WO2018142613A1 - 検出装置 - Google Patents

検出装置 Download PDF

Info

Publication number
WO2018142613A1
WO2018142613A1 PCT/JP2017/004225 JP2017004225W WO2018142613A1 WO 2018142613 A1 WO2018142613 A1 WO 2018142613A1 JP 2017004225 W JP2017004225 W JP 2017004225W WO 2018142613 A1 WO2018142613 A1 WO 2018142613A1
Authority
WO
WIPO (PCT)
Prior art keywords
similarity
data
phase
calculated
surface data
Prior art date
Application number
PCT/JP2017/004225
Other languages
English (en)
French (fr)
Inventor
淳二 堀
恒次 阪田
拓弥 橋口
敬太 望月
清高 渡邊
浩之 笹井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/004225 priority Critical patent/WO2018142613A1/ja
Priority to DE112017006997.1T priority patent/DE112017006997T5/de
Priority to CN201780084710.9A priority patent/CN110226075A/zh
Priority to JP2018565223A priority patent/JP6590088B2/ja
Priority to US16/463,852 priority patent/US11099138B2/en
Priority to KR1020197022529A priority patent/KR20190104184A/ko
Publication of WO2018142613A1 publication Critical patent/WO2018142613A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/952Inspecting the exterior surface of cylindrical bodies or wires
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/32Counting, measuring, recording or registering devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • D07B1/145Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising elements for indicating or detecting the rope or cable status
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2301/00Controls
    • D07B2301/55Sensors
    • D07B2301/5531Sensors using electric means or elements
    • D07B2301/5572Sensors using electric means or elements optical

Definitions

  • the present invention relates to a detection device that uses a long body as a detection target.
  • Patent Document 1 describes an apparatus for inspecting a rope.
  • the device described in Patent Document 1 includes a light source and a light receiving element.
  • a rope is disposed between the light source and the light receiving element.
  • the diameter of the rope is calculated based on the amount of light received by the light receiving element.
  • the position of the rope is calculated by making the calculated peak value interval of the diameter coincide with the strand interval.
  • An object of the present invention is to provide a detection device capable of detecting an abnormality of a long body even when the moving speed of the long body varies.
  • the detection apparatus includes a data acquisition unit that acquires first surface data and second surface data of a long body having a periodic pattern on a surface, and a memory that stores first reference data and second reference data.
  • Similarity calculation means for calculating the second similarity between the second surface data and the first reference data acquired by the second reference data and the fourth similarity between the second surface data and the second reference data acquired by the data acquisition means;
  • the declination of the first similarity vector having the first similarity and the second similarity calculated by the similarity calculation means as the first phase is used as the first phase.
  • phase calculation means for calculating the second phase of the second similarity vector having the third similarity and the fourth similarity calculated as the second phase, and a phase calculation means.
  • a period calculating unit that calculates a period of the pattern formed on the long body, and a first unit that detects an abnormality in the long body based on the period calculated by the period calculating unit. 1 abnormality detection means.
  • the detection apparatus includes a data acquisition unit that acquires a plurality of surface data of a long body having a periodic pattern on a surface, a storage unit that stores first reference data and second reference data, and data acquisition Selecting means for selecting the first surface data and the second surface data from the surface data acquired by the means; the first similarity between the first surface data selected by the selecting means and the first reference data; The second similarity between the selected first surface data and the second reference data, the second similarity between the second surface data and the first reference data selected by the selection means, and the second surface data selected by the selection means Similarity calculation means for calculating the fourth similarity of the second reference data and the first similarity calculated by the similarity calculation means The second similarity vector having the third similarity and the fourth similarity calculated by the similarity calculating means as a first phase, and the first similarity vector having the second similarity as an element is calculated as the first phase.
  • a phase calculation unit that calculates a declination angle of the second pattern as a second phase, and a cycle calculation unit that calculates a cycle of a pattern formed on the elongated body based on the first phase and the second phase calculated by the phase calculation unit;
  • first abnormality detecting means for detecting an abnormality of the elongated body based on the period calculated by the period calculating means.
  • the detection device has a first surface data of a first long body having a periodic pattern on the surface and a second long surface having the same pattern as the pattern formed on the surface of the first long body.
  • Data acquisition means for acquiring the second surface data of the body, storage means for storing the first reference data and the second reference data, and the first similarity between the first surface data and the first reference data acquired by the data acquisition means.
  • Similarity calculation means for calculating the fourth similarity between the second surface data and the second reference data acquired by the first data calculated by the similarity calculation means.
  • the first similarity vector having the similarity and the second similarity as elements is calculated as the first phase, and the second similarity having the third similarity and the fourth similarity calculated by the similarity calculation means as elements.
  • the phase calculation means for calculating the deviation angle of the similarity vector as the second phase, and the first phase and the second phase calculated by the phase calculation means there is an abnormality in the first elongated body or the second elongated body.
  • First abnormality detecting means for detecting the occurrence.
  • the detection apparatus includes, for example, similarity calculation means, phase calculation means, period calculation means, and first abnormality detection means.
  • the phase calculation means calculates the declination of the first similarity vector as the first phase, and calculates the declination of the second similarity vector as the second phase.
  • the period calculating means calculates the period of the pattern formed on the long body based on the first phase and the second phase calculated by the phase calculating means.
  • the first abnormality detection means detects the abnormality of the long body based on the period calculated by the period calculation means. With the detection device according to the present invention, even when the moving speed of the long body varies, the abnormality of the long body can be detected.
  • FIG. 1 It is a figure which shows the example of the detection apparatus in Embodiment 1 of this invention. It is the figure which looked at the elongate body from the direction of the arrow A shown in FIG. It is a figure which shows the processing method of the light reception image acquired by the light receiving element. It is a figure which shows the example of a control apparatus. It is a figure for demonstrating the function of a data processing part. It is a figure which shows the example of reference data. It is a figure for demonstrating the function of a phase calculation part. It is a flowchart which shows the operation example of the detection apparatus in Embodiment 1 of this invention. It is a figure for demonstrating the other example of a sensor head.
  • FIG. 1 is a diagram showing an example of a detection apparatus according to Embodiment 1 of the present invention.
  • the detection device is a device for detecting an abnormality in the long body.
  • the long body includes, for example, the rope 1.
  • FIG. 2 is a view of the elongated body viewed from the direction of arrow A shown in FIG.
  • the x-axis, y-axis and z-axis are set as shown in FIGS.
  • the y-axis is an axis that faces the longitudinal direction of the long body.
  • the x axis is orthogonal to the y axis and the z axis.
  • the z axis is orthogonal to the y axis and the x axis.
  • the x-axis, y-axis, and z-axis are axes set to represent coordinates in a three-dimensional space.
  • FIG. 2 corresponds to a view of a long body viewed from the + z direction.
  • the long body moves in the longitudinal direction.
  • the rope 1 moves in the + y direction or the ⁇ y direction.
  • An example of the rope 1 that moves in this way is a wire rope used in an elevator.
  • the rope 1 may move in both the + y direction and the ⁇ y direction. Note that the long body to be detected by the detection device is not limited to the rope 1.
  • the rope 1 includes a plurality of strands.
  • the rope 1 is formed by twisting a plurality of strands. For this reason, the rope 1 has a periodic pattern on the surface.
  • the object for which the detection apparatus detects an abnormality is a long body having a periodic pattern on the surface.
  • the “pattern” includes, for example, a shape, a figure, a color, and a color shade.
  • 1 and 2 show an example in which a rope 1 is formed by twisting eight strands.
  • irregularities formed by a plurality of strands being twisted together are regularly arranged.
  • the ideal cross-sectional shape of the rope 1 is the same for each distance obtained by dividing the twist pitch by the number of strands.
  • the cross section is a cross section in a direction orthogonal to the longitudinal direction of the rope 1. The distance obtained by dividing the winding pitch by the number of strands is the strand pitch, that is, the period of the pattern.
  • the detection device calculates the period of the pattern formed on the long body and determines whether there is an abnormality.
  • the detection device includes a sensor head 2 and a control device 3, for example.
  • the sensor head 2 is an example of means for acquiring surface data of a long body.
  • “Surface data” is data relating to the pattern of the surface of the elongated body.
  • the sensor head 2 simultaneously acquires surface data at two locations on the long body.
  • the sensor head 2 acquires data representing the unevenness formed on the surface of the portion of the rope 1 that passes through the first position as the first surface data.
  • the sensor head 2 acquires data representing the irregularities formed on the surface of the portion of the rope 1 that passes through the second position as the second surface data.
  • the second position is a position different from the first position.
  • the second position is a position away from the first position by a certain distance in the y-axis direction.
  • FIG. 1 shows an example in which the sensor head 2 is an optical profile measuring instrument.
  • the sensor head 2 includes, for example, a light source 4, a light source 5, a light receiving element 6, and a light receiving element 7.
  • the light source 4 irradiates the surface of the rope 1 with light.
  • 1 and 2 show an example in which the light source 4 emits laser light in a direction orthogonal to the longitudinal direction of the rope 1.
  • the light emitted from the light source 4 strikes the surface of the portion of the rope 1 that passes through the first position. In the example shown in FIGS. 1 and 2, the light emitted from the light source 4 strikes a straight line from one end of the rope 1 to the other end so as to cross the rope 1.
  • the light source 5 irradiates the surface of the rope 1 with light.
  • the light source 5 emits light parallel to the light emitted from the light source 4.
  • the timing at which the light source 5 emits light is the same as the timing at which the light source 4 emits light.
  • 1 and 2 show an example in which the light source 5 emits laser light in a direction orthogonal to the longitudinal direction of the rope 1.
  • the light emitted from the light source 5 strikes the surface of the portion of the rope 1 that passes through the second position. That is, the light emitted from the light source 5 strikes the rope 1 at a position away from the position where the light from the light source 4 strikes the rope 1 by a certain distance in the y-axis direction. In the example shown in FIGS. 1 and 2, the light emitted from the light source 5 strikes a straight line from one end of the rope 1 to the other end so as to cross the rope 1.
  • the light receiving element 6 receives light reflected from the surface of the rope 1 among the light emitted from the light source 4.
  • the light receiving element 6 is disposed obliquely with respect to the direction in which the light source 4 emits light.
  • the light receiving element 6 receives light reflected obliquely at a certain angle with respect to the longitudinal direction of the rope 1 out of light from the light source 4 reflected on the surface of the rope 1.
  • the light receiving element 7 receives the light reflected from the surface of the rope 1 among the light irradiated from the light source 5.
  • the light receiving element 7 is disposed obliquely with respect to the direction in which the light source 5 emits light.
  • the light receiving element 7 receives light reflected obliquely at a certain angle with respect to the longitudinal direction of the rope 1 out of light from the light source 5 reflected on the surface of the rope 1.
  • the light receiving element 7 receives light reflected at the same angle as the light received by the light receiving element 6 on the surface of the rope 1.
  • the light a shown in FIGS. 1 and 2 is light emitted from the light source 4 toward the rope 1.
  • the light b and the light c are light reflected at an angle received by the light receiving element 6 among the light a reflected from the surface of the rope 1.
  • the light b is light reflected at the outermost portion of the strand.
  • the light c is light reflected by a groove formed by adjacent strands.
  • the light d shown in FIGS. 1 and 2 is the light irradiated on the rope 1 from the light source 5.
  • the light e and the light f are light reflected at an angle received by the light receiving element 7 among the light d reflected on the surface of the rope 1.
  • the light e is light reflected at the outermost portion of the strand.
  • the light f is light reflected by a groove formed by adjacent strands.
  • FIG. 3 is a diagram illustrating a method of processing a received light image acquired by the light receiving element 6 and the light receiving element 7.
  • the upper part of FIG. 3 shows a light reception image of the light receiving element 6 and a light reception image of the light receiving element 7.
  • the lower part of FIG. 3 shows the first surface data P1 converted from the received light image of the light receiving element 6 and the second surface data P2 converted from the received light image of the light receiving element 7.
  • 3 indicates that the first surface data P1 and the second surface data P2 each include a plurality of data in the x direction. The number of data included in the surface data is arbitrarily determined.
  • the control device 3 detects a pitch abnormality occurring in the rope 1 based on the first surface data and the second surface data acquired by the sensor head 2. That is, the control device 3 detects a cycle abnormality of the pattern formed on the surface of the long body.
  • FIG. 1 shows an example in which the control device 3 is connected to the sensor head 2 by a signal line 8. You may arrange
  • the sensor head 2 may include some of the functions of the control device 3.
  • FIG. 4 is a diagram illustrating an example of the control device 3.
  • the control device 3 includes, for example, a storage unit 9, a data processing unit 10, a similarity calculation unit 11, a phase calculation unit 12, a cycle calculation unit 13, and an abnormality detection unit 14.
  • Two pieces of reference data are stored in the storage unit 9.
  • one reference data stored in the storage unit 9 is referred to as first reference data.
  • the other reference data stored in the storage unit 9 is referred to as second reference data.
  • the data processing unit 10 processes the first surface data received from the sensor head 2 and outputs the processed data as final first surface data.
  • the data processing unit 10 processes the second surface data received from the sensor head 2 and outputs the processed data as final second surface data.
  • the data processing unit 10 constitutes a part of means for acquiring the surface data of the long body. In detecting the pitch abnormality of the rope 1, it is desirable to employ data obtained by removing a specific frequency component from the surface data acquired by the sensor head 2 as final surface data. By performing such data processing, it is possible to emphasize the periodic pattern component of the rope 1 on the surface.
  • FIG. 5 is a diagram for explaining the function of the data processing unit 10.
  • FIG. 5 shows the first surface data P1 and the second surface data P2 after the data processing by the data processing unit 10 is performed.
  • the data processing unit 10 obtains the first surface data P1 shown in FIG. 5 by performing a low-frequency component removal process on the first surface data P1 shown in FIG.
  • the data processing unit 10 obtains the second surface data P2 illustrated in FIG. 5 by performing a low-frequency component removal process on the second surface data P2 illustrated in FIG.
  • the influence of the diameter of the rope 1 is removed from the first surface data P1 and the second surface data P2 shown in FIG.
  • the function of the data processing unit 10 may be provided in the sensor head 2. Further, the means for acquiring the surface data of the long body may not have the function of the data processing unit 10. In the example shown in the present embodiment, the output from the data processing unit 10 is the final output from the means for acquiring the surface data of the long body. If the data processing unit 10 is not provided, the output from the sensor head 2 is the final output from the means for acquiring the surface data of the long body.
  • the first surface data P1 obtained at the position L1 at time t can be expressed as P (t, L1).
  • the second surface data P2 acquired at the position L2 at the same time t can be expressed as P (t, L2).
  • FIG. 6 is a diagram showing an example of reference data.
  • the rope 1 has a periodic pattern on the surface.
  • a sine wave having the same period as the pattern formed on the surface of the rope 1 is stored in the storage unit 9 as the first reference data.
  • a cosine wave having the same period as the pattern formed on the surface of the rope 1 is stored in the storage unit 9 as the second reference data.
  • the first reference data Ref1 and the second reference data Ref2 can be expressed as a matrix of n rows and 1 column as follows.
  • the first surface data P (t, L1), the second surface data P (t, L2), the first reference data Ref1, and the second reference data Ref2 are multidimensional vector data, that is, the number of elements n.
  • An example of the vector will be described.
  • the inner product of the first reference data Ref1 and the second reference data Ref2 is preferably 0 as in the example shown in FIG.
  • the first reference data Ref1 and the second reference data Ref2 shown in FIG. 6 are sine waves having an orthogonal relationship. However, the inner product of the first reference data Ref1 and the second reference data Ref2 may not be zero.
  • the first reference data Ref1 and the second reference data Ref2 are not limited to the example shown in FIG.
  • the similarity calculation unit 11 calculates the similarity between the surface data and the reference data. For example, the similarity calculation unit 11 calculates a first similarity, a second similarity, a third similarity, and a fourth similarity.
  • the first similarity is a similarity between the first surface data output from the data processing unit 10 and the first reference data stored in the storage unit 9.
  • the second similarity is a similarity between the first surface data output from the data processing unit 10 and the second reference data stored in the storage unit 9.
  • the third similarity is a similarity between the second surface data output from the data processing unit 10 and the first reference data stored in the storage unit 9.
  • the fourth similarity is a similarity between the second surface data output from the data processing unit 10 and the second reference data stored in the storage unit 9.
  • the similarity calculation unit 11 calculates the correlation coefficient ⁇ 1 (t, L1) between the first surface data P (t, L1) and the first reference data Ref1 as the first similarity.
  • the similarity calculation unit 11 calculates a correlation coefficient ⁇ 2 (t, L1) between the first surface data P (t, L1) and the second reference data Ref2 as the second similarity.
  • the similarity calculation unit 11 calculates a correlation coefficient ⁇ 1 (t, L2) between the second surface data P (t, L2) and the first reference data Ref1 as the third similarity.
  • the similarity calculation unit 11 calculates a correlation coefficient ⁇ 2 (t, L2) between the second surface data P (t, L2) and the second reference data Ref2 as the fourth similarity.
  • FIG. 7 is a diagram for explaining the function of the phase calculation unit 12.
  • the phase calculation unit 12 calculates the deviation angle of the similarity vector S as the phase ⁇ .
  • the phase calculation unit 12 calculates the phase ⁇ (t, L1) of the similarity vector S (t, L1) related to the first surface data.
  • the similarity vector S (t, L1) is a vector having the correlation coefficient ⁇ 1 (t, L1) and the correlation coefficient ⁇ 2 (t, L1) calculated by the similarity calculation unit 11 as elements.
  • the phase ⁇ (t, L1) is an argument of the similarity vector S (t, L1).
  • the phase calculation unit 12 calculates the phase ⁇ (t, L2) of the similarity vector S (t, L2) related to the second surface data.
  • the similarity vector S (t, L2) is a vector having the correlation coefficient ⁇ 1 (t, L2) and the correlation coefficient ⁇ 2 (t, L2) calculated by the similarity calculation unit 11 as elements.
  • the phase ⁇ (t, L2) is an argument of the similarity vector S (t, L2).
  • FIG. 7 shows the similarity vector S (t, L1) and the similarity vector on an orthogonal plane with the similarity to the first reference data Ref1 as the horizontal axis and the similarity to the second reference data Ref2 as the vertical axis.
  • the example which plotted S (t, L2) is shown.
  • the locus of the similarity vector S (t, L1) has a circular shape with a radius of 1 at the maximum.
  • the locus of the similarity vector S (t, L2) has a circular shape with a radius of 1 at the maximum.
  • the period calculation unit 13 calculates the period of the pattern formed on the surface of the rope 1. In the example shown in the present embodiment, as described above, the period matches the strand pitch of the rope 1. As shown in FIG. 7, the starting point of the similarity vector S is the origin. The end point of the similarity vector S is a point having coordinates of two similarity degrees calculated by the similarity vector element, that is, the similarity calculation unit 11. The phase ⁇ represents the direction of the similarity vector S. The period calculation unit 13 can calculate the strand pitch SP of the rope 1 by the following equation.
  • the period calculation unit 13 calculates the strand pitch SP based on the phase ⁇ (t, L1) and the phase ⁇ (t, L2) calculated by the phase calculation unit 12. For example, the period calculation unit 13 calculates the strand pitch SP by calculating the positional change rate of the phase corresponding to the position change in the y-axis direction.
  • the abnormality detection unit 14 detects an abnormality that has occurred in the rope 1.
  • the abnormality detection unit 14 detects, for example, a cycle abnormality of the pattern formed on the long body based on the cycle calculated by the cycle calculation unit 13.
  • the storage unit 9 stores in advance a reference range for determining that the pattern cycle is normal. If the period calculated by the period calculation unit 13 is within the reference range, the abnormality detection unit 14 determines that no pitch abnormality has occurred in the rope 1. The abnormality detection unit 14 determines that a pitch abnormality has occurred in the rope 1 if the cycle calculated by the cycle calculation unit 13 is not within the reference range.
  • FIG. 8 is a flowchart showing an operation example of the detection apparatus according to Embodiment 1 of the present invention.
  • FIG. 8 shows the processing flow described above.
  • an alarm may be issued from the control device 3.
  • the abnormality of the rope 1 can be detected even when the moving speed of the rope 1 is fluctuating.
  • This detection device also has an advantage of high noise resistance.
  • the control device 3 may further include a speed calculation unit 15 and a position calculation unit 16.
  • the speed calculation unit 15 calculates the speed at which the rope 1 moves.
  • the speed calculation unit 15 can calculate the moving speed V of the rope 1 at time t by the following equation.
  • ⁇ t shown in the above equation is a time interval for acquiring the surface data.
  • the speed calculation unit 15 calculates the moving speed of the rope 1 based on the phase ⁇ (t, L1) and the phase ⁇ (t, L2) calculated by the phase calculation unit 12. For example, the speed calculation unit 15 calculates the movement speed of the rope 1 by calculating the change of the phase ⁇ (t, L1) or the phase ⁇ (t, L2) with time.
  • the position calculation unit 16 calculates the position of the abnormality that has occurred in the rope 1.
  • the position calculation unit 16 calculates the position based on the moving speed V of the rope 1 calculated by the speed calculation unit 15.
  • the position calculating unit 16 can specify how much the rope 1 has moved from the acquisition start position of the surface data by integrating the moving speed V of the rope 1 calculated by the speed calculating unit 15.
  • the position calculation unit 16 calculates the position of the detected abnormality on the rope 1 based on the movement distance when the abnormality is detected by the abnormality detection unit 14. With the above calculation method, the position can be calculated even if the strand pitch of the rope 1 is unknown or fluctuates.
  • the control device 3 may further include an invalid unit 17.
  • the invalidation unit 17 invalidates the abnormality detection by the abnormality detection unit 14. As shown in FIG. 7, the locus of the similarity vector S (t, L1) is circular. If irregularities formed by twisting a plurality of strands are neatly arranged on the surface of the rope 1, the locus of the similarity vector S (t, L1) continues to draw a similar circle centered on the origin. .
  • the locus of the similarity vector S (t, L1) changes so as to approach the origin. For this reason, if a normal range is set in advance for the norm of the similar vector S (t, L1), it can be detected that the reliability of the acquired surface data has become low.
  • the normal range is set to 0.3 to 1, for example. The same is true for the similarity vector S (t, L2).
  • the invalidation unit 17 invalidates the function that the abnormality detection unit 14 detects an abnormality based on the norm of the similarity vector S (t, L1). If the norm of the similarity vector S (t, L1) is out of the normal range, the invalid unit 17 prevents the abnormality detection unit 14 from detecting an abnormality.
  • the invalidation part 17 may invalidate the function in which the abnormality detection part 14 detects abnormality based on the norm of the similarity vector S (t, L2). For example, the invalid unit 17 prevents the abnormality detection unit 14 from detecting an abnormality if the norm of the similarity vector S (t, L2) is out of the normal range.
  • the invalidation unit 17 invalidates the abnormality detection by the abnormality detection unit 14 when both the norm of the similarity vector S (t, L1) and the norm of the similarity vector S (t, L2) are out of the normal range.
  • the position calculating unit 16 may calculate the movement distance of the rope 1 using the strand pitch SP calculated immediately before. Thereby, an appropriate interpolation becomes possible.
  • the control device 3 may further include an abnormality detection unit 18.
  • the abnormality detection unit 18 detects an abnormality of the rope 1 that is different from the abnormality detected by the abnormality detection unit 14. For example, the abnormality detection unit 18 detects an abnormality of the pattern formed on the surface of the rope 1.
  • the locus of the similarity vector S (t, L1) is circular. If there is no abnormality in signal transmission, the locus of the similarity vector S (t, L1) is the origin if the irregularities formed by twisting a plurality of strands are neatly arranged on the surface of the rope 1. Continue to draw a similar circle centered on. On the other hand, when a defect occurs in the winding due to non-uniform spacing between strands, the locus of the similarity vector S (t, L1) changes so as to approach the origin. Therefore, if a normal range is set in advance for the norm of the similar vector S (t, L1), it is possible to detect that an abnormality has occurred in the pattern formed on the surface of the rope 1. The normal range is set to 0.6 to 1, for example. The same is true for the similarity vector S (t, L2).
  • the abnormality detection unit 18 detects that an abnormality has occurred in the pattern of the rope 1 based on the norm of the similarity vector S (t, L1). If the norm of the similarity vector S (t, L1) is out of the normal range, the abnormality detection unit 18 detects that an abnormality has occurred in the pattern of the rope 1. In the example shown in the present embodiment, the abnormality detection unit 18 detects a shape abnormality of the rope 1. The abnormality detection unit 18 may detect that an abnormality has occurred in the pattern of the rope 1 based on the norm of the similarity vector S (t, L2). For example, the abnormality detection unit 18 detects the shape abnormality of the rope 1 if the norm of the similarity vector S (t, L2) is out of the normal range. The abnormality detecting unit 18 detects the shape abnormality of the rope 1 when both the norm of the similarity vector S (t, L1) and the norm of the similarity vector S (t, L2) are out of the normal range. May be.
  • the abnormality detection unit 18 When the abnormality of the pattern is detected by the abnormality detection unit 18, data that can confirm the abnormality may be stored in the storage unit 9. For example, when a pattern abnormality is detected by the abnormality detection unit 18, surface data used for detecting the abnormality is stored in the storage unit 9. As will be described later, the sensor head 2 may include a camera in order to acquire surface data. When the abnormality of the pattern is detected by the abnormality detection unit 18, the image data captured by the camera may be stored in the storage unit 9.
  • FIG. 9 is a diagram for explaining another example of the sensor head 2.
  • the sensor head 2 shown in FIG. 9 includes a light source 4, a light source 5, and a light receiving element 6, for example.
  • FIG. 9 shows an example in which one light receiving element 6 receives both the light from the light source 4 reflected on the surface of the rope 1 and the light from the light source 5 reflected on the surface of the rope 1.
  • FIG. 10 is a diagram illustrating a method of processing a received light image acquired by the light receiving element 6.
  • the upper part of FIG. 10 shows a received light image of the light receiving element 6.
  • the lower part of FIG. 10 shows the first surface data P1 and the second surface data P2 converted from the light reception image of the light receiving element 6. 10 indicates that the first surface data P1 and the second surface data P2 each include a plurality of data in the x direction. The number of data included in the surface data is arbitrarily determined.
  • the sensor head 2 it is not necessary to provide the sensor head 2 with a plurality of light receiving elements. Moreover, if the wavelength of the light from the light source 4 and the wavelength of the light from the light source 5 are different, the surface data extraction process can be easily performed.
  • the sensor head 2 is not limited to an optical profile measuring instrument.
  • FIG. 11 and FIG. 12 are diagrams for explaining another example of the sensor head 2.
  • the sensor head 2 shown in FIGS. 11 and 12 includes a camera 20, for example.
  • the sensor head 2 may acquire data obtained from image data obtained by photographing the surface of the rope 1 with the camera 20 as surface data.
  • the image data photographed by the camera 20 does not include information on the height.
  • the sensor head 2 may acquire data representing the color and color density applied to the surface of the rope 1 as surface data. For example, the sensor head 2 acquires data representing colors and shades of colors assigned to ranges of x1 ⁇ x ⁇ xr and L1 ⁇ y ⁇ LM on the surface of the rope 1. This data corresponds to M surface data.
  • the sensor head 2 outputs two preset surface data as the first surface data and the second surface data from the M surface data.
  • FIG. 13 is a diagram illustrating a method of processing image data captured by the camera 20.
  • Embodiment 2 an example for improving the calculation accuracy of the strand pitch SP will be described.
  • the detection device in the present embodiment is the same as the example shown in FIG. 11, for example.
  • the detection device includes a sensor head 2 and a control device 3, for example.
  • the sensor head 2 includes a camera 20, for example.
  • the sensor head 2 acquires, for example, data representing the color and shade of the color attached to the surface of the rope 1 as surface data.
  • the sensor head 2 acquires M surface data from the image data acquired by the camera 20.
  • M is a natural number of 3 or more, for example.
  • FIG. 14 is a diagram illustrating an example of the control device 3 according to Embodiment 2 of the present invention.
  • the control device 3 includes a storage unit 9, a data processing unit 10, a selection unit 19, a similarity calculation unit 11, a phase calculation unit 12, a period calculation unit 13, and an abnormality detection unit 14.
  • the control device 3 may not include the data processing unit 10.
  • the control device 3 may further include a speed calculation unit 15, a position calculation unit 16, an invalid unit 17, and an abnormality detection unit 18.
  • the first reference data Ref1 and the second reference data Ref2 are stored in the storage unit 9.
  • the first reference data Ref1 can be expressed as a matrix of n rows and 1 column.
  • the second reference data Ref2 can be expressed as a matrix of n rows and 1 column.
  • the data processing unit 10 processes each surface data received from the sensor head 2 into surface data that can be compared with reference data. For example, the data processing unit 10 performs a bias removal process on each of the surface data received from the sensor head 2. From the data processing unit 10, for example, M pieces of surface data P (t, L1), P (t, L2),..., P (t, LM) subjected to bias removal processing are output.
  • the selection unit 19 selects the first surface data P (t, L ⁇ ) and the second surface data P (t, t, L from the M surface data output from the data processing unit 10 based on a preset condition. L ⁇ ).
  • the similarity calculation unit 11 calculates the similarity between the surface data selected by the selection unit 19 and the reference data. That is, the similarity calculation unit 11 calculates the first similarity, the second similarity, the third similarity, and the fourth similarity.
  • the first similarity is a similarity between the first surface data selected by the selection unit 19 and the first reference data stored in the storage unit 9.
  • the second similarity is a similarity between the first surface data selected by the selection unit 19 and the second reference data stored in the storage unit 9.
  • the third similarity is a similarity between the second surface data selected by the selection unit 19 and the first reference data stored in the storage unit 9.
  • the fourth similarity is a similarity between the second surface data selected by the selection unit 19 and the second reference data stored in the storage unit 9.
  • phase calculation unit 12 is the same as the function disclosed in the first embodiment.
  • period calculation unit 13 is the same as the function disclosed in the first embodiment.
  • the function of the abnormality detection unit 14 is the same as the function disclosed in the first embodiment.
  • FIG. 15 is a flowchart showing an operation example of the detection apparatus according to Embodiment 2 of the present invention.
  • M surface data are output from the data processing unit 10 (S201).
  • the selection unit 19 selects the first surface data P (t, L ⁇ ) and the second surface data P (t, L ⁇ ) from the M surface data output from the data processing unit 10 (S202). .
  • the similarity calculation unit 11 calculates the similarity with the first reference data and the similarity with the second reference data for each surface data output from the data processing unit 10.
  • FIG. 15 shows an example in which the correlation coefficient ⁇ 1 is calculated as the similarity to the first reference data, and the correlation coefficient ⁇ 2 is calculated as the similarity to the second reference data.
  • a similarity vector S having the correlation coefficient ⁇ 1 and the correlation coefficient ⁇ 2 as elements is calculated for each surface data.
  • the norm of the similarity vector S is calculated for each surface data.
  • the selection unit 19 selects the first surface data P (t, L ⁇ ) and the second surface data P (t, L ⁇ ) based on the norm of the calculated similarity vector S, for example.
  • FIG. 16 is a diagram for explaining the function of the selection unit 19. For example, among the M pieces of surface data output from the data processing unit 10, the selection unit 19 determines the first surface data P (t, L ⁇ ) and second surface data P (t, L ⁇ ). Here, L ⁇ > L ⁇ .
  • the similarity vector S (t, L ⁇ ) is a vector having the correlation coefficient ⁇ 1 (t, L ⁇ ) and the correlation coefficient ⁇ 2 (t, L ⁇ ) calculated by the similarity calculation unit 11 as elements.
  • the phase ⁇ (t, L ⁇ ) is a deviation angle of the similarity vector S (t, L ⁇ ).
  • the phase calculation unit 12 calculates the phase ⁇ (t, L ⁇ ) of the similarity vector S (t, L ⁇ ) (S203).
  • the similarity vector S (t, L ⁇ ) is a vector having the correlation coefficient ⁇ 1 (t, L ⁇ ) and the correlation coefficient ⁇ 2 (t, L ⁇ ) calculated by the similarity calculation unit 11 as elements.
  • the phase ⁇ (t, L ⁇ ) is an argument of the similarity vector S (t, L ⁇ ).
  • the period calculation unit 13 calculates the strand pitch SP from the following equation based on the phase ⁇ (t, L ⁇ ) and the phase ⁇ (t, L ⁇ ) calculated by the phase calculation unit 12, for example.
  • the abnormality detection unit 14 detects a cycle abnormality of the pattern formed on the long body based on the cycle calculated by the cycle calculation unit 13. For example, the abnormality detection unit 14 determines that a pitch abnormality has occurred in the rope 1 when the period calculated by the period calculation unit 13 is out of the reference range.
  • the abnormality of the rope 1 can be detected even when the moving speed of the rope 1 is fluctuating.
  • the calculation accuracy of the strand pitch SP can be improved.
  • the selection unit 19 may select the first surface data P (t, L ⁇ ) and the second surface data P (t, L ⁇ ) by a method different from the method described above. For example, the selection unit 19 first selects, from among the M pieces of surface data output from the data processing unit 10, those whose similarity vector S has a norm equal to or greater than a reference value.
  • the reference value is stored in advance in the storage unit 9. For example, the reference value is 0.3.
  • the selection unit 19 selects the two pieces of the first surface data P (t, L ⁇ ) and the second surface data P (t, L ⁇ ) that have the maximum angle formed from those having the norm of the similarity vector S equal to or greater than the reference value. ) To select.
  • any of the features disclosed in the first embodiment may be adopted.
  • Embodiment 3 As described above, a wire rope used in an elevator is an example of a long body that is a detection target of the detection device.
  • the elevator car is suspended from the hoistway by, for example, a plurality of wire ropes.
  • the elevator car is suspended by a plurality of wire ropes, it is desirable that the same tension acts on any wire rope.
  • the detection device sets a plurality of long bodies as detection targets.
  • FIG. 17 is a diagram showing an example of a detection apparatus according to Embodiment 3 of the present invention.
  • 18 is a view of the long body viewed from the direction of arrow A shown in FIG.
  • FIG. 18 shows an example in which a rope 21 is arranged in parallel with the rope 1.
  • the rope 21 moves in the longitudinal direction in the same manner as the rope 1.
  • the rope 21 moves in the + y direction or the ⁇ y direction.
  • the rope 21 may move in both the + y direction and the ⁇ y direction.
  • the rope 21 includes a plurality of strands.
  • the rope 21 is formed by twisting a plurality of strands.
  • the rope 21 has the same pattern on the surface as the pattern formed on the surface of the rope 1.
  • the detection device includes a sensor head 2 and a control device 3, for example.
  • the sensor head 2 includes a light source 4 and a light receiving element 6, for example.
  • the light source 4 irradiates both the surface of the rope 1 and the surface of the rope 21 simultaneously.
  • 17 and 18 show an example in which the light source 4 irradiates laser light in the longitudinal direction of the rope 1 and the direction orthogonal to the longitudinal direction of the rope 21.
  • the light emitted from the light source 4 hits the rope 1 and the rope 21 at the same height.
  • the light emitted from the light source 4 strikes linearly from one end of the rope 1 to the other end so as to cross the rope 1.
  • the light emitted from the light source 4 strikes linearly from one end of the rope 21 to the other end so as to cross the rope 21.
  • the light receiving element 6 receives light reflected from the surface of the rope 1 among the light emitted from the light source 4.
  • the light receiving element 6 receives light reflected from the surface of the rope 21 among the light emitted from the light source 4.
  • the light receiving element 6 is disposed obliquely with respect to the direction in which the light source 4 emits light.
  • the light receiving element 6 receives light reflected obliquely at a certain angle with respect to the longitudinal direction of the rope 1 out of light from the light source 4 reflected on the surface of the rope 1.
  • the light receiving element 6 receives light reflected obliquely at a certain angle with respect to the longitudinal direction of the rope 1 among the light from the light source 4 reflected on the surface of the rope 21.
  • the light a shown in FIGS. 17 and 18 is light emitted from the light source 4 toward the rope 1.
  • the light b and the light c are light reflected at an angle received by the light receiving element 6 among the light a reflected from the surface of the rope 1.
  • the sensor head 2 acquires data representing the cross-sectional shape of the portion of the rope 1 that has been irradiated with light from the light source 4 as first surface data.
  • the light g shown in FIGS. 17 and 18 is light emitted from the light source 4 toward the rope 21.
  • the light h and the light i are light reflected at an angle received by the light receiving element 6 out of the light g reflected on the surface of the rope 21.
  • the sensor head 2 acquires data indicating a cross-sectional shape of a portion of the rope 21 that has been irradiated with light from the light source 4 as second surface data.
  • FIG. 19 is a diagram illustrating a method of processing a received light image acquired by the light receiving element 6.
  • the upper part of FIG. 19 shows a received light image of the light receiving element 6.
  • the lower part of FIG. 19 shows the first surface data P3 and the second surface data P4 converted from the light reception image of the light receiving element 6.
  • the horizontal axis in the lower part of FIG. 19 indicates that the first surface data P3 and the second surface data P4 each include a plurality of data in the x direction.
  • the number of data included in the surface data is arbitrarily determined.
  • FIG. 20 is a diagram illustrating an example of the control device 3.
  • the control device 3 includes a storage unit 9, a data processing unit 10, a similarity calculation unit 11, a phase calculation unit 12, and an abnormality detection unit 14, for example.
  • the control device 3 may not include the data processing unit 10.
  • the control device 3 may further include an invalid unit 17 and an abnormality detection unit 18.
  • the first reference data Ref1 and the second reference data Ref2 are stored in the storage unit 9.
  • the first reference data Ref1 can be expressed as a matrix of n rows and 1 column.
  • the second reference data Ref2 can be expressed as a matrix of n rows and 1 column.
  • the data processing unit 10 processes the first surface data received from the sensor head 2, for example, and outputs the processed data as final first surface data.
  • the data processing unit 10 processes the second surface data received from the sensor head 2 and outputs the processed data as final second surface data.
  • the similarity calculation unit 11 calculates the similarity between the surface data and the reference data. For example, the similarity calculation unit 11 calculates the first correlation coefficient ⁇ 1 (t, L1 (P3)) between the first surface data P3 (t, L1) output from the data processing unit 10 and the first reference data Ref1. Calculated as similarity. The similarity calculation unit 11 uses the correlation coefficient ⁇ 2 (t, L1 (P3)) between the first surface data P3 (t, L1) and the second reference data Ref2 output from the data processing unit 10 as the second similarity.
  • the similarity calculation unit 11 uses the correlation coefficient ⁇ 1 (t, L1 (P4)) between the second surface data P4 (t, L1) output from the data processing unit 10 and the first reference data Ref1 as the third similarity.
  • the similarity calculation unit 11 uses the correlation coefficient ⁇ 2 (t, L1 (P4)) between the second surface data P4 (t, L1) output from the data processing unit 10 and the second reference data Ref2 as the fourth similarity.
  • FIG. 21 is a diagram for explaining the function of the phase calculation unit 12.
  • the phase calculation unit 12 calculates the deviation angle of the similarity vector S as the phase ⁇ .
  • the phase calculation unit 12 calculates the phase ⁇ 3 (t, L1) of the similarity vector S3 (t, L1) related to the first surface data.
  • the similarity vector S3 (t, L1) has the correlation coefficient ⁇ 1 (t, L1 (P3)) and the correlation coefficient ⁇ 2 (t, L1 (P3)) calculated by the similarity calculation unit 11 as elements. Is a vector.
  • the phase ⁇ 3 (t, L1) is a deviation angle of the similarity vector S3 (t, L1).
  • the phase calculation unit 12 calculates the phase ⁇ 4 (t, L1) of the similarity vector S4 (t, L1) related to the second surface data.
  • the similarity vector S4 (t, L1) has the correlation coefficient ⁇ 1 (t, L1 (P4)) and the correlation coefficient ⁇ 2 (t, L1 (P4)) calculated by the similarity calculation unit 11 as elements. Is a vector.
  • the phase ⁇ 4 (t, L1) is a deviation angle of the similarity vector S4 (t, L1).
  • the speed at which the rope 1 moves and the speed at which the rope 21 moves are the same. If the strand pitch of the rope 1 and the strand pitch of the rope 21 are the same, the angle formed by the similarity vector S3 (t, L1) and the similarity vector S4 (t, L1) is constant regardless of the speed. Become.
  • the angle formed by the similarity vector S3 (t, L1) and the similarity vector S4 (t, L1) is the difference between the phase ⁇ 4 (t, L1) and the phase ⁇ 3 (t, L1), that is, the phase difference.
  • the abnormality detection unit 14 has an abnormality in the rope 1 or the rope 21 based on the phase ⁇ 4 (t, L1) and the phase ⁇ 3 (t, L1) calculated by the phase calculation unit 12. Detect what happened. For example, the abnormality detection unit 14 detects a period abnormality of the pattern formed on the surface of the rope 1 or the pattern formed on the surface of the rope 21.
  • the storage unit 9 stores in advance a reference range for determining that the pattern cycle is normal. If the difference between the phase ⁇ 4 (t, L1) and the phase ⁇ 3 (t, L1) is within the reference range, the abnormality detection unit 14 indicates that there is no pitch abnormality in both the rope 1 and the rope 21. judge. If the difference between the phase ⁇ 4 (t, L1) and the phase ⁇ 3 (t, L1) is not within the reference range, the abnormality detection unit 14 generates a pitch abnormality in either the rope 1 or the rope 21. It is determined that
  • the detection device can target a plurality of long bodies. In the example shown in the present embodiment, it can be detected that an abnormality has occurred even when the moving speeds of the rope 1 and the rope 21 are fluctuating.
  • the abnormality detection unit 18 when the control device 3 further includes the abnormality detection unit 18, the abnormality detection unit 18 has an abnormality in the pattern of the rope 1 based on the norm of the similarity vector S3 (t, L1). Detect that. For example, if the norm of the similarity vector S3 (t, L1) is out of the normal range, the abnormality detection unit 18 detects that an abnormality has occurred in the pattern of the rope 1. Further, the abnormality detection unit 18 detects that an abnormality has occurred in the pattern of the rope 21 based on the norm of the similarity vector S4 (t, L1). For example, if the norm of the similarity vector S4 (t, L1) is out of the normal range, the abnormality detection unit 18 detects that an abnormality has occurred in the pattern of the rope 21.
  • the control device 3 further includes a period calculation unit 13, a velocity calculation unit 15, and a position calculation unit 16 in the example shown in the present embodiment. Also good.
  • the sensor head 2 includes a light source 4, a light source 5, a light receiving element 6, and a light receiving element 7, for example.
  • the light source 4 irradiates the surface of the rope 1 with light.
  • the light receiving element 6 receives light reflected from the surface of the rope 1 among the light irradiated from the light source 4.
  • the light source 5 irradiates the surface of the rope 21 with light.
  • the light emitted from the light source 5 strikes the rope 21 at a position away from the position where the light from the light source 4 strikes the rope 1 by a certain distance in the y-axis direction.
  • the light receiving element 7 receives light reflected from the surface of the rope 21 among the light emitted from the light source 5.
  • the sensor head 2 may include a camera 20.
  • the speed calculation unit 15 calculates the moving speeds of the rope 1 and the rope 21 based on the phase ⁇ (t, L1) and the phase ⁇ (t, L2) calculated by the phase calculation unit 12.
  • L ⁇ b> 2 indicates a height at which the light from the light source 5 hits the rope 21.
  • the position calculation unit 16 calculates the position of the detected abnormality on the rope 1 or the position on the rope 21 based on the moving distance when the abnormality is detected by the abnormality detection unit 14.
  • any of the features disclosed in the first or second embodiment may be employed.
  • Embodiment 4 An elevator to which the present detection apparatus can be applied is provided with a governor for detecting the speed of the car.
  • the speed governor includes, for example, a speed control rope, a speed control sheave, and an encoder.
  • the speed control rope is wound around the speed control sheave and moves in conjunction with the elevator car. That is, when the car moves, the governing rope moves. Further, when the speed control rope moves, the speed control sheave rotates.
  • the encoder outputs a rotation signal corresponding to the rotation direction and rotation angle of the governing sheave. The rotation signal output from the encoder is used to control the car.
  • the speed calculation unit 15 calculates the moving speed V of the rope 1. If the elevator car is suspended by the rope 1, the moving speed V of the rope 1 matches the moving speed of the car. For this reason, in the elevator, the speed of the car may be detected using the speed calculation unit 15 instead of the governor. In such a case, the elevator may not have a governor. In the elevator, the speed of the car may be detected using the speed calculator 15 together with the speed governor.
  • a detection error may occur due to a slip generated between a governor rope and a governor sheave.
  • a detection error may occur due to wear of the governor sheave. If it is this detection apparatus, acquisition of surface data can be performed without contact. For this reason, the speed of the car can be detected with high accuracy. Furthermore, if it is not necessary to provide a governor, the construction of the elevator can be simplified.
  • FIG. 22 is a diagram illustrating an example of a hardware configuration of the control device 3.
  • the control device 3 includes a processing circuit including, for example, a processor 22 and a memory 23 as hardware resources.
  • the functions of the storage unit 9 are realized by the memory 23.
  • the control device 3 executes the program stored in the memory 23 by the processor 22, thereby realizing the functions of the units indicated by reference numerals 10 to 19.
  • the processor 22 is also called a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP.
  • a semiconductor memory a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD may be employed.
  • Semiconductor memories that can be used include RAM, ROM, flash memory, EPROM, EEPROM, and the like.
  • control device 3 may be realized by hardware.
  • hardware for realizing the functions of the control device 3 a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof may be employed.
  • the detection apparatus according to the present invention can be applied to an apparatus for detecting a long body having a periodic pattern on the surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Abstract

位相算出部(12)は、類似度算出部(11)によって算出された第1類似度及び第2類似度を要素とする第1類似度ベクトルの偏角を第1位相として算出する。位相算出部(12)は、類似度算出部(11)によって算出された第3類似度及び第4類似度を要素とする第2類似度ベクトルの偏角を第2位相として算出する。周期算出部(13)は、位相算出部(12)によって算出された第1位相及び第2位相に基づいて、長尺体に形成された模様の周期を算出する。異常検出部(14)は、周期算出部(13)によって算出された周期に基づいて、長尺体の異常を検出する。

Description

検出装置
 この発明は、長尺体を検出対象とする検出装置に関する。
 特許文献1に、ロープを検査する装置が記載されている。特許文献1に記載された装置は、光源と受光素子とを備える。光源と受光素子との間にロープが配置される。特許文献1に記載された装置では、受光素子が受けた光量に基づいてロープの直径が算出される。算出した直径のピーク値の間隔をストランドの間隔に一致させることにより、ロープの位置を算出する。
国際公開第2011/108173号
 特許文献1に記載された装置では、ロープの移動速度が変動していると、ロープの移動速度が変動しているのかロープのストランドピッチが変動しているのかを区別することができない。即ち、特許文献1に記載された装置で採用されている検出方法では、ロープの移動速度が変動していると、ロープに発生した異常、例えばピッチ異常を検出することができなかった。
 この発明は、上述のような課題を解決するためになされた。この発明の目的は、長尺体の移動速度が変動している場合でも、長尺体の異常を検出することができる検出装置を提供することである。
 この発明に係る検出装置は、表面に周期的な模様を有する長尺体の第1表面データ及び第2表面データを取得するデータ取得手段と、第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、データ取得手段によって取得された第1表面データと第1リファレンスデータの第1類似度、データ取得手段によって取得された第1表面データと第2リファレンスデータの第2類似度、データ取得手段によって取得された第2表面データと第1リファレンスデータの第3類似度、及びデータ取得手段によって取得された第2表面データと第2リファレンスデータの第4類似度を算出する類似度算出手段と、類似度算出手段によって算出された第1類似度及び第2類似度を要素とする第1類似度ベクトルの偏角を第1位相として算出し、類似度算出手段によって算出された第3類似度及び第4類似度を要素とする第2類似度ベクトルの偏角を第2位相として算出する位相算出手段と、位相算出手段によって算出された第1位相及び第2位相に基づいて、長尺体に形成された模様の周期を算出する周期算出手段と、周期算出手段によって算出された周期に基づいて、長尺体の異常を検出する第1異常検出手段と、を備える。
 この発明に係る検出装置は、表面に周期的な模様を有する長尺体の複数の表面データを取得するデータ取得手段と、第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、データ取得手段によって取得された表面データの中から第1表面データ及び第2表面データを選択する選択手段と、選択手段によって選択された第1表面データと第1リファレンスデータの第1類似度、選択手段によって選択された第1表面データと第2リファレンスデータの第2類似度、選択手段によって選択された第2表面データと第1リファレンスデータの第3類似度、及び選択手段によって選択された第2表面データと第2リファレンスデータの第4類似度を算出する類似度算出手段と、類似度算出手段によって算出された第1類似度及び第2類似度を要素とする第1類似度ベクトルの偏角を第1位相として算出し、類似度算出手段によって算出された第3類似度及び第4類似度を要素とする第2類似度ベクトルの偏角を第2位相として算出する位相算出手段と、位相算出手段によって算出された第1位相及び第2位相に基づいて、長尺体に形成された模様の周期を算出する周期算出手段と、周期算出手段によって算出された周期に基づいて、長尺体の異常を検出する第1異常検出手段と、を備える。
 この発明に係る検出装置は、表面に周期的な模様を有する第1長尺体の第1表面データ及び第1長尺体の表面に形成された模様と同じ模様を表面に有する第2長尺体の第2表面データを取得するデータ取得手段と、第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、データ取得手段によって取得された第1表面データと第1リファレンスデータの第1類似度、データ取得手段によって取得された第1表面データと第2リファレンスデータの第2類似度、データ取得手段によって取得された第2表面データと第1リファレンスデータの第3類似度、及びデータ取得手段によって取得された第2表面データと第2リファレンスデータの第4類似度を算出する類似度算出手段と、類似度算出手段によって算出された第1類似度及び第2類似度を要素とする第1類似度ベクトルの偏角を第1位相として算出し、類似度算出手段によって算出された第3類似度及び第4類似度を要素とする第2類似度ベクトルの偏角を第2位相として算出する位相算出手段と、位相算出手段によって算出された第1位相及び第2位相に基づいて、第1長尺体又は第2長尺体に異常が発生したことを検出する第1異常検出手段と、を備える。
 この発明に係る検出装置は、例えば類似度算出手段、位相算出手段、周期算出手段及び第1異常検出手段を備える。位相算出手段は、第1類似度ベクトルの偏角を第1位相として算出し、第2類似度ベクトルの偏角を第2位相として算出する。周期算出手段は、位相算出手段によって算出された第1位相及び第2位相に基づいて、長尺体に形成された模様の周期を算出する。第1異常検出手段は、周期算出手段によって算出された周期に基づいて長尺体の異常を検出する。この発明に係る検出装置であれば、長尺体の移動速度が変動している場合でも、長尺体の異常を検出することができる。
この発明の実施の形態1における検出装置の例を示す図である。 図1に示す矢印Aの方向から長尺体を見た図である。 受光素子によって取得された受光画像の処理方法を示す図である。 制御装置の例を示す図である。 データ処理部の機能を説明するための図である。 リファレンスデータの例を示す図である。 位相算出部の機能を説明するための図である。 この発明の実施の形態1における検出装置の動作例を示すフローチャートである。 センサヘッドの他の例を説明するための図である。 受光素子によって取得された受光画像の処理方法を示す図である。 センサヘッドの他の例を説明するための図である。 センサヘッドの他の例を説明するための図である。 カメラによって撮影された画像データの処理方法を示す図である。 この発明の実施の形態2における制御装置の例を示す図である。 この発明の実施の形態2における検出装置の動作例を示すフローチャートである。 選択部の機能を説明するための図である。 この発明の実施の形態3における検出装置の例を示す図である。 図17に示す矢印Aの方向から長尺体を見た図である。 受光素子によって取得された受光画像の処理方法を示す図である。 制御装置の例を示す図である。 位相算出部の機能を説明するための図である。 制御装置のハードウェア構成の例を示す図である。
 添付の図面を参照し、本発明を説明する。重複する説明は、適宜簡略化或いは省略する。各図において、同一の符号は同一の部分又は相当する部分を示す。
実施の形態1.
 図1は、この発明の実施の形態1における検出装置の例を示す図である。検出装置は、長尺体の異常を検出するための装置である。長尺体には、例えばロープ1が含まれる。図2は、図1に示す矢印Aの方向から長尺体を見た図である。
 説明を容易にするため、図1及び図2に示すように、x軸、y軸及びz軸を設定する。y軸は、長尺体の長手の方向を向く軸である。x軸は、y軸及びz軸に直交する。z軸は、y軸及びx軸に直交する。x軸、y軸及びz軸は、3次元空間上での座標を表すために設定された軸である。図2は、+z方向から長尺体を見た図に相当する。
 長尺体は、長手の方向に移動する。例えば、ロープ1は+y方向或いは-y方向に移動する。このように移動するロープ1の例として、エレベーターで使用されるワイヤロープが挙げられる。ロープ1は、+y方向及び-y方向の双方に移動しても良い。なお、検出装置が検出対象とする長尺体は、ロープ1に限定されない。
 ロープ1は、複数のストランドを備える。ロープ1は、複数のストランドが縒り合わされることによって形成される。このため、ロープ1は、表面に周期的な模様を有する。本検出装置が異常を検出する対象は、表面に周期的な模様を有する長尺体である。「模様」には、例えば形状、図形、色及び色の濃淡が含まれる。図1及び図2は、8本のストランドが縒り合わされることによってロープ1が形成される例を示す。ロープ1の表面には、複数のストランドが縒り合わされることによって形成される凹凸が規則的に並んでいる。理想的なロープ1の断面形状は、縒りピッチをストランドの数で割った距離毎に同じになる。上記断面とは、ロープ1の長手の方向と直交する方向の断面である。縒りピッチをストランドの数で割った距離は、ストランドピッチ、即ち模様の周期である。
 本実施の形態に示す例では、検出装置は、長尺体に形成された模様の周期を算出し、異常の有無を判定する。検出装置は、例えばセンサヘッド2と制御装置3とを備える。
 センサヘッド2は、長尺体の表面データを取得する手段の一例である。「表面データ」は、長尺体の表面の模様に関するデータである。本実施の形態に示す例では、センサヘッド2は、長尺体の2箇所の表面データを同時に取得する。例えば、センサヘッド2は、ロープ1のうち第1位置を通過する部分の表面に形成された凹凸を表すデータを第1表面データとして取得する。同時に、センサヘッド2は、ロープ1のうち第2位置を通過する部分の表面に形成された凹凸を表すデータを第2表面データとして取得する。第2位置は、第1位置とは異なる位置である。例えば、第2位置は、第1位置からy軸方向に一定距離だけ離れた位置である。図1は、センサヘッド2が光学式のプロファイル測定器である例を示す。センサヘッド2は、例えば光源4、光源5、受光素子6及び受光素子7を備える。
 光源4は、ロープ1の表面に光を照射する。図1及び図2は、光源4がロープ1の長手の方向と直交する方向にレーザ光を照射する例を示す。光源4から照射された光は、ロープ1のうち第1位置を通過する部分の表面に当たる。図1及び図2に示す例では、光源4から照射された光は、ロープ1を横断するようにロープ1の一側の端から他側の端にかけて直線状に当たる。
 光源5は、ロープ1の表面に光を照射する。光源5は、光源4から照射される光に対して平行に光を照射する。光源5が光を照射するタイミングは、光源4が光を照射するタイミングと同じである。図1及び図2は、光源5がロープ1の長手の方向と直交する方向にレーザ光を照射する例を示す。光源5から照射された光は、ロープ1のうち第2位置を通過する部分の表面に当たる。即ち、光源5から照射された光は、光源4からの光がロープ1に当たる位置からy軸方向に一定距離だけ離れた位置でロープ1に当たる。図1及び図2に示す例では、光源5から照射された光は、ロープ1を横断するようにロープ1の一側の端から他側の端にかけて直線状に当たる。
 受光素子6は、光源4から照射された光のうちロープ1の表面で反射した光を受光する。受光素子6は、光源4が光を照射する方向に対して斜めに配置される。受光素子6は、ロープ1の表面で反射した光源4からの光のうち、ロープ1の長手の方向に対して一定の角度で斜めに反射した光を受光する。
 受光素子7は、光源5から照射された光のうちロープ1の表面で反射した光を受光する。受光素子7は、光源5が光を照射する方向に対して斜めに配置される。受光素子7は、ロープ1の表面で反射した光源5からの光のうち、ロープ1の長手の方向に対して一定の角度で斜めに反射した光を受光する。例えば、受光素子7は、ロープ1の表面において受光素子6が受光する光と同じ角度で反射した光を受光する。
 図1及び図2に示す光aは、光源4からロープ1に向けて照射された光である。例えば、光aはy=L1でロープ1の表面に当たる。光b及び光cは、ロープ1の表面で反射した光aのうち、受光素子6によって受光される角度で反射した光である。光bは、ストランドの最も外側に膨らんだ部分で反射した光である。光cは、隣り合うストランドによって形成された溝の部分で反射した光である。受光素子6が光b及び光c等を受光することにより、センサヘッド2は、光源4からの光が当たった部分の断面形状を表すデータを第1表面データとして取得する。
 図1及び図2に示す光dは、光源5からロープ1に照射された光である。例えば、光dはy=L2でロープ1の表面に当たる。光e及び光fは、ロープ1の表面で反射した光dのうち、受光素子7によって受光される角度で反射した光である。光eは、ストランドの最も外側に膨らんだ部分で反射した光である。光fは、隣り合うストランドによって形成された溝の部分で反射した光である。受光素子7が光e及び光f等を受光することにより、センサヘッド2は、光源5からの光が当たった部分の断面形状を示すデータを第2表面データとして取得する。
 図3は、受光素子6及び受光素子7によって取得された受光画像の処理方法を示す図である。図3の上段は、受光素子6の受光画像と受光素子7の受光画像とを示す。図3の下段は、受光素子6の受光画像から変換された第1表面データP1と受光素子7の受光画像から変換された第2表面データP2とを示す。図3の下段の横軸は、第1表面データP1及び第2表面データP2がx方向にそれぞれ複数個のデータを含むことを示す。表面データが含むデータの個数は任意に決定される。
 本実施の形態に示す例では、制御装置3は、センサヘッド2によって取得された第1表面データ及び第2表面データに基づいて、ロープ1に発生したピッチ異常を検出する。即ち、制御装置3は、長尺体の表面に形成された模様の周期異常を検出する。図1は、制御装置3が信号線8によってセンサヘッド2に接続される例を示す。センサヘッド2と制御装置3とを同じ筐体内に配置しても良い。制御装置3が有する機能の一部をセンサヘッド2が備えても良い。
 図4は、制御装置3の例を示す図である。制御装置3は、例えば記憶部9、データ処理部10、類似度算出部11、位相算出部12、周期算出部13及び異常検出部14を備える。
 記憶部9に2つのリファレンスデータが記憶される。以下の説明では、記憶部9に記憶された一方のリファレンスデータを第1リファレンスデータと表記する。記憶部9に記憶されたもう一方のリファレンスデータを第2リファレンスデータと表記する。
 データ処理部10は、センサヘッド2から受信した第1表面データを加工し、加工したデータを最終的な第1表面データとして出力する。データ処理部10は、センサヘッド2から受信した第2表面データを加工し、加工したデータを最終的な第2表面データとして出力する。本実施の形態に示す例では、データ処理部10は、長尺体の表面データを取得する手段の一部を構成する。ロープ1のピッチ異常を検出する上では、センサヘッド2によって取得された表面データから特定周波数成分を除去したデータを最終的な表面データとして採用することが望ましい。このようなデータ処理を行うことにより、ロープ1が表面に有する周期的な模様の成分を強調することができる。
 図5は、データ処理部10の機能を説明するための図である。図5は、データ処理部10によるデータ処理が行われた後の第1表面データP1及び第2表面データP2を示す。データ処理部10は、例えば、図3に示す第1表面データP1に対して低周波成分除去処理を行うことによって図5に示す第1表面データP1を取得する。データ処理部10は、例えば、図3に示す第2表面データP2に対して低周波成分除去処理を行うことによって図5に示す第2表面データP2を取得する。図5に示す例では、図3に示す第1表面データP1及び第2表面データP2から、ロープ1の径の影響が除去されている。
 データ処理部10の機能は、センサヘッド2に備えられても良い。また、長尺体の表面データを取得する手段は、データ処理部10の機能を備えていなくても良い。本実施の形態に示す例では、データ処理部10からの出力が長尺体の表面データを取得する手段からの最終的な出力となる。データ処理部10が備えられていなければ、センサヘッド2からの出力が長尺体の表面データを取得する手段からの最終的な出力となる。
 光源4及び光源5からは同時に光が出力される。時刻tに位置L1で取得された第1表面データP1は、P(t,L1)と表記できる。同時刻tに位置L2で取得された第2表面データP2は、P(t,L2)と表記できる。第1表面データP(t,L1)及び第2表面データP(t,L2)は、下記のようにn行1列の行列で表記できる。nは、例えば2以上の整数である。図5は、n=150である例を示す。
Figure JPOXMLDOC01-appb-M000001
 図6は、リファレンスデータの例を示す図である。上述したように、ロープ1は、表面に周期的な模様を有する。例えば、ロープ1の表面に形成された模様の周期と同じ周期を有する正弦波が第1リファレンスデータとして記憶部9に記憶される。ロープ1の表面に形成された模様の周期と同じ周期を有する余弦波が第2リファレンスデータとして記憶部9に記憶される。第1リファレンスデータRef1及び第2リファレンスデータRef2は、下記のようにn行1列の行列で表記できる。図6は、n=150である例を示す。
Figure JPOXMLDOC01-appb-M000002
 本実施の形態では、第1表面データP(t,L1)、第2表面データP(t,L2)、第1リファレンスデータRef1及び第2リファレンスデータRef2が多次元のベクトルデータ、即ち要素数nのベクトルである例について説明する。第1リファレンスデータRef1と第2リファレンスデータRef2との内積は、図6に示す例のように0であることが好ましい。図6に示す第1リファレンスデータRef1と第2リファレンスデータRef2は直交関係にある正弦波である。但し、第1リファレンスデータRef1と第2リファレンスデータRef2との内積は0でなくても良い。第1リファレンスデータRef1及び第2リファレンスデータRef2は、図6に示す例に限定されない。
 類似度算出部11は、表面データとリファレンスデータとの類似度を算出する。例えば、類似度算出部11は、第1類似度、第2類似度、第3類似度及び第4類似度を算出する。第1類似度は、データ処理部10から出力された第1表面データと記憶部9に記憶された第1リファレンスデータとの類似度である。第2類似度は、データ処理部10から出力された第1表面データと記憶部9に記憶された第2リファレンスデータとの類似度である。第3類似度は、データ処理部10から出力された第2表面データと記憶部9に記憶された第1リファレンスデータとの類似度である。第4類似度は、データ処理部10から出力された第2表面データと記憶部9に記憶された第2リファレンスデータとの類似度である。
 例えば、類似度算出部11は、第1表面データP(t,L1)と第1リファレンスデータRef1との相関係数ρ1(t,L1)を第1類似度として算出する。類似度算出部11は、第1表面データP(t,L1)と第2リファレンスデータRef2との相関係数ρ2(t,L1)を第2類似度として算出する。類似度算出部11は、第2表面データP(t,L2)と第1リファレンスデータRef1との相関係数ρ1(t,L2)を第3類似度として算出する。類似度算出部11は、第2表面データP(t,L2)と第2リファレンスデータRef2との相関係数ρ2(t,L2)を第4類似度として算出する。
 図7は、位相算出部12の機能を説明するための図である。位相算出部12は、類似度ベクトルSの偏角を位相θとして算出する。本実施の形態に示す例では、位相算出部12は、第1表面データに関する類似度ベクトルS(t,L1)の位相θ(t,L1)を算出する。類似度ベクトルS(t,L1)は、類似度算出部11によって算出された相関係数ρ1(t,L1)と相関係数ρ2(t,L1)とを要素とするベクトルである。位相θ(t,L1)は、類似度ベクトルS(t,L1)の偏角である。また、位相算出部12は、第2表面データに関する類似度ベクトルS(t,L2)の位相θ(t,L2)を算出する。類似度ベクトルS(t,L2)は、類似度算出部11によって算出された相関係数ρ1(t,L2)と相関係数ρ2(t,L2)とを要素とするベクトルである。位相θ(t,L2)は、類似度ベクトルS(t,L2)の偏角である。
 図7は、第1リファレンスデータRef1との類似度を横軸とし、第2リファレンスデータRef2との類似度を縦軸とした直交平面上に、類似度ベクトルS(t,L1)及び類似度ベクトルS(t,L2)をプロットした例を示す。例えば、ロープ1が-y方向に移動すると、類似度ベクトルS(t,L1)及び類似度ベクトルS(t,L2)は、図7に示すB方向に回転する。類似度ベクトルS(t,L1)の軌跡は、半径が最大で1となる円状である。同様に、類似度ベクトルS(t,L2)の軌跡は、半径が最大で1となる円状である。ロープ1が1ストランドピッチ分の距離だけ移動すると、類似度ベクトルS(t,L1)及び類似度ベクトルS(t,L2)は1回転する。
 周期算出部13は、ロープ1の表面に形成された模様の周期を算出する。本実施の形態に示す例では、上述したように、上記周期はロープ1のストランドピッチに一致する。図7に示すように、類似度ベクトルSの始点は原点である。類似度ベクトルSの終点は、その類似度ベクトルの要素、即ち類似度算出部11によって算出された2つの類似度を座標とする点である。位相θは、類似度ベクトルSの向きを表す。周期算出部13は、ロープ1のストランドピッチSPを次式によって算出できる。
Figure JPOXMLDOC01-appb-M000003
 上式に示すように、周期算出部13は、位相算出部12によって算出された位相θ(t,L1)と位相θ(t,L2)とに基づいて、ストランドピッチSPを算出する。例えば、周期算出部13は、y軸方向の位置変化に対応した位相の位置的変化率を算出することにより、ストランドピッチSPを求める。
 異常検出部14は、ロープ1に発生した異常を検出する。異常検出部14は、例えば周期算出部13によって算出された周期に基づいて、長尺体に形成された模様の周期異常を検出する。例えば、記憶部9に、模様の周期が正常であることを判定するための基準範囲が予め記憶される。異常検出部14は、周期算出部13によって算出された周期が上記基準範囲に入っていれば、ロープ1にピッチ異常が発生していないと判定する。異常検出部14は、周期算出部13によって算出された周期が上記基準範囲に入っていなければ、ロープ1にピッチ異常が発生していると判定する。
 図8は、この発明の実施の形態1における検出装置の動作例を示すフローチャートである。図8は、上述した処理フローを示す。異常検出部14によってピッチ異常が検出されると、制御装置3から警報を発しても良い。
 本実施の形態に示す例であれば、ロープ1の移動速度が変動している場合でも、ロープ1の異常を検出することができる。本検出装置は、耐ノイズ性が高いといった利点もある。
 以下に、本検出装置が備えることが可能な他の機能について説明する。
 制御装置3は、速度算出部15及び位置算出部16を更に備えても良い。速度算出部15は、ロープ1が移動する速度を算出する。速度算出部15は、時刻tにおけるロープ1の移動速度Vを次式によって算出できる。
Figure JPOXMLDOC01-appb-M000004
 図8に示す動作は、例えば一定の周期で繰り返し行われる。上式に示すΔtは、表面データを取得する時間間隔である。上式に示すように、速度算出部15は、位相算出部12によって算出された位相θ(t,L1)と位相θ(t,L2)とに基づいて、ロープ1の移動速度を算出する。例えば、速度算出部15は、位相θ(t,L1)或いは位相θ(t,L2)の時間経過に応じた変化を算出することにより、ロープ1の移動速度を求める。
 位置算出部16は、ロープ1に発生した異常の位置を算出する。位置算出部16は、速度算出部15によって算出されたロープ1の移動速度Vに基づいて、上記位置の算出を行う。例えば、位置算出部16は、速度算出部15によって算出されたロープ1の移動速度Vを積分することにより、表面データの取得開始位置からロープ1がどれだけ移動したのかを特定できる。位置算出部16は、異常検出部14によって異常が検出された時の移動距離に基づいて、検出された異常のロープ1上の位置を算出する。上記算出方法であれば、ロープ1のストランドピッチが未知であったり変動したりしても、位置の算出が可能である。
 制御装置3は、無効部17を更に備えても良い。無効部17は、異常検出部14による異常検出を無効にする。図7に示すように、類似度ベクトルS(t,L1)の軌跡は円状である。複数のストランドが縒り合わされることによって形成される凹凸がロープ1の表面にきれいに並んでいれば、類似度ベクトルS(t,L1)の軌跡は、原点を中心とした同じような円を描き続ける。
 一方、制御装置3が受け取る信号に無視できないような大きなノイズが乗る等して、信号伝送に異常が発生すると、類似度ベクトルS(t,L1)の軌跡は原点に近づくように変化する。このため、類似ベクトルS(t,L1)のノルムに対して予め正常範囲を設定しておけば、取得された表面データの信頼性が低くなったことを検出できる。上記正常範囲は、例えば0.3から1に設定される。同様のことは、類似度ベクトルS(t,L2)に関しても言える。
 例えば、無効部17は、類似度ベクトルS(t,L1)のノルムに基づいて、異常検出部14が異常を検出する機能を無効にする。無効部17は、類似度ベクトルS(t,L1)のノルムが上記正常範囲から外れていれば、異常検出部14によって異常が検出されないようにする。無効部17は、類似度ベクトルS(t,L2)のノルムに基づいて、異常検出部14が異常を検出する機能を無効にしても良い。例えば、無効部17は、類似度ベクトルS(t,L2)のノルムが上記正常範囲から外れていれば、異常検出部14によって異常が検出されないようにする。無効部17は、類似度ベクトルS(t,L1)のノルム及び類似度ベクトルS(t,L2)のノルムの双方が上記正常範囲から外れている場合に、異常検出部14による異常検出を無効にしても良い。
 無効部17によって異常検出部14による異常検出機能が無効にされている間、位置算出部16は、直前に算出されたストランドピッチSPを用いてロープ1の移動距離を算出しても良い。これにより、適切な補間が可能となる。
 制御装置3は、異常検出部18を更に備えても良い。異常検出部18は、異常検出部14が検出する異常とは異なるロープ1の異常を検出する。例えば、異常検出部18は、ロープ1の表面に形成された模様の異常を検出する。
 上述したように、類似度ベクトルS(t,L1)の軌跡は円状である。信号伝送に異常が発生していない場合、複数のストランドが縒り合わされることによって形成される凹凸がロープ1の表面にきれいに並んでいれば、類似度ベクトルS(t,L1)の軌跡は、原点を中心とした同じような円を描き続ける。一方、ストランドの間隔が不均一になる等して、縒りに不良が発生すると、類似度ベクトルS(t,L1)の軌跡は原点に近づくように変化する。このため、類似ベクトルS(t,L1)のノルムに対して予め正常範囲を設定しておけば、ロープ1の表面に形成された模様に異常が発生していることを検出できる。上記正常範囲は、例えば0.6から1に設定される。同様のことは、類似度ベクトルS(t,L2)に関しても言える。
 例えば、異常検出部18は、類似度ベクトルS(t,L1)のノルムに基づいて、ロープ1の模様に異常が発生したことを検出する。異常検出部18は、類似度ベクトルS(t,L1)のノルムが上記正常範囲から外れていれば、ロープ1の模様に異常が発生したことを検出する。本実施の形態に示す例であれば、異常検出部18は、ロープ1の形状異常を検出する。異常検出部18は、類似度ベクトルS(t,L2)のノルムに基づいて、ロープ1の模様に異常が発生したことを検出しても良い。例えば、異常検出部18は、類似度ベクトルS(t,L2)のノルムが上記正常範囲から外れていれば、ロープ1の形状異常を検出する。異常検出部18は、類似度ベクトルS(t,L1)のノルム及び類似度ベクトルS(t,L2)のノルムの双方が上記正常範囲から外れている場合に、ロープ1の形状異常を検出しても良い。
 異常検出部18によって模様の異常が検出された場合に、その異常を確認できるデータを記憶部9に記憶させても良い。例えば、異常検出部18によって模様の異常が検出されると、その異常を検出するために使用された表面データを記憶部9に記憶させる。後述するが、センサヘッド2は、表面データを取得するためにカメラを備えても良い。異常検出部18によって模様の異常が検出された場合に、カメラによって撮影された画像データを記憶部9に記憶させても良い。
 図9は、センサヘッド2の他の例を説明するための図である。図9に示すセンサヘッド2は、例えば光源4、光源5及び受光素子6を備える。図9は、ロープ1の表面で反射した光源4からの光とロープ1の表面で反射した光源5からの光との双方を1つの受光素子6で受ける例を示す。図9に示す例では、光源5は、光源4からの光の波長とは異なる波長の光をロープ1に当てることが望ましい。
 図10は、受光素子6によって取得された受光画像の処理方法を示す図である。図10の上段は、受光素子6の受光画像を示す。図10の下段は、受光素子6の受光画像から変換された第1表面データP1及び第2表面データP2を示す。図10の下段の横軸は、第1表面データP1及び第2表面データP2がx方向にそれぞれ複数個のデータを含むことを示す。表面データが含むデータの個数は任意に決定される。
 図9及び図10に示す例であれば、センサヘッド2に複数の受光素子を備える必要がない。また、光源4からの光の波長と光源5からの光の波長とが異なっていれば、表面データの抽出処理を容易に行うことができる。
 センサヘッド2は、光学式のプロファイル測定器に限定されない。図11及び図12は、センサヘッド2の他の例を説明するための図である。図11及び図12に示すセンサヘッド2は、例えばカメラ20を備える。センサヘッド2は、カメラ20によってロープ1の表面を撮影した画像データから得られるデータを表面データとして取得しても良い。
 カメラ20によって撮影された画像データには、高さに関する情報が含まれない。センサヘッド2は、ロープ1の表面に付された色及び色の濃淡を表すデータを表面データとして取得しても良い。例えば、センサヘッド2は、ロープ1の表面のうちx1≦x≦xr及びL1≦y≦LMの範囲に付された色及び色の濃淡を表すデータを取得する。このデータは、M個の表面データに相当する。センサヘッド2は、M個の表面データの中から、予め設定された2つの表面データを第1表面データ及び第2表面データとして出力する。
 図13は、カメラ20によって撮影された画像データの処理方法を示す図である。図13は、ロープ1のうちy=Lαの位置を通過する部分の表面に付された色及び色の濃淡を表すデータを第1表面データPαとして取得する例を示す。同様に、図13は、ロープ1のうちy=Lβの位置を通過する部分の表面に付された色及び色の濃淡を表すデータを第2表面データPβとして取得する例を示す。
実施の形態2.
 本実施の形態では、ストランドピッチSPの算出精度を向上させるための例について説明する。本実施の形態における検出装置は、例えば図11に示す例と同様である。検出装置は、例えばセンサヘッド2と制御装置3とを備える。センサヘッド2は、例えばカメラ20を備える。
 センサヘッド2は、例えば、ロープ1の表面に付された色及び色の濃淡を表すデータを表面データとして取得する。センサヘッド2は、カメラ20によって取得された画像データからM個の表面データを取得する。Mは、例えば3以上の自然数である。
 図14は、この発明の実施の形態2における制御装置3の例を示す図である。図14に示す例では、制御装置3は、記憶部9、データ処理部10、選択部19、類似度算出部11、位相算出部12、周期算出部13及び異常検出部14を備える。制御装置3は、データ処理部10を備えなくても良い。制御装置3は、速度算出部15、位置算出部16、無効部17及び異常検出部18を更に備えても良い。
 記憶部9に、第1リファレンスデータRef1及び第2リファレンスデータRef2が記憶される。例えば、第1リファレンスデータRef1はn行1列の行列で表記できる。第2リファレンスデータRef2はn行1列の行列で表記できる。
 データ処理部10は、センサヘッド2から受信した各表面データを、リファレンスデータと比較可能な表面データに加工する。例えば、データ処理部10は、センサヘッド2から受信した表面データのそれぞれに対して、バイアス除去処理を行う。データ処理部10からは、例えばバイアス除去処理が行われたM個の表面データP(t,L1)、P(t,L2)、・・・、P(t,LM)が出力される。表面データP(t,L1)は、ロープ1のうち時刻tにy=L1を通過する部分の表面に付された色及び色の濃淡を表すデータである。表面データP(t,L2)は、ロープ1のうち時刻tにy=L2を通過する部分の表面に付された色及び色の濃淡を表すデータである。表面データP(t,LM)は、ロープ1のうち時刻tにy=LMを通過する部分の表面に付された色及び色の濃淡を表すデータである。L1からLMの値は予め設定される。
 選択部19は、データ処理部10から出力されたM個の表面データの中から、予め設定された条件に基づいて、第1表面データP(t,Lα)と第2表面データP(t,Lβ)とを選択する。
 類似度算出部11は、選択部19によって選択された表面データとリファレンスデータとの類似度を算出する。即ち、類似度算出部11は、第1類似度、第2類似度、第3類似度及び第4類似度を算出する。第1類似度は、選択部19によって選択された第1表面データと記憶部9に記憶された第1リファレンスデータとの類似度である。第2類似度は、選択部19によって選択された第1表面データと記憶部9に記憶された第2リファレンスデータとの類似度である。第3類似度は、選択部19によって選択された第2表面データと記憶部9に記憶された第1リファレンスデータとの類似度である。第4類似度は、選択部19によって選択された第2表面データと記憶部9に記憶された第2リファレンスデータとの類似度である。
 位相算出部12の機能は実施の形態1で開示した機能と同様である。周期算出部13の機能は実施の形態1で開示した機能と同様である。異常検出部14の機能は実施の形態1で開示した機能と同様である。
 図15は、この発明の実施の形態2における検出装置の動作例を示すフローチャートである。上述したように、データ処理部10からはM個の表面データが出力される(S201)。選択部19は、データ処理部10から出力されたM個の表面データの中から、第1表面データP(t,Lα)と第2表面データP(t,Lβ)とを選択する(S202)。
 例えば、類似度算出部11は、データ処理部10から出力された各表面データに対し、第1リファレンスデータとの類似度及び第2リファレンスデータとの類似度を算出する。図15は、第1リファレンスデータとの類似度として相関係数ρ1が、第2リファレンスデータとの類似度として相関係数ρ2が算出される例を示す。次に、各表面データに対し、相関係数ρ1と相関係数ρ2とを要素とする類似度ベクトルSが算出される。更に、各表面データに対し、類似度ベクトルSのノルムが算出される。
 選択部19は、例えば算出された類似度ベクトルSのノルムに基づいて、第1表面データP(t,Lα)と第2表面データP(t,Lβ)とを選択する。図16は、選択部19の機能を説明するための図である。選択部19は、例えば、データ処理部10から出力されたM個の表面データのうち、類似度ベクトルSのノルムが1番大きいものと2番目に大きいものとを第1表面データP(t,Lα)及び第2表面データP(t,Lβ)として選択する。ここで、Lβ>Lαである。
 S202において第1表面データP(t,Lα)及び第2表面データP(t,Lβ)が選択されると、図8のS103からS106に示す処理と同様の処理が行われる。図15に示す例では、S202においてρ1(t,Lα)、ρ2(t,Lα)、ρ1(t,Lβ)及びρ2(t,Lβ)が既に算出されている。第1表面データP(t,Lα)及び第2表面データP(t,Lβ)が選択部19によって選択されると、位相算出部12は、類似度ベクトルS(t,Lα)の位相θ(t,Lα)を算出する(S203)。類似度ベクトルS(t,Lα)は、類似度算出部11によって算出された相関係数ρ1(t,Lα)と相関係数ρ2(t,Lα)とを要素とするベクトルである。位相θ(t,Lα)は、類似度ベクトルS(t,Lα)の偏角である。また、位相算出部12は、類似度ベクトルS(t,Lβ)の位相θ(t,Lβ)を算出する(S203)。類似度ベクトルS(t,Lβ)は、類似度算出部11によって算出された相関係数ρ1(t,Lβ)と相関係数ρ2(t,Lβ)とを要素とするベクトルである。位相θ(t,Lβ)は、類似度ベクトルS(t,Lβ)の偏角である。
 周期算出部13は、例えば位相算出部12によって算出された位相θ(t,Lα)と位相θ(t,Lβ)とに基づいて、次式からストランドピッチSPを算出する。
Figure JPOXMLDOC01-appb-M000005
 異常検出部14は、周期算出部13によって算出された周期に基づいて、長尺体に形成された模様の周期異常を検出する。例えば、異常検出部14は、周期算出部13によって算出された周期が基準範囲から外れた場合に、ロープ1にピッチ異常が発生していると判定する。
 本実施の形態に示す例であれば、ロープ1の移動速度が変動している場合でも、ロープ1の異常を検出することができる。本実施の形態に示す例であれば、ストランドピッチSPの算出精度を向上させることができる。
 ノイズの影響を少なくするため、選択部19は、上述した方法とは異なる方法によって第1表面データP(t,Lα)と第2表面データP(t,Lβ)とを選択しても良い。例えば、選択部19は、先ず、データ処理部10から出力されたM個の表面データのうち、類似度ベクトルSのノルムが基準値以上のものを選択する。上記基準値は、記憶部9に予め記憶される。例えば、基準値は0.3である。選択部19は、類似度ベクトルSのノルムが基準値以上のものの中から、なす角度が最大になる2つのものを第1表面データP(t,Lα)及び第2表面データP(t,Lβ)として選択する。
 本実施の形態で開示しない特徴については、実施の形態1で開示された何れの特徴が採用されても良い。
実施の形態3.
 上述したように、本検出装置の検出対象となる長尺体の例として、エレベーターで使用されるワイヤロープが挙げられる。エレベーターのかごは、例えば複数本のワイヤロープによって昇降路に吊り下げられる。エレベーターのかごが複数本のワイヤロープで吊り下げられている場合、どのワイヤロープに対しても同じ張力が作用することが望ましい。
 例えば、1本のワイヤロープにのみ大きな張力が作用すると、そのワイヤロープに伸びが発生する。伸びが発生したワイヤロープでは、ストランドピッチが長くなる。即ち、当該ワイヤロープにピッチ異常が発生する。本実施の形態では、検出装置が複数本の長尺体を検出対象にする例について説明する。
 図17は、この発明の実施の形態3における検出装置の例を示す図である。図18は、図17に示す矢印Aの方向から長尺体を見た図である。図18は、ロープ1と平行にロープ21が配置されている例を示す。
 ロープ21は、ロープ1と同様に、長手の方向に移動する。例えば、ロープ21は、+y方向或いは-y方向に移動する。ロープ21は、+y方向及び-y方向の双方に移動しても良い。ロープ21は、複数のストランドを備える。ロープ21は、複数のストランドが縒り合わされることによって形成される。ロープ21は、ロープ1の表面に形成された模様と同じ模様を表面に有する。
 検出装置は、例えばセンサヘッド2と制御装置3とを備える。センサヘッド2は、例えば光源4及び受光素子6を備える。本実施の形態に示す例では、光源4は、ロープ1の表面及びロープ21の表面の双方に対して同時に光を照射する。図17及び図18は、光源4がロープ1の長手の方向及びロープ21の長手の方向と直交する方向にレーザ光を照射する例を示す。光源4から照射された光は、同じ高さでロープ1及びロープ21に当たる。図17及び図18に示す例では、光源4から照射された光は、ロープ1を横断するようにロープ1の一側の端から他側の端にかけて直線状に当たる。同様に、光源4から照射された光は、ロープ21を横断するようにロープ21の一側の端から他側の端にかけて直線状に当たる。
 受光素子6は、光源4から照射された光のうちロープ1の表面で反射した光を受光する。また、受光素子6は、光源4から照射された光のうちロープ21の表面で反射した光を受光する。受光素子6は、光源4が光を照射する方向に対して斜めに配置される。受光素子6は、ロープ1の表面で反射した光源4からの光のうち、ロープ1の長手の方向に対して一定の角度で斜めに反射した光を受光する。同様に、受光素子6は、ロープ21の表面で反射した光源4からの光のうち、ロープ1の長手の方向に対して一定の角度で斜めに反射した光を受光する。
 図17及び図18に示す光aは、光源4からロープ1に向けて照射された光である。例えば、光aはy=L1でロープ1の表面に当たる。光b及び光cは、ロープ1の表面で反射した光aのうち、受光素子6によって受光される角度で反射した光である。受光素子6が光b及び光c等を受光することにより、センサヘッド2は、ロープ1のうち光源4からの光が当たった部分の断面形状を表すデータを第1表面データとして取得する。
 同様に、図17及び図18に示す光gは、光源4からロープ21に向けて照射された光である。例えば、光gはy=L1でロープ21の表面に当たる。光h及び光iは、ロープ21の表面で反射した光gのうち、受光素子6によって受光される角度で反射した光である。受光素子6が光h及び光i等を受光することにより、センサヘッド2は、ロープ21のうち光源4からの光が当たった部分の断面形状を示すデータを第2表面データとして取得する。
 図19は、受光素子6によって取得された受光画像の処理方法を示す図である。図19の上段は、受光素子6の受光画像を示す。図19の下段は、受光素子6の受光画像から変換された第1表面データP3及び第2表面データP4を示す。図19の下段の横軸は、第1表面データP3及び第2表面データP4がx方向にそれぞれ複数個のデータを含むことを示す。表面データが含むデータの個数は任意に決定される。
 図20は、制御装置3の例を示す図である。制御装置3は、例えば記憶部9、データ処理部10、類似度算出部11、位相算出部12及び異常検出部14を備える。制御装置3は、データ処理部10を備えなくても良い。制御装置3は、無効部17及び異常検出部18を更に備えても良い。
 記憶部9に、第1リファレンスデータRef1及び第2リファレンスデータRef2が記憶される。例えば、第1リファレンスデータRef1はn行1列の行列で表記できる。第2リファレンスデータRef2はn行1列の行列で表記できる。
 データ処理部10は、例えばセンサヘッド2から受信した第1表面データを加工し、加工したデータを最終的な第1表面データとして出力する。データ処理部10は、例えばセンサヘッド2から受信した第2表面データを加工し、加工したデータを最終的な第2表面データとして出力する。
 類似度算出部11は、表面データとリファレンスデータとの類似度を算出する。例えば、類似度算出部11は、データ処理部10から出力された第1表面データP3(t,L1)と第1リファレンスデータRef1との相関係数ρ1(t,L1(P3))を第1類似度として算出する。類似度算出部11は、データ処理部10から出力された第1表面データP3(t,L1)と第2リファレンスデータRef2との相関係数ρ2(t,L1(P3))を第2類似度として算出する。類似度算出部11は、データ処理部10から出力された第2表面データP4(t,L1)と第1リファレンスデータRef1との相関係数ρ1(t,L1(P4))を第3類似度として算出する。類似度算出部11は、データ処理部10から出力された第2表面データP4(t,L1)と第2リファレンスデータRef2との相関係数ρ2(t,L1(P4))を第4類似度として算出する。
 図21は、位相算出部12の機能を説明するための図である。位相算出部12は、類似度ベクトルSの偏角を位相θとして算出する。本実施の形態に示す例では、位相算出部12は、第1表面データに関する類似度ベクトルS3(t,L1)の位相θ3(t,L1)を算出する。類似度ベクトルS3(t,L1)は、類似度算出部11によって算出された相関係数ρ1(t,L1(P3))と相関係数ρ2(t,L1(P3))とを要素とするベクトルである。位相θ3(t,L1)は、類似度ベクトルS3(t,L1)の偏角である。また、位相算出部12は、第2表面データに関する類似度ベクトルS4(t,L1)の位相θ4(t,L1)を算出する。類似度ベクトルS4(t,L1)は、類似度算出部11によって算出された相関係数ρ1(t,L1(P4))と相関係数ρ2(t,L1(P4))とを要素とするベクトルである。位相θ4(t,L1)は、類似度ベクトルS4(t,L1)の偏角である。
 エレベーターのかごがロープ1及びロープ21によって昇降路に吊り下げられている場合、ロープ1が移動する速度とロープ21が移動する速度とは同じである。ロープ1のストランドピッチとロープ21のストランドピッチとが同じであれば、類似度ベクトルS3(t,L1)と類似度ベクトルS4(t,L1)とがなす角度は、上記速度によらず一定になる。類似度ベクトルS3(t,L1)と類似度ベクトルS4(t,L1)とがなす角度は、位相θ4(t,L1)と位相θ3(t,L1)との差、即ち位相差である。
 本実施の形態に示す例では、異常検出部14は、位相算出部12によって算出された位相θ4(t,L1)及び位相θ3(t,L1)に基づいて、ロープ1又はロープ21に異常が発生したことを検出する。例えば、異常検出部14は、ロープ1の表面に形成された模様或いはロープ21の表面に形成された模様の周期異常を検出する。例えば、記憶部9に、模様の周期が正常であることを判定するための基準範囲が予め記憶される。異常検出部14は、位相θ4(t,L1)と位相θ3(t,L1)との差が上記基準範囲に入っていれば、ロープ1及びロープ21の双方にピッチ異常が発生していないと判定する。異常検出部14は、位相θ4(t,L1)と位相θ3(t,L1)との差が上記基準範囲に入っていなければ、ロープ1或いはロープ21の何れか一方にピッチ異常が発生していると判定する。
 本実施の形態に示す例であれば、検出装置は、複数本の長尺体を検出対象とすることができる。また、本実施の形態に示す例であれば、ロープ1及びロープ21の移動速度が変動している場合でも、異常が発生したことを検出できる。
 本実施の形態に示す例において制御装置3が異常検出部18を更に備える場合、異常検出部18は、類似度ベクトルS3(t,L1)のノルムに基づいてロープ1の模様に異常が発生したことを検出する。例えば、異常検出部18は、類似度ベクトルS3(t,L1)のノルムが正常範囲から外れていれば、ロープ1の模様に異常が発生したことを検出する。また、異常検出部18は、類似度ベクトルS4(t,L1)のノルムに基づいてロープ21の模様に異常が発生したことを検出する。例えば、異常検出部18は、類似度ベクトルS4(t,L1)のノルムが正常範囲から外れていれば、ロープ21の模様に異常が発生したことを検出する。
 本実施の形態に示す例では、光源4から照射された光がロープ1及びロープ21に同じ高さで当たる例について説明した。センサヘッド2が異なる高さの表面データを取得することができれば、本実施の形態に示す例においても、制御装置3は、周期算出部13、速度算出部15及び位置算出部16を更に備えても良い。
 かかる場合、センサヘッド2は、例えば光源4、光源5、受光素子6及び受光素子7を備える。光源4は、ロープ1の表面に光を照射する。受光素子6は、光源4から照射された光のうちロープ1の表面で反射した光を受光する。光源5は、ロープ21の表面に光を照射する。光源5から照射された光は、光源4からの光がロープ1に当たる位置からy軸方向に一定距離だけ離れた位置でロープ21に当たる。受光素子7は、光源5から照射された光のうちロープ21の表面で反射した光を受光する。センサヘッド2は、カメラ20を備えても良い。
 また、速度算出部15は、位相算出部12によって算出された位相θ(t,L1)と位相θ(t,L2)とに基づいて、ロープ1及びロープ21の移動速度を算出する。この例において、L2は、光源5からの光がロープ21に当たる高さを示す。位置算出部16は、異常検出部14によって異常が検出された時の移動距離に基づいて、検出された異常のロープ1上の位置或いはロープ21上の位置を算出する。
 本実施の形態で開示しない特徴については、実施の形態1又は2で開示された何れの特徴が採用されても良い。
実施の形態4.
 本検出装置が適用可能なエレベーターには、かごの速度を検出するために調速機が備えられる。調速機は、例えば調速ロープ、調速綱車及びエンコーダを備える。調速ロープは、調速綱車に巻き掛けられ、エレベーターのかごに連動して移動する。即ち、かごが移動すると、調速ロープが移動する。また、調速ロープが移動すると、調速綱車が回転する。エンコーダは、調速綱車の回転方向及び回転角度に応じた回転信号を出力する。エンコーダから出力された回転信号は、かごを制御するために利用される。
 実施の形態1から3に示す例では、速度算出部15がロープ1の移動速度Vを算出する。エレベーターのかごがロープ1によって吊り下げられていれば、ロープ1の移動速度Vはかごの移動速度に一致する。このため、エレベーターにおいて、調速機の代わりに速度算出部15を用いてかごの速度を検出しても良い。かかる場合、エレベーターは調速機を備えていなくても良い。また、エレベーターにおいて、調速機とともに速度算出部15を用いてかごの速度を検出しても良い。
 調速機では、調速ロープと調速綱車との間に発生する滑りによって検出誤差が生じ得る。調速機では、調速綱車の摩耗によって検出誤差が生じ得る。本検出装置であれば、表面データの取得を非接触で行うことができる。このため、かごの速度を精度良く検出することができる。更に、調速機を備える必要がなければ、エレベーターの構成を簡素化できる。
 符号9~19に示す各部は、制御装置3が有する機能を示す。図22は、制御装置3のハードウェア構成の例を示す図である。制御装置3は、ハードウェア資源として、例えばプロセッサ22とメモリ23とを含む処理回路を備える。記憶部9が有する機能はメモリ23によって実現される。制御装置3は、メモリ23に記憶されたプログラムをプロセッサ22によって実行することにより、符号10~19に示す各部の機能を実現する。
 プロセッサ22は、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ或いはDSPともいわれる。メモリ23として、半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク或いはDVDを採用しても良い。採用可能な半導体メモリには、RAM、ROM、フラッシュメモリ、EPROM及びEEPROM等が含まれる。
 制御装置3が有する各機能の一部又は全部をハードウェアによって実現しても良い。制御装置3の機能を実現するハードウェアとして、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらの組み合わせを採用しても良い。
 この発明に係る検出装置は、表面に周期的な模様を有する長尺体を検出の対象とする装置に適用できる。
 1 ロープ
 2 センサヘッド
 3 制御装置
 4 光源
 5 光源
 6 受光素子
 7 受光素子
 8 信号線
 9 記憶部
 10 データ処理部
 11 類似度算出部
 12 位相算出部
 13 周期算出部
 14 異常検出部
 15 速度算出部
 16 位置算出部
 17 無効部
 18 異常検出部
 19 選択部
 20 カメラ
 21 ロープ
 22 プロセッサ
 23 メモリ

Claims (11)

  1.  表面に周期的な模様を有する長尺体の第1表面データ及び第2表面データを取得するデータ取得手段と、
     第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、
     前記データ取得手段によって取得された第1表面データと前記第1リファレンスデータの第1類似度、前記データ取得手段によって取得された第1表面データと前記第2リファレンスデータの第2類似度、前記データ取得手段によって取得された第2表面データと前記第1リファレンスデータの第3類似度、及び前記データ取得手段によって取得された第2表面データと前記第2リファレンスデータの第4類似度を算出する類似度算出手段と、
     前記類似度算出手段によって算出された第1類似度及び第2類似度を要素とする第1類似度ベクトルの偏角を第1位相として算出し、前記類似度算出手段によって算出された第3類似度及び第4類似度を要素とする第2類似度ベクトルの偏角を第2位相として算出する位相算出手段と、
     前記位相算出手段によって算出された第1位相及び第2位相に基づいて、前記長尺体に形成された模様の周期を算出する周期算出手段と、
     前記周期算出手段によって算出された周期に基づいて、前記長尺体の異常を検出する第1異常検出手段と、
    を備えた検出装置。
  2.  表面に周期的な模様を有する長尺体の複数の表面データを取得するデータ取得手段と、
     第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、
     前記データ取得手段によって取得された表面データの中から第1表面データ及び第2表面データを選択する選択手段と、
     前記選択手段によって選択された第1表面データと前記第1リファレンスデータの第1類似度、前記選択手段によって選択された第1表面データと前記第2リファレンスデータの第2類似度、前記選択手段によって選択された第2表面データと前記第1リファレンスデータの第3類似度、及び前記選択手段によって選択された第2表面データと前記第2リファレンスデータの第4類似度を算出する類似度算出手段と、
     前記類似度算出手段によって算出された第1類似度及び第2類似度を要素とする第1類似度ベクトルの偏角を第1位相として算出し、前記類似度算出手段によって算出された第3類似度及び第4類似度を要素とする第2類似度ベクトルの偏角を第2位相として算出する位相算出手段と、
     前記位相算出手段によって算出された第1位相及び第2位相に基づいて、前記長尺体に形成された模様の周期を算出する周期算出手段と、
     前記周期算出手段によって算出された周期に基づいて、前記長尺体の異常を検出する第1異常検出手段と、
    を備えた検出装置。
  3.  前記選択手段は、前記データ取得手段によって取得された表面データのうち、前記第1リファレンスデータとの類似度及び前記第2リファレンスデータとの類似度を要素とする類似度ベクトルのノルムが1番大きいものと2番目に大きいものとを第1表面データ及び第2表面データとして選択する請求項2に記載の検出装置。
  4.  前記選択手段は、前記データ取得手段によって取得された表面データのうち、前記第1リファレンスデータとの類似度及び前記第2リファレンスデータとの類似度を要素とする類似度ベクトルのノルムが基準値以上のものの中から、なす角度が最大になる2つのものを第1表面データ及び第2表面データとして選択する請求項2に記載の検出装置。
  5.  前記位相算出手段によって算出された第1位相及び第2位相に基づいて、前記長尺体の速度を算出する速度算出手段と、
     前記速度算出手段によって算出された速度に基づいて、前記第1異常検出手段によって検出された異常の前記長尺体上での位置を算出する位置算出手段と、
    を更に備えた請求項1から請求項4の何れか一項に記載の検出装置。
  6.  前記類似度算出手段によって算出された第1類似度及び第2類似度を要素とする第1類似度ベクトルのノルム又は前記類似度算出手段によって算出された第3類似度及び第4類似度を要素とする第2類似度ベクトルのノルムの少なくとも何れか一方に基づいて、前記長尺体の模様に異常が発生したことを検出する第2異常検出手段を更に備えた請求項1から請求項5の何れか一項に記載の検出装置。
  7.  前記データ取得手段は、
     前記長尺体に光を照射する第1光源と、
     前記第1光源からの光の波長とは異なる波長の光を前記長尺体に照射する第2光源と、
     前記長尺体で反射した前記第1光源からの光及び前記長尺体で反射した前記第2光源からの光を受ける受光素子と、
    を備えた請求項1から請求項6の何れか一項に記載の検出装置。
  8.  表面に周期的な模様を有する第1長尺体の第1表面データ及び前記第1長尺体の表面に形成された模様と同じ模様を表面に有する第2長尺体の第2表面データを取得するデータ取得手段と、
     第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、
     前記データ取得手段によって取得された第1表面データと前記第1リファレンスデータの第1類似度、前記データ取得手段によって取得された第1表面データと前記第2リファレンスデータの第2類似度、前記データ取得手段によって取得された第2表面データと前記第1リファレンスデータの第3類似度、及び前記データ取得手段によって取得された第2表面データと前記第2リファレンスデータの第4類似度を算出する類似度算出手段と、
     前記類似度算出手段によって算出された第1類似度及び第2類似度を要素とする第1類似度ベクトルの偏角を第1位相として算出し、前記類似度算出手段によって算出された第3類似度及び第4類似度を要素とする第2類似度ベクトルの偏角を第2位相として算出する位相算出手段と、
     前記位相算出手段によって算出された第1位相及び第2位相に基づいて、前記第1長尺体又は前記第2長尺体に異常が発生したことを検出する第1異常検出手段と、
    を備えた検出装置。
  9.  前記類似度算出手段によって算出された第1類似度及び第2類似度を要素とする第1類似度ベクトルのノルムに基づいて前記第1長尺体の模様に異常が発生したことを検出し、前記類似度算出手段によって算出された第3類似度及び第4類似度を要素とする第2類似度ベクトルのノルムに基づいて前記第2長尺体の模様に異常が発生したことを検出する第2異常検出手段を更に備えた請求項8に記載の検出装置。
  10.  前記データ取得手段は、
     前記第1長尺体及び前記第2長尺体に光を照射する光源と、
     前記第1長尺体で反射した前記光源からの光及び前記第2長尺体で反射した前記光源からの光を受ける受光素子と、
    を備えた請求項8又は請求項9に記載の検出装置。
  11.  前記類似度算出手段によって算出された第1類似度及び第2類似度を要素とする第1類似度ベクトルのノルム又は前記類似度算出手段によって算出された第3類似度及び第4類似度を要素とする第2類似度ベクトルのノルムの少なくとも何れか一方に基づいて、前記第1異常検出手段による異常検出を無効にする無効手段を更に備えた請求項1から請求項10の何れか一項に記載の検出装置。
PCT/JP2017/004225 2017-02-06 2017-02-06 検出装置 WO2018142613A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2017/004225 WO2018142613A1 (ja) 2017-02-06 2017-02-06 検出装置
DE112017006997.1T DE112017006997T5 (de) 2017-02-06 2017-02-06 Detektionseinrichtung
CN201780084710.9A CN110226075A (zh) 2017-02-06 2017-02-06 检测装置
JP2018565223A JP6590088B2 (ja) 2017-02-06 2017-02-06 検出装置
US16/463,852 US11099138B2 (en) 2017-02-06 2017-02-06 Detection device
KR1020197022529A KR20190104184A (ko) 2017-02-06 2017-02-06 검출 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004225 WO2018142613A1 (ja) 2017-02-06 2017-02-06 検出装置

Publications (1)

Publication Number Publication Date
WO2018142613A1 true WO2018142613A1 (ja) 2018-08-09

Family

ID=63039448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004225 WO2018142613A1 (ja) 2017-02-06 2017-02-06 検出装置

Country Status (6)

Country Link
US (1) US11099138B2 (ja)
JP (1) JP6590088B2 (ja)
KR (1) KR20190104184A (ja)
CN (1) CN110226075A (ja)
DE (1) DE112017006997T5 (ja)
WO (1) WO2018142613A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109341538A (zh) * 2018-10-17 2019-02-15 太原科技大学 一种测量轴承偏移量的测量方法
JP2020034387A (ja) * 2018-08-29 2020-03-05 オーチス エレベータ カンパニーOtis Elevator Company エレベータロープ伸び計測装置及びエレベータロープ伸び計測方法
JP2021021664A (ja) * 2019-07-30 2021-02-18 株式会社明電舎 エレベータ用ワイヤロープの速度検出装置、エレベータ用ワイヤロープの速度検出方法
WO2024171431A1 (ja) * 2023-02-17 2024-08-22 三菱電機株式会社 情報処理装置、検出方法、及び検出プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219635A (ja) * 1986-12-06 1988-09-13 ローベルト・マーセン 糸またはロープの特性の測定および/または監視方法および装置
US20050002036A1 (en) * 2003-07-01 2005-01-06 Sang-Joon Bae Method and apparatus for measuring a pitch of stranded cable
WO2011105629A1 (ja) * 2010-02-25 2011-09-01 Jfeスチール株式会社 ワイヤロープピッチの測定方法とワイヤロープピッチ測定装置およびワイヤロープの製造方法
WO2016157290A1 (ja) * 2015-03-27 2016-10-06 三菱電機株式会社 検出装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278598B (en) * 2004-12-22 2007-04-11 Univ Electro Communications 3D shape measurement device
WO2011108173A1 (ja) 2010-03-03 2011-09-09 三菱電機株式会社 ロープ検査装置
JP2012127675A (ja) * 2010-12-13 2012-07-05 Asahi Glass Co Ltd 表面形状の評価方法および評価装置
CN103429985B (zh) * 2011-01-19 2016-10-19 诺威量测设备股份有限公司 用于光学测量具有通孔的图案化结构的方法
FR3016699B1 (fr) * 2014-01-22 2016-02-12 Msc & Sgcc Procede et dispositif pour la detection notamment de defauts refractants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219635A (ja) * 1986-12-06 1988-09-13 ローベルト・マーセン 糸またはロープの特性の測定および/または監視方法および装置
US20050002036A1 (en) * 2003-07-01 2005-01-06 Sang-Joon Bae Method and apparatus for measuring a pitch of stranded cable
WO2011105629A1 (ja) * 2010-02-25 2011-09-01 Jfeスチール株式会社 ワイヤロープピッチの測定方法とワイヤロープピッチ測定装置およびワイヤロープの製造方法
WO2016157290A1 (ja) * 2015-03-27 2016-10-06 三菱電機株式会社 検出装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034387A (ja) * 2018-08-29 2020-03-05 オーチス エレベータ カンパニーOtis Elevator Company エレベータロープ伸び計測装置及びエレベータロープ伸び計測方法
JP7134793B2 (ja) 2018-08-29 2022-09-12 オーチス エレベータ カンパニー エレベータロープ伸び計測装置及びエレベータロープ伸び計測方法
CN109341538A (zh) * 2018-10-17 2019-02-15 太原科技大学 一种测量轴承偏移量的测量方法
JP2021021664A (ja) * 2019-07-30 2021-02-18 株式会社明電舎 エレベータ用ワイヤロープの速度検出装置、エレベータ用ワイヤロープの速度検出方法
JP7318395B2 (ja) 2019-07-30 2023-08-01 株式会社明電舎 エレベータ用ワイヤロープの速度検出装置、エレベータ用ワイヤロープの速度検出方法
WO2024171431A1 (ja) * 2023-02-17 2024-08-22 三菱電機株式会社 情報処理装置、検出方法、及び検出プログラム

Also Published As

Publication number Publication date
DE112017006997T5 (de) 2019-10-17
US11099138B2 (en) 2021-08-24
JPWO2018142613A1 (ja) 2019-11-07
US20190345648A1 (en) 2019-11-14
CN110226075A (zh) 2019-09-10
JP6590088B2 (ja) 2019-10-16
KR20190104184A (ko) 2019-09-06

Similar Documents

Publication Publication Date Title
JP6590088B2 (ja) 検出装置
US8718352B2 (en) System and method for testing ropes
KR101748559B1 (ko) 회전체 진단 장치 및 방법
US20150308909A1 (en) Fiber optic pipeline acoustic measurement method, device, and system
US10684120B2 (en) Wire rope measuring device and wire rope measuring method
KR20170068506A (ko) 로프 지름 계측 시스템, 로프 지름 계측 장치, 로프 지름 계측 방법 및 컴퓨터 판독 가능한 기록 매체에 저장된 프로그램
JP4285486B2 (ja) ケーブルの形状状態測定方法、及びこれに用いるケーブルの形状状態測定システム、ケーブルの形状状態測定プログラム、ケーブル状態評価方法
JP6013088B2 (ja) 中心位置検出装置、プログラム、記録媒体、及び方法
CN115298513A (zh) 带有绳索附接装置的用于绳索的三维光学测量移动设备
JP2020532438A (ja) 非接触工具設定装置および方法
KR101936009B1 (ko) 검출 장치
KR102618682B1 (ko) 로프의 파라미터를 측정하기 위한 장치
US11344982B2 (en) Screw fastening device and screw fastening method
JP6356579B2 (ja) 渦電流探傷装置および渦電流探傷方法
US7227641B2 (en) Method and apparatus for measuring a pitch of stranded cable
EP3161440B1 (en) A method of determining deformation in a structure
Menke et al. Development of a combined measurement system for torque and angular position
JP7566698B2 (ja) 測定システム及び測定方法
JP5943778B2 (ja) 座厚測定装置、プログラム、記録媒体、及び方法
JP7087824B2 (ja) 角度検出装置及び角度検出方法
WO2016157289A1 (ja) 検出装置
KR102267667B1 (ko) 응력 측정 방법
JP2006112964A (ja) 光学センサ装置
CN113532287B (zh) 基于dic的海洋柔性管道螺旋构件相对滑移的测量方法
KR101426658B1 (ko) 기어의 형상을 검사하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895126

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018565223

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20197022529

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17895126

Country of ref document: EP

Kind code of ref document: A1