WO2018148992A1 - 荫罩组件及荫罩组件的重复使用方法 - Google Patents

荫罩组件及荫罩组件的重复使用方法 Download PDF

Info

Publication number
WO2018148992A1
WO2018148992A1 PCT/CN2017/075461 CN2017075461W WO2018148992A1 WO 2018148992 A1 WO2018148992 A1 WO 2018148992A1 CN 2017075461 W CN2017075461 W CN 2017075461W WO 2018148992 A1 WO2018148992 A1 WO 2018148992A1
Authority
WO
WIPO (PCT)
Prior art keywords
shadow mask
area
wall
region
tiled
Prior art date
Application number
PCT/CN2017/075461
Other languages
English (en)
French (fr)
Inventor
曹绪文
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/526,292 priority Critical patent/US20180291494A1/en
Publication of WO2018148992A1 publication Critical patent/WO2018148992A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/34Masking

Definitions

  • the present application relates to the field of liquid crystal manufacturing technologies, and in particular, to a method for repeatedly using a shadow mask assembly and a shadow mask assembly.
  • the production of display panels for active-matrix organic light-emitting diodes or active-matrix organic light-emitting diode (AMOLED) displays requires a fine metal mask with a very small thickness and a small thermal expansion coefficient (Fine Metal) Mask, FMM) is used as a shadow mask film (or mask) to vapor-deposit the organic light-emitting body in the panel of the display panel.
  • FMM Fluor Metal
  • the thickness of the shadow mask is only 30 to 200 ⁇ m, which is thin and brittle.
  • the shadow mask diaphragm is usually laser welded to the metal frame to stretch the shadow mask film to form a shadow mask assembly.
  • the mask mask has a large area.
  • the shadow mask has been well stretched during soldering, after many uses, the shadow mask is still affected by gravity and sags, causing masking during evaporation. There is a certain degree of separation from the vapor-deposited surface, so that the accuracy of vapor deposition is lowered.
  • the shadow mask diaphragm is generally removed and the frame is recycled, and the new shadow mask diaphragm is welded again to the frame to form a new shade.
  • the cover assembly continues to be used.
  • the shadow mask film is laminated on the frame body, and the surface on which the frame body and the shadow mask film are welded is a plane parallel to the shadow mask film, and needs to be polished each time a new shadow mask film is replaced.
  • the solder joint of the original shadow mask is welded on the polished frame, the polishing effect is not good, the flatness of the surface of the solder joint is not good, and the more the polishing times, the more obvious the influence, thereby affecting the flatness of the shadow mask, resulting in the need for steaming.
  • the alignment of the plated AMOLED glass substrate and the shadow mask film is inaccurate, thereby reducing the yield of the AMOLED glass substrate. Increase production costs.
  • the present application provides a method for reusing a shadow mask assembly and a shadow mask assembly, which can improve the yield of the AMOLED glass substrate for vapor deposition and reduce the production cost.
  • a shadow mask assembly comprising a shadow mask film and a frame, the frame body comprising opposite outer and inner walls and a bonding surface connecting the outer wall and the inner wall, the bonding surface Adhering to the shadow mask film, the bonding surface includes a non-coplanar welding area and a tiled area, the welding area is located between the tiled area and the outer wall, and the frame is disposed through Fixing an edge of the shadow mask film at a solder joint of the soldering region, the tiled region being located between the soldering region and the inner wall for supporting the shadow mask film and holding the shadow mask
  • the diaphragm is flat.
  • the shadow mask film comprises a working portion and a non-working portion connected to an edge of the working portion, the non-working portion is fitted to the bonding surface, and the non-working portion comprises a fixing portion and a transition portion,
  • the transition portion is located between the working portion and the fixing portion, the fixing portion is welded to the welding area of the frame body, and the working portion is kept in a tight state, and the transition portion is fitted to the flat portion
  • the area is paved to maintain the flatness of the working portion, and a side surface of the working portion facing away from the frame is used to conform to the glass substrate of the display device to evaporate the glass substrate.
  • the frame further includes a bottom surface connecting the outer wall and the inner wall opposite to the tiled area, and the welded area is bent toward the bottom surface with respect to the tiled area.
  • cross section of the welding zone is an arc connecting the tiled area and the outer wall.
  • the sidewall is also provided with the solder joint, and the fixing portion is fixed to the frame through the solder joint of the sidewall.
  • cross section of the sidewall is the same arc as the curvature of the weld region, and the cross section of the weld region forms a continuous arc with the cross section of the sidewall to be connected to the tile region and the bottom surface. between.
  • the bottom surface is also provided with the solder joint, and the fixing portion is fixed to the frame body through the solder joint of the bottom surface.
  • a method of reusing a shadow mask assembly comprising:
  • the frame body comprising opposite outer and inner walls and connecting the outer a bonding surface of the wall and the inner wall, the bonding surface comprising a non-coplanar welding area and a tiled area, the welding area being located between the tiled area and the outer wall, the tiled area being located Between the weld zone and the inner wall,
  • the frame is welded to the edge of the shadow mask sheet by the soldering area, and a solder joint is formed in the soldering area, and the frame body maintains the shadow mask film as a plane through the tiled area ;
  • the shadow mask film is removed from the frame, and the edge of the other shadow mask film is welded to the welding area to form a new solder joint;
  • the frame further includes a bottom surface connecting the outer wall and the inner wall opposite to the tiled area, and the welded area is bent toward the bottom surface with respect to the tiled area.
  • cross section of the welding zone is an arc connecting the tiled area and the outer wall.
  • the sidewall is also provided with the solder joint, and the fixing portion is fixed to the frame through the solder joint of the sidewall.
  • cross section of the sidewall is the same arc as the curvature of the weld region, and the cross section of the weld region forms a continuous arc with the cross section of the sidewall to be connected to the tile region and the bottom surface. between.
  • the bottom surface is also provided with the solder joint, and the fixing portion is fixed to the frame body through the solder joint of the bottom surface.
  • the present application provides a method for repetitive use of a shadow mask assembly and a shadow mask assembly, the bonding surface being divided into a soldering area for soldering the shadow mask film and a tiled area of the developed shadow mask film, and the soldering area and the unfolding area Non-coplanar, the welding area is fixed and stretched the shadow mask film, the shadow mask film is attached to the tiling area to keep the shadow mask film flat, and the original shadow mask film remains in the welding area when the new shadow mask film is replaced
  • the solder joint does not affect the flatness of the shadow mask diaphragm, thereby improving the yield of the AMOLED glass substrate for evaporation; after replacing the shadow mask diaphragm multiple times, all the solder joints in the polished soldering area are polished at one time, and the solder joint is lowered.
  • the number of polishing increases the flatness of the shadow mask film, thereby improving the yield of the AMOLED glass substrate for vapor deposition and reducing the production cost.
  • FIG. 1 is a schematic cross-sectional view of a shadow mask assembly according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic cross-sectional view of a shadow mask assembly according to Embodiment 2 of the present application.
  • FIG. 3 is a schematic cross-sectional view of a shadow mask assembly according to Embodiment 3 of the present application.
  • FIG. 4 is a schematic cross-sectional view of a shadow mask assembly according to Embodiment 4 of the present application.
  • FIG. 5 to FIG. 9 are schematic diagrams showing steps of a method for repeatedly using a shadow mask assembly according to an embodiment of the present application.
  • FIG. 1 is a schematic cross-sectional view of a shadow mask assembly according to Embodiment 1 of the present application.
  • the shadow mask assembly includes a shadow mask 10 and a frame 20, and the shadow mask 10 is connected to the frame 20 by welding the edges to the surface of the frame 20, wherein the frame 20 has a high strength.
  • the shadow mask 10 is stretched and stretched by a uniform tension directed to the periphery.
  • the shadow mask 10 has a rectangular shape
  • the frame 20 is a rectangular frame matching the size of the shadow mask 10.
  • the four frames of the frame 20 respectively correspond to the edges of the four sides of the shadow mask 10.
  • the shadow mask sheet 10 is stretched in the direction of the four sides, and the shadow mask sheet 10 is spread flat to form a tight flat surface.
  • the method of fixing the edge of the shadow mask sheet 10 by the frame and stretching the shadow mask sheet 10 from the edge of the shadow mask sheet 10 not only completely expands the shadow mask sheet 10 but also keeps the surface of the shadow mask sheet 10 flat, also The contact area between the frame body 20 and the shadow mask film 10 is small, and the influence of the flatness of the contact surface of the frame body 20 and the shadow mask film 10 on the flatness of the shadow mask film 10 is reduced, thereby facilitating the shadow mask film. 10 alignment and bonding with the glass substrate of AMOLED, improving the yield of the AMOLED glass substrate and reducing the production cost.
  • the frame body 20 includes an opposite outer wall 204 and an inner wall 202 and a bonding surface 206 connecting the outer wall 204 and the inner wall 202.
  • the outer wall 204 is a surface of the frame body 20 facing away from the center of the frame body 20
  • the inner wall 202 is a surface of the frame body 20 facing the center side of the frame body 20.
  • the bonding surface 206 is attached to the shadow mask film 10, and the bonding surface 206 includes a non-coplanar soldering area 2064 and a tiled area 2062. In a preferred embodiment, the tiled area 2062 is perpendicular to the inner wall 202. flat.
  • the welded region 2064 is also planar, the welded region 2064 is inclined to the tiled region 2062, and when the welded region 2064 is curved, the welded region 2064 and the tile are removed except for the joint of the welded region 2064 and the tiled region 2062.
  • the regions 2062 do not intersect, and it can be understood that the tensile or tensile direction applied by the solder joints 30 of the solder regions 2064 to the shadow mask 10 is parallel to the surface of the solder regions 2064 so as not to be parallel with the direction in which the shadow mask 10 is deployed.
  • the soldering region 2064 is located between the tiled region 2062 and the outer wall 204.
  • the frame 20 secures the edge of the shadow mask film 10 by the solder joint 30 disposed on the soldering region 2064.
  • the tiled region 2062 is located between the soldering region 2064 and the inner wall 202. Used to unfold and flatten the shadow mask 10. Further, the tiling area 2062 functions to support the edge of the shadow mask 10 for assisting in maintaining the flatness of the shadow mask 10 and preventing deformation of the shadow mask 10 when it is attached to the glass substrate of the AMOLED;
  • the shadow mask 10 is stretched and unfolded by the solder joint 30 of the soldering region 2064 and bonded to the tiled region 2062.
  • the tile region 2062 applies the tensile force of the solder joint 30 to the shadow mask film 10 parallel to the surface of the soldering region 2064. Or the tension is converted to be parallel to the direction in which the shadow mask 10 is unfolded.
  • the bonding surface 206 is divided into a soldering region 2064 for soldering the shadow mask film 10 and a tiled region 2062 of the developed shadow mask film 10, and the soldering region 2064 and the unfolding region are not coplanar, and the soldering region 2064 fixes and stretches the shadow mask film.
  • the film 10, the shadow mask 10 is attached to the tiled area 2062 to keep the shadow mask 10 flat.
  • the solder mask 30 remaining in the soldering area 2064 of the original shadow mask 10 is replaced.
  • the flatness of the shadow mask film 10 is not affected, thereby improving the yield of the AMOLED glass substrate for vapor deposition; after the shadow mask film 10 is replaced multiple times, all the solder joints 30 of the polished soldering region 2064 are polished at one time, which is lowered. The number of times of solder joint 30 polishing improves the flatness of the shadow mask film 10, thereby improving the yield of the AMOLED glass substrate for vapor deposition and reducing the production cost.
  • the soldered region 2064 and the tiled region 2062 are not coplanar, and the soldered region 2064 is not coplanar with the plane in which the shadow mask 10 is unfolded, the height of the solder joint 30 itself of the soldered region 2064 does not affect the shadow mask film.
  • the sheet 10 is used for flatness of the flat surface of the glass substrate, and the gap between the shadow mask film 10 and the glass substrate is avoided, which causes the phenomenon of pixel shading to occur when the glass substrate is vapor-deposited, thereby improving the goodness of the AMOLED glass substrate. rate.
  • the shadow mask 10 includes a working portion 102 and a non-working portion 104 connected to the edge of the working portion 102.
  • the non-working portion 104 is fitted to the bonding surface 206, and the non-working portion 104 includes a fixed portion.
  • the transition portion 1044 is located between the working portion 102 and the fixed portion 1042, the fixed portion 1042 is welded to the welded portion 2064 of the frame 20, and the working portion 102 is stretched to flatten and tighten the working portion 102, keeping The working portion 102 is in a tight state, the transition portion 1044 is fitted to the tiled area 2062 to maintain the flatness of the working portion 102, and the side surface of the working portion 102 facing away from the frame 20 is used to fit the glass substrate of the display device to steam Plated glass substrate.
  • the non-working portion 104 serves only as the welding frame 20 and stretches the working portion 102, and does not serve as a laminated glass substrate, which avoids the influence of the welded region 2064 on the flatness of the working portion 102, and the vapor deposition effect is better.
  • the frame 20 further includes a bottom surface 208 connecting the outer wall 204 and the inner wall 202 opposite to the tiled region 2062.
  • the soldering region 2064 is bent toward the bottom surface 208 with respect to the tiled region 2062.
  • the weld zone 2064 is planar and the weld zone 2064 is inclined to the tiled zone 2062.
  • the smaller the bending angle of the soldering region 2064 relative to the tiled region 2062 that is, the smoother the connection between the soldering region 2064 and the tiled region 2062, and the smaller the deformation of the shadow mask film 10 by the frame 20, the shadow mask film.
  • the bonding surface 206 is divided into a soldering region 2064 for soldering the shadow mask film 10 and a tiled region 2062 of the developed shadow mask film 10, and the soldering region 2064 and the unfolding region are not coplanar, and the soldering region 2064 fixes and stretches the shadow mask film.
  • the film 10, the shadow mask 10 is attached to the tiled area 2062 to keep the shadow mask 10 flat, and the solder mask 30 remaining in the soldering area 2064 of the original shadow mask 10 does not affect the shadow when the new shadow mask 10 is replaced.
  • the flatness of the cover film 10 improves the yield of the AMOLED glass substrate for vapor deposition; after the shadow mask 10 is replaced a plurality of times, all the solder joints 30 of the polished soldering region 2064 are polished at one time, and the solder joint 30 is lowered.
  • the number of polishing increases the flatness of the shadow mask film 10, thereby improving the yield of the AMOLED glass substrate for vapor deposition and reducing the production cost.
  • FIG. 2 is a schematic cross-sectional view of a shadow mask assembly according to Embodiment 2 of the present application. 2 shows only a structural view of one side of the shadow mask module.
  • the cross section of the soldering region 2064 is an arc connecting the tiled region 2062 and the outer wall 204.
  • the shadow mask film 10 is welded to the frame body 20 by the surface of the arc-shaped welding region 2064.
  • the arc-shaped welding region 2064 gently bends the edge of the shadow mask film 10, thereby reducing the welding shadow mask film 10. When the shadow mask 10 is bent to damage the shadow mask 10 possibilities.
  • the bonding surface 206 is divided into a soldering region 2064 for soldering the shadow mask film 10 and a tiled region 2062 of the developed shadow mask film 10, and the soldering region 2064 and the unfolding region are not coplanar, and the soldering region 2064 fixes and stretches the shadow mask film.
  • the film 10, the shadow mask 10 is attached to the tiled area 2062 to keep the shadow mask 10 flat, and the solder mask 30 remaining in the soldering area 2064 of the original shadow mask 10 does not affect the shadow when the new shadow mask 10 is replaced.
  • the flatness of the cover film 10 improves the yield of the AMOLED glass substrate for vapor deposition; after the shadow mask 10 is replaced a plurality of times, all the solder joints 30 of the polished soldering region 2064 are polished at one time, and the solder joint 30 is lowered.
  • the number of polishing increases the flatness of the shadow mask film 10, thereby improving the yield of the AMOLED glass substrate for vapor deposition and reducing the production cost.
  • FIG. 3 is a schematic cross-sectional view of a shadow mask assembly according to Embodiment 3 of the present application. 3 is a structural view showing only one side of the shadow mask module. The difference between this embodiment and the second embodiment is that the side wall is also provided with solder joints 30, and the fixing portion 104 is fixed to the frame through the solder joints 30 of the side walls. 20 on.
  • the bonding surface 206 is divided into a soldering region 2064 for soldering the shadow mask film 10 and a tiled region 2062 of the developed shadow mask film 10, and the soldering region 2064 and the unfolding region are not coplanar, and the soldering region 2064 fixes and stretches the shadow mask film.
  • the film 10, the shadow mask 10 is attached to the tiled area 2062 to keep the shadow mask 10 flat, and the solder mask 30 remaining in the soldering area 2064 of the original shadow mask 10 does not affect the shadow when the new shadow mask 10 is replaced.
  • the flatness of the cover film 10 improves the yield of the AMOLED glass substrate for vapor deposition; after the shadow mask 10 is replaced a plurality of times, all the solder joints 30 of the polished soldering region 2064 are polished at one time, and the solder joint 30 is lowered.
  • the number of polishing increases the flatness of the shadow mask film 10, thereby improving the yield of the AMOLED glass substrate for vapor deposition and reducing the production cost.
  • FIG. 4 is a schematic cross-sectional view of a shadow mask assembly according to Embodiment 4 of the present application. 4 is a structural view showing only one side of the shadow mask module.
  • the difference between this embodiment and the third embodiment is that the cross section of the side wall is the same arc as the curvature of the welding region 2064, and the cross section and the side wall of the welding region 2064.
  • the cross section forms a continuous arc connecting between the tiled region 2062 and the bottom surface 208.
  • the bottom surface 208 is also provided with a solder joint 30, and the fixed portion 104 is fixed to the frame 20 through the solder joint 30 of the bottom surface 208.
  • the shadow mask sheet 10 is attached to the arc-shaped side wall to be gently bent, which reduces the possibility of bending the shadow mask film 10 and damaging the shadow mask film 10 when the shadow mask 10 is welded.
  • the bonding surface 206 is divided into a soldering region 2064 for soldering the shadow mask film 10 and a tiled region 2062 of the developed shadow mask film 10, and the soldering region 2064 and the unfolding region are not coplanar, and the soldering region 2064 is fixed and stretched.
  • the shadow mask 10 the shadow mask 10 is attached to the tiled area 2062 to keep the shadow mask 10 flat, and the solder mask 30 remaining in the soldering area 2064 of the original shadow mask 10 when the new shadow mask 10 is replaced
  • the flatness of the shadow mask film 10 is not affected, thereby improving the yield of the AMOLED glass substrate for vapor deposition; after the shadow mask film 10 is replaced multiple times, all the solder joints 30 of the polished soldering region 2064 are polished at one time, which is lowered.
  • the number of times of solder joint 30 polishing improves the flatness of the shadow mask film 10, thereby improving the yield of the AMOLED glass substrate for vapor deposition and reducing the production cost.
  • the application also provides a method for reusing a shadow mask assembly, comprising:
  • the shadow mask 10 and the frame 20 are provided.
  • the frame 20 includes an opposite outer wall 204 and an inner wall 202 and a bonding surface 206 connecting the outer wall 204 and the inner wall 202.
  • the bonding surface 206 includes a non-coplanar welding area 2064 and flat.
  • the paving area 2062 is located between the tiled region 2062 and the outer wall 204, and the tiled region 2062 is located between the soldering region 2064 and the inner wall 202.
  • the frame 20 is welded to the edge of the shadow mask 10 through the soldering region 2064, and a solder joint 30 is formed in the soldering region 2064.
  • the housing 20 holds the shadow mask 10 as a flat surface through the flat region 2062.
  • soldering region 2064 is provided with solder joints 30, and the edges of the shadow mask diaphragm 10 are connected to the frame 20 by solder joints 30.
  • the glass substrate of the display device is bonded to the film using the shadow mask sheet 10, and the glass substrate is vapor-deposited.
  • the stretched and stretched shadow mask sheet 10 is bonded to the glass substrate, and the organic light-emitting layer is deposited on the glass substrate by a vapor deposition apparatus.
  • the shadow mask 10 is removed, the new shadow mask 10 is replaced, and the edge of the shadow mask 10 is welded to the welded region 2064, and the welded region 2064 is again A new solder joint 30 is formed, and the positions of the solder joints 30 formed by the shadow mask film 10 that are replaced each time do not overlap.
  • the new shadow mask 10 is welded to the frame 20 through the new solder joint 30 of the soldering region 2064. Further, the shadow mask 10 is replaced each time. At the time, new solder joints 30 are used. Since the flatness of the soldered region 2064 does not affect the flatness of the shadow mask 10, it is not necessary to polish and polish the old solder joints 30, reducing the number of polishing and polishing.
  • the welding area 2064 has been formed.
  • the solder joints 30, all the solder joints 30 are polished at one time, and the flatness of the soldered regions 2064 after polishing can be ensured.
  • the mask mask 10 after polishing is directly put into use again.
  • the frame 20 further includes a bottom surface 208 that connects the outer wall 204 and the inner wall 202 opposite the tiled region 2062.
  • the welded region 2064 is bent toward the bottom surface relative to the tiled region 2062.
  • the weld zone 2064 is planar and the weld zone 2064 is inclined to the tiled zone 2062.
  • the smaller the bending angle of the soldering region 2064 relative to the tiled region 2062 that is, the smoother the connection between the soldering region 2064 and the tiled region 2062, and the smaller the deformation of the shadow mask film 10 by the frame 20, the shadow mask film.
  • the cross section of the weld zone 2064 is an arc of a circle connecting the tiled region 2062 to the outer wall 204.
  • the shadow mask film 10 is welded to the frame body 20 by the surface of the arc-shaped welding region 2064.
  • the arc-shaped welding region 2064 gently bends the edge of the shadow mask film 10, thereby reducing the welding shadow mask film 10. The possibility of damaging the shadow mask 10 by bending the shadow mask 10 is sometimes caused.
  • the bonding surface 206 is divided into a soldering region 2064 for soldering the shadow mask film 10 and a tiled region 2062 of the developed shadow mask film 10, and the soldering region 2064 and the unfolding region are not coplanar, and the soldering region 2064 fixes and stretches the shadow mask film.
  • the film 10, the shadow mask 10 is attached to the tiled area 2062 to keep the shadow mask 10 flat, and the solder mask 30 remaining in the soldering area 2064 of the original shadow mask 10 does not affect the shadow when the new shadow mask 10 is replaced.
  • the flatness of the cover film 10 improves the yield of the AMOLED glass substrate for vapor deposition; after the shadow mask 10 is replaced a plurality of times, all the solder joints 30 of the polished soldering region 2064 are polished at one time, and the solder joint 30 is lowered.
  • the number of polishing increases the flatness of the shadow mask film 10, thereby improving the yield of the AMOLED glass substrate for vapor deposition and reducing the production cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种荫罩组件及其重复使用方法,荫罩组件包括荫罩膜片(10)和框体(20),框体(20)包括相对设置的外壁(204)和内壁(202)及连接外壁(204)和内壁(202)的贴合面(206),贴合面(206)与荫罩膜片(10)贴合,贴合面(206)包括不共面的焊接区域(2064)与平铺区域(2062),焊接区域(2064)位于平铺区域(2062)与外壁(204)之间,框体(20)通过设置于焊接区域(2064)的焊点(30)固定荫罩膜片(10)的边缘,平铺区域(2062)位于焊接区域(2064)与内壁(202)之间,用于支撑荫罩膜片(10)并保持荫罩膜片(10)为平面。多次更换荫罩膜片(10)后一次性打磨抛光焊接区域(2064)所有的焊点(30),降低了焊点(30)抛光次数,提高了荫罩膜片(10)的平整度。

Description

荫罩组件及荫罩组件的重复使用方法
本申请要求于2017年2月15日提交中国专利局、申请号为2017100820926、发明名称为“荫罩组件及荫罩组件的重复使用方法”的中国专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请涉及液晶制造技术领域,尤其涉及一种荫罩组件及荫罩组件的重复使用方法。
背景技术
有源矩阵有机发光二极体或主动矩阵有机发光二极体(Active-matrix organic light emitting diode,AMOLED)显示器的显示面板的生产需要采用厚度很薄、热膨胀系数小的精细金属掩膜(Fine Metal Mask,FMM)作为荫罩膜片(或称掩膜板)来蒸镀显示面板像元内的有机发光体。通常荫罩膜片的厚度只有30~200μm,既薄又脆,将荫罩膜片贴合在蒸镀有机发光体像元的基板(玻璃片或柔性的基材)表面上时,由于需要保持很高的位置精度,通常将荫罩膜片采用激光焊接在金属框体上以拉伸荫罩膜片,形成荫罩组件。荫罩膜片的面积较大,虽然焊接时已经将荫罩膜片很好的拉伸,但在多次使用后,荫罩膜片仍会受重力影响而产生下垂,造成蒸镀时掩膜和被蒸镀表面有一定程度的分离,从而使蒸镀的精度下降。在使用过程中当荫罩膜片张力不够或者出现缺陷后就不能使用时,一般会去除荫罩膜片并回收利用框体,将新的荫罩膜片再次焊接在框体上组成新的荫罩组件继续使用。
现有技术中,荫罩膜片层叠设置于框体上,并且框体与荫罩膜片焊接的表面为与荫罩膜片平行的平面,每次更换新的荫罩膜片时,需要打磨抛光框体上焊接原荫罩膜片的焊点,抛光效果不好使焊点所在表面的平整度不佳,抛光次数越多影响越明显,从而影响荫罩膜片的平整度,导致需要蒸镀的AMOLED的玻璃基板与荫罩膜片的对位不准确,从而降低了AMOLED玻璃基板的良率, 增加生产成本。
发明内容
有鉴于此,本申请提供了一种荫罩组件及荫罩组件的重复使用方法,能够提高用于蒸镀的AMOLED玻璃基板的良率,降低生产成本。
一种荫罩组件,所述荫罩组件包括荫罩膜片和框体,所述框体包括相对设置的外壁和内壁及连接所述外壁和所述内壁的贴合面,所述贴合面与所述荫罩膜片贴合,所述贴合面包括不共面的焊接区域与平铺区域,所述焊接区域位于所述平铺区域与所述外壁之间,所述框体通过设置于所述焊接区域的焊点固定所述荫罩膜片的边缘,所述平铺区域位于所述焊接区域与所述内壁之间,用于支撑所述荫罩膜片并保持所述荫罩膜片为平面。
其中,所述荫罩膜片包括工作部分与连接于所述工作部分边缘的非工作部分,所述非工作部分贴合所述贴合面,所述非工作部分包括固定部分和过渡部分,所述过渡部分位于所述工作部分和所述固定部分之间,所述固定部分焊接于所述框体的焊接区域,并保持所述工作部分处于紧绷状态,所述过渡部分贴合所述平铺区域,以保持所述工作部分的平面度,所述工作部分之背离所述框体的一侧表面用于贴合显示设备的玻璃基板以蒸镀所述玻璃基板。
其中,所述框体还包括连接所述外壁与所述内壁且与所述平铺区域相对的底面,所述焊接区域相对所述平铺区域向所述底面方向弯折。
其中,所述焊接区域的截面为连接所述平铺区域与所述外壁的圆弧。
其中,所述侧壁也设有所述焊点,所述固定部分通过所述侧壁的所述焊点固定于所述框体上。
其中,所述侧壁的截面为与所述焊接区域曲率相同的圆弧,所述焊接区域的截面与所述侧壁的截面形成连续的圆弧连接于所述平铺区域与所述底面之间。
其中,所述底面也设有所述焊点,所述固定部分通过所述底面的所述焊点固定于所述框体上。
一种荫罩组件的重复使用方法,包括:
提供荫罩膜片和框体,所述框体包括相对设置的外壁和内壁及连接所述外 壁和所述内壁的贴合面,所述贴合面包括不共面的焊接区域与平铺区域,所述焊接区域位于所述平铺区域与所述外壁之间,所述平铺区域位于所述焊接区域与所述内壁之间,
所述框体通过所述焊接区域与所述荫罩膜片的边缘焊接,并在所述焊接区域形成焊点,所述框体通过所述平铺区域使所述荫罩膜片保持为平面;
使用所述荫罩膜片贴合显示设备的玻璃基板并蒸镀所述玻璃基板;
更换所述荫罩膜片的过程中,将所述荫罩膜片从所述框体上移除,将另一荫罩膜片的边缘焊接于所述焊接区域,形成新的焊点;
多次更换所述荫罩膜片后,一次性抛光所述焊接区域的全部焊点。
其中,所述框体还包括连接所述外壁与所述内壁且与所述平铺区域相对的底面,所述焊接区域相对所述平铺区域向所述底面方向弯折。
其中,所述焊接区域的截面为连接所述平铺区域与所述外壁的圆弧。
其中,所述侧壁也设有所述焊点,所述固定部分通过所述侧壁的所述焊点固定于所述框体上。
其中,所述侧壁的截面为与所述焊接区域曲率相同的圆弧,所述焊接区域的截面与所述侧壁的截面形成连续的圆弧连接于所述平铺区域与所述底面之间。
其中,所述底面也设有所述焊点,所述固定部分通过所述底面的所述焊点固定于所述框体上。
因此,本申请提供了一种荫罩组件及荫罩组件的重复使用方法,贴合面区分为焊接荫罩膜片的焊接区域和展开荫罩膜片的平铺区域,并且焊接区域和展开区域不共面,焊接区域固定并拉伸荫罩膜片,荫罩膜片贴合平铺区域以保持荫罩膜片平整,更换新的荫罩膜片时原荫罩膜片在焊接区域残留的焊点不影响荫罩膜片的平整度,从而提高了用于蒸镀的AMOLED玻璃基板的良率;多次更换荫罩膜片后一次性打磨抛光焊接区域所有的焊点,降低了焊点抛光次数,提高了荫罩膜片的平整度,从而提高了用于蒸镀的AMOLED玻璃基板的良率,降低生产成本。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一提供的荫罩组件的截面示意图。
图2为本申请实施例二提供的荫罩组件的截面示意图。
图3为本申请实施例三提供的荫罩组件的截面示意图。
图4为本申请实施例四提供的荫罩组件的截面示意图。
图5至图9为本申请实施例提供的荫罩组件的重复使用方法的步骤示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1所示本申请实施例一提供的荫罩组件的截面示意图。如图所示,荫罩组件包括荫罩膜片10和框体20,荫罩膜片10通过将边缘焊接在框体20表面的方式与框体20连接,其中,框体20为强度较高的金属材料制成,由于框体20结构稳定不易变形,荫罩膜片10受到指向四周的、均匀的张力而被伸展、拉伸。具体的,荫罩膜片10为矩形形状,框体20为与荫罩膜片10尺寸匹配的矩形方框,框体20的四根框架分别对应固定荫罩膜片10的四条边的边缘,从而向四条边的方向拉伸荫罩膜片10,使荫罩膜片10平铺展开,形成绷紧的平面。使用框架固定荫罩膜片10的边缘并由荫罩膜片10的边缘拉伸荫罩膜片10的方法,不仅可以完全展开荫罩膜片10并保持荫罩膜片10表面平整,还由于框体20与荫罩膜片10的接触面积小,降低由框体20与荫罩膜片10的接触面的平整度对荫罩膜片10的平整度的影响,从而有利于荫罩膜片10与AMOLED的玻璃基板的对位和贴合,提高AMOLED玻璃基板的良率,降低生产成本。
进一步的,框体20包括相对设置的外壁204和内壁202及连接外壁204和内壁202的贴合面206,具体的,外壁204为框体20背离框体20中心一侧的表面, 内壁202为框体20面向框体20中心一侧的表面。贴合面206与荫罩膜片10贴合,贴合面206包括不共面的焊接区域2064与平铺区域2062,一种较佳的实施方式中,平铺区域2062为垂直于内壁202的平面。进一步的,当焊接区域2064也为平面时,焊接区域2064倾斜于平铺区域2062,当焊接区域2064为曲面时,除了焊接区域2064与平铺区域2062的连接处外,焊接区域2064与平铺区域2062不相交,也可以理解为,焊接区域2064的焊点30对荫罩膜片10施加的拉力或张力方向平行于焊接区域2064的表面,从而与荫罩膜片10展开的方向不平行。焊接区域2064位于平铺区域2062与外壁204之间,框体20通过设置于焊接区域2064的焊点30固定荫罩膜片10的边缘,平铺区域2062位于焊接区域2064与内壁202之间,用于展开并平铺荫罩膜片10。进一步的,平铺区域2062起到支撑荫罩膜片10的边缘的作用,用于辅助保持荫罩膜片10的平整度,防止荫罩膜片10贴合AMOLED的玻璃基板时发生形变;同时,荫罩膜片10被焊接区域2064的焊点30拉伸展开后贴合于平铺区域2062,平铺区域2062将焊点30对荫罩膜片10施加的平行于焊接区域2064表面的拉力或张力转化为平行于荫罩膜片10展开的方向。
贴合面206区分为焊接荫罩膜片10的焊接区域2064和展开荫罩膜片10的平铺区域2062,并且焊接区域2064和展开区域不共面,焊接区域2064固定并拉伸荫罩膜片10,荫罩膜片10贴合平铺区域2062以保持荫罩膜片10平整,一方面,更换新的荫罩膜片10时原荫罩膜片10在焊接区域2064残留的焊点30不影响荫罩膜片10的平整度,从而提高了用于蒸镀的AMOLED玻璃基板的良率;多次更换荫罩膜片10后一次性打磨抛光焊接区域2064所有的焊点30,降低了焊点30抛光次数,提高了荫罩膜片10的平整度,从而提高了用于蒸镀的AMOLED玻璃基板的良率,降低生产成本。另一方面,由于焊接区域2064与平铺区域2062不共面,及焊接区域2064与荫罩膜片10展开的平面不共面,焊接区域2064的焊点30自身的高度不会影响荫罩膜片10用于贴合玻璃基板的平面的平整度,避免了荫罩膜片10和玻璃基板之间存在间隙,导致蒸镀玻璃基板时增加像素阴影的现象发生,从而提高了AMOLED玻璃基板的良率。
本实施例中,荫罩膜片10包括工作部分102与连接于工作部分102边缘的非工作部分104,非工作部分104贴合贴合面206,非工作部分104包括固定部分 1042和过渡部分1044,过渡部分1044位于工作部分102和固定部分1042之间,固定部分1042焊接于框体20的焊接区域2064,并拉伸工作部分102以撑平并拉紧工作部分102,保持工作部分102处于紧绷状态,过渡部分1044贴合平铺区域2062,以保持工作部分102的平面度,工作部分102的背离框体20的一侧表面用于贴合显示设备的玻璃基板以蒸镀玻璃基板。由于工作部分102需要与玻璃基板紧密贴合并准确对位,以蒸镀玻璃基板有机发光体,工作部分102的平整度对蒸镀效果影响非常大。非工作部分104仅用作焊接框体20并拉伸工作部分102,不用作贴合玻璃基板,避免了焊接区域2064对工作部分102的平整度的影响,蒸镀效果更佳。
本实施例中,框体20还包括连接外壁204与内壁202且与平铺区域2062相对的底面208,焊接区域2064相对平铺区域2062向底面208方向弯折。具体的,焊接区域2064为平面,并且焊接区域2064倾斜于平铺区域2062。进一步的,焊接区域2064相对平铺区域2062的弯折角度越小,即焊接区域2064与平铺区域2062的连接越平缓,框体20使荫罩膜片10发生的形变越小,荫罩膜片10在焊接过程中和蒸镀过程中被损坏的概率越小;焊接区域2064相对平铺区域2062的弯折角度越大,荫罩膜片10收到的张力越大,从而荫罩膜片10的平整度越高。
贴合面206区分为焊接荫罩膜片10的焊接区域2064和展开荫罩膜片10的平铺区域2062,并且焊接区域2064和展开区域不共面,焊接区域2064固定并拉伸荫罩膜片10,荫罩膜片10贴合平铺区域2062以保持荫罩膜片10平整,更换新的荫罩膜片10时原荫罩膜片10在焊接区域2064残留的焊点30不影响荫罩膜片10的平整度,从而提高了用于蒸镀的AMOLED玻璃基板的良率;多次更换荫罩膜片10后一次性打磨抛光焊接区域2064所有的焊点30,降低了焊点30抛光次数,提高了荫罩膜片10的平整度,从而提高了用于蒸镀的AMOLED玻璃基板的良率,降低生产成本。
请参阅图2,图2所示本申请实施例二提供的荫罩组件的截面示意图。图2仅示出了荫罩模组一侧的结构图,本实施例与实施例一的区别在于,焊接区域2064的截面为连接平铺区域2062与外壁204的圆弧。荫罩膜片10通过圆弧形的焊接区域2064的表面焊接于框体20上,圆弧形的焊接区域2064使荫罩膜片10的边缘缓和地弯折,降低了焊接荫罩膜片10时弯折荫罩膜片10而损坏荫罩膜片 10的可能性。
贴合面206区分为焊接荫罩膜片10的焊接区域2064和展开荫罩膜片10的平铺区域2062,并且焊接区域2064和展开区域不共面,焊接区域2064固定并拉伸荫罩膜片10,荫罩膜片10贴合平铺区域2062以保持荫罩膜片10平整,更换新的荫罩膜片10时原荫罩膜片10在焊接区域2064残留的焊点30不影响荫罩膜片10的平整度,从而提高了用于蒸镀的AMOLED玻璃基板的良率;多次更换荫罩膜片10后一次性打磨抛光焊接区域2064所有的焊点30,降低了焊点30抛光次数,提高了荫罩膜片10的平整度,从而提高了用于蒸镀的AMOLED玻璃基板的良率,降低生产成本。
请参阅图3,图3所示本申请实施例三提供的荫罩组件的截面示意图。图3仅示出了荫罩模组一侧的结构图,本实施例与实施例二的区别在于,侧壁也设有焊点30,固定部分104通过侧壁的焊点30固定于框体20上。
贴合面206区分为焊接荫罩膜片10的焊接区域2064和展开荫罩膜片10的平铺区域2062,并且焊接区域2064和展开区域不共面,焊接区域2064固定并拉伸荫罩膜片10,荫罩膜片10贴合平铺区域2062以保持荫罩膜片10平整,更换新的荫罩膜片10时原荫罩膜片10在焊接区域2064残留的焊点30不影响荫罩膜片10的平整度,从而提高了用于蒸镀的AMOLED玻璃基板的良率;多次更换荫罩膜片10后一次性打磨抛光焊接区域2064所有的焊点30,降低了焊点30抛光次数,提高了荫罩膜片10的平整度,从而提高了用于蒸镀的AMOLED玻璃基板的良率,降低生产成本。
请参阅图4,图4所示本申请实施例四提供的荫罩组件的截面示意图。图4仅示出了荫罩模组一侧的结构图,本实施例与实施例三的区别在于,侧壁的截面为与焊接区域2064曲率相同的圆弧,焊接区域2064的截面与侧壁的截面形成连续的圆弧连接于平铺区域2062与底面208之间。进一步的,底面208也设有焊点30,固定部分104通过底面208的焊点30固定于框体20上。荫罩膜片10贴合于圆弧形的侧壁而缓和地弯折,降低了焊接荫罩膜片10时弯折荫罩膜片10而损坏荫罩膜片10的可能性。
贴合面206区分为焊接荫罩膜片10的焊接区域2064和展开荫罩膜片10的平铺区域2062,并且焊接区域2064和展开区域不共面,焊接区域2064固定并拉伸 荫罩膜片10,荫罩膜片10贴合平铺区域2062以保持荫罩膜片10平整,更换新的荫罩膜片10时原荫罩膜片10在焊接区域2064残留的焊点30不影响荫罩膜片10的平整度,从而提高了用于蒸镀的AMOLED玻璃基板的良率;多次更换荫罩膜片10后一次性打磨抛光焊接区域2064所有的焊点30,降低了焊点30抛光次数,提高了荫罩膜片10的平整度,从而提高了用于蒸镀的AMOLED玻璃基板的良率,降低生产成本。
本申请还提供一种荫罩组件的重复使用方法,包括:
提供荫罩膜片10和框体20,框体20包括相对设置的外壁204和内壁202及连接外壁204和内壁202的贴合面206,贴合面206包括不共面的焊接区域2064与平铺区域2062,焊接区域2064位于平铺区域2062与外壁204之间,平铺区域2062位于焊接区域2064与内壁202之间。
S101、框体20通过焊接区域2064与荫罩膜片10的边缘焊接,并在焊接区域2064形成焊点30,框体20通过平铺区域2062使荫罩膜片10保持为平面。
结合图5,焊接区域2064设有焊点30,荫罩膜片10的边缘通过焊点30与框体20连接。
S102、使用荫罩膜片10贴合显示设备的玻璃基板并蒸镀玻璃基板。
拉伸并伸展开的荫罩膜片10贴合玻璃基板,通过蒸镀设备在玻璃基板蒸镀有机发光层。
S103、更换荫罩膜片10的过程中,将荫罩膜片10从框体20上移除,将另一荫罩膜片10的边缘焊接于焊接区域2064,形成新的焊点30。
具体的,荫罩膜片10在多次使用出现缺陷后,去除荫罩膜片10,更换新的荫罩膜片10并将荫罩膜片10的边缘焊接于焊接区域2064,焊接区域2064再次形成新的焊点30,并且每次更换的荫罩膜片10形成的焊点30位置不重叠。
结合图6和图7,更换荫罩膜片10时,新的荫罩膜片10通过焊接区域2064的新的焊点30焊接于框体20上,进一步的,每一次更换荫罩膜片10时,都使用新的焊点30。由于焊接区域2064的平整度不影响荫罩膜片10的平整度,故不需要打磨抛光旧的焊点30,减少了打磨抛光的次数。
S104、多次更换荫罩膜片10后,一次性抛光焊接区域2064的全部焊点30。
结合图7、图8及图9,多次更换荫罩膜片10后,焊接区域2064上已形成多 个焊点30,一次性抛光所有焊点30,可以保证抛光后的焊接区域2064的平整度。抛光完后的荫罩膜片10直接再次投入使用。
一种实施方式中,框体20还包括连接外壁204与内壁202且与平铺区域2062相对的底面208,焊接区域2064相对平铺区域2062向底面方向弯折。具体的,焊接区域2064为平面,并且焊接区域2064倾斜于平铺区域2062。进一步的,焊接区域2064相对平铺区域2062的弯折角度越小,即焊接区域2064与平铺区域2062的连接越平缓,框体20使荫罩膜片10发生的形变越小,荫罩膜片10在焊接过程中和蒸镀过程中被损坏的概率越小;焊接区域2064相对平铺区域2062的弯折角度越大,荫罩膜片10收到的张力越大,从而荫罩膜片10的平整度越高。
一种实施方式中,焊接区域2064的截面为连接平铺区域2062与外壁204的圆弧。荫罩膜片10通过圆弧形的焊接区域2064的表面焊接于框体20上,圆弧形的焊接区域2064使荫罩膜片10的边缘缓和地弯折,降低了焊接荫罩膜片10时弯折荫罩膜片10而损坏荫罩膜片10的可能性。
贴合面206区分为焊接荫罩膜片10的焊接区域2064和展开荫罩膜片10的平铺区域2062,并且焊接区域2064和展开区域不共面,焊接区域2064固定并拉伸荫罩膜片10,荫罩膜片10贴合平铺区域2062以保持荫罩膜片10平整,更换新的荫罩膜片10时原荫罩膜片10在焊接区域2064残留的焊点30不影响荫罩膜片10的平整度,从而提高了用于蒸镀的AMOLED玻璃基板的良率;多次更换荫罩膜片10后一次性打磨抛光焊接区域2064所有的焊点30,降低了焊点30抛光次数,提高了荫罩膜片10的平整度,从而提高了用于蒸镀的AMOLED玻璃基板的良率,降低生产成本。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易的想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种荫罩组件,其中,所述荫罩组件包括荫罩膜片和框体,所述框体包括相对设置的外壁和内壁及连接所述外壁和所述内壁的贴合面,所述贴合面与所述荫罩膜片贴合,所述贴合面包括不共面的焊接区域与平铺区域,所述焊接区域位于所述平铺区域与所述外壁之间,所述框体通过设置于所述焊接区域的焊点固定所述荫罩膜片的边缘,所述平铺区域位于所述焊接区域与所述内壁之间,用于支撑所述荫罩膜片并保持所述荫罩膜片为平面。
  2. 根据权利要求1所述的荫罩组件,其中,所述荫罩膜片包括工作部分与连接于所述工作部分边缘的非工作部分,所述非工作部分贴合所述贴合面,所述非工作部分包括固定部分和过渡部分,所述过渡部分位于所述工作部分和所述固定部分之间,所述固定部分焊接于所述框体的焊接区域,并保持所述工作部分处于紧绷状态,所述过渡部分贴合所述平铺区域,以保持所述工作部分的平面度,所述工作部分之背离所述框体的一侧表面用于贴合显示设备的玻璃基板以蒸镀所述玻璃基板。
  3. 根据权利要求2所述的荫罩组件,其中,所述框体还包括连接所述外壁与所述内壁且与所述平铺区域相对的底面,所述焊接区域相对所述平铺区域向所述底面方向弯折。
  4. 根据权利要求2所述的荫罩组件,其中,所述焊接区域的截面为连接所述平铺区域与所述外壁的圆弧。
  5. 根据权利要求4所述的荫罩组件,其中,所述侧壁也设有所述焊点,所述固定部分通过所述侧壁的所述焊点固定于所述框体上。
  6. 根据权利要求5所述的荫罩组件,其中,所述侧壁的截面为与所述焊接区域曲率相同的圆弧,所述焊接区域的截面与所述侧壁的截面形成连续的圆弧连接于所述平铺区域与所述底面之间。
  7. 根据权利要求6所述的荫罩组件,其中,所述底面也设有所述焊点,所述固定部分通过所述底面的所述焊点固定于所述框体上。
  8. 一种荫罩组件的重复使用方法,其中,包括:
    提供荫罩膜片和框体,所述框体包括相对设置的外壁和内壁及连接所述外 壁和所述内壁的贴合面,所述贴合面包括不共面的焊接区域与平铺区域,所述焊接区域位于所述平铺区域与所述外壁之间,所述平铺区域位于所述焊接区域与所述内壁之间,
    所述框体通过所述焊接区域与所述荫罩膜片的边缘焊接,并在所述焊接区域形成焊点,所述框体通过所述平铺区域使所述荫罩膜片保持为平面;
    使用所述荫罩膜片贴合显示设备的玻璃基板并蒸镀所述玻璃基板;
    更换所述荫罩膜片的过程中,将所述荫罩膜片从所述框体上移除,将另一荫罩膜片的边缘焊接于所述焊接区域,形成新的焊点;
    多次更换所述荫罩膜片后,一次性抛光所述焊接区域的全部焊点。
  9. 根据权利要求8所述的荫罩组件的重复使用方法,其中,所述框体还包括连接所述外壁与所述内壁且与所述平铺区域相对的底面,所述焊接区域相对所述平铺区域向所述底面方向弯折。
  10. 根据权利要求8所述的荫罩组件的重复使用方法,其中,所述焊接区域的截面为连接所述平铺区域与所述外壁的圆弧。
  11. 根据权利要求10所述的荫罩组件的重复使用方法,其中,所述侧壁也设有所述焊点,所述固定部分通过所述侧壁的所述焊点固定于所述框体上。
  12. 根据权利要求11所述的荫罩组件的重复使用方法,其中,所述侧壁的截面为与所述焊接区域曲率相同的圆弧,所述焊接区域的截面与所述侧壁的截面形成连续的圆弧连接于所述平铺区域与所述底面之间。
  13. 根据权利要求12所述的荫罩组件的重复使用方法,其中,所述底面也设有所述焊点,所述固定部分通过所述底面的所述焊点固定于所述框体上。
PCT/CN2017/075461 2017-02-15 2017-03-02 荫罩组件及荫罩组件的重复使用方法 WO2018148992A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/526,292 US20180291494A1 (en) 2017-02-15 2017-03-02 Shadow mask assemblies and reusing methods of shadow mask assemblies thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710082092.6 2017-02-15
CN201710082092.6A CN106884138A (zh) 2017-02-15 2017-02-15 荫罩组件及荫罩组件的重复使用方法

Publications (1)

Publication Number Publication Date
WO2018148992A1 true WO2018148992A1 (zh) 2018-08-23

Family

ID=59178888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075461 WO2018148992A1 (zh) 2017-02-15 2017-03-02 荫罩组件及荫罩组件的重复使用方法

Country Status (3)

Country Link
US (1) US20180291494A1 (zh)
CN (1) CN106884138A (zh)
WO (1) WO2018148992A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633063A4 (en) * 2017-06-02 2021-01-20 BOE Technology Group Co., Ltd. MASK PLATE, METHOD OF PREPARATION AND METHOD OF USE RELATED

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102700053B1 (ko) * 2017-09-05 2024-08-30 다이니폰 인사츠 가부시키가이샤 증착 마스크 장치의 제조 방법 및 증착 마스크 장치의 제조 장치
CN108728814B (zh) * 2018-06-04 2020-06-30 深圳市华星光电半导体显示技术有限公司 阴影框
CN109023238B (zh) * 2018-08-30 2021-01-22 京东方科技集团股份有限公司 一种掩膜板及蒸镀装置
CN111394694A (zh) * 2020-05-18 2020-07-10 昆山国显光电有限公司 掩膜板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005339858A (ja) * 2004-05-25 2005-12-08 Canon Inc マスク構造体及びその製造方法
JP4604593B2 (ja) * 2004-07-30 2011-01-05 ソニー株式会社 メタルマスクの製造方法
CN104419890A (zh) * 2013-08-20 2015-03-18 昆山允升吉光电科技有限公司 一种掩模组件
CN204509446U (zh) * 2014-12-15 2015-07-29 信利(惠州)智能显示有限公司 一种掩膜板固定装置
US20150299840A1 (en) * 2012-06-26 2015-10-22 Sharp Kabushiki Kaisha Mask frame

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915658A (en) * 1988-04-04 1990-04-10 Corning Incorporated Reference and support system for flat CRT tension mask
KR101213092B1 (ko) * 2005-05-02 2012-12-18 엘지디스플레이 주식회사 평판 표시소자용 마스크 장치 및 이를 이용한 마스크고정방법
CN103938153A (zh) * 2013-01-22 2014-07-23 昆山允升吉光电科技有限公司 一种蒸镀用掩模组件及相应的掩模板安装方法
CN203128640U (zh) * 2013-03-06 2013-08-14 唐军 易焊接掩模板
CN203530415U (zh) * 2013-09-09 2014-04-09 欣通达国际股份有限公司 具可置换块的框架
CN104561892B (zh) * 2014-12-04 2016-11-23 深圳市华星光电技术有限公司 Oled材料真空热蒸镀用掩膜板
CN105200370A (zh) * 2015-10-27 2015-12-30 唐军 可循环使用的掩模板板框及具有它的掩模板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005339858A (ja) * 2004-05-25 2005-12-08 Canon Inc マスク構造体及びその製造方法
JP4604593B2 (ja) * 2004-07-30 2011-01-05 ソニー株式会社 メタルマスクの製造方法
US20150299840A1 (en) * 2012-06-26 2015-10-22 Sharp Kabushiki Kaisha Mask frame
CN104419890A (zh) * 2013-08-20 2015-03-18 昆山允升吉光电科技有限公司 一种掩模组件
CN204509446U (zh) * 2014-12-15 2015-07-29 信利(惠州)智能显示有限公司 一种掩膜板固定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633063A4 (en) * 2017-06-02 2021-01-20 BOE Technology Group Co., Ltd. MASK PLATE, METHOD OF PREPARATION AND METHOD OF USE RELATED
US11746406B2 (en) 2017-06-02 2023-09-05 Boe Technology Group Co., Ltd. Mask, preparation method and operation method thereof

Also Published As

Publication number Publication date
CN106884138A (zh) 2017-06-23
US20180291494A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2018148992A1 (zh) 荫罩组件及荫罩组件的重复使用方法
TWI485273B (zh) Film forming device
CN108281576B (zh) 有机发光显示装置及其柔性基板的弯折方法
US8323066B2 (en) Method of manufacturing flexible display device
WO2018103322A1 (zh) 掩膜板及其组装方法
US20180252960A1 (en) Coating device, method of manufacturing display substrate using the same and display substrate manufactured using the same
JP2007017696A (ja) 液晶表示装置
WO2018218935A1 (zh) 掩模板及其制备方法和使用方法
KR20190096850A (ko) 라미네이션 장치 및 방법
US20150009483A1 (en) Mask clamping apparatus and method of manufacturing mask
WO2016155433A1 (zh) 一种掩膜板组件及其制作方法、蒸镀装置及显示基板的制作方法
CN109713019A (zh) Oled显示面板及其制作方法
JP4860909B2 (ja) マスク構造体
TWI642999B (zh) 顯示模組
WO2021102781A1 (zh) 显示模组及其制作方法、显示装置
JP2008196029A (ja) 蒸着用マスクの製造方法および蒸着用マスク
US20160262256A1 (en) Method for fabricating flexible substrate and flexible substrate prefabricated component
JP2010010247A (ja) 基板搬送用治具、及び素子基板の製造方法
TWI539207B (zh) 可撓性基板的接合方法
TWI549560B (zh) 弧形顯示裝置及其製作方法
WO2021114385A1 (zh) 阵列基板及其制备方法、显示面板
TWI824969B (zh) 混合型光掩膜及其製造方法
KR20070021489A (ko) Uv 조사를 이용한 실런트 경화방법
TWI730784B (zh) 遮罩組件
US20220143755A1 (en) Substrate-stacking structure and substrate-cutting method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15526292

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897140

Country of ref document: EP

Kind code of ref document: A1