WO2018142871A1 - 精度管理方法、精度管理システム、管理装置、分析装置および精度管理異常判定方法 - Google Patents

精度管理方法、精度管理システム、管理装置、分析装置および精度管理異常判定方法 Download PDF

Info

Publication number
WO2018142871A1
WO2018142871A1 PCT/JP2018/000485 JP2018000485W WO2018142871A1 WO 2018142871 A1 WO2018142871 A1 WO 2018142871A1 JP 2018000485 W JP2018000485 W JP 2018000485W WO 2018142871 A1 WO2018142871 A1 WO 2018142871A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
quality control
management
accuracy
accuracy management
Prior art date
Application number
PCT/JP2018/000485
Other languages
English (en)
French (fr)
Inventor
敬二 藤本
和彦 松岡
康嗣 蓮井
Original Assignee
シスメックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シスメックス株式会社 filed Critical シスメックス株式会社
Priority to EP18748803.6A priority Critical patent/EP3578993A4/en
Priority to AU2018216105A priority patent/AU2018216105B2/en
Priority to CN201880009083.7A priority patent/CN110234999A/zh
Priority to SG11201906964TA priority patent/SG11201906964TA/en
Publication of WO2018142871A1 publication Critical patent/WO2018142871A1/ja
Priority to US16/524,423 priority patent/US11340242B2/en
Priority to US17/750,040 priority patent/US11933796B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00663Quality control of consumables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48785Electrical and electronic details of measuring devices for physical analysis of liquid biological material not specific to a particular test method, e.g. user interface or power supply
    • G01N33/48792Data management, e.g. communication with processing unit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00623Quality control of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1026Recognising analyser failures, e.g. bubbles; Quality control for particle analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00623Quality control of instruments
    • G01N2035/00653Quality control of instruments statistical methods comparing labs or apparatuses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00663Quality control of consumables
    • G01N2035/00673Quality control of consumables of reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00663Quality control of consumables
    • G01N2035/00683Quality control of consumables of detectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics

Definitions

  • the present invention relates to an accuracy management method, an accuracy management system, a management device, an analysis device, and an accuracy management abnormality determination method for performing accuracy management of an analysis device.
  • Patent Document 1 discloses a system in which an analysis device 402 and a management device 401 installed in each facility of a plurality of users are connected via a network 403 as shown in FIG.
  • the measurement results obtained by measuring the quality control substances artificially generated by the respective analyzers 402 are transmitted to the management device 401, and the management device 401 collects the measurement results.
  • the user of each facility accesses the web page, compares the measurement result of the analyzer 402 of the own facility with the total result of the entire facility, and performs external accuracy management.
  • Patent Document 2 discloses a quality control method using a quality control substance measurement result and a sample measurement result.
  • a sample sample and a quality control sample are supplied to the transport line 502 from the sample sample supply unit 501 and the quality control sample supply unit 503, respectively.
  • the sample sample and the quality control sample are measured by the analyzer 504, and the sample sample and the quality control sample after measurement are collected by the sample sample collection unit 506 and the quality control sample collection unit 505, respectively.
  • the host computer 510 controls each unit and performs accuracy management processing of the analyzer based on the measurement result of the specimen sample and the measurement result of the accuracy control sample by the analyzer 504.
  • Patent Document 2 discloses a technique using a quality control substance and a specimen, but the specimen may have greatly different properties depending on the subject who has been collected. There are actual situations in which the measurement results of specimens are not sufficiently used for accuracy control.
  • 1st aspect of this invention is related with the quality control method used with the management apparatus (30) connected with the analyzer (20) installed in each of several facilities (12) via the network (13).
  • the first quality control information obtained by measuring the quality control material artificially generated by the analyzer (20) of each facility (12) and a plurality of samples are measured.
  • the obtained second accuracy management information is acquired from the analyzer (20) of each facility (12) via the network (13), and based on the acquired first accuracy management information and second accuracy management information.
  • Information related to accuracy management of the analyzer (20) of at least one facility (12) is output.
  • the first accuracy management information and the second accuracy management information acquired from the analyzers installed in each of a plurality of facilities can be collected in the management device. For this reason, the accuracy management status in the analyzer can be appropriately evaluated on the management device side by a person in charge of monitoring the analyzer.
  • the inventors have newly found that the second accuracy management information has a remarkably small variation in a predetermined item, and by referring to the second accuracy management information for this item, the status of the accuracy management in the analyzer It was found that can be evaluated with high accuracy. Therefore, by outputting information related to accuracy management based on the first accuracy management information and the second accuracy management information, the state of the analyzer can be evaluated more appropriately and accurately. Therefore, the quality control quality can be improved by fully utilizing the measurement results of both the quality control substance and the sample.
  • Quality control substance refers to an artificially generated quality control substance such as latex particles simulating particles contained in a specimen, or substances prepared by extracting a predetermined component from a specimen collected from an animal.
  • the substance may be widely included.
  • the information related to accuracy management is, for example, a screen on which both pieces of accuracy management information can be compared, a determination result of the accuracy management state based on both accuracy management information, and the like.
  • Information relating to accuracy management is output by, for example, displaying on a display unit, sounding sound, transmitting to other devices, and the like.
  • the statistical information obtained by statistically processing a plurality of measurement results obtained by the analyzer (20) of each facility (12) measuring each of the plurality of samples is used as the second accuracy.
  • Management information is acquired from the analyzer (20) of each facility (12) via the network (13).
  • the analyzer (20) includes an optical flow cytometer (54), and the measurement result includes the intensity of light obtained by measuring the specimen.
  • statistical information obtained by statistically processing the light intensity obtained by measuring each of the plurality of specimens with the flow cytometer (54) is acquired as the second accuracy management information.
  • the inventors remarkably suppress variation in the second accuracy management information. I found out that Therefore, the status of quality control can be more appropriately evaluated by outputting statistical information obtained by statistical processing of the light intensity as a measurement result.
  • the measurement result further includes a particle count value for each particle type in the specimen calculated based on the light intensity
  • the second quality control information is obtained by statistically processing the light intensity.
  • Statistical information and second statistical information obtained by statistically processing the particle count value are included.
  • information related to quality control is output based on the first statistical information and the first quality management information included in the second quality management information.
  • the variation of the second statistical information included in the second accuracy management information is larger than the variation of the first statistical information included in the second accuracy management information. That is, the reliability of the second statistical information included in the second accuracy management information is not high. Therefore, by using the first statistical information included in the second accuracy management information as described above, a user who evaluates accuracy management can appropriately evaluate the status of accuracy management.
  • the specimen is stained with a dye that generates fluorescence by excitation light, and the intensity of light is the intensity of the fluorescence generated from the dye that stained the specimen.
  • the quality control substance is artificially generated, and is usually stored for a certain period of use and used for quality control, and may deteriorate over time during the period of use.
  • the sample is measured in a fresh state in order to ensure analysis accuracy.
  • the reactivity of the dye that generates fluorescence varies depending on the deterioration state of the sample to be stained. Therefore, the reactivity of the specimen to the dye is less varied than the reactivity of the quality control substance to the dye.
  • the analyzer (20) of each facility (12) selects a predetermined number of measurement results from the measurement results included in a predetermined period, and statistically processes the selected predetermined number of measurement results. By doing so, the second quality control information is calculated.
  • the quality of the quality control information based on the specimen can be improved.
  • a screen capable of referring to the first quality management information and a screen capable of referring to the second quality management information are separately displayed on the display unit (40). In this way, the accuracy management status of the analyzer can be visually evaluated by displaying each of the two screens.
  • a screen (310) on which the first accuracy management information and the second accuracy management information can be referred as information relating to accuracy management is displayed on the display unit (40). If it carries out like this, the quality control condition of an analyzer can be visually evaluated by the screen which can refer 1st quality management information and 2nd quality management information.
  • the display unit does not necessarily have to be the display unit of the management device, but is a display unit installed in a facility other than the facility where the management device is installed or the display unit of another device in the facility where the management device is installed. Part.
  • the second quality control information is displayed in time series on the screen (310).
  • the timing at which the second accuracy management information changes greatly and to understand that there is a possibility that an abnormality has occurred in accuracy management at that timing. Therefore, by referring to how the first quality control information has changed at that timing, and further grasping other information that should be considered for quality control, we can estimate the quality control abnormality and its cause. And appropriate accuracy control can be implemented.
  • the first accuracy management information is displayed in time series together with the second accuracy management information.
  • the transition of the second accuracy management information and the transition of the first accuracy management information can be compared on one screen. Therefore, by comparing the first accuracy management information and the second accuracy management information, it can be determined smoothly and simply whether or not there is a possibility that an abnormality has occurred in the accuracy management.
  • the quality control method as information related to quality management, a combination of the first quality management information and the second quality management information is shown in a coordinate space having the first quality management information and the second quality management information as two axes.
  • the graph is displayed on the display unit (40). In this way, it is possible to smoothly evaluate the quality control while referring to the first quality management information and the second quality management information.
  • the second accuracy management information acquired from the analysis device (20) of one facility (12) is used as an analysis device of another facility (12) different from the one facility (12) (
  • a screen (330) that can be compared with the second quality control information acquired from 20) is displayed on the display unit (40).
  • the second accuracy management information acquired from the analysis device (20) of one facility (12) and the analysis device (12) other than the one facility (12) is output as information related to the quality control information.
  • the “notification information” may include various information that can be grasped by the operator, such as vibration, in addition to images and sounds.
  • the “notification information” may include information indicating which condition the quality control information matches.
  • the second accuracy management information acquired from the analyzer (20) of the one facility (12) is acquired from the analyzer (20) of another facility (12) different from the one facility (12).
  • the notification information is output.
  • the second accuracy management information obtained from the analyzer (20) of the one facility (12) has a variation width different from that of the one facility (12) from the analyzer (20) of the other facility (12).
  • the notification information is output.
  • notification information indicating that there is a possibility that the quality management may be abnormal is output as information related to quality management.
  • the notification information is output.
  • the analyzer (20) of the one facility (12) when the second accuracy management information acquired from the analyzer (20) of the one facility (12) matches a predetermined condition, the analyzer (20) of the one facility (12) ) Is remotely accessed via the network (13), and the screen of the analyzer (20) is displayed on the display unit (40). In this way, the accuracy management status of the analyzer can be directly confirmed without moving to the installation location of the analyzer 20.
  • the second quality control information matches a predetermined condition
  • the information for displaying the analysis result of the sample used for generating the second quality control information is further acquired and acquired. Based on the obtained information, the analysis result is displayed on the display unit (40). In this way, it is possible to investigate in detail the cause of the abnormality in accuracy control.
  • notification information indicating that there is a possibility that an abnormality has occurred in the reagent is output as information related to quality control. In this way, it is possible to grasp that there is a possibility that an abnormality has occurred in the reagent.
  • the second quality control information matches a predetermined condition
  • measurement data obtained by measuring the sample used for generating the quality control information is further acquired.
  • the abnormality of the reagent is acquired.
  • conditions for determining whether or not an abnormality has occurred in accuracy management are set based on the second accuracy management information acquired from the plurality of analyzers (20). In this way, conditions according to the characteristics of the analyzer can be set.
  • the analyzer (20) includes an optical flow cytometer (54).
  • an optical flow cytometer 54
  • statistical information obtained by statistically processing the intensity of light obtained by measuring each of a plurality of specimens with a flow cytometer (54) and measurement data obtained by measuring a quality control substance are analyzed.
  • the variation in the second accuracy management information is remarkably suppressed.
  • the measurement result obtained by analyzing the measurement data acquired from the quality control material is acquired as the first quality control information
  • the variation in the first quality control information is remarkably suppressed. Therefore, when these two pieces of quality control information are combined, it can be accurately determined whether or not there is a possibility that the quality control has an abnormality.
  • notification information indicating that the reagent may have failed Output as information related to quality control. In this way, it is possible to grasp that there is a possibility that an abnormality has occurred in the reagent.
  • a second aspect of the present invention relates to a quality control system (10).
  • the quality control system (10) includes an analysis device (20) installed in each of a plurality of facilities (12), and an analysis device (20) of each facility (12) via a network (13).
  • the analyzer (20) uses the network (13) to obtain first quality control information obtained by measuring an artificially produced quality control material and second quality control information obtained by measuring a plurality of samples. Is transmitted to the management device (30), and the management device (30) receives at least one facility (12) based on the first accuracy management information and the second accuracy management information received from the analysis device (20). The information regarding the quality control of the analyzer (20) is output.
  • the analyzer (20) uses the second quality control information to obtain statistical information obtained by statistically processing a plurality of measurement results obtained by measuring each of the plurality of samples. As above, it can be configured to transmit to the management device (30) via the network (13).
  • the measurement result includes the light intensity obtained by measuring the specimen.
  • the analyzer (20) includes an optical flow cytometer (54), and statistical information obtained by statistically processing the intensity of light obtained by measuring each of a plurality of specimens with the flow cytometer (54).
  • the second accuracy management information is transmitted to the management device (30), and the management device (30) may be configured to output the received statistical information.
  • the measurement result further includes a particle count value for each particle type in the specimen calculated based on the light intensity.
  • the analysis device (20) manages the second accuracy management information including the first statistical information obtained by statistically processing the light intensity and the second statistical information obtained by statistically processing the particle count value.
  • the management device (30) may be configured to output information related to quality control based on the first statistical information and the first quality management information included in the received second quality management information.
  • the analyzer (20) stains the specimen with a dye that generates fluorescence by excitation light, and the intensity of light is the intensity of the fluorescence generated from the dye that stained the specimen. May be configured.
  • the analyzer (20) selects a predetermined number of measurement results from the measurement results included in a predetermined period, and statistically processes the selected predetermined number of measurement results.
  • the second quality control information may be calculated.
  • the management device (30) separately displays a screen capable of referring to the first quality control information and a screen capable of referring to the second quality control information as information relating to quality control. It may be configured to perform processing for displaying on the unit (40).
  • the management device (30) displays a screen (310) on which each of the first quality management information and the second quality management information can be referred to as a display unit (40 ) May be configured to perform processing for display.
  • the management device (30) may be configured to perform processing for displaying the second accuracy management information in time series on the screen (310).
  • the management device (30) may be configured to perform processing for displaying the first accuracy management information in time series together with the second accuracy management information on the screen (310).
  • the management device (30) uses a combination of the first accuracy management information and the second accuracy management information as the information related to the accuracy management, the first accuracy management information and the second accuracy. It may be configured to perform processing for displaying on the display unit (40) a graph indicated by a coordinate space having management information as two axes.
  • the management device (30) differs from the one facility (12) in the second accuracy management information acquired from the analysis device (20) of the one facility (12). It may be configured to perform processing for causing the display unit (40) to display a screen (330) that can be compared with the second quality control information acquired from the analyzer (20) of the other facility (12).
  • the management device (30) is different from the second quality management information acquired from the analysis device (20) of the one facility (12) and the one facility (12).
  • the relationship with the second quality control information acquired from the analyzer (20) of the other facility (12) matches a predetermined condition, a process for outputting the notification information as information related to the quality control is performed. obtain.
  • the management device (30) analyzes the other facility (12) whose second accuracy management information acquired from the analysis device (20) of the one facility (12) is different from the one facility (12).
  • the information is distributed in a region exceeding a predetermined range set based on the second accuracy management information acquired from the device (20), it may be configured to perform processing for outputting notification information.
  • the management device (30) has another facility (12) in which the width of variation of the second accuracy management information acquired from the analysis device (20) of the one facility (12) is different from that of the one facility (12).
  • it may be configured to perform processing for outputting the notification information.
  • the management device (30) notifies that there is a possibility that an abnormality has occurred in accuracy management when the second accuracy management information matches a predetermined condition. May be configured to perform a process for outputting the information as information related to quality control.
  • the management device (30) may be configured to perform processing for outputting the notification information when the second accuracy management information is out of a predetermined variation range.
  • the management device (30) is configured so that the second quality control information acquired from the analysis device (20) of the one facility (12) matches a predetermined condition.
  • the analyzer (20) of the facility (12) is remotely accessed via the network (13), and processing for displaying the screen of the analyzer (20) on the display unit (40) is performed.
  • the management device (30) displays the analysis result of the sample used for generating the second quality control information when the second quality control information matches a predetermined condition. It is possible to further obtain information to be performed, and to perform processing for displaying the analysis result on the display unit (40) based on the obtained information.
  • the management device (30) provides notification information indicating that there is a possibility that an abnormality has occurred in the reagent when the second quality control information matches a predetermined condition. It may be configured to perform processing to be output as information on accuracy management.
  • the management device (30) when the second quality control information matches a predetermined condition, the management device (30) further acquires measurement data obtained by measuring the sample used for generating the quality control information, and obtains the acquired measurement data. Based on this, it may be configured to determine whether or not a reagent other than a genuine reagent is used as the determination of the abnormality of the reagent.
  • the management device (30) determines whether or not an abnormality has occurred in the quality management based on the second quality management information acquired from the plurality of analysis devices (20). May be configured to set conditions for.
  • the analyzer (20) includes an optical flow cytometer (54), and light obtained by measuring each of a plurality of samples with the flow cytometer (54).
  • the statistical information obtained by statistically processing the intensity of the sample and the measurement result obtained by analyzing the measurement data obtained by measuring the quality control substance are transmitted to the management device (30), and the management device (30)
  • the received statistical information and the measurement result may be combined to determine whether there is a possibility that an abnormality has occurred in the accuracy management.
  • the management device (30) has an abnormality in the reagent when the first quality control information is normal and the second quality control information matches a predetermined condition. It may be configured to perform a process for outputting notification information indicating that there is a possibility as information on accuracy management.
  • the third aspect of the present invention relates to the management device (30).
  • the management device (30) includes first quality control information obtained by measuring an artificially produced quality control material, second quality control information obtained by measuring a plurality of samples, Is acquired from the analyzer (20) installed in each of the plurality of facilities (12) via the network (13), and based on the acquired first accuracy management information and second accuracy management information, at least one Information related to accuracy management of the analyzer (20) of the facility (12) is output.
  • the 4th aspect of this invention is related with the analyzer (20) connected with the management apparatus (30) via the network (13).
  • the analyzer (20) according to this aspect includes a measurement unit (50) for measuring a specimen, an analysis unit (61) for analyzing measurement data obtained by the measurement unit (50), and an analysis unit ( A transmission unit (65) for transmitting the analysis result obtained in 61) to the management device (30).
  • the analysis unit (61) generates first quality control information based on measurement data obtained by measuring the quality control material artificially generated by the measurement unit (50), and the measurement unit (50) includes a plurality of quality control materials.
  • a measurement result is acquired for each sample based on measurement data obtained by measuring the sample, and second quality control information is generated based on the acquired measurement result for each sample.
  • the transmission unit (65) transmits the first accuracy management information and the second accuracy management information generated by the analysis unit (61) to the management device (30).
  • the fifth aspect of the present invention relates to a quality control abnormality determination method.
  • the quality control abnormality determination method first quality control information obtained by measuring an artificially produced quality control material, second quality control information obtained by measuring a plurality of samples, Based on the above, the quality control abnormality of the analyzer (20) is determined.
  • the quality control abnormality determination method it is possible to determine the quality management abnormality with higher accuracy than in the case where the quality management abnormality is determined based on either the first quality management information or the second quality management information.
  • the second quality management information is statistical information obtained by statistically processing a plurality of measurement results obtained by the analyzer (20) measuring each of the plurality of samples. It can be configured to be.
  • the analyzer (20) includes an optical flow cytometer (54), the measurement result includes the intensity of light obtained by measuring the specimen, and the statistical information is The statistical information obtained by statistically processing the light intensity obtained by measuring each of the plurality of specimens with the flow cytometer (54) can be configured.
  • the quality control quality can be improved by fully utilizing the measurement results of both the quality control substance and the specimen.
  • FIG. 1 is a block diagram illustrating a configuration of a quality control system according to the embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the analyzer according to the embodiment.
  • FIG. 3 is a diagram schematically illustrating the configuration of the flow cytometer according to the embodiment.
  • FIG. 4 is a block diagram illustrating a configuration of the management apparatus according to the embodiment.
  • FIG. 5 is a diagram for explaining the quality control information transmitted from the information processing unit according to the embodiment to the management device.
  • FIG. 6 is a diagram illustrating an equation for calculating XbarM according to the embodiment.
  • FIG. 7 is a diagram for explaining the characteristics of the first accuracy management information and the second accuracy management information according to the embodiment.
  • FIG. 8A is a graph for comparing variation coefficients of the first accuracy management information and the second accuracy management information according to the embodiment.
  • FIG. 8B is a graph for explaining that the second quality control information according to the embodiment can grasp the difference in the status of quality control between the analyzers.
  • FIG. 9 is a graph showing the acquired first quality control substance and second quality control substance according to the embodiment in time series.
  • FIG. 10 is a flowchart illustrating processing of the analysis apparatus according to the embodiment.
  • FIG. 11 is a flowchart illustrating processing of the management apparatus according to the embodiment.
  • FIG. 12 is a flowchart illustrating processing of the management apparatus according to the embodiment.
  • 13A and 13B are diagrams illustrating an example of a screen displayed on the display unit according to the embodiment.
  • FIG. 14A is a diagram illustrating an example of a screen displayed on the display unit according to the embodiment.
  • FIGS. 14B and 14C are graphs for explaining determination of quality control abnormality according to the modified example.
  • FIG. 15 is a diagram illustrating an example of a screen displayed on the display unit according to the embodiment.
  • FIG. 16A is a flowchart illustrating processing of the management apparatus according to the embodiment.
  • FIG. 16B is a flowchart showing processing of the analyzer according to the embodiment.
  • FIG. 17A is a diagram illustrating an example of a scattergram when a genuine reagent displayed on the display unit according to the embodiment is used.
  • FIG. 17B is a diagram illustrating an example of a scattergram when a reagent other than the genuine reagent according to the embodiment is used.
  • FIG. 18 is a schematic diagram for explaining a configuration according to related technology.
  • FIG. 19 is a schematic diagram for explaining a configuration according to related technology.
  • the accuracy management system 10 includes an analysis device 20 and a management device 30.
  • the management device 30 is installed in a facility 11 such as a customer support center.
  • the analyzer 20 is installed in a facility 12 such as a hospital or an inspection center.
  • the facility 12 is a facility different from the facility 11.
  • the analysis device 20 and the management device 30 are connected to a network 13 such as the Internet, and can communicate with each other via the network 13.
  • the quality control system 10 includes a plurality of facilities 12. Each of the plurality of facilities 12 includes one or more analyzers 20.
  • the facility 12 typically has one or more laboratory technicians.
  • the inspection engineer operates the analyzer 20 in the facility 12 where the laboratory technician is arranged.
  • the analyzer 20 measures an artificially generated quality control material and measures a sample collected from a subject or a patient.
  • the analyzer 20 analyzes the measurement data obtained by the measurement and acquires the measurement result.
  • the analyzer 20 transmits the first quality control information obtained by measuring the quality control substance and the second quality management information obtained by measuring a plurality of samples to the management device 30 via the network 13.
  • the management device 30 acquires and stores the first accuracy management information and the second accuracy management information from the analysis device 20 of each facility 12 via the network 13.
  • Quality control substance refers to an artificially generated quality control substance such as latex particles simulating particles contained in a specimen, or substances prepared by extracting a predetermined component from a specimen collected from an animal. The substance may be widely included.
  • the management device 30 outputs information related to accuracy management of the analysis device 20 of at least one facility 12 based on the first accuracy management information and the second accuracy management information acquired and stored from the analysis device 20.
  • the information related to accuracy management includes, for example, a screen on which the first accuracy management information and the second accuracy management information can be compared, a determination result of the accuracy management state based on the first accuracy management information and the second accuracy management information, and the like.
  • Information related to the accuracy management information is output by, for example, displaying on the display unit 40 of the management device 30, ringing the speaker of the management device 30, or transmitting to other devices.
  • a person in charge of monitoring the analyzer 20 is arranged.
  • the person in charge of the monitor operates the management apparatus 30 and responds to an inquiry about the analysis apparatus 20 from the inspection engineer.
  • the management device 30 causes the display unit 40 to display a screen or the like on which the first accuracy management information and the second accuracy management information received from the analysis device 20 can be referred to.
  • the person in charge of the monitor refers to the screen displayed on the display unit 40 and evaluates the status of quality control in the analyzer 20.
  • the first accuracy management information and the second accuracy management information acquired from the analyzer 20 installed in each of the plurality of facilities 12 can be collected in the management device 30. For this reason, the state of accuracy management in the analysis device 20 can be appropriately evaluated by the person in charge of monitoring on the management device 30 side. Further, as will be described later, the inventors have newly found that the second accuracy management information obtained by measuring a plurality of specimens has a remarkably small variation in a predetermined item. It was found that the status of accuracy management in the analyzer 20 can be accurately evaluated by referring to the management information. Therefore, by outputting information related to accuracy management based on the first accuracy management information and the second accuracy management information, the accuracy management status of the analyzer 20 can be evaluated more appropriately and accurately. Therefore, the quality control quality can be improved by fully utilizing the measurement results of both the quality control substance and the sample.
  • the analyzer 20 includes a measuring unit 50 and an information processing unit 60.
  • the measurement unit 50 includes a measurement control unit 51, a sample aspiration unit 52, a sample preparation unit 53, a flow cytometer 54, an electrical resistance detection unit 55, a hemoglobin detection unit 56, and a signal processing circuit 57. Prepare.
  • the measurement control unit 51 is configured by, for example, a CPU, MPU, and the like.
  • the measurement control unit 51 receives a signal output from each unit of the measurement unit 50 and controls each unit of the measurement unit 50.
  • the measurement control unit 51 communicates with the information processing unit 60.
  • the measurement control unit 51 includes a storage unit 51a.
  • the storage unit 51a is configured by, for example, a ROM, a RAM, a hard disk, and the like.
  • the measurement control unit 51 performs processing based on a program stored in the storage unit 51a.
  • the sample aspirating unit 52 has an aspiration tube (not shown), and aspirates the sample accommodated in the sample container and the quality control material accommodated in the container.
  • the sample of the embodiment is whole blood of peripheral blood collected from a subject.
  • the sample preparation unit 53 is connected to a plurality of containers that respectively store a plurality of reagents used for measurement.
  • the sample preparation unit 53 mixes a specimen and a predetermined reagent, counts white blood cells, and prepares a measurement sample for classifying and counting basophils and nucleated red blood cells. This measurement sample is hereinafter referred to as “WNR measurement sample”.
  • the sample preparation unit 53 mixes a specimen and a predetermined reagent, classifies and counts neutrophils, lymphocytes, monocytes and eosinophils, and detects abnormal cells such as immature leukocytes and atypical lymphocytes. Prepare a sample for measurement. This measurement sample is hereinafter referred to as “WDF measurement sample”.
  • the sample preparation unit 53 mixes a specimen and a predetermined reagent to prepare a measurement sample for classifying and counting reticulocytes. This measurement sample is hereinafter referred to as “RET measurement sample”.
  • the sample preparation unit 53 mixes the specimen and a predetermined reagent to prepare a measurement sample for detecting abnormal cells of blasts and lymphocytes. This measurement sample is hereinafter referred to as “WPC measurement sample”.
  • the reagents used in preparing the WNR measurement sample, WDF measurement sample, RET measurement sample, and WPC measurement sample all include a dye that generates fluorescence when excited.
  • the sample preparation unit 53 mixes the specimen and a predetermined reagent to prepare a measurement sample for counting the number of red blood cells and platelets.
  • This measurement sample is hereinafter referred to as “RBC / PLT measurement sample”.
  • the sample preparation unit 53 prepares a measurement sample for measuring the hemoglobin concentration by mixing the specimen and a predetermined reagent. This measurement sample is hereinafter referred to as “HGB measurement sample”.
  • the sample preparation unit 53 mixes a quality control substance and a predetermined reagent to obtain a WNR measurement sample, a WDF measurement sample, a RET measurement sample, a WPC measurement sample, an RBC / PLT measurement sample, and an HGB measurement. Prepare a sample.
  • the WNR measurement sample, WDF measurement sample, RET measurement sample, and WPC measurement sample are sent to the flow cytometer 54 and measured by the flow cytometer 54.
  • the RBC / PLT measurement sample is sent to the electrical resistance detection unit 55 and measured by the electrical resistance detection unit 55.
  • the HGB measurement sample is sent to the hemoglobin detector 56 and measured by the hemoglobin detector 56.
  • the flow cytometer 54 is an optical flow cytometer that measures blood cells by flow cytometry.
  • the flow cytometer 54 includes a flow cell 101, a light source 102, light receiving units 103, 104, and 105, a collimator lens 111, a condenser lens 112, a beam stopper 113, a condenser lens 114, and a dichroic mirror 115.
  • An optical filter 116 is an optical flow cytometer that measures blood cells by flow cytometry.
  • the flow cytometer 54 includes a flow cell 101, a light source 102, light receiving units 103, 104, and 105, a collimator lens 111, a condenser lens 112, a beam stopper 113, a condenser lens 114, and a dichroic mirror 115.
  • An optical filter 116 An optical filter 116.
  • the WNR measurement sample, WDF measurement sample, RET measurement sample, and WPC measurement sample are separately supplied to the flow cell 101 during measurement.
  • the flow cell 101 is formed in a tubular shape by a material having translucency.
  • Each measurement sample is flowed into the flow cell 101 in a state of being wrapped in a sheath liquid. Thereby, the particles contained in each measurement sample pass through the flow cell 101 in a state of being aligned in a line.
  • the light source 102 is a semiconductor laser light source and emits laser light having a predetermined wavelength.
  • the light emitted from the light source 102 is excitation light that excites the dye contained in each measurement sample and generates fluorescence in a predetermined wavelength band from the dye.
  • the collimator lens 111 and the condensing lens 112 collect the light emitted from the light source 102 and irradiate each measurement sample flowing in the flow cell 101.
  • forward scattered light, side scattered light, and fluorescence are generated from particles in each measurement sample.
  • the forward scattered light reflects information on the size of the particles
  • the side scattered light reflects internal information of the particles
  • the fluorescence reflects the degree of staining of the particles.
  • the light receiving unit 103 is configured by a photodiode, for example. The light receiving unit 103 receives the forward scattered light and outputs an electrical signal corresponding to the received forward scattered light.
  • the condensing lens 114 condenses the side scattered light and the fluorescence generated on the side of the flow cell 101.
  • the dichroic mirror 115 reflects the side scattered light collected by the condenser lens 114 and transmits the fluorescence collected by the condenser lens 114.
  • the light receiving unit 104 is configured by, for example, a photodiode. The light receiving unit 104 receives the side scattered light reflected by the dichroic mirror 115 and outputs an electric signal corresponding to the received side scattered light.
  • the optical filter 116 transmits only the fluorescence received by the light receiving unit 105 among the light transmitted through the dichroic mirror 115.
  • the light receiving unit 105 is configured by, for example, an avalanche photodiode. The light receiving unit 105 receives the fluorescence transmitted through the optical filter 116 and outputs an electrical signal corresponding to the received fluorescence.
  • the electric resistance detection unit 55 measures blood cells by the sheath flow DC detection method.
  • An RBC / PLT measurement sample is supplied to a flow cell (not shown) of the electrical resistance detection unit 55 at the time of measurement.
  • the electrical resistance detection unit 55 applies a voltage to the RBC / PLT measurement sample flowing through the flow cell of the electrical resistance detection unit 55, and detects the change in voltage caused by the passage of the particle to detect the particle.
  • the electrical resistance detection unit 55 outputs a detection signal.
  • the hemoglobin detector 56 measures hemoglobin by the SLS-hemoglobin method.
  • An HGB measurement sample is supplied to a cell (not shown) of the hemoglobin detector 56 at the time of measurement.
  • the hemoglobin detection unit 56 irradiates the HGB measurement sample accommodated in the cell of the hemoglobin detection unit 56 with light, and detects the absorbance of the HGB measurement sample.
  • the hemoglobin detector 56 outputs a detection signal.
  • the signal processing circuit 57 performs signal processing on the signals output from the light receiving units 103 to 105. Specifically, the signal processing circuit 57 extracts the waveform corresponding to the particle based on the signals output from the light receiving units 103 to 105, and calculates the peak value, width, area, etc. of the waveform for each particle.
  • the peak values of the waveforms based on the signals output from the light receiving units 103 to 105 are referred to as “forward scattered light intensity”, “side scattered light intensity”, and “fluorescence intensity”, respectively.
  • the forward scattered light intensity, the side scattered light intensity, and the fluorescence intensity may each be a waveform width or area.
  • the signal processing circuit 57 extracts a waveform corresponding to the particle based on the signal output from the electrical resistance detection unit 55, and calculates the peak value of the waveform for each particle.
  • the signal processing circuit 57 calculates the hemoglobin concentration based on the signal output from the hemoglobin detection unit 56.
  • the signal processing circuit 57 performs signal processing as described above on the signals output from the flow cytometer 54, the electrical resistance detection unit 55, and the hemoglobin detection unit 56 to acquire measurement data, and measures the acquired measurement data. Output to the control unit 51.
  • the measurement control unit 51 stores the measurement data output from the signal processing circuit 57 in the storage unit 51a. When the measurement of the sample and the quality control material is completed, the measurement control unit 51 transmits the measurement data stored in the storage unit 51a to the information processing unit 60.
  • Measurement data refers to data acquired by the signal processing circuit 57 and sent from the measurement unit 50 to the information processing unit 60.
  • the information processing unit 60 includes an analysis unit 61, a storage unit 62, a display unit 63, an input unit 64, and a transmission unit 65.
  • the analysis unit 61 is constituted by a CPU, for example.
  • the analysis unit 61 receives a signal output from each unit of the information processing unit 60 and controls each unit of the information processing unit 60.
  • the analysis unit 61 communicates with the measurement unit 50 via the transmission unit 65.
  • the analysis unit 61 communicates with the management device 30 via the transmission unit 65 and the network 13.
  • the storage unit 62 is configured by, for example, a ROM, a RAM, a hard disk, and the like.
  • the analysis unit 61 performs processing based on the program stored in the storage unit 62.
  • the display unit 63 is configured by a display, for example.
  • the display unit 63 displays a screen showing the analysis result.
  • the input unit 64 is configured by a mouse, a keyboard, and the like, for example.
  • the input unit 64 receives an input from the laboratory technician.
  • the display unit 63 and the input unit 64 may be integrally configured by a touch panel or the like.
  • the transmission unit 65 is configured by a network interface card, for example. The transmission unit 65 outputs the information received from the other device to the analysis unit 61, and transmits the information output from the analysis unit 61 to the other device.
  • the analysis unit 61 stores the measurement data received from the measurement unit 50 in the storage unit 62. Based on the measurement data received from the measurement unit 50, the analysis unit 61 generates an analysis result as described below.
  • the analysis unit 61 performs analysis such as blood cell classification and counting based on the measurement data of the specimen, and calculates measurement results of a plurality of measurement items.
  • the analysis unit 61 performs analysis such as classification and counting of particles based on the measurement data of the quality control substance, and calculates the measurement results of a plurality of measurement items.
  • the measurement items include so-called CBC items such as the number of white blood cells, the number of red blood cells, the number of platelets, the amount of hemoglobin, the hematocrit value, the average red blood cell volume, the average red blood cell hemoglobin amount, and the average red blood cell hemoglobin concentration.
  • the analysis unit 61 uses the forward scattered light intensity, the side scattered light intensity, and the fluorescence intensity included in the measurement data as a measurement result of one forward scattered light intensity, one side scattered light intensity, and one fluorescent intensity. calculate. For example, in the case of a WNR measurement sample, a plurality of forward scattered light intensities corresponding to the number of particles are obtained by measurement. The analysis unit 61 calculates a median from a plurality of forward scattered light intensities included in the measurement data, and sets the calculated median as one forward scattered light intensity.
  • the analysis unit 61 calculates a median from each of the plurality of side scattered light intensities and the plurality of fluorescence intensities obtained from the WNR measurement sample, and calculates the calculated median as one side scattered light intensity and 1 One fluorescence intensity.
  • the analysis unit 61 performs the above-described processing on the WNR measurement sample, the WDF measurement sample, the RET measurement sample, and the WPC measurement sample based on the quality control material, and the WNR measurement sample, the WDF measurement sample, and the RET measurement based on the specimen.
  • the above processing is performed on the sample and the WPC measurement sample.
  • An average value may be used instead of the median value.
  • the analysis unit 61 calculates one forward scattered light intensity, one side scattered light intensity, and one fluorescent intensity as measurement results based on the intensity of each light included in the quality control material and the measurement data of the specimen. To do.
  • One intensity of each light calculated as described above is hereinafter referred to as a “sensitivity item”.
  • the sensitivity item includes one forward scattered light intensity, one side scattered light intensity, and one fluorescent intensity for each WNR measurement sample, WDF measurement sample, RET measurement sample, and WPC measurement sample.
  • the analysis unit 61 statistically processes the measurement results of the measurement items based on a plurality of samples to acquire statistical information, and statistically processes the measurement results of the sensitivity items based on the plurality of samples to acquire statistical information.
  • the statistical information will be described later with reference to FIGS.
  • Measurement result indicates a numerical value calculated for each measurement item and a numerical value calculated for each sensitivity item.
  • the “analysis result” is a concept including a measurement result, a scattergram related to calculation of the measurement result, and statistical information obtained by statistically processing the measurement result.
  • the analysis unit 61 transmits the measurement result of the measurement item based on the quality control material and the measurement result of the sensitivity item based on the quality control material to the management device 30 via the network 13 as the first quality control information. In addition, the analysis unit 61 transmits the statistical information on the measurement items based on the plurality of samples and the statistical information on the sensitivity items based on the plurality of samples to the management device 30 via the network 13 as the second accuracy management information. .
  • the measurement results based on a plurality of samples are statistically processed as described above, even if the statistical information obtained by the statistical processing is transmitted via the network 13, the measurement results of each sample are prevented from flowing out. it can. Therefore, it is possible to appropriately evaluate the status of accuracy management in the analyzer 20 on the management device 30 side while preventing the measurement results of each sample from flowing out.
  • the analysis unit 61 transmits device information to the management device 30 via the network 13 in addition to the first accuracy management information and the second accuracy management information.
  • the apparatus information includes a facility name, a facility number, an analysis apparatus number, an analysis apparatus type, a reagent name, a reagent lot, a quality control substance name, a quality control substance lot, date and time, apparatus temperature, and the like.
  • the management device 30 includes a control unit 31, a storage unit 32, an input unit 33, a transmission unit 34, and a display unit 40.
  • the control unit 31 is constituted by a CPU, for example.
  • the control unit 31 receives a signal output from each unit of the management device 30 and controls each unit of the management device 30.
  • the control unit 31 communicates with the information processing unit 60 of the analysis device 20 via the network 13.
  • the storage unit 32 is configured by, for example, a ROM, a RAM, a hard disk, and the like.
  • the storage unit 32 stores a program 32a, a reception database 32b, and a determination result database 32c.
  • the control unit 31 executes processing based on the program 32 a stored in the storage unit 32.
  • the reception database 32b stores the first accuracy management information, the second accuracy management information, and the device information transmitted from each analysis device 20.
  • the determination result database 32c includes a determination result of quality control abnormality. Conditions for determining the quality control abnormality are stored in the storage unit 32.
  • the display unit 40 is constituted by a display, for example.
  • the input unit 33 is composed of, for example, a mouse and a keyboard.
  • the display unit 40 and the input unit 33 may be integrally configured by a touch panel or the like.
  • the transmission unit 34 is configured by a network interface card, for example.
  • the transmission unit 34 outputs information received from another device to the control unit 31, and transmits information output from the control unit 31 to the other device.
  • the analysis unit 61 of the information processing unit 60 calculates the measurement result of the measurement item based on the quality control material and the measurement result of the sensitivity item based on the quality control material.
  • the analysis unit 61 also calculates statistical information obtained by statistically processing the measurement results of the measurement items based on a plurality of samples, and statistical information obtained by statistically processing the measurement results of the sensitivity items based on the plurality of samples. To do.
  • the measurement result group 201 includes the measurement result of the measurement item and the measurement result of the sensitivity item obtained from one quality control substance.
  • the measurement result group 202 includes measurement item measurement results and sensitivity item measurement results obtained from one specimen.
  • the quality control material is measured at predetermined time intervals, and the sample is measured during the quality control material measurement. Therefore, as shown in FIG. 5, the measurement result groups 201 and 202 are arranged in time series, and a plurality of measurement result groups 202 are arranged between the two measurement result groups 201.
  • the analysis unit 61 receives the measurement data based on the quality control material from the measurement unit 50, generates the measurement result group 201 based on the received measurement data, and receives the measurement data based on the sample from the measurement unit 50, A measurement result group 202 is generated based on the measurement data.
  • the analysis unit 61 When the analysis unit 61 generates the measurement result group 201, the analysis unit 61 transmits the generated measurement result group 201 to the management apparatus 30 as first accuracy management information. At this time, the analysis unit 61 includes a plurality of measurement result groups 202 between the generated measurement result group 201 and the previously generated measurement result group 201 and the previously calculated XbarM (i ⁇ 1). From this, XbarM (i) of this time is calculated as statistical information. XbarM is a value obtained by weighted averaging the measurement results of a plurality of specimens using a calculation formula described later. XbarM (i) is calculated for each measurement item and sensitivity item. The analysis unit 61 transmits the calculated XbarM (i) for each measurement item and sensitivity item to the management device 30 as the second accuracy management information.
  • the processing when the analysis unit 61 generates the measurement result group 201 located at the right end of FIG. 5 will be described as an example.
  • the quality control method using the measurement result of the sample in the embodiment is based on the normal person average value method.
  • the analysis unit 61 selects N measurement result groups 202 from the measurement result group 202 between the measurement result group 201 located at the right end and the previous measurement result group 201. Specifically, the analysis unit 61 selects the measurement result group 202 in which the measurement results of the measurement items included in the measurement result group 202 are normal values. Note that the measurement result group 202 whose measurement result is a normal value may not necessarily be selected, and may be any measurement result group 202 including a measurement result suitable for statistical processing. Further, the value of N in the embodiment is 20, but may be a value other than 20.
  • a set of the selected N measurement result groups 202 is referred to as an “i th batch”.
  • Each measurement result group 202 included in the i-th batch includes measurement results of a plurality of measurement items and measurement results of a plurality of sensitivity items.
  • one of the measurement item and the sensitivity item is referred to as a “target item”, and a procedure for calculating XbarM (i) for the target item will be described.
  • the measurement result of the target item included in the j-th measurement result group 202 in the i-th batch is Xbar (j, i), and the statistical information of the target item in the (i ⁇ 1) -th batch is XbarM (i ⁇ Assuming that 1), XbarM (i), which is the statistical information of the target item of the i-th batch, is calculated by equation (1) shown in FIG.
  • XbarM (i) which is the statistical information of the target item of the i-th batch
  • the analysis unit 61 performs the above procedure for other items of the i-th batch, and transmits the calculated XbarM for each measurement item and sensitivity item to the management device 30 as the second accuracy management information.
  • the analysis unit 61 when the analysis unit 61 generates the measurement result group 201 located at the right end, the analysis unit 61 transmits the measurement result group 201 generated immediately before to the management apparatus 30 as the first accuracy management information, and XbarM based on the i-th batch. (I) may be transmitted to the management apparatus 30 as the second accuracy management information. That is, XbarM of the immediately preceding period may be transmitted with respect to the generation timing of the first quality control information, or XbarM of the immediately following period may be transmitted.
  • FIG. 7 plots a combination of the first accuracy management information and the second accuracy management information for the predetermined items generated at the same timing in a coordinate space having the first accuracy management information and the second accuracy management information as two axes. It is a graph for. In this graph, a histogram indicating the frequency in the first accuracy management information and the second accuracy management information is also shown. A horizontal axis indicating the value of the first quality control information indicates a range 211 in which the quality control is determined to be appropriate when quality control is determined based on the first quality control information. The vertical axis indicating the value of the second quality control information indicates a range 212 in which it is determined that the quality control is appropriate when quality control is determined based on the second quality management information.
  • the quality control determination is performed based only on the first quality control information obtained from the quality control material. In this case, for example, if the coordinate point is included in the range 211, it is determined that the accuracy management of the analysis device 20 is appropriate, and if the coordinate point is out of the range 211, it is determined that the accuracy management of the analysis device 20 is not appropriate. Is done. On the other hand, when the accuracy management determination is performed based on the second accuracy management information obtained from a plurality of samples, for example, if the coordinate point is included in the range 212, it is determined that the accuracy management of the analyzer 20 is appropriate. If the coordinate point is out of the range 212, it is determined that the accuracy management of the analyzer 20 is not appropriate.
  • the second accuracy management information is used for the accuracy management determination in addition to the first accuracy management information
  • the determination based on the first accuracy management information is appropriate when the coordinate point is included in the area 213 indicated by the broken line in FIG.
  • the determination based on the second quality control information is not appropriate.
  • the second accuracy management information is used for accuracy management determination in addition to the first accuracy management information, an abnormality in accuracy management that cannot be detected only by the determination based on the first accuracy management information can be detected.
  • FIG. 8A is a diagram showing, for each item, the coefficient of variation CV of the quality control information actually acquired from the 18 analyzers 20 installed in the six facilities 12.
  • WBC indicates white blood cell count
  • RBC indicates red blood cell count
  • PLT indicates platelet count
  • HGB indicates hemoglobin content
  • HCT indicates hematocrit value
  • MCV indicates average red blood cell volume
  • MCH indicates average red blood cell pigment content
  • MCHC indicates the mean erythrocyte hemoglobin concentration.
  • WNR-X, WNR-Y and WNR-Z are measurement results based on the WNR measurement sample, and indicate side scattered light intensity, fluorescence intensity and forward scattered light intensity, respectively.
  • WDF-X, WDF-Y, and WDF-Z are measurement results based on the WDF measurement sample, and indicate side scattered light intensity, fluorescence intensity, and forward scattered light intensity, respectively.
  • RET-RBC-X, RET-RBC-Y, and RET-RBC-Z are measurement results based on the RET measurement sample, and indicate side scattered light intensity, fluorescence intensity, and forward scattered light intensity, respectively.
  • WPC-X, WPC-Y, and WPC-Z are measurement results based on the WPC measurement sample, and indicate side scattered light intensity, fluorescence intensity, and forward scattered light intensity, respectively.
  • the quality control substance having the same lot number was used in each analyzer 20.
  • the value of N in the calculation of the second quality control information was 20.
  • the variation coefficient CV of the first accuracy management information is substantially smaller than the variation coefficient CV of the second accuracy management information.
  • the variation coefficient CV of the first accuracy management information is significantly smaller than the variation coefficient CV of the second accuracy management information.
  • the first accuracy management information of the CBC item has been acquired, and in addition, the second accuracy management information of the CBC item has also been acquired.
  • the first accuracy management information is preferentially used for the accuracy management based on the CBC item.
  • the variation coefficient CV of the second accuracy management information is substantially smaller than the variation coefficient CV of the first accuracy management information.
  • the variation coefficient CV of the second accuracy management information may be significantly smaller than the variation coefficient CV of the first accuracy management information. Therefore, it can be seen that when the quality control is performed using the sensitivity item, it is preferable to use the second quality control information obtained by measuring a plurality of samples.
  • the inventors compared the variation coefficient CV of the first accuracy management information and the variation coefficient CV of the second accuracy management information for the measurement item and the sensitivity item. We found that the coefficient of variation CV of the management information is smaller. Therefore, when accuracy management is performed, if the first accuracy management information is used for measurement items and the second accuracy management information is used for sensitivity items, variations in accuracy management information can be reduced. It is possible to accurately grasp this and perform stable quality control.
  • the variation coefficient CV of the first accuracy management information is small in the measurement item, and the value of the variation coefficient CV of the second accuracy management information is small in the sensitivity item.
  • the first accuracy management It is preferable to use the measurement result of the measurement item for the information, and use the measurement result of the sensitivity item for the second quality control information.
  • the coordinate points based on the first accuracy management information and the second accuracy management information are included in both the ranges 211 and 212 in FIG. 7, it is determined that the accuracy management is properly performed, and otherwise In this case, it is determined that a quality control abnormality has occurred.
  • the analysis device 20 does not transmit the first accuracy management information and the second accuracy management information to the management device 30 and the accuracy management is performed in the installed facility 12, for example, the first accuracy management information and the first accuracy management information (2) Processing for determining a quality control abnormality is performed using all items of the quality control information.
  • the first accuracy management information and the second accuracy management information have items with large variations.
  • a low-reliability quality control abnormality notification is frequently performed based on an item having a large variation.
  • the quality control system 10 is configured to perform highly reliable quality control abnormality notification based on an item with small variation among the items of the first quality management information and the second quality management information.
  • only reliable accuracy control abnormality is notified.
  • the operator can appropriately evaluate the state of accuracy management of the analyzer 20 and take necessary measures to improve the accuracy management.
  • the value of N in the calculation of the second accuracy management information is further increased, for example, 99, the coefficient of variation CV of the second accuracy management information can be suppressed even in the measurement item. It was. Therefore, if the value of N is increased, there is a possibility that stable accuracy management can be realized even when the second accuracy management information is used when performing accuracy management based on the measurement item.
  • FIG. 8B illustrates a combination of the first accuracy management information and the second accuracy management information generated at the same timing in a coordinate space having the first accuracy management information and the second accuracy management information as two axes. It is a graph of. Regions 221, 222, and 223 exemplify regions in which coordinate points indicating combinations of the first accuracy management information and the second accuracy management information obtained from three different analyzers 20 are distributed for the WDF-Y items, respectively. ing.
  • the vertical width corresponding to the second accuracy management information is all smaller than the horizontal width corresponding to the first accuracy management information. This corresponds to the fact that the variation coefficient CV of the second accuracy management information is smaller than the variation coefficient CV of the first accuracy management information in the WDF-Y item shown in FIG.
  • the regions 221 to 223 overlap each other. From this, it can be said that there is not much difference between the analyzers 20 in the variation of the first quality control information.
  • the second accuracy management information on the vertical axis the adjacent regions overlap each other, but the regions 221 and 223 do not overlap each other. From this, it can be said that there is a difference between the analyzers 20 in the variation of the second quality control information. Therefore, by using the second accuracy management information of the sensitivity item, it is possible to grasp how far the accuracy management of the target analysis device 20 is different from the accuracy management of other analysis devices 20. In other words, if the distribution of the second accuracy management information is acquired for each analysis device 20 with respect to the sensitivity item, the analysis device 20 that performs accuracy management can grasp the difference in the status of accuracy management from other analysis devices 20.
  • the horizontal axis indicates the time series according to the date
  • the vertical axis indicates the value of the quality control information in WDF-Y.
  • first quality control information is calculated for each concentration level.
  • the broken line shown in the vicinity of the center of the graph in FIG. 9 indicates the timing when the quality control substance is replaced.
  • the first quality control information obtained by measuring the quality control material tends to become smaller with the passage of time.
  • the second quality control information obtained by measuring a plurality of specimens is substantially constant over time. This also shows that in the sensitivity item, the second accuracy management information has a smaller degree of variation than the first accuracy management information. Therefore, if the second accuracy management information is used, the accuracy management information value is unlikely to vary, so that the accuracy management can be performed stably.
  • the quality control substance is artificially generated and is usually stored for a certain period of use and used for quality control, and may deteriorate over time during the period of use.
  • the sample is measured in a fresh state in order to ensure analysis accuracy.
  • the reactivity of the dye that generates fluorescence varies depending on the deterioration state of the sample to be stained. Therefore, the reactivity of the specimen to the dye is less varied than the reactivity of the quality control substance to the dye. For this reason, as shown in FIG. 9, the first accuracy management information changes with the passage of time, and the second accuracy management information becomes substantially constant regardless of the passage of time.
  • FIG. 10 is a flowchart showing the processing of the analyzer 20. Each step in FIG. 10 is executed by the measurement control unit 51 of the measurement unit 50 or the analysis unit 61 of the information processing unit 60.
  • step S101 the measurement control unit 51 controls each unit of the measurement unit 50 and performs a measurement process on the quality control substance or sample. Then, as described above, the measurement control unit 51 transmits measurement data acquired by measurement to the information processing unit 60.
  • step S102 the analysis unit 61 calculates a measurement result group based on the received measurement data, and stores the calculated measurement result group in the storage unit 62. Specifically, when the quality control material is measured in step S101, the analysis unit 61 calculates the measurement result group 201 illustrated in FIG. 5 based on the received measurement data. When the sample is measured in step S101, the analysis unit 61 calculates the measurement result group 202 illustrated in FIG. 5 based on the received measurement data. As described above, the calculated measurement result group 201 or measurement result group 202 includes measurement results of measurement items and sensitivity items.
  • step S103 the analysis unit 61 determines whether or not the quality control substance has been measured in the immediately preceding step S101. If the quality control substance is not measured in the immediately preceding step S101, that is, if the sample is measured in the immediately preceding step S101, the process ends.
  • step S104 the analysis unit 61 performs the i-th measurement for each measurement item and each sensitivity item according to the procedure described with reference to FIGS.
  • the current XbarM (i) is calculated based on the measurement result group 202 in the batch and the previous XbarM (i ⁇ 1) calculated.
  • step S ⁇ b> 105 the analysis unit 61 transmits the first accuracy management information, the second accuracy management information, and the device information to the management device 30.
  • 1st quality control information is the measurement result group 201 containing the measurement result for every measurement item and sensitivity item obtained by measuring a quality control substance.
  • the second quality control information is XbarM (i) for each measurement item and sensitivity item calculated in step S104.
  • each information of step S105 is transmitted to the management device 30 at the time of measurement of the quality control substance.
  • the present invention is not limited to this. 30 may be transmitted.
  • FIG. 11 is a flowchart showing processing of the management apparatus 30.
  • step S201 the control unit 31 of the management device 30 determines whether or not the first accuracy management information, the second accuracy management information, and the device information have been received. Upon receiving these pieces of information transmitted by the process of step S105 in FIG. 10, the control unit 31 associates the received first precision management information, second precision management information, and apparatus information with each other in step S202. The state is stored in the reception database 32b.
  • step S203 the control unit 31 performs an abnormality determination process related to accuracy management based on the information stored in the immediately preceding step S202.
  • the control unit 31 performs abnormality determination regarding accuracy management by determining whether or not the received first accuracy management information, second accuracy management information, and device information match a predetermined condition.
  • the predetermined conditions used in the determination in step S203 are stored in advance in the storage unit 32 of the management device 30, and the first accuracy management information, the second accuracy management information, and the device information acquired from the plurality of analysis devices 20 are stored. And may be set by the control unit 31.
  • the condition is set by the control unit 31, the condition according to the characteristics of the analyzer 20 can be set. A specific example of the abnormality determination process will be described later with reference to FIGS.
  • step S204 the control unit 31 stores the result of the abnormality determination process performed in step S203 in the determination result database 32c.
  • FIG. 12 is a flowchart showing the processing of the management apparatus 30.
  • step S301 the control unit 31 of the management device 30 determines whether or not a display instruction is input from the person in charge of the monitor via the input unit 33.
  • the display instruction includes a facility number, an analyzer number, a display period, an item name, and the like.
  • the control unit 31 determines from the reception database 32b and the determination result database 32c based on the facility number, the analysis apparatus number, the display period, the item name, and the like included in the display request.
  • the first accuracy management information, the second accuracy management information, and the abnormality determination result are extracted.
  • step S303 the control unit 31 displays a screen including the first accuracy management information and the second accuracy management information on the display unit 40.
  • the control unit 31 may separately display a screen on which the first accuracy management information can be referred to and a screen on which the second accuracy management information can be referenced on the display unit 40 in accordance with a tab switching operation.
  • step S304 the control unit 31 determines whether or not the abnormality determination result extracted in step S302 is “accuracy management abnormality”.
  • the control unit 31 outputs notification information indicating that an accuracy management abnormality has occurred in the target analyzer 20. Specifically, the control unit 31 displays on the screen displayed on the display unit 40 in step S303 that a quality control abnormality has occurred.
  • the control unit 31 may output a sound indicating that a quality control abnormality has occurred from a speaker provided in the management device 30 or another device, to the management device 30 or another device.
  • Information such as vibration that can be grasped by the person in charge of monitoring may be output from the provided vibration generating device.
  • the notification information may include information indicating what quality control abnormality determination conditions are met.
  • a screen including quality control information and the like is displayed on the display unit 40 in response to the input of a display instruction by the person in charge of the monitor.
  • the quality control information and the like are stored in the reception database 32b.
  • the screen including the quality control information and the like may be automatically displayed on the display unit 40 at the timing when the abnormality determination result is stored in the determination result database 32c.
  • the abnormality determination process and the storage of the abnormality determination result are performed at the timing when the management device 30 receives the quality control information and the like from the analysis device 20, but not limited to this, step S301 in FIG. It may be performed when a display instruction is input in.
  • the control unit 31 transmits a display request for accuracy management information and an abnormality determination result even when a display request is received from a device other than the management device 30, for example, another device in the facility 11. It may be transmitted to the device. In this case, the quality control information and the abnormality determination result are displayed in the device that has transmitted the display request.
  • step S303 when a screen on which the first accuracy management information and the second accuracy management information can be referred to is displayed on the display unit 40 in step S303, the person in charge of the monitor visually checks the accuracy management status of the analyzer 20. Can be grasped.
  • step S305 when notification information indicating that an accuracy management abnormality has occurred in the analysis device 20 is output, the person in charge of the monitor can know that an abnormality has occurred in the accuracy management of the analysis device 20. it can. Thereby, the person in charge of the monitor can take measures for improving the accuracy management, such as contacting the inspection engineer of the facility 12 where the analyzer 20 in which the accuracy management abnormality has occurred is installed.
  • FIGS. 13A and 13B are diagrams illustrating an example of the screen displayed in step S303 in FIG.
  • a screen 310 shown in FIGS. 13A and 13B includes a graph 311 that displays the first quality control information and the second quality control information in time series, and a display area 312 that displays the name and lot number of the quality control material.
  • a screen 310 shown in FIG. 13A shows a state where WDF-X is displayed as an item
  • a screen 310 shown in FIG. 13B shows a state where WDF-Y is displayed as an item. Yes.
  • the person in charge of the monitor who operates the management apparatus 30 can confirm the situation in which the first accuracy management information and the second accuracy management information change in time series by referring to the screen 310.
  • the person in charge of the monitor can grasp the timing when the first accuracy management information and the second accuracy management information change greatly by referring to the screen 310, and there is a possibility that an abnormality has occurred in the accuracy management at that timing. Can be grasped. Therefore, the person in charge of monitoring refers to how the quality control information has changed at that timing, and by appropriately grasping other information that should be considered for quality control, the quality control abnormality and its cause Can be estimated, and appropriate quality control can be performed.
  • the person in charge of the monitor can compare the transition of the first accuracy management information and the transition of the second accuracy management information on one screen 310. Therefore, the person in charge of the monitor can smoothly and easily determine whether there is a possibility that an abnormality has occurred in the accuracy management by comparing the two accuracy management information.
  • the second quality control information is changed at the timing when the reagent lot is changed. That is, in the case of FIG. 13A, at the timing when the reagent lot is changed, the WDF-X second quality control information is further reduced as indicated by the broken line arrow in the graph 311. In the case of FIG. 13B, at the timing when the reagent lot is changed, the second accuracy management information of WDF-Y is increased by one step as indicated by the dashed arrow in the graph 311. However, in both cases of FIGS. 13A and 13B, there is no particular change in the first quality control information.
  • an abnormality occurs in the reagent.
  • the notification information indicating that there is a possibility of the occurrence of the error may be output.
  • “reagent abnormality” may be displayed in the screen 310 of FIGS. 13A and 13B, and a sound or vibration for notifying the reagent abnormality may be output. Thereby, the person in charge of monitoring can grasp that there is a possibility that abnormality has occurred in the reagent.
  • FIG. 14A is a diagram showing an example of the screen displayed in step S305 in FIG.
  • the screen 320 shown in FIG. 14A includes a graph 321 that displays quality control information in time series, and a display area 322 that shows the quality control status.
  • a screen 320 shown in FIG. 14A shows a state in which WDF-Y is displayed as an item, and a state in which second accuracy management information is displayed as target accuracy management information.
  • SD means standard deviation (Standard Deviation). If such a condition is used, it can be appropriately determined that there is a possibility that an accuracy control abnormality may have occurred in the analyzer 20. Since it is determined that an abnormality has occurred in the accuracy management, “abnormal” is displayed in the display area 322.
  • the center line and variation range shown in the graph 321 are set based on a plurality of values of the target item in the target analyzer 20. Note that the center line and the range of variation shown in the graph 321 may be set based on a plurality of values of target items in the target analyzer 20 and other analyzers 20. In this case, the accuracy management information of the target analyzer 20 can be compared with the accuracy management information of other analyzers 20.
  • the person in charge of the monitor who operates the management apparatus 30 refers to the screen 320, and in the target analysis apparatus 20, the quality control information is out of the predetermined range, and there is a possibility that a quality control abnormality has occurred. It is possible to accurately grasp that there is. As a result, the person in charge of the monitor can smoothly check whether or not an abnormality has occurred in the accuracy control. In addition, the person in charge of the monitor can grasp how far the target analysis device 20 deviates from the accuracy management in the other analysis devices 20. Therefore, the person in charge of the monitor can take measures to adjust the analysis device 20 to suppress the deviation in accuracy management.
  • control unit 31 of the management device 30 determines a quality control abnormality based on a graph having the first quality management information and the second quality management information as two axes as shown in FIG.
  • a screen including a graph as shown in FIG. 7 may be displayed.
  • the person in charge of the monitor can smoothly evaluate the quality control while referring to the two pieces of quality management information.
  • notification information indicating that a quality control abnormality has occurred may be output in the management device 30.
  • FIG. 15 is a diagram showing an example of the screen displayed in step S305 of FIG.
  • the screen 330 shown in FIG. 15 includes graphs 331 and 332 and a display area 333 indicating the quality control status.
  • a graph 331 shows the accuracy of the accuracy management information of the target analyzer 20. In other words, the graph 331 indicates how close the quality control information group is to the value set based on the quality control information acquired from the other analysis devices 20.
  • a graph 332 shows the accuracy of the accuracy management information of the target analyzer 20. In other words, the graph 332 shows how close the variation width of the accuracy management information is to a predetermined width range set based on the accuracy management information acquired from the other analysis devices 20.
  • the horizontal axis and the vertical axis of the graph 331 indicate the SDI of the target item of the first accuracy management information and the SDI of the target item of the second accuracy management information, respectively.
  • the SDI of the target item of the quality control information in the target analyzer 20 is calculated by the following formula.
  • the horizontal axis and the vertical axis of the graph 332 indicate the target item PI of the first accuracy management information and the target item PI of the second accuracy management information, respectively.
  • the PI of the target item of the quality control information in the target analyzer 20 is calculated by the following equation.
  • PI SD of measured values obtained from the target analyzer / SD average value of measured values obtained from the analyzers of all facilities
  • the “measured value” means the measurement result of the target item in the case of the first quality control information, and the statistical information of the target item in the case of the second quality control information.
  • the SDI and PI of the first quality control information in one plot are calculated by the above formula based on the two measurement results.
  • the “measured value obtained from the target analyzer” in the SDI calculation formula is an average value of two measurement results.
  • the SDI and PI of the second quality control information in one plot are expressed by the above formula based on 5 pieces of statistical information. Calculated.
  • the “measured value obtained from the target analyzer” in the SDI calculation formula is an average value of five pieces of statistical information. Note that one point may be plotted on each of the graphs 331 and 332 by measurement for one week, for example, not only for one day.
  • the graphs 331 and 332 are not limited to plotting one point based on measured values obtained during a predetermined period such as one day or one week, but at a timing when statistical information for each batch is acquired.
  • One point may be plotted. For example, when quality control substances are measured in the morning and the first quality control information is acquired, it is associated with SDI and PI of the first quality control information obtained in the morning until the next quality control substance is measured. Thus, the SDI and PI of the second quality control information obtained for each of a plurality of batches may be associated.
  • a plurality of points are arranged in the vertical direction according to the number of batches, and it is possible to grasp a change with time in the quality control status.
  • sensitivity item is designated as an item.
  • SDI and PI corresponding to all sensitivity items are plotted as shown in graphs 331 and 332 of FIG.
  • SDI and PI corresponding to one item are plotted on the graphs 331 and 332, respectively.
  • a sensitivity item is specified as an item, and both SDI and PI of the second accuracy management information are distributed in an area exceeding 3. Therefore, the display area 333 displays that there is a problem with the accuracy of the accuracy management information compared to the other analysis devices 20 based on the SDI of the second accuracy management information. Further, the display area 333 displays that there is a problem in the accuracy of the accuracy management information compared to the other analysis devices 20 based on the PI of the second accuracy management information.
  • the determination accuracy can be improved as compared with a case where an abnormality in accuracy management is determined on the analysis device 20 side.
  • frequent notification with low reliability can be suppressed, and only highly reliable notification can be performed. Therefore, the person in charge of the monitor can reliably communicate that the analyzer 20 should take action by contacting the inspection engineer of the analyzer 20 by telephone or the like.
  • the SDI and PI of the first accuracy management information are both distributed in an area smaller than 3, but both the SDI and PI of the second accuracy management information exceed 3 Distributed. In this case, it is determined that there is no abnormality in accuracy management based on only the first accuracy management information. However, by using the second quality control information as in the embodiment, it can be properly determined that there is an abnormality in the quality control.
  • the accuracy management when the plotted points are distributed in the upper right, lower right, upper left, or lower left, the accuracy management is determined to be abnormal based on either the first accuracy management information or the second accuracy management information. Is done. In this case, for example, it can be determined that an abnormality has occurred in both the analyzer 20 and the reagent.
  • the accuracy management when the plotted points are distributed on the upper center side or the lower center side, it is determined that the accuracy management is normal based on the first accuracy management information, and the accuracy management is performed based on the second accuracy management information. Is determined to be abnormal. In this case, for example, it can be determined that an abnormality has occurred in the specimen or reagent.
  • the accuracy management is determined to be abnormal based on the first accuracy management information, and the accuracy management is determined based on the second accuracy management information. Determined as normal. In this case, for example, it can be determined that the quality control material has deteriorated.
  • the person in charge of the monitor who operates the management apparatus 30 can specify the cause of the quality control abnormality in detail by combining the first quality management information and the second quality management information.
  • the determination of the quality control abnormality and the cause specification of the quality management abnormality as described above are not limited to be performed by the person in charge of monitoring, but may be automatically performed by the control unit 31 of the management device 30.
  • the cause of quality control may be specified based on both the graphs 331 and 332.
  • the person in charge of the monitor can compare the accuracy management information of the target analyzer 20 with other analyzers 20 by referring to the screen 330, the status of the accuracy management can be grasped appropriately and accurately. it can.
  • the display area 333 displays the contents for notifying the abnormality regarding the accuracy and precision as described above, the person in charge of the monitor has an abnormality in the accuracy and precision of the measurement result of the analyzer 20. It is possible to appropriately determine that there is a possibility that the error has occurred.
  • the content displayed in the display area 333 is not limited to the content shown in FIG. 15, but the content indicating that there is a possibility that the target analysis device 20 may be managed with different accuracy from the other analysis devices 20. May be displayed.
  • the determination of the quality control abnormality based on the graphs 331 and 332 may be performed based on both the first quality management information and the second quality management information. When a part or the whole of the measurement item is selected as the item, the determination of the accuracy management abnormality based on the graphs 331 and 332 may be performed based on the first accuracy management information.
  • the person in charge of the monitor operates the management device 30 to transmit an instruction to share the screen of the display unit 63 of the information processing unit 60 to the analysis device 20 that is considered to have an abnormality in accuracy management. Thereby, communication processing for screen sharing is performed between the information processing unit 60 of the target analysis device 20 and the management device 30, and the screen of the display unit 63 is displayed on the display unit 40 of the management device 30. Is done.
  • the person in charge of monitoring refers to the screen of the information processing unit 60 displayed on the display unit 40 and grasps the quality control status in more detail.
  • FIGS. 16A and 16B are flowcharts showing processing of the management device 30 and the analysis device 20, respectively.
  • remote access is performed in which the management apparatus 30 communicates so that the information processing unit 60 can be directly operated in order to realize screen sharing.
  • a communication application “Remote Desktop” that can be executed on an operating system “Windows (registered trademark)” of Microsoft Corporation is used as a computer program for realizing remote access.
  • the control unit 31 of the management apparatus 30 starts the processing in FIG. 16A and displays an input screen for inputting a remote access start instruction. Is displayed on the display unit 40.
  • the input screen includes an area for inputting a user name and password for logging in to the analysis apparatus 20 and an IP address for specifying the analysis apparatus 20.
  • the input screen includes a start button for starting remote access.
  • step S401 the control unit 31 determines whether or not a remote access start instruction has been input via the start button on the input screen.
  • the control unit 31 transmits a connection request to the information processing unit 60 of the target analyzer 20 based on the information input on the input screen.
  • the control unit 31 starts remote access communication with the information processing unit 60 in step S403.
  • 16B is started when the information processing unit 60 of the analyzer 20 is activated.
  • an inspection engineer operating the analysis apparatus 20 receives an instruction to start remote access from the person in charge of monitoring who operates the management apparatus 30 by telephone or the like, the program operates the input unit 64 to start accepting remote access. Execute.
  • step S411 the analysis unit 61 of the information processing unit 60 determines whether or not a remote access acceptance instruction has been input as a result of executing a program for starting acceptance of remote access. Determine.
  • step S412 the analysis unit 61 starts accepting remote access.
  • step S413 the analysis unit 61 determines whether or not the connection request transmitted from the management apparatus 30 in step S402 of FIG.
  • the analysis unit 61 starts remote access communication with the management device 30 in step S414.
  • the display screen of the display unit 63 of the information processing unit 60 is displayed on the display unit 40 of the management device 30, and information processing is performed by the input unit 33 of the management device 30.
  • the information processing unit 60 can be operated in the same manner as the input unit 64 of the unit 60.
  • the person in charge of the monitor who operates the management device 30 directly operates the information processing unit 60 to display the measurement result of the sample and the quality control substance performed by the analysis unit 61 on the display unit 40 of the management device 30. Can be displayed. Therefore, the person in charge of the monitor can directly check the accuracy management status of the analyzer 20 without moving to the place where the analyzer 20 is installed.
  • the person in charge of the monitor who operates the management apparatus 30 displays a scattergram 340 displayed on the display unit 63 of the analysis apparatus 20 as shown in FIGS. 17A and 17B by screen sharing. It can be displayed on the display unit 40 of the management device 30.
  • the horizontal axis of the scattergram 340 indicates SSC, that is, side scattered light intensity
  • the vertical axis of the scattergram 340 indicates FL, that is, fluorescence intensity.
  • a scattergram 340 obtained by measurement of a WDF measurement sample is shown, and the scattergram 340 shows side scatter obtained by measurement of a WDF measurement sample.
  • the particle distribution on the scattergram 340 in FIG. 17B has a shape in which the value in the vertical direction, that is, the fluorescence intensity is compressed, compared to the particle distribution on the scattergram 340 in FIG. .
  • the person in charge of the monitor who operates the management apparatus 30 determines that the scattergram 340 having a normal width in the vertical direction as shown in FIG. ), A scattergram 340 having a small vertical width is displayed, and it can be determined that there is a high possibility that a reagent other than a genuine reagent is used. As described above, the person in charge of the monitor can know the state of the analyzer 20 in more detail by sharing the screen when doubting the quality control abnormality.
  • the control unit 31 of the management device 30 determines that there is an abnormality in the quality management based on the second quality management information
  • the analysis result of the sample used to generate the second quality management information with respect to the analysis device 20 A signal requesting information for displaying may be transmitted.
  • the analyzer 20 reads measurement data obtained by measuring the sample used for generating the second accuracy management information from the storage unit 62 and transmits the read measurement data to the management device 30.
  • the measurement data is transmitted to the management apparatus 30 except for the information for specifying the subject.
  • the management device 30 When the management device 30 receives the measurement data from the analysis device 20, the management device 30 generates a scattergram 340 as an analysis result based on the received measurement data, and displays the generated scattergram 340 on the display unit 40.
  • the person in charge of the monitor can refer to the scattergram 340 displayed on the display unit 40 to determine whether the reagent is abnormal, that is, whether a reagent other than a genuine reagent is used. .
  • the management device 30 when the management device 30 generates the scattergram 340 based on the received measurement data, the management device 30 further determines whether or not the particle distribution on the scattergram 340 is compressed in the vertical direction. It may be determined whether or not a reagent other than a genuine reagent is used in the analyzer 20. In this way, it can be automatically determined whether or not a reagent other than a genuine reagent is used. When the determination result is displayed on the display unit 40, the person in charge of the monitor can visually and quickly grasp the reagent abnormality. Note that the control unit 31 may determine whether or not the fluorescence intensity of the particle distribution is compressed by performing data processing on the measurement data without generating the scattergram 340 from the received measurement data. . Further, the control unit 31 may receive only the image of the scattergram 340 based on the measurement data, instead of receiving the measurement data from the analyzer 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Databases & Information Systems (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • General Factory Administration (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

精度管理物質と検体の両方の測定結果を十分に活用して精度管理の質を高めることができる精度管理方法、精度管理システム、管理装置、分析装置および精度管理異常判定方法を提供する。ネットワーク13を介して複数の施設12のそれぞれに設置された分析装置20と接続された管理装置30で用いられる精度管理方法において、各施設12の分析装置20が人工的に生成された精度管理物質を測定して得た第1精度管理情報と、複数の検体を測定して得た第2精度管理情報とを、ネットワーク13を介して、各施設12の分析装置20からそれぞれ取得し、取得した第1精度管理情報および第2精度管理情報に基づいて、少なくとも一の施設12の分析装置20の精度管理に関する情報を出力する。

Description

精度管理方法、精度管理システム、管理装置、分析装置および精度管理異常判定方法
 本発明は、分析装置の精度管理を行うための精度管理方法、精度管理システム、管理装置、分析装置および精度管理異常判定方法に関する。
 特許文献1には、図18に示すように、複数のユーザのそれぞれの施設に設置された分析装置402と管理装置401とをネットワーク403で接続したシステムが開示されている。このシステムでは、人工的に生成された精度管理物質を各分析装置402が測定して得た測定結果が管理装置401に送信され、管理装置401が測定結果の集計をとり、集計結果がウェブページで提供される。各施設のユーザは、ウェブページにアクセスして自施設の分析装置402の測定結果と全体施設の集計結果との比較を行い、外部精度管理を実施する。
 特許文献2には、精度管理物質の測定結果と検体の測定結果とを用いる精度管理手法が開示されている。図19に示すように、特許文献2に記載の精度管理システム500では、検体試料供給部501と精度管理試料供給部503から、搬送ライン502に、それぞれ検体試料と精度管理試料が供給される。検体試料と精度管理試料は、分析装置 504において測定され、測定後の検体試料と精度管理試料は、それぞれ、検体試料回収部506と精度管理試料回収部505によって回収される。ホストコンピュータ510は、各部を制御するとともに、分析装置504による検体試料の測定結果と精度管理試料の測定結果とに基づいて、分析装置の精度管理の処理を行う。
特開2004-4105号公報 特開2007-108136号公報
 上記特許文献1および特許文献2のように、精度管理には複数の手法があるものの、精度管理においては主として精度管理物質が用いられている。たしかに特許文献2には精度管理物質と検体を用いた手法が開示されているが、検体は採取された被検者によって性状が大きく異なることがあるため、検体間で測定結果のばらつきが大きく、検体の測定結果は精度管理には十分に用いられていない実態がある。
 精度管理は検査結果の信頼性を担保するうえで極めて重要であるため、精度管理物質と検体の両方の測定結果を十分に活用して精度管理の質を高めることが求められている。
 本発明の第1の態様は、ネットワーク(13)を介して複数施設(12)のそれぞれに設置された分析装置(20)と接続された管理装置(30)で用いられる精度管理方法に関する。本態様に係る精度管理方法において、各施設(12)の分析装置(20)が人工的に生成された精度管理物質を測定して得た第1精度管理情報と、複数の検体を測定して得た第2精度管理情報とを、ネットワーク(13)を介して、各施設(12)の分析装置(20)からそれぞれ取得し、取得した第1精度管理情報および第2精度管理情報に基づいて、少なくとも一の施設(12)の分析装置(20)の精度管理に関する情報を出力する。
 本態様に係る精度管理方法によれば、複数の施設のそれぞれに設置された分析装置から取得した第1精度管理情報および第2精度管理情報を、管理装置に集約できる。このため、分析装置における精度管理の状況を、管理装置側において、分析装置のモニター担当者等よって適切に評価できる。また、発明者らは、第2精度管理情報は、所定の項目においてばらつきが顕著に小さいことを新たに見いだし、この項目について第2精度管理情報を参照することで、分析装置における精度管理の状況を精度よく評価できることを見いだした。したがって、第1精度管理情報および第2精度管理情報に基づいて、精度管理に関する情報を出力することにより、分析装置の状態をより適切かつ精度よく評価できる。よって、精度管理物質と検体の両方の測定結果を十分に活用して精度管理の質を高めることができる。
 なお、「精度管理物質」とは、検体に含まれる粒子を模したラテックス粒子や、動物から採取した検体から所定の成分を抽出して調製された物質等、人工的に生成された精度管理用の物質を広く含み得る。精度管理に関する情報とは、たとえば、両方の精度管理情報を比較可能な画面や、両方の精度管理情報に基づく精度管理状態の判定結果などである。精度管理に関する情報は、たとえば、表示部への表示、音声を鳴らすこと、他の装置に送信すること、などにより出力される。
 本態様に係る精度管理方法において、各施設(12)の分析装置(20)が複数の検体のそれぞれを測定して得た複数の測定結果を統計処理して得られた統計情報を第2精度管理情報として、ネットワーク(13)を介して、各施設(12)の分析装置(20)からそれぞれ取得する。こうすると、複数の検体の測定結果を統計処理するため、統計処理により得られた統計情報をネットワークを介して取得しても、各検体の測定結果が外部に流出することを抑制できる。よって、各検体の測定結果が外部に流出することを防ぎながら、精度管理の状況を適切に評価できる。
 この場合に、分析装置(20)は、光学式のフローサイトメータ(54)を備え、測定結果は、検体を測定して得た光の強度を含む。ここで、フローサイトメータ(54)により複数の検体のそれぞれを測定して得た光の強度を統計処理して得た統計情報を第2精度管理情報として取得する。発明者らは、フローサイトメータにより複数の検体から取得した光の強度を統計処理して得た統計情報を第2精度管理情報として取得した場合に、第2精度管理情報のばらつきが顕著に抑制されることを見いだした。よって、光の強度を測定結果として統計処理して得た統計情報を出力することにより、精度管理の状況をより適切に評価できる。
 この場合に、測定結果は、光の強度に基づいて算出される検体中の粒子種類ごとの粒子計数値をさらに含み、第2精度管理情報は、光の強度を統計処理して得た第1統計情報と、粒子計数値を統計処理して得た第2統計情報とを含む。ここで、第2精度管理情報に含まれる第1統計情報および第1精度管理情報に基づいて精度管理に関する情報を出力する。第2精度管理情報に含まれる第2統計情報のばらつきは、第2精度管理情報に含まれる第1統計情報のばらつきに比べて大きい。すなわち、第2精度管理情報に含まれる第2統計情報の信頼性は高くない。したがって、上記のように第2精度管理情報に含まれる第1統計情報を用いることにより、精度管理の評価をするユーザが、適切に精度管理の状況を評価できる。
 本態様に係る精度管理方法において、励起光により蛍光を生じる染料で検体を染色し、光の強度は、検体を染色した染料から生じた蛍光の強度である。ここで、精度管理物質は、人工的に生成されており、通常、一定の使用期間において保存され精度管理に用いられるため、使用期間において経時劣化することがある。一方、検体は、分析精度を担保するために新鮮な状態で測定される。また、蛍光を生じる染料の反応性は、染色対象の試料の劣化状態に応じて異なる。したがって、検体の染料への反応性は、精度管理物質の染料への反応性に比べて、ばらつきが小さくなる。これにより、第1精度管理情報と第2精度管理情報の取得において光の強度として蛍光を用いる場合、第2精度管理情報のばらつきを、第1精度管理情報に比べて顕著に抑制できる。よって、第2精度管理情報を出力することにより、精度管理の状況を適切に評価できる。
 本態様に係る精度管理方法において、各施設(12)の分析装置(20)は、所定の期間に含まれる測定結果から所定数の測定結果を選択し、選択した所定数の測定結果を統計処理することにより、第2精度管理情報を算出する。統計処理に適する検体の測定結果を選択して統計処理を行うことによって、検体に基づく精度管理情報の質を高めることができる。
 本態様に係る精度管理方法において、精度管理に関する情報として、第1精度管理情報を参照可能な画面と第2精度管理情報を参照可能な画面を別々に表示部(40)に表示させる。こうすると、2つの画面をそれぞれ表示させることにより、分析装置の精度管理状況を視覚的に評価できる。
 本態様に係る精度管理方法において、精度管理に関する情報として、第1精度管理情報および第2精度管理情報をそれぞれ参照可能な画面(310)を表示部(40)に表示させる。こうすると、第1精度管理情報および第2精度管理情報を参照可能な画面により、分析装置の精度管理状況を視覚的に評価できる。なお、表示部は、必ずしも管理装置の表示部でなくてもよく、管理装置が設置された施設内の他の装置の表示部や、管理装置が設置された施設以外の施設に設置された表示部をも含むものである。
 この場合に、画面(310)において、第2精度管理情報を時系列で表示させる。こうすると、第2精度管理情報が大きく変化するタイミングを把握でき、そのタイミングで精度管理に異常が生じた可能性があることを把握できる。よって、そのタイミングにおいて、第1精度管理情報がどのように推移したかを参照し、さらに、適宜、精度管理上検討すべきその他の情報を把握することにより、精度管理の異常およびその原因を推定でき、適切な精度管理を実施できる。
 この場合に、画面(310)において、第2精度管理情報とともに、第1精度管理情報を時系列で表示させる。こうすると、第2精度管理情報の推移と、第1精度管理情報の推移とを、1つの画面で見比べることができる。よって、第1精度管理情報および第2精度管理情報を比較することにより、精度管理に異常が生じた可能性があるか否かを、円滑かつ簡便に判断できる。
 本態様に係る精度管理方法において、精度管理に関する情報として、第1精度管理情報および第2精度管理情報の組み合わせを、第1精度管理情報および第2精度管理情報を2軸とする座標空間で示すグラフを表示部(40)に表示させる。こうすると、第1精度管理情報と第2精度管理情報を参照しながら円滑に精度管理の評価を行うことができる。
 本態様に係る精度管理方法において、一の施設(12)の分析装置(20)から取得した第2精度管理情報を、一の施設(12)とは異なる他の施設(12)の分析装置(20)から取得した第2精度管理情報との間で比較可能な画面(330)を表示部(40)に表示させる。こうすると、一の施設の分析装置の状態が、他の施設の分析装置の状態からどの程度乖離しているかを把握できる。よって、精度管理結果の乖離を抑制するように、一の施設の分析装置を調整できる。
 本態様に係る精度管理方法において、一の施設(12)の分析装置(20)から取得した第2精度管理情報と、一の施設(12)とは異なる他の施設(12)の分析装置(20)から取得した第2精度管理情報との関係が、所定の条件に合致した場合に、精度管理情報に関する情報として報知情報を出力する。なお、「報知情報」とは、画像や音声の他、振動等の操作者が把握可能な種々の情報を含み得る。また、「報知情報」は、精度管理情報がどの条件に合致したかを示す情報を含んでいてもよい。
 この場合に、一の施設(12)の分析装置(20)から取得した第2精度管理情報が、一の施設(12)とは異なる他の施設(12)の分析装置(20)から取得した第2精度管理情報に基づいて設定された所定の範囲を越えた領域に分布している場合に、報知情報を出力させる。この条件を用いることにより、分析装置の測定結果の正確さに異常が生じた可能性があることを適正に判定できる。
 また、一の施設(12)の分析装置(20)から取得した第2精度管理情報のばらつきの幅が、一の施設(12)とは異なる他の施設(12)の分析装置(20)から取得した第2精度管理情報に基づいて設定された所定の幅の範囲から外れた場合に、報知情報を出力させる。この条件を用いることにより、分析装置の測定結果の精密さに異常が生じた可能性があることを適正に判定できる。
 本態様に係る精度管理方法において、第2精度管理情報が所定の条件に合致した場合に、精度管理に異常が生じた可能性があることを示す報知情報を精度管理に関する情報として出力させる。これにより、分析装置に精度管理異常が生じた可能性があることを的確に把握できるため、精度管理に異常が生じたか否かを円滑に調べることができる。
 この場合に、第2精度管理情報が所定のばらつきの範囲から外れた場合に、報知情報を出力させる。この条件を用いることにより、分析装置に精度管理異常が生じた可能性があることを適正に判定できる。
 本態様に係る精度管理方法において、一の施設(12)の分析装置(20)から取得した第2精度管理情報が所定の条件に合致した場合に、一の施設(12)の分析装置(20)にネットワーク(13)を介してリモートアクセスし、分析装置(20)の画面を表示部(40)に表示させる。こうすると、分析装置20の設置場所まで移動することなく、分析装置の精度管理の状況を直接確認できる。
 本態様に係る精度管理方法において、第2精度管理情報が所定の条件に合致した場合に、第2精度管理情報の生成に用いた検体の分析結果を表示するための情報をさらに取得し、取得した情報に基づいて、分析結果を表示部(40)に表示させる。こうすると、精度管理に異常が生じた原因を詳細に調査できる。
 本態様に係る精度管理方法において、第2精度管理情報が所定の条件に合致した場合に、試薬に異常が生じた可能性があることを示す報知情報を精度管理に関する情報として出力させる。こうすると、試薬に異常が生じた可能性があることを把握できる。
 この場合に、第2精度管理情報が所定の条件に合致した場合に、精度管理情報の生成に用いた検体を測定した測定データをさらに取得し、取得した測定データに基づいて、試薬の異常の判定として、純正の試薬以外の試薬が用いられているか否かを判定する。こうすると、純正の試薬以外の試薬が用いられているか否かを的確に判定できる。
 本態様に係る精度管理方法において、複数の分析装置(20)から取得した第2精度管理情報に基づいて、精度管理に異常が生じたか否かを判定するための条件を設定する。こうすると、分析装置の特性に応じた条件を設定できる。
 本態様に係る精度管理方法において、分析装置(20)は、光学式のフローサイトメータ(54)を備える。ここで、フローサイトメータ(54)により複数の検体のそれぞれを測定して得た光の強度を統計処理して得た統計情報と、精度管理物質を測定して得た測定データを分析して得た測定結果とを組み合わせて、精度管理に異常が生じた可能性があるか否かを判定する。こうすると、フローサイトメータにより複数の検体から取得した光の強度に基づく統計情報を第2精度管理情報として取得した場合、第2精度管理情報のばらつきが顕著に抑制される。また、精度管理物質から取得した測定データを分析して得た測定結果を第1精度管理情報として取得した場合、第1精度管理情報のばらつきが顕著に抑制される。したがって、これら2つの精度管理情報を組み合わせると、精度管理に異常が生じた可能性があるか否かを精度よく判定できる。
 本態様に係る精度管理方法において、第1精度管理情報が正常であり、第2精度管理情報が所定の条件に合致した場合に、試薬に異常が生じた可能性があることを示す報知情報を精度管理に関する情報として出力させる。こうすると、試薬に異常が生じた可能性があることを把握できる。
 本発明の第2の態様は、精度管理システム(10)に関する。本態様に係る精度管理システム(10)は、複数の施設(12)のそれぞれに設置された分析装置(20)と、ネットワーク(13)を介して各施設(12)の分析装置(20)と接続された管理装置(30)と、を備える。分析装置(20)は、人工的に生成された精度管理物質を測定して得た第1精度管理情報と、複数の検体を測定して得た第2精度管理情報とを、ネットワーク(13)を介して、管理装置(30)に送信し、管理装置(30)は、分析装置(20)から受信した第1精度管理情報および第2精度管理情報に基づいて、少なくとも一の施設(12)の分析装置(20)の精度管理に関する情報を出力する。
 本態様に係る精度管理システムによれば、第1の態様と同様の効果が奏される。
 本態様に係る精度管理システム(10)において、分析装置(20)は、複数の検体のそれぞれを測定して得た複数の測定結果を統計処理して得られた統計情報を第2精度管理情報として、ネットワーク(13)を介して、管理装置(30)に送信するよう構成され得る。
 この場合に、測定結果は、検体を測定して得た光の強度を含む。分析装置(20)は、光学式のフローサイトメータ(54)を備え、フローサイトメータ(54)により複数の検体のそれぞれを測定して得た光の強度を統計処理して得た統計情報を第2精度管理情報として管理装置(30)に送信し、管理装置(30)は、受信した統計情報を出力するよう構成され得る。
 この場合に、測定結果は、光の強度に基づいて算出される検体中の粒子種類ごとの粒子計数値をさらに含む。分析装置(20)は、光の強度を統計処理して得た第1統計情報と、粒子計数値を統計処理して得た第2統計情報とを含む第2精度管理情報を管理装置(30)に送信し、管理装置(30)は、受信した第2精度管理情報に含まれる第1統計情報および第1精度管理情報に基づいて精度管理に関する情報を出力するよう構成され得る。
 本態様に係る精度管理システム(10)において、分析装置(20)は、励起光により蛍光を生じる染料で検体を染色し、光の強度は、検体を染色した染料から生じた蛍光の強度であるよう構成され得る。
 本態様に係る精度管理システム(10)において、分析装置(20)は、所定の期間に含まれる測定結果から所定数の測定結果を選択し、選択した所定数の測定結果を統計処理することにより、第2精度管理情報を算出するよう構成され得る。
 本態様に係る精度管理システム(10)において、管理装置(30)は、精度管理に関する情報として、第1精度管理情報を参照可能な画面と第2精度管理情報を参照可能な画面を別々に表示部(40)に表示させるための処理を行うよう構成され得る。
 本態様に係る精度管理システム(10)において、管理装置(30)は、精度管理に関する情報として、第1精度管理情報および第2精度管理情報をそれぞれ参照可能な画面(310)を表示部(40)に表示させるための処理を行うよう構成され得る。
 この場合に、管理装置(30)は、画面(310)において、第2精度管理情報を時系列で表示させるための処理を行うよう構成され得る。
 この場合に、管理装置(30)は、画面(310)において、第2精度管理情報とともに、第1精度管理情報を時系列で表示させるための処理を行うよう構成され得る。
 本態様に係る精度管理システム(10)において、管理装置(30)は、精度管理に関する情報として、第1精度管理情報および第2精度管理情報との組み合わせを、第1精度管理情報および第2精度管理情報を2軸とする座標空間で示すグラフを表示部(40)に表示させるための処理を行うよう構成され得る。
 本態様に係る精度管理システム(10)において、管理装置(30)は、一の施設(12)の分析装置(20)から取得した第2精度管理情報を、一の施設(12)とは異なる他の施設(12)の分析装置(20)から取得した第2精度管理情報との間で比較可能な画面(330)を表示部(40)に表示させるための処理を行うよう構成され得る。
 本態様に係る精度管理システム(10)において、管理装置(30)は、一の施設(12)の分析装置(20)から取得した第2精度管理情報と、一の施設(12)とは異なる他の施設(12)の分析装置(20)から取得した第2精度管理情報との関係が、所定の条件に合致した場合に、精度管理に関する情報として報知情報を出力する処理を行うよう構成され得る。
 この場合に、管理装置(30)は、一の施設(12)の分析装置(20)から取得した第2精度管理情報が、一の施設(12)とは異なる他の施設(12)の分析装置(20)から取得した第2精度管理情報に基づいて設定された所定の範囲を超えた領域に分布している場合に、報知情報を出力させるための処理を行うよう構成され得る。
 また、管理装置(30)は、一の施設(12)の分析装置(20)から取得した第2精度管理情報のばらつきの幅が、一の施設(12)とは異なる他の施設(12)の分析装置(20)から取得した第2精度管理情報に基づいて設定された所定の幅の範囲から外れた場合に、報知情報を出力させるための処理を行うよう構成され得る。
 本態様に係る精度管理システム(10)において、管理装置(30)は、第2精度管理情報が所定の条件に合致した場合に、精度管理に異常が生じた可能性があることを示す報知情報を精度管理に関する情報として出力させるための処理を行うよう構成され得る。
 この場合に、管理装置(30)は、第2精度管理情報が所定のばらつきの範囲から外れた場合に、報知情報を出力させるための処理を行うよう構成され得る。
 本態様に係る精度管理システム(10)において、管理装置(30)は、一の施設(12)の分析装置(20)から取得した第2精度管理情報が所定の条件に合致した場合に、一の施設(12)の分析装置(20)にネットワーク(13)を介してリモートアクセスし、分析装置(20)の画面を表示部(40)に表示させるための処理を行う。
 本態様に係る精度管理システム(10)において、管理装置(30)は、第2精度管理情報が所定の条件に合致した場合に、第2精度管理情報の生成に用いた検体の分析結果を表示するための情報をさらに取得し、取得した情報に基づいて、分析結果を表示部(40)に表示させるための処理を行うよう構成され得る。
 本態様に係る精度管理システム(10)において、管理装置(30)は、第2精度管理情報が所定の条件に合致した場合に、試薬に異常が生じた可能性があることを示す報知情報を精度管理に関する情報として出力させる処理を行うよう構成され得る。
 この場合に、管理装置(30)は、第2精度管理情報が所定の条件に合致した場合に、精度管理情報の生成に用いた検体を測定した測定データをさらに取得し、取得した測定データに基づいて、試薬の異常の判定として、純正の試薬以外の試薬が用いられているか否かを判定するよう構成され得る。
 本態様に係る精度管理システム(10)において、管理装置(30)は、複数の分析装置(20)から取得した第2精度管理情報に基づいて、精度管理に異常が生じたか否かを判定するための条件を設定するよう構成され得る。
 本態様に係る精度管理システム(10)において、分析装置(20)は、光学式のフローサイトメータ(54)を備え、フローサイトメータ(54)により複数の検体のそれぞれを測定して得た光の強度を統計処理して得た統計情報と、精度管理物質を測定して得た測定データを分析して得た測定結果とを管理装置(30)に送信し、管理装置(30)は、受信した統計情報と測定結果とを組み合わせて、精度管理に異常が生じた可能性があるか否かを判定するよう構成され得る。
 本態様に係る精度管理システム(10)において、管理装置(30)は、第1精度管理情報が正常であり、第2精度管理情報が所定の条件に合致した場合に、試薬に異常が生じた可能性があることを示す報知情報を精度管理に関する情報として出力させるための処理を行うよう構成され得る。
 本発明の第3の態様は、管理装置(30)に関する。本態様に係る管理装置(30)は、人工的に生成された精度管理物質を測定して得られた第1精度管理情報と、複数の検体を測定して得られた第2精度管理情報とを、ネットワーク(13)を介して、複数施設(12)のそれぞれに設置された分析装置(20)から取得し、取得した第1精度管理情報および第2精度管理情報に基づいて、少なくとも一の施設(12)の分析装置(20)の精度管理に関する情報を出力する。
 本態様に係る管理装置によれば、第1の態様と同様の効果が奏される。
 本発明の第4の態様は、ネットワーク(13)を介して管理装置(30)と接続された分析装置(20)に関する。本態様に係る分析装置(20)は、検体を測定するための測定部(50)と、測定部(50)で得られた測定データを分析するための分析部(61)と、分析部(61)で得られた分析結果を管理装置(30)に送信するための送信部(65)と、を備える。分析部(61)は、測定部(50)が人工的に生成された精度管理物質を測定して得た測定データに基づいて第1精度管理情報を生成し、測定部(50)が複数の検体を測定して得た測定データに基づいて検体ごとに測定結果を取得し、取得した検体ごとの測定結果に基づいて第2精度管理情報を生成する。送信部(65)は、分析部(61)によって生成された第1精度管理情報および第2精度管理情報を管理装置(30)に送信する。
 本態様に係る分析装置によれば、第1の態様と同様の効果が奏される。
 本発明の第5の態様は、精度管理異常判定方法に関する。本態様に係る精度管理異常判定方法において、人工的に生成された精度管理物質を測定して得られた第1精度管理情報と、複数の検体を測定して得られた第2精度管理情報とに基づいて、分析装置(20)の精度管理異常を判定する。
 本態様に係る精度管理異常判定方法によれば、第1精度管理情報と第2精度管理情報のいずれか基づいて精度管理異常を判定する場合に比べて、より精度よく精度管理異常を判定できる。
 本態様に係る精度管理異常判定方法において、第2精度管理情報は、分析装置(20)が複数の検体のそれぞれを測定して得た複数の測定結果を統計処理して得られた統計情報であるよう構成され得る。
 本態様に係る精度管理異常判定方法において、分析装置(20)は、光学式のフローサイトメータ(54)を備え、測定結果は、検体を測定して得た光の強度を含み、統計情報は、フローサイトメータ(54)により複数の検体のそれぞれを測定して得た光の強度を統計処理して得た統計情報であるよう構成され得る。
 本発明によれば、精度管理物質と検体の両方の測定結果を十分に活用して精度管理の質を高めることができる。
図1は、実施形態に係る精度管理システムの構成を示すブロック図である。 図2は、実施形態に係る分析装置の構成を示すブロック図である。 図3は、実施形態に係るフローサイトメータの構成を模式的に示す図である。 図4は、実施形態に係る管理装置の構成を示すブロック図である。 図5は、実施形態に係る情報処理部から管理装置へ送信される精度管理情報を説明するための図である。 図6は、実施形態に係るXbarMを算出するための式を示す図である。 図7は、実施形態に係る第1精度管理情報および第2精度管理情報の特徴を説明するための図である。 図8(a)は、実施形態に係る第1精度管理情報および第2精度管理情報の変動係数を比較するためのグラフである。図8(b)は、実施形態に係る第2精度管理情報により分析装置間における精度管理の状況の違いを把握できることを説明するためのグラフである。 図9は、実施形態に係る取得された第1精度管理物質および第2精度管理物質を時系列に示すグラフである。 図10は、実施形態に係る分析装置の処理を示すフローチャートである。 図11は、実施形態に係る管理装置の処理を示すフローチャートである。 図12は、実施形態に係る管理装置の処理を示すフローチャートである。 図13(a)、(b)は、実施形態に係る表示部に表示される画面の一例を示す図である。 図14(a)は、実施形態に係る表示部に表示される画面の一例を示す図である。図14(b)、(c)は、変更例に係る精度管理異常の判定を説明するためのグラフである。 図15は、実施形態に係る表示部に表示される画面の一例を示す図である。 図16(a)は、実施形態に係る管理装置の処理を示すフローチャートである。図16(b)は、実施形態に係る分析装置の処理を示すフローチャートである。 図17(a)は、実施形態に係る表示部に表示される純正の試薬が用いられた場合のスキャッタグラムの一例を示す図である。図17(b)は、実施形態に係る純正の試薬以外の試薬が用いられた場合のスキャッタグラムの一例を示す図である。 図18は、関連技術に係る構成を説明するための模式図である。 図19は、関連技術に係る構成を説明するための模式図である。
 図1に示すように、精度管理システム10は、分析装置20と管理装置30を備える。管理装置30は、カスタマーサポートセンターなどの施設11に設置されている。分析装置20は、病院や検査センターなどの施設12に設置されている。施設12は、施設11とは異なる施設である。分析装置20と管理装置30は、インターネットなどのネットワーク13に接続されており、ネットワーク13を介して互いに通信可能である。図1に示す例では、精度管理システム10は、複数の施設12を備える。また、複数の施設12は、それぞれ、1以上の分析装置20を備える。
 施設12には、通常、1人以上の検査技師が配置される。検査技師は、配置された施設12において、分析装置20を操作する。分析装置20は、人工的に生成された精度管理物質を測定し、被検者や患者などから採取された検体を測定する。分析装置20は、測定により得た測定データを分析して測定結果を取得する。分析装置20は、精度管理物質を測定することにより得られる第1精度管理情報と、検体を複数測定することにより得られる第2精度管理情報とを、ネットワーク13を介して管理装置30に送信する。管理装置30は、第1精度管理情報および第2精度管理情報を、ネットワーク13を介して各施設12の分析装置20から取得して記憶する。
 なお、「精度管理物質」とは、検体に含まれる粒子を模したラテックス粒子や、動物から採取した検体から所定の成分を抽出して調製された物質等、人工的に生成された精度管理用の物質を広く含み得る。
 管理装置30は、分析装置20から取得して記憶した第1精度管理情報および第2精度管理情報に基づいて、少なくとも一の施設12の分析装置20の精度管理に関する情報を出力する。精度管理に関する情報とは、たとえば、第1精度管理情報および第2精度管理情報を比較可能な画面や、第1精度管理情報および第2精度管理情報に基づく精度管理状態の判定結果などである。精度管理情報に関する情報は、たとえば、管理装置30の表示部40への表示、管理装置30のスピーカを鳴らすこと、他の装置に送信することなどにより出力される。
 施設11には、分析装置20のモニター担当者が配置されている。モニター担当者は、管理装置30を操作するとともに、検査技師からの分析装置20に関する問い合わせに対応する。管理装置30は、分析装置20から受信した第1精度管理情報および第2精度管理情報をそれぞれ参照可能な画面等を、表示部40に表示させる。モニター担当者は、表示部40に表示した画面を参照して、分析装置20における精度管理の状況の評価を行う。
 このように、実施形態によれば、複数の施設12のそれぞれに設置された分析装置20から取得した第1精度管理情報および第2精度管理情報を、管理装置30に集約できる。このため、分析装置20における精度管理の状況を、管理装置30側においてモニター担当者によって適切に評価できる。また、後述するように、発明者らは、複数の検体を測定して得られた第2精度管理情報は、所定の項目においてばらつきが顕著に小さいことを新たに見いだし、この項目について第2精度管理情報を参照することで、分析装置20における精度管理の状況を精度よく評価できることを見いだした。したがって、第1精度管理情報と第2精度管理情報とに基づいて、精度管理に関する情報を出力することにより、分析装置20の精度管理状況をより適切かつ精度よく評価できる。よって、精度管理物質と検体の両方の測定結果を十分に活用して精度管理の質を高めることができる。
 図2に示すように、分析装置20は、測定部50と情報処理部60を備える。
 測定部50は、測定制御部51と、検体吸引部52と、試料調製部53と、フローサイトメータ54と、電気抵抗式検出部55と、ヘモグロビン検出部56と、信号処理回路57と、を備える。
 測定制御部51は、たとえば、CPU、MPUなどにより構成される。測定制御部51は、測定部50の各部が出力する信号を受信し、測定部50の各部を制御する。測定制御部51は、情報処理部60と通信を行う。測定制御部51は、記憶部51aを備える。記憶部51aは、たとえば、ROM、RAM、ハードディスクなどにより構成される。測定制御部51は、記憶部51aに記憶されたプログラムに基づいて処理を実行する。検体吸引部52は、図示しない吸引管を有し、検体容器に収容された検体および容器に収容された精度管理物質を吸引管により吸引する。実施形態の検体は、被検者から採取された末梢血の全血である。
 試料調製部53には、測定に用いるための複数の試薬をそれぞれ収容する複数の容器が接続されている。試料調製部53は、検体と所定の試薬とを混合して、白血球を計数し、好塩基球および有核赤血球を分類および計数するための測定試料を調製する。この測定試料を、以下「WNR測定試料」と称する。試料調製部53は、検体と所定の試薬とを混合して、好中球、リンパ球、単球および好酸球を分類および計数し、幼若白血球および異型リンパ球などの異常細胞を検出するための測定試料を調製する。この測定試料を、以下「WDF測定試料」と称する。試料調製部53は、検体と所定の試薬とを混合して、網赤血球を分類および計数するための測定試料を調製する。この測定試料を、以下「RET測定試料」と称する。試料調製部53は、検体と所定の試薬とを混合して、芽球、リンパ球系の異常細胞を検出するための測定試料を調製する。この測定試料を、以下「WPC測定試料」と称する。WNR測定試料、WDF測定試料、RET測定試料およびWPC測定試料を調製する際に用いる試薬は、いずれも励起光により蛍光を生じる染料が含まれている。
 また、試料調製部53は、検体と所定の試薬とを混合して、赤血球数および血小板を計数するための測定試料を調製する。この測定試料を、以下「RBC/PLT測定試料」と称する。試料調製部53は、検体と所定の試薬とを混合して、ヘモグロビン濃度を測定するための測定試料を調製する。この測定試料を、以下「HGB測定試料」と称する。
 また、試料調製部53は、検体と同様、精度管理物質と所定の試薬とを混合して、WNR測定試料、WDF測定試料、RET測定試料、WPC測定試料、RBC/PLT測定試料、およびHGB測定試料を調製する。
 WNR測定試料、WDF測定試料、RET測定試料およびWPC測定試料は、フローサイトメータ54に送られて、フローサイトメータ54により測定される。RBC/PLT測定試料は、電気抵抗式検出部55に送られて、電気抵抗式検出部55により測定される。HGB測定試料は、ヘモグロビン検出部56に送られて、ヘモグロビン検出部56により測定される。
 図3に示すように、フローサイトメータ54は、フローサイトメトリー法により血球の測定を行う光学式のフローサイトメータである。フローサイトメータ54は、フローセル101と、光源102と、受光部103、104、105と、コリメータレンズ111と、集光レンズ112と、ビームストッパ113と、集光レンズ114と、ダイクロイックミラー115と、光学フィルタ116と、を備える。
 フローセル101には、測定の際に、WNR測定試料、WDF測定試料、RET測定試料およびWPC測定試料が別々に供給される。フローセル101は、透光性を有する材料によって管状に構成されている。各測定試料は、シース液に包まれた状態でフローセル101内に流される。これにより、各測定試料に含まれる粒子は、一列に整列した状態でフローセル101内を通る。光源102は、半導体レーザ光源であり、所定波長のレーザ光を出射する。光源102から出射される光は、各測定試料に含まれる染料を励起して、染料から所定波長帯域の蛍光を生じさせる励起光である。
 コリメータレンズ111と集光レンズ112は、光源102から出射された光を集光して、フローセル101内を流れる各測定試料に照射する。光源102からの光が各測定試料に照射されると、各測定試料中の粒子から、前方散乱光と、側方散乱光と、蛍光とが生じる。前方散乱光は、粒子の大きさに関する情報を反映し、側方散乱光は、粒子の内部情報を反映し、蛍光は、粒子の染色度合いを反映する。フローセル101に照射された光のうち、粒子に照射されずにフローセル101を透過した光は、ビームストッパ113により遮断される。受光部103は、たとえば、フォトダイオードにより構成される。受光部103は、前方散乱光を受光し、受光した前方散乱光に応じた電気信号を出力する。
 集光レンズ114は、フローセル101の側方に生じた側方散乱光および蛍光を集光する。ダイクロイックミラー115は、集光レンズ114により集光された側方散乱光を反射させ、集光レンズ114により集光された蛍光を透過する。受光部104は、たとえば、フォトダイオードにより構成される。受光部104は、ダイクロイックミラー115により反射された側方散乱光を受光し、受光した側方散乱光に応じた電気信号を出力する。光学フィルタ116は、ダイクロイックミラー115を透過した光のうち、受光部105で受光させる蛍光のみを透過させる。受光部105は、たとえば、アバランシェフォトダイオードにより構成される。受光部105は、光学フィルタ116を透過した蛍光を受光し、受光した蛍光に応じた電気信号を出力する。
 図2に戻り、電気抵抗式検出部55は、シースフローDC検出法により血球の測定を行う。電気抵抗式検出部55の図示しないフローセルには、測定の際にRBC/PLT測定試料が供給される。電気抵抗式検出部55は、電気抵抗式検出部55のフローセルを流れるRBC/PLT測定試料に電圧を印加し、粒子が通過することによる電圧の変化を捉えて粒子を検出する。電気抵抗式検出部55は、検出信号を出力する。
 ヘモグロビン検出部56は、SLS-ヘモグロビン法によりヘモグロビンの測定を行う。ヘモグロビン検出部56の図示しないセルには、測定の際にHGB測定試料が供給される。ヘモグロビン検出部56は、ヘモグロビン検出部56のセル中に収容されたHGB測定試料に光を照射し、HGB測定試料による吸光度を検出する。ヘモグロビン検出部56は、検出信号を出力する。
 信号処理回路57は、受光部103~105から出力された信号に対して信号処理を行う。具体的には、信号処理回路57は、受光部103~105から出力された信号に基づいて、粒子に対応する波形を抽出し、粒子ごとの波形のピーク値、幅、面積などを算出する。以下、受光部103~105から出力された信号に基づく波形のピーク値を、それぞれ、「前方散乱光強度」、「側方散乱光強度」および「蛍光強度」と称する。なお、前方散乱光強度、側方散乱光強度および蛍光強度は、それぞれ、波形の幅や面積であってもよい。
 また、信号処理回路57は、電気抵抗式検出部55から出力された信号に基づいて、粒子に対応する波形を抽出し、粒子ごとの波形のピーク値を算出する。信号処理回路57は、ヘモグロビン検出部56から出力された信号に基づいて、ヘモグロビン濃度を算出する。
 信号処理回路57は、フローサイトメータ54、電気抵抗式検出部55およびヘモグロビン検出部56から出力された信号を、上記のような信号処理を行って測定データを取得し、取得した測定データを測定制御部51に出力する。
 測定制御部51は、信号処理回路57から出力された測定データを記憶部51aに記憶する。検体および精度管理物質の測定が終わると、測定制御部51は、記憶部51aに記憶した測定データを、情報処理部60に送信する。「測定データ」とは、信号処理回路57により取得され、測定部50から情報処理部60に送られるデータを示す。
 情報処理部60は、分析部61と、記憶部62と、表示部63と、入力部64と、送信部65と、を備える。
 分析部61は、たとえば、CPUにより構成される。分析部61は、情報処理部60の各部が出力する信号を受信し、情報処理部60の各部を制御する。分析部61は、送信部65を介して測定部50と通信を行う。分析部61は、送信部65とネットワーク13を介して、管理装置30と通信を行う。記憶部62は、たとえば、ROM、RAM、ハードディスクなどにより構成される。分析部61は、記憶部62に記憶されたプログラムに基づいて処理を実行する。
 表示部63は、たとえば、ディスプレイにより構成される。表示部63は、分析結果を示す画面を表示する。入力部64は、たとえば、マウス、キーボードなどにより構成される。入力部64は、検査技師による入力を受け付ける。表示部63と入力部64は、タッチパネルなどにより一体的に構成されてもよい。送信部65は、たとえば、ネットワークインターフェースカードにより構成される。送信部65は、他の装置から受信した情報を分析部61に出力し、分析部61から出力された情報を他の装置に送信する。
 分析部61は、測定部50から受信した測定データを記憶部62に記憶する。分析部61は、測定部50から受信した測定データに基づいて、以下に示すように分析結果を生成する。
 分析部61は、検体の測定データに基づいて、血球の分類および計数といった分析を行い、複数の測定項目の測定結果を算出する。また、分析部61は、精度管理物質の測定データに基づいて、血球の分析と同様に、粒子の分類および計数といった分析を行い、複数の測定項目の測定結果を算出する。測定項目には、たとえば、白血球数、赤血球数、血小板数、ヘモグロビン量、ヘマトクリット値、平均赤血球容積、平均赤血球血色素量、および平均赤血球血色素濃度などの、いわゆるCBC項目が含まれる。
 また、分析部61は、測定データに含まれる前方散乱光強度、側方散乱光強度および蛍光強度から、1つの前方散乱光強度、1つの側方散乱光強度および1つの蛍光強度を測定結果として算出する。たとえば、WNR測定試料の場合、測定により粒子の数に応じた複数の前方散乱光強度が取得される。分析部61は、測定データに含まれる複数の前方散乱光強度から中央値を算出し、算出した中央値を1つの前方散乱光強度とする。同様に、分析部61は、WNR測定試料から得られた複数の側方散乱光強度および複数の蛍光強度から、それぞれ中央値を算出し、算出した中央値を1つの側方散乱光強度および1つの蛍光強度とする。分析部61は、精度管理物質に基づくWNR測定試料、WDF測定試料、RET測定試料およびWPC測定試料に対して、上記のような処理を行い、検体に基づくWNR測定試料、WDF測定試料、RET測定試料およびWPC測定試料に対して、上記のような処理を行う。なお、中央値に代えて平均値が用いられてもよい。
 こうして、分析部61は、精度管理物質および検体の測定データに含まれる各光の強度に基づいて、1つの前方散乱光強度、1つの側方散乱光強度および1つの蛍光強度を測定結果として算出する。上記のように算出した各光の1つの強度を、以下「感度項目」と称する。感度項目には、WNR測定試料、WDF測定試料、RET測定試料およびWPC測定試料ごとに、1つの前方散乱光強度、1つの側方散乱光強度および1つの蛍光強度が含まれる。
 さらに、分析部61は、複数の検体に基づく測定項目の測定結果を統計処理して統計情報を取得し、複数の検体に基づく感度項目の測定結果を統計処理して統計情報を取得する。統計情報については、追って図5、6を参照して説明する。
 「測定結果」とは、測定項目ごとに算出された数値と、感度項目ごとに算出された数値とを示す。「分析結果」とは、測定結果と、測定結果の算出に関連するスキャッタグラムと、測定結果を統計処理して得られる統計情報と、を含む概念である。
 分析部61は、精度管理物質に基づく測定項目の測定結果と、精度管理物質に基づく感度項目の測定結果とを、第1精度管理情報として、ネットワーク13を介して管理装置30に送信する。また、分析部61は、複数の検体に基づく測定項目の統計情報と、複数の検体に基づく感度項目の統計情報とを、第2精度管理情報として、ネットワーク13を介して管理装置30に送信する。
 上記のように複数の検体に基づく測定結果が統計処理されると、統計処理により得られた統計情報がネットワーク13を介して送信されても、各検体の測定結果が外部に流出することを抑制できる。よって、各検体の測定結果が外部に流出することを防ぎながら、管理装置30側において分析装置20における精度管理の状況を適切に評価できる。
 また、分析部61は、第1精度管理情報および第2精度管理情報に加えて、装置情報をネットワーク13を介して管理装置30に送信する。装置情報は、施設名、施設番号、分析装置番号、分析装置の種類、試薬名、試薬ロット、精度管理物質名、精度管理物質ロット、日時、装置温度、などを含む。
 図4に示すように、管理装置30は、制御部31と、記憶部32と、入力部33と、送信部34と、表示部40と、を備える。
 制御部31は、たとえば、CPUにより構成される。制御部31は、管理装置30の各部が出力する信号を受信し、管理装置30の各部を制御する。制御部31は、ネットワーク13を介して、分析装置20の情報処理部60と通信を行う。記憶部32は、たとえば、ROM、RAM、ハードディスクなどにより構成される。記憶部32は、プログラム32aと、受信データベース32bと、判定結果データベース32cと、を記憶している。制御部31は、記憶部32に記憶されたプログラム32aに基づいて処理を実行する。
 受信データベース32bは、各分析装置20から送信された第1精度管理情報と、第2精度管理情報と、装置情報と、を記憶する。判定結果データベース32cは、精度管理異常の判定結果を含む。精度管理異常を判定するための条件は、記憶部32に記憶されている。
 表示部40は、たとえば、ディスプレイにより構成される。入力部33は、たとえば、マウス、キーボードなどにより構成される。表示部40と入力部33は、タッチパネルなどにより一体的に構成されてもよい。送信部34は、たとえば、ネットワークインターフェースカードにより構成される。送信部34は、他の装置から受信した情報を制御部31に出力し、制御部31から出力された情報を他の装置に送信する。
 次に、図5を参照して、情報処理部60から管理装置30へ送信される精度管理情報について説明する。
 上述したように、情報処理部60の分析部61は、精度管理物質に基づく測定項目の測定結果と、精度管理物質に基づく感度項目の測定結果とを算出する。また、分析部61は、複数の検体に基づく測定項目の測定結果を統計処理して得た統計情報と、複数の検体に基づく感度項目の測定結果を統計処理して得た統計情報とを算出する。
 図5において、測定結果群201は、1つの精度管理物質から得られた測定項目の測定結果および感度項目の測定結果を含んでいる。測定結果群202は、1つの検体から得られた測定項目の測定結果および感度項目の測定結果を含んでいる。精度管理物質の測定は、所定の時間間隔ごとに行われ、検体の測定は、精度管理物質の測定の間に行われる。したがって、図5に示すように、測定結果群201、202は、時系列に沿って並び、2つの測定結果群201の間に複数の測定結果群202が並ぶ。
 分析部61は、測定部50から精度管理物質に基づく測定データを受信すると、受信した測定データに基づいて測定結果群201を生成し、測定部50から検体に基づく測定データを受信すると、受信した測定データに基づいて測定結果群202を生成する。
 分析部61は、測定結果群201を生成すると、生成した測定結果群201を第1精度管理情報として管理装置30に送信する。このとき、分析部61は、生成した測定結果群201と1つ前に生成した測定結果群201との間にある複数の測定結果群202と、1つ前に算出したXbarM(i-1)とから、今回のXbarM(i)を統計情報として算出する。XbarMは、複数の検体の測定結果を後述する計算式を用いて加重平均した値である。XbarM(i)は、測定項目および感度項目ごとに算出される。分析部61は、算出した測定項目および感度項目ごとのXbarM(i)を第2精度管理情報として管理装置30に送信する。
 具体的に、分析部61が、図5の右端に位置する測定結果群201を生成したときの処理を例に挙げて説明する。以下に示すように、実施形態における検体の測定結果を用いた精度管理手法は、正常者平均値法に基づくものである。
 分析部61は、右端に位置する測定結果群201と1つ前の測定結果群201との間にある測定結果群202から、N個の測定結果群202を選択する。具体的には、分析部61は、測定結果群202に含まれる測定項目の測定結果が正常な値である測定結果群202を選択する。なお、必ずしも測定結果が正常な値である測定結果群202が選択されなくてもよく、統計処理に適する測定結果を含む測定結果群202であればよい。また、実施形態のNの値は20であるが、20以外の値でもよい。
 選別したN個の測定結果群202の集合を、「i番目のバッチ」と称する。i番目のバッチに含まれる各測定結果群202は、それぞれ、複数の測定項目の測定結果および複数の感度項目の測定結果を含んでいる。以下、測定項目および感度項目のうち1つの項目を、「対象項目」と称し、対象項目についてXbarM(i)を算出する手順を説明する。
 i番目のバッチ中のj番目の測定結果群202に含まれる対象項目の測定結果を、Xbar(j、i)とし、(i-1)番目のバッチの対象項目の統計情報をXbarM(i-1)とすると、i番目のバッチの対象項目の統計情報であるXbarM(i)は、図6に示す式(1)により算出される。図6に示す式(1)において、Fの値は、図6に示す式(2)により算出される。分析部61は、上記手順をi番目のバッチの他の項目についても行い、算出した測定項目および感度項目ごとのXbarMを第2精度管理情報として管理装置30に送信する。
 なお、上記バッチは、2つの精度管理物質の測定の間に1つだけ設定されてもよく、複数設定されてもよい。また、分析部61は、右端に位置する測定結果群201を生成したときに、直前に生成した測定結果群201を第1精度管理情報として管理装置30に送信し、i番目のバッチに基づくXbarM(i)を第2精度管理情報として管理装置30に送信してもよい。すなわち、第1精度管理情報の生成タイミングに対して、直前の期間のXbarMが送信されてもよく、直後の期間のXbarMが送信されてもよい。
 図7は、同じタイミングで生成された所定項目についての第1精度管理情報および第2精度管理情報の組み合わせを、第1精度管理情報と第2精度管理情報を2軸とする座標空間にプロットするためのグラフである。このグラフには、第1精度管理情報および第2精度管理情報における頻度を示すヒストグラムが合わせて示されている。第1精度管理情報の値を示す横軸には、第1精度管理情報に基づいて精度管理を判定した場合に精度管理が適正であると判定される範囲211が示されている。第2精度管理情報の値を示す縦軸には、第2精度管理情報に基づいて精度管理を判定した場合に精度管理が適正であると判定される範囲212が示されている。
 一般的には、精度管理の判定は、精度管理物質から得られる第1精度管理情報のみに基づいて行われる。この場合、たとえば、座標点が範囲211に含まれると、分析装置20の精度管理は適正であると判定され、座標点が範囲211から外れると、分析装置20の精度管理は適正ではないと判定される。一方、精度管理の判定が複数の検体から得られる第2精度管理情報に基づいて行われる場合、たとえば、座標点が範囲212に含まれると、分析装置20の精度管理は適正であると判定され、座標点が範囲212から外れると、分析装置20の精度管理は適正ではないと判定される。
 したがって、第1精度管理情報に加えて第2精度管理情報を精度管理の判定に用いれば、座標点が図7において破線で示す領域213に含まれる場合、第1精度管理情報に基づく判定は適正であるにもかかわらず、第2精度管理情報に基づく判定は適正ではないことになる。すなわち、第1精度管理情報に加えて第2精度管理情報を精度管理の判定に用いれば、第1精度管理情報に基づく判定だけでは検知できない精度管理の異常を検出できるようになる。
 次に、第1精度管理情報と第2精度管理情報の特徴について説明する。
 図8(a)は、6つの施設12に設置された18の分析装置20から実際に取得された精度管理情報の変動係数CVを、項目ごとに示す図である。WBCは白血球数を示し、RBCは赤血球数を示し、PLTは血小板数を示し、HGBはヘモグロビン量を示し、HCTはヘマトクリット値を示し、MCVは平均赤血球容積を示し、MCHは平均赤血球血色素量を示し、MCHCは平均赤血球血色素濃度を示す。
 WNR-X、WNR-YおよびWNR-Zは、WNR測定試料に基づく測定結果であり、それぞれ、側方散乱光強度、蛍光強度および前方散乱光強度を示す。WDF-X、WDF-YおよびWDF-Zは、WDF測定試料に基づく測定結果あり、それぞれ、側方散乱光強度、蛍光強度および前方散乱光強度を示す。RET-RBC-X、RET-RBC-YおよびRET-RBC-Zは、RET測定試料に基づく測定結果であり、それぞれ、側方散乱光強度、蛍光強度および前方散乱光強度を示す。WPC-X、WPC-YおよびWPC-Zは、WPC測定試料に基づく測定結果であり、それぞれ、側方散乱光強度、蛍光強度および前方散乱光強度を示す。なお、精度管理物質は、各分析装置20において同一のロット番号のものが用いられた。第2精度管理情報の算出におけるNの値は20とされた。
 図8(a)に示すように、WBCからMCHCまでの測定項目、すなわちCBC項目では、第1精度管理情報の変動係数CVは、第2精度管理情報の変動係数CVよりも概ね小さくなっている。特に、WBCからHCTまでの測定項目では、第1精度管理情報の変動係数CVは、第2精度管理情報の変動係数CVよりも顕著に小さくなっている。
 したがって、CBC項目を用いて精度管理を行う場合には、精度管理物質を測定して得られた第1精度管理情報を用いて行われるのが好ましいことが分かる。なお、従来は、CBC項目の第1精度管理情報が取得されており、これに加えてCBC項目の第2精度管理情報も取得されていた。しかしながら、上記のように、CBC項目の第2精度管理情報はばらつきが大きいため、CBC項目に基づく精度管理には、第1精度管理情報が優先して用いられていた。
 一方、WNR-XからWPC-Zまでの感度項目では、第2精度管理情報の変動係数CVは、第1精度管理情報の変動係数CVよりも概ね小さくなっている。特に、WDF測定試料およびRET測定試料に基づく感度項目では、第2精度管理情報の変動係数CVは、第1精度管理情報の変動係数CVよりも顕著に小さくなっているものがある。したがって、感度項目を用いて精度管理を行う場合には、複数の検体を測定して得られた第2精度管理情報を用いて行われるのが好ましいことが分かる。
 このように、発明者らは、測定項目および感度項目について、第1精度管理情報の変動係数CVと、第2精度管理情報の変動係数CVとを比較したところ、感度項目においては、第2精度管理情報の変動係数CVの方が小さくなることを見いだした。したがって、精度管理を行う際に、測定項目においては第1精度管理情報を用い、感度項目においては第2精度管理情報を用いると、精度管理情報のばらつきを小さくできるため、精度管理異常が生じたことを的確に把握でき、安定して精度管理を行うことができる。
 また、上記のように、測定項目においては第1精度管理情報の変動係数CVが小さく、感度項目においては第2精度管理情報の変動係数CVの値が小さい。このため、図7に示したように、第1精度管理情報と第2精度管理情報を組み合わせて精度管理に異常が生じた可能性があるか否かを判定する場合には、第1精度管理情報については測定項目の測定結果を用い、第2精度管理情報については感度項目の測定結果を用いるのが好ましい。この場合、第1精度管理情報および第2精度管理情報に基づく座標点が、図7において範囲211、212の両方に含まれる場合に、精度管理が適正に行われていると判定され、それ以外の場合には、精度管理異常が生じていると判定される。
 分析装置20が、第1精度管理情報および第2精度管理情報を管理装置30に送信せず、設置された施設12内で精度管理が行われるような場合、たとえば、第1精度管理情報および第2精度管理情報の全ての項目を用いて、精度管理異常を判定する処理が行われる。このような精度管理が実施される場合、図8(a)に示したように第1精度管理情報と第2精度管理情報にはばらつきの大きい項目があるため、第1精度管理情報および第2精度管理情報の各項目のうち、ばらつきの大きい項目に基づいて信頼性の低い精度管理異常の報知が頻繁に行われてしまう。このように信頼性の低い報知が頻繁に行われると、報知情報を閲覧するオペレータは、報知情報を信用しにくくなる。
 しかしながら、実施形態の精度管理システム10は、第1精度管理情報および第2精度管理情報の各項目のうち、ばらつきの小さい項目に基づいて信頼性の高い精度管理異常の報知が行われるよう構成される。具体的には、測定項目については第1精度管理情報を用いて精度管理異常が判定され、感度項目については第2精度管理情報を用いて精度管理異常が判定される。これにより、信頼性の高い精度管理異常のみが報知される。このように信頼性の高い報知情報のみがオペレータに提供されると、オペレータは、適切に分析装置20の精度管理の状態を評価し、精度管理を向上させるための必要な措置を取れる。
 なお、発明者らの調査によれば、第2精度管理情報の算出におけるNの値をさらに大きく、たとえば99に設定すると、測定項目においても第2精度管理情報の変動係数CVを抑制できることが分かった。したがって、Nの値を大きくすれば、測定項目に基づく精度管理を行う際に、第2精度管理情報を用いても安定した精度管理を実現できる可能性がある。
 図8(b)は、同じタイミングで生成された第1精度管理情報および第2精度管理情報の組み合わせを、第1精度管理情報と第2精度管理情報を2軸とする座標空間にプロットするためのグラフである。領域221、222、223は、WDF-Yの項目について、それぞれ、3つの異なる分析装置20から得られる第1精度管理情報および第2精度管理情報の組み合わせを示す座標点が分布する領域を例示している。
 図8(b)に示すように、領域221~223において、第2精度管理情報に対応する縦方向の幅は、いずれも、第1精度管理情報に対応する横方向の幅に比べて小さい。これは、図8(a)に示したWDF-Yの項目において、第2精度管理情報の変動係数CVが、第1精度管理情報の変動係数CVよりも小さいことに対応する。
 横軸の第1精度管理情報に着目すると、領域221~223は互いに重なり合っている。このことから、第1精度管理情報のばらつきにおいては、分析装置20によって大差がないと言える。一方、縦軸の第2精度管理情報に着目すると、隣り合う領域は互いに重なり合っているものの、領域221、223は互いに重なり合っていない。このことから、第2精度管理情報のばらつきにおいては、分析装置20によって差があるといえる。したがって、感度項目の第2精度管理情報を用いれば、対象となる分析装置20の精度管理が、他の分析装置20の精度管理からどの程度乖離しているかを把握できる。言い換えれば、感度項目について分析装置20ごとに第2精度管理情報の分布を取得すれば、精度管理を行う分析装置20において、他の分析装置20との精度管理の状況の違いを把握できる。
 図9に示すグラフにおいて、横軸は日付による時系列を示しており、縦軸はWDF-Yにおける精度管理情報の値を示している。なお、実際の精度管理の際には、図9に示すように濃度レベルの異なる2種類の精度管理物質が測定され、濃度レベルごとに第1精度管理情報が算出される。図9のグラフ中央付近に示す破線は、精度管理物質が交換されたタイミングを示している。
 図9に示すように、精度管理物質を測定して得られた第1精度管理情報は、時間の経過とともに小さくなる傾向がある。また、第1精度管理情報の場合、精度管理物質が交換されると、値が大きく変化する傾向がある。一方、複数の検体を測定して得られた第2精度管理情報は、時間が経過してもほぼ一定である。このことからも、感度項目においては、第1精度管理情報よりも第2精度管理情報の方が、ばらつき度合いが小さいことが分かる。したがって、第2精度管理情報を用いれば、精度管理情報の値がばらつきにくいため、安定的に精度管理を行うことができる。
 ここで、精度管理物質は、人工的に生成されており、通常、一定の使用期間において保存され精度管理に用いられるため、使用期間において経時劣化することがある。一方、検体は、分析精度を担保するために新鮮な状態で測定される。また、蛍光を生じる染料の反応性は、染色対象の試料の劣化状態に応じて異なる。したがって、検体の染料への反応性は、精度管理物質の染料への反応性に比べて、ばらつきが小さくなる。このような理由から、図9に示すように、第1精度管理情報は時間の経過により変化し、第2精度管理情報は時間の経過によらずほぼ一定となる。これにより、第1精度管理情報と第2精度管理情報の取得において光の強度として蛍光を用いる場合、第2精度管理情報のばらつきを、第1精度管理情報に比べて顕著に抑制できる。よって、第2精度管理情報を出力することにより、精度管理の状況を適切に評価できる。
 次に、図10~図12を参照して、精度管理システム10の処理について説明する。
 図10は、分析装置20の処理を示すフローチャートである。図10の各ステップは、測定部50の測定制御部51または情報処理部60の分析部61によって実行される。
 分析部61が、測定開始指示を測定部50に送信すると、ステップS101において、測定制御部51は、測定部50の各部を制御して、精度管理物質または検体について測定処理を行う。そして、上述したように、測定制御部51は、測定により取得した測定データを情報処理部60に送信する。
 ステップS102において、分析部61は、受信した測定データに基づいて測定結果群を算出し、算出した測定結果群を記憶部62に記憶する。具体的には、ステップS101で精度管理物質が測定された場合、分析部61は、受信した測定データに基づいて、図5に示した測定結果群201を算出する。ステップS101で検体が測定された場合、分析部61は、受信した測定データに基づいて、図5に示した測定結果群202を算出する。算出された測定結果群201または測定結果群202は、上述したように、測定項目および感度項目の測定結果を含む。
 ステップS103において、分析部61は、直前のステップS101において精度管理物質が測定されたか否かを判定する。直前のステップS101において精度管理物質が測定されなかった場合、すなわち、直前のステップS101で検体が測定された場合は、処理が終了する。直前のステップS101において精度管理物質が測定された場合、ステップS104において、分析部61は、図5、6を参照して説明した手順に従って、各測定項目および各感度項目について、それぞれ、i番目のバッチ中の測定結果群202と、1つ前に算出したXbarM(i-1)とに基づいて、今回のXbarM(i)を算出する。
 続いて、ステップS105において、分析部61は、第1精度管理情報
と、第2精度管理情報と、装置情報とを管理装置30に送信する。第1精度管理情報は、精度管理物質を測定して得られた、測定項目および感度項目ごとの測定結果を含む測定結果群201である。第2精度管理情報は、ステップS104で算出した、測定項目および感度項目ごとのXbarM(i)である。
 なお、図10に示す処理では、ステップS105の各情報が、精度管理物質の測定の際に管理装置30に送信されているが、これに限らず、所定のタイミング、たとえば6時間ごとに管理装置30に送信されてもよい。
 図11は、管理装置30の処理を示すフローチャートである。
 ステップS201において、管理装置30の制御部31は、第1精度管理情報と、第2精度管理情報と、装置情報とを受信したか否かを判定する。制御部31は、図10のステップS105の処理により送信されたこれらの情報を受信すると、ステップS202において、受信した第1精度管理情報と、第2精度管理情報と、装置情報とを互いに関連付けた状態で受信データベース32bに記憶する。
 続いて、ステップS203において、制御部31は、直前のステップS202で記憶した情報に基づいて、精度管理に関する異常判定処理を行う。制御部31は、受信した第1精度管理情報と、第2精度管理情報と、装置情報とが、所定の条件に合致したか否かを判定することにより、精度管理に関する異常判定を行う。ステップS203の判定で用いられる所定の条件は、あらかじめ管理装置30の記憶部32に記憶されるほか、複数の分析装置20から取得した第1精度管理情報と、第2精度管理情報と、装置情報とに基づいて、制御部31により設定されてもよい。制御部31により条件が設定されると、分析装置20の特性に応じた条件を設定できる。異常判定処理の具体的な例については、追って図14(a)~図15を参照して説明する。続いて、ステップS204において、制御部31は、ステップS203で行った異常判定処理の結果を、判定結果データベース32cに記憶する。
 図12は、管理装置30の処理を示すフローチャートである。
 ステップS301において、管理装置30の制御部31は、入力部33を介してモニター担当者から表示指示の入力が行われたか否かを判定する。表示指示には、施設番号、分析装置番号、表示期間、項目名などが含まれている。表示指示の入力が行われると、ステップS302において、制御部31は、受信データベース32bおよび判定結果データベース32cから、表示要求に含まれる施設番号、分析装置番号、表示期間、項目名などに基づいて、第1精度管理情報、第2精度管理情報および異常判定結果を抽出する。
 続いて、ステップS303において、制御部31は、第1精度管理情報と第2精度管理情報とを含む画面を表示部40に表示する。なお、制御部31は、タブの切り替え操作に応じて、第1精度管理情報を参照可能な画面と第2精度管理情報を参照可能な画面を別々に表示部40に表示してもよい。ステップS304において、制御部31は、ステップS302で抽出した異常判定結果が「精度管理異常」であるか否かを判定する。異常判定結果が「精度管理異常」である場合、ステップS305において、制御部31は、対象となる分析装置20において精度管理異常が生じていることを示す報知情報を出力する。具体的には、制御部31は、ステップS303で表示部40に表示した画面に、精度管理異常が生じた旨を表示する。
 なお、ステップS305において、制御部31は、管理装置30または他の装置に設けられたスピーカから、精度管理異常が生じた旨を示す音声を出力してもよく、管理装置30または他の装置に設けられた振動発生装置から、モニター担当者が把握可能な振動等の情報を出力してもよい。報知情報は、どのような精度管理異常の判定条件に合致したかを示す情報を含んでいてもよい。
 図12に示す処理では、モニター担当者による表示指示の入力に応じて、精度管理情報等を含む画面が表示部40に表示されたが、図11において精度管理情報等が受信データベース32bに記憶され、異常判定結果が判定結果データベース32cに記憶されたタイミングで、自動的に表示部40に精度管理情報等を含む画面が表示されてもよい。
 図11に示す処理では、異常判定処理および異常判定結果の記憶は、管理装置30が分析装置20から精度管理情報等を受信したタイミングで行われたが、これに限らず、図12のステップS301において表示指示が入力されたときに行われてもよい。
 図12に示す処理において、制御部31は、管理装置30以外の装置、たとえば施設11内の他の装置から表示要求を受信した場合にも、精度管理情報と異常判定結果を、表示要求を送信した装置に対して送信してもよい。この場合、表示要求を送信した装置において、精度管理情報と異常判定結果が表示される。
 以上のように、ステップS303において、第1精度管理情報および第2精度管理情報を参照可能な画面が表示部40に表示されると、モニター担当者は、分析装置20の精度管理の状況を視覚的に把握できる。また、ステップS305において、分析装置20に精度管理異常が生じていることを示す報知情報が出力されると、モニター担当者は、分析装置20の精度管理に異常が生じていることを知ることができる。これにより、モニター担当者は、精度管理異常が生じている分析装置20が設置された施設12の検査技師に連絡するなど、精度管理を改善するための対処をとることができる。
 図13(a)、(b)は、図12のステップS303で表示される画面の一例を示す図である。
 図13(a)、(b)に示す画面310は、第1精度管理情報および第2精度管理情報を時系列で表示するグラフ311と、精度管理物質の名前およびロット番号を示す表示領域312と、試薬の名前およびロット番号を示す表示領域313と、を備える。図13(a)に示す画面310は、項目としてWDF-Xが表示された状態を示しており、図13(b)に示す画面310は、項目としてWDF-Yが表示された状態を示している。
 管理装置30を操作するモニター担当者は、画面310を参照することにより、第1精度管理情報および第2精度管理情報が時系列に沿って変化する状況を確認できる。また、モニター担当者は、画面310を参照することにより、第1精度管理情報および第2精度管理情報が大きく変化するタイミングを把握でき、そのタイミングで精度管理に異常が生じた可能性があることを把握できる。よって、モニター担当者は、そのタイミングにおいて、精度管理情報がどのように推移したかを参照し、さらに適宜、精度管理上検討すべきその他の情報を把握することにより、精度管理の異常およびその原因を推定でき、適切な精度管理を実施できる。また、モニター担当者は、第1精度管理情報の推移と第2精度管理情報の推移とを、1つの画面310で見比べることができる。よって、モニター担当者は、2つの精度管理情報を比較することにより、精度管理に異常が生じた可能性があるか否かを、円滑かつ簡便に判断できる。
 ここで、図13(a)、(b)に示す画面310の例では、試薬のロットが変更されたタイミングで、第2精度管理情報に変化が生じていることが分かる。すなわち、図13(a)の場合は、試薬のロットが変更されたタイミングで、グラフ311中に破線矢印で示すように、WDF-Xの第2精度管理情報が一段小さくなっている。図13(b)の場合は、試薬のロットが変更されたタイミングで、グラフ311中に破線矢印で示すように、WDF-Yの第2精度管理情報が一段大きくなっている。しかしながら、図13(a)、(b)のいずれの場合も、第1精度管理情報には特に変化は見られない。このように、精度管理物質に基づく第1精度管理情報に変化が見られないにもかかわらず、検体に基づく第2精度管理情報に変化が見られるような場合、画面310を見たモニター担当者は、試薬に問題が生じている可能性を想定できる。
 なお、図13(a)、(b)に示すように、第1精度管理情報が正常であり、第2精度管理情報が大きく変化することにより所定の条件に合致した場合、試薬に異常が生じた可能性があることを示す報知情報が出力されてもよい。この場合、たとえば、図13(a)、(b)の画面310内に、「試薬異常」が表示されてもよく、試薬異常を報知するための音声や振動が出力されてもよい。これにより、モニター担当者は、試薬に異常が生じた可能性があることを把握できる。
 図14(a)は、図12のステップS305で表示される画面の一例を示す図である。
 図14(a)に示す画面320は、精度管理情報を時系列で表示するグラフ321と、精度管理状況を示す表示領域322と、を備える。図14(a)に示す画面320は、項目としてWDF-Yが表示された状態、および、対象となる精度管理情報として第2精度管理情報が表示された状態を示している。図14(a)に示す例では、直近の値が連続して所定のばらつきの範囲から外れたため、図11のステップS203において精度管理に異常が生じていると判定されている。より具体的には、直近の2つの値が3SDを越えたため、精度管理に異常が生じていると判定されている。SDとは、標準偏差(Standard Deviation)のことである。このような条件が用いられると、分析装置20に精度管理異常が生じた可能性があることを適正に判定できる。精度管理に異常が生じたと判定されたことにより、表示領域322には「異常あり」が表示されている。
 なお、直近の1つの値が所定のばらつきの範囲から外れた場合に、精度管理に異常が生じていると判定されてもよい。また、図14(b)に示すように、直近の値が中心線に対して所定の回数連続してプラス側またはマイナス側に偏った場合に、精度管理に異常が生じていると判定されてもよい。図14(c)に示すように、直近の点が所定の回数連続して上昇または下降した場合に、精度管理に異常が生じていると判定されてもよい。
 グラフ321に示された中心線およびばらつきの範囲は、対象となる分析装置20における対象項目の複数の値に基づいて設定される。なお、グラフ321に示された中心線およびばらつきの範囲は、対象となる分析装置20および他の分析装置20における対象項目の複数の値に基づいて設定されてもよい。この場合、対象となる分析装置20の精度管理情報を、他の分析装置20の精度管理情報と比較できる。
 管理装置30を操作するモニター担当者は、画面320を参照することにより、対象となる分析装置20において、精度管理情報が所定の範囲から外れていること、および、精度管理異常が生じた可能性があることを的確に把握できる。これにより、モニター担当者は、精度管理に異常が生じたか否かを円滑に調べることができる。また、モニター担当者は、対象となる分析装置20が、他の分析装置20における精度管理からどの程度乖離しているかを把握できる。よって、モニター担当者は、分析装置20を調整して精度管理の乖離を抑制する対処をとることができる。
 なお、管理装置30の制御部31が、図7に示すような第1精度管理情報と第2精度管理情報とを2軸とするグラフに基づいて精度管理異常を判定する場合に、表示部40には、図7に示すようなグラフを含む画面が表示されてもよい。この場合、モニター担当者は、2つの精度管理情報を参照しながら、円滑に精度管理の評価を行うことができる。また、図7に示すようなグラフに基づいて精度管理異常が生じていると判定された場合も、精度管理異常が生じていることを示す報知情報が管理装置30において出力されてもよい。
 図15は、図12のステップS305で表示される画面の一例を示す図である。
 図15に示す画面330は、グラフ331、332と、精度管理状況を示す表示領域333と、を備える。グラフ331は、対象となる分析装置20の精度管理情報の正確さを示している。すなわち、グラフ331は、精度管理情報群が、他の分析装置20から取得した精度管理情報に基づいて設定された値にどの程度近いかを示している。グラフ332は、対象となる分析装置20の精度管理情報の精密さを示している。すなわち、グラフ332は、精度管理情報のばらつきの幅が、他の分析装置20から取得した精度管理情報に基づいて設定された所定の幅の範囲にどの程度近いかを示している。
 グラフ331の横軸および縦軸は、それぞれ、第1精度管理情報の対象項目のSDIおよび第2精度管理情報の対象項目のSDIを示している。対象となる分析装置20における精度管理情報の対象項目のSDIは、以下の式により算出される。
 SDI=(対象となる分析装置から得られた測定値-全施設の分析装置から得られた測定値の平均値)/全体のSD
 グラフ332の横軸および縦軸は、それぞれ、第1精度管理情報の対象項目のPIおよび第2精度管理情報の対象項目のPIを示している。対象となる分析装置20における精度管理情報の対象項目のPIは、以下の式により算出される。
 PI=対象となる分析装置から得られた測定値のSD/全施設の分析装置から得られた測定値のSDの平均値
 上記2つの式において、「測定値」とは、第1精度管理情報の場合は、対象項目の測定結果のことであり、第2精度管理情報の場合は、対象項目の統計情報のことである。
 たとえば、1日の測定により、グラフ331、332のそれぞれに1つの点がプロットされる場合について説明する。精度管理物質の測定が朝夕の2回行われる場合、1つのプロットにおける第1精度管理情報のSDIおよびPIは、2個の測定結果に基づいて上記式により算出される。この場合、SDIの算出式における「対象となる分析装置から得られた測定値」は2個の測定結果の平均値となる。また、この場合、2回の精度管理物質の測定の間に5バッチが設定されたとすると、1つのプロットにおける第2精度管理情報のSDIおよびPIは、5個の統計情報に基づいて上記式により算出される。この場合、SDIの算出式における「対象となる分析装置から得られた測定値」は5個の統計情報の平均値となる。なお、1日に限らず、たとえば1週間の測定により、グラフ331、332のそれぞれに1つの点がプロットされてもよい。
 グラフ331、332には、1日や1週間などの所定期間の間に得られた測定値に基づいて1つの点がプロットされることに限らず、バッチごとの統計情報が取得されるタイミングで1つの点がプロットされてもよい。たとえば、朝に精度管理物質が測定され第1精度管理情報が取得されると、次に精度管理物質が測定されるまでの間、朝得られた第1精度管理情報のSDIおよびPIに対応付けて、複数のバッチごとに得られた第2精度管理情報のSDIおよびPIが関連付けられてもよい。こうすると、グラフ331、332上において、バッチ数に応じて縦方向に複数の点が並ぶことになり、精度管理状況の経時的な変化を把握できる。
 図15に示す画面330では、項目として「感度項目」が指定されている。このように感度項目が指定されると、図15のグラフ331、332に示すように、全ての感度項目に対応するSDIとPIがプロットされる。なお、1つの項目が指定されている場合、グラフ331、332には、それぞれ、1つの項目に対応するSDIとPIがプロットされる。
 図15に示す画面330の例では、項目として感度項目が指定されており、第2精度管理情報のSDIおよびPIがともに3を越えた領域に分布している。したがって、表示領域333には、第2精度管理情報のSDIに基づいて、他の分析装置20と比較して精度管理情報の正確さに問題が生じていることが表示されている。また、表示領域333には、第2精度管理情報のPIに基づいて、他の分析装置20と比較して精度管理情報の精密さに問題が生じていることが表示されている。
 このように、他の分析装置20と比較して精度管理の異常が判定されると、分析装置20側で精度管理の異常が判定される場合に比べて、判定精度を高めることができる。これにより、信頼性の低い報知が頻繁に行われることを抑制して、信頼性の高い報知のみを行うことができる。よって、モニター担当者は、分析装置20の検査技師に電話等により連絡することで、分析装置20において対処を行うべきことを確実に伝達できる。
 図15に示す画面330の例では、第1精度管理情報のSDIおよびPIは、ともに3より小さい領域に分布しているが、第2精度管理情報のSDIおよびPIは、ともに3を越えた領域に分布している。この場合、第1精度管理情報のみに基づけば、精度管理に異常なしと判定されてしまう。しかしながら、実施形態のように第2精度管理情報を用いることにより、精度管理に異常が生じていることを適正に判定できる。
 また、グラフ331、332によれば、精度管理異常がどのような原因で生じたかを判定できる。
 たとえば、グラフ331において、プロットされた点が右上、右下、左上、または左下に分布している場合、第1精度管理情報と第2精度管理情報のいずれに基づいても精度管理は異常と判定される。この場合、たとえば、分析装置20および試薬の両方に異常が生じていると判定できる。また、グラフ331において、プロットされた点が中央上側または中央下側に分布している場合、第1精度管理情報に基づいて精度管理は正常と判定され、第2精度管理情報に基づいて精度管理は異常と判定される。この場合、たとえば、検体または試薬に異常が生じていると判定できる。また、グラフ331において、プロットされた点が中央左側または中央右側に分布している場合、第1精度管理情報に基づいて精度管理は異常と判定され、第2精度管理情報に基づいて精度管理は正常と判定される。この場合、たとえば、精度管理物質に劣化が生じていると判定できる。
 このように、管理装置30を操作するモニター担当者は、第1精度管理情報と第2精度管理情報を組み合わせることにより、精度管理異常の原因を詳細に特定できる。また、上記のような精度管理異常の判定および精度管理異常の原因特定は、モニター担当者によって行われることに限らず、管理装置30の制御部31が自動で行ってもよい。また、グラフ331、332の両方に基づいて精度管理の原因が特定されてもよい。
 また、モニター担当者は、画面330を参照することにより、対象となる分析装置20の精度管理情報を、他の分析装置20との間で比較できるため、適切かつ精度よく精度管理の状況を把握できる。また、表示領域333には、上記のような正確さおよび精密さに関する異常を報知するための内容が表示されるため、モニター担当者は、分析装置20の測定結果の正確さおよび精密さに異常が生じた可能性があることを適正に判定できる。
 なお、表示領域333に表示される内容は、図15に示す内容に限らず、対象となる分析装置20において他の分析装置20とは異なる精度管理がなされている可能性があることを示す内容が表示されてもよい。また、グラフ331、332に基づく精度管理異常の判定は、第1精度管理情報と第2精度管理情報の両方に基づいて行われてもよい。また、項目として測定項目の一部または全体が選択された場合には、グラフ331、332に基づく精度管理異常の判定は、第1精度管理情報に基づいて行われてもよい。
 次に、モニター担当者が画面310、320、330を参照して精度管理に異常が生じていることを疑う場合に、さらに異常の原因を探る方法の一例について説明する。
 モニター担当者は、管理装置30を操作して、精度管理に異常が生じていると考えられる分析装置20に対して、情報処理部60の表示部63の画面を共有する指示を送信する。これにより、対象となる分析装置20の情報処理部60と、管理装置30との間で画面共有のための通信処理が行われ、表示部63の画面が、管理装置30の表示部40に表示される。モニター担当者は、表示部40に表示される情報処理部60の画面を参照して、精度管理状況をさらに詳細に把握する。
 図16(a)、(b)は、それぞれ、管理装置30および分析装置20の処理を示すフローチャートである。
 以下に説明する処理においては、画面共有を実現するために、管理装置30が情報処理部60を直接操作できるように通信する、いわゆるリモートアクセスが行われる。実施形態では、リモートアクセスを実現するためのコンピュータプログラムとして、たとえば、マイクロソフト社のオペレーティングシステム「Windows(登録商標)」上で実行可能な通信アプリケーション「リモートデスクトップ」が用いられる。
 管理装置30の制御部31は、図12のステップS304において精度管理異常が生じたと判定した場合に、図16(a)の処理を開始し、リモートアクセスの開始指示を入力するための入力画面を、表示部40に表示する。入力画面は、分析装置20にログインするためのユーザ名およびパスワードと、分析装置20を特定するためのIPアドレスとを入力するための領域を備える。また、入力画面は、リモートアクセスを開始するための開始ボタンを備える。
 図16(a)に示すように、ステップS401において、制御部31は、入力画面の開始ボタンを介して、リモートアクセスの開始指示が入力されたか否かを判定する。リモートアクセスの開始指示が入力されると、ステップS402において、制御部31は、入力画面に入力された情報に基づいて、対象となる分析装置20の情報処理部60に接続要求を送信する。そして、対象となる分析装置20の情報処理部60との間で通信が確立すると、ステップS403において、制御部31は、情報処理部60との間でリモートアクセスの通信を開始する。
 図16(b)の処理は、分析装置20の情報処理部60が起動すると開始される。分析装置20を操作する検査技師は、管理装置30を操作するモニター担当者から電話等によりリモートアクセスを開始する指示を受けた場合、入力部64を操作して、リモートアクセスの受け入れを開始させるプログラムを実行する。
 図16(b)に示すように、ステップS411において、情報処理部60の分析部61は、リモートアクセスの受け入れを開始させるプログラムが実行されたことにより、リモートアクセスの受入指示が入力されたか否かを判定する。リモートアクセスの受入指示が入力されると、ステップS412において、分析部61は、リモートアクセスの受け入れを開始する。続いて、ステップS413において、分析部61は、図16(a)のステップS402において管理装置30から送信された接続要求を受信したか否かを判定する。管理装置30の接続要求を受信すると、ステップS414において、分析部61は、管理装置30との間でリモートアクセスの通信を開始する。
 こうして管理装置30が分析装置20に対してリモートアクセスすると、管理装置30の表示部40に、情報処理部60の表示部63の表示画面が表示され、管理装置30の入力部33により、情報処理部60の入力部64と同様に情報処理部60を操作できるようになる。これにより、管理装置30を操作するモニター担当者は、情報処理部60を直接操作して、分析部61により行われた検体および精度管理物質の測定結果などを、管理装置30の表示部40に表示できる。よって、モニター担当者は、分析装置20の設置場所まで移動することなく、分析装置20の精度管理の状況を直接確認できる。
 具体的には、管理装置30を操作するモニター担当者は、画面共有により、図17(a)、(b)に示すような、分析装置20の表示部63に表示されるスキャッタグラム340を、管理装置30の表示部40に表示できる。図17(a)、(b)に示す例では、スキャッタグラム340の横軸は、SSCすなわち側方散乱光強度を示しており、スキャッタグラム340の縦軸は、FLすなわち蛍光強度を示している。図17(a)、(b)に示す例では、WDF測定試料の測定により得られたスキャッタグラム340が示されており、スキャッタグラム340には、WDF測定試料の測定により得られた側方散乱光強度および蛍光強度を座標点とする粒子がプロットされている。図17(b)のスキャッタグラム340上の粒子分布は、図17(a)のスキャッタグラム340上の粒子分布に比べて、縦方向すなわち蛍光強度の値が圧縮されたような形状となっている。
 管理装置30を操作するモニター担当者は、画面共有により表示部40に、図17(a)のように縦方向の幅が正常レベルのスキャッタグラム340が表示されるべきところを、図17(b)に示すように縦方向の幅が小さいスキャッタグラム340が表示された場合、純正の試薬以外の試薬が用いられている可能性が高いと判定できる。このように、モニター担当者は、精度管理異常を疑う場合に、画面を共有することにより、分析装置20の状態をより詳細に知ることができる。
 管理装置30の制御部31は、第2精度管理情報に基づいて精度管理に異常が生じていると判定した場合、分析装置20に対して第2精度管理情報の生成に用いた検体の分析結果を表示するための情報を要求する信号を送信してもよい。この場合、分析装置20は、第2精度管理情報の生成に用いた検体を測定した測定データを記憶部62から読み出し、読み出した測定データを管理装置30に送信する。被検者を特定する情報を除いて測定データが管理装置30に送信される。
 管理装置30は、分析装置20から測定データを受信すると、受信した測定データに基づいて、分析結果としてスキャッタグラム340を生成し、生成したスキャッタグラム340を表示部40に表示する。これにより、モニター担当者は、表示部40に表示されたスキャッタグラム340を参照し、試薬の異常の判定、すなわち、純正の試薬以外の試薬が用いられているか否かの判定を行うことができる。
 また、管理装置30は、受信した測定データに基づいてスキャッタグラム340を生成する際に、さらにスキャッタグラム340上の粒子分布が縦方向に圧縮されているか否かを判定することにより、対象となる分析装置20において純正の試薬以外の試薬が用いられているか否かを判定してもよい。こうすると、純正の試薬以外の試薬が用いられているか否かを自動的に判定できる。また、判定結果が表示部40に表示されると、モニター担当者は試薬の異常を視覚的かつ迅速に把握できる。なお、制御部31は、受信した測定データからスキャッタグラム340を生成することなく、測定データに対してデータ処理を行うことにより粒子分布の蛍光強度が圧縮されているか否かを判定してもよい。また、制御部31は、分析装置20から測定データを受信することに代えて、測定データに基づくスキャッタグラム340の画像のみを受信してもよい。
 10 精度管理しシステム
 12 施設
 13 ネットワーク
 20 分析装置
 30 管理装置
 40 表示部
 50 測定部
 54 フローサイトメータ
 61 分析部
 65 送信部
 310、320、330 画面

Claims (53)

  1.  ネットワークを介して複数施設のそれぞれに設置された分析装置と接続された管理装置で用いられる精度管理方法であって、
     各施設の分析装置が人工的に生成された精度管理物質を測定して得た第1精度管理情報と、複数の検体を測定して得た第2精度管理情報とを、ネットワークを介して、各施設の分析装置からそれぞれ取得し、
     取得した前記第1精度管理情報および前記第2精度管理情報に基づいて、少なくとも一の施設の分析装置の精度管理に関する情報を出力する、精度管理方法。
  2.  各施設の分析装置が複数の検体のそれぞれを測定して得た複数の測定結果を統計処理して得られた統計情報を前記第2精度管理情報として、前記ネットワークを介して、各施設の分析装置からそれぞれ取得する、請求項1に記載の精度管理方法。
  3.  前記分析装置は、光学式のフローサイトメータを備え、
     前記測定結果は、検体を測定して得た光の強度を含み、
     前記フローサイトメータにより複数の検体のそれぞれを測定して得た光の強度を統計処理して得た統計情報を前記第2精度管理情報として取得する、請求項2に記載の精度管理方法。
  4.  前記測定結果は、前記光の強度に基づいて算出される前記検体中の粒子種類ごとの粒子計数値をさらに含み、
     前記第2精度管理情報は、前記光の強度を統計処理して得た第1統計情報と、前記粒子計数値を統計処理して得た第2統計情報とを含み、
     前記第2精度管理情報に含まれる前記第1統計情報および前記第1精度管理情報に基づいて前記精度管理に関する情報を出力する、請求項3に記載の精度管理方法。
  5.  励起光により蛍光を生じる染料で検体を染色し、
     前記光の強度は、検体を染色した染料から生じた蛍光の強度である、請求項3または4に記載の精度管理方法。
  6.  各施設の分析装置は、所定の期間に含まれる測定結果から所定数の測定結果を選択し、選択した所定数の測定結果を統計処理することにより、前記第2精度管理情報を算出する、請求項2ないし5の何れか一項に記載の精度管理方法。
  7.  前記精度管理に関する情報として、前記第1精度管理情報を参照可能な画面と前記第2精度管理情報を参照可能な画面を別々に表示部に表示させる、請求項1ないし6の何れか一項に記載の精度管理方法。
  8.  前記精度管理に関する情報として、前記第1精度管理情報および前記第2精度管理情報をそれぞれ参照可能な画面を表示部に表示させる、請求項1ないし6の何れか一項に記載の精度管理方法。
  9.  前記画面において、前記第2精度管理情報を時系列で表示させる、請求項7または8に記載の精度管理方法。
  10.  前記画面において、前記第2精度管理情報とともに、前記第1精度管理情報を時系列で表示させる、請求項9に記載の精度管理方法。
  11.  前記精度管理に関する情報として、前記第1精度管理情報および前記第2精度管理情報の組み合わせを、前記第1精度管理情報および前記第2精度管理情報を2軸とする座標空間で示すグラフを前記表示部に表示させる、請求項8に記載の精度管理方法。
  12.  前記一の施設の前記分析装置から取得した前記第2精度管理情報を、前記一の施設とは異なる他の施設の前記分析装置から取得した前記第2精度管理情報との間で比較可能な画面を前記表示部に表示させる、請求項7ないし11の何れか一項に記載の精度管理方法。
  13.  前記一の施設の前記分析装置から取得した前記第2精度管理情報と、前記一の施設とは異なる他の施設の前記分析装置から取得した前記第2精度管理情報との関係が、所定の条件に合致した場合に、前記精度管理に関する情報として報知情報を出力する、請求項1ないし12の何れか一項に記載の精度管理方法。
  14.  前記一の施設の前記分析装置から取得した前記第2精度管理情報が、前記一の施設とは異なる他の施設の前記分析装置から取得した前記第2精度管理情報に基づいて設定された所定の範囲を越えた領域に分布している場合に、前記報知情報を出力させる、請求項13に記載の精度管理方法。
  15.  前記一の施設の前記分析装置から取得した前記第2精度管理情報のばらつきの幅が、前記一の施設とは異なる他の施設の前記分析装置から取得した前記第2精度管理情報に基づいて設定された所定の幅の範囲から外れた場合に、前記報知情報を出力させる、請求項13または14に記載の精度管理方法。
  16.  前記第2精度管理情報が所定の条件に合致した場合に、精度管理に異常が生じた可能性があることを示す報知情報を前記精度管理に関する情報として出力させる、請求項1ないし15の何れか一項に記載の精度管理方法。
  17.  前記第2精度管理情報が所定のばらつきの範囲から外れた場合に、前記報知情報を出力させる、請求項16に記載の精度管理方法。
  18.  前記一の施設の前記分析装置から取得した前記第2精度管理情報が所定の条件に合致した場合に、前記一の施設の前記分析装置に前記ネットワークを介してリモートアクセスし、前記分析装置の画面を表示部に表示させる、請求項16または17に記載の精度管理方法。
  19.  前記第2精度管理情報が所定の条件に合致した場合に、前記第2精度管理情報の生成に用いた検体の分析結果を表示するための情報をさらに取得し、
     取得した前記情報に基づいて、前記分析結果を表示部に表示させる、請求項16ないし18の何れか一項に記載の精度管理方法。
  20.  前記第2精度管理情報が所定の条件に合致した場合に、試薬に異常が生じた可能性があることを示す報知情報を前記精度管理に関する情報として出力させる、請求項16ないし19の何れか一項に記載の精度管理方法。
  21.  前記第2精度管理情報が所定の条件に合致した場合に、前記精度管理情報の生成に用いた検体を測定した測定データをさらに取得し、
     取得した前記測定データに基づいて、試薬の異常の判定として、純正の試薬以外の試薬が用いられているか否かを判定する、請求項20に記載の精度管理方法。
  22.  複数の前記分析装置から取得した前記第2精度管理情報に基づいて、精度管理に異常が生じたか否かを判定するための前記条件を設定する、請求項13ないし21の何れか一項に記載の精度管理方法。
  23.  前記分析装置は、光学式のフローサイトメータを備え、
     前記フローサイトメータにより複数の検体のそれぞれを測定して得た光の強度を統計処理して得た統計情報と、精度管理物質を測定して得た測定データを分析して得た測定結果とを組み合わせて、精度管理に異常が生じた可能性があるか否かを判定する、請求項1ないし22の何れか一項に記載の精度管理方法。
  24.  前記第1精度管理情報が正常であり、前記第2精度管理情報が所定の条件に合致した場合に、試薬に異常が生じた可能性があることを示す報知情報を前記精度管理に関する情報として出力させる、請求項1ないし23の何れか一項に記載の精度管理方法。
  25.  複数の施設のそれぞれに設置された分析装置と、
     ネットワークを介して各施設の分析装置と接続された管理装置と、を備え、
     前記分析装置は、人工的に生成された精度管理物質を測定して得た第1精度管理情報と、複数の検体を測定して得た第2精度管理情報とを、ネットワークを介して、前記管理装置に送信し、
     前記管理装置は、前記分析装置から受信した前記第1精度管理情報および前記第2精度管理情報に基づいて、少なくとも一の施設の分析装置の精度管理に関する情報を出力する、精度管理システム。
  26.  前記分析装置は、複数の検体のそれぞれを測定して得た複数の測定結果を統計処理して得られた統計情報を前記第2精度管理情報として、前記ネットワークを介して、前記管理装置に送信する、請求項25に記載の精度管理システム。
  27.  前記測定結果は、検体を測定して得た光の強度を含み、
     前記分析装置は、光学式のフローサイトメータを備え、前記フローサイトメータにより複数の検体のそれぞれを測定して得た光の強度を統計処理して得た統計情報を前記第2精度管理情報として前記管理装置に送信し、
     前記管理装置は、受信した前記統計情報を出力する、請求項26に記載の精度管理システム。
  28.  前記測定結果は、前記光の強度に基づいて算出される前記検体中の粒子種類ごとの粒子計数値をさらに含み、
     前記分析装置は、前記光の強度を統計処理して得た第1統計情報と、前記粒子計数値を統計処理して得た第2統計情報とを含む前記第2精度管理情報を前記管理装置に送信し、
     前記管理装置は、受信した前記第2精度管理情報に含まれる前記第1統計情報および前記第1精度管理情報に基づいて前記精度管理に関する情報を出力する、請求項27に記載の精度管理システム。
  29.  前記分析装置は、励起光により蛍光を生じる染料で検体を染色し、
     前記光の強度は、検体を染色した染料から生じた蛍光の強度である、請求項27または28に記載の精度管理システム。
  30.  前記分析装置は、所定の期間に含まれる測定結果から所定数の測定結果を選択し、選択した所定数の測定結果を統計処理することにより、前記第2精度管理情報を算出する、請求項26ないし29の何れか一項に記載の精度管理システム。
  31.  前記管理装置は、前記精度管理に関する情報として、前記第1精度管理情報を参照可能な画面と前記第2精度管理情報を参照可能な画面を別々に表示部に表示させるための処理を行う、請求項25ないし30の何れか一項に記載の精度管理システム。
  32.  前記管理装置は、前記精度管理に関する情報として、前記第1精度管理情報および前記第2精度管理情報をそれぞれ参照可能な画面を表示部に表示させるための処理を行う、請求項25ないし30の何れか一項に記載の精度管理システム。
  33.  前記管理装置は、前記画面において、前記第2精度管理情報を時系列で表示させるための処理を行う、請求項31または32に記載の精度管理システム。
  34.  前記管理装置は、前記画面において、前記第2精度管理情報とともに、前記第1精度管理情報を時系列で表示させるための処理を行う、請求項33に記載の精度管理システム。
  35.  前記管理装置は、前記精度管理に関する情報として、前記第1精度管理情報および前記第2精度管理情報との組み合わせを、前記第1精度管理情報および前記第2精度管理情報を2軸とする座標空間で示すグラフを前記表示部に表示させるための処理を行う、請求項32に記載の精度管理システム。
  36.  前記管理装置は、前記一の施設の前記分析装置から取得した前記第2精度管理情報を、前記一の施設とは異なる他の施設の前記分析装置から取得した前記第2精度管理情報との間で比較可能な画面を前記表示部に表示させるための処理を行う、請求項31ないし35の何れか一項に記載の精度管理システム。
  37.  前記管理装置は、前記一の施設の前記分析装置から取得した前記第2精度管理情報と、前記一の施設とは異なる他の施設の前記分析装置から取得した前記第2精度管理情報との関係が、所定の条件に合致した場合に、前記精度管理に関する情報として報知情報を出力する処理を行う、請求項25ないし36の何れか一項に記載の精度管理システム。
  38.  前記管理装置は、前記一の施設の前記分析装置から取得した前記第2精度管理情報が、前記一の施設とは異なる他の施設の前記分析装置から取得した前記第2精度管理情報に基づいて設定された所定の範囲を超えた領域に分布している場合に、前記報知情報を出力させるための処理を行う、請求項37に記載の精度管理システム。
  39.  前記管理装置は、前記一の施設の前記分析装置から取得した前記第2精度管理情報のばらつきの幅が、前記一の施設とは異なる他の施設の前記分析装置から取得した前記第2精度管理情報に基づいて設定された所定の幅の範囲から外れた場合に、前記報知情報を出力させるための処理を行う、請求項37または38に記載の精度管理システム。
  40.  前記管理装置は、前記第2精度管理情報が所定の条件に合致した場合に、精度管理に異常が生じた可能性があることを示す報知情報を前記精度管理に関する情報として出力させるための処理を行う、請求項25ないし39の何れか一項に記載の精度管理システム。
  41.  前記管理装置は、前記第2精度管理情報が所定のばらつきの範囲から外れた場合に、前記報知情報を出力させるための処理を行う、請求項40に記載の精度管理システム。
  42.  前記管理装置は、前記一の施設の前記分析装置から取得した前記第2精度管理情報が所定の条件に合致した場合に、前記一の施設の前記分析装置に前記ネットワークを介してリモートアクセスし、前記分析装置の画面を表示部に表示させるための処理を行う、請求項40または41に記載の精度管理システム。
  43.  前記管理装置は、前記第2精度管理情報が所定の条件に合致した場合に、前記第2精度管理情報の生成に用いた検体の分析結果を表示するための情報をさらに取得し、取得した前記情報に基づいて、前記分析結果を表示部に表示させるための処理を行う、請求項40ないし42の何れか一項に記載の精度管理システム。
  44.  前記管理装置は、前記第2精度管理情報が所定の条件に合致した場合に、試薬に異常が生じた可能性があることを示す報知情報を前記精度管理に関する情報として出力させる処理を行う、請求項40ないし43の何れか一項に記載の精度管理システム。
  45.  前記管理装置は、前記第2精度管理情報が所定の条件に合致した場合に、前記精度管理情報の生成に用いた検体を測定した測定データをさらに取得し、取得した前記測定データに基づいて、試薬の異常の判定として、純正の試薬以外の試薬が用いられているか否かを判定する、請求項44に記載の精度管理システム。
  46.  前記管理装置は、複数の前記分析装置から取得した前記第2精度管理情報に基づいて、精度管理に異常が生じたか否かを判定するための前記条件を設定する、請求項37ないし45の何れか一項に記載の精度管理システム。
  47.  前記分析装置は、光学式のフローサイトメータを備え、前記フローサイトメータにより複数の検体のそれぞれを測定して得た光の強度を統計処理して得た統計情報と、精度管理物質を測定して得た測定データを分析して得た測定結果とを前記管理装置に送信し、
     前記管理装置は、受信した前記統計情報と前記測定結果とを組み合わせて、精度管理に異常が生じた可能性があるか否かを判定する、請求項25ないし46の何れか一項に記載の精度管理システム。
  48.  前記管理装置は、前記第1精度管理情報が正常であり、前記第2精度管理情報が所定の条件に合致した場合に、試薬に異常が生じた可能性があることを示す報知情報を前記精度管理に関する情報として出力させるための処理を行う、請求項25ないし47の何れか一項に記載の精度管理システム。
  49.  人工的に生成された精度管理物質を測定して得られた第1精度管理情報と、複数の検体を測定して得られた第2精度管理情報とを、ネットワークを介して、複数施設のそれぞれに設置された分析装置から取得し、
     取得した前記第1精度管理情報および前記第2精度管理情報に基づいて、少なくとも一の施設の分析装置の精度管理に関する情報を出力する、管理装置。
  50.  ネットワークを介して管理装置と接続された分析装置であって、
     検体を測定するための測定部と、
     前記測定部で得られた測定データを分析するための分析部と、
     前記分析部で得られた分析結果を前記管理装置に送信するための送信部と、を備え、
     前記分析部は、前記測定部が人工的に生成された精度管理物質を測定して得た測定データに基づいて第1精度管理情報を生成し、前記測定部が複数の検体を測定して得た測定データに基づいて検体ごとに測定結果を取得し、取得した検体ごとの測定結果に基づいて第2精度管理情報を生成し、
     前記送信部は、前記分析部によって生成された前記第1精度管理情報および前記第2精度管理情報を前記管理装置に送信する、分析装置。
  51.  人工的に生成された精度管理物質を測定して得られた第1精度管理情報と、複数の検体を測定して得られた第2精度管理情報とに基づいて、分析装置の精度管理異常を判定する、精度管理異常判定方法。
  52.  前記第2精度管理情報は、前記分析装置が複数の検体のそれぞれを測定して得た複数の測定結果を統計処理して得られた統計情報である、請求項51に記載の精度管理異常判定方法。
  53.  前記分析装置は、光学式のフローサイトメータを備え、
     前記測定結果は、検体を測定して得た光の強度を含み、
     前記統計情報は、前記フローサイトメータにより複数の検体のそれぞれを測定して得た光の強度を統計処理して得た統計情報である、請求項52に記載の精度管理異常判定方法。
PCT/JP2018/000485 2017-01-31 2018-01-11 精度管理方法、精度管理システム、管理装置、分析装置および精度管理異常判定方法 WO2018142871A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18748803.6A EP3578993A4 (en) 2017-01-31 2018-01-11 PRECISION MANAGEMENT PROCESS, PRECISION MANAGEMENT SYSTEM, ANALYSIS DEVICE, AND ANOMALY DETERMINATION PROCESS IN PRECISION MANAGEMENT
AU2018216105A AU2018216105B2 (en) 2017-01-31 2018-01-11 Quality control method, quality control system, management apparatus, analyzer, and quality control abnormality determination method
CN201880009083.7A CN110234999A (zh) 2017-01-31 2018-01-11 精度管理方法、精度管理系统、管理装置、分析装置以及精度管理异常判定方法
SG11201906964TA SG11201906964TA (en) 2017-01-31 2018-01-11 Quality control method, quality control system, management apparatus, analyzer, and quality control abnormality determination method
US16/524,423 US11340242B2 (en) 2017-01-31 2019-07-29 Quality control method, quality control system, management apparatus, analyzer, and quality control abnormality determination method
US17/750,040 US11933796B2 (en) 2017-01-31 2022-05-20 Quality control method, quality control system, management apparatus, analyzer, and quality control abnormality determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017016383A JP6875137B2 (ja) 2017-01-31 2017-01-31 精度管理方法、精度管理システム、管理装置、分析装置および精度管理異常判定方法
JP2017-016383 2017-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/524,423 Continuation US11340242B2 (en) 2017-01-31 2019-07-29 Quality control method, quality control system, management apparatus, analyzer, and quality control abnormality determination method

Publications (1)

Publication Number Publication Date
WO2018142871A1 true WO2018142871A1 (ja) 2018-08-09

Family

ID=63039622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000485 WO2018142871A1 (ja) 2017-01-31 2018-01-11 精度管理方法、精度管理システム、管理装置、分析装置および精度管理異常判定方法

Country Status (7)

Country Link
US (2) US11340242B2 (ja)
EP (1) EP3578993A4 (ja)
JP (1) JP6875137B2 (ja)
CN (1) CN110234999A (ja)
AU (1) AU2018216105B2 (ja)
SG (1) SG11201906964TA (ja)
WO (1) WO2018142871A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056593A (ja) * 2018-09-28 2020-04-09 シスメックス株式会社 測定装置及び精度管理方法
US11441997B2 (en) * 2018-03-30 2022-09-13 Idexx Laboratories, Inc. Quality control for point-of-care diagnostic systems

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6875137B2 (ja) 2017-01-31 2021-05-19 シスメックス株式会社 精度管理方法、精度管理システム、管理装置、分析装置および精度管理異常判定方法
EP3951398A4 (en) 2019-03-26 2023-01-04 Hitachi High-Tech Corporation DATA ANALYSIS METHOD, DATA ANALYSIS SYSTEM AND CALCULATOR
CN114829933A (zh) * 2019-12-31 2022-07-29 深圳迈瑞生物医疗电子股份有限公司 一种样本分析系统及其自动精度管理方法
JP2022026810A (ja) * 2020-07-31 2022-02-10 シスメックス株式会社 精度管理支援方法、精度管理支援システム、精度管理支援装置、及びプログラム
WO2022070455A1 (ja) * 2020-09-30 2022-04-07 株式会社日立ハイテク データ処理装置および自動分析装置
WO2023190730A1 (ja) * 2022-03-30 2023-10-05 積水メディカル株式会社 検体処理システム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233825A (ja) * 1995-02-24 1996-09-13 Fujitsu Ltd データ管理装置
JP2004004105A (ja) 1999-11-30 2004-01-08 Sysmex Corp 精度管理方法及びその装置
JP2006017600A (ja) * 2004-07-02 2006-01-19 Hitachi Sci Syst Ltd 臨床検査システム
JP2007108136A (ja) 2005-10-17 2007-04-26 Mitsubishi Kagaku Bio-Clinical Laboratories Inc 分析精度管理システム
JP2007248090A (ja) * 2006-03-14 2007-09-27 Hitachi High-Technologies Corp 臨床検査の精度管理システム
JP2008032751A (ja) * 2007-10-22 2008-02-14 Hitachi Ltd 分析結果管理の方法および装置
JP2009181369A (ja) * 2008-01-31 2009-08-13 Sysmex Corp 分析装置用精度管理システム、管理装置、および情報提供方法
JP2009243978A (ja) * 2008-03-28 2009-10-22 Sysmex Corp 試料分析装置及びコンピュータプログラム
JP2015010939A (ja) * 2013-06-28 2015-01-19 シスメックス株式会社 検体分析装置、検体分析システム、異常検知装置、及び検体分析装置の異常検知方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858154A (en) 1986-04-07 1989-08-15 Coulter Electronics, Inc. Interlaboratory quality assurance program
US5532941A (en) 1994-07-08 1996-07-02 Lin; Lawrence I. Inter-laboratory performance monitoring system
EP1107159B1 (en) 1999-11-30 2009-04-29 Sysmex Corporation Quality control method and device therefor
JP3760806B2 (ja) * 2001-06-25 2006-03-29 株式会社日立製作所 分析結果管理の方法および装置
JP3772125B2 (ja) * 2002-03-20 2006-05-10 オリンパス株式会社 分析システムの精度管理方法
US7875245B2 (en) * 2003-05-14 2011-01-25 Dako Denmark A/S Method and apparatus for automated pre-treatment and processing of biological samples
JP4825548B2 (ja) * 2006-02-28 2011-11-30 シスメックス株式会社 試料分析装置
JP4871618B2 (ja) * 2006-03-14 2012-02-08 株式会社日立ハイテクノロジーズ 精度管理システム
JP4746471B2 (ja) 2006-04-21 2011-08-10 シスメックス株式会社 精度管理システム、精度管理サーバ及びコンピュータプログラム
JP4817251B2 (ja) * 2006-09-22 2011-11-16 シスメックス株式会社 精度管理システム
EP2037281B1 (en) * 2007-09-13 2018-10-10 Sysmex Corporation Sample analyzer
JP4580976B2 (ja) * 2007-12-26 2010-11-17 シスメックス株式会社 精度管理機能を備えた生体試料分析装置および精度管理測定結果の表示方法
JP4590456B2 (ja) * 2008-01-17 2010-12-01 シスメックス株式会社 臨床検査システム用サーバ
CN102265163B (zh) * 2008-12-26 2013-12-04 株式会社日立高新技术 精度管理方法
JP5452254B2 (ja) * 2010-01-28 2014-03-26 シスメックス株式会社 検体分析装置
US9551600B2 (en) * 2010-06-14 2017-01-24 Accuri Cytometers, Inc. System and method for creating a flow cytometer network
JP5855372B2 (ja) * 2011-07-07 2016-02-09 シスメックス株式会社 検体分析装置及びコンピュータプログラム
JP2013210265A (ja) * 2012-03-30 2013-10-10 Sysmex Corp 検体分析装置、精度管理用検体ユニットおよび精度管理方法
JP5484533B2 (ja) * 2012-08-22 2014-05-07 シスメックス株式会社 管理装置、管理システム、および検体分析装置の精度管理方法
EP2956755A4 (en) * 2013-02-18 2016-03-30 Theranos Inc SYSTEMS AND METHODS FOR COLLECTING AND TRANSMITTING ANALYSIS RESULTS
JP6100658B2 (ja) * 2013-03-29 2017-03-22 シスメックス株式会社 血球分析装置および血球分析方法
JP5951545B2 (ja) * 2013-03-29 2016-07-13 シスメックス株式会社 検体分析装置、検体分析方法、及びコンピュータプログラム
JP2014202608A (ja) * 2013-04-04 2014-10-27 日本光電工業株式会社 外部精度管理の評価用データの表示方法
EP2811032B1 (en) * 2013-06-03 2018-04-04 Sysmex Corporation Bacteria analyzing method and specimen analyzer
CN105807072A (zh) * 2014-12-31 2016-07-27 青岛中科软件股份有限公司 医学精度管理系统
WO2016195896A1 (en) * 2015-06-05 2016-12-08 Abbott Point Of Care Inc. Systems and methods for assuring quality compliance of point-of-care instruments used with single-use testing devices
JP6875137B2 (ja) 2017-01-31 2021-05-19 シスメックス株式会社 精度管理方法、精度管理システム、管理装置、分析装置および精度管理異常判定方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233825A (ja) * 1995-02-24 1996-09-13 Fujitsu Ltd データ管理装置
JP2004004105A (ja) 1999-11-30 2004-01-08 Sysmex Corp 精度管理方法及びその装置
JP2006017600A (ja) * 2004-07-02 2006-01-19 Hitachi Sci Syst Ltd 臨床検査システム
JP2007108136A (ja) 2005-10-17 2007-04-26 Mitsubishi Kagaku Bio-Clinical Laboratories Inc 分析精度管理システム
JP2007248090A (ja) * 2006-03-14 2007-09-27 Hitachi High-Technologies Corp 臨床検査の精度管理システム
JP2008032751A (ja) * 2007-10-22 2008-02-14 Hitachi Ltd 分析結果管理の方法および装置
JP2009181369A (ja) * 2008-01-31 2009-08-13 Sysmex Corp 分析装置用精度管理システム、管理装置、および情報提供方法
JP2009243978A (ja) * 2008-03-28 2009-10-22 Sysmex Corp 試料分析装置及びコンピュータプログラム
JP2015010939A (ja) * 2013-06-28 2015-01-19 シスメックス株式会社 検体分析装置、検体分析システム、異常検知装置、及び検体分析装置の異常検知方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3578993A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441997B2 (en) * 2018-03-30 2022-09-13 Idexx Laboratories, Inc. Quality control for point-of-care diagnostic systems
US11887727B2 (en) 2018-03-30 2024-01-30 Idexx Laboratories, Inc. Quality control for point-of-care diagnostic systems
JP2020056593A (ja) * 2018-09-28 2020-04-09 シスメックス株式会社 測定装置及び精度管理方法
JP7352340B2 (ja) 2018-09-28 2023-09-28 シスメックス株式会社 測定装置及び精度管理方法

Also Published As

Publication number Publication date
EP3578993A4 (en) 2020-09-30
US20190346466A1 (en) 2019-11-14
AU2018216105A1 (en) 2019-09-12
US20220276273A1 (en) 2022-09-01
JP2018124171A (ja) 2018-08-09
US11933796B2 (en) 2024-03-19
JP6875137B2 (ja) 2021-05-19
US11340242B2 (en) 2022-05-24
CN110234999A (zh) 2019-09-13
EP3578993A1 (en) 2019-12-11
AU2018216105B2 (en) 2022-07-28
SG11201906964TA (en) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2018142871A1 (ja) 精度管理方法、精度管理システム、管理装置、分析装置および精度管理異常判定方法
Tanaka et al. Performance evaluation of platelet counting by novel fluorescent dye staining in the XN‐series automated hematology analyzers
CN101726609B (zh) 标本分析仪
EP3073265B1 (en) Blood analyzer and blood analysis method
US8008089B2 (en) Method and system for checking measurement result
US9453790B2 (en) Blood analyzer, blood analyzing method, and computer program product
CN111418023B (zh) 血液分析仪和操作方法
US20070179715A1 (en) Analyzer, information processing device and computer program product
JP6987540B2 (ja) 血液分析装置を制御する方法、血液分析装置の制御装置、血液分析装置、コンピュータプログラム、および記憶媒体
JP6150635B2 (ja) 検体分析装置、検体分析システム、異常検知装置、及び検体分析装置の異常検知方法
US9541542B2 (en) Method of detecting filarial larvae in blood
US20100129855A1 (en) Blood cell analyzer, blood cell analyzing method, and computer program product
CN114450589A (zh) 分析血液样本中红细胞方法及血液分析系统
CN113567327A (zh) 用于检验血液的方法、设备和系统
CN116615653A (zh) 样本分析系统、方法、样本图像分析系统及血液分析仪
JP2021516335A (ja) 生体細胞を含む生体試料の分析方法及びその分析方法を実施する分析装置
Khoo et al. Performance evaluation of the A bbott CELL‐DYN E merald for use as a bench‐top analyzer in a research setting
US20220334099A1 (en) Blood analysis apparatus, blood analysis method, and storage medium
US10073080B2 (en) Sample analyzing apparatus, disease monitoring system, and method for managing multiple disease determination data in a sample analyzing apparatus
CN114137234A (zh) 血液细胞分析仪的质量控制方法和血液细胞分析仪
Lakos Calibration and QC guidance for the Abbott Alinity HQ hematology analyzer
JP2012088255A (ja) 血液分析システム及び血液分析プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018748803

Country of ref document: EP

Effective date: 20190902

ENP Entry into the national phase

Ref document number: 2018216105

Country of ref document: AU

Date of ref document: 20180111

Kind code of ref document: A