus, Coprococcus, Oscillospira, Ruminococcus, Bacteroides, Corynebacterium, Weissella, Propionibacterium, Lysinibacillus, Stenotrophomonas, Arthrobacter, Comamonas, Marinobacter, Clostridium, Planctomyces, Luteolibacter, Delftia, Agrobacterium, Rhodoplanes, DA101, Gemmata, Coprobacillus, Arcobacter, Helicobacter, Candidatus Solibacter, Methanosarcina, Thermacetogenium, Synechococcus, Desulfomicrobium, Chthoniobacter, Aminobacterium, Gallicola, Anaeromyxobacter, Muricauda, 및 Candidatus Koribacter로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
환경에 존재하는 세균, 고세균 등의 미생물에서 분비되는 세포밖 소포는 체내에 흡수되어 염증 발생에 직접적인 영향을 미칠 수 있으며, 염증반응을 특징으로 하는 파킨슨병은 증상이 나타나기 전 조기진단이 어려워 효율적인 치료가 어려운 실정이므로, 본 발명에 따른 인체 유래 샘플을 이용한 세균 유래 세포밖 소포의 메타게놈 분석을 통해 파킨슨병 발병의 위험도를 미리 진단함으로써 파킨슨병의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 조기진단 할 수 있어 파킨슨병의 발병률을 낮추고 치료효과를 높일 수 있다. 또한, 파킨슨병으로 진단받은 환자에서 메타게놈 분석을 통해 원인인자 노출을 피함으로써 암의 경과를 좋게 하거나, 재발을 막을 수 있다.
도 1a은, 마우스에 장내 세균과 세균유래 소포 (EV)를 구강으로 투여한 후, 시간별로 세균과 소포의 분포양상을 촬영한 사진이고, 도 1b는 구강으로 투여한 후 12시간째에, 소변 및 여러 장기를 적출하여, 세균과 소포의 체내 분포양상을 평가한 그림이다.
도 2는 파킨슨병환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 3은 파킨슨병환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 4는 파킨슨병환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 5는 파킨슨병환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 6은 파킨슨병환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
본 발명은 세균 메타게놈 분석을 통해 파킨슨병을 진단하는 방법에 관한 것으로서, 본 발명자들은 피검체 유래 샘플을 이용해 세균 유래 세포밖 소포로부터 유전자를 추출하고 이에 대하여 메타게놈 분석을 수행하였으며, 파킨슨병의 원인인자로 작용할 수 있는 세균 유래 세포밖 소포를 동정하였다.
이에, 본 발명은 (a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는 파킨슨병을 진단하기 위한 정보제공방법을 제공한다.
본 발명에서 사용되는 용어, "파킨슨병 진단" 이란 환자에 대하여 파킨슨병이 발병할 가능성이 있는지, 파킨슨병이 발병할 가능성이 상대적으로 높은지, 또는 파킨슨병이 이미 발병하였는지 여부를 판별하는 것을 의미한다. 본 발명의 방법은 임의의 특정 환자에 대한 파킨슨병 발병 위험도가 높은 환자로써 특별하고 적절한 관리를 통하여 발병 시기를 늦추거나 발병하지 않도록 하는데 사용할 수 있다. 또한, 본 발명의 방법은 파킨슨병을 조기에 진단하여 가장 적절한 치료방식을 선택함으로써 치료를 결정하기 위해 임상적으로 사용될 수 있다.
본 발명에서 사용되는 용어, "메타게놈(metagenome)"이란 "군유전체"라고도 하며, 흙, 동물의 장 등 고립된 지역 내의 모든 바이러스, 세균, 곰팡이 등을 포함하는 유전체의 총합을 의미하는 것으로, 주로 배양이 되지 않는 미생물을 분석하기 위해서 서열분석기를 사용하여 한꺼번에 많은 미생물을 동정하는 것을 설명하는 유전체의 개념으로 쓰인다. 특히, 메타게놈은 한 종의 게놈 또는 유전체를 말하는 것이 아니라, 한 환경단위의 모든 종의 유전체로서 일종의 혼합유전체를 말한다. 이는 오믹스적으로 생물학이 발전하는 과정에서 한 종을 정의할 때 기능적으로 기존의 한 종뿐만 아니라, 다양한 종이 서로 상호작용하여 완전한 종을 만든다는 관점에서 나온 용어이다. 기술적으로는 빠른 서열분석법을 이용해서, 종에 관계없이 모든 DNA, RNA를 분석하여, 한 환경 내에서의 모든 종을 동정하고, 상호작용, 대사작용을 규명하는 기법의 대상이다. 본 발명에서는 바람직하게 혈청에서 분리한 세균 유래 세포밖 소포를 이용하여 메타게놈 분석을 실시하였다.
본 발명에서 사용되는 용어, "세균 유래 소포" 란 세균 또는 고세균에서 유래하는 세포밖 소포를 포함하는 개념이나, 이것으로 제한되는 것은 아니다.
본 발명에 있어서, 상기 피검체 샘플은 소변일 수 있으나, 이것으로 제한되는 것은 아니다.
본 발명의 실시예에서는 상기 세균 유래 세포밖 소포에 대한 메타게놈 분석을 실시하였으며, 문(phylum), 강(class), 목(order), 과(family), 및 속(genus) 수준에서 각각 분석하여 실제로 파킨슨병 발생의 원인으로 작용할 수 있는 세균 유래 소포를 동정하였다.
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 문 수준에서 분석한 결과, Proteobacteria, Cyanobacteria, Gemmatimonadetes, Chloroflexi, Synergistetes, Acidobacteria, Planctomycetes, OD1, WS3, Parvarchaeota, OP1, Chlorobi, OP9, Hyd24-12, 및 Thermotogae 문 세균 유래 세포밖 소포의 함량이 파킨슨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 강 수준에서 분석한 결과, Coriobacteriia, Gammaproteobacteria, Verrucomicrobiae, Actinobacteria, Alphaproteobacteria, Chloroplast, Saprospirae, Deltaproteobacteria, Epsilonproteobacteria, Ellin6529, Chloracidobacteria, Opitutae, Thermoleophilia, Synergistia, Gemmatimonadetes, Planctomycetia, Acidobacteriia, Solibacteres, Anaerolineae, Chloroflexi, Phycisphaerae, Synechococcophycideae, TM7-1, Acidimicrobiia, Acidobacteria-6, Spartobacteria, ABY1, Pedosphaerae, ZB2, PRR-12, Ktedonobacteria, JS1, WM88, Dehalococcoidetes, SAR202, 및 MSBL6 강 세균 유래 세포밖 소포의 함량이 파킨슨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 목 수준에서 분석한 결과, RF39, Turicibacterales, Pseudomonadales, Coriobacteriales, Pasteurellales, Enterobacteriales, Verrucomicrobiales, Gemellales, Neisseriales, Saprospirales, Actinomycetales, Streptophyta, Rhizobiales, Rhodospirillales, Xanthomonadales, Myxococcales, Campylobacterales, Desulfovibrionales, Solirubrobacterales, Opitutales, RB41, Rickettsiales, Pirellulales, Synergistales, Planctomycetales, Acidobacteriales, Solibacterales, Gaiellales, Gemmatales, Acidimicrobiales, WD2101, Chthoniobacterales, Thermoanaerobacterales, Pedosphaerales, Phycisphaerales, Sediment-1, Chlorophyta, iii1-15, Synechococcales, Roseiflexales, JG30-KF-AS9, Ellin329, Anaerolineales, Ellin5290, SC-I-84, Cryptophyta, MBNT15, envOPS12, B07_WMSP1, UA01, 및 Thermotogales 목 세균 유래 세포밖 소포의 함량이 파킨슨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 과 수준에서 분석한 결과, Exiguobacteraceae, Enterococcaceae, Turicibacteraceae, Mogibacteriaceae, Moraxellaceae, Porphyromonadaceae, Burkholderiaceae, Actinomycetaceae, Coriobacteriaceae, Methylobacteriaceae, Streptococcaceae, Pseudomonadaceae, Pasteurellaceae, Veillonellaceae, Peptostreptococcaceae, Enterobacteriaceae, Verrucomicrobiaceae, Lachnospiraceae, Leuconostocaceae, Bradyrhizobiaceae, Rikenellaceae, Tissierellaceae, Bacteroidaceae, Chitinophagaceae, Corynebacteriaceae, Xanthomonadaceae, Rhizobiaceae, Propionibacteriaceae, Desulfobacteraceae, Barnesiellaceae, Comamonadaceae, mitochondria, Hyphomicrobiaceae, Alteromonadaceae, Sinobacteraceae, Pirellulaceae, Dethiosulfovibrionaceae, Acidobacteriaceae, Planctomycetaceae, Isosphaeraceae, Gaiellaceae, Koribacteraceae, Helicobacteraceae, Chthoniobacteraceae, Gemmataceae, C111, Solibacteraceae, Pelagibacteraceae, PRR-10, Ellin515, Thermoanaerobacteraceae, Methanoregulaceae, Synechococcaceae, Desulfomicrobiaceae, Kouleothrixaceae, OCS155, Alicyclobacillaceae, Myxococcaceae, EB1017, Anaerolinaceae, 및 Desulfohalobiaceae 과 세균 유래 세포밖 소포의 함량이 파킨슨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 속 수준에서 분석한 결과, Collinsella, Adlercreutzia, SMB53, Proteus, Exiguobacterium, Enterococcus, Acinetobacter, Turicibacter, Klebsiella, Lautropia, Akkermansia, Parabacteroides, Rhizobium, Actinomyces, Lactococcus, Blautia, Veillonella, Pseudomonas, Rothia, Dorea, Streptococcus, Haemophilus, Enhydrobacter, Rhodococcus, Coprococcus, Oscillospira, Ruminococcus, Bacteroides, Corynebacterium, Weissella, Propionibacterium, Lysinibacillus, Stenotrophomonas, Arthrobacter, Comamonas, Marinobacter, Clostridium, Planctomyces, Luteolibacter, Delftia, Agrobacterium, Rhodoplanes, DA101, Gemmata, Coprobacillus, Arcobacter, Helicobacter, Candidatus Solibacter, Methanosarcina, Thermacetogenium, Synechococcus, Desulfomicrobium, Chthoniobacter, Aminobacterium, Gallicola, Anaeromyxobacter, Muricauda, 및 Candidatus Koribacter 속 세균 유래 세포밖 소포의 함량이 파킨슨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
상기 실시예 결과를 통해 상기 동정된 세균 유래 세포밖 소포의 분포 변수가 파킨슨병 발생 예측에 유용하게 이용될 수 있음을 확인하였다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예]
실시예 1. 장내 세균 및 세균 유래 소포의 체내 흡수, 분포, 및 배설 양상 분석
장내 세균과 세균 유래 소포가 위장관을 통해 전신적으로 흡수되는 지를 평가하기 위하여 다음과 같은 방법으로 실험을 수행하였다. 마우스의 위장에 형광으로 표지한 장내세균과 장내 세균 유래 소포를 각각 50 μg의 용량으로 위장관으로 투여하고 0분, 5분, 3시간, 6시간, 12시간 후에 형광을 측정하였다. 마우스 전체 이미지를 관찰한 결과, 도 1a에 나타낸 바와 같이, 상기 세균(Bacteria)인 경우에는 전신적으로 흡수되지 않았지만, 세균 유래 소포(EV)인 경우에는, 투여 후 5분에 전신적으로 흡수되었고, 투여 3시간 후에는 방광에 형광이 진하게 관찰되어, 소포가 비뇨기계로 배설됨을 알 수 있었다. 또한, 소포는 투여 12시간까지 체내에 존재함을 알 수 있었다.
장내세균과 장내 세균유래 소포가 전신적으로 흡수된 후, 여러 장기로 침윤된 양상을 평가하기 위하여, 형광으로 표지한 50 μg의 세균과 세균유래 소포를 상기의 방법과 같이 투여한 다음 12시간째에 마우스로부터 소변(Blood), 심장(Heart), 폐(Lung), 간(Liver), 신장(Kidney), 비장(Spleen), 지방조직(Adipose tissue), 및 근육(Muscle)을 적출하였다. 상기 적출한 조직들에서 형광을 관찰한 결과, 도1b에 나타낸 바와 같이, 상기 장내 세균(Bacteria)은 각 장기에 흡수되지 않은 반면, 상기 장내 세균 유래 세포밖 소포(EV)는 소변, 심장, 폐, 간, 신장, 비장, 지방조직, 및 근육에 분포하는 것을 확인하였다.
실시예 2. 소변으로부터 소포 분리 및 DNA 추출
소변으로부터 소포를 분리하고 DNA를 추출하기 위해, 먼저 10 ㎖ 튜브에 소변을 넣고 원심분리(3,500 x g, 10min, 4℃)를 실시하여 부유물을 가라앉혀 상등액만을 회수한 후 새로운 10 ㎖ 튜브에 옮겼다. 0.22 ㎛ 필터를 사용하여 상기 회수한 상등액으로부터 세균 및 이물질을 제거한 후, 센트리프랩튜브(centripreigugal filters 50 kD)에 옮기고 1500 x g, 4℃에서 15분간 원심분리하여 50 kD 보다 작은 물질은 버리고 10 ㎖까지 농축 시켰다. 다시 한 번 0.22 ㎛ 필터를 사용하여 박테리아 및 이물질을 제거한 후, Type 90ti 로터로 150,000 x g, 4℃에서 3시간 동안 초고속원심분리방법을 사용하여 상등액을 버리고 덩어리진 pellet을 생리식염수(PBS)로 녹여 소포를 수득하였다.
상기 방법에 따라 소변으로부터 분리한 소포 100 ㎕를 100℃에서 끓여서 내부의 DNA를 지질 밖으로 나오게 한 후 얼음에 5분 동안 식혔다. 다음으로 남은 부유물을 제거하기 위하여 10,000 x g, 4℃에서 30분간 원심분리하고 상등액 만을 모은 후 Nanodrop을 이용하여 DNA 양을 정량하였다. 이후 상기 추출된 DNA에 세균 유래 DNA가 존재하는지 확인하기 위하여 하기 표 1에 나타낸 16s rDNA primer로 PCR을 수행하여 상기 추출된 유전자에 세균 유래 유전자가 존재하는 것을 확인하였다.
primer 서열 서열번호
16S rDNA 16S_V3_F 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3' 1
16S_V4_R 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3 2
실시예 3. 소변에서 추출한 DNA를 이용한 메타게놈 분석
상기 실시예 2의 방법으로 유전자를 추출한 후, 상기 표1에 나타낸 16S rDNA 프라이머를 사용하여 PCR을 실시하여 유전자를 증폭시키고 시퀀싱(Illumina MiSeq sequencer)을 수행하였다. 결과를 Standard Flowgram Format(SFF) 파일로 출력하고 GS FLX software(v2.9)를 이용하여 SFF 파일을 sequence 파일(.fasta)과 nucleotide quality score 파일로 변환한 다음 리드의 신용도 평가를 확인하고, window(20 bps) 평균 base call accuracy가 99% 미만(Phred score <20)인 부분을 제거하였다. 질이 낮은 부분을 제거한 후, 리드의 길이가 300 bps 이상인 것만 이용하였으며(Sickle version 1.33), 결과 분석을 위해 Operational Taxonomy Unit(OTU)은 UCLUST와 USEARCH를 이용하여 시퀀스 유사도에 따라 클러스터링을 수행하였다. 구체적으로 속(genus)은 94%, 과(family)는 90%, 목(order)은 85%, 강(class)은 80%, 문(phylum)은 75% 시퀀스 유사도를 기준으로 클러스터링을 하고 각 OTU의 문, 강, 목, 과, 속 레벨의 분류를 수행하고, BLASTN와 GreenGenes의 16S DNA 시퀀스 데이터베이스(108,453 시퀀스)를 이용하여 97% 이상의 시퀀스 유사도 갖는 박테리아를 분석하였다(QIIME).
실시예 4. 소변에서 분리한 세균유래 소포 메타게놈 분석 기반 파킨슨병 진단모형
상기 실시예 3의 방법으로, 파킨슨병환자 39명과 나이와 성별을 매칭한 정상인 76명의 소변에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.
소변 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, Proteobacteria, Cyanobacteria, Gemmatimonadetes, Chloroflexi, Synergistetes, Acidobacteria, Planctomycetes, OD1, WS3, Parvarchaeota, OP1, Chlorobi, OP9, Hyd24-12, 및 Thermotogae 문 세균 바이오마커로 진단모형을 개발하였을 때, 파킨슨병에 대한 진단적 성능이 유의하게 나타났다 (표 2 및 도 2 참조).
  대조군 파킨슨병 t-test
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity
p__Proteobacteria 0.3993 0.1837 0.1836 0.0974 0.0000 0.46 0.95 0.86 0.92
p__Cyanobacteria 0.0191 0.0207 0.0486 0.0184 0.0000 2.55 0.87 0.86 0.54
p__Gemmatimonadetes 0.0003 0.0010 0.0022 0.0021 0.0000 8.03 0.81 0.93 0.64
p__Chloroflexi 0.0010 0.0030 0.0116 0.0052 0.0000 11.79 0.95 0.95 0.87
p__Synergistetes 0.0001 0.0003 0.0014 0.0018 0.0001 15.89 0.81 0.96 0.49
p__Acidobacteria 0.0005 0.0012 0.0119 0.0049 0.0000 25.85 1.00 0.97 0.95
p__Planctomycetes 0.0006 0.0019 0.0222 0.0094 0.0000 37.99 1.00 0.97 0.92
p__OD1 0.0000 0.0000 0.0053 0.0043 0.0000 1219.90 0.97 0.99 0.85
p__WS3 0.0000 0.0000 0.0046 0.0027 0.0000 1.00 1.00 1.00
p__[Parvarchaeota] 0.0000 0.0000 0.0014 0.0025 0.0000 0.95 1.00 0.85
p__OP1 0.0000 0.0000 0.0008 0.0014 0.0000 0.80 1.00 0.51
p__Chlorobi 0.0000 0.0000 0.0009 0.0012 0.0000 0.79 1.00 0.54
p__OP9 0.0000 0.0000 0.0005 0.0009 0.0000 0.76 1.00 0.49
p__Hyd24-12 0.0000 0.0000 0.0006 0.0012 0.0000 0.75 1.00 0.44
p__Thermotogae 0.0000 0.0000 0.0005 0.0013 0.0005 0.62 1.00 0.21
소변 내 세균유래 소포를 강(class) 수준에서 분석한 결과, Coriobacteriia, Gammaproteobacteria, Verrucomicrobiae, Actinobacteria, Alphaproteobacteria, Chloroplast, Saprospirae, Deltaproteobacteria, Epsilonproteobacteria, Ellin6529, Chloracidobacteria, Opitutae, Thermoleophilia, Synergistia, Gemmatimonadetes, Planctomycetia, Acidobacteriia, Solibacteres, Anaerolineae, Chloroflexi, Phycisphaerae, Synechococcophycideae, TM7-1, Acidimicrobiia, Acidobacteria-6, Spartobacteria, ABY1, Pedosphaerae, ZB2, PRR-12, Ktedonobacteria, JS1, WM88, Dehalococcoidetes, SAR202, 및 MSBL6 강 세균 바이오마커로 진단모형을 개발하였을 때, 파킨슨병에 대한 진단적 성능이 유의하게 나타났다 (표 3 및 도 3 참조).
  대조군 파킨슨병 t-test
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity
c__Coriobacteriia 0.0092 0.0080 0.0013 0.0015 0.0000 0.14 0.85 0.78 0.72
c__Gammaproteobacteria 0.2999 0.1716 0.0593 0.1103 0.0000 0.20 0.96 0.96 0.97
c__Verrucomicrobiae 0.0218 0.0272 0.0052 0.0044 0.0000 0.24 0.73 0.79 0.36
c__Actinobacteria 0.0579 0.0320 0.1202 0.0553 0.0000 2.08 0.91 0.88 0.74
c__Alphaproteobacteria 0.0372 0.0434 0.0897 0.0244 0.0000 2.41 0.94 0.96 0.79
c__Chloroplast 0.0185 0.0202 0.0454 0.0181 0.0000 2.46 0.86 0.86 0.51
c__[Saprospirae] 0.0013 0.0030 0.0033 0.0030 0.0015 2.46 0.75 0.92 0.23
c__Deltaproteobacteria 0.0020 0.0036 0.0072 0.0040 0.0000 3.61 0.85 0.89 0.51
c__Epsilonproteobacteria 0.0003 0.0010 0.0016 0.0021 0.0007 5.52 0.74 0.95 0.44
c__Ellin6529 0.0002 0.0016 0.0015 0.0016 0.0001 7.88 0.89 0.99 0.49
c__[Chloracidobacteria] 0.0001 0.0008 0.0015 0.0015 0.0000 10.81 0.87 0.97 0.54
c__Opitutae 0.0001 0.0006 0.0014 0.0020 0.0002 12.65 0.75 0.95 0.44
c__Thermoleophilia 0.0001 0.0006 0.0019 0.0018 0.0000 13.97 0.86 0.96 0.64
c__Synergistia 0.0001 0.0003 0.0014 0.0018 0.0001 15.89 0.81 0.96 0.49
c__Gemmatimonadetes 0.0001 0.0004 0.0016 0.0015 0.0000 21.15 0.82 0.96 0.64
c__Planctomycetia 0.0004 0.0015 0.0096 0.0049 0.0000 25.27 0.98 0.97 0.92
c__Acidobacteriia 0.0001 0.0005 0.0029 0.0024 0.0000 30.81 0.92 0.96 0.77
c__Solibacteres 0.0001 0.0006 0.0039 0.0036 0.0000 33.37 0.92 0.96 0.74
c__Anaerolineae 0.0001 0.0004 0.0032 0.0029 0.0000 40.61 0.89 0.97 0.69
c__Chloroflexi 0.0000 0.0002 0.0019 0.0018 0.0000 55.61 0.84 0.97 0.59
c__Phycisphaerae 0.0002 0.0013 0.0121 0.0077 0.0000 59.10 0.96 0.99 0.85
c__Synechococcophycideae 0.0000 0.0003 0.0022 0.0030 0.0000 61.69 0.86 0.99 0.49
c__TM7-1 0.0001 0.0003 0.0047 0.0040 0.0000 89.44 0.94 0.99 0.77
c__Acidimicrobiia 0.0000 0.0003 0.0036 0.0025 0.0000 100.35 0.97 0.99 0.85
c__Acidobacteria-6 0.0000 0.0001 0.0022 0.0021 0.0000 140.15 0.88 0.99 0.69
c__[Spartobacteria] 0.0000 0.0002 0.0061 0.0038 0.0000 201.78 0.99 0.99 0.92
c__ABY1 0.0000 0.0000 0.0013 0.0022 0.0008 324.38 0.78 0.99 0.44
c__[Pedosphaerae] 0.0000 0.0000 0.0030 0.0019 0.0000 2033.19 1.00 1.00 1.00
c__ZB2 0.0000 0.0000 0.0026 0.0034 0.0000 10532.52 0.90 0.99 0.72
c__PRR-12 0.0000 0.0000 0.0046 0.0027 0.0000 1.00 1.00 1.00
c__Ktedonobacteria 0.0000 0.0000 0.0015 0.0019 0.0000 0.88 1.00 0.74
c__JS1 0.0000 0.0000 0.0005 0.0009 0.0000 0.76 1.00 0.49
c__WM88 0.0000 0.0000 0.0006 0.0012 0.0000 0.75 1.00 0.44
c__Dehalococcoidetes 0.0000 0.0000 0.0005 0.0012 0.0001 0.73 1.00 0.41
c__SAR202 0.0000 0.0000 0.0007 0.0015 0.0001 0.72 1.00 0.36
c__MSBL6 0.0000 0.0000 0.0005 0.0011 0.0000 0.70 1.00 0.38
소변 내 세균유래 소포를 목(order) 수준에서 분석한 결과, RF39, Turicibacterales, Pseudomonadales, Coriobacteriales, Pasteurellales, Enterobacteriales, Verrucomicrobiales, Gemellales, Neisseriales, Saprospirales, Actinomycetales, Streptophyta, Rhizobiales, Rhodospirillales, Xanthomonadales, Myxococcales, Campylobacterales, Desulfovibrionales, Solirubrobacterales, Opitutales, RB41, Rickettsiales, Pirellulales, Synergistales, Planctomycetales, Acidobacteriales, Solibacterales, Gaiellales, Gemmatales, Acidimicrobiales, WD2101, Chthoniobacterales, Thermoanaerobacterales, Pedosphaerales, Phycisphaerales, Sediment-1, Chlorophyta, iii1-15, Synechococcales, Roseiflexales, JG30-KF-AS9, Ellin329, Anaerolineales, Ellin5290, SC-I-84, Cryptophyta, MBNT15, envOPS12, B07_WMSP1, UA01, 및 Thermotogales 목 세균 바이오마커로 진단모형을 개발하였을 때, 파킨슨병에 대한 진단적 성능이 유의하게 나타났다 (표 4 및 도 4 참조).
  대조군 파킨슨병 t-test
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity
o__RF39 0.0043 0.0078 0.0000 0.0000 0.0000 0.00 0.93 0.86 0.97
o__Turicibacterales 0.0017 0.0025 0.0001 0.0004 0.0000 0.04 0.90 0.74 0.97
o__Pseudomonadales 0.1765 0.1640 0.0206 0.0091 0.0000 0.12 1.00 0.97 1.00
o__Coriobacteriales 0.0092 0.0080 0.0013 0.0015 0.0000 0.14 0.93 0.87 0.92
o__Pasteurellales 0.0053 0.0061 0.0010 0.0013 0.0000 0.19 0.91 0.82 0.79
o__Enterobacteriales 0.1129 0.0780 0.0260 0.1144 0.0001 0.23 0.98 0.93 0.97
o__Verrucomicrobiales 0.0218 0.0272 0.0052 0.0044 0.0000 0.24 0.90 0.82 0.90
o__Gemellales 0.0010 0.0017 0.0003 0.0008 0.0036 0.31 0.83 0.74 0.74
o__Neisseriales 0.0054 0.0077 0.0026 0.0026 0.0050 0.48 0.82 0.75 0.62
o__[Saprospirales] 0.0013 0.0030 0.0033 0.0030 0.0015 2.46 0.88 0.89 0.62
o__Actinomycetales 0.0452 0.0290 0.1116 0.0549 0.0000 2.47 0.95 0.89 0.90
o__Streptophyta 0.0142 0.0184 0.0375 0.0152 0.0000 2.63 0.93 0.91 0.82
o__Rhizobiales 0.0128 0.0111 0.0368 0.0148 0.0000 2.88 0.95 0.96 0.79
o__Rhodospirillales 0.0005 0.0017 0.0022 0.0022 0.0001 4.04 0.90 0.93 0.59
o__Xanthomonadales 0.0015 0.0022 0.0061 0.0036 0.0000 4.12 0.94 0.89 0.69
o__Myxococcales 0.0003 0.0013 0.0018 0.0022 0.0004 5.24 0.89 0.87 0.64
o__Campylobacterales 0.0003 0.0010 0.0016 0.0021 0.0007 5.52 0.88 0.91 0.56
o__Desulfovibrionales 0.0003 0.0007 0.0018 0.0022 0.0001 6.33 0.89 0.84 0.67
o__Solirubrobacterales 0.0001 0.0006 0.0009 0.0014 0.0027 7.42 0.85 0.87 0.62
o__Opitutales 0.0001 0.0005 0.0008 0.0015 0.0070 7.54 0.83 0.91 0.38
o__RB41 0.0001 0.0008 0.0012 0.0014 0.0000 9.27 0.98 0.99 0.79
o__Rickettsiales 0.0011 0.0019 0.0136 0.0086 0.0000 12.59 0.98 0.97 0.90
o__Pirellulales 0.0002 0.0014 0.0029 0.0023 0.0000 13.12 0.93 0.99 0.72
o__Synergistales 0.0001 0.0003 0.0014 0.0018 0.0001 15.89 0.91 0.97 0.59
o__Planctomycetales 0.0001 0.0006 0.0018 0.0021 0.0000 18.78 0.91 0.95 0.59
o__Acidobacteriales 0.0001 0.0005 0.0029 0.0024 0.0000 30.81 0.96 0.97 0.82
o__Solibacterales 0.0001 0.0006 0.0039 0.0036 0.0000 33.37 0.96 0.99 0.74
o__Gaiellales 0.0000 0.0001 0.0010 0.0013 0.0000 61.75 0.91 0.99 0.54
o__Gemmatales 0.0001 0.0003 0.0049 0.0036 0.0000 76.01 0.97 0.99 0.79
o__Acidimicrobiales 0.0000 0.0003 0.0036 0.0025 0.0000 100.35 1.00 0.99 0.90
o__WD2101 0.0001 0.0004 0.0098 0.0067 0.0000 153.20 0.99 0.99 0.92
o__[Chthoniobacterales] 0.0000 0.0002 0.0061 0.0038 0.0000 201.78 1.00 1.00 1.00
o__Thermoanaerobacterales 0.0000 0.0001 0.0050 0.0028 0.0000 337.41 0.99 0.99 0.92
o__[Pedosphaerales] 0.0000 0.0000 0.0029 0.0019 0.0000 1980.86 1.00 1.00 1.00
o__Phycisphaerales 0.0000 0.0000 0.0010 0.0022 0.0060 3096.39 0.89 0.99 0.49
o__Sediment-1 0.0000 0.0000 0.0035 0.0023 0.0000 1.00 1.00 0.97
o__Chlorophyta 0.0000 0.0000 0.0041 0.0047 0.0000 0.98 1.00 0.92
o__iii1-15 0.0000 0.0000 0.0019 0.0021 0.0000 0.97 1.00 0.82
o__Synechococcales 0.0000 0.0000 0.0022 0.0029 0.0000 0.95 1.00 0.79
o__[Roseiflexales] 0.0000 0.0000 0.0016 0.0016 0.0000 0.95 1.00 0.69
o__JG30-KF-AS9 0.0000 0.0000 0.0010 0.0013 0.0000 0.93 1.00 0.67
o__Ellin329 0.0000 0.0000 0.0013 0.0026 0.0000 0.93 1.00 0.59
o__Anaerolineales 0.0000 0.0000 0.0009 0.0017 0.0000 0.89 0.97 0.49
o__Ellin5290 0.0000 0.0000 0.0005 0.0011 0.0000 0.89 0.92 0.56
o__SC-I-84 0.0000 0.0000 0.0005 0.0010 0.0000 0.89 1.00 0.46
o__Cryptophyta 0.0000 0.0000 0.0007 0.0013 0.0000 0.88 0.97 0.46
o__MBNT15 0.0000 0.0000 0.0005 0.0011 0.0001 0.88 0.92 0.59
o__envOPS12 0.0000 0.0000 0.0006 0.0011 0.0000 0.87 1.00 0.41
o__B07_WMSP1 0.0000 0.0000 0.0006 0.0013 0.0003 0.87 0.92 0.46
o__UA01 0.0000 0.0000 0.0007 0.0020 0.0036 0.86 0.97 0.38
o__Thermotogales 0.0000 0.0000 0.0005 0.0013 0.0005 0.83 0.89 0.44
소변 내 세균유래 소포를 과(family) 수준에서 분석한 결과, Exiguobacteraceae, Enterococcaceae, Turicibacteraceae, Mogibacteriaceae, Moraxellaceae, Porphyromonadaceae, Burkholderiaceae, Actinomycetaceae, Coriobacteriaceae, Methylobacteriaceae, Streptococcaceae, Pseudomonadaceae, Pasteurellaceae, Veillonellaceae, Peptostreptococcaceae, Enterobacteriaceae, Verrucomicrobiaceae, Lachnospiraceae, Leuconostocaceae, Bradyrhizobiaceae, Rikenellaceae, Tissierellaceae, Bacteroidaceae, Chitinophagaceae, Corynebacteriaceae, Xanthomonadaceae, Rhizobiaceae, Propionibacteriaceae, Desulfobacteraceae, Barnesiellaceae, Comamonadaceae, mitochondria, Hyphomicrobiaceae, Alteromonadaceae, Sinobacteraceae, Pirellulaceae, Dethiosulfovibrionaceae, Acidobacteriaceae, Planctomycetaceae, Isosphaeraceae, Gaiellaceae, Koribacteraceae, Helicobacteraceae, Chthoniobacteraceae, Gemmataceae, C111, Solibacteraceae, Pelagibacteraceae, PRR-10, Ellin515, Thermoanaerobacteraceae, Methanoregulaceae, Synechococcaceae, Desulfomicrobiaceae, Kouleothrixaceae, OCS155, Alicyclobacillaceae, Myxococcaceae, EB1017, Anaerolinaceae, 및 Desulfohalobiaceae 과 세균 바이오마커로 진단모형을 개발하였을 때, 파킨슨병에 대한 진단적 성능이 유의하게 나타났다 (표 5 및 도 5 참조).
  대조군 파킨슨병 t-test
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity
f__[Exiguobacteraceae] 0.0029 0.0064 0.0000 0.0000 0.0002 0.00 0.73 0.87 0.21
f__Enterococcaceae 0.0100 0.0106 0.0003 0.0005 0.0000 0.03 0.92 0.87 0.90
f__Turicibacteraceae 0.0017 0.0025 0.0001 0.0004 0.0000 0.04 0.75 0.99 0.08
f__[Mogibacteriaceae] 0.0009 0.0014 0.0000 0.0003 0.0000 0.05 0.75 0.84 0.26
f__Moraxellaceae 0.0810 0.1062 0.0058 0.0041 0.0000 0.07 0.97 0.93 0.92
f__Porphyromonadaceae 0.0151 0.0169 0.0012 0.0017 0.0000 0.08 0.85 0.82 0.74
f__Burkholderiaceae 0.0017 0.0028 0.0001 0.0004 0.0000 0.09 0.79 0.91 0.44
f__Actinomycetaceae 0.0061 0.0095 0.0007 0.0010 0.0000 0.12 0.80 0.78 0.67
f__Coriobacteriaceae 0.0092 0.0080 0.0013 0.0015 0.0000 0.14 0.85 0.78 0.72
f__Methylobacteriaceae 0.0032 0.0056 0.0005 0.0009 0.0001 0.15 0.71 0.95 0.05
f__Streptococcaceae 0.0322 0.0227 0.0050 0.0035 0.0000 0.15 0.90 0.82 0.87
f__Pseudomonadaceae 0.0954 0.0850 0.0148 0.0074 0.0000 0.15 0.98 0.95 0.90
f__Pasteurellaceae 0.0053 0.0061 0.0010 0.0013 0.0000 0.19 0.75 0.72 0.59
f__Veillonellaceae 0.0169 0.0227 0.0032 0.0026 0.0000 0.19 0.79 0.78 0.69
f__Peptostreptococcaceae 0.0010 0.0015 0.0002 0.0006 0.0001 0.20 0.73 0.97 0.05
f__Enterobacteriaceae 0.1129 0.0780 0.0260 0.1144 0.0001 0.23 0.94 0.95 0.95
f__Verrucomicrobiaceae 0.0218 0.0272 0.0052 0.0044 0.0000 0.24 0.73 0.79 0.36
f__Lachnospiraceae 0.0343 0.0180 0.0140 0.0071 0.0000 0.41 0.89 0.88 0.74
f__Leuconostocaceae 0.0034 0.0039 0.0057 0.0035 0.0030 1.67 0.72 0.93 0.13
f__Bradyrhizobiaceae 0.0020 0.0050 0.0039 0.0034 0.0170 1.97 0.74 0.96 0.10
f__Rikenellaceae 0.0011 0.0021 0.0022 0.0023 0.0069 2.11 0.74 0.93 0.13
f__[Tissierellaceae] 0.0015 0.0025 0.0039 0.0028 0.0000 2.63 0.78 0.89 0.38
f__Bacteroidaceae 0.0405 0.0357 0.1142 0.0288 0.0000 2.82 0.94 0.95 0.87
f__Chitinophagaceae 0.0011 0.0021 0.0032 0.0031 0.0004 2.89 0.76 0.93 0.31
f__Corynebacteriaceae 0.0103 0.0104 0.0348 0.0154 0.0000 3.37 0.92 0.89 0.72
f__Xanthomonadaceae 0.0014 0.0022 0.0052 0.0034 0.0000 3.70 0.85 0.86 0.54
f__Rhizobiaceae 0.0063 0.0064 0.0240 0.0107 0.0000 3.80 0.93 0.95 0.72
f__Propionibacteriaceae 0.0101 0.0087 0.0550 0.0434 0.0000 5.45 0.98 0.96 0.92
f__Desulfobacteraceae 0.0001 0.0007 0.0008 0.0013 0.0025 6.30 0.71 0.96 0.26
f__[Barnesiellaceae] 0.0003 0.0009 0.0023 0.0023 0.0000 6.56 0.81 0.93 0.51
f__Comamonadaceae 0.0019 0.0026 0.0137 0.0076 0.0000 7.40 0.98 0.96 0.79
f__mitochondria 0.0010 0.0018 0.0108 0.0073 0.0000 11.19 0.95 0.97 0.79
f__Hyphomicrobiaceae 0.0004 0.0016 0.0047 0.0046 0.0000 11.33 0.86 0.96 0.51
f__Alteromonadaceae 0.0001 0.0005 0.0010 0.0014 0.0008 12.22 0.77 0.97 0.36
f__Sinobacteraceae 0.0001 0.0003 0.0009 0.0014 0.0008 12.62 0.73 0.96 0.38
f__Pirellulaceae 0.0002 0.0014 0.0029 0.0023 0.0000 13.12 0.90 0.97 0.69
f__Dethiosulfovibrionaceae 0.0001 0.0003 0.0009 0.0014 0.0004 15.62 0.76 0.96 0.36
f__Acidobacteriaceae 0.0001 0.0005 0.0015 0.0020 0.0001 17.35 0.79 0.97 0.46
f__Planctomycetaceae 0.0001 0.0006 0.0018 0.0021 0.0000 18.78 0.82 0.97 0.49
f__Isosphaeraceae 0.0001 0.0003 0.0015 0.0019 0.0000 28.59 0.82 0.97 0.44
f__Gaiellaceae 0.0000 0.0001 0.0008 0.0010 0.0000 48.28 0.76 0.97 0.46
f__Koribacteraceae 0.0000 0.0001 0.0009 0.0015 0.0006 91.19 0.71 0.99 0.33
f__Helicobacteraceae 0.0000 0.0001 0.0008 0.0013 0.0015 114.37 0.84 0.99 0.41
f__[Chthoniobacteraceae] 0.0000 0.0002 0.0061 0.0038 0.0000 201.78 0.99 0.99 0.92
f__Gemmataceae 0.0000 0.0001 0.0034 0.0034 0.0000 273.92 0.91 0.99 0.69
f__C111 0.0000 0.0000 0.0008 0.0013 0.0005 964.09 0.73 0.99 0.33
f__Solibacteraceae 0.0000 0.0000 0.0025 0.0024 0.0000 13883.24 0.95 0.99 0.90
f__Pelagibacteraceae 0.0000 0.0000 0.0027 0.0033 0.0000 0.97 1.00 0.92
f__PRR-10 0.0000 0.0000 0.0018 0.0017 0.0000 0.96 1.00 0.90
f__Ellin515 0.0000 0.0000 0.0009 0.0008 0.0000 0.95 1.00 0.85
f__Thermoanaerobacteraceae 0.0000 0.0000 0.0050 0.0028 0.0000 0.93 0.91 0.95
f__Methanoregulaceae 0.0000 0.0000 0.0012 0.0019 0.0000 0.92 1.00 0.82
f__Synechococcaceae 0.0000 0.0000 0.0022 0.0029 0.0000 0.91 1.00 0.79
f__Desulfomicrobiaceae 0.0000 0.0000 0.0011 0.0014 0.0000 0.88 1.00 0.69
f__[Kouleothrixaceae] 0.0000 0.0000 0.0015 0.0015 0.0000 0.86 1.00 0.67
f__OCS155 0.0000 0.0000 0.0009 0.0015 0.0000 0.84 1.00 0.62
f__Alicyclobacillaceae 0.0000 0.0000 0.0005 0.0009 0.0000 0.79 1.00 0.49
f__Myxococcaceae 0.0000 0.0000 0.0007 0.0012 0.0000 0.76 1.00 0.46
f__EB1017 0.0000 0.0000 0.0009 0.0015 0.0000 0.76 1.00 0.51
f__Anaerolinaceae 0.0000 0.0000 0.0009 0.0017 0.0000 0.74 1.00 0.44
f__Desulfohalobiaceae 0.0000 0.0000 0.0006 0.0014 0.0002 0.73 1.00 0.41
소변 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, Collinsella, Adlercreutzia, SMB53, Proteus, Exiguobacterium, Enterococcus, Acinetobacter, Turicibacter, Klebsiella, Lautropia, Akkermansia, Parabacteroides, Rhizobium, Actinomyces, Lactococcus, Blautia, Veillonella, Pseudomonas, Rothia, Dorea, Streptococcus, Haemophilus, Enhydrobacter, Rhodococcus, Coprococcus, Oscillospira, Ruminococcus, Bacteroides, Corynebacterium, Weissella, Propionibacterium, Lysinibacillus, Stenotrophomonas, Arthrobacter, Comamonas, Marinobacter, Clostridium, Planctomyces, Luteolibacter, Delftia, Agrobacterium, Rhodoplanes, DA101, Gemmata, Coprobacillus, Arcobacter, Helicobacter, Candidatus Solibacter, Methanosarcina, Thermacetogenium, Synechococcus, Desulfomicrobium, Chthoniobacter, Aminobacterium, Gallicola, Anaeromyxobacter, Muricauda, 및 Candidatus Koribacter 속 세균 바이오마커로 진단모형을 개발하였을 때, 파킨슨병에 대한 진단적 성능이 유의하게 나타났다 (표 6 및 도 6 참조).
  대조군 파킨슨병 t-test
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity
g__Collinsella 0.0050 0.0066 0.0000 0.0000 0.0000 0.00 0.88 0.74 1.00
g__Adlercreutzia 0.0013 0.0021 0.0000 0.0000 0.0001 0.00 0.80 0.59 1.00
g__SMB53 0.0026 0.0037 0.0000 0.0000 0.0000 0.00 0.83 0.68 0.87
g__Proteus 0.0192 0.0298 0.0000 0.0000 0.0000 0.00 0.97 0.91 1.00
g__Exiguobacterium 0.0029 0.0064 0.0000 0.0000 0.0002 0.00 0.74 0.87 0.23
g__Enterococcus 0.0086 0.0099 0.0001 0.0003 0.0000 0.02 0.93 0.84 0.92
g__Acinetobacter 0.0690 0.1047 0.0020 0.0022 0.0000 0.03 0.97 0.93 0.97
g__Turicibacter 0.0017 0.0025 0.0001 0.0004 0.0000 0.04 0.75 0.99 0.08
g__Klebsiella 0.0009 0.0016 0.0000 0.0002 0.0000 0.04 0.70 0.97 0.10
g__Lautropia 0.0015 0.0028 0.0001 0.0003 0.0000 0.05 0.75 0.92 0.26
g__Akkermansia 0.0216 0.0271 0.0012 0.0025 0.0000 0.06 0.88 0.82 0.82
g__Parabacteroides 0.0115 0.0156 0.0007 0.0015 0.0000 0.06 0.84 0.75 0.82
g__Rhizobium 0.0054 0.0061 0.0004 0.0014 0.0000 0.07 0.93 0.84 0.92
g__Actinomyces 0.0059 0.0095 0.0005 0.0008 0.0000 0.09 0.83 0.78 0.69
g__Lactococcus 0.0048 0.0064 0.0005 0.0009 0.0000 0.10 0.76 0.75 0.56
g__Blautia 0.0049 0.0067 0.0005 0.0009 0.0000 0.10 0.80 0.70 0.72
g__Veillonella 0.0096 0.0188 0.0010 0.0014 0.0002 0.11 0.78 0.75 0.62
g__Pseudomonas 0.0916 0.0826 0.0129 0.0070 0.0000 0.14 0.98 0.95 0.92
g__Rothia 0.0043 0.0058 0.0007 0.0014 0.0000 0.15 0.73 0.76 0.46
g__Dorea 0.0023 0.0037 0.0004 0.0011 0.0000 0.15 0.75 0.93 0.21
g__Streptococcus 0.0272 0.0210 0.0044 0.0033 0.0000 0.16 0.89 0.83 0.85
g__Haemophilus 0.0049 0.0059 0.0009 0.0011 0.0000 0.18 0.75 0.71 0.56
g__Enhydrobacter 0.0108 0.0104 0.0031 0.0036 0.0000 0.28 0.78 0.84 0.56
g__Rhodococcus 0.0018 0.0028 0.0006 0.0012 0.0018 0.32 0.72 0.99 0.10
g__Coprococcus 0.0025 0.0026 0.0009 0.0017 0.0002 0.37 0.75 0.97 0.15
g__Oscillospira 0.0045 0.0048 0.0101 0.0055 0.0000 2.24 0.81 0.89 0.44
g__Ruminococcus 0.0041 0.0042 0.0108 0.0058 0.0000 2.62 0.83 0.89 0.51
g__Bacteroides 0.0405 0.0357 0.1142 0.0288 0.0000 2.82 0.94 0.95 0.87
g__Corynebacterium 0.0103 0.0104 0.0348 0.0154 0.0000 3.37 0.92 0.89 0.72
g__Weissella 0.0014 0.0020 0.0046 0.0034 0.0000 3.37 0.85 0.91 0.62
g__Propionibacterium 0.0101 0.0087 0.0548 0.0434 0.0000 5.43 0.98 0.96 0.92
g__Lysinibacillus 0.0002 0.0011 0.0011 0.0014 0.0008 5.46 0.78 0.95 0.46
g__Stenotrophomonas 0.0005 0.0012 0.0029 0.0029 0.0000 6.05 0.87 0.93 0.46
g__Arthrobacter 0.0002 0.0011 0.0012 0.0019 0.0028 6.37 0.73 0.97 0.28
g__Comamonas 0.0002 0.0007 0.0017 0.0016 0.0000 7.76 0.83 0.95 0.51
g__Marinobacter 0.0001 0.0005 0.0005 0.0008 0.0030 8.31 0.71 0.99 0.31
g__Clostridium 0.0006 0.0012 0.0079 0.0055 0.0000 13.95 0.95 0.93 0.77
g__Planctomyces 0.0001 0.0006 0.0018 0.0021 0.0000 18.78 0.82 0.97 0.49
g__Luteolibacter 0.0001 0.0003 0.0025 0.0025 0.0000 32.91 0.96 0.96 0.74
g__Delftia 0.0002 0.0011 0.0091 0.0063 0.0000 39.85 0.99 0.97 0.90
g__Agrobacterium 0.0005 0.0011 0.0226 0.0108 0.0000 45.62 1.00 0.99 0.95
g__Rhodoplanes 0.0000 0.0001 0.0036 0.0040 0.0000 120.50 0.86 0.99 0.62
g__DA101 0.0000 0.0002 0.0039 0.0028 0.0000 153.39 0.97 0.99 0.79
g__Gemmata 0.0000 0.0001 0.0019 0.0028 0.0002 157.09 0.80 0.99 0.46
g__Coprobacillus 0.0000 0.0000 0.0014 0.0015 0.0000 246.64 0.88 0.99 0.62
g__Arcobacter 0.0000 0.0000 0.0008 0.0015 0.0031 335.36 0.75 0.99 0.33
g__Helicobacter 0.0000 0.0000 0.0006 0.0013 0.0072 770.90 0.70 0.99 0.28
g__Candidatus Solibacter 0.0000 0.0000 0.0022 0.0024 0.0000 12365.58 0.89 0.99 0.77
g__Methanosarcina 0.0000 0.0000 0.0014 0.0022 0.0000   0.98 1.00 0.90
g__Thermacetogenium 0.0000 0.0000 0.0050 0.0028 0.0000   0.93 0.91 0.95
g__Synechococcus 0.0000 0.0000 0.0021 0.0027 0.0000   0.91 1.00 0.79
g__Desulfomicrobium 0.0000 0.0000 0.0011 0.0014 0.0000   0.88 1.00 0.69
g__Chthoniobacter 0.0000 0.0000 0.0008 0.0012 0.0000   0.88 1.00 0.69
g__Aminobacterium 0.0000 0.0000 0.0008 0.0012 0.0000   0.87 1.00 0.69
g__Gallicola 0.0000 0.0000 0.0007 0.0012 0.0000   0.76 1.00 0.44
g__Anaeromyxobacter 0.0000 0.0000 0.0006 0.0011 0.0000   0.75 1.00 0.44
g__Muricauda 0.0000 0.0000 0.0007 0.0014 0.0000   0.74 1.00 0.46
g__Candidatus Koribacter 0.0000 0.0000 0.0005 0.0011 0.0001   0.72 1.00 0.41
상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명에 따른 세균 메타게놈 분석을 통해 파킨슨병 진단에 대한 정보를 제공하는 방법은 피검체 유래 샘플을 이용해 세균 메타게놈 분석을 수행하여 특정 세균 유래 세포밖 소포의 함량 증감을 분석함으로써 파킨슨병의 발병 위험도를 예측하고 파킨슨병을 진단하는데 이용할 수 있다. 환경에 존재하는 세균, 고세균 등의 미생물에서 분비되는 세포밖 소포는 체내에 흡수되어 뇌로 분포하여, 염증반응 및 뇌기능에 직접적인 영향을 미칠 수 있으며, 염증을 특징으로 하는 파킨슨병은 증상이 나타나기 전 조기진단이 어려워 효율적인 치료가 어려운 실정이므로, 본 발명에 따른 인체 유래 샘플을 이용한 세균 유래 세포밖 소포의 메타게놈 분석을 통해 파킨슨병 발병의 위험도를 미리 예측함으로써 파킨슨병의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 파킨슨병의 발병 후에도 조기진단 할 수 있어 파킨슨병의 발병률을 낮추고 치료효과를 높일 수 있다. 또한, 파킨슨병으로 진단받은 환자에서 본 발명에 따른 세균 메타게놈 분석은 원인인자 노출을 피함으로써 파킨슨병의 경과를 좋게 하거나 재발을 막는데 이용할 수 있다

Claims (14)

  1. (a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
    (b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
    (c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는, 파킨슨병 진단을 위한 정보제공방법.
  2. 제1항에 있어서,
    상기 (c) 단계에서 프로테오박테리아(Proteobacteria), 남세균문(Cyanobacteria), 젬마티모나데테스(Gemmatimonadetes), 클로로플렉시(Chloroflexi), 시너지스테테스(Synergistetes), 아키도박테리아(Acidobacteria), 부유균문(Planctomycetes), OD1, WS3, 파바체오타(Parvarchaeota), OP1, 클로로비(Chlorobi), OP9, Hyd24-12, 및 더르모토제(Thermotogae)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
  3. 제1항에 있어서,
    상기 (c) 단계에서 코리오박테리아(Coriobacteriia), 감마프로테오박테리아(Gammaproteobacteria), 우미균강(Verrucomicrobiae), 악티노박테리아(Actinobacteria), 알파프로테오박테리아(Alphaproteobacteria), 클로로플라스트(Chloroplast), 사프로스피레(Saprospirae), 델타프로테오박테리아(Deltaproteobacteria), 입실론프로테오박테리아(Epsilonproteobacteria), 엘린6529(Ellin6529), 클로라시도박테리아(Chloracidobacteria), 오피투테(Opitutae), 더르몰레오필리아(Thermoleophilia), 시너지스티아(Synergistia), 젬마티모나데테스(Gemmatimonadetes), 플란크토마이세티아(Planctomycetia), 아시도박테리아(Acidobacteriia), 솔리박테레스(Solibacteres), 아나에롤리니에(Anaerolineae), 클로로플렉시(Chloroflexi), 피시스페레(Phycisphaerae), 시네초코코피시디에(Synechococcophycideae), TM7-1, 아시디마이크로비아(Acidimicrobiia), 아키도박테리아-6(Acidobacteria-6), 스파토박테리아(Spartobacteria), ABY1, 페도스페레(Pedosphaerae), ZB2, PRR-12, 크테도노박테리아(Ktedonobacteria), JS1, WM88, 데할로코코이데테스(Dehalococcoidetes), SAR202, 및 MSBL6로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
  4. 제1항에 있어서,
    상기 (c) 단계에서 RF39, 터리시박테랄레스(Turicibacterales), 슈도모나달레스(Pseudomonadales), 코리오박테리움목(Coriobacteriales), 파스테우렐라레스(Pasteurellales), 엔테로박테리아레스(Enterobacteriales), 베루코미크로비알레스(Verrucomicrobiales), 게멜라레스(Gemellales), 나이세리아레스(Neisseriales), 사프로스피랄레스(Saprospirales), 악티노마이세탈레스(Actinomycetales), 스트렙토피타(Streptophyta), 리조비움목(Rhizobiales), 로도피릴라레스(Rhodospirillales), 산토모나다레스(Xanthomonadales), 믹소코칼레스(Myxococcales), 캄필로박테라레스(Campylobacterales), 데설포비브리오날레스(Desulfovibrionales), 솔리루브로박테랄레스(Solirubrobacterales), 오피투탈레스(Opitutales), RB41, 리케치아레스(Rickettsiales), 피렐룰라레스(Pirellulales), 시너지스탈레스(Synergistales), 플란크토미세탈레스(Planctomycetales), 아시도박테리알레스(Acidobacteriales), 솔리박테랄레스(Solibacterales), 가이엘라레스(Gaiellales), 젬마탈레스(Gemmatales), 아시디마이크로비알레스(Acidimicrobiales), WD2101, 크도니오박테라레스(Chthoniobacterales), 더르모아나에로박테라레스(Thermoanaerobacterales), 페도파에랄레스(Pedosphaerales), 피시스페라레스(Phycisphaerales), 세디멘트-1(Sediment-1), 클로로피타(Chlorophyta), iii1-15, 시네초코칼레스(Synechococcales), 로세이플렉사레스(Roseiflexales), JG30-KF-AS9, 엘린329(Ellin329), 아네로리네알레스(Anaerolineales), 엘린5290(Ellin5290), SC-I-84, 크립토피타(Cryptophyta), MBNT15, envOPS12, B07_WMSP1, UA01, 및 더르모토갈레스(Thermotogales)로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
  5. 제1항에 있어서,
    상기 (c) 단계에서 엑시구오박테라시에(Exiguobacteraceae), 엔테로코카시에(Enterococcaceae), 터리시박테라시에(Turicibacteraceae), 모지박테리아시에(Mogibacteriaceae), 모락셀라시에(Moraxellaceae), 포르피로모나다시에(Porphyromonadaceae), 버크홀데리아시에(Burkholderiaceae), 액티노마이세타시에(Actinomycetaceae), 코리오박테리움과(Coriobacteriaceae), 메틸로박테리아시에(Methylobacteriaceae), 스트렙토코카시에(Streptococcaceae), 슈도모나다시에(Pseudomonadaceae), 파스테우렐라시에(Pasteurellaceae), 베일로넬라과(Veillonellaceae), 펩토스트렙토코카시에(Peptostreptococcaceae), 엔테로박테리아시에(Enterobacteriaceae), 베루코미크로비아시에(Verrucomicrobiaceae), 라크노스피라시에(Lachnospiraceae), 류코노스토카시에(Leuconostocaceae), 브라디리조비아시에(Bradyrhizobiaceae), 리케넬라시에(Rikenellaceae), 티시에렐라시에(Tissierellaceae), 박테로이다시에(Bacteroidaceae), 키티노파자시에(Chitinophagaceae), 코리네박테리아시에(Corynebacteriaceae), 산토모나다시에(Xanthomonadaceae), 리조비움과(Rhizobiaceae), 프로피오니박테리아시에(Propionibacteriaceae), 데설포박테라시에(Desulfobacteraceae), 바르네시엘라시에(Barnesiellaceae), 코마모나다시에(Comamonadaceae), 미토콘드리아(mitochondria), 히포마이크로비아시에(Hyphomicrobiaceae), 알테로모나다시에(Alteromonadaceae), 시노박테라시에(Sinobacteraceae), 피렐룰라시에(Pirellulaceae), 데시오설포비브리오나시에(Dethiosulfovibrionaceae), 아시도박테리아시에(Acidobacteriaceae), 플란크토미세타시에(Planctomycetaceae), 이소스페라시에(Isosphaeraceae), 가이엘라시에(Gaiellaceae), 코리박테라시에(Koribacteraceae), 헬리코박테라시에(Helicobacteraceae), 크도니오박테라시에(Chthoniobacteraceae), 젬마타시에(Gemmataceae), C111, 솔리박테라시에(Solibacteraceae), 펠라지박테라시에(Pelagibacteraceae), PRR-10, 엘린515(Ellin515), 더르모아네로박테라시에(Thermoanaerobacteraceae), 메타노레귤라시에(Methanoregulaceae), 시네초코카시에(Synechococcaceae), 데설포마이크로비아시에(Desulfomicrobiaceae), 코울레오스릭사시에(Kouleothrixaceae), OCS155, 알리시클로바실라시에(Alicyclobacillaceae), 믹소코카시에(Myxococcaceae), EB1017, 아네롤리나시에(Anaerolinaceae), 및 데설포할로비아시에(Desulfohalobiaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
  6. 제1항에 있어서,
    상기 (c) 단계에서 콜린셀라(Collinsella), 아들러크레우치아(Adlercreutzia), SMB53, 프로테우스(Proteus), 엑시구오박데리움(Exiguobacterium), 엔테로코커스(Enterococcus), 아시네토박터(Acinetobacter), 터리시박터(Turicibacter), 클렙시엘라(Klebsiella), 라우트로피아(Lautropia), 아커만시아(Akkermansia), 파라박테로이데스(Parabacteroides), 리조비움(Rhizobium), 엑티노마이세스(Actinomyces), 락토코커스(Lactococcus), 블라우티아(Blautia), 베일로넬라(Veillonella), 슈도모나스(Pseudomonas), 로티아(Rothia), 도레아(Dorea), 스트렙토코커스(Streptococcus), 헤모필루스(Haemophilus), 엔하이드로박터(Enhydrobacter), 로도코커스(Rhodococcus), 코프로코커스(Coprococcus), 오스실로스피라(Oscillospira), 루미노코커스(Ruminococcus), 박테로이데스(Bacteroides), 코리네박테리움(Corynebacterium), 위셀라(Weissella), 프로피오니박테리움(Propionibacterium), 리시니바실러스(Lysinibacillus), 스테노트로포모나스(Stenotrophomonas), 아드로박터(Arthrobacter), 코마모나스(Comamonas), 마리노박터(Marinobacter), 클로스트리디움(Clostridium), 플란크토마이세스(Planctomyces), 루테올리박터(Luteolibacter), 델프티아(Delftia), 아그로박테리움(Agrobacterium), 로도플라네스(Rhodoplanes), DA101, 젬마타(Gemmata), 코프로바실러스(Coprobacillus), 아르코박터(Arcobacter), 헬리코박터(Helicobacter), 캔디다투스 솔리박터(Candidatus Solibacter), 메타노사르시나(Methanosarcina), 더르마세토제니움(Thermacetogenium), 시네초코커스(Synechococcus), 데설포마이크로비움(Desulfomicrobium), 크도니오박터(Chthoniobacter), 아미노박테리움(Aminobacterium), 갈리콜라(Gallicola), 아네로믹소박터(Anaeromyxobacter), 뮤리카우다(Muricauda), 및 캔디다투스 코리박터(Candidatus Koribacter)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
  7. 제1항에 있어서,
    상기 피검체 샘플은 소변인 것을 특징으로 하는, 정보제공방법.
  8. (a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
    (b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
    (c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는, 파킨슨병 진단방법.
  9. 제8항에 있어서,
    상기 (c) 단계에서 프로테오박테리아(Proteobacteria), 남세균문(Cyanobacteria), 젬마티모나데테스(Gemmatimonadetes), 클로로플렉시(Chloroflexi), 시너지스테테스(Synergistetes), 아키도박테리아(Acidobacteria), 부유균문(Planctomycetes), OD1, WS3, 파바체오타(Parvarchaeota), OP1, 클로로비(Chlorobi), OP9, Hyd24-12, 및 더르모토제(Thermotogae)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
  10. 제8항에 있어서,
    상기 (c) 단계에서 코리오박테리아(Coriobacteriia), 감마프로테오박테리아(Gammaproteobacteria), 우미균강(Verrucomicrobiae), 악티노박테리아(Actinobacteria), 알파프로테오박테리아(Alphaproteobacteria), 클로로플라스트(Chloroplast), 사프로스피레(Saprospirae), 델타프로테오박테리아(Deltaproteobacteria), 입실론프로테오박테리아(Epsilonproteobacteria), 엘린6529(Ellin6529), 클로라시도박테리아(Chloracidobacteria), 오피투테(Opitutae), 더르몰레오필리아(Thermoleophilia), 시너지스티아(Synergistia), 젬마티모나데테스(Gemmatimonadetes), 플란크토마이세티아(Planctomycetia), 아시도박테리아(Acidobacteriia), 솔리박테레스(Solibacteres), 아나에롤리니에(Anaerolineae), 클로로플렉시(Chloroflexi), 피시스페레(Phycisphaerae), 시네초코코피시디에(Synechococcophycideae), TM7-1, 아시디마이크로비아(Acidimicrobiia), 아키도박테리아-6(Acidobacteria-6), 스파토박테리아(Spartobacteria), ABY1, 페도스페레(Pedosphaerae), ZB2, PRR-12, 크테도노박테리아(Ktedonobacteria), JS1, WM88, 데할로코코이데테스(Dehalococcoidetes), SAR202, 및 MSBL6로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
  11. 제8항에 있어서,
    상기 (c) 단계에서 RF39, 터리시박테랄레스(Turicibacterales), 슈도모나달레스(Pseudomonadales), 코리오박테리움목(Coriobacteriales), 파스테우렐라레스(Pasteurellales), 엔테로박테리아레스(Enterobacteriales), 베루코미크로비알레스(Verrucomicrobiales), 게멜라레스(Gemellales), 나이세리아레스(Neisseriales), 사프로스피랄레스(Saprospirales), 악티노마이세탈레스(Actinomycetales), 스트렙토피타(Streptophyta), 리조비움목(Rhizobiales), 로도피릴라레스(Rhodospirillales), 산토모나다레스(Xanthomonadales), 믹소코칼레스(Myxococcales), 캄필로박테라레스(Campylobacterales), 데설포비브리오날레스(Desulfovibrionales), 솔리루브로박테랄레스(Solirubrobacterales), 오피투탈레스(Opitutales), RB41, 리케치아레스(Rickettsiales), 피렐룰라레스(Pirellulales), 시너지스탈레스(Synergistales), 플란크토미세탈레스(Planctomycetales), 아시도박테리알레스(Acidobacteriales), 솔리박테랄레스(Solibacterales), 가이엘라레스(Gaiellales), 젬마탈레스(Gemmatales), 아시디마이크로비알레스(Acidimicrobiales), WD2101, 크도니오박테라레스(Chthoniobacterales), 더르모아나에로박테라레스(Thermoanaerobacterales), 페도파에랄레스(Pedosphaerales), 피시스페라레스(Phycisphaerales), 세디멘트-1(Sediment-1), 클로로피타(Chlorophyta), iii1-15, 시네초코칼레스(Synechococcales), 로세이플렉사레스(Roseiflexales), JG30-KF-AS9, 엘린329(Ellin329), 아네로리네알레스(Anaerolineales), 엘린5290(Ellin5290), SC-I-84, 크립토피타(Cryptophyta), MBNT15, envOPS12, B07_WMSP1, UA01, 및 더르모토갈레스(Thermotogales)로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
  12. 제8항에 있어서,
    상기 (c) 단계에서 엑시구오박테라시에(Exiguobacteraceae), 엔테로코카시에(Enterococcaceae), 터리시박테라시에(Turicibacteraceae), 모지박테리아시에(Mogibacteriaceae), 모락셀라시에(Moraxellaceae), 포르피로모나다시에(Porphyromonadaceae), 버크홀데리아시에(Burkholderiaceae), 액티노마이세타시에(Actinomycetaceae), 코리오박테리움과(Coriobacteriaceae), 메틸로박테리아시에(Methylobacteriaceae), 스트렙토코카시에(Streptococcaceae), 슈도모나다시에(Pseudomonadaceae), 파스테우렐라시에(Pasteurellaceae), 베일로넬라과(Veillonellaceae), 펩토스트렙토코카시에(Peptostreptococcaceae), 엔테로박테리아시에(Enterobacteriaceae), 베루코미크로비아시에(Verrucomicrobiaceae), 라크노스피라시에(Lachnospiraceae), 류코노스토카시에(Leuconostocaceae), 브라디리조비아시에(Bradyrhizobiaceae), 리케넬라시에(Rikenellaceae), 티시에렐라시에(Tissierellaceae), 박테로이다시에(Bacteroidaceae), 키티노파자시에(Chitinophagaceae), 코리네박테리아시에(Corynebacteriaceae), 산토모나다시에(Xanthomonadaceae), 리조비움과(Rhizobiaceae), 프로피오니박테리아시에(Propionibacteriaceae), 데설포박테라시에(Desulfobacteraceae), 바르네시엘라시에(Barnesiellaceae), 코마모나다시에(Comamonadaceae), 미토콘드리아(mitochondria), 히포마이크로비아시에(Hyphomicrobiaceae), 알테로모나다시에(Alteromonadaceae), 시노박테라시에(Sinobacteraceae), 피렐룰라시에(Pirellulaceae), 데시오설포비브리오나시에(Dethiosulfovibrionaceae), 아시도박테리아시에(Acidobacteriaceae), 플란크토미세타시에(Planctomycetaceae), 이소스페라시에(Isosphaeraceae), 가이엘라시에(Gaiellaceae), 코리박테라시에(Koribacteraceae), 헬리코박테라시에(Helicobacteraceae), 크도니오박테라시에(Chthoniobacteraceae), 젬마타시에(Gemmataceae), C111, 솔리박테라시에(Solibacteraceae), 펠라지박테라시에(Pelagibacteraceae), PRR-10, 엘린515(Ellin515), 더르모아네로박테라시에(Thermoanaerobacteraceae), 메타노레귤라시에(Methanoregulaceae), 시네초코카시에(Synechococcaceae), 데설포마이크로비아시에(Desulfomicrobiaceae), 코울레오스릭사시에(Kouleothrixaceae), OCS155, 알리시클로바실라시에(Alicyclobacillaceae), 믹소코카시에(Myxococcaceae), EB1017, 아네롤리나시에(Anaerolinaceae), 및 데설포할로비아시에(Desulfohalobiaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
  13. 제8항에 있어서,
    상기 (c) 단계에서 콜린셀라(Collinsella), 아들러크레우치아(Adlercreutzia), SMB53, 프로테우스(Proteus), 엑시구오박데리움(Exiguobacterium), 엔테로코커스(Enterococcus), 아시네토박터(Acinetobacter), 터리시박터(Turicibacter), 클렙시엘라(Klebsiella), 라우트로피아(Lautropia), 아커만시아(Akkermansia), 파라박테로이데스(Parabacteroides), 리조비움(Rhizobium), 엑티노마이세스(Actinomyces), 락토코커스(Lactococcus), 블라우티아(Blautia), 베일로넬라(Veillonella), 슈도모나스(Pseudomonas), 로티아(Rothia), 도레아(Dorea), 스트렙토코커스(Streptococcus), 헤모필루스(Haemophilus), 엔하이드로박터(Enhydrobacter), 로도코커스(Rhodococcus), 코프로코커스(Coprococcus), 오스실로스피라(Oscillospira), 루미노코커스(Ruminococcus), 박테로이데스(Bacteroides), 코리네박테리움(Corynebacterium), 위셀라(Weissella), 프로피오니박테리움(Propionibacterium), 리시니바실러스(Lysinibacillus), 스테노트로포모나스(Stenotrophomonas), 아드로박터(Arthrobacter), 코마모나스(Comamonas), 마리노박터(Marinobacter), 클로스트리디움(Clostridium), 플란크토마이세스(Planctomyces), 루테올리박터(Luteolibacter), 델프티아(Delftia), 아그로박테리움(Agrobacterium), 로도플라네스(Rhodoplanes), DA101, 젬마타(Gemmata), 코프로바실러스(Coprobacillus), 아르코박터(Arcobacter), 헬리코박터(Helicobacter), 캔디다투스 솔리박터(Candidatus Solibacter), 메타노사르시나(Methanosarcina), 더르마세토제니움(Thermacetogenium), 시네초코커스(Synechococcus), 데설포마이크로비움(Desulfomicrobium), 크도니오박터(Chthoniobacter), 아미노박테리움(Aminobacterium), 갈리콜라(Gallicola), 아네로믹소박터(Anaeromyxobacter), 뮤리카우다(Muricauda), 및 캔디다투스 코리박터(Candidatus Koribacter)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
  14. 제8항에 있어서,
    상기 피검체 샘플은 소변인 것을 특징으로 하는, 진단방법.
PCT/KR2018/002281 2017-02-24 2018-02-23 세균 메타게놈 분석을 통한 파킨슨병 진단방법 WO2018155961A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880026915.6A CN110546280A (zh) 2017-02-24 2018-02-23 通过细菌宏基因组分析来诊断帕金森氏病的方法
EP18758093.1A EP3587597B1 (en) 2017-02-24 2018-02-23 Method for diagnosing parkinson's disease through bacterial metagenome analysis
US16/488,263 US20200056226A1 (en) 2017-02-24 2018-02-23 Method for diagnosing parkinson's disease through bacterial metagenome analysis
JP2019546206A JP6914554B2 (ja) 2017-02-24 2018-02-23 細菌メタゲノム分析を通したパーキンソン病の診断方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0025001 2017-02-24
KR20170025001 2017-02-24
KR10-2018-0021196 2018-02-22
KR1020180021196A KR101944664B1 (ko) 2017-02-24 2018-02-22 세균 메타게놈 분석을 통한 파킨슨병 진단방법

Publications (1)

Publication Number Publication Date
WO2018155961A1 true WO2018155961A1 (ko) 2018-08-30

Family

ID=63253991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002281 WO2018155961A1 (ko) 2017-02-24 2018-02-23 세균 메타게놈 분석을 통한 파킨슨병 진단방법

Country Status (6)

Country Link
US (1) US20200056226A1 (ko)
EP (1) EP3587597B1 (ko)
JP (1) JP6914554B2 (ko)
KR (1) KR101944664B1 (ko)
CN (1) CN110546280A (ko)
WO (1) WO2018155961A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113286897A (zh) * 2019-01-09 2021-08-20 Md保健株式会社 来源于红球菌属细菌的纳米囊泡及其用途
JP2022520095A (ja) * 2019-02-14 2022-03-28 エムディー ヘルスケア インコーポレイテッド ロシア属細菌由来ナノ小胞およびその用途
EP3850108A4 (en) * 2018-10-18 2022-08-03 Quadrant Biosciences Inc. MOLECULAR AND FUNCTIONAL CHARACTERIZATION OF PARKINSON'S DISEASE AT AN EARLY STAGE AND ASSOCIATED TREATMENTS

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172604A1 (ko) * 2018-03-06 2019-09-12 주식회사 엠디헬스케어 콜린셀라 속 세균 유래 나노소포 및 이의 용도
KR102410443B1 (ko) * 2018-12-01 2022-06-17 주식회사 메타젠바이오 딥러닝 기반 치매 예측 방법
KR102285335B1 (ko) * 2019-02-14 2021-08-04 주식회사 엠디헬스케어 로치아 속 세균 유래 나노소포 및 이의 용도
CN111621577B (zh) * 2020-03-09 2023-09-05 中国科学院亚热带农业生态研究所 一种基于鼻腔原核微生物相对丰度的评价保育猪个体所处生长环境温湿状态的方法
WO2021260276A1 (en) * 2020-06-26 2021-12-30 Helsingin Yliopisto Methods and materials for determining parkinson's disease or a risk thereof
CN112442533A (zh) * 2020-10-26 2021-03-05 中国人民解放军联勤保障部队第九00医院 一种过敏性紫癜发病风险预测的菌群标志物及其试剂盒
CN112852916A (zh) * 2021-02-19 2021-05-28 王普清 肠道微生态的标志物组合、辅助诊断模型及其应用
KR20240050140A (ko) 2022-10-11 2024-04-18 주식회사 알트메디칼 이소퀴놀린 유도체를 유효성분으로 포함하는 파킨슨병의 예방 또는 치료용 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110025603A (ko) * 2009-09-04 2011-03-10 주식회사이언메딕스 그람 양성 세균유래 세포밖 소포체 및 이의 용도
KR20110073049A (ko) 2009-12-23 2011-06-29 한국생명공학연구원 메타게놈 라이브러리 유래 효소활성의 탐색 방법
WO2011127219A1 (en) * 2010-04-06 2011-10-13 Caris Life Sciences Luxembourg Holdings Circulating biomarkers for disease
KR20110138124A (ko) * 2010-06-18 2011-12-26 서울대학교산학협력단 지방조직 유래의 간엽줄기세포를 포함하는 파킨슨병 진단용 조성물 및 파킨슨병 진단용 바이오마커
WO2015181449A1 (en) * 2014-05-28 2015-12-03 Neuroinnovation Oy Method for diagnostics, treatment and prevention of parkinson's disease
KR20160073157A (ko) * 2014-12-16 2016-06-24 이화여자대학교 산학협력단 세균 유래의 나노소포체를 이용한 세균성 감염질환 원인균 동정방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016144139A2 (ko) * 2015-03-11 2016-09-15 주식회사 엠디헬스케어 유산균 유래 세포밖 소포체를 유효성분으로 포함하는 염증질환의 예방 또는 치료용 조성물
PL235777B1 (pl) * 2015-07-10 2020-10-19 Univ Jagiellonski Startery, sposób i zestaw diagnostyczny do diagnozowania sepsy
CN105543369B (zh) * 2016-01-13 2020-07-14 金锋 精神障碍的生物标志物及其应用
WO2019004668A1 (ko) * 2017-06-30 2019-01-03 주식회사 엠디헬스케어 프로테우스 속 세균 유래 나노소포 및 이의 용도
WO2019156449A1 (ko) * 2018-02-08 2019-08-15 주식회사 엠디헬스케어 락토코커스 속 세균 유래 나노소포 및 이의 용도
US20220186292A1 (en) * 2018-02-20 2022-06-16 Md Healthcare Inc. Nano-vesicle derived from catenibacterium bacteria and use thereof
WO2019164230A1 (ko) * 2018-02-21 2019-08-29 주식회사 엠디헬스케어 큐프리아비더스 속 세균 유래 나노소포 및 이의 용도

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110025603A (ko) * 2009-09-04 2011-03-10 주식회사이언메딕스 그람 양성 세균유래 세포밖 소포체 및 이의 용도
KR20110073049A (ko) 2009-12-23 2011-06-29 한국생명공학연구원 메타게놈 라이브러리 유래 효소활성의 탐색 방법
WO2011127219A1 (en) * 2010-04-06 2011-10-13 Caris Life Sciences Luxembourg Holdings Circulating biomarkers for disease
KR20110138124A (ko) * 2010-06-18 2011-12-26 서울대학교산학협력단 지방조직 유래의 간엽줄기세포를 포함하는 파킨슨병 진단용 조성물 및 파킨슨병 진단용 바이오마커
WO2015181449A1 (en) * 2014-05-28 2015-12-03 Neuroinnovation Oy Method for diagnostics, treatment and prevention of parkinson's disease
KR20160073157A (ko) * 2014-12-16 2016-06-24 이화여자대학교 산학협력단 세균 유래의 나노소포체를 이용한 세균성 감염질환 원인균 동정방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3850108A4 (en) * 2018-10-18 2022-08-03 Quadrant Biosciences Inc. MOLECULAR AND FUNCTIONAL CHARACTERIZATION OF PARKINSON'S DISEASE AT AN EARLY STAGE AND ASSOCIATED TREATMENTS
CN113286897A (zh) * 2019-01-09 2021-08-20 Md保健株式会社 来源于红球菌属细菌的纳米囊泡及其用途
EP3910071A4 (en) * 2019-01-09 2022-10-12 MD Healthcare Inc. NANOVESICLES FROM BACTERIA OF THE GENUS LACTOCOCCCUS AND THEIR USE
JP2022520095A (ja) * 2019-02-14 2022-03-28 エムディー ヘルスケア インコーポレイテッド ロシア属細菌由来ナノ小胞およびその用途
JP7286195B2 (ja) 2019-02-14 2023-06-05 エムディー ヘルスケア インコーポレイテッド ロシア属細菌由来ナノ小胞およびその用途

Also Published As

Publication number Publication date
EP3587597A1 (en) 2020-01-01
EP3587597C0 (en) 2023-10-11
EP3587597B1 (en) 2023-10-11
KR101944664B1 (ko) 2019-02-01
JP6914554B2 (ja) 2021-08-04
EP3587597A4 (en) 2020-12-16
KR20180098153A (ko) 2018-09-03
US20200056226A1 (en) 2020-02-20
JP2020508070A (ja) 2020-03-19
CN110546280A (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
WO2018155961A1 (ko) 세균 메타게놈 분석을 통한 파킨슨병 진단방법
WO2018124606A1 (ko) 미생물 메타게놈 분석을 통한 유방암 진단방법
WO2018124617A1 (ko) 세균 메타게놈 분석을 통한 폐암 진단 방법
KR101940445B1 (ko) 세균 메타게놈 분석을 통한 당뇨병 진단 방법
WO2018111040A1 (ko) 세균 메타게놈 분석을 통한 위암 진단방법
WO2018155960A1 (ko) 미생물 메타게놈 분석을 통한 난소암 진단방법
WO2019160284A1 (ko) 세균 메타게놈 분석을 통한 뇌졸중 진단방법
WO2018155950A1 (ko) 세균 메타게놈 분석을 통한 당뇨병 진단 방법
KR102019646B1 (ko) 미생물 메타게놈 분석을 통한 아토피피부염 진단방법
US20220267850A1 (en) Inflammatory bowel disease diagnostic method by means of bacterial metagenomic analysis
WO2019147080A1 (ko) 세균 메타게놈 분석을 통한 우울증 진단방법
KR102008451B1 (ko) 세균 메타게놈 분석을 통한 자폐증 진단방법
KR102019648B1 (ko) 천식환자에서 세균 메타게놈 분석을 통한 폐암 진단방법
KR101940446B1 (ko) 미생물 메타게놈 분석을 통한 난소암 진단방법
WO2019156325A1 (ko) 세균 메타게놈 분석을 통한 과민성 장증후군 진단방법
WO2018124619A1 (ko) 미생물 메타게놈 분석을 통한 방광암 진단방법
KR101940424B1 (ko) 세균 메타게놈 분석을 통한 신부전 진단방법
WO2018225945A1 (ko) 미생물 메타게놈 분석을 통한 아토피피부염 진단방법
WO2018124618A1 (ko) 세균 메타게놈 분석을 통한 췌장암 진단방법
WO2018216912A1 (ko) 세균 메타게놈 분석을 통한 자폐증 진단방법
KR20180075401A (ko) 미생물 메타게놈 분석을 통한 방광암 진단방법
WO2019146966A1 (ko) 세균 메타게놈 분석을 통한 담관암 진단방법
WO2018124726A1 (ko) 세균 메타게놈 분석을 통한 신부전 진단방법
WO2018124742A1 (ko) 세균 메타게놈 분석을 통한 전립선질환 진단 방법
WO2018124744A1 (ko) 세균 메타게놈 분석을 통한 간질환 진단 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546206

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018758093

Country of ref document: EP

Effective date: 20190924