WO2018151321A1 - 窒化処理部品及びその製造方法 - Google Patents
窒化処理部品及びその製造方法 Download PDFInfo
- Publication number
- WO2018151321A1 WO2018151321A1 PCT/JP2018/006051 JP2018006051W WO2018151321A1 WO 2018151321 A1 WO2018151321 A1 WO 2018151321A1 JP 2018006051 W JP2018006051 W JP 2018006051W WO 2018151321 A1 WO2018151321 A1 WO 2018151321A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitriding
- axis direction
- depth
- mass
- stress concentration
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 30
- 239000002344 surface layer Substances 0.000 claims abstract description 14
- 229910001562 pearlite Inorganic materials 0.000 claims abstract description 9
- 238000005121 nitriding Methods 0.000 claims description 77
- 229910000831 Steel Inorganic materials 0.000 claims description 51
- 239000010959 steel Substances 0.000 claims description 51
- 238000011282 treatment Methods 0.000 claims description 28
- 238000005482 strain hardening Methods 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims 2
- 239000000203 mixture Substances 0.000 abstract description 10
- 150000004767 nitrides Chemical class 0.000 abstract description 2
- 230000035882 stress Effects 0.000 description 29
- 238000010273 cold forging Methods 0.000 description 24
- 238000005098 hot rolling Methods 0.000 description 18
- 238000012360 testing method Methods 0.000 description 14
- 239000011572 manganese Substances 0.000 description 12
- 238000005452 bending Methods 0.000 description 11
- 238000001816 cooling Methods 0.000 description 11
- 238000005520 cutting process Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 238000009661 fatigue test Methods 0.000 description 10
- 239000010955 niobium Substances 0.000 description 10
- 238000013001 point bending Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000005255 carburizing Methods 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
- C23C8/26—Nitriding of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J1/00—Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
- B21J1/06—Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K1/00—Making machine elements
- B21K1/28—Making machine elements wheels; discs
- B21K1/30—Making machine elements wheels; discs with gear-teeth
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/32—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Definitions
- the present invention relates to a nitrided component and a method for manufacturing the same, and particularly to a technology for manufacturing a nitrided component having excellent bending fatigue strength.
- nitriding treatment that does not involve a phase transformation because the heat treatment is performed at a lower temperature than the carburizing treatment.
- the nitriding treatment is advantageous because it can maintain the elongated grain structure obtained by cold forging and improve the strength of the part. For example, the following techniques are known.
- Japanese Patent Application Laid-Open No. 9-279295 discloses a characteristic having a predetermined component, a depth hardness after hot rolling or after hot forging of 200 or less in HV, and a critical compressibility of 65 or more in the subsequent cold forging.
- a steel for soft nitriding having excellent cold forgeability characterized by comprising According to this publication, a soft ferrite + bainite structure of HV of 200 or less can be obtained in the state of hot rolling or hot forging, and in the subsequent cold forging, the critical compression ratio is excellent at 65% or more. It has cold forgeability, and even in soft nitriding after cold forging, the hardness can be increased by an aging effect without decreasing the core hardness of the base material.
- the nitriding treatment has an advantage that the surface hardness can be increased to 1000 or more by HV, and an advantage that the heat treatment strain is small because it is generally performed in an ⁇ region of 600 ° C. or less and does not involve phase transformation.
- the present invention has been made in view of the above circumstances, and is premised on applying a nitriding treatment with a small heat treatment strain to a cold-worked product typified by a cold forged product because it does not involve a phase transformation.
- An object of the present invention is to provide a nitrided part having excellent fatigue strength by maintaining the elongated grain structure obtained in cold working even after nitriding.
- the present inventors have earnestly studied a nitrided part that maintains the elongated grain structure obtained in the cold working even after the nitriding process and thus has excellent fatigue strength, and obtained the following knowledge.
- the present invention has been completed based on the above findings, and the gist thereof is as described below.
- C 0.05 to 0.20%
- Si 0.05 to 0.20%
- Mn 0.20 to 0.50%
- P 0.030% or less
- S 0.020% or less
- V 0.10 to 0.50%
- It is a structure consisting of ferrite and pearlite, Ferrite grains having an aspect ratio of 4.5 or more, which is the ratio of the length in the major axis direction to the minor axis direction
- the depth from the surface of the stress concentration planned portion exists in the entire region of ( ⁇ ⁇ 0.09 + 0.05) mm or less
- a nitrided component having an average N concentration in a surface layer portion from the surface to a depth direction of 200 ⁇ m is 5000 ppm or more.
- ⁇ is the radius of curvature (mm) of the stress concentration planned portion.
- C 0.05 to 0.20%
- Si 0.05 to 0.20%
- Mn 0.20 to 0.50%
- P 0.030% or less
- S A steel material having a composition containing 0.020% or less and V: 0.10 to 0.50% with the balance being Fe and inevitable impurities is hot-rolled at a final stand outlet temperature of 1050 ° C. or higher, and 900 Cooling between 0.4 ° C. and 500 ° C. at 0.4 to 2.0 ° C./second;
- the ratio of the length of the ferrite grains in the major axis direction to the minor axis direction in the entire region where the depth from the surface of the stress concentration planned portion is ( ⁇ ⁇ 0.09 + 0.05) mm or less without annealing.
- ⁇ is the radius of curvature (mm) of the stress concentration planned portion.
- the component, structure, aspect ratio of ferrite grains, and average N concentration in the surface layer portion are optimized. Further, in the method for manufacturing a nitriding component according to the present invention, the components, the final stand outlet temperature in the hot rolling, the cooling conditions after the hot rolling, the cold working and nitriding after dissolving V in the steel material The order of enforcement with processing is optimized. As a result, according to the present invention, a cold-worked product typified by a cold forged product can be obtained in the cold working on the premise that a nitriding treatment with a small heat treatment strain is applied because no phase transformation is involved. By maintaining the elongated grain structure even after the nitriding treatment, the excellent fatigue strength of the nitriding component can be realized.
- the nitriding component of this embodiment has the following chemical composition.
- the ratio (%) of each element shown below means mass%.
- (Essential ingredients) C 0.05 to 0.20% Carbon (C) increases the strength (particularly the strength of the core) of the nitriding component. If the C content is too low, this effect cannot be obtained. On the other hand, if the C content is too high, the strength of the steel material becomes too high, so that the cold workability of the steel material decreases. Therefore, the C content is 0.05 to 0.20%.
- the preferable lower limit of the C content is 0.10%, and the preferable upper limit is 0.15%.
- Si 0.05-0.20%
- Si has the effect of increasing the strength of the steel, but if its content exceeds 0.20%, the cold workability decreases. On the other hand, in mass production, making the Si content less than 0.05% increases the cost. Therefore, the Si content is 0.05 to 0.20%. From the viewpoint of cold workability, the Si content is preferably 0.15% or less.
- Mn 0.20 to 0.50%
- Manganese (Mn) increases the strength of the steel. Further, Mn fixes S in the steel as MnS, thereby suppressing the formation of FeS at the grain boundaries. Thereby, red hot brittleness is suppressed and hot ductility increases. If the Mn content is too low, these effects cannot be obtained. On the other hand, if the Mn content is too high, cold workability is lowered. Therefore, the Mn content is 0.20 to 0.50%. The minimum with preferable Mn content is 0.25%, and a preferable upper limit is 0.45%.
- Phosphorus (P) is an impurity. P segregates at the grain boundary and lowers the grain boundary strength. As a result, the bending fatigue strength of the nitrided component is reduced. Therefore, the P content is 0.030% or less. The upper limit with preferable P content is 0.025%. The P content should be as low as possible.
- S 0.020% or less Sulfur (S) is an impurity. If the S content is too high, S not fixed by Mn is generated at the grain boundary as FeS, not only the hot rollability is lowered, but also the cold ductility of the steel is lowered by a large amount of MnS produced. In addition, cracks may occur during cold working. Accordingly, the S content is 0.020% or less. The upper limit with preferable S content is 0.010%. The S content should be as low as possible.
- V 0.10 to 0.50% Vanadium (V) combines with N by nitriding treatment to form fine precipitates and improves the hardness near the surface, thereby increasing the fatigue strength of the nitriding component. V also has the effect of suppressing the recovery and recrystallization of the steel structure and maintaining the elongated grain structure produced by cold working. If the V content is too low, these effects cannot be obtained. On the other hand, if the content of V exceeds 0.50%, a part of V starts to precipitate as VC, and the above effect starts to be saturated. Therefore, the V content is 0.10 to 0.50%. The minimum with preferable V content is 0.2%, and a preferable upper limit is 0.4%.
- the balance of the chemical composition of the steel is iron (Fe) and inevitable impurities.
- the inevitable impurities mean components that are mixed from ore and scrap used as a raw material of steel, or the environment of the manufacturing process, and are not components intentionally included in steel materials.
- the steel material may further contain at least one of Mo, Nb, Cr, and Al.
- Mo 0.10 to 0.50%
- Molybdenum (Mo) has the function of increasing the strength of the steel, suppressing the recovery and recrystallization of the steel structure, and maintaining the elongated grain structure generated by cold working.
- the Mo content is preferably 0.10 to 0.50%.
- the more preferable upper limit of the Mo content is 0.40%, and the more preferable lower limit is 0.20%.
- Niobium (Nb) combines with N and C in steel to form carbonitride, which suppresses the recovery and recrystallization of the steel structure and maintains the elongated grain structure generated by cold working It has the function to do.
- the Nb content is too high, the material hardness is excessively increased, and the workability when machining parts such as cutting and forging is significantly deteriorated.
- the range of Nb content is preferably 0.01 to 0.05%.
- a more preferable upper limit of the Nb content is 0.04%, and a more preferable lower limit is 0.02%.
- Cr 0.1 to 2.0% Cr has a function of increasing the fatigue strength of the nitriding component by combining with N by nitriding to form fine precipitates and improving the hardness in the vicinity of the surface.
- the Cr content is preferably 0.1 to 2.0%.
- a more preferable upper limit of the Cr content is 1.0%, and a more preferable lower limit is 0.5%.
- Al 0.01 to 0.1%
- Aluminum (Al) combines with N during nitriding to form fine precipitates and has a function of increasing the fatigue strength of the nitriding component by improving the hardness near the surface.
- the Al content is preferably 0.01 to 0.1%.
- a more preferable lower limit of the Al content is 0.02%.
- the more preferable upper limit of the Al content is 0.05%, and the extremely preferable upper limit is 0.04%.
- the structure is composed of ferrite and pearlite.
- observation and identification of the tissue can be performed as follows. That is, after the surface or cut surface of the component is mirror-polished, it is subjected to nital corrosion, and it can be identified by observation with an optical microscope that the white region is ferrite and the black and white striped region or black region is pearlite.
- the nitriding component of the present embodiment there are ferrite grains having an aspect ratio of 4.5 or more, which is the ratio of the length in the major axis direction to the minor axis direction. This is evidence that the cold working represented by cold forging is sufficiently performed. Therefore, such a nitriding component naturally has excellent fatigue strength.
- the aspect ratio is preferably 20 or more, and more preferably 100 or more.
- the aspect ratio of the ferrite grains can be derived as follows. That is, the aspect ratio can be measured and calculated with, for example, a 1000 ⁇ optical microscope. In addition, when it is difficult to measure the aspect ratio with an optical microscope because the aspect ratio is extremely large, the aspect ratio can be estimated from the strain component amount obtained by the finite element method analysis of cold working.
- the depth from the surface of the stress concentration planned portion is ( ⁇ ⁇ 0.09 + 0.05) mm or less ( ⁇ : radius of curvature of the stress concentration planned portion (mm)),
- the aspect ratio which is the ratio of the length of the ferrite grain in the major axis direction to the minor axis direction, is set to 4.5 or more.
- the method for deriving the length ( ⁇ ⁇ 0.09 + 0.05) mm from the surface of the stress concentration planned portion is as follows. That is, based on the bending stress at the stress concentration planned portion surface of the nitriding part, the depth d from the surface at the position where the bending stress that is 0.8 times higher is the curvature radius ⁇ of the stress concentration planned portion. It changes depending on the size of, and becomes deeper as ⁇ is larger and shallower as ⁇ is smaller. Therefore, the present inventors estimated the relationship between the region where the bending stress is generated (depth d) and the radius of curvature ⁇ of the stress concentration planned portion by finite element analysis. The analysis conditions are as follows.
- FIG. 1 is a diagram showing a finite element method analysis model for estimating a bending stress generated in a rectangular tooth profile.
- the analysis model is a two-dimensional model in a plane strain state.
- two root corners of a rectangular tooth form having a width of 10 mm and a height of 10 mm are smoothly connected by an arc having a radius of curvature ⁇ , and divided into rectangular elements as an elastic body having a longitudinal elastic modulus of 213 GPa and a Poisson's ratio of 0.3.
- the model was adopted. Further, the base was completely fixed, and a displacement of 0.05 mm in the left direction was given to the upper right corner of the rectangular tooth profile.
- the curvature radius ⁇ was set at three levels of 0.3 mm, 1 mm, and 3 mm.
- the depth from the surface of the stress concentration planned portion is ( ⁇ ⁇ 0. 09 + 0.05) mm or less.
- d 0.09 ⁇ ⁇ + 0.05 (2)
- the average N concentration in the surface layer portion is 5000 ppm or more.
- the surface layer portion refers to a portion of a region in a range from the surface of the nitriding component to a depth direction of 200 ⁇ m.
- concentration can be performed as follows. That is, first, a part is cut perpendicularly to the surface to obtain a measurement sample, and the observation surface is mirror polished. Thereafter, the N concentration in the range from the surface to the depth direction of 200 ⁇ m (that is, the surface layer portion) is measured by an electron beam microanalyzer (EPMA) at a pitch of 0.5 ⁇ m in the depth direction, and the average N concentration is measured. calculate.
- EPMA electron beam microanalyzer
- the nitriding treatment of the present embodiment has a predetermined chemical composition, and the structure, the aspect ratio of the ferrite grains, the existence area of the elongated ferrite grains, and the average N concentration of the surface layer portion all satisfy the predetermined range. According to the parts, the above-described effects can be combined to realize excellent fatigue strength.
- the manufacturing method of the nitriding component of the present embodiment includes at least a hot rolling step, a cold working step, and a nitriding step.
- a steel material is obtained from cast steel prepared to have a chemical composition corresponding to the chemical composition of the nitriding component described above. And this steel material is used for hot rolling.
- the final stand outlet temperature of the steel is set to 1050 ° C. or higher. Thereby, all contained V is made into a solid solution state.
- the part is formed by cold forging. Cold forging is performed in order to increase the working degree of the stress concentration planned portion where stress is concentrated when the nitriding component is actually used.
- the stress concentration planned portion is a portion of the nitriding component that is expected to be subjected to a large stress during operation, and is generally a portion having a small curvature.
- the boundary between the boss and the flange in the flange with the boss, the tooth bottom of the gear, and the portion where stress concentrates in the same manner as these are examples of the stress concentration planned portion.
- the depth from the surface of the stress concentration planned portion is ( ⁇ ⁇ 0.09 + 0.05) mm or less ( ⁇ : radius of curvature of the stress concentration planned portion (mm)),
- the aspect ratio which is the ratio of the length of the ferrite grain in the major axis direction to the minor axis direction, is set to 4.5 or more.
- the nitriding treatment in the present embodiment may be performed under any conditions as long as the average N concentration in the surface layer portion from the surface of the nitriding component to the depth direction of 200 ⁇ m is 5000 ppm or more.
- the nitriding treatment in the present embodiment since a predetermined amount of V is dissolved in the steel material, it is formed by cold working without forming recrystallized grains even when nitriding is performed in this way.
- the elongated grains can be maintained, and the ferrite grains having an aspect ratio of 4.5 or more, which is the ratio of the length in the major axis direction to the minor axis direction, can also be present in the nitrided component.
- the nitriding component having excellent fatigue strength can be obtained in combination with the above effects.
- HV Vickers hardness
- test pieces a to h and 1 to s each have a low hardness after rolling of less than 170 HV and are excellent in cold workability.
- test pieces i to k all have a high hardness after rolling of 170 HV or more and are inferior in cold workability.
- test piece having a rough shape was cut out from each of the hot-rolled steel bars to form a predetermined lubricating film. Thereafter, each test piece was subjected to cold forging in which a plate-like punch having a width of 4 mm, a height of 10 mm, and a depth of 40 mm and having a corner of the lower surface rounded with a radius of curvature of 2 mm was chamfered.
- the pushing amount of the plate punch was as shown in Table 2.
- finish cutting was performed based on the notches, and the formation of the notches was completed.
- the finish cutting process is performed on the basis of the notch deepened by 0.5 mm by the cutting process. Went.
- the finish cutting process is performed on the basis of the notch that is 0.4 mm deeper by the cutting process. Went.
- the notch bottom becomes a stress concentration part in a 4-point bending fatigue test described later. Since the curvature radius of the notch is 2 mm, the depth d at which a bending stress higher than 0.8 times the bending stress of the outermost surface is 0.23 mm.
- the nitrided part obtained as described above has (I) whether or not it has a structure composed of ferrite and pearlite, and (II) an aspect ratio that is the ratio of the length in the major axis direction to the minor axis direction. Whether or not ferrite grains of 5 or more are present in the entire region having a depth of 0.23 mm from the surface of the notch bottom, (III) average N concentration (ppm) of the surface layer portion from the surface to the depth direction of 200 ⁇ m (IV) A four-point bending fatigue test life (times) at a maximum load of 12 kN was investigated. These results are shown in Table 3.
- the cut surface is arbitrarily cut out in the surface layer portion, 20 ferrite grains that can be seen on the cut surface are taken, and the aspect ratio of the ferrite grain is measured.
- the average value was calculated.
- the aspect ratio was calculated from the amount of strain obtained by finite element analysis.
- FIG. 2 is a diagram showing the shape of a four-point bending fatigue test piece and the load applied in the four-point bending fatigue test.
- a 13 mm square cross section ⁇ 100 mm long test piece was formed by cold forging and cutting (sample numbers a to o, q to s) or cutting (sample number p) as described above.
- the lower fulcrum was placed at the 80 mm position and the upper fulcrum was placed at the 20 mm position with a notch having a curvature radius of 2 mm formed at the midpoint of the test piece length, and a load was repeatedly applied to the upper fulcrum.
- the tester repeatedly applied a load of 12 kN at 10 Hz using a 10 tonf servo pulsar manufactured by Shimadzu Corporation, and examined the fatigue test life (the number of repetitions required for breaking the test piece). At this time, the minimum load was set to 0.6 kN corresponding to 5% of the maximum load 12 kN.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
優れた疲労強度を有する窒化処理部品を提供すること。 所定の成分を有し、フェライト及びパーライトから成る組織であり、長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上であるフェライト粒が、応力集中予定部の表面からの深さが(ρ×0.09+0.05)mm以下の全領域に存在し、表面から深さ方向200μmまでの表層部の平均N濃度が5000ppm以上である。
Description
本発明は、窒化処理部品及びその製造方法に関し、特に、優れた曲げ疲労強度を有する窒化処理部品の製造技術に関する。
従来、冷間鍛造法によって製造された歯車は、切削加工によって製造された歯車よりも高強度である、といわれてきた。これは、冷間鍛造時に歯車表面に伸長粒組織が形成されることから、歯元の疲労強度が高いことに起因する。
しかしながら、冷間鍛造後に浸炭処理を施して製造された歯車と、切削加工後に浸炭処理を施して製造された歯車との間には、疲労強度に関して明確な相違は現れなかった。その理由は、浸炭処理の加熱過程に於いて、冷間鍛造によって形成されたパーライト及びフェライト(α)の伸長粒組織がオーステナイト(γ)へ相変態して消滅してしまうことにある、と推察される。
このような伸長粒組織の消滅現象を防止するためには、浸炭処理と比較して低温で加熱処理がなされるために相変態を伴わない窒化処理を採用することが有効である。窒化処理は、冷間鍛造によって得られた伸長粒組織を維持し、部品の強度を向上できるため有利であり、例えば以下に示す技術が知られている。
特開平9-279295号公報には、所定の成分を有し、熱間圧延後又は熱間鍛造後の深部硬さがHVで200以下、かつその後の冷間鍛造における限界圧縮率65以上の特性を有してなることを特徴とする冷間鍛造性に優れた軟窒化用鋼が開示されている。当該公報では、熱間圧延又は熱間鍛造したままの状態で、HVで200以下の軟らかいフェライト+ベイナイト組織を得ることができ、その後の冷間鍛造においては限界圧縮率で65%以上の優れた冷間鍛造性を有し、冷間鍛造後の軟窒化処理においても、母材の芯部硬さを低下させることなく、むしろ時効効果により硬さを増加させることができる、とされている。
窒化処理には、表面硬度をHVで1000以上まで上昇できるという利点と、一般に600℃以下のα域で行われて相変態を伴わないことから熱処理歪が小さいという利点と、がある。
しかしながら、窒化処理は、900℃以上のγ域で行われる浸炭処理と比較して、N原子の拡散速度が遅く、処理時間が同じ場合、浸炭処理を採用した場合よりも硬化層深さが浅いため曲げ疲労強度を十分に高めるには至らない、という欠点がある。
また、窒化処理に際し、Nと反応して微細な析出物を生成するVを鋼に含有させた場合には、冷間鍛造時に鋼材の軟化のために球状化焼鈍を行うと、Vが鋼中のCと反応してVCとして析出するおそれがある。この場合、鋼材が十分に軟化されないばかりか、冷間鍛造後の窒化処理時に鋼中に十分な固溶Vが残っていないため、窒化処理によって十分な強度向上が見込めないおそれもある。
本発明は、上記事情に鑑みてなされたものであって、冷間鍛造品に代表される冷間加工品に対し、相変態を伴わないため熱処理歪が小さい窒化処理を適用することを前提に、冷間加工において得られた伸長粒組織を、窒化処理後においても維持することにより、優れた疲労強度を有する窒化処理部品を提供することを目的としている。
本発明者らは、冷間加工において得られた伸長粒組織を、窒化処理後においても維持し、ひいては優れた疲労強度を有する窒化処理部品について、鋭意検討を行い、以下の知見を得た。
(1)冷間加工性を確保するために、Si量やMn量とともにC量を低減し、さらに窒化による硬度向上を図るために、Vを含有させることが有利である。
(2)熱間圧延における最終スタンド出側温度を1050℃以上とすることで、含有するVをすべて固溶状態とし、900~500℃の間の平均冷却速度を0.4℃/秒より早くすることで、VCの析出を抑制することが有利である。
(3)冷間加工性を確保するために、所定成分の鋼材を熱間圧延した後、900℃~500℃の間の平均冷却速度を2.0℃/秒より遅くすることで、鋼材の組織、ひいては窒化処理部品の組織をフェライトとパーライトから成る組織とすることが有利である。
(4)鋼材にVを固溶させることにより窒化処理時に再結晶粒を生成することなく、換言すれば冷間加工時に形成した伸長粒を、窒化処理を施してもなお維持し、窒化処理部品においても長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上であるフェライト粒を存在させることが有利である。
(2)熱間圧延における最終スタンド出側温度を1050℃以上とすることで、含有するVをすべて固溶状態とし、900~500℃の間の平均冷却速度を0.4℃/秒より早くすることで、VCの析出を抑制することが有利である。
(3)冷間加工性を確保するために、所定成分の鋼材を熱間圧延した後、900℃~500℃の間の平均冷却速度を2.0℃/秒より遅くすることで、鋼材の組織、ひいては窒化処理部品の組織をフェライトとパーライトから成る組織とすることが有利である。
(4)鋼材にVを固溶させることにより窒化処理時に再結晶粒を生成することなく、換言すれば冷間加工時に形成した伸長粒を、窒化処理を施してもなお維持し、窒化処理部品においても長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上であるフェライト粒を存在させることが有利である。
本発明は、上記の知見に基づいて完成されたものであり、その要旨は、以下に記載するとおりである。
[1]質量%で、C:0.05~0.20%、Si:0.05~0.20%、Mn:0.20~0.50%、P:0.030%以下、S:0.020%以下、及びV:0.10~0.50%を含有し、残部がFe及び不可避的不純物であり、
フェライト及びパーライトから成る組織であり、
長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上であるフェライト粒が、
応力集中予定部の表面からの深さが(ρ×0.09+0.05)mm以下の全領域に存在し、
表面から深さ方向200μmまでの表層部の平均N濃度が、5000ppm以上である、ことを特徴とする窒化処理部品。
但し、ρ:応力集中予定部の曲率半径(mm)である。
フェライト及びパーライトから成る組織であり、
長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上であるフェライト粒が、
応力集中予定部の表面からの深さが(ρ×0.09+0.05)mm以下の全領域に存在し、
表面から深さ方向200μmまでの表層部の平均N濃度が、5000ppm以上である、ことを特徴とする窒化処理部品。
但し、ρ:応力集中予定部の曲率半径(mm)である。
[2]質量%で、Mo:0.10~0.50%、Nb:0.01~0.05%からなる群から選択される少なくとも1種を含有する、上記[1]に記載の窒化処理部品。
[3]質量%で、Cr:0.1~2.0%、Al:0.01~0.1%からなる群から選択される少なくとも1種を含有する、上記[1]又は[2]に記載の窒化処理部品。
[4]質量%で、C:0.05~0.20%、Si:0.05~0.20%、Mn:0.20~0.50%、P:0.030%以下、S:0.020%以下、及びV:0.10~0.50%を含有し、残部がFe及び不可避的不純物である組成の鋼材を、最終スタンド出側温度1050℃以上で熱間圧延し、900℃~500℃の間を0.4~2.0℃/秒で冷却する工程と、
焼鈍を施すことなく、応力集中予定部の表面からの深さが(ρ×0.09+0.05)mm以下の全領域において、フェライト粒の長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上になるように冷間加工を施す工程と、
窒化処理を施す工程と、
を含むことを特徴とする窒化処理部品の製造方法。
但し、ρ:応力集中予定部の曲率半径(mm)である。
焼鈍を施すことなく、応力集中予定部の表面からの深さが(ρ×0.09+0.05)mm以下の全領域において、フェライト粒の長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上になるように冷間加工を施す工程と、
窒化処理を施す工程と、
を含むことを特徴とする窒化処理部品の製造方法。
但し、ρ:応力集中予定部の曲率半径(mm)である。
[5]質量%で、Mo:0.10~0.50%、Nb:0.01~0.05%からなる群から選択される少なくとも1種を含有する、上記[4]に記載の窒化処理部品の製造方法。
[6]質量%で、Cr:0.1~2.0%、Al:0.01~0.1%からなる群から選択される少なくとも1種を含有する、上記[4]又は[5]に記載の窒化処理部品の製造方法。
本発明に係る窒化処理部品では、成分、組織、フェライト粒のアスペクト比、及び表層部での平均N濃度を適正化している。また、本発明に係る窒化処理部品の製造方法では、成分、熱間圧延における最終スタンド出側温度、熱間圧延後の冷却条件、鋼材にVを固溶させた上での冷間加工と窒化処理との施行順を適正化している。その結果、本発明によれば、冷間鍛造品に代表される冷間加工品に対し、相変態を伴わないため熱処理歪が小さい窒化処理を適用することを前提に、冷間加工において得られた伸長粒組織を、窒化処理後においても維持することで、窒化処理部品の優れた疲労強度を実現することができる。
以下に、本発明の実施形態(窒化処理部品、及びその製造方法)を、詳細に説明する。これらの実施形態は、本発明を限定するものではない。また、上記実施形態の構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。さらに、上記実施形態に含まれる各種形態は、当業者が自明の範囲内で任意に組み合わせることができる。
<窒化処理部品>
[化学組成]
本実施形態の窒化処理部品は、以下の化学組成を有する。なお、以下に示す各元素の割合(%)は全て質量%を意味する。
[化学組成]
本実施形態の窒化処理部品は、以下の化学組成を有する。なお、以下に示す各元素の割合(%)は全て質量%を意味する。
(必須成分)
C:0.05~0.20%
炭素(C)は、窒化処理部品の強度(特に芯部の強度)を高める。C含有量が低すぎれば、この効果が得られない。一方、C含有量が高すぎれば、鋼材の強度が高くなりすぎるため、鋼材の冷間加工性が低下する。従って、C含有量は0.05~0.20%である。C含有量の好ましい下限は0.10%であり、好ましい上限は0.15%である。
C:0.05~0.20%
炭素(C)は、窒化処理部品の強度(特に芯部の強度)を高める。C含有量が低すぎれば、この効果が得られない。一方、C含有量が高すぎれば、鋼材の強度が高くなりすぎるため、鋼材の冷間加工性が低下する。従って、C含有量は0.05~0.20%である。C含有量の好ましい下限は0.10%であり、好ましい上限は0.15%である。
Si:0.05~0.20%
シリコン(Si)は、鋼の強度を高める作用を有するが、その含有量が0.20%を超えると、冷間加工性が低下する。一方、量産においてSiの含有量を0.05%未満にすることはコストが嵩む。したがって、Siの含有量は0.05~0.20%である。冷間加工性の観点からは、Siの含有量は0.15%以下とすることが好ましい。
シリコン(Si)は、鋼の強度を高める作用を有するが、その含有量が0.20%を超えると、冷間加工性が低下する。一方、量産においてSiの含有量を0.05%未満にすることはコストが嵩む。したがって、Siの含有量は0.05~0.20%である。冷間加工性の観点からは、Siの含有量は0.15%以下とすることが好ましい。
Mn:0.20~0.50%
マンガン(Mn)は、鋼の強度を高める。さらに、Mnは鋼中のSをMnSとして固定することで、FeSが結晶粒界に生成するのを抑制する。これにより、赤熱脆性が抑制され、熱間延性が高まる。Mn含有量が低すぎれば、これらの効果が得られない。一方、Mn含有量が高すぎれば、冷間加工性が低下する。従って、Mn含有量は0.20~0.50%である。Mn含有量の好ましい下限は0.25%であり、好ましい上限は0.45%である。
マンガン(Mn)は、鋼の強度を高める。さらに、Mnは鋼中のSをMnSとして固定することで、FeSが結晶粒界に生成するのを抑制する。これにより、赤熱脆性が抑制され、熱間延性が高まる。Mn含有量が低すぎれば、これらの効果が得られない。一方、Mn含有量が高すぎれば、冷間加工性が低下する。従って、Mn含有量は0.20~0.50%である。Mn含有量の好ましい下限は0.25%であり、好ましい上限は0.45%である。
P:0.030%以下
燐(P)は不純物である。Pは、粒界に偏析して粒界強度を下げる。その結果、窒化処理部品の曲げ疲労強度が低下する。従って、P含有量は0.030%以下である。P含有量の好ましい上限は0.025%である。P含有量はなるべく低い方がよい。
燐(P)は不純物である。Pは、粒界に偏析して粒界強度を下げる。その結果、窒化処理部品の曲げ疲労強度が低下する。従って、P含有量は0.030%以下である。P含有量の好ましい上限は0.025%である。P含有量はなるべく低い方がよい。
S:0.020%以下
硫黄(S)は、不純物である。S含有量が高すぎれば、Mnによって固定されなかったSがFeSとして粒界に生成することで熱間圧延性が低下するだけでなく、大量に生成されたMnSによって鋼の冷間延性が低下し、冷間加工中に割れが発生するおそれがある。従って、S含有量は0.020%以下である。S含有量の好ましい上限は0.010%である。S含有量はなるべく低い方がよい。
硫黄(S)は、不純物である。S含有量が高すぎれば、Mnによって固定されなかったSがFeSとして粒界に生成することで熱間圧延性が低下するだけでなく、大量に生成されたMnSによって鋼の冷間延性が低下し、冷間加工中に割れが発生するおそれがある。従って、S含有量は0.020%以下である。S含有量の好ましい上限は0.010%である。S含有量はなるべく低い方がよい。
V:0.10~0.50%
バナジウム(V)は、窒化処理により、Nと結合して微細な析出物を形成して、表面近傍の硬度を向上させることで、窒化処理部品の疲労強度を高める。また、Vは鋼組織の回復・再結晶を抑制し、冷間加工によって生じた伸長粒組織を維持する効果を有する。V含有量が低すぎれば、これらの効果が得られない。一方、Vの含有量が0.50%を超えれば、Vの一部がVCとして析出するようになり、上記の効果が飽和し始める。従って、Vの含有量は0.10~0.50%である。V含有量の好ましい下限は0.2%であり、好ましい上限は0.4%である。
バナジウム(V)は、窒化処理により、Nと結合して微細な析出物を形成して、表面近傍の硬度を向上させることで、窒化処理部品の疲労強度を高める。また、Vは鋼組織の回復・再結晶を抑制し、冷間加工によって生じた伸長粒組織を維持する効果を有する。V含有量が低すぎれば、これらの効果が得られない。一方、Vの含有量が0.50%を超えれば、Vの一部がVCとして析出するようになり、上記の効果が飽和し始める。従って、Vの含有量は0.10~0.50%である。V含有量の好ましい下限は0.2%であり、好ましい上限は0.4%である。
上記鋼材の化学組成の残部は鉄(Fe)及び不可避的不純物である。不可避的不純物とは、鋼の原料として利用される鉱石やスクラップ、又は、製造工程の環境等から混入する成分であって、鋼材に意図的に含有させた成分ではない成分を意味する。
(任意成分)
鋼材はさらに、Mo、Nb、Cr、及びAlの少なくとも1種を含有してもよい。
鋼材はさらに、Mo、Nb、Cr、及びAlの少なくとも1種を含有してもよい。
Mo:0.10~0.50%
モリブデン(Mo)は、鋼の強度を高めるとともに、鋼組織の回復・再結晶性を抑制し、冷間加工によって生じた伸長粒組織を維持する機能を有する。しかしながら、Mo含有量が高すぎれば、鋼材の強度が過剰に増大し、冷間加工性が低下する。従って、Mo含有量は0.10~0.50%とすることが好ましい。Mo含有量のさらに好ましい上限は0.40%であり、さらに好ましい下限は0.20%である。
モリブデン(Mo)は、鋼の強度を高めるとともに、鋼組織の回復・再結晶性を抑制し、冷間加工によって生じた伸長粒組織を維持する機能を有する。しかしながら、Mo含有量が高すぎれば、鋼材の強度が過剰に増大し、冷間加工性が低下する。従って、Mo含有量は0.10~0.50%とすることが好ましい。Mo含有量のさらに好ましい上限は0.40%であり、さらに好ましい下限は0.20%である。
Nb:0.01~0.05%
ニオブ(Nb)は、鋼中でN、Cと結合して炭窒化物を形成し、炭窒化物が鋼組織の回復・再結晶性を抑制し、冷間加工によって生じた伸長粒組織を維持する機能を有する。しかしながら、Nb含有量が高すぎれば、素材硬さの過度の上昇を生じて、部品の切削・鍛造等の加工を行うときの加工性が顕著に劣化する。さらに、Nbを過剰に含有すると、1000℃以上の高温域における延性が低下し、連続鋳造、圧延時の歩留まり低下の原因になる。従って、Nb含有量の範囲は0.01~0.05%とすることが好ましい。Nb含有量のさらに好ましい上限は0.04%であり、さらに好ましい下限は0.02%である。
ニオブ(Nb)は、鋼中でN、Cと結合して炭窒化物を形成し、炭窒化物が鋼組織の回復・再結晶性を抑制し、冷間加工によって生じた伸長粒組織を維持する機能を有する。しかしながら、Nb含有量が高すぎれば、素材硬さの過度の上昇を生じて、部品の切削・鍛造等の加工を行うときの加工性が顕著に劣化する。さらに、Nbを過剰に含有すると、1000℃以上の高温域における延性が低下し、連続鋳造、圧延時の歩留まり低下の原因になる。従って、Nb含有量の範囲は0.01~0.05%とすることが好ましい。Nb含有量のさらに好ましい上限は0.04%であり、さらに好ましい下限は0.02%である。
Cr:0.1~2.0%
Crは、窒化処理によりNと結合して微細な析出物を形成し、表面近傍の硬度を向上させることで、窒化処理部品の疲労強度を高める機能を有する。しかしながら、Cr含有量が高すぎれば、窒化処理の際にNがCrと反応してしまい、Nの鋼内部への拡散が阻害され、硬化層深さが浅くなる。従って、Cr含有量の範囲は0.1~2.0%とすることが好ましい。Cr含有量のさらに好ましい上限は1.0%であり、さらに好ましい下限は0.5%である。
Crは、窒化処理によりNと結合して微細な析出物を形成し、表面近傍の硬度を向上させることで、窒化処理部品の疲労強度を高める機能を有する。しかしながら、Cr含有量が高すぎれば、窒化処理の際にNがCrと反応してしまい、Nの鋼内部への拡散が阻害され、硬化層深さが浅くなる。従って、Cr含有量の範囲は0.1~2.0%とすることが好ましい。Cr含有量のさらに好ましい上限は1.0%であり、さらに好ましい下限は0.5%である。
Al:0.01~0.1%
アルミニウム(Al)は、窒化処理時にNと結合して微細な析出物を形成し、表面近傍の硬度を向上させることで、窒化処理部品の疲労強度を高める機能を有する。しかしながら、Al含有量が高すぎれば、硬質で粗大なAl2O3が生成して、鋼の被削性が低下し、さらに疲労強度も低下する。従って、Al含有量は0.01~0.1%とすることが好ましい。Al含有量のさらに好ましい下限は0.02%である。また、Al含有量のさらに好ましい上限は0.05%であり、極めて好ましい上限値は0.04%である。
アルミニウム(Al)は、窒化処理時にNと結合して微細な析出物を形成し、表面近傍の硬度を向上させることで、窒化処理部品の疲労強度を高める機能を有する。しかしながら、Al含有量が高すぎれば、硬質で粗大なAl2O3が生成して、鋼の被削性が低下し、さらに疲労強度も低下する。従って、Al含有量は0.01~0.1%とすることが好ましい。Al含有量のさらに好ましい下限は0.02%である。また、Al含有量のさらに好ましい上限は0.05%であり、極めて好ましい上限値は0.04%である。
[組織]
本実施形態の窒化処理部品においては、その組織が、フェライト及びパーライトから成る。これにより、窒化処理前の鋼材の強度が低いため冷間加工が可能であり、冷間加工によって伸長粒を形成することが可能であるという効果が得られ、ひいては、窒化処理部品の疲労強度を高めることができる。
本実施形態の窒化処理部品においては、その組織が、フェライト及びパーライトから成る。これにより、窒化処理前の鋼材の強度が低いため冷間加工が可能であり、冷間加工によって伸長粒を形成することが可能であるという効果が得られ、ひいては、窒化処理部品の疲労強度を高めることができる。
ここで、当該組織の観察、同定は、以下のように行うことができる。即ち、部品の表面あるいは切断面を鏡面研磨加工した後、ナイタール腐食を行い、光学顕微鏡観察にて白い領域がフェライト、黒と白の縞模様の領域あるいは黒い領域がパーライトであると同定できる。
[フェライト粒のアスペクト比]
本実施形態の窒化処理部品においては、長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上であるフェライト粒が存在する。これは、冷間鍛造に代表される冷間加工が十分に行われている証拠であり、よって、このような窒化処理部品は、当然に、優れた疲労強度を有する。なお、当該アスペクト比は20以上であることが好ましく、100以上であることがさらに好ましい。
本実施形態の窒化処理部品においては、長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上であるフェライト粒が存在する。これは、冷間鍛造に代表される冷間加工が十分に行われている証拠であり、よって、このような窒化処理部品は、当然に、優れた疲労強度を有する。なお、当該アスペクト比は20以上であることが好ましく、100以上であることがさらに好ましい。
ここで、当該フェライト粒のアスペクト比は、以下のように導出することができる。即ち、当該アスペクト比は、例えば、1000倍の光学顕微鏡で測定、算出することができる。なお、アスペクト比が極めて大きいために光学顕微鏡によるアスペクト比の測定が困難な場合は、冷間加工の有限要素法解析によって求めたひずみ成分量からアスペクト比を推定することができる。
[伸長フェライト粒の存在領域]
本実施形態の冷間鍛造では、応力集中予定部の表面からの深さが(ρ×0.09+0.05)mm以下の全領域(ρ:応力集中予定部の曲率半径(mm))において、フェライト粒の長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上になるようにする。これにより、後述する窒化処理後においても好適な所定のフェライト伸長粒が得られることとなる。
本実施形態の冷間鍛造では、応力集中予定部の表面からの深さが(ρ×0.09+0.05)mm以下の全領域(ρ:応力集中予定部の曲率半径(mm))において、フェライト粒の長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上になるようにする。これにより、後述する窒化処理後においても好適な所定のフェライト伸長粒が得られることとなる。
なお、応力集中予定部の表面からのさ(ρ×0.09+0.05)mmの導出方法については、以下のとおりである。
即ち、窒化処理部品の応力集中予定部表面での曲げ応力を基準とし、その0.8倍の高い曲げ応力が発生する位置における、表面からの深さdは、応力集中予定部の曲率半径ρの大小によって変化し、ρが大きいほど深く、ρが小さいほど浅くなる。そこで、本発明者らは、高い曲げ応力が発生する領域(深さd)と、応力集中予定部の曲率半径ρと、の関係を有限要素法解析により推定した。解析条件は以下のとおりである。
即ち、窒化処理部品の応力集中予定部表面での曲げ応力を基準とし、その0.8倍の高い曲げ応力が発生する位置における、表面からの深さdは、応力集中予定部の曲率半径ρの大小によって変化し、ρが大きいほど深く、ρが小さいほど浅くなる。そこで、本発明者らは、高い曲げ応力が発生する領域(深さd)と、応力集中予定部の曲率半径ρと、の関係を有限要素法解析により推定した。解析条件は以下のとおりである。
図1は、矩形歯形に発生する曲げ応力を推定するための有限要素法解析モデルを示す図である。同図に示すように、解析モデルは平面ひずみ状態の二次元モデルである。このモデルでは、幅10mm、高さ10mmの矩形歯形における2つの根元角部を曲率半径ρの円弧で滑らかに繋ぎ、縦弾性係数213GPa、ポアソン比0.3の弾性体として、四角形要素に分割したモデルを採用した。また、底辺を完全に固定し、矩形歯形における右上角部に対して左方向に0.05mmの変位を与えた。曲率半径ρは0.3mm、1mm、3mmの3水準とした。
解析の結果、曲率半径ρが3mmの場合は高い曲げ応力が発生する深さdが0.321mmとなった。同様に、曲率半径ρが1mmの場合はdが0.145mmとなり、曲率半径ρが0.3mmの場合はdが0.075mmとなった。次いで、曲率半径ρと深さdとの関係を最小二乗法により直線近似すると、以下の式(1)が得られた。
d=0.0904×ρ+0.0507 ・・・(1)
従って、本実施形態では、上記式(1)を基に、アスペクト比が4.5以上の伸長粒が形成されている領域は、応力集中予定部の表面からの深さが(ρ×0.09+0.05)mm以下の全領域とした。
d=0.09×ρ+0.05 ・・・(2)
d=0.0904×ρ+0.0507 ・・・(1)
従って、本実施形態では、上記式(1)を基に、アスペクト比が4.5以上の伸長粒が形成されている領域は、応力集中予定部の表面からの深さが(ρ×0.09+0.05)mm以下の全領域とした。
d=0.09×ρ+0.05 ・・・(2)
[表層部の平均N濃度]
本実施形態の窒化処理部品においては、表層部の平均N濃度が5000ppm以上である。これにより、多量の窒化物が析出して表層部の硬さが向上するという効果が得られ、ひいては、窒化処理部品の疲労強度を高めることができる。
本実施形態の窒化処理部品においては、表層部の平均N濃度が5000ppm以上である。これにより、多量の窒化物が析出して表層部の硬さが向上するという効果が得られ、ひいては、窒化処理部品の疲労強度を高めることができる。
ここで、表層部とは、窒化処理部品の表面から深さ方向200μmまでの範囲の領域の部分をいう。また、当該平均N濃度の測定方法は、以下のように行うことができる。即ち、まず、部品を表面に対して垂直に切断して測定用サンプルを採取し、観察表面に対して鏡面研磨加工を行う。その後、表面から深さ方向200μmのまで範囲(つまり表層部)におけるN濃度を、深さ方向に0.5μmピッチで電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyser)により測定し、平均N濃度を算出する。
以上のように、所定の化学組成を有し、組織、フェライト粒のアスペクト比、伸長フェライト粒の存在領域及び表層部の平均N濃度が、いずれも所定の範囲を満たす、本実施形態の窒化処理部品によれば、上述のような各効果が相まって、優れた疲労強度を実現することができる。
<窒化処理部品の製造方法>
本実施形態の窒化処理部品の製造方法は、少なくとも、熱間圧延工程と、冷間加工工程と、窒化処理工程と、を含む。
本実施形態の窒化処理部品の製造方法は、少なくとも、熱間圧延工程と、冷間加工工程と、窒化処理工程と、を含む。
[熱間圧延工程]
上述した窒化処理部品の化学組成に相当する化学組成に調製した鋳鋼から鋼材を得る。そして、この鋼材を熱間圧延に供する。
上述した窒化処理部品の化学組成に相当する化学組成に調製した鋳鋼から鋼材を得る。そして、この鋼材を熱間圧延に供する。
(鋼材の最終スタンド出側温度)
熱間圧延においては、鋼材の最終スタンド出側温度を1050℃以上とする。
これにより、含有するVをすべて固溶状態とする。
熱間圧延においては、鋼材の最終スタンド出側温度を1050℃以上とする。
これにより、含有するVをすべて固溶状態とする。
(熱間圧延後の冷却速度)
熱間圧延後、直ちに大気冷却又は空冷する。具体的には、900~500℃の間の平均冷却速度を0.4℃/秒以上とすることでVCの析出を抑制する。また、900℃~500℃の間の平均冷却速度を2.0℃/秒以下とすることで、ベイナイトの生成を防止することができる。このため、この冷却速度条件により冷却された鋼材の組織、ひいては窒化処理部品における組織が、フェライトとパーライトから成る組織となる。
熱間圧延後、直ちに大気冷却又は空冷する。具体的には、900~500℃の間の平均冷却速度を0.4℃/秒以上とすることでVCの析出を抑制する。また、900℃~500℃の間の平均冷却速度を2.0℃/秒以下とすることで、ベイナイトの生成を防止することができる。このため、この冷却速度条件により冷却された鋼材の組織、ひいては窒化処理部品における組織が、フェライトとパーライトから成る組織となる。
[冷間加工工程]
上述のとおり熱間圧延した鋼材に、所定の潤滑被膜を形成して冷間加工に供する。なお、以下では、冷間加工のうち、特に、冷間鍛造を採用した例について述べる。
上述のとおり熱間圧延した鋼材に、所定の潤滑被膜を形成して冷間加工に供する。なお、以下では、冷間加工のうち、特に、冷間鍛造を採用した例について述べる。
(焼鈍の省略)
冷間鍛造時の変形抵抗を下げる目的で事前に焼鈍を行った場合には、VCが析出する。このVCは、本実施形態が意図する窒化処理時の固溶Vによる伸長粒の回復・再結晶の抑制効果を低減させてしまう。以上の理由により、本実施形態における冷間鍛造の前には、焼鈍を施さない。
冷間鍛造時の変形抵抗を下げる目的で事前に焼鈍を行った場合には、VCが析出する。このVCは、本実施形態が意図する窒化処理時の固溶Vによる伸長粒の回復・再結晶の抑制効果を低減させてしまう。以上の理由により、本実施形態における冷間鍛造の前には、焼鈍を施さない。
(冷間鍛造)
本実施形態では、部品を冷間鍛造で成形する。冷間鍛造は、実際に窒化処理部品が使用される際に応力が集中する、応力集中予定部の加工度を高めるために行う。
本実施形態では、部品を冷間鍛造で成形する。冷間鍛造は、実際に窒化処理部品が使用される際に応力が集中する、応力集中予定部の加工度を高めるために行う。
ここで、応力集中予定部とは、窒化処理部品のうち、稼働中に大きな応力がかかると予定される部分であり、一般には曲率の小さな部位である。例えば、ボス付きのフランジにおけるボスとフランジとの境、歯車の歯底及びこれらと同様に応力が集中する部位が、応力集中予定部として挙げられる。
本実施形態の冷間鍛造では、応力集中予定部の表面からの深さが(ρ×0.09+0.05)mm以下の全領域(ρ:応力集中予定部の曲率半径(mm))において、フェライト粒の長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上になるようにする。これにより、後述する窒化処理後においても好適な所定のフェライト伸長粒が得られることとなる。
[窒化処理工程]
上述のとおり冷間加工(冷間鍛造)して得た部品を、窒化処理に供する。
上述のとおり冷間加工(冷間鍛造)して得た部品を、窒化処理に供する。
本実施形態における窒化処理は、窒化処理部品の表面から深さ方向200μmまでの表層部の平均N濃度が、5000ppm以上となる処理であれば、いかなる条件の処理であってもよい。本実施形態では、上述のとおり、鋼材に所定量のVを固溶させていることから、このように窒化処理を施しても、再結晶粒を形成せずに、冷間加工によって形成された伸長粒を維持し、窒化処理部品においても長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上であるフェライト粒を存在させることができる。
以上のように、所定の化学組成を選択し、熱間圧延後の冷却条件、熱間圧延における最終スタンド出側温度、鋼材にVを固溶させた上での冷間加工と窒化処理との施行順を適正化した、本実施形態の窒化処理部品の製造方法によれば、上述のような各効果が相まって、優れた疲労強度を有する窒化処理部品を得ることができる。
<窒化処理部品の作製>
[熱間圧延]
表1に示すa~sの化学組成に調製した鋳鋼から鋼材a~sを形成して、熱間圧延によってφ60mmの熱延棒鋼a~sを得た。なお、熱間圧延における最終スタンド出側温度は表1に併記のとおりとした。
[熱間圧延]
表1に示すa~sの化学組成に調製した鋳鋼から鋼材a~sを形成して、熱間圧延によってφ60mmの熱延棒鋼a~sを得た。なお、熱間圧延における最終スタンド出側温度は表1に併記のとおりとした。
熱間圧延終了後、熱延棒鋼a~sのそれぞれについて、ビッカース硬さ(HV)を測定した。その結果を表1に併記する。
表1から明らかなように、試験片a~h及びl~sについては、いずれも圧延後硬さが170HV未満と低く、冷間加工性に優れていることが判る。逆に、試験片i~kについては、いずれも圧延後の硬さが170HV以上と高く、冷間加工性に劣ることが判る。
[冷間鍛造]
次いで、各熱延棒鋼の所定箇所(応力集中予定部)に、ノッチを形成した。熱延棒鋼a~o及び熱延棒鋼q~sについては、冷間鍛造によりノッチを形成する一方、熱延棒鋼pについては切削加工によりノッチを形成した。
次いで、各熱延棒鋼の所定箇所(応力集中予定部)に、ノッチを形成した。熱延棒鋼a~o及び熱延棒鋼q~sについては、冷間鍛造によりノッチを形成する一方、熱延棒鋼pについては切削加工によりノッチを形成した。
熱延棒鋼a~o及び熱延棒鋼q~sにノッチを付与する場合は、まず各熱延棒鋼のそれぞれから粗形状の試験片を切り出し、所定の潤滑被膜を形成した。その後、各試験片に、幅4mm、高さ10mm、奥行き40mmの板状パンチであって、下面の角部を曲率半径2mmでR面取りした板状パンチ、を押し込む冷間鍛造を施した。なお、板状パンチの押込量は、表2に併記のとおりとした。
このようにして、試験片a~o及び試験片q~sに曲率半径2mmのノッチを付与した後、ノッチを基準とした仕上げ切削加工を施し、ノッチの形成を終了した。なお、試験片rについては、アスペクト比4.5以上の伸長粒が形成されている領域の深さを0.15mmにするために、切削加工で0.5mm深くしたノッチを基準として仕上げ切削加工を行った。また、試験片sについては、アスペクト比4.5以上の伸長粒が形成されている領域の深さを0.25mmにするために、切削加工で0.4mm深くしたノッチを基準として仕上げ切削加工を行った。なお、ノッチ底は後述の4点曲げ疲労試験における応力集中部となる。ノッチの曲率半径が2mmであることから、最表面の曲げ応力を基準として、その0.8倍以上の高い曲げ応力が発生する深さdは0.23mmとなる。
これに対し、熱延棒鋼pにノッチを付与する場合は、熱延棒鋼pから粗形状の試験片を切り出し、常温下で切削加工を施した。
[窒化処理]
このようにノッチが形成された試験片a~sについて窒化処理を施した。窒化処理は、何れも、570℃で5時間施し、窒化ポテンシャルKnを0.6とし、90℃油焼き入れとした。
このようにノッチが形成された試験片a~sについて窒化処理を施した。窒化処理は、何れも、570℃で5時間施し、窒化ポテンシャルKnを0.6とし、90℃油焼き入れとした。
<窒化処理部品の性能評価>
以上のようにして得られた窒化処理部品について、(I)フェライト及びパーライトから成る組織であるか否か、(II)長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上であるフェライト粒がノッチ底の表面から深さ0.23mmの全領域に存在するか否か、(III)表面から深さ方向200μmまでの表層部の平均N濃度(ppm)、のそれぞれについて調査するとともに、(IV)最大荷重12kNでの4点曲げ疲労試験寿命(回)について調査した。これらの結果を表3に示す。
以上のようにして得られた窒化処理部品について、(I)フェライト及びパーライトから成る組織であるか否か、(II)長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上であるフェライト粒がノッチ底の表面から深さ0.23mmの全領域に存在するか否か、(III)表面から深さ方向200μmまでの表層部の平均N濃度(ppm)、のそれぞれについて調査するとともに、(IV)最大荷重12kNでの4点曲げ疲労試験寿命(回)について調査した。これらの結果を表3に示す。
表層部における伸長粒の平均アスペクト比については、表層部において任意に切断面を切り出し、この切断面上で見ることのできるフェライト粒を20点取りだして、当該フェライト粒のアスペクト比を測定した上で、それらの平均値を算出した。なお、試料番号a~l、n、oについては、光学顕微鏡によるアスペクト比の測定が困難であったため、有限要素法解析によって求めたひずみ量からアスペクト比を算出した。
また、4点曲げ疲労試験寿命については、以下のように測定した。図2は、4点曲げ疲労試験片の形状と、4試験点曲げ疲労試験における荷重負荷を示す図である。同図に示すように、13mm角断面×100mm長の試験片を、上述のとおり冷間鍛造と切削(試料番号a~o、q~s)又は切削(試料番号p)で形成した。次いで、試験片長さ中点に形成した曲率半径2mmのノッチを挟んで、80mm位置に下側支点、及び20mm位置に上側支点を配置して、上側支点に繰り返し荷重を負荷した。試験機は、島津製作所製10tonfサーボパルサーを用いて、10Hzで12kNの荷重を繰り返しかけ、疲労試験寿命(試験片の破断に要した繰り返し数)を調べた。このとき、最小荷重は、最大荷重12kNの5%にあたる0.6kNに設定した。
表3から明らかなとおり、上記項目(I)~(III)のいずれについても良好な結果が得られた、試料番号a~k、sについては、いずれも、上記項目(IV)の最大荷重12kNでの4点曲げ疲労試験寿命(回)について、優れた結果(1900回以上)が得られていることが判る。これに対し、上記項目(I)~(III)の少なくともいずれかについて、良好な結果が得られていない試料番号l~rについては、いずれも、上記項目(IV)の最大荷重12kNでの4点曲げ疲労試験寿命(回)について、優れた結果が得られていないことが判る。
Claims (6)
- 質量%で、C:0.05~0.20%、Si:0.05~0.20%、Mn:0.20~0.50%、P:0.030%以下、S:0.020%以下、及びV:0.10~0.50%を含有し、残部がFe及び不可避的不純物であり、
フェライト及びパーライトから成る組織であり、
長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上であるフェライト粒が、
応力集中予定部の表面からの深さが(ρ×0.09+0.05)mm以下の全領域に存在し、
表面から深さ方向200μmまでの表層部の平均N濃度が5000ppm以上である、ことを特徴とする窒化処理部品。
但し、ρ:応力集中予定部の曲率半径(mm)である。 - 質量%で、Mo:0.10~0.50%、Nb:0.01~0.05%からなる群から選択される少なくとも1種を含有する、請求項1に記載の窒化処理部品。
- 質量%で、Cr:0.1~2.0%、Al:0.01~0.1%からなる群から選択される少なくとも1種を含有する、請求項1又は2に記載の窒化処理部品。
- 質量%で、C:0.05~0.20%、Si:0.05~0.20%、Mn:0.20~0.50%、P:0.030%以下、S:0.020%以下、及びV:0.10~0.50%を含有し、残部がFe及び不可避的不純物である組成の鋼材を、最終スタンド出側温度1050℃以上で熱間圧延し、900℃~500℃の間を0.4~2.0℃/秒で冷却する工程と、
焼鈍を施すことなく、応力集中予定部の表面からの深さが(ρ×0.09+0.05)mm以下の全領域において、フェライト粒の長軸方向と短軸方向の長さの比であるアスペクト比が4.5以上になるように冷間加工を施す工程と、
窒化処理を施す工程と、
を含むことを特徴とする窒化処理部品の製造方法。
但し、ρ:応力集中予定部の曲率半径(mm)である。 - 質量%で、Mo:0.10~0.50%、Nb:0.01~0.05%からなる群から選択される少なくとも1種を含有する、請求項4に記載の窒化処理部品の製造方法。
- 質量%で、Cr:0.1~2.0%、Al:0.01~0.1%からなる群から選択される少なくとも1種を含有する、請求項4又は5に記載の窒化処理部品の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18754123.0A EP3584343B1 (en) | 2017-02-20 | 2018-02-20 | Nitrided part and method of producing same |
US16/486,999 US10837097B2 (en) | 2017-02-20 | 2018-02-20 | Nitrided part and method of producing same |
JP2019500191A JP6822548B2 (ja) | 2017-02-20 | 2018-02-20 | 窒化処理部品及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-029144 | 2017-02-20 | ||
JP2017029144 | 2017-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018151321A1 true WO2018151321A1 (ja) | 2018-08-23 |
Family
ID=63170325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/006051 WO2018151321A1 (ja) | 2017-02-20 | 2018-02-20 | 窒化処理部品及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10837097B2 (ja) |
EP (1) | EP3584343B1 (ja) |
JP (1) | JP6822548B2 (ja) |
WO (1) | WO2018151321A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09279295A (ja) | 1996-04-16 | 1997-10-28 | Nippon Steel Corp | 冷間鍛造性に優れた軟窒化用鋼 |
JP2012036495A (ja) * | 2010-07-16 | 2012-02-23 | Sumitomo Metal Ind Ltd | 窒化処理機械部品の製造方法 |
WO2012105405A1 (ja) * | 2011-02-01 | 2012-08-09 | 住友金属工業株式会社 | 窒化用鋼および窒化部品 |
JP2013019001A (ja) * | 2011-07-07 | 2013-01-31 | Nippon Steel & Sumitomo Metal Corp | 冷鍛窒化用鋼材 |
WO2013140869A1 (ja) * | 2012-03-22 | 2013-09-26 | 新日鐵住金株式会社 | 窒化用鋼材および窒化部品 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05171347A (ja) * | 1991-12-18 | 1993-07-09 | Aichi Steel Works Ltd | 冷間鍛造性に優れた軟窒化用鋼 |
WO2010147224A1 (ja) * | 2009-06-17 | 2010-12-23 | 新日本製鐵株式会社 | 窒化用鋼及び窒化処理部品 |
JP5521970B2 (ja) * | 2010-10-20 | 2014-06-18 | 新日鐵住金株式会社 | 冷鍛窒化用鋼、冷鍛窒化用鋼材および冷鍛窒化部品 |
JP5768734B2 (ja) * | 2012-02-02 | 2015-08-26 | 新日鐵住金株式会社 | 冷鍛窒化用圧延鋼材 |
-
2018
- 2018-02-20 US US16/486,999 patent/US10837097B2/en active Active
- 2018-02-20 WO PCT/JP2018/006051 patent/WO2018151321A1/ja active Application Filing
- 2018-02-20 JP JP2019500191A patent/JP6822548B2/ja active Active
- 2018-02-20 EP EP18754123.0A patent/EP3584343B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09279295A (ja) | 1996-04-16 | 1997-10-28 | Nippon Steel Corp | 冷間鍛造性に優れた軟窒化用鋼 |
JP2012036495A (ja) * | 2010-07-16 | 2012-02-23 | Sumitomo Metal Ind Ltd | 窒化処理機械部品の製造方法 |
WO2012105405A1 (ja) * | 2011-02-01 | 2012-08-09 | 住友金属工業株式会社 | 窒化用鋼および窒化部品 |
JP2013019001A (ja) * | 2011-07-07 | 2013-01-31 | Nippon Steel & Sumitomo Metal Corp | 冷鍛窒化用鋼材 |
WO2013140869A1 (ja) * | 2012-03-22 | 2013-09-26 | 新日鐵住金株式会社 | 窒化用鋼材および窒化部品 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3584343A4 |
Also Published As
Publication number | Publication date |
---|---|
US10837097B2 (en) | 2020-11-17 |
JP6822548B2 (ja) | 2021-01-27 |
EP3584343B1 (en) | 2024-09-25 |
EP3584343A4 (en) | 2020-11-11 |
JPWO2018151321A1 (ja) | 2019-11-21 |
EP3584343A1 (en) | 2019-12-25 |
US20200024721A1 (en) | 2020-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7833363B2 (en) | Method for producing high-strength forged parts having high reduction of area | |
JP5927868B2 (ja) | 冷間鍛造性に優れた浸炭用鋼およびその製造方法 | |
JP5635316B2 (ja) | 疲労強度に優れた歯車およびその製造方法 | |
JP4729135B2 (ja) | 窒化用鋼及び窒化処理部品 | |
JP2011153364A (ja) | クランクシャフトおよびその製造方法 | |
JP6468365B2 (ja) | 鋼、浸炭鋼部品、及び浸炭鋼部品の製造方法 | |
JP6468366B2 (ja) | 鋼、浸炭鋼部品、及び浸炭鋼部品の製造方法 | |
JP2010189697A (ja) | クランクシャフトおよびその製造方法 | |
EP3272896B1 (en) | Age-hardenable steel, and method for manufacturing components using age-hardenable steel | |
JPH10306343A (ja) | 冷間鍛造性及び耐ピッチング性に優れた軟窒化用鋼 | |
JP5858422B2 (ja) | 鉄系材料およびその製造方法 | |
JP4488228B2 (ja) | 高周波焼入れ用鋼材 | |
JP5999751B2 (ja) | 鉄系材料の製造方法 | |
JP2023142664A (ja) | 芯部硬さに優れた窒化用鋼 | |
WO2018151321A1 (ja) | 窒化処理部品及びその製造方法 | |
JP4507149B2 (ja) | 高疲労強度を有する動力伝達ベルト用マルエージング鋼ならびにそれを用いた動力伝達ベルト用マルエージング鋼帯 | |
JP7323791B2 (ja) | 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法 | |
RU2254394C1 (ru) | Высокопрочная аустенитная нержавеющая сталь и способ окончательной упрочняющей обработки изделий из нее | |
CN108350550A (zh) | 剪切加工性优异的高强度冷轧钢板及其制造方法 | |
JP5582296B2 (ja) | 鉄系材料およびその製造方法 | |
JP7295417B2 (ja) | 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法 | |
JP7167482B2 (ja) | 窒化用非調質鋼およびクランクシャフト | |
WO2024171976A1 (ja) | 冷鍛性と窒化性に優れる冷間鍛造窒化用鋼及びこれを用いた冷間鍛造窒化部品 | |
JPH10306342A (ja) | 冷間加工性に優れた肌焼鋼 | |
JP2004332018A (ja) | 高強度軟窒化鋼およびそれを材料とするクランクシャフト |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18754123 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019500191 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018754123 Country of ref document: EP |