WO2018155950A1 - 세균 메타게놈 분석을 통한 당뇨병 진단 방법 - Google Patents

세균 메타게놈 분석을 통한 당뇨병 진단 방법 Download PDF

Info

Publication number
WO2018155950A1
WO2018155950A1 PCT/KR2018/002246 KR2018002246W WO2018155950A1 WO 2018155950 A1 WO2018155950 A1 WO 2018155950A1 KR 2018002246 W KR2018002246 W KR 2018002246W WO 2018155950 A1 WO2018155950 A1 WO 2018155950A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteria
derived
diabetes
extracellular vesicles
decrease
Prior art date
Application number
PCT/KR2018/002246
Other languages
English (en)
French (fr)
Inventor
김윤근
Original Assignee
주식회사 엠디헬스케어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180020804A external-priority patent/KR101940445B1/ko
Application filed by 주식회사 엠디헬스케어 filed Critical 주식회사 엠디헬스케어
Publication of WO2018155950A1 publication Critical patent/WO2018155950A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae

Definitions

  • the present invention relates to a method for diagnosing diabetes through bacterial metagenome analysis. More specifically, the cause of diabetes by analyzing the increase and decrease of specific bacterial-derived extracellular vesicles by performing bacterial metagenomic analysis using a sample derived from a subject. To factors, risk of development, and disease progression.
  • Metabolic syndrome is a major risk factor for cardiovascular disease, with a prevalence of 20-30% of the population, and features insulin resistance, type 2 diabetes, hypertension, cholesterol abnormalities, and hemostatic abnormalities.
  • diabetes which is characterized by insulin resistance, which occurs in the organs on which insulin acts, such as liver, muscle, and adipose tissue. Diagnosis of diabetes is made by measuring glucose levels in the blood. Most diabetes is difficult to treat when the disease has already progressed. Thus, it is possible to predict the occurrence and causal factors of diabetes in advance, thereby providing a method of preventing diabetes in high-risk groups. Is an efficient way.
  • Microbiota refers to a microbial community including bacteria, archaea and eukarya that exist in a given settlement.Intestinal microbiota is an important role in human physiology. It is known to have a great effect on human health and disease through interaction with human cells.
  • the symbiotic bacteria secrete nanometer-sized vesicles to exchange information about genes and proteins in other cells.
  • the mucous membrane forms a physical protective film that particles larger than 200 nanometers (nm) in size can't pass through, so that the symbiotic bacteria cannot pass through the mucosa, but bacterial-derived vesicles are usually less than 100 nanometers in size. It freely speaks to the mucous membrane and is absorbed by our body.
  • Metagenomics also called environmental genomics, can be said to be an analysis of metagenomic data obtained from samples taken from the environment (Korean Patent Publication No. 2011-0073049). Recently, it has become possible to list the bacterial composition of the human microflora by a method based on 16s ribosomal RNA (16s rRNA) sequencing. Next generation sequencing of 16s rDNA sequencing gene of 16s ribosomal RNA is performed. , NGS) platform to analyze.
  • NGS 16s ribosomal RNA
  • the present inventors In order to diagnose the causative agent, risk of developing diabetes, and disease progression, the present inventors extracted a gene from bacterial extracellular vesicles using blood samples and urine, a sample derived from a subject, and performed a metagenome analysis on it. Identified bacterial extracellular vesicles that can act as a causative agent of diabetes, the present invention was completed based on this.
  • an object of the present invention is to provide a method for providing information for diagnosing diabetes through metagenomic analysis of bacterial extracellular vesicles.
  • the present invention provides a method for providing information for diagnosing diabetes, comprising the following steps:
  • the present invention provides a method for diagnosing diabetes, comprising the following steps:
  • the present invention also provides a method for predicting the risk of developing diabetes, comprising the following steps:
  • the subject sample may be blood, or urine.
  • the species selected from the group consisting of Thermi, Fusobacteria, Chloroflexi, Cyanobacteria, TM7, Euryarchaeota, Proteobacteria, Actinobacteria, Verrucomicrobia, and Bacteroidetes isolated from the blood sample The above-mentioned phylum bacteria may be compared to increase or decrease the content of extracellular vesicles.
  • Cytophagia Deinococci, Fusobacteriia, Sphingobacteriia, Flavobacteriia, Alphaproteobacteria, Betaproteobacteria, TM7-3, Bacilli, Actinobacteria, Gammaproteobacteria, Clostridia, Verrucomicrobiae isolated from the blood sample It may be to compare the increase and decrease of the content of one or more class bacteria-derived extracellular vesicles selected from the group consisting of, and Bacteroidia.
  • Aeromonadaceae Methylobacteriaceae, Rhizobiaceae, Bradyrhizobiaceae, Halomonadaceae, Cytophagaceae, Neisseriaceae, Fusobacteriaceae, Sphingomonadaceae, Weeksellaceae, Moraxellaceae, Aerococcaceae, Microsecomonaaceae, isolated from the blood sample , Propionibacteriaceae, Intrasporangiaceae, Gemellaceae, Flavobacteriaceae, Brevibacteriaceae, Rhodocyclaceae, Corynebacteriaceae, Burkholderiaceae, Rhodobacteraceae, Tissierellaceae, Caulobacteraceae, Xanthomonadaceae, Oxalobacteraceae, Staphylococcaceae, Comamonadaceae, Pseudococoaceae Extracellular vesicles
  • Halomonas Methylobacterium, Neisseria, Fusobacterium, Kaistobacter, Agrobacterium, Porphyromonas, Cupriavidus, Acinetobacter, Pseudomonas, Chryseobacterium, Sphingomoccus, Rothia Microsa, isolated from the subject blood sample in step (c) , Enhydrobacter, Propionibacterium, Brevibacterium, Corynebacterium, Lautropia, Paracoccus, Staphylococcus, Haemophilus, Catenibacterium, Anaerococcus, Prevotella, Actinomyces, Veillonella, Citrobacter, Enterococcus, Streptococcus, Dialisterbacciter, Bactobacillus, Bificobacterium , Adlercreutzia, Butyricimonas, Odoribacter, Coprococcus, Anaerostipes, Blautia, Bacteroides,
  • the step (c) may be compared to increase or decrease the content of the Tenericutes phylum bacteria-derived extracellular vesicles isolated from the subject urine sample.
  • At least one class bacteria-derived extracellular vesicles selected from the group consisting of Mollicutes, Coriobacteriia, Deltaproteobacteria, and Epsilonproteobacteria isolated from the urine sample in step (c). It may be to compare the increase and decrease in content.
  • At least one order bacterial-derived extracellular selected from the group consisting of Stramenopiles, Pseudomonadales, Coriobacteriales, Desulfovibrionales, and Campylobacterales isolated from the subject urine sample in step (c). It may be to compare the increase and decrease of the content of the vesicles.
  • step (c) selected from the group consisting of Bradyrhizobiaceae, Cellulomonadaceae, Pseudomonadaceae, Moraxellaceae, Comamonadaceae, Enterococcaceae, Clostridiaceae, Coriobacteriaceae, Rikenellaceae, Desulfovibrionaceae, and Helicobacteraceae isolated from the subject urine sample in step (c). It may be to compare the increase or decrease in the content of one or more family bacteria-derived extracellular vesicles.
  • Rhizobium, Cupriavidus, Acinetobacter, Pseudomonas, Lactobacillus, Citrobacter, Enterococcus, Paracoccus, Klebsiella, SMB53, Allobaculum, Desulfovibrio, AF12, and isolated from the subject urine sample in step (c) It may be to compare the increase and decrease of the content of one or more genus bacteria-derived extracellular vesicles selected from the group consisting of Flexispira.
  • the blood may be whole blood, serum, plasma, or blood monocytes.
  • Extracellular vesicles secreted from the bacteria present in the environment can be absorbed directly into the body and directly affect the development of diabetes mellitus, it is difficult to predict the development before symptoms appear, so the efficient treatment is difficult, human body according to the present invention
  • Metagenome analysis of bacterial-derived extracellular vesicles using derived samples predicts the causative agent of diabetes and the risk of the disease in advance, and diagnoses and predicts the risk group of diabetes early, and can delay the onset or prevent the onset through proper management.
  • the causative factor can be diagnosed even after the onset of the disease, thereby improving the progress of diabetes and improving the therapeutic effect.
  • Figure 1a is a photograph of the distribution of bacteria and vesicles by time after the oral administration of enteric bacteria and bacterial derived vesicles (EV) to the mouse
  • Figure 1b is 12 hours after oral administration
  • blood Figure shows the distribution of bacteria, vesicles and vesicles in the body, liver and various organs.
  • FIG. 2 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the phylum level after separation of bacteria-derived vesicles from diabetic patients and normal blood.
  • EVs bacteria-derived vesicles
  • FIG. 3 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at a class level by separating bacteria-derived vesicles from diabetic patients and normal blood and performing a metagenome analysis.
  • EVs bacteria-derived vesicles
  • Figure 4 shows the distribution of bacteria-derived vesicles from diabetic patients and normal blood, and the distribution of bacterial-derived vesicles (EVs) with significant diagnostic performance at the order (neck) by performing a metagenome analysis.
  • FIG. 5 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level by separating the bacteria-derived vesicles from diabetic patients and normal blood, and performing a metagenome analysis.
  • EVs bacteria-derived vesicles
  • FIG. 6 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level after separation of bacteria-derived vesicles from diabetic patients and normal blood.
  • EVs bacteria-derived vesicles
  • FIG. 7 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating bacteria-derived vesicles from diabetic patients and normal urine, and performing a metagenome analysis.
  • EVs bacteria-derived vesicles
  • FIG. 8 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at a class level by separating bacteria-derived vesicles from diabetic patients and normal urine, and performing metagenome analysis.
  • EVs bacteria-derived vesicles
  • FIG. 9 is a result showing the distribution of bacteria-derived vesicles (EVs) of significant diagnostic performance at the order (neck) level after separating the bacteria-derived vesicles in diabetic patients and normal urine.
  • EVs bacteria-derived vesicles
  • FIG. 10 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level after separation of bacteria-derived vesicles from diabetic patients and normal urine.
  • EVs bacteria-derived vesicles
  • 11 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the genus level after separating the bacteria-derived vesicles in diabetic patients and normal urine.
  • EVs bacteria-derived vesicles
  • the present invention relates to a method for diagnosing diabetes through bacterial metagenome analysis.
  • the present inventors extracted a gene from a bacterial-derived extracellular vesicle using a sample derived from a subject, and performed a metagenomic analysis on it.
  • Bacterial-derived extracellular vesicles that can act as
  • the present invention comprises the steps of (a) extracting DNA from the extracellular vesicles isolated from the subject sample;
  • (C) provides an information providing method for diagnosing diabetes comprising the step of comparing the increase and decrease of the content of the normal-derived sample and bacterial-derived extracellular vesicles through the sequencing of the PCR product.
  • the term "diabetes diagnosis” refers to whether a patient is likely to develop diabetes, a relatively high chance of developing diabetes, what is the cause of diabetes, or whether diabetes has already occurred. I mean.
  • the method of the present invention can be used to prevent or delay the onset of the disease through special and proper management as a patient at high risk of developing diabetes for any particular patient.
  • the methods of the present invention can be used clinically to determine treatment by early diagnosis of diabetes and selection of the most appropriate treatment regimen.
  • metagenome used in the present invention, also referred to as “metagenome”, refers to the total of the genome including all viruses, bacteria, fungi, etc. in an isolated area such as soil, animal intestine, It is mainly used as a concept of genome explaining the identification of many microorganisms at once using sequencer to analyze microorganisms which are not cultured.
  • metagenome does not refer to one species of genome or genome, but refers to a kind of mixed dielectric as the genome of all species of one environmental unit. This is a term from the point of view of defining a species in the course of the evolution of biology in terms of functional species as well as various species that interact with each other to create a complete species.
  • rapid sequencing is used to analyze all DNA and RNA, regardless of species, to identify all species in one environment, and to identify interactions and metabolism.
  • metagenome analysis was preferably performed using bacterial-derived extracellular vesicles isolated from blood.
  • bacteria-derived vesicle is a nano-sized substance formed of a membrane secreted by bacteria and archaea, and generically refers to a substance having a gene derived from bacteria in a vesicle.
  • the subject sample may be blood, or urine, and the blood may preferably be whole blood, serum, plasma, or blood monocytes, but is not limited thereto.
  • the metagenome analysis of the bacterial-derived extracellular vesicles was performed, and analyzed at the phylum, class, order, family, and genus levels, respectively. By identifying bacteria-derived vesicles that can actually act as a cause of diabetes.
  • the present invention as a result of analyzing the bacterial metagenome at the gate level of the vesicles present in the blood samples from the subject, Thermi, Fusobacteria, Chloroflexi, Cyanobacteria, TM7, Euryarchaeota, Proteobacteria, Actinobacteria, Verrucomicrobia, There was a significant difference in the content of extracellular vesicles derived from Bacteroidetes door bacteria between diabetic patients and normal individuals (see Example 4).
  • the bacterial metagenome was analyzed at the neck level for vesicles present in a blood sample derived from a subject, Aeromonadales, Deinococcales, Cytophagales, Rhizobiales, Neisseriales, Oceanospirillales, Fusobacteriales, Sphingobacteriales, Sphingomonadales, Pseudomonadales, Rhodospirillales, Flavobacteriales, Rhodocyclales, Rhodobacterales, Gemellales, Caulobacterales, Actinomycetales, Xanthomonadales, Alteromonadales, Pasteurellales, Bacillales, Burkholderiales, Lactobacillales, Clostridiales, RF32, and Verrucomicrobiales There was a significant difference between them (see Example 4).
  • the bacterial metagenomics of the vesicles present in the blood samples from the subject at the level of analysis Aeromonadaceae, Methylobacteriaceae, Rhizobiaceae, Bradyrhizobiaceae, Halomonadaceae, Cytophagaceae, Neisseriaceae, Fusobacteriaceae, Sphingomonadaceae, Weeksellaceae, Moraxellaceae, Aerococcaceae, Pseudomonadaceae, Micrococcaceae, Propionibacteriaceae, Intrasporangiaceae, Gemellaceae, Flavobacteriaceae, Brevibacteriaceae, Rhodocyclaceae, Corynebacteriaceae, Burkholderiaceae, Rhodobacteraceae, Tissierellaceae, Caulobacteraceae, Physiocobacaceaeaceae Enterococcaceae, Bac
  • Halomonas Methylobacterium, Neisseria, Fusobacterium, Kaistobacter, Agrobacterium, Porphyromonas, Cupriavidus, Acinetobacter, Pseudomonas, Chryseobacterium, Sphingomonas, Rothia, Micrococcus, Enhydrobacter, Propionibacterium, Brevibacterium, Corynebacterium, Lautropia, Paracoccus, Staphylococcus, Haemophilus, Catenibacterium, Anaerococcus, Prevotella, Actinomyoc, Streptococcus bacterus Bifidobacterium, Faecalibacterium, Parabacteroides, Paraprevotella, Akkermansia, Ruminococcus, Adlercreutzia, But
  • the content of the extracellular vesicles derived from Tenericutes gate bacteria is significant between the diabetic and normal There was one difference (see Example 5).
  • the content of extracellular vesicles derived from Mollicutes, Coriobacteriia, Deltaproteobacteria, and Epsilonproteobacteria river bacteria There was a significant difference between the patient and the normal (see Example 5).
  • the bacterial metagenome of the vesicles present in the urine sample derived from the neck at the neck level Verrucomicrobia, Cyanobacteria neck bacteria-derived extracellular vesicles in the diabetic and normal There was a significant difference between them (see Example 5).
  • the bacterial metagenome of the vesicles present in the subject-derived urine sample at an excessive level the results of Verrucomicrobia, Cyanobacteria and bacteria-derived extracellular vesicles in diabetics and normal people There was a significant difference between them (see Example 5).
  • the bacterial metagenome of the vesicles present in the urine sample derived from the genus level analysis the results of Verrucomicrobia, Cyanobacteria bacteria-derived extracellular vesicles in diabetics and normal people There was a significant difference between them (see Example 5).
  • the present invention through the results of the above Example, by identifying the bacteria-derived extracellular vesicles isolated from blood and urine by metagenomic analysis of bacteria-derived vesicles with significantly changed content in diabetic patients compared to normal people It was confirmed that diabetes can be diagnosed by analyzing the increase and decrease of the content of bacteria-derived vesicles at each level through metagenome analysis.
  • the fluorescently labeled 50 ⁇ g of bacteria and bacteria-derived vesicles were administered in the same manner as above 12 hours.
  • Blood, Heart, Lung, Liver, Kidney, Spleen, Adipose tissue, and Muscle were extracted from mice.
  • the intestinal bacteria (Bacteria) were not absorbed into each organ, whereas the intestinal bacteria-derived extracellular vesicles (EV) were detected in the tissues, as shown in FIG. And distribution in liver, kidney, spleen, adipose tissue, and muscle.
  • PCR was performed using the 16S rDNA primer shown in 1 to amplify the gene and perform sequencing (Illumina MiSeq sequencer). Output the result as a Standard Flowgram Format (SFF) file, convert the SFF file into a sequence file (.fasta) and a nucleotide quality score file using GS FLX software (v2.9), check the credit rating of the lead, and window (20 bps) The part with the average base call accuracy of less than 99% (Phred score ⁇ 20) was removed.
  • SFF Standard Flowgram Format
  • the Operational Taxonomy Unit performed UCLUST and USEARCH for clustering according to sequence similarity. Specifically, the clustering is based on 94% genus, 90% family, 85% order, 80% class, and 75% sequence similarity. OTU's door, river, neck, family and genus level classifications were performed, and bacteria with greater than 97% sequence similarity were analyzed using BLASTN and GreenGenes' 16S DNA sequence database (108,453 sequences) (QIIME).
  • metagenome sequencing was performed after separating vesicles from blood of 61 diabetic patients and 122 normal humans whose age and gender were matched.
  • the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
  • Bacterial-derived vesicles in the blood were analyzed at the class level. Cytophagia, Deinococci, Fusobacteriia, Sphingobacteriia, Flavobacteriia, Alphaproteobacteria, Betaproteobacteria, TM7-3, Bacilli, Actinobacteria, Gammaproteobacteria, Clostridia, Verrucomicrobiae, and Bacteroidia When the diagnostic model was developed with one or more biomarkers, the diagnostic performance for diabetes was significant (see Table 3 and FIG. 3).
  • Bacterial-derived vesicles in the blood were analyzed at the order of aerobic levels.
  • diagnostic models were developed with one or more biomarkers selected from Xanthomonadales, Alteromonadales, Pasteurellales, Bacillales, Burkholderiales, Lactobacillales, Clostridiales, RF32, Verrucomicrobiales, and Bacteroidales neck bacteria, diagnostic performance for diabetes was significant (Table 4). And FIG. 4).
  • Aeromonadaceae Methylobacteriaceae, Rhizobiaceae, Bradyrhizobiaceae, Halomonadaceae, Cytophagaceae, Neisseriaceae, Fusobacteriaceae, Sphingomonadaceae, Weeksellaceae, Moraxellaceae, Aerococcaceae, Pseudomonadaceae, Micrococcangiaceae, Tracoporceaceae Flavobacteriaceae, Brevibacteriaceae, Rhodocyclaceae, Corynebacteriaceae, Burkholderiaceae, Rhodobacteraceae, Tissierellaceae, Caulobacteraceae, Xanthomonadaceae, Oxalobacteraceae, Staphylococcaceae, Comamonadaceae, Planococcaceae, Pasteurellaceae, Actinomycetace
  • Example 3 By the method of Example 3, vesicles were isolated from urine of 60 diabetics and 134 normal humans who matched their age and sex, followed by metagenome sequencing. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
  • Control diabetes t-test Training set Test set Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity AUC Sensitivity Specificity p__Tenericutes 0.0051 0.0101 0.0013 0.0013 0.0001 0.26 0.71 0.97 0.21 0.50 0.89 0.05
  • vesicle-derived vesicles in urine at the class level revealed that diagnostic performance for diabetes was significantly improved when the diagnostic model was developed with one or more biomarkers selected from Mollicutes, Coriobacteriia, Deltaproteobacteria, and Epsilonproteobacteria river bacteria. (See Table 8 and FIG. 8).
  • the diagnostic performance of diabetes mellitus was improved when one or more biomarkers were selected from Stramenopiles, Pseudomonadales, Coriobacteriales, Desulfovibrionales, and Campylobacterales neck bacteria. Significant (see Table 9 and FIG. 9).
  • biomarkers selected from Bradyrhizobiaceae, Cellulomonadaceae, Pseudomonadaceae, Moraxellaceae, Comamonadaceae, Enterococcaceae, Clostridiaceae, Coriobacteriaceae, Rikenellaceae, Desulfovibrionaceae, and Helicobacteraceae When developed, the diagnostic performance for diabetes was significant (see Table 10 and Figure 10).
  • the method for providing information on diagnosing diabetes through bacterial metagenomic analysis performs bacterial metagenomic analysis using a sample derived from a subject to analyze the increase and decrease in the content of specific bacterial-derived extracellular vesicles to determine the risk of developing diabetes. It can be used to predict and diagnose diabetes. Extracellular vesicles secreted by the bacteria present in the environment are absorbed in the body and distributed to organs that respond to insulin, affecting metabolic functions such as insulin resistance, which can induce or suppress diabetes. Since the diagnosis is difficult due to the difficult treatment, it is possible to diagnose and predict the risk group of diabetes in advance through the metagenome analysis of the bacterial-derived extracellular vesicles using the human-derived sample according to the present invention.
  • bacterial metagenomic analysis according to the present invention in patients diagnosed with diabetes can be used to improve the course of diabetes or to prevent relapse by avoiding causal agent exposure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 세균 메타게놈 분석을 통해 당뇨병을 진단하는 방법에 관한 것으로서, 보다 구체적으로는 피검체 유래 샘플을 이용해 세균 메타게놈 분석을 수행하여 특정 세균 유래 세포밖 소포의 함량 증감을 분석함으로써 당뇨병의 원인인자, 질병 위험도, 및 경과를 예측하는 방법에 관한 것이다. 환경에 존재하는 세균에서 분비되는 세포밖 소포는 체내에 흡수되어 인슐린에 반응하는 장기에 분포하여 인슐린 저항성 등의 대사기능에 영향을 주어 당뇨병을 유도 혹은 억제할 수 있는데, 당뇨병은 증상이 나타나기 전 발생을 예측하는 것이 어려워 효율적인 치료가 어려운 실정이므로, 본 발명에 따른 인체 유래 샘플을 이용한 세균 유래 세포밖 소포의 메타게놈 분석을 통해 당뇨병의 원인인자를 진단하고, 발병의 위험도를 미리 진단함으로써 당뇨병의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 원인인자를 진단 할 수 있어 당뇨병의 발병률을 낮추고 치료효과를 높일 수 있다.

Description

세균 메타게놈 분석을 통한 당뇨병 진단 방법
본 발명은 세균 메타게놈 분석을 통해 당뇨병을 진단하는 방법에 관한 것으로서, 보다 구체적으로는 피검체 유래 샘플을 이용해 세균 메타게놈 분석을 수행하여 특정 세균 유래 세포밖 소포의 함량 증감을 분석함으로써 당뇨병의 원인인자, 발병 위험도, 및 질병경과를 진단하는 방법에 관한 것이다.
21세기 고령화 사회에서 식이습관 등의 생활환경의 변화로 최근 50년 사이에 질병패턴에 커다란 변화가 생겼다. 특히, 과거 50년 전까지만 하더라도 영양결핍이 문제가 되었지만, 최근 경제발전에 의해 먹거리가 풍성해지면서 포화지방의 과섭취로 인한 당뇨, 비만 등의 대사질환의 유병률이 급증하고 있다. 당뇨병의 발생과 관련해서 오랫동안 대사의 문제로 접근했지만, 최근 고지방식이에 따른 염증반응이 당뇨, 비만의 발생과 관련이 있다는 연구결과가 주목을 받고 있다. 대사증후군 (metabolic syndrome)은 심혈관질환의 주요 위험인자로서 인구의 20-30% 유병률을 보이고, 인슐린저항성에 의한 제2형 당뇨병, 고혈압, 콜레스테롤 이상, 지혈 이상 등의 특징을 보인다. 대사증후군의 가장 중요한 병태생리는 간, 근육, 지방조직과 같이 인슐린이 작용하는 장기에 발생하는 인슐린저항성 (insulin resistance)을 특징으로 하는 당뇨병이다. 당뇨병의 진단은 혈액에서 포도당 수치를 측정함으로서 이루어지는데, 대부분 당뇨병은 질환이 이미 진행된 경우에 치료가 상당히 어려운 바, 당뇨병의 발생 및 원인인자를 미리 예측하여, 고위험군에서 당뇨병 발생을 예방하는 방법을 제공하는 것이 효율적인 방법이다.
한편, 인체에 공생하는 미생물은 100조에 이르러 인간 세포보다 10배 많으며, 미생물의 유전자수는 인간 유전자수의 100배가 넘는 것으로 알려지고 있다. 미생물총(microbiota 혹은 microbiome)은 주어진 거주지에 존재하는 세균(bacteria), 고세균(archaea), 진핵생물(eukarya)을 포함한 미생물 군집(microbial community)을 말하고, 장내 미생물총은 사람의 생리현상에 중요한 역할을 하며, 인체 세포와 상호작용을 통해 인간의 건강과 질병에 큰 영향을 미치는 것으로 알려져 있다. 우리 몸에 공생하는 세균은 다른 세포로의 유전자, 단백질 등의 정보를 교환하기 위하여 나노미터 크기의 소포(vesicle)를 분비한다. 점막은 200 나노미터(nm) 크기 이상의 입자는 통과할 수 없는 물리적인 방어막을 형성하여 점막에 공생하는 세균인 경우에는 점막을 통과하지 못하지만, 세균 유래 소포는 크기가 대개 100 나노미터 크기 이하라서 비교적 자유롭게 점막을 통화하여 우리 몸에 흡수된다.
환경 유전체학이라고도 불리는 메타게놈학은 환경에서 채취한 샘플에서 얻은 메타게놈 자료에 대한 분석학이라고 할 수 있다(국내공개특허 제2011-0073049호). 최근 16s 리보솜 RNA(16s rRNA) 염기서열을 기반으로 한 방법으로 인간의 미생물총의 세균 구성을 목록화하는 것이 가능해졌으며, 16s 리보솜 RNA의 유전자인 16s rDNA 염기서열을 차세대 염기서열분석 (next generation sequencing, NGS) platform을 이용하여 분석한다. 그러나 당뇨병 발병에 있어서, 혈액 또는 소변 등의 인체 유래물에서 세균 유래 소포에 존재하는 유전자 메타게놈 분석을 통해 당뇨병의 원인인자를 동정하고 당뇨병을 예측하는 방법에 대해서는 보고된 바가 없다.
본 발명자들은 당뇨병의 원인인자, 발병 위험도, 및 질병경과를 진단하기 위하여, 피검체 유래 샘플인 혈액 및 소변을 이용해 세균 유래 세포밖 소포로부터 유전자를 추출하고 이에 대하여 메타게놈 분석을 수행하였으며, 그 결과 당뇨병의 원인인자로 작용할 수 있는 세균 유래 세포밖 소포를 동정하였는바, 이에 기초하여 본 발명을 완성하였다.
이에, 본 발명은 세균 유래 세포밖 소포에 대한 메타게놈 분석을 통해 당뇨병을 진단하기 위한 정보제공방법을 제공하는 것을 목적으로 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 하기의 단계를 포함하는, 당뇨병 진단을 위한 정보제공방법을 제공한다 :
(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
그리고, 본 발명은 하기의 단계를 포함하는, 당뇨병 진단방법을 제공한다 :
(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
또한, 본 발명은 하기의 단계를 포함하는, 당뇨병의 발병 위험도 예측방법을 제공한다 :
(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
본 발명의 일구현예로, 상기 피검체 샘플은 혈액, 또는 소변일 수 있다.
본 발명의 다른 구현예로, 상기 (c) 단계에서 상기 피검체 혈액 샘플에서 분리한 Thermi, Fusobacteria, Chloroflexi, Cyanobacteria, TM7, Euryarchaeota, Proteobacteria, Actinobacteria, Verrucomicrobia, 및 Bacteroidetes로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 혈액 샘플에서 분리한Cytophagia, Deinococci, Fusobacteriia, Sphingobacteriia, Flavobacteriia, Alphaproteobacteria, Betaproteobacteria, TM7-3, Bacilli, Actinobacteria, Gammaproteobacteria, Clostridia, Verrucomicrobiae, 및 Bacteroidia로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 혈액 샘플에서 분리한Aeromonadales, Deinococcales, Cytophagales, Rhizobiales, Neisseriales, Oceanospirillales, Fusobacteriales, Sphingobacteriales, Sphingomonadales, Pseudomonadales, Rhodospirillales, Flavobacteriales, Rhodocyclales, Rhodobacterales, Gemellales, Caulobacterales, Actinomycetales, Xanthomonadales, Alteromonadales, Pasteurellales, Bacillales, Burkholderiales, Lactobacillales, Clostridiales, RF32, Verrucomicrobiales, 및 Bacteroidales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 혈액 샘플에서 분리한Aeromonadaceae, Methylobacteriaceae, Rhizobiaceae, Bradyrhizobiaceae, Halomonadaceae, Cytophagaceae, Neisseriaceae, Fusobacteriaceae, Sphingomonadaceae, Weeksellaceae, Moraxellaceae, Aerococcaceae, Pseudomonadaceae, Micrococcaceae, Propionibacteriaceae, Intrasporangiaceae, Gemellaceae, Flavobacteriaceae, Brevibacteriaceae, Rhodocyclaceae, Corynebacteriaceae, Burkholderiaceae, Rhodobacteraceae, Tissierellaceae, Caulobacteraceae, Xanthomonadaceae, Oxalobacteraceae, Staphylococcaceae, Comamonadaceae, Planococcaceae, Pasteurellaceae, Actinomycetaceae, S24-7, Enterococcaceae, Bacillaceae, Prevotellaceae, Streptococcaceae, Veillonellaceae, Lactobacillaceae, Ruminococcaceae, Mogibacteriaceae, Verrucomicrobiaceae, Lachnospiraceae, Odoribacteraceae, Bacteroidaceae, 및 Barnesiellaceae로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 혈액 샘플에서 분리한Halomonas, Methylobacterium, Neisseria, Fusobacterium, Kaistobacter, Agrobacterium, Porphyromonas, Cupriavidus, Acinetobacter, Pseudomonas, Chryseobacterium, Sphingomonas, Rothia, Micrococcus, Enhydrobacter, Propionibacterium, Brevibacterium, Corynebacterium, Lautropia, Paracoccus, Staphylococcus, Haemophilus, Catenibacterium, Anaerococcus, Prevotella, Actinomyces, Veillonella, Citrobacter, Enterococcus, Streptococcus, Dialister, Bacillus, Lactobacillus, Bifidobacterium, Faecalibacterium, Parabacteroides, Paraprevotella, Akkermansia, Ruminococcus, Adlercreutzia, Butyricimonas, Odoribacter, Coprococcus, Anaerostipes, Blautia, Bacteroides, 및 Epulopiscium로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 소변 샘플에서 분리한Tenericutes 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 소변 샘플에서 분리한Mollicutes, Coriobacteriia, Deltaproteobacteria, 및 Epsilonproteobacteria로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 소변 샘플에서 분리한Stramenopiles, Pseudomonadales, Coriobacteriales, Desulfovibrionales, 및 Campylobacterales로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 소변 샘플에서 분리한Bradyrhizobiaceae, Cellulomonadaceae, Pseudomonadaceae, Moraxellaceae, Comamonadaceae, Enterococcaceae, Clostridiaceae, Coriobacteriaceae, Rikenellaceae, Desulfovibrionaceae, 및 Helicobacteraceae로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 상기 피검체 소변 샘플에서 분리한Rhizobium, Cupriavidus, Acinetobacter, Pseudomonas, Lactobacillus, Citrobacter, Enterococcus, Paracoccus, Klebsiella, SMB53, Allobaculum, Desulfovibrio, AF12, 및 Flexispira로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구일 수 있다.
환경에 존재하는 세균에서 분비되는 세포밖 소포는 체내에 흡수되어 당뇨병 발생에 직접적인 영향을 미칠 수 있으며, 당뇨병은 증상이 나타나기 전 발생을 예측하는 것이 어려워 효율적인 치료가 어려운 실정이므로, 본 발명에 따른 인체 유래 샘플을 이용한 세균 유래 세포밖 소포의 메타게놈 분석을 통해 당뇨병의 원인인자 및 발병의 위험도를 미리 예측함으로써 당뇨병의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 원인인자를 진단 할 수 있어 당뇨병의 경과를 좋게 하여 치료효과를 높일 수 있다.
도 1a은, 마우스에 장내 세균과 세균유래 소포 (EV)를 구강으로 투여한 후, 시간별로 세균과 소포의 분포양상을 촬영한 사진이고, 도 1b는 구강으로 투여한 후 12시간째에, 혈액, 간, 및 여러 장기를 적출하여, 세균과 소포의 체내 분포양상을 평가한 그림이다.
도 2는 당뇨병환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 3은 당뇨병환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 4는 당뇨병환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 5는 당뇨병환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 6은 당뇨병환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 7은 당뇨병환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 8은 당뇨병환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 9는 당뇨병환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 10은 당뇨병환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 11은 당뇨병환자 및 정상인 소변에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
본 발명은 세균 메타게놈 분석을 통해 당뇨병을 진단하는 방법에 관한 것으로서, 본 발명자들은 피검체 유래 샘플을 이용해 세균 유래 세포밖 소포로부터 유전자를 추출하고 이에 대하여 메타게놈 분석을 수행하였으며, 당뇨병의 원인인자로 작용할 수 있는 세균 유래 세포밖 소포를 동정하였다.
이에, 본 발명은 (a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는 당뇨병 진단을 위한 정보제공방법을 제공한다.
본 발명에서 사용되는 용어, "당뇨병 진단" 이란 환자에 대하여 당뇨병이 발병할 가능성이 있는지, 당뇨병이 발병할 가능성이 상대적으로 높은지, 당뇨병의 원인인자가 무엇인지, 또는 당뇨병이 이미 발병하였는지 여부를 판별하는 것을 의미한다. 본 발명의 방법은 임의의 특정 환자에 대한 당뇨병 발병 위험도가 높은 환자로써 특별하고 적절한 관리를 통하여 발병 시기를 늦추거나 발병하지 않도록 하는데 사용할 수 있다. 또한, 본 발명의 방법은 당뇨병을 조기에 진단하여 가장 적절한 치료방식을 선택함으로써 치료를 결정하기 위해 임상적으로 사용될 수 있다.
본 발명에서 사용되는 용어, “메타게놈(metagenome)”이란 “군유전체”라고도 하며, 흙, 동물의 장 등 고립된 지역 내의 모든 바이러스, 세균, 곰팡이 등을 포함하는 유전체의 총합을 의미하는 것으로, 주로 배양이 되지 않는 미생물을 분석하기 위해서 서열분석기를 사용하여 한꺼번에 많은 미생물을 동정하는 것을 설명하는 유전체의 개념으로 쓰인다. 특히, 메타게놈은 한 종의 게놈 또는 유전체를 말하는 것이 아니라, 한 환경단위의 모든 종의 유전체로서 일종의 혼합유전체를 말한다. 이는 오믹스적으로 생물학이 발전하는 과정에서 한 종을 정의할 때 기능적으로 기존의 한 종뿐만 아니라, 다양한 종이 서로 상호작용하여 완전한 종을 만든다는 관점에서 나온 용어이다. 기술적으로는 빠른 서열분석법을 이용해서, 종에 관계없이 모든 DNA, RNA를 분석하여, 한 환경 내에서의 모든 종을 동정하고, 상호작용, 대사작용을 규명하는 기법의 대상이다. 본 발명에서는 바람직하게 혈액에서 분리한 세균 유래 세포밖 소포를 이용하여 메타게놈 분석을 실시하였다.
본 발명에서 사용되는 용어, "세균 유래 소포" 란 세균 및 고세균이 분비하는 막으로 형성된 나노크기의 물질로서, 소포에 세균에서 유래하는 유전자를 갖고 있는 물질을 총칭한다.
본 발명에 있어서, 상기 피검체 샘플은 혈액, 또는 소변일 수 있고, 상기 혈액은 바람직하게 전혈, 혈청, 혈장, 또는 혈액 단핵구일 수 있으나, 이것으로 제한되는 것은 아니다.
본 발명의 실시예에서는 상기 세균 유래 세포밖 소포에 대한 메타게놈 분석을 실시하였으며, 문(phylum), 강(class), 목(order), 과(family), 및 속(genus) 수준에서 각각 분석하여 실제로 당뇨병 발생의 원인으로 작용할 수 있는 세균 유래 소포를 동정하였다.
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 문 수준에서 분석한 결과, Thermi, Fusobacteria, Chloroflexi, Cyanobacteria, TM7, Euryarchaeota, Proteobacteria, Actinobacteria, Verrucomicrobia, 및 Bacteroidetes 문 세균 유래 세포밖 소포의 함량이 당뇨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 강 수준에서 분석한 결과, Cytophagia, Deinococci, Fusobacteriia, Sphingobacteriia, Flavobacteriia, Alphaproteobacteria, Betaproteobacteria, TM7-3, Bacilli, Actinobacteria, Gammaproteobacteria, Clostridia, Verrucomicrobiae, 및 Bacteroidia 강 세균 유래 세포밖 소포의 함량이 당뇨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 목 수준에서 분석한 결과, Aeromonadales, Deinococcales, Cytophagales, Rhizobiales, Neisseriales, Oceanospirillales, Fusobacteriales, Sphingobacteriales, Sphingomonadales, Pseudomonadales, Rhodospirillales, Flavobacteriales, Rhodocyclales, Rhodobacterales, Gemellales, Caulobacterales, Actinomycetales, Xanthomonadales, Alteromonadales, Pasteurellales, Bacillales, Burkholderiales, Lactobacillales, Clostridiales, RF32, Verrucomicrobiales, 및 Bacteroidales 목 세균 유래 세포밖 소포의 함량이 당뇨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 과 수준에서 분석한 결과, Aeromonadaceae, Methylobacteriaceae, Rhizobiaceae, Bradyrhizobiaceae, Halomonadaceae, Cytophagaceae, Neisseriaceae, Fusobacteriaceae, Sphingomonadaceae, Weeksellaceae, Moraxellaceae, Aerococcaceae, Pseudomonadaceae, Micrococcaceae, Propionibacteriaceae, Intrasporangiaceae, Gemellaceae, Flavobacteriaceae, Brevibacteriaceae, Rhodocyclaceae, Corynebacteriaceae, Burkholderiaceae, Rhodobacteraceae, Tissierellaceae, Caulobacteraceae, Xanthomonadaceae, Oxalobacteraceae, Staphylococcaceae, Comamonadaceae, Planococcaceae, Pasteurellaceae, Actinomycetaceae, S24-7, Enterococcaceae, Bacillaceae, Prevotellaceae, Streptococcaceae, Veillonellaceae, Lactobacillaceae, Ruminococcaceae, Mogibacteriaceae, Verrucomicrobiaceae, Lachnospiraceae, Odoribacteraceae, Bacteroidaceae, 및 Barnesiellaceae 과 세균 유래 세포밖 소포의 함량이 당뇨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 속 수준에서 분석한 결과, Halomonas, Methylobacterium, Neisseria, Fusobacterium, Kaistobacter, Agrobacterium, Porphyromonas, Cupriavidus, Acinetobacter, Pseudomonas, Chryseobacterium, Sphingomonas, Rothia, Micrococcus, Enhydrobacter, Propionibacterium, Brevibacterium, Corynebacterium, Lautropia, Paracoccus, Staphylococcus, Haemophilus, Catenibacterium, Anaerococcus, Prevotella, Actinomyces, Veillonella, Citrobacter, Enterococcus, Prevotella, Streptococcus, Dialister, Bacillus, Lactobacillus, Bifidobacterium, Faecalibacterium, Parabacteroides, Paraprevotella, Akkermansia, Ruminococcus, Adlercreutzia, Butyricimonas, Odoribacter, Coprococcus, Anaerostipes, Blautia, Bacteroides, 및 Epulopiscium 속 세균 유래 세포밖 소포의 함량이 당뇨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 문 수준에서 분석한 결과, Tenericutes 문 세균 유래 세포밖 소포의 함량이 당뇨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 강 수준에서 분석한 결과, Mollicutes, Coriobacteriia, Deltaproteobacteria, 및 Epsilonproteobacteria 강 세균 유래 세포밖 소포의 함량이 당뇨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 목 수준에서 분석한 결과, Verrucomicrobia, 및 Cyanobacteria 목 세균 유래 세포밖 소포의 함량이 당뇨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 과 수준에서 분석한 결과, Verrucomicrobia, 및 Cyanobacteria 과 세균 유래 세포밖 소포의 함량이 당뇨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 소변 샘플에 존재하는 소포에 대하여 세균 메타게놈을 속 수준에서 분석한 결과, Verrucomicrobia, 및 Cyanobacteria 속 세균 유래 세포밖 소포의 함량이 당뇨병환자와 정상인에 사이에 유의한 차이가 있었다(실시예 5 참조).
본 발명은 상기와 같은 실시예 결과를 통해, 혈액 및 소변으로부터 분리한 세균 유래 세포밖 소포에 대하여 메타게놈 분석을 실시함으로써 정상인과 비교하여 당뇨병환자에서 함량이 유의하게 변화한 세균 유래 소포들을 동정하였으며, 메타게놈 분석을 통해 상기 각 수준에서 세균 유래 소포들의 함량 증감을 분석함으로써 당뇨병을 진단할 수 있음을 확인하였다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예]
실시예 1. 장내 세균 및 세균 유래 소포의 체내 흡수, 분포, 및 배설 양상 분석
장내 세균과 세균 유래 소포가 위장관을 통해 전신적으로 흡수되는 지를 평가하기 위하여 다음과 같은 방법으로 실험을 수행하였다. 마우스의 위장에 형광으로 표지한 장내세균과 장내 세균 유래 소포를 각각 50 μg의 용량으로 위장관으로 투여하고 0분, 5분, 3시간, 6시간, 12시간 후에 형광을 측정하였다. 마우스 전체 이미지를 관찰한 결과, 도 1a에 나타낸 바와 같이, 상기 세균(Bacteria)인 경우에는 전신적으로 흡수되지 않았지만, 세균 유래 소포(EV)인 경우에는, 투여 후 5분에 전신적으로 흡수되었고, 투여 3시간 후에는 방광에 형광이 진하게 관찰되어, 소포가 비뇨기계로 배설됨을 알 수 있었다. 또한, 소포는 투여 12시간까지 체내에 존재함을 알 수 있었다.
장내세균과 장내 세균유래 소포가 전신적으로 흡수된 후, 여러 장기로 침윤된 양상을 평가하기 위하여, 형광으로 표지한 50 μg의 세균과 세균유래 소포를 상기의 방법과 같이 투여한 다음 12시간째에 마우스로부터 혈액(Blood), 심장(Heart), 폐(Lung), 간(Liver), 신장(Kidney), 비장(Spleen), 지방조직(Adipose tissue), 및 근육(Muscle)을 적출하였다. 상기 적출한 조직들에서 형광을 관찰한 결과, 도1b에 나타낸 바와 같이, 상기 장내 세균(Bacteria)은 각 장기에 흡수되지 않은 반면, 상기 장내 세균 유래 세포밖 소포(EV)는 혈액, 심장, 폐, 간, 신장, 비장, 지방조직, 및 근육에 분포하는 것을 확인하였다.
실시예 2. 혈액 및 소변으로부터 소포 분리 및 DNA 추출
혈액 및 소변으로부터 소포를 분리하고 DNA를 추출하기 위해, 먼저 10 ㎖ 튜브에 혈액 또는 소변을 넣고 원심분리(3,500 x g, 10min, 4℃)를 실시하여 부유물을 가라앉혀 상등액만을 회수한 후 새로운 10 ㎖ 튜브에 옮겼다. 0.22 ㎛ 필터를 사용하여 상기 회수한 상등액으로부터 세균 및 이물질을 제거한 후, 센트리프랩튜브(centripreigugal filters 50 kD)에 옮기고 1500 x g, 4℃에서 15분간 원심분리하여 50 kD 보다 작은 물질은 버리고 10 ㎖까지 농축 시켰다. 다시 한 번 0.22 ㎛ 필터를 사용하여 박테리아 및 이물질을 제거한 후, Type 90ti 로터로 150,000 x g, 4℃에서 3시간 동안 초고속원심분리방법을 사용하여 상등액을 버리고 덩어리진 pellet을 생리식염수(PBS)로 녹여 소포를 수득하였다.
상기 방법에 따라 혈액 및 소변으로부터 분리한 소포 100 ㎕를 100℃에서 끓여서 내부의 DNA를 지질 밖으로 나오게 한 후 얼음에 5분 동안 식혔다. 다음으로 남은 부유물을 제거하기 위하여 10,000 x g, 4℃에서 30분간 원심분리하고 상등액 만을 모은 후 Nanodrop을 이용하여 DNA 양을 정량하였다. 이후 상기 추출된 DNA에 세균 유래 DNA가 존재하는지 확인하기 위하여 하기 표 1에 나타낸 16s rDNA primer로 PCR을 수행하여 상기 추출된 유전자에 세균 유래 유전자가 존재하는 것을 확인하였다.
primer 서열 서열번호
16S rDNA 16S_V3_F 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3' 1
16S_V4_R 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3 2
실시예 3. 혈액 및 소변에서 추출한 DNA를 이용한 메타게놈 분석
상기 실시예 2의 방법으로 유전자를 추출한 후, 상기 1에 나타낸 16S rDNA 프라이머를 사용하여 PCR을 실시하여 유전자를 증폭시키고 시퀀싱(Illumina MiSeq sequencer)을 수행하였다. 결과를 Standard Flowgram Format(SFF) 파일로 출력하고 GS FLX software(v2.9)를 이용하여 SFF 파일을 sequence 파일(.fasta)과 nucleotide quality score 파일로 변환한 다음 리드의 신용도 평가를 확인하고, window(20 bps) 평균 base call accuracy가 99% 미만(Phred score <20)인 부분을 제거하였다. 질이 낮은 부분을 제거한 후, 리드의 길이가 300 bps 이상인 것만 이용하였으며(Sickle version 1.33), 결과 분석을 위해 Operational Taxonomy Unit(OTU)은 UCLUST와 USEARCH를 이용하여 시퀀스 유사도에 따라 클러스터링을 수행하였다. 구체적으로 속(genus)은 94%, 과(family)는 90%, 목(order)은 85%, 강(class)은 80%, 문(phylum)은 75% 시퀀스 유사도를 기준으로 클러스터링을 하고 각 OTU의 문, 강, 목, 과, 속 레벨의 분류를 수행하고, BLASTN와 GreenGenes의 16S DNA 시퀀스 데이터베이스(108,453 시퀀스)를 이용하여 97% 이상의 시퀀스 유사도 갖는 박테리아를 분석하였다(QIIME).
실시예 4. 혈액에서 분리한 세균유래 소포 메타게놈 분석 기반 당뇨병 진단모형
상기 실시예 3의 방법으로, 당뇨병환자 61명과 나이와 성별을 매칭한 정상인 122명의 혈액에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.
혈액 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, Thermi, Fusobacteria, Chloroflexi, Cyanobacteria, TM7, Euryarchaeota, Proteobacteria, Actinobacteria, Verrucomicrobia, 및 Bacteroidetes 문 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 당뇨병에 대한 진단적 성능이 유의하게 나타났다 (표 2 및 도 2 참조).
  대조군 당뇨병 t-test Training Set Test Set
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity AUC Sensitivity Specificity
p__[Thermi] 0.0022 0.0050 0.0000 0.0000 0.0000 0.01 0.71 0.98 0.00 0.70 1.00 0.04
p__Fusobacteria 0.0059 0.0110 0.0000 0.0000 0.0000 0.01 0.77 0.84 0.26 0.71 0.81 0.39
p__Chloroflexi 0.0007 0.0022 0.0000 0.0000 0.0015 0.01 0.67 0.99 0.00 0.50 1.00 0.00
p__Cyanobacteria 0.0167 0.0646 0.0001 0.0001 0.0055 0.01 0.91 0.84 0.76 0.87 0.88 0.65
p__TM7 0.0041 0.0084 0.0001 0.0001 0.0000 0.03 0.76 0.86 0.24 0.66 0.78 0.30
p__Euryarchaeota 0.0013 0.0034 0.0001 0.0001 0.0001 0.06 0.66 0.99 0.00 0.60 1.00 0.04
p__Proteobacteria 0.3781 0.1300 0.1119 0.1119 0.0000 0.30 0.99 0.96 0.97 0.94 0.94 1.00
p__Actinobacteria 0.1072 0.0686 0.0357 0.0357 0.0000 0.33 0.90 0.83 0.95 0.89 0.84 1.00
p__Verrucomicrobia 0.0171 0.0185 0.0481 0.0481 0.0000 2.81 0.93 0.90 0.68 0.95 0.94 0.70
p__Bacteroidetes 0.0857 0.0653 0.2915 0.2915 0.0000 3.40 1.00 1.00 1.00 0.98 0.91 1.00
혈액 내 세균유래 소포를 강(class) 수준에서 분석한 결과, Cytophagia, Deinococci, Fusobacteriia, Sphingobacteriia, Flavobacteriia, Alphaproteobacteria, Betaproteobacteria, TM7-3, Bacilli, Actinobacteria, Gammaproteobacteria, Clostridia, Verrucomicrobiae, 및 Bacteroidia 강 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 당뇨병에 대한 진단적 성능이 유의하게 나타났다 (표 3 및 도 3 참조).
  대조군 당뇨병 t-test Training Set Test Set
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity AUC Sensitivity Specificity
c__Cytophagia 0.0011 0.0028 0.0000 0.0000 0.0000 0.01 0.70 0.94 0.08 0.60 0.97 0.09
c__Deinococci 0.0022 0.0050 0.0000 0.0000 0.0000 0.01 0.71 0.98 0.00 0.70 1.00 0.04
c__Fusobacteriia 0.0059 0.0110 0.0000 0.0000 0.0000 0.01 0.77 0.84 0.26 0.71 0.81 0.39
c__Sphingobacteriia 0.0021 0.0048 0.0000 0.0000 0.0000 0.01 0.72 0.97 0.08 0.72 0.97 0.09
c__Flavobacteriia 0.0048 0.0070 0.0000 0.0000 0.0000 0.01 0.88 0.83 0.71 0.81 0.75 0.61
c__Alphaproteobacteria 0.0644 0.0444 0.0010 0.0010 0.0000 0.02 1.00 0.99 1.00 1.00 1.00 0.96
c__Betaproteobacteria 0.0486 0.0428 0.0014 0.0014 0.0000 0.03 0.97 0.94 1.00 0.97 0.88 1.00
c__TM7-3 0.0040 0.0084 0.0001 0.0001 0.0000 0.03 0.76 0.86 0.24 0.63 0.75 0.30
c__Bacilli 0.1423 0.0723 0.0196 0.0196 0.0000 0.14 0.98 0.97 1.00 0.95 0.91 1.00
c__Actinobacteria 0.0993 0.0686 0.0310 0.0310 0.0000 0.31 0.88 0.83 0.95 0.88 0.88 0.96
c__Gammaproteobacteria 0.2630 0.1112 0.1093 0.1093 0.0000 0.42 0.96 0.94 0.97 0.91 0.91 1.00
c__Clostridia 0.1904 0.1130 0.4011 0.4011 0.0000 2.11 0.97 0.93 1.00 0.97 0.97 1.00
c__Verrucomicrobiae 0.0168 0.0183 0.0481 0.0481 0.0000 2.86 0.93 0.90 0.71 0.95 0.94 0.70
c__Bacteroidia 0.0769 0.0670 0.2914 0.2914 0.0000 3.79 1.00 1.00 1.00 0.98 0.91 1.00
혈액 내 세균유래 소포를 목(order) 수준에서 분석한 결과, Aeromonadales, Deinococcales, Cytophagales, Rhizobiales, Neisseriales, Oceanospirillales, Fusobacteriales, Sphingobacteriales, Sphingomonadales, Pseudomonadales, Rhodospirillales, Flavobacteriales, Rhodocyclales, Rhodobacterales, Gemellales, Caulobacterales, Actinomycetales, Xanthomonadales, Alteromonadales, Pasteurellales, Bacillales, Burkholderiales, Lactobacillales, Clostridiales, RF32, Verrucomicrobiales, 및 Bacteroidales 목 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 당뇨병에 대한 진단적 성능이 유의하게 나타났다 (표 4 및 도 4 참조).
  대조군 당뇨병 t-test Training Set Test Set
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity AUC Sensitivity Specificity
o__Aeromonadales 0.0007 0.0022 0.0000 0.0000 0.0003 0.00 0.71 0.98 0.11 0.56 0.88 0.09
o__Deinococcales 0.0014 0.0039 0.0000 0.0000 0.0001 0.00 0.68 0.98 0.00 0.51 1.00 0.04
o__Cytophagales 0.0011 0.0028 0.0000 0.0000 0.0000 0.01 0.70 0.94 0.08 0.60 0.97 0.09
o__Rhizobiales 0.0251 0.0233 0.0001 0.0001 0.0000 0.01 0.98 0.96 1.00 0.98 0.97 0.96
o__Neisseriales 0.0073 0.0181 0.0000 0.0000 0.0000 0.01 0.79 0.84 0.39 0.75 0.75 0.35
o__Oceanospirillales 0.0023 0.0060 0.0000 0.0000 0.0001 0.01 0.73 0.93 0.11 0.66 0.91 0.13
o__Fusobacteriales 0.0059 0.0110 0.0000 0.0000 0.0000 0.01 0.77 0.84 0.26 0.71 0.81 0.39
o__Sphingobacteriales 0.0021 0.0048 0.0000 0.0000 0.0000 0.01 0.72 0.97 0.08 0.72 0.97 0.09
o__Sphingomonadales 0.0214 0.0241 0.0002 0.0002 0.0000 0.01 0.99 0.94 0.95 0.95 0.91 0.87
o__Pseudomonadales 0.1607 0.1018 0.0015 0.0015 0.0000 0.01 1.00 0.99 1.00 1.00 0.97 1.00
o__Rhodospirillales 0.0031 0.0063 0.0000 0.0000 0.0000 0.01 0.76 0.90 0.21 0.58 0.78 0.22
o__Flavobacteriales 0.0048 0.0070 0.0000 0.0000 0.0000 0.01 0.88 0.83 0.71 0.81 0.75 0.61
o__Rhodocyclales 0.0017 0.0039 0.0000 0.0000 0.0000 0.01 0.71 0.98 0.03 0.66 1.00 0.04
o__Rhodobacterales 0.0070 0.0097 0.0001 0.0001 0.0000 0.01 0.88 0.82 0.74 0.80 0.78 0.61
o__Gemellales 0.0012 0.0039 0.0000 0.0000 0.0014 0.01 0.70 0.97 0.16 0.50 0.94 0.13
o__Caulobacterales 0.0056 0.0081 0.0001 0.0001 0.0000 0.02 0.86 0.80 0.74 0.83 0.81 0.57
o__Actinomycetales 0.0807 0.0680 0.0013 0.0013 0.0000 0.02 0.98 0.98 0.97 1.00 1.00 1.00
o__Xanthomonadales 0.0026 0.0052 0.0000 0.0000 0.0000 0.02 0.76 0.89 0.18 0.78 0.84 0.26
o__Alteromonadales 0.0009 0.0022 0.0000 0.0000 0.0000 0.02 0.70 0.93 0.05 0.56 1.00 0.09
o__Pasteurellales 0.0074 0.0148 0.0002 0.0002 0.0000 0.03 0.83 0.83 0.58 0.82 0.81 0.43
o__Bacillales 0.0535 0.0665 0.0015 0.0015 0.0000 0.03 0.97 0.92 0.92 0.93 0.84 0.96
o__Burkholderiales 0.0393 0.0396 0.0013 0.0013 0.0000 0.03 0.96 0.93 1.00 0.97 0.88 1.00
o__Lactobacillales 0.0866 0.0504 0.0176 0.0176 0.0000 0.20 0.95 0.93 0.97 0.88 0.81 1.00
o__Clostridiales 0.1899 0.1130 0.4007 0.4007 0.0000 2.11 0.97 0.93 1.00 0.97 0.97 1.00
o__RF32 0.0002 0.0009 0.0005 0.0005 0.0010 2.48 0.74 0.97 0.00 0.60 0.94 0.00
o__Verrucomicrobiales 0.0168 0.0183 0.0481 0.0481 0.0000 2.86 0.93 0.90 0.71 0.95 0.94 0.70
o__Bacteroidales 0.0769 0.0670 0.2914 0.2914 0.0000 3.79 1.00 1.00 1.00 0.98 0.91 1.00
혈액 내 세균유래 소포를 과(family) 수준에서 분석한 결과, Aeromonadaceae, Methylobacteriaceae, Rhizobiaceae, Bradyrhizobiaceae, Halomonadaceae, Cytophagaceae, Neisseriaceae, Fusobacteriaceae, Sphingomonadaceae, Weeksellaceae, Moraxellaceae, Aerococcaceae, Pseudomonadaceae, Micrococcaceae, Propionibacteriaceae, Intrasporangiaceae, Gemellaceae, Flavobacteriaceae, Brevibacteriaceae, Rhodocyclaceae, Corynebacteriaceae, Burkholderiaceae, Rhodobacteraceae, Tissierellaceae, Caulobacteraceae, Xanthomonadaceae, Oxalobacteraceae, Staphylococcaceae, Comamonadaceae, Planococcaceae, Pasteurellaceae, Actinomycetaceae, S24-7, Enterococcaceae, Bacillaceae, Prevotellaceae, Streptococcaceae, Veillonellaceae, Lactobacillaceae, Ruminococcaceae, Mogibacteriaceae, Verrucomicrobiaceae, Lachnospiraceae, Odoribacteraceae, Bacteroidaceae, 및 Barnesiellaceae 과 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 당뇨병에 대한 진단적 성능이 유의하게 나타났다 (표 5 및 도 5 참조).
  대조군 당뇨병 t-test Training Set Test Set
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity AUC Sensitivity Specificity
f__Aeromonadaceae 0.0007 0.0022 0.0000 0.0000 0.0003 0.00 0.71 0.98 0.11 0.53 0.88 0.09
f__Methylobacteriaceae 0.0077 0.0098 0.0000 0.0000 0.0000 0.00 0.91 0.82 0.79 0.85 0.75 0.70
f__Rhizobiaceae 0.0115 0.0149 0.0001 0.0001 0.0000 0.00 0.92 0.82 0.89 0.87 0.75 0.91
f__Bradyrhizobiaceae 0.0024 0.0062 0.0000 0.0000 0.0000 0.00 0.74 0.93 0.08 0.78 0.97 0.09
f__Halomonadaceae 0.0022 0.0060 0.0000 0.0000 0.0001 0.01 0.72 0.94 0.08 0.62 0.91 0.13
f__Cytophagaceae 0.0011 0.0028 0.0000 0.0000 0.0000 0.01 0.70 0.94 0.08 0.60 0.97 0.09
f__Neisseriaceae 0.0073 0.0181 0.0000 0.0000 0.0000 0.01 0.79 0.84 0.39 0.75 0.75 0.35
f__Fusobacteriaceae 0.0045 0.0090 0.0000 0.0000 0.0000 0.01 0.74 0.93 0.08 0.64 0.94 0.17
f__Sphingomonadaceae 0.0209 0.0240 0.0002 0.0002 0.0000 0.01 0.98 0.93 0.97 0.95 0.91 0.96
f__[Weeksellaceae] 0.0036 0.0060 0.0000 0.0000 0.0000 0.01 0.85 0.81 0.61 0.78 0.81 0.61
f__Moraxellaceae 0.0655 0.0546 0.0006 0.0006 0.0000 0.01 1.00 0.98 0.97 0.98 0.94 0.96
f__Aerococcaceae 0.0046 0.0082 0.0000 0.0000 0.0000 0.01 0.87 0.80 0.74 0.71 0.63 0.52
f__Pseudomonadaceae 0.0951 0.0802 0.0009 0.0009 0.0000 0.01 1.00 0.98 1.00 1.00 0.97 1.00
f__Micrococcaceae 0.0191 0.0239 0.0002 0.0002 0.0000 0.01 0.97 0.89 0.95 0.89 0.81 0.91
f__Propionibacteriaceae 0.0136 0.0168 0.0001 0.0001 0.0000 0.01 0.96 0.89 0.92 0.92 0.84 0.96
f__Intrasporangiaceae 0.0033 0.0063 0.0000 0.0000 0.0000 0.01 0.83 0.83 0.50 0.66 0.72 0.39
f__Gemellaceae 0.0012 0.0039 0.0000 0.0000 0.0014 0.01 0.71 0.96 0.16 0.51 0.91 0.13
f__Flavobacteriaceae 0.0012 0.0035 0.0000 0.0000 0.0002 0.01 0.70 0.97 0.11 0.61 0.94 0.09
f__Brevibacteriaceae 0.0014 0.0030 0.0000 0.0000 0.0000 0.01 0.72 0.97 0.08 0.67 0.97 0.04
f__Rhodocyclaceae 0.0017 0.0039 0.0000 0.0000 0.0000 0.01 0.71 0.98 0.03 0.66 1.00 0.04
f__Corynebacteriaceae 0.0224 0.0313 0.0003 0.0003 0.0000 0.01 0.91 0.84 0.84 0.89 0.88 0.70
f__Burkholderiaceae 0.0018 0.0044 0.0000 0.0000 0.0000 0.01 0.78 0.89 0.29 0.65 0.75 0.26
f__Rhodobacteraceae 0.0069 0.0093 0.0001 0.0001 0.0000 0.01 0.88 0.82 0.74 0.80 0.78 0.61
f__[Tissierellaceae] 0.0038 0.0066 0.0001 0.0001 0.0000 0.01 0.82 0.80 0.53 0.70 0.72 0.48
f__Caulobacteraceae 0.0056 0.0081 0.0001 0.0001 0.0000 0.02 0.86 0.80 0.74 0.83 0.81 0.57
f__Xanthomonadaceae 0.0024 0.0052 0.0000 0.0000 0.0000 0.02 0.76 0.87 0.21 0.77 0.84 0.22
f__Oxalobacteraceae 0.0267 0.0394 0.0006 0.0006 0.0000 0.02 0.89 0.87 1.00 0.86 0.81 1.00
f__Staphylococcaceae 0.0376 0.0571 0.0008 0.0008 0.0000 0.02 0.93 0.88 0.89 0.87 0.78 0.83
f__Comamonadaceae 0.0086 0.0102 0.0002 0.0002 0.0000 0.02 0.84 0.78 0.87 0.85 0.78 0.91
f__Planococcaceae 0.0056 0.0074 0.0001 0.0001 0.0000 0.03 0.93 0.87 0.87 0.87 0.84 0.65
f__Pasteurellaceae 0.0074 0.0148 0.0002 0.0002 0.0000 0.03 0.83 0.83 0.58 0.82 0.81 0.43
f__Actinomycetaceae 0.0034 0.0072 0.0001 0.0001 0.0000 0.04 0.76 0.71 0.58 0.64 0.59 0.39
f__S24-7 0.0029 0.0100 0.0001 0.0001 0.0032 0.05 0.73 0.87 0.21 0.51 0.75 0.22
f__Enterococcaceae 0.0059 0.0081 0.0003 0.0003 0.0000 0.06 0.86 0.79 0.84 0.67 0.53 0.78
f__Bacillaceae 0.0083 0.0104 0.0005 0.0005 0.0000 0.06 0.78 0.77 0.37 0.77 0.75 0.57
f__Prevotellaceae 0.0271 0.0306 0.0017 0.0017 0.0000 0.06 0.86 0.82 0.82 0.88 0.84 0.96
f__Streptococcaceae 0.0358 0.0273 0.0023 0.0023 0.0000 0.06 0.92 0.88 0.97 0.87 0.81 1.00
f__Veillonellaceae 0.0121 0.0117 0.0016 0.0016 0.0000 0.13 0.78 0.79 0.39 0.83 0.84 0.43
f__Lactobacillaceae 0.0313 0.0286 0.0129 0.0129 0.0000 0.41 0.81 0.86 0.13 0.61 0.66 0.17
f__Ruminococcaceae 0.0882 0.0769 0.1927 0.1927 0.0000 2.18 0.94 0.91 1.00 0.96 0.94 1.00
f__[Mogibacteriaceae] 0.0003 0.0011 0.0008 0.0008 0.0000 2.35 0.92 0.92 0.53 0.76 0.78 0.57
f__Verrucomicrobiaceae 0.0168 0.0183 0.0481 0.0481 0.0000 2.86 0.93 0.90 0.71 0.95 0.94 0.70
f__Lachnospiraceae 0.0427 0.0326 0.1669 0.1669 0.0000 3.91 1.00 1.00 1.00 1.00 1.00 1.00
f__[Odoribacteraceae] 0.0012 0.0028 0.0046 0.0046 0.0000 4.00 0.92 0.91 0.87 0.91 0.91 0.83
f__Bacteroidaceae 0.0300 0.0240 0.2583 0.2583 0.0000 8.60 1.00 1.00 1.00 1.00 1.00 1.00
f__[Barnesiellaceae] 0.0006 0.0019 0.0057 0.0057 0.0000 8.87 0.99 0.97 1.00 0.96 0.91 1.00
혈액 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, Halomonas, Methylobacterium, Neisseria, Fusobacterium, Kaistobacter, Agrobacterium, Porphyromonas, Cupriavidus, Acinetobacter, Pseudomonas, Chryseobacterium, Sphingomonas, Rothia, Micrococcus, Enhydrobacter, Propionibacterium, Brevibacterium, Corynebacterium, Lautropia, Paracoccus, Staphylococcus, Haemophilus, Catenibacterium, Anaerococcus, Prevotella, Actinomyces, Veillonella, Citrobacter, Enterococcus, Prevotella, Streptococcus, Dialister, Bacillus, Lactobacillus, Bifidobacterium, Faecalibacterium, Parabacteroides, Paraprevotella, Akkermansia, Ruminococcus, Adlercreutzia, Butyricimonas, Odoribacter, Coprococcus, Anaerostipes, Blautia, Bacteroides, Epulopiscium, 및 Escherichia 속 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 당뇨병에 대한 진단적 성능이 유의하게 나타났다 (표 6 및 도 6 참조).
  대조군 당뇨병 t-test Training Set Test Set
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity AUC Sensitivity Specificity
g__Halomonas 0.0020 0.0058 0.0000 0.0000 0.0002 0.00 0.71 0.94 0.05 0.61 0.94 0.13
g__Methylobacterium 0.0037 0.0065 0.0000 0.0000 0.0000 0.01 0.85 0.88 0.61 0.65 0.59 0.48
g__Neisseria 0.0045 0.0115 0.0000 0.0000 0.0000 0.01 0.75 0.92 0.11 0.64 0.94 0.13
g__Fusobacterium 0.0045 0.0090 0.0000 0.0000 0.0000 0.01 0.74 0.93 0.08 0.64 0.94 0.17
g__Kaistobacter 0.0009 0.0030 0.0000 0.0000 0.0020 0.01 0.72 0.97 0.11 0.54 0.88 0.09
g__Agrobacterium 0.0018 0.0053 0.0000 0.0000 0.0003 0.01 0.72 0.96 0.11 0.65 0.94 0.09
g__Porphyromonas 0.0015 0.0037 0.0000 0.0000 0.0000 0.01 0.72 0.93 0.13 0.59 0.91 0.09
g__Cupriavidus 0.0172 0.0367 0.0001 0.0001 0.0000 0.01 0.83 0.73 0.89 0.76 0.63 0.87
g__Acinetobacter 0.0369 0.0442 0.0003 0.0003 0.0000 0.01 0.99 0.96 0.95 0.98 0.94 1.00
g__Pseudomonas 0.0912 0.0794 0.0008 0.0008 0.0000 0.01 1.00 0.99 1.00 1.00 0.97 1.00
g__Chryseobacterium 0.0022 0.0035 0.0000 0.0000 0.0000 0.01 0.83 0.83 0.53 0.75 0.78 0.43
g__Sphingomonas 0.0159 0.0185 0.0001 0.0001 0.0000 0.01 0.97 0.90 0.97 0.92 0.84 0.96
g__Rothia 0.0056 0.0091 0.0000 0.0000 0.0000 0.01 0.88 0.87 0.68 0.73 0.69 0.52
g__Micrococcus 0.0093 0.0154 0.0001 0.0001 0.0000 0.01 0.83 0.76 0.71 0.84 0.84 0.52
g__Enhydrobacter 0.0271 0.0286 0.0002 0.0002 0.0000 0.01 0.96 0.89 0.92 0.97 0.91 0.91
g__Propionibacterium 0.0136 0.0168 0.0001 0.0001 0.0000 0.01 0.96 0.89 0.92 0.92 0.84 0.96
g__Brevibacterium 0.0014 0.0030 0.0000 0.0000 0.0000 0.01 0.72 0.97 0.08 0.67 0.97 0.04
g__Corynebacterium 0.0224 0.0313 0.0003 0.0003 0.0000 0.01 0.91 0.84 0.84 0.89 0.88 0.70
g__Lautropia 0.0013 0.0041 0.0000 0.0000 0.0007 0.02 0.70 0.97 0.11 0.53 0.91 0.09
g__Paracoccus 0.0050 0.0070 0.0001 0.0001 0.0000 0.02 0.86 0.83 0.63 0.73 0.75 0.52
g__Staphylococcus 0.0370 0.0566 0.0008 0.0008 0.0000 0.02 0.93 0.87 0.89 0.87 0.75 0.83
g__Haemophilus 0.0067 0.0140 0.0002 0.0002 0.0000 0.02 0.83 0.84 0.47 0.82 0.84 0.43
g__Catenibacterium 0.0046 0.0098 0.0001 0.0001 0.0000 0.03 0.78 0.83 0.32 0.71 0.78 0.39
g__Anaerococcus 0.0008 0.0019 0.0000 0.0000 0.0000 0.03 0.70 0.97 0.03 0.58 0.94 0.09
g__[Prevotella] 0.0020 0.0045 0.0001 0.0001 0.0000 0.04 0.71 0.97 0.03 0.61 0.97 0.09
g__Actinomyces 0.0031 0.0069 0.0001 0.0001 0.0000 0.04 0.75 0.72 0.50 0.61 0.59 0.39
g__Veillonella 0.0052 0.0088 0.0002 0.0002 0.0000 0.04 0.73 0.86 0.21 0.70 0.88 0.22
g__Citrobacter 0.0065 0.0090 0.0004 0.0004 0.0000 0.06 0.80 0.77 0.63 0.66 0.59 0.52
g__Enterococcus 0.0053 0.0076 0.0003 0.0003 0.0000 0.06 0.85 0.81 0.76 0.67 0.53 0.65
g__Prevotella 0.0271 0.0306 0.0017 0.0017 0.0000 0.06 0.86 0.82 0.82 0.88 0.84 0.96
g__Streptococcus 0.0332 0.0272 0.0022 0.0022 0.0000 0.07 0.90 0.87 0.97 0.85 0.81 1.00
g__Dialister 0.0036 0.0060 0.0003 0.0003 0.0000 0.08 0.72 0.94 0.05 0.69 0.94 0.09
g__Bacillus 0.0049 0.0077 0.0004 0.0004 0.0000 0.09 0.75 0.90 0.24 0.67 0.78 0.22
g__Lactobacillus 0.0308 0.0283 0.0128 0.0128 0.0000 0.42 0.80 0.86 0.13 0.61 0.63 0.13
g__Bifidobacterium 0.0140 0.0220 0.0296 0.0296 0.0000 2.12 0.90 0.93 0.16 0.92 0.94 0.17
g__Faecalibacterium 0.0388 0.0430 0.0867 0.0867 0.0000 2.23 0.91 0.89 0.79 0.88 0.88 0.70
g__Parabacteroides 0.0051 0.0078 0.0117 0.0117 0.0000 2.29 0.87 0.88 0.29 0.76 0.81 0.22
g__Paraprevotella 0.0005 0.0015 0.0012 0.0012 0.0000 2.61 0.88 0.91 0.05 0.83 0.88 0.04
g__Akkermansia 0.0167 0.0184 0.0481 0.0481 0.0000 2.88 0.93 0.90 0.71 0.95 0.94 0.70
g__Ruminococcus 0.0078 0.0159 0.0235 0.0235 0.0000 3.02 0.97 0.93 1.00 0.94 0.94 1.00
g__Adlercreutzia 0.0008 0.0018 0.0023 0.0023 0.0000 3.03 0.88 0.91 0.16 0.96 0.97 0.00
g__Butyricimonas 0.0005 0.0015 0.0017 0.0017 0.0000 3.54 0.91 0.93 0.16 0.92 0.94 0.13
g__Odoribacter 0.0007 0.0022 0.0030 0.0030 0.0000 4.32 0.96 0.96 0.92 0.90 0.84 0.96
g__Coprococcus 0.0103 0.0128 0.0453 0.0453 0.0000 4.42 0.97 0.94 0.97 1.00 1.00 1.00
g__Anaerostipes 0.0002 0.0008 0.0013 0.0013 0.0000 5.29 0.93 0.93 0.74 0.96 0.94 0.57
g__Blautia 0.0059 0.0071 0.0499 0.0499 0.0000 8.50 1.00 1.00 1.00 1.00 1.00 1.00
g__Bacteroides 0.0300 0.0240 0.2583 0.2583 0.0000 8.60 1.00 1.00 1.00 1.00 1.00 1.00
g__Epulopiscium 0.0001 0.0003 0.0012 0.0012 0.0000 10.70 0.99 0.98 0.95 0.96 0.91 0.96
g__Escherichia 0.0001 0.0002 0.0814 0.0814 0.0000 887.16 1.00 1.00 1.00 1.00 1.00 1.00
실시예 5. 소변에서 분리한 세균유래 소포 메타게놈 분석 기반 당뇨병 진단모형
상기 실시예 3의 방법으로, 당뇨병환자 60명과 나이와 성별을 매칭한 정상인 134명의 소변에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.
소변 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, Tenericutes 문 세균 바이오마커로 진단모형을 개발하였을 때, 당뇨병에 대한 진단적 성능이 유의하게 나타났다 (표 7 및 도 7 참조).
  대조군 당뇨병 t-test Training Set Test Set
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity AUC Sensitivity Specificity
p__Tenericutes 0.0051 0.0101 0.0013 0.0013 0.0001 0.26 0.71 0.97 0.21 0.50 0.89 0.05
소변 내 세균유래 소포를 강(class) 수준에서 분석한 결과, Mollicutes, Coriobacteriia, Deltaproteobacteria, 및 Epsilonproteobacteria 강 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 당뇨병에 대한 진단적 성능이 유의하게 나타났다 (표 8 및 도 8 참조).
  대조군 당뇨병 t-test Training Set Test Set
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity AUC Sensitivity Specificity
c__Mollicutes 0.0051 0.0101 0.0013 0.0013 0.0001 0.3 0.71 0.97 0.21 0.50 0.89 0.05
c__Coriobacteriia 0.0130 0.0112 0.0370 0.0370 0.0027 2.9 0.80 0.93 0.42 0.76 0.92 0.41
c__Deltaproteobacteria 0.0015 0.0025 0.0045 0.0045 0.0012 3.0 0.72 0.94 0.26 0.48 0.97 0.14
c__Epsilonproteobacteria 0.0003 0.0013 0.0049 0.0049 0.0003 15.0 0.77 0.97 0.37 0.58 1.00 0.23
소변 내 세균유래 소포를 목(order) 수준에서 분석한 결과, Stramenopiles, Pseudomonadales, Coriobacteriales, Desulfovibrionales, 및 Campylobacterales 목 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 당뇨병에 대한 진단적 성능이 유의하게 나타났다 (표 9 및 도 9 참조).
  대조군 당뇨병 t-test Training Set Test Set
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity AUC Sensitivity Specificity
o__Stramenopiles 0.0022 0.0051 0.0000 0.0000 0.0010 0.00 0.76 0.92 0.16 0.49 0.86 0.18
o__Pseudomonadales 0.1477 0.1423 0.0664 0.0664 0.0000 0.45 0.75 0.88 0.30 0.63 0.67 0.59
o__Coriobacteriales 0.0130 0.0112 0.0370 0.0370 0.0027 2.86 0.81 0.91 0.42 0.78 0.93 0.29
o__Desulfovibrionales 0.0007 0.0018 0.0043 0.0043 0.0002 5.85 0.74 0.95 0.37 0.65 0.88 0.18
o__Campylobacterales 0.0003 0.0013 0.0049 0.0049 0.0003 14.97 0.76 0.98 0.33 0.57 1.00 0.29
소변 내 세균유래 소포를 과(family) 수준에서 분석한 결과, Bradyrhizobiaceae, Cellulomonadaceae, Pseudomonadaceae, Moraxellaceae, Comamonadaceae, Enterococcaceae, Clostridiaceae, Coriobacteriaceae, Rikenellaceae, Desulfovibrionaceae, 및 Helicobacteraceae 과 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 당뇨병에 대한 진단적 성능이 유의하게 나타났다 (표 10 및 도 10 참조).
  대조군 당뇨병 t-test Training Set Test Set
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity AUC Sensitivity Specificity
f__Bradyrhizobiaceae 0.0017 0.0043 0.0004 0.0004 0.0009 0.21 0.74 0.97 0.24 0.53 0.80 0.21
f__Cellulomonadaceae 0.0010 0.0025 0.0002 0.0002 0.0011 0.24 0.72 0.93 0.07 0.44 0.98 0.05
f__Pseudomonadaceae 0.0789 0.0754 0.0347 0.0347 0.0000 0.44 0.75 0.89 0.39 0.70 0.83 0.32
f__Moraxellaceae 0.0687 0.0941 0.0317 0.0317 0.0001 0.46 0.70 0.91 0.20 0.51 0.93 0.11
f__Comamonadaceae 0.0057 0.0091 0.0124 0.0124 0.0001 2.18 0.70 0.95 0.22 0.61 0.95 0.21
f__Enterococcaceae 0.0106 0.0108 0.0233 0.0233 0.0050 2.20 0.69 0.97 0.15 0.61 0.95 0.16
f__Clostridiaceae 0.0137 0.0122 0.0331 0.0331 0.0000 2.42 0.80 0.95 0.51 0.76 0.83 0.47
f__Coriobacteriaceae 0.0130 0.0112 0.0370 0.0370 0.0027 2.86 0.78 0.89 0.37 0.84 1.00 0.37
f__Rikenellaceae 0.0017 0.0028 0.0074 0.0074 0.0000 4.49 0.79 0.96 0.41 0.59 0.85 0.32
f__Desulfovibrionaceae 0.0007 0.0018 0.0043 0.0043 0.0002 5.85 0.76 0.97 0.37 0.57 0.93 0.16
f__Helicobacteraceae 0.0002 0.0012 0.0047 0.0047 0.0003 27.36 0.76 0.98 0.32 0.57 1.00 0.26
소변 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, Rhizobium, Cupriavidus, Acinetobacter, Pseudomonas, Lactobacillus, Citrobacter, Enterococcus, Paracoccus, Klebsiella, SMB53, Allobaculum, Desulfovibrio, AF12, 및 Flexispira 속 세균에서 선택되는 하나 이상의 바이오마커로 진단모형을 개발하였을 때, 당뇨병에 대한 진단적 성능이 유의하게 나타났다 (표 11 및 도 11 참조).
  대조군 당뇨병 t-test Training Set Test Set
Taxon Mean SD Mean SD p-value Ratio AUC Sensitivity Specificity AUC Sensitivity Specificity
g__Rhizobium 0.0030 0.0043 0.0000 0.0000 0.0000 0.00 0.91 0.86 0.74 0.86 0.83 0.67
g__Cupriavidus 0.0137 0.0551 0.0007 0.0007 0.0078 0.05 0.74 0.92 0.19 0.54 0.76 0.11
g__Acinetobacter 0.0564 0.0928 0.0157 0.0157 0.0000 0.28 0.70 0.96 0.17 0.64 1.00 0.17
g__Pseudomonas 0.0751 0.0734 0.0317 0.0317 0.0000 0.42 0.77 0.88 0.45 0.74 0.83 0.44
g__Lactobacillus 0.0367 0.0433 0.0736 0.0736 0.0008 2.00 0.64 0.98 0.26 0.75 0.93 0.28
g__Citrobacter 0.0011 0.0018 0.0028 0.0028 0.0045 2.47 0.65 0.95 0.26 0.48 0.98 0.06
g__Enterococcus 0.0090 0.0097 0.0227 0.0227 0.0023 2.51 0.68 0.95 0.29 0.78 0.88 0.17
g__Paracoccus 0.0026 0.0043 0.0067 0.0067 0.0015 2.62 0.70 0.94 0.14 0.72 0.93 0.22
g__Klebsiella 0.0019 0.0034 0.0051 0.0051 0.0003 2.72 0.61 0.98 0.14 0.66 0.98 0.33
g__SMB53 0.0031 0.0048 0.0182 0.0182 0.0000 5.92 0.86 0.97 0.64 0.88 0.93 0.89
g__Allobaculum 0.0002 0.0007 0.0019 0.0019 0.0045 8.88 0.62 0.97 0.21 0.70 0.95 0.33
g__Desulfovibrio 0.0005 0.0016 0.0042 0.0042 0.0001 8.90 0.71 0.98 0.29 0.69 1.00 0.28
g__AF12 0.0002 0.0012 0.0041 0.0041 0.0000 22.63 0.63 0.98 0.26 0.84 1.00 0.50
g__Flexispira 0.0000 0.0000 0.0040 0.0040 0.0000   0.70 1.00 0.38 0.63 1.00 0.39
상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명에 따른 세균 메타게놈 분석을 통해 당뇨병 진단에 대한 정보를 제공하는 방법은 피검체 유래 샘플을 이용해 세균 메타게놈 분석을 수행하여 특정 세균 유래 세포밖 소포의 함량 증감을 분석함으로써 당뇨병의 발병 위험도를 예측하고 당뇨병을 진단하는데 이용할 수 있다. 환경에 존재하는 세균에서 분비되는 세포밖 소포는 체내에 흡수되어 인슐린에 반응하는 장기에 분포하여 인슐린 저항성 등의 대사기능에 영향을 주어 당뇨병을 유도 혹은 억제할 수 있는데, 당뇨병은 증상이 나타나기 전 조기진단이 어려워 효율적인 치료가 어려운 실정이므로, 본 발명에 따른 인체 유래 샘플을 이용한 세균 유래 세포밖 소포의 메타게놈 분석을 통해 당뇨병 발병의 위험도를 미리 예측함으로써 당뇨병의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 당뇨병의 발병 후에도 조기진단 할 수 있어 당뇨병의 발병률을 낮추고 치료효과를 높일 수 있다. 또한, 당뇨병으로 진단받은 환자에서 본 발명에 따른 세균 메타게놈 분석은 원인인자 노출을 피함으로써 당뇨병의 경과를 좋게 하거나 재발을 막는데 이용할 수 있다.

Claims (16)

  1. (a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
    (b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
    (c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는, 당뇨병 진단을 위한 정보제공방법.
  2. 제1항에 있어서,
    상기 (c) 단계에서 써미(Thermi), 푸조박테리아(Fusobacteria), 클로로플렉시(Chloroflexi), 시아노박테리아(Cyanobacteria), TM7, 유리고세균(Euryarchaeota), 프로테오박테리아(Proteobacteria), 방선균문(Actinobacteria), 우미균문(Verrucomicrobia), 의간균문(Bacteroidetes), 및 테네리쿠테스(Tenericutes)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
  3. 제1항에 있어서,
    상기 (c) 단계에서 사이토파지아(Cytophagia), 데이노코키(Deinococci), 푸조박테리아(Fusobacteriia), 스핑고박테리아(Sphingobacteriia), 플라보박테리아(Flavobacteriia), 알파프로테오박테리아(Alphaproteobacteria), 베타프로테오박테리아(Betaproteobacteria), TM7-3, 간균강(Bacilli), 악티노박테리아(Actinobacteria), 감마프로테오박테리아(Gammaproteobacteria), 클로스트리디아(Clostridia), 우미균강(Verrucomicrobiae), 박테로이디아(Bacteroidia), 몰리쿠테스(Mollicutes), 코리오박테리아(Coriobacteriia), 델타프로테오박테리아(Deltaproteobacteria), 및 입실론프로테오박테리아(Epsilonproteobacteria)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
  4. 제1항에 있어서,
    상기 (c) 단계에서 아에로모나달레스(Aeromonadales), 데이노코카레스(Deinococcales), 사이토파잘레스(Cytophagales), 리조비움목(Rhizobiales), 나이세리아레스(Neisseriales), 오세아노스피릴랄레스(Oceanospirillales), 푸조박테리움균목(Fusobacteriales), 스핑고박테리알레스(Sphingobacteriales), 스핑고모나달레스(Sphingomonadales), 슈도모나달레스(Pseudomonadales), 로도피릴라레스(Rhodospirillales), 플라보박테리아레스(Flavobacteriales), 로도사이클러스(Rhodocyclales), 로도박테랄레스(Rhodobacterales), 게멜라레스(Gemellales), 카울로박테라레스(Caulobacterales), 악티노마이세탈레스(Actinomycetales), 산토모나다레스(Xanthomonadales), 알테로모나달레스(Alteromonadales), 파스테우렐라레스(Pasteurellales), 바실라레스(Bacillales), 벌크홀데리알레스(Burkholderiales), 유산균목(Lactobacillales), 클로스트리디알레스(Clostridiales), RF32, 베루코미크로비알레스(Verrucomicrobiales), 박테로이데스목(Bacteroidales), 스트라메노필레스(Stramenopiles), 슈도모나달레스(Pseudomonadales), 코리오박테리움목(Coriobacteriales), 데설포비브리오날레스(Desulfovibrionales), 및 캄필로박테라레스(Campylobacterales)로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
  5. 제1항에 있어서,
    상기 (c) 단계에서 아에로모나다시에(Aeromonadaceae), 메틸로박테리아시에(Methylobacteriaceae), 리조비움과(Rhizobiaceae), 브라디리조비아시에(Bradyrhizobiaceae), 할로모나다시에(Halomonadaceae), 사이토파자시에(Cytophagaceae), 나이세리아시에(Neisseriaceae), 푸조박테리아시에(Fusobacteriaceae), 스핑고모나다시에(Sphingomonadaceae), 위크셀라시에(Weeksellaceae), 모락셀라시에(Moraxellaceae), 아에로코카시에(Aerococcaceae), 슈도모나다시에(Pseudomonadaceae), 마이크로코카시에(Micrococcaceae), 프로피오니박테리아시에(Propionibacteriaceae), 인트라스포란지아시에(Intrasporangiaceae), 제멜라시에(Gemellaceae), 플라보박테리아시에(Flavobacteriaceae), 브레비박테리아시에(Brevibacteriaceae), 로도사이클라시에(Rhodocyclaceae), 코리네박테리아시에(Corynebacteriaceae), 버크홀데리아시에(Burkholderiaceae), 로도박테라시에(Rhodobacteraceae), 티시에렐라시에(Tissierellaceae), 카우로박테라시에(Caulobacteraceae), 산토모나다시에(Xanthomonadaceae), 옥살로박테라시에(Oxalobacteraceae), 스타필로코카시에(Staphylococcaceae), 코마모나다시에(Comamonadaceae), 플라노코카시에(Planococcaceae), 파스테우렐라시에(Pasteurellaceae), 액티노마이세타시에(Actinomycetaceae), S24-7, 엔테로코카시에(Enterococcaceae), 바실라시에(Bacillaceae), 프레보텔라과(Prevotellaceae), 스트렙토코카시에(Streptococcaceae), 베일로넬라시에(Veillonellaceae), 유산균과(Lactobacillaceae), 루미노코카시에(Ruminococcaceae), 모지박테리아시에(Mogibacteriaceae), 베루코미크로비아시에(Verrucomicrobiaceae), 라치노스피라시에(Lachnospiraceae), 오도리박테라시에(Odoribacteraceae), 박테로이다시에(Bacteroidaceae), 바르네시엘라시에(Barnesiellaceae), 브라디리조비아시에(Bradyrhizobiaceae), 셀룰로모나다시에(Cellulomonadaceae), 슈도모나다시에(Pseudomonadaceae), 모락셀라시에(Moraxellaceae), 코마모나다시에(Comamonadaceae), 엔테로코카시에(Enterococcaceae), 클로스트리디움과(Clostridiaceae), 코리오박테리움과(Coriobacteriaceae), 리케넬라시에(Rikenellaceae), 데설포비브리오나시에(Desulfovibrionaceae), 및 헬리코박테라시에(Helicobacteraceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
  6. 제1항에 있어서,
    상기 (c) 단계에서 할로모나스(Halomonas), 메틸로박테리움(Methylobacterium), 나이세리아(Neisseria), 푸조박테리움(Fusobacterium), 카이스토박터(Kaistobacter), 아그로박테리움(Agrobacterium), 포르피로모나스(Porphyromonas), 쿠프리아비두스(Cupriavidus), 아시네토박터(Acinetobacter), 슈도모나스(Pseudomonas), 크리세오박테리움(Chryseobacterium), 스핑고모나스(Sphingomonas), 로티아(Rothia), 마이크로코커스(Micrococcus), 엔하이드로박터(Eknhydrobacter), 프로피오니박테리움(Propionibacterium), 브레비박테리움(Brevibacterium), 코리네박테리움(Corynebacterium), 라우트로피아(Lautropia), 파라콕쿠스(Paracoccus), 스타필로코커스(Staphylococcus), 헤모필루스(Haemophilus), 카테니박테리움(Catenibacterium), 아나에로코커스(Anaerococcus), 프레보텔라(Prevotella), 엑티노마이세스(Actinomyces), 베일로넬라(Veillonella), 시트로박터(Citrobacter), 엔테로코커스(Enterococcus), 스트렙토코커스(Streptococcus), 디알리스터(Dialister), 바실러스(Bacillus), 유산균속(Lactobacillus), 비피도박테리움(Bifidobacterium), 페칼리박테리움(Faecalibacterium), 파라박테로이데스(Parabacteroides), 파라프레보텔라(Paraprevotella), 아커만시아(Akkermansia), 루미노코커스(Ruminococcus), 아들러크레우치아(Adlercreutzia), 부티리시모나스(Butyricimonas), 오도리박터(Odoribacter), 코프로코커스(Coprococcus), 아내로스티페스(Anaerostipes), 블라우티아(Blautia), 박테로이데스(Bacteroides), 에풀로피스키움(Epulopiscium), 리조비움(Rhizobium), 쿠프리아비두스(Cupriavidus), 아시네토박터(Acinetobacter), 슈도모나스(Pseudomonas), 유산균속(Lactobacillus), 시트로박터(Citrobacter), 엔테로코커스(Enterococcus), 파라콕쿠스(Paracoccus), 클렙시엘라(Klebsiella), SMB53, 알로바큘럼(Allobaculum), 데설포비브리오(Desulfovibrio), AF12, 및 플렉시스피라(Flexispira)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 정보제공방법.
  7. 제1항에 있어서,
    상기 피검체 샘플은 혈액 또는 소변인 것을 특징으로 하는, 정보제공방법.
  8. 제7항에 있어서,
    상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구인 것을 특징으로 하는, 정보제공방법.
  9. (a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
    (b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
    (c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는, 당뇨병 진단방법.
  10. 제9항에 있어서,
    상기 (c) 단계에서 써미(Thermi), 푸조박테리아(Fusobacteria), 클로로플렉시(Chloroflexi), 시아노박테리아(Cyanobacteria), TM7, 유리고세균(Euryarchaeota), 프로테오박테리아(Proteobacteria), 방선균문(Actinobacteria), 우미균문(Verrucomicrobia), 의간균문(Bacteroidetes), 및 테네리쿠테스(Tenericutes)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
  11. 제9항에 있어서,
    상기 (c) 단계에서 사이토파지아(Cytophagia), 데이노코키(Deinococci), 푸조박테리아(Fusobacteriia), 스핑고박테리아(Sphingobacteriia), 플라보박테리아(Flavobacteriia), 알파프로테오박테리아(Alphaproteobacteria), 베타프로테오박테리아(Betaproteobacteria), TM7-3, 간균강(Bacilli), 악티노박테리아(Actinobacteria), 감마프로테오박테리아(Gammaproteobacteria), 클로스트리디아(Clostridia), 우미균강(Verrucomicrobiae), 박테로이디아(Bacteroidia), 몰리쿠테스(Mollicutes), 코리오박테리아(Coriobacteriia), 델타프로테오박테리아(Deltaproteobacteria), 및 입실론프로테오박테리아(Epsilonproteobacteria)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
  12. 제9항에 있어서,
    상기 (c) 단계에서 아에로모나달레스(Aeromonadales), 데이노코카레스(Deinococcales), 사이토파잘레스(Cytophagales), 리조비움목(Rhizobiales), 나이세리아레스(Neisseriales), 오세아노스피릴랄레스(Oceanospirillales), 푸조박테리움균목(Fusobacteriales), 스핑고박테리알레스(Sphingobacteriales), 스핑고모나달레스(Sphingomonadales), 슈도모나달레스(Pseudomonadales), 로도피릴라레스(Rhodospirillales), 플라보박테리아레스(Flavobacteriales), 로도사이클러스(Rhodocyclales), 로도박테랄레스(Rhodobacterales), 게멜라레스(Gemellales), 카울로박테라레스(Caulobacterales), 악티노마이세탈레스(Actinomycetales), 산토모나다레스(Xanthomonadales), 알테로모나달레스(Alteromonadales), 파스테우렐라레스(Pasteurellales), 바실라레스(Bacillales), 벌크홀데리알레스(Burkholderiales), 유산균목(Lactobacillales), 클로스트리디알레스(Clostridiales), RF32, 베루코미크로비알레스(Verrucomicrobiales), 박테로이데스목(Bacteroidales), 스트라메노필레스(Stramenopiles), 슈도모나달레스(Pseudomonadales), 코리오박테리움목(Coriobacteriales), 데설포비브리오날레스(Desulfovibrionales), 및 캄필로박테라레스(Campylobacterales)로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
  13. 제9항에 있어서,
    상기 (c) 단계에서 아에로모나다시에(Aeromonadaceae), 메틸로박테리아시에(Methylobacteriaceae), 리조비움과(Rhizobiaceae), 브라디리조비아시에(Bradyrhizobiaceae), 할로모나다시에(Halomonadaceae), 사이토파자시에(Cytophagaceae), 나이세리아시에(Neisseriaceae), 푸조박테리아시에(Fusobacteriaceae), 스핑고모나다시에(Sphingomonadaceae), 위크셀라시에(Weeksellaceae), 모락셀라시에(Moraxellaceae), 아에로코카시에(Aerococcaceae), 슈도모나다시에(Pseudomonadaceae), 마이크로코카시에(Micrococcaceae), 프로피오니박테리아시에(Propionibacteriaceae), 인트라스포란지아시에(Intrasporangiaceae), 제멜라시에(Gemellaceae), 플라보박테리아시에(Flavobacteriaceae), 브레비박테리아시에(Brevibacteriaceae), 로도사이클라시에(Rhodocyclaceae), 코리네박테리아시에(Corynebacteriaceae), 버크홀데리아시에(Burkholderiaceae), 로도박테라시에(Rhodobacteraceae), 티시에렐라시에(Tissierellaceae), 카우로박테라시에(Caulobacteraceae), 산토모나다시에(Xanthomonadaceae), 옥살로박테라시에(Oxalobacteraceae), 스타필로코카시에(Staphylococcaceae), 코마모나다시에(Comamonadaceae), 플라노코카시에(Planococcaceae), 파스테우렐라시에(Pasteurellaceae), 액티노마이세타시에(Actinomycetaceae), S24-7, 엔테로코카시에(Enterococcaceae), 바실라시에(Bacillaceae), 프레보텔라과(Prevotellaceae), 스트렙토코카시에(Streptococcaceae), 베일로넬라시에(Veillonellaceae), 유산균과(Lactobacillaceae), 루미노코카시에(Ruminococcaceae), 모지박테리아시에(Mogibacteriaceae), 베루코미크로비아시에(Verrucomicrobiaceae), 라치노스피라시에(Lachnospiraceae), 오도리박테라시에(Odoribacteraceae), 박테로이다시에(Bacteroidaceae), 바르네시엘라시에(Barnesiellaceae), 브라디리조비아시에(Bradyrhizobiaceae), 셀룰로모나다시에(Cellulomonadaceae), 슈도모나다시에(Pseudomonadaceae), 모락셀라시에(Moraxellaceae), 코마모나다시에(Comamonadaceae), 엔테로코카시에(Enterococcaceae), 클로스트리디움과(Clostridiaceae), 코리오박테리움과(Coriobacteriaceae), 리케넬라시에(Rikenellaceae), 데설포비브리오나시에(Desulfovibrionaceae), 및 헬리코박테라시에(Helicobacteraceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
  14. 제9항에 있어서,
    상기 (c) 단계에서 할로모나스(Halomonas), 메틸로박테리움(Methylobacterium), 나이세리아(Neisseria), 푸조박테리움(Fusobacterium), 카이스토박터(Kaistobacter), 아그로박테리움(Agrobacterium), 포르피로모나스(Porphyromonas), 쿠프리아비두스(Cupriavidus), 아시네토박터(Acinetobacter), 슈도모나스(Pseudomonas), 크리세오박테리움(Chryseobacterium), 스핑고모나스(Sphingomonas), 로티아(Rothia), 마이크로코커스(Micrococcus), (Enhydrobacter), 프로피오니박테리움(Propionibacterium), 브레비박테리움(Brevibacterium), 코리네박테리움(Corynebacterium), 라우트로피아(Lautropia), 파라콕쿠스(Paracoccus), (Staphylococcus), 헤모필루스(Haemophilus), 카테니박테리움(Catenibacterium), 아나에로코커스(Anaerococcus), 프레보텔라(Prevotella), 엑티노마이세스(Actinomyces), 베일로넬라(Veillonella), 시트로박터(Citrobacter), 엔테로코커스(Enterococcus), 스트렙토코커스(Streptococcus), 디알리스터(Dialister), 바실러스(Bacillus), 유산균속(Lactobacillus), 비피도박테리움(Bifidobacterium), 페칼리박테리움(Faecalibacterium), 파라박테로이데스(Parabacteroides), 파라프레보텔라(Paraprevotella), 아커만시아(Akkermansia), 루미노코커스(Ruminococcus), 아들러크레우치아(Adlercreutzia), 부티리시모나스(Butyricimonas), 오도리박터(Odoribacter), 코프로코커스(Coprococcus), 아내로스티페스(Anaerostipes), 블라우티아(Blautia), 박테로이데스(Bacteroides), 에풀로피스키움(Epulopiscium), 리조비움(Rhizobium), 쿠프리아비두스(Cupriavidus), 아시네토박터(Acinetobacter), 슈도모나스(Pseudomonas), 유산균속(Lactobacillus), 시트로박터(Citrobacter), 엔테로코커스(Enterococcus), 파라콕쿠스(Paracoccus), 클렙시엘라(Klebsiella), SMB53, 알로바큘럼(Allobaculum), 데설포비브리오(Desulfovibrio), AF12, 및 플렉시스피라(Flexispira)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 진단방법.
  15. 제9항에 있어서,
    상기 피검체 샘플은 혈액 또는 소변인 것을 특징으로 하는, 진단방법.
  16. 제15항에 있어서,
    상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구인 것을 특징으로 하는, 진단방법.
PCT/KR2018/002246 2017-02-24 2018-02-23 세균 메타게놈 분석을 통한 당뇨병 진단 방법 WO2018155950A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0025085 2017-02-24
KR20170025085 2017-02-24
KR1020180020804A KR101940445B1 (ko) 2017-02-24 2018-02-21 세균 메타게놈 분석을 통한 당뇨병 진단 방법
KR10-2018-0020804 2018-02-21

Publications (1)

Publication Number Publication Date
WO2018155950A1 true WO2018155950A1 (ko) 2018-08-30

Family

ID=63253748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002246 WO2018155950A1 (ko) 2017-02-24 2018-02-23 세균 메타게놈 분석을 통한 당뇨병 진단 방법

Country Status (1)

Country Link
WO (1) WO2018155950A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113286897A (zh) * 2019-01-09 2021-08-20 Md保健株式会社 来源于红球菌属细菌的纳米囊泡及其用途
EP3763829A4 (en) * 2018-03-05 2021-12-01 MD Healthcare Inc. NANOVESICLES FROM ENHYDROBACTER BACTERIA, AND THEIR USE
EP3760743A4 (en) * 2018-02-28 2021-12-01 MD Healthcare Inc. NANOVEICLES DERIVED FROM RHIZOBIUM SP. BACTERIA, AND THEIR USE
EP3760742A4 (en) * 2018-02-28 2021-12-01 MD Healthcare Inc. MICROCOCCAL BACTERIA-DERIVED NANOVESICS AND USES
JP2022106991A (ja) * 2018-12-10 2022-07-20 エムディー ヘルスケア インコーポレイテッド スフィンゴモナス属細菌由来のナノ小胞及びその用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110025603A (ko) * 2009-09-04 2011-03-10 주식회사이언메딕스 그람 양성 세균유래 세포밖 소포체 및 이의 용도
WO2011127219A1 (en) * 2010-04-06 2011-10-13 Caris Life Sciences Luxembourg Holdings Circulating biomarkers for disease
KR20160035230A (ko) * 2014-09-23 2016-03-31 재단법인 아산사회복지재단 만성폐쇄성폐질환 진단용 마커 조성물
KR20160073157A (ko) * 2014-12-16 2016-06-24 이화여자대학교 산학협력단 세균 유래의 나노소포체를 이용한 세균성 감염질환 원인균 동정방법
KR20160110232A (ko) * 2015-03-11 2016-09-21 주식회사 엠디헬스케어 유산균 유래 세포밖 소포체를 유효성분으로 포함하는 염증질환의 예방 또는 치료용 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110025603A (ko) * 2009-09-04 2011-03-10 주식회사이언메딕스 그람 양성 세균유래 세포밖 소포체 및 이의 용도
WO2011127219A1 (en) * 2010-04-06 2011-10-13 Caris Life Sciences Luxembourg Holdings Circulating biomarkers for disease
KR20160035230A (ko) * 2014-09-23 2016-03-31 재단법인 아산사회복지재단 만성폐쇄성폐질환 진단용 마커 조성물
KR20160073157A (ko) * 2014-12-16 2016-06-24 이화여자대학교 산학협력단 세균 유래의 나노소포체를 이용한 세균성 감염질환 원인균 동정방법
KR20160110232A (ko) * 2015-03-11 2016-09-21 주식회사 엠디헬스케어 유산균 유래 세포밖 소포체를 유효성분으로 포함하는 염증질환의 예방 또는 치료용 조성물

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760743A4 (en) * 2018-02-28 2021-12-01 MD Healthcare Inc. NANOVEICLES DERIVED FROM RHIZOBIUM SP. BACTERIA, AND THEIR USE
EP3760742A4 (en) * 2018-02-28 2021-12-01 MD Healthcare Inc. MICROCOCCAL BACTERIA-DERIVED NANOVESICS AND USES
EP3763829A4 (en) * 2018-03-05 2021-12-01 MD Healthcare Inc. NANOVESICLES FROM ENHYDROBACTER BACTERIA, AND THEIR USE
US11554144B2 (en) 2018-03-05 2023-01-17 Md Healthcare Inc. Nanovesicles derived from enhydrobacter bacteria, and use thereof
JP2022106991A (ja) * 2018-12-10 2022-07-20 エムディー ヘルスケア インコーポレイテッド スフィンゴモナス属細菌由来のナノ小胞及びその用途
JP7378847B2 (ja) 2018-12-10 2023-11-14 エムディー ヘルスケア インコーポレイテッド スフィンゴモナス属細菌由来のナノ小胞及びその用途
CN113286897A (zh) * 2019-01-09 2021-08-20 Md保健株式会社 来源于红球菌属细菌的纳米囊泡及其用途

Similar Documents

Publication Publication Date Title
WO2018124606A1 (ko) 미생물 메타게놈 분석을 통한 유방암 진단방법
WO2018124617A1 (ko) 세균 메타게놈 분석을 통한 폐암 진단 방법
WO2018111040A1 (ko) 세균 메타게놈 분석을 통한 위암 진단방법
KR101940445B1 (ko) 세균 메타게놈 분석을 통한 당뇨병 진단 방법
WO2018155950A1 (ko) 세균 메타게놈 분석을 통한 당뇨병 진단 방법
WO2018155961A1 (ko) 세균 메타게놈 분석을 통한 파킨슨병 진단방법
WO2018155960A1 (ko) 미생물 메타게놈 분석을 통한 난소암 진단방법
WO2019160284A1 (ko) 세균 메타게놈 분석을 통한 뇌졸중 진단방법
KR101940426B1 (ko) 세균 메타게놈 분석을 통한 대장종양 진단 방법
KR102019646B1 (ko) 미생물 메타게놈 분석을 통한 아토피피부염 진단방법
KR101940423B1 (ko) 세균 메타게놈 분석을 통한 심장질환 진단방법
KR20180098163A (ko) 세균 메타게놈 분석을 통한 만성폐쇄성기도질환 진단 방법
US12084721B2 (en) Inflammatory bowel disease diagnostic method by means of bacterial metagenomic analysis
WO2019147080A1 (ko) 세균 메타게놈 분석을 통한 우울증 진단방법
KR102019648B1 (ko) 천식환자에서 세균 메타게놈 분석을 통한 폐암 진단방법
WO2018225945A1 (ko) 미생물 메타게놈 분석을 통한 아토피피부염 진단방법
KR102008451B1 (ko) 세균 메타게놈 분석을 통한 자폐증 진단방법
WO2019156325A1 (ko) 세균 메타게놈 분석을 통한 과민성 장증후군 진단방법
WO2018124619A1 (ko) 미생물 메타게놈 분석을 통한 방광암 진단방법
WO2018155967A1 (ko) 세균 메타게놈 분석을 통한 만성폐쇄성기도질환 진단 방법
WO2019146966A1 (ko) 세균 메타게놈 분석을 통한 담관암 진단방법
KR101940424B1 (ko) 세균 메타게놈 분석을 통한 신부전 진단방법
KR101936006B1 (ko) 미생물 메타게놈 분석을 통한 방광암 진단방법
WO2018124618A1 (ko) 세균 메타게놈 분석을 통한 췌장암 진단방법
WO2018216912A1 (ko) 세균 메타게놈 분석을 통한 자폐증 진단방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757839

Country of ref document: EP

Kind code of ref document: A1