WO2016157290A1 - 検出装置 - Google Patents

検出装置 Download PDF

Info

Publication number
WO2016157290A1
WO2016157290A1 PCT/JP2015/059611 JP2015059611W WO2016157290A1 WO 2016157290 A1 WO2016157290 A1 WO 2016157290A1 JP 2015059611 W JP2015059611 W JP 2015059611W WO 2016157290 A1 WO2016157290 A1 WO 2016157290A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
similarity
reference data
detection device
calculated
Prior art date
Application number
PCT/JP2015/059611
Other languages
English (en)
French (fr)
Inventor
淳二 堀
浩之 笹井
敬太 望月
健司 片岡
竜平 大嶋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020177022831A priority Critical patent/KR101936009B1/ko
Priority to JP2017508825A priority patent/JP6365765B2/ja
Priority to CN201580076503.XA priority patent/CN107250715B/zh
Priority to PCT/JP2015/059611 priority patent/WO2016157290A1/ja
Publication of WO2016157290A1 publication Critical patent/WO2016157290A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined

Definitions

  • the present invention relates to a detection device that uses a long body as a detection target.
  • Patent Document 1 describes an apparatus for inspecting a rope.
  • the device described in Patent Document 1 includes a light source and a light receiving element.
  • a rope is disposed between the light source and the light receiving element.
  • the diameter of the rope is calculated based on the amount of light received by the light receiving element.
  • the position of the rope is calculated by making the calculated peak value interval of the diameter coincide with the strand interval.
  • Patent Document 1 has a problem that it is easily affected by noise. For example, if small dust adheres to the grooves between the strands, the peak value of the diameter is calculated at the position of the dust.
  • An object of the present invention is to provide a detection device capable of reducing the influence of noise when detecting the position of a long body.
  • the detection apparatus includes a data acquisition unit that acquires surface data of a long body having a periodic pattern on a surface, a storage unit that stores first reference data and second reference data, and a data acquisition unit.
  • First similarity calculation means for calculating a first similarity between the acquired surface data and the first reference data; and a second similarity between the surface data acquired by the data acquisition means and the second reference data.
  • the phase of the similarity vector having the second similarity calculated by the second similarity calculating unit and the first similarity calculated by the first similarity calculating unit and the second similarity calculated by the second similarity calculating unit is calculated.
  • Phase calculating means Phase calculating means.
  • the detection apparatus includes a data acquisition unit that acquires surface data of a long body having a periodic pattern on a surface, a storage unit that stores first reference data and second reference data, and a data acquisition unit.
  • Data processing means for generating processing data for comparison with the first reference data and the second reference data from the acquired surface data, and a first similarity between the processing data generated by the data processing means and the first reference data Calculated by the first similarity calculation means, the second similarity calculation means for calculating the second similarity between the processing data generated by the data processing means and the second reference data, and the first similarity calculation means
  • the detection apparatus includes a data acquisition unit that acquires surface data of a long body having a periodic pattern on a surface, a storage unit that stores first reference data and second reference data, and a data acquisition unit.
  • First similarity calculation means for calculating a first similarity between the acquired surface data and the first reference data; and a second similarity between the surface data acquired by the data acquisition means and the second reference data. Based on a norm of a similarity vector whose elements are the second similarity calculation unit, the first similarity calculated by the first similarity calculation unit, and the second similarity calculated by the second similarity calculation unit And an abnormality detecting means for detecting an abnormality of the elongated body.
  • the detection apparatus includes a data acquisition unit that acquires surface data of a long body having a periodic pattern on a surface, a storage unit that stores first reference data and second reference data, and a data acquisition unit.
  • Data processing means for generating processing data for comparison with the first reference data and the second reference data from the acquired surface data, and a first similarity between the processing data generated by the data processing means and the first reference data Calculated by the first similarity calculation means, the second similarity calculation means for calculating the second similarity between the processing data generated by the data processing means and the second reference data, and the first similarity calculation means
  • the detection apparatus includes a data acquisition unit that acquires surface data of a long body having a periodic pattern on a surface, a storage unit that stores first reference data and second reference data, and a data acquisition unit.
  • First similarity calculation means for calculating a first similarity between the acquired surface data and the first reference data; and a second similarity between the surface data acquired by the data acquisition means and the second reference data. Based on a trajectory drawn by a similarity vector having elements of the second similarity calculating unit, the first similarity calculated by the first similarity calculating unit, and the second similarity calculated by the second similarity calculating unit And an abnormality detecting means for detecting an abnormality of the elongated body.
  • the detection apparatus includes a data acquisition unit that acquires surface data of a long body having a periodic pattern on a surface, a storage unit that stores first reference data and second reference data, and a data acquisition unit.
  • Data processing means for generating processing data for comparison with the first reference data and the second reference data from the acquired surface data, and a first similarity between the processing data generated by the data processing means and the first reference data Calculated by the first similarity calculation means, the second similarity calculation means for calculating the second similarity between the processing data generated by the data processing means and the second reference data, and the first similarity calculation means
  • a similarity vector whose elements are the calculated first similarity and the second similarity calculated by the second similarity calculating means is Based on the Ku locus comprises abnormality detecting means for detecting an abnormality of the elongated body.
  • the detection apparatus includes a data acquisition unit that acquires surface data of a long body having a periodic pattern on a surface, a storage unit that stores reference data, and surface data and a reference acquired by the data acquisition unit. Detecting means for detecting the position of the elongated body or the period of the pattern on the surface of the elongated body based on the similarity to the data.
  • the detection apparatus includes a data acquisition unit that acquires surface data of a long body having a periodic pattern on a surface, a storage unit that stores reference data, and a reference of the surface data acquired by the data acquisition unit. Based on the similarity between the data processed by the data processing means and the data processed by the data processing means and the reference data, the position of the elongated body or the pattern of the elongated body on the surface Detecting means for detecting a cycle.
  • FIG. 1 It is a figure which shows the structure of the detection apparatus in Embodiment 1 of this invention. It is the figure which looked at the elongate body from the direction of the arrow A shown in FIG. It is a figure which shows the example of the surface data acquired by the sensor head. It is the figure which represented the surface data acquired by the sensor head with the shading of the color. It is the figure which expanded a part of FIG. It is a figure which shows the structural example of a control apparatus. It is a figure for demonstrating the data processing function of a control apparatus. It is a figure for demonstrating the data processing function of a control apparatus. It is a figure for demonstrating the selection method of reference data. It is a figure which shows the example of the two reference data memorize
  • FIG. 29 is a diagram showing a DD cross section of FIG. 28. It is a figure for demonstrating the position detection function of a control apparatus. It is a figure which shows the hardware constitutions of a control apparatus.
  • FIG. 1 is a diagram showing a configuration of a detection apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a view of the elongated body viewed from the direction of arrow A shown in FIG.
  • the long body includes, for example, the rope 1.
  • the detection device detects the position of the long body that moves in the longitudinal direction.
  • the rope 1 moves in the direction of arrow B.
  • the arrow B coincides with the longitudinal direction of the rope 1.
  • An example of the rope 1 that performs such movement is a wire rope used in an elevator.
  • the direction in which the rope 1 moves may be one direction.
  • the long body is not limited to the rope 1.
  • the rope 1 includes a plurality of strands.
  • the rope 1 is formed by twisting a plurality of strands. For this reason, the rope 1 has a periodic pattern on the surface.
  • the detection target of the present detection device is a long body having a periodic pattern on the surface.
  • the “pattern” includes, for example, a shape, a figure, a color, and a color shade.
  • the surface of the rope 1 is regularly arranged with irregularities formed by twisting a plurality of strands.
  • the cross-sectional shape of the rope 1 is substantially the same for each distance obtained by dividing the twist pitch by the number of strands.
  • the cross section is a cross section in a direction orthogonal to the longitudinal direction of the rope 1.
  • the detection device includes a sensor head 2 and a control device 3, for example.
  • the sensor head 2 is an example of means for acquiring surface data of a long body.
  • “Surface data” is data relating to the pattern of the surface of the elongated body.
  • the sensor head 2 acquires data representing the unevenness formed on the surface of the rope 1 as surface data.
  • FIG. 1 shows an example in which the sensor head 2 is an optical profile measuring instrument.
  • the sensor head 2 includes a light source 4 and a light receiving element 5, for example.
  • the light source 4 irradiates the surface of the rope 1 with light.
  • 1 and 2 show an example in which the light source 4 emits laser light in a direction orthogonal to the longitudinal direction of the rope 1. In the example shown in FIGS. 1 and 2, the light emitted from the light source 4 strikes a straight line from one end of the rope 1 to the other end so as to cross the rope 1.
  • the light receiving element 5 receives light reflected from the surface of the rope 1 (reflected light) among the light emitted from the light source 4.
  • the light receiving element 5 is disposed obliquely with respect to the direction in which the light source 4 emits light.
  • the light receiving element 5 receives light reflected obliquely at a certain angle with respect to the longitudinal direction of the rope 1 among the reflected light.
  • the light a shown in FIGS. 1 and 2 is light emitted from the light source 4 toward the rope 1.
  • the light b and the light c are light reflected at an angle received by the light receiving element 5 among the light reflected by the surface of the rope 1.
  • the light b is light reflected at the outermost portion of the strand.
  • the light c is light reflected by a groove formed by adjacent strands.
  • FIG. 3 is a diagram showing an example of the surface data acquired by the sensor head 2.
  • S ⁇ b> 1 illustrated in FIG. 3 is an example of surface data acquired by the sensor head 2.
  • the horizontal axis in FIG. 3 indicates that the surface data S1 includes 150 pieces of data in a direction orthogonal to the longitudinal direction of the rope 1.
  • the number of data included in the surface data is arbitrarily determined.
  • FIG. 4 is a diagram showing the surface data acquired by the sensor head 2 in shades of color.
  • FIG. 5 is an enlarged view of a part of FIG. FIG. 4 and FIG. 5 show what is created by connecting a large number of surface data actually obtained by the applicant using an optical profile measuring instrument.
  • the sensor head 2 is not limited to an optical profile measuring instrument.
  • the sensor head 2 may include a camera.
  • the sensor head 2 may acquire data obtained by photographing the surface of the rope 1 with a camera as surface data. In such a case, the surface data does not include information about the height.
  • the sensor head 2 acquires data representing the color and color density applied to the surface of the rope 1 as surface data.
  • the control device 3 detects the position of the long body based on the surface data acquired by the sensor head 2. That is, the control device 3 detects the distance that the long body has moved in the longitudinal direction.
  • FIG. 1 shows an example in which the control device 3 is connected to the sensor head 2 by a signal line 6. You may arrange
  • the sensor head 2 may include some of the functions of the control device 3.
  • FIG. 6 is a diagram illustrating a configuration example of the control device 3.
  • the control device 3 includes, for example, a storage unit 7, a data processing unit 8, a similarity calculation unit 9, a phase calculation unit 10, and a position detection unit 11.
  • Reference data is stored in the storage unit 7.
  • first reference data one reference data stored in the storage unit 7
  • second reference data one reference data stored in the storage unit 7
  • the data processing unit 8 generates processing data from the surface data acquired by the sensor head 2.
  • the processing data is data for comparison with the first reference data and the second reference data.
  • FIG. 7 and 8 are diagrams for explaining the data processing function of the control device 3.
  • the data processing unit 8 generates processing data by performing bias removal processing on the surface data.
  • S2 shown in FIG. 7 is a bias component.
  • the bias component S2 corresponds to surface data acquired by the sensor head 2 when the surface of the rope 1 is not uneven.
  • P shown in FIG. 8 is processing data.
  • the processing data P corresponds to the difference between the surface data S1 and the bias component S2.
  • the data processing unit 8 generates the processing data P by removing the influence of the diameter of the rope 1 from the surface data S1 acquired by the sensor head 2.
  • the processing data P can be expressed as a matrix of n rows and 1 column as follows, similarly to the surface data S1.
  • FIG. 9 is a diagram for explaining a method of selecting reference data.
  • the rope 1 has a periodic pattern on the surface.
  • the cross-sectional shape obtained by cutting the rope 1 along the straight line c1 shown in FIG. 9 is substantially the same as the cross-sectional shape obtained by cutting the rope 1 along the straight line c4. That is, the distance L1 between the straight line c1 and the straight line c4 is a distance at which the phase difference is 2 ⁇ . Similarly, the distance L2 between the straight line c1 and the straight line c3 is a distance at which the phase difference is ⁇ . A distance L3 between the straight line c1 and the straight line c2 is a distance at which the phase difference is ⁇ / 2.
  • the first reference data and the second reference data are preferably data orthogonal to each other or data substantially orthogonal to each other.
  • data corresponding to processing data obtained when light is applied to the portion of the straight line c1 is set as the first reference data.
  • FIG. 10 is a diagram illustrating an example of two reference data stored in the storage unit 7.
  • the processing data P, the first reference data Ref1, and the second reference data Ref2 are multidimensional vector data (vector having n elements) will be described.
  • the inner product of the first reference data Ref1 and the second reference data Ref2 is preferably 0 or a value close to 0.
  • the control device 3 may include a data setting unit 12.
  • the data setting unit 12 sets reference data based on the surface data acquired by the sensor head 2. For example, the data setting unit 12 stores the processing data obtained when the light from the light source 4 is applied to a portion of the rope 1 as the first reference data in the storage unit 7. Furthermore, the data setting unit 12 causes the storage unit 7 to store the processing data obtained when light is applied from the above part to the part where the phase difference is ⁇ / 2.
  • the function of the data setting unit 12 is effective when the reference data is not known.
  • the similarity calculation unit 9 calculates the similarity between the processing data and the reference data.
  • the similarity is an index representing the degree of similarity between two processing data.
  • two reference data are stored in the storage unit 7.
  • the similarity calculation unit 9 has a function of calculating the first similarity and the second similarity.
  • the first similarity is the similarity between the processing data and the first reference data.
  • the second similarity is a similarity between the processing data and the second reference data.
  • the similarity calculation unit 9 calculates the correlation coefficient ⁇ 1 between the processing data and the first reference data as the first similarity.
  • the similarity calculation unit 9 calculates the correlation coefficient ⁇ 2 between the processing data and the second reference data as the second similarity.
  • FIG. 11 is a diagram for explaining the phase calculation function of the control device 3.
  • the phase calculation unit 10 calculates the phase ⁇ of the similarity vector.
  • the similarity vector is a vector having the first similarity and the second similarity calculated by the similarity calculation unit 9 as elements.
  • the similarity vector is represented by ( ⁇ 1, ⁇ 2).
  • the phase ⁇ is represented by an angle formed by a similarity vector and a vector represented by ( ⁇ 1, 0).
  • the position detection unit 11 detects the position of the long body. That is, the position detection unit 11 detects how much the long body has moved in the longitudinal direction. The position detection unit 11 performs the detection based on the phase calculated by the phase calculation unit 10.
  • the similarity vector obtained when the light from the light source 4 is applied to the portion of the straight line c1 shown in FIG. 9 is represented by ( ⁇ 1, 0).
  • the obtained similarity vector is represented by (0, ⁇ 2).
  • the phase ⁇ at this time is ⁇ / 2 (rad) (see FIG. 11).
  • the obtained similarity vector is represented by ( ⁇ 1, 0).
  • the phase ⁇ is ⁇ (rad).
  • the obtained similarity vector is represented by ( ⁇ 1, 0).
  • the phase ⁇ is 2 ⁇ (rad). In this way, the position of the rope 1 can be detected based on the phase ⁇ calculated by the phase calculation unit 10.
  • FIG. 12 is a diagram for explaining the position detection function of the control device 3.
  • A) of FIG. 12 is the figure which represented the surface data acquired by the sensor head 2 with the color shading.
  • the figure shown to (a) of FIG. 12 shows what connected 3500 surface data.
  • the surface data is acquired at a constant cycle, for example.
  • a section 1 shown in FIG. 12 shows a state where the rope 1 is almost stopped.
  • the section 2 shown in FIG. 12 shows a state after the running of the rope 1 is started.
  • FIG. 12B shows changes in correlation coefficients ⁇ 1 and ⁇ 2.
  • C) of FIG. 12 shows the change of the phase ⁇ .
  • FIG. 13 is a diagram showing the trajectory of the similarity vector in section 1 shown in FIG.
  • FIG. 14 is a diagram showing the trajectory of the similarity vector in section 2 shown in FIG. As shown in FIG. 14, when the rope 1 moves in the longitudinal direction, the locus of the similarity vector is drawn so as to go around the point (0, 0).
  • the position of the long body can be detected based on the phase of the similarity vector.
  • the first similarity and the second similarity which are elements of the similarity vector, are calculated using surface data relating to the pattern of the surface of the elongated body. For this reason, the influence of noise can be reduced.
  • the locus of the similarity vector is drawn with an irregular circle. This is a result that occurs because the first reference data and the second reference data are not completely orthogonal. However, in other words, the above effect can be achieved even if the first reference data and the second reference data are not completely orthogonal.
  • the control device 3 may include a direction detection unit 13.
  • the direction detection unit 13 detects the moving direction of the long body.
  • the direction detection unit 13 performs the detection based on the phase calculated by the phase calculation unit 10. For example, the direction detection unit 13 calculates the phase change speed d ⁇ / dt calculated by the phase calculation unit 10.
  • the direction detection unit 13 determines the moving direction of the long body from the sign of the calculated change speed d ⁇ / dt.
  • FIG. 6 shows an example in which the control device 3 includes both the position detection unit 11 and the direction detection unit 13.
  • the control device 3 may include the direction detection unit 13 without including the position detection unit 11.
  • the detection device is a device that detects the moving direction of the long body.
  • the control device 3 may include a cycle detection unit 14.
  • the period detector 14 detects the period of the pattern that the long body has on the surface.
  • the period detection unit 14 performs the detection based on the phase calculated by the phase calculation unit 10. For example, the period detection unit 14 calculates the phase change speed d ⁇ / dt calculated by the phase calculation unit 10. If the moving speed of the long body is constant, the period of the pattern can be determined from the calculated change speed d ⁇ / dt.
  • FIG. 15 is a diagram for explaining another method of selecting reference data.
  • data corresponding to the processing data obtained when the light from the light source 4 is applied to the range C1 is stored in the storage unit 7 as the first reference data.
  • the straight line c1 corresponds to one measurement line
  • the range C1 corresponds to m measurement lines.
  • data corresponding to the processing data obtained when the light from the light source 4 is applied to the range C2 is stored in the storage unit 7 as second reference data.
  • the first reference data Ref1 and the second reference data Ref2 can be expressed as follows.
  • the inner product of the first reference data Ref1 and the second reference data Ref2 is preferably 0 or a value close to 0.
  • the data processing unit 8 When data that can be expressed in a matrix of n rows and m columns is stored in the storage unit 7 as reference data, the data processing unit 8 generates data that can be expressed in a matrix of n rows and m columns as processed data P.
  • the surface data S1 can also be expressed as a matrix with n rows and m columns.
  • the detection device has the above configuration, the influence of noise can be further reduced.
  • the configuration not described in the present embodiment is the same as the configuration disclosed in the first embodiment.
  • Embodiment 3 FIG.
  • the example in which the data obtained from the surface data acquired by the sensor head 2 or the data corresponding thereto is stored in the storage unit 7 as the reference data has been described.
  • an example will be described in which data obtained from design information is stored in the storage unit 7 as reference data.
  • FIG. 16 is a diagram for explaining another method of selecting reference data.
  • a sine wave having the same period as the pattern of the long body on the surface is stored in the storage unit 7 as the first reference data.
  • a cosine wave having the same period as the pattern of the long body on the surface is stored in the storage unit 7 as second reference data.
  • the first reference data Ref1 and the second reference data Ref2 can be expressed as a matrix of n rows and 1 column as shown in the above equation 2.
  • the inner product of the first reference data Ref1 and the second reference data Ref2 can be completely zero. That is, data orthogonal to each other can be adopted as the first reference data and the second reference data.
  • FIG. 17 is a diagram for explaining the position detection function of the control device 3.
  • (A) to (c) in FIG. 17 correspond to (a) to (c) in FIG.
  • the diagram shown in FIG. 17B was created using the first reference data Ref1 and the second reference data Ref2 shown in FIG.
  • FIG. 18 is a diagram showing the trajectory of the similarity vector in section 1 shown in FIG.
  • FIG. 19 is a diagram illustrating a locus of the similarity vector in the section 2 illustrated in FIG. As shown in FIG. 19, when two reference data orthogonal to each other are used, the locus of the similarity vector becomes a circle close to a perfect circle.
  • first reference data Ref1 and the second reference data Ref2 can be expressed by a matrix as shown in the above equation 3.
  • the inner product of the first reference data Ref1 and the second reference data Ref2 may be set to 0.
  • the configuration not described in this embodiment is the same as the configuration disclosed in the first or second embodiment.
  • Embodiment 4 FIG. In Embodiments 1 to 3, the example in which the detection device detects the position of the long body has been described. In this embodiment, an example will be described in which the detection device detects an abnormality in a long body.
  • the overall configuration of the detection apparatus in the present embodiment is the same as that shown in FIG.
  • FIG. 20 is a diagram illustrating a configuration example of the control device 3.
  • the control device 3 in the present embodiment includes a storage unit 7, a data processing unit 8, a similarity calculation unit 9, and an abnormality detection unit 15, for example.
  • the functions of the storage unit 7, the data processing unit 8, and the similarity calculation unit 9 are the same as the functions disclosed in the first embodiment.
  • configurations not described in the present embodiment are the same as any of the configurations disclosed in the first to third embodiments.
  • the abnormality detection unit 15 detects an abnormality in the long body. For example, the abnormality detection unit 15 performs the above detection based on a similarity vector having the first similarity and the second similarity calculated by the similarity calculation unit 9 as elements.
  • FIG. 21 to 23 are diagrams for explaining the abnormality detection function of the control device 3.
  • (a) shows data obtained when light from the light source 4 is applied to a normal portion of the rope 1.
  • Data when the light from the light source 4 is applied to a portion of the rope 1 having an abnormality is shown in FIG.
  • the upper part of FIG. 21 shows a diagram representing the surface data acquired by the sensor head 2 with color shading.
  • the lower part of FIG. 21 shows changes in correlation coefficients ⁇ 1 and ⁇ 2.
  • FIG. 22 shows the trajectory of the similarity vector obtained when the correlation coefficients ⁇ 1 and ⁇ 2 shown in the lower part of FIG. 21 are calculated.
  • the locus of the similarity vector is a circle close to a perfect circle.
  • the locus of the similarity vector is not a beautiful shape.
  • the locus of the similarity vector is also present at a position close to the point (0, 0).
  • the abnormality detection unit 15 can detect the abnormality of the rope 1 based on the locus of the similarity vector.
  • an abnormal range for detecting an abnormality is set in the range inside the locus shown in FIG.
  • the abnormality detection unit 15 detects an abnormality of the rope 1 when the locus of the similarity vector enters the abnormality range.
  • the abnormality detection unit 15 may detect the abnormality of the rope 1 based on the frequency with which the locus of the similarity vector enters the abnormality range.
  • the abnormality detection unit 15 may detect the abnormality of the rope 1 based on other criteria.
  • FIG. 23 shows the norm of the similarity vector obtained when the correlation coefficients ⁇ 1 and ⁇ 2 shown in the lower part of FIG. 21 are calculated.
  • the norm of the similarity vector is substantially constant in a range close to 1.
  • the norm of the similarity vector exists over a wide range.
  • the norm of the similarity vector is close to 0.
  • the abnormality detection unit 15 can detect the abnormality of the rope 1 based on the norm of the similarity vector.
  • the threshold value is set at a position below the norm shown in FIG.
  • the abnormality detection unit 15 detects the abnormality of the rope 1 when the norm of the similarity vector falls below the threshold value.
  • the abnormality detection unit 15 may detect the abnormality of the rope 1 based on the frequency with which the norm of the similarity vector falls below the threshold value.
  • the abnormality detection unit 15 may detect the abnormality of the rope 1 based on other criteria.
  • the detection device has the above configuration, it is possible to detect an abnormality in the long body based on a similarity vector having the first similarity and the second similarity as elements. For this reason, it is possible to provide an abnormality detection device that is less susceptible to noise. If it is a detection apparatus which has the said structure, it is not necessary to adjust a filter coefficient etc. conventionally.
  • the control device 3 may include an abnormality detection unit 15 in addition to the configuration shown in FIG.
  • Embodiment 5 FIG.
  • the overall configuration of the detection apparatus in the present embodiment is the same as that shown in FIG.
  • the configuration of the control device 3 is the same as the configuration shown in FIG.
  • Configurations not described in the present embodiment are the same as any of the configurations disclosed in the first to fourth embodiments.
  • the control apparatus 3 may be provided with the abnormality detection part 15 in addition to the structure shown in FIG.
  • FIG. 24 to 27 are diagrams for explaining the abnormality detection function of the control device 3.
  • FIG. 24 shows the norm of the similarity vector.
  • a section 3 shown in FIG. 24 shows data when light from the light source 4 is applied to a normal portion of the rope 1. For example, the section 3 includes 100 pieces of data.
  • a section 4 shown in FIG. 24 shows data when light from the light source 4 is applied to a portion where the rope 1 is abnormal. For example, the section 4 includes 100 pieces of data.
  • FIG. 25 is an enlarged view of the data in section 3 and the data in section 4.
  • FIG. 26 is a diagram showing the trajectory of the similarity vector in the section 3 shown in FIG. (A) of FIG. 26 shows the locus
  • FIG. 26B shows a trajectory created from data for the latter half 50 pieces.
  • the trajectory shown in FIG. 26A and the trajectory shown in FIG. 26B are both drawn in a circle close to a perfect circle.
  • the locus shown in (a) of FIG. 26 substantially matches the locus shown in (b) of FIG.
  • FIG. 27 is a diagram showing the trajectory of the similarity vector in the section 4 shown in FIG.
  • FIG. 27A shows a trajectory created from data for the first half 50.
  • FIG. FIG. 27B shows a trajectory created from data for the latter half 50 pieces.
  • Both the trajectory shown in FIG. 27A and the trajectory shown in (b) are not in a clean shape.
  • the locus shown in (a) of FIG. 27 does not match the locus shown in (b) of FIG. Therefore, the abnormality detection unit 15 detects the abnormality of the rope 1 by comparing the locus of the similarity vector obtained from the first half data of a certain section with the locus of the similarity vector obtained from the second half data. can do.
  • Embodiment 6 FIG.
  • the example in which the detection device detects the position and abnormality of the rope 1 has been described.
  • an example in which the detection device detects the position and abnormality of another elongated body will be described.
  • FIG. 28 is a diagram showing the configuration of the detection apparatus according to Embodiment 6 of the present invention.
  • FIG. 29 is a view showing a DD cross section of FIG.
  • the elongate body to be detected by the detection device includes a moving handrail 16 used in an escalator or the like.
  • the moving handrail 16 moves in the direction of arrow B.
  • the arrow B coincides with the longitudinal direction of the moving handrail 16.
  • the direction in which the moving handrail 16 moves may be one direction.
  • the moving handrail 16 includes a canvas 17.
  • the canvas 17 is provided to reduce the running resistance of the moving handrail 16.
  • the canvas 17 forms the inner surface of the moving handrail 16.
  • the canvas 17 is a fabric woven using, for example, a plurality of yarns. For this reason, the canvas 17 has a periodic pattern on the surface.
  • the configuration of the detection apparatus is the same as any of the configurations disclosed in the first to fifth embodiments.
  • FIG. 30 is a diagram for explaining the position detection function of the control device 3.
  • 30A to 30C correspond to FIGS. 12A to 12C.
  • FIG. 30A is a diagram showing the surface data acquired by the sensor head 2 in shades of color.
  • the figure shown to (a) of FIG. 30 shows what connected 200 surface data.
  • FIG. 12B shows changes in correlation coefficients ⁇ 1 and ⁇ 2.
  • (C) of FIG. 12 shows the change of the phase ⁇ .
  • the position and abnormality of the moving handrail 16 can be detected with the detection device having the above configuration.
  • the shape abnormality of the moving handrail 16 can be detected by the detection device. You may detect the slip of the moving handrail 16 with a detection apparatus.
  • each part indicated by reference numerals 7 to 15 represents a function of the control device 3.
  • FIG. 31 is a diagram illustrating a hardware configuration of the control device 3.
  • the control device 3 includes a circuit including, for example, a processor 18 and a memory 19 as hardware resources.
  • the control device 3 implements the functions of the units 7 to 15 by executing the program stored in the memory 19 by the processor 18.
  • the control device 3 may include a plurality of processors 18.
  • the control device 3 may include a plurality of memories 19. That is, a plurality of processors 18 and a plurality of memories 19 may cooperate to implement each function of each unit 7 to 15. Some or all of the functions of the units 7 to 15 may be realized by hardware.
  • the similarity calculation unit 9 calculates the similarity between the processing data and the reference data.
  • the functions of the detection device described in each embodiment can be realized even if the control device 3 is not provided with the data processing unit 8.
  • reference data that can be compared with the surface data acquired by the sensor head 2 is stored in the storage unit 7.
  • the control device 3 includes the data setting unit 12, the data setting unit 12 causes the storage unit 7 to store the surface data acquired by the sensor head 2 as reference data.
  • the data setting unit 12 causes the storage unit 7 to store the surface data obtained when the light from the light source 4 is applied to a portion of the rope 1 as the first reference data.
  • the data setting unit 12 causes the storage unit 7 to store the surface data obtained when light is applied from the above part to the part having a phase difference of ⁇ / 2 as the second reference data.
  • the similarity calculation unit 9 calculates the similarity between the surface data acquired by the sensor head 2 and the reference data. For example, the similarity calculation unit 9 calculates the correlation coefficient ⁇ 1 between the surface data and the first reference data as the first similarity. The similarity calculation unit 9 calculates the correlation coefficient ⁇ 2 between the surface data and the second reference data as the second similarity.
  • the similarity calculation unit 9 may calculate the similarity between the surface data and the reference data.
  • the position detection unit 11 detects the position of the long body based on the similarity calculated by the similarity calculation unit 9. For example, a reference value is set in advance. The position detection unit 11 counts the number of times the similarity matches the reference value, and detects the position of the long body. A plurality of reference values may be set. It is also possible to detect the period of the pattern that the long body has on the surface by counting the number of times matching the reference value during a certain period.
  • the device for detecting the position or abnormality of the elongated body has been described.
  • the present invention may be utilized as an inspection apparatus having functions up to the stage before detecting a position or abnormality.
  • the inspection apparatus includes, for example, a storage unit 7, a data processing unit 8, and a similarity calculation unit 9.
  • the storage unit 7, the data processing unit 8, and the similarity calculation unit 9 have the functions disclosed in any of the embodiments.
  • the inspection apparatus also has a function of calculating a similarity vector having the first similarity and the second similarity calculated by the similarity calculation unit 9 as elements.
  • the similarity calculation unit 9 may calculate the similarity between the surface data and the reference data.
  • the inspection apparatus stores the calculated similarity vector so that the user can use it later.
  • the inspection apparatus may have a function of displaying the calculated similarity vector on a display (not shown).
  • the detection apparatus according to the present invention can be applied to an apparatus for detecting a long body having a periodic pattern on the surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 検出装置は、センサヘッド(2)、記憶部(7)、データ処理部(8)、類似度算出部(9)及び位相算出部(10)を備える。センサヘッド(2)は、長尺体の表面データを取得する。記憶部(7)は、第1リファレンスデータ及び第2リファレンスデータを記憶する。データ処理部(8)は、表面データから処理データを生成する。類似度算出部(9)は、第1類似度及び第2類似度を算出する。位相算出部(10)は、第1類似度及び第2類似度を要素とする類似度ベクトルの位相を算出する。

Description

検出装置
 この発明は、長尺体を検出対象とする検出装置に関する。
 特許文献1に、ロープを検査する装置が記載されている。特許文献1に記載された装置は、光源と受光素子とを備える。光源と受光素子との間にロープが配置される。特許文献1に記載された装置では、受光素子が受けた光量に基づいてロープの直径が算出される。算出した直径のピーク値の間隔をストランドの間隔に一致させることにより、ロープの位置を算出する。
日本特許第5436659号公報
 特許文献1に記載された装置は、ノイズの影響を受け易いといった問題があった。例えば、ストランド間の溝に小さなごみが付着していると、そのごみの位置で直径のピーク値が算出されてしまう。
 この発明は、上述のような課題を解決するためになされた。この発明の目的は、長尺体の位置等を検出する際にノイズの影響を低減できる検出装置を提供することである。
 この発明に係る検出装置は、表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、データ取得手段によって取得された表面データと第1リファレンスデータとの第1類似度を算出する第1類似度算出手段と、データ取得手段によって取得された表面データと第2リファレンスデータとの第2類似度を算出する第2類似度算出手段と、第1類似度算出手段によって算出された第1類似度と第2類似度算出手段によって算出された第2類似度とを要素とする類似度ベクトルの位相を算出する位相算出手段と、を備える。
 この発明に係る検出装置は、表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、データ取得手段によって取得された表面データから第1リファレンスデータ及び第2リファレンスデータと比較するための処理データを生成するデータ処理手段と、データ処理手段によって生成された処理データと第1リファレンスデータとの第1類似度を算出する第1類似度算出手段と、データ処理手段によって生成された処理データと第2リファレンスデータとの第2類似度を算出する第2類似度算出手段と、第1類似度算出手段によって算出された第1類似度と第2類似度算出手段によって算出された第2類似度とを要素とする類似度ベクトルの位相を算出する位相算出手段と、を備える。
 この発明に係る検出装置は、表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、データ取得手段によって取得された表面データと第1リファレンスデータとの第1類似度を算出する第1類似度算出手段と、データ取得手段によって取得された表面データと第2リファレンスデータとの第2類似度を算出する第2類似度算出手段と、第1類似度算出手段によって算出された第1類似度と第2類似度算出手段によって算出された第2類似度とを要素とする類似度ベクトルのノルムに基づいて、長尺体の異常を検出する異常検出手段と、を備える。
 この発明に係る検出装置は、表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、データ取得手段によって取得された表面データから第1リファレンスデータ及び第2リファレンスデータと比較するための処理データを生成するデータ処理手段と、データ処理手段によって生成された処理データと第1リファレンスデータとの第1類似度を算出する第1類似度算出手段と、データ処理手段によって生成された処理データと第2リファレンスデータとの第2類似度を算出する第2類似度算出手段と、第1類似度算出手段によって算出された第1類似度と第2類似度算出手段によって算出された第2類似度とを要素とする類似度ベクトルのノルムに基づいて、長尺体の異常を検出する異常検出手段と、を備える。
 この発明に係る検出装置は、表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、データ取得手段によって取得された表面データと第1リファレンスデータとの第1類似度を算出する第1類似度算出手段と、データ取得手段によって取得された表面データと第2リファレンスデータとの第2類似度を算出する第2類似度算出手段と、第1類似度算出手段によって算出された第1類似度と第2類似度算出手段によって算出された第2類似度とを要素とする類似度ベクトルが描く軌跡に基づいて、長尺体の異常を検出する異常検出手段と、を備える。
 この発明に係る検出装置は、表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、データ取得手段によって取得された表面データから第1リファレンスデータ及び第2リファレンスデータと比較するための処理データを生成するデータ処理手段と、データ処理手段によって生成された処理データと第1リファレンスデータとの第1類似度を算出する第1類似度算出手段と、データ処理手段によって生成された処理データと第2リファレンスデータとの第2類似度を算出する第2類似度算出手段と、第1類似度算出手段によって算出された第1類似度と第2類似度算出手段によって算出された第2類似度とを要素とする類似度ベクトルが描く軌跡に基づいて、長尺体の異常を検出する異常検出手段と、を備える。
 この発明に係る検出装置は、表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、リファレンスデータを記憶する記憶手段と、データ取得手段によって取得された表面データとリファレンスデータとの類似度に基づいて、長尺体の位置又は長尺体が表面に有する模様の周期を検出する検出手段と、を備える。
 この発明に係る検出装置は、表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、リファレンスデータを記憶する記憶手段と、データ取得手段によって取得された表面データをリファレンスデータと比較するためのデータに処理するデータ処理手段と、データ処理手段によって処理されたデータとリファレンスデータとの類似度に基づいて、長尺体の位置又は前記長尺体が表面に有する模様の周期を検出する検出手段と、を備える。
 この発明によれば、ノイズの影響を低減できる検出装置を提供できる。
この発明の実施の形態1における検出装置の構成を示す図である。 図1に示す矢印Aの方向から長尺体を見た図である。 センサヘッドによって取得された表面データの例を示す図である。 センサヘッドによって取得された表面データを色の濃淡で表した図である。 図4の一部を拡大した図である。 制御装置の構成例を示す図である。 制御装置のデータ処理機能を説明するための図である。 制御装置のデータ処理機能を説明するための図である。 リファレンスデータの選定方法を説明するための図である。 記憶部に記憶された2つのリファレンスデータの例を示す図である。 制御装置の位相算出機能を説明するための図である。 制御装置の位置検出機能を説明するための図である。 図12に示す区間1での類似度ベクトルの軌跡を示す図である。 図12に示す区間2での類似度ベクトルの軌跡を示す図である。 リファレンスデータを選定する他の方法を説明するための図である。 リファレンスデータを選定する他の方法を説明するための図である。 制御装置の位置検出機能を説明するための図である。 図17に示す区間1での類似度ベクトルの軌跡を示す図である。 図17に示す区間2での類似度ベクトルの軌跡を示す図である。 制御装置の構成例を示す図である。 制御装置の異常検出機能を説明するための図である。 制御装置の異常検出機能を説明するための図である。 制御装置の異常検出機能を説明するための図である。 制御装置の異常検出機能を説明するための図である。 制御装置の異常検出機能を説明するための図である。 制御装置の異常検出機能を説明するための図である。 制御装置の異常検出機能を説明するための図である。 この発明の実施の形態6における検出装置の構成を示す図である。 図28のD-D断面を示す図である。 制御装置の位置検出機能を説明するための図である。 制御装置のハードウェア構成を示す図である。
 添付の図面を参照し、本発明を説明する。重複する説明は、適宜簡略化或いは省略する。各図において、同一の符号は同一の部分又は相当する部分を示す。
実施の形態1.
 図1は、この発明の実施の形態1における検出装置の構成を示す図である。図2は、図1に示す矢印Aの方向から長尺体を見た図である。実施の形態1では、検出装置が長尺体の位置を検出する例について説明する。長尺体には、例えばロープ1が含まれる。検出装置は、長手の方向に移動する長尺体の位置を検出する。例えば、ロープ1は、矢印Bの方向に移動する。矢印Bは、ロープ1の長手の方向と一致する。このような移動を行うロープ1の例として、エレベータで使用されるワイヤロープが挙げられる。ロープ1が移動する方向は一方向でも良い。なお、長尺体はロープ1に限定されない。
 ロープ1は、複数のストランドを備える。ロープ1は、複数のストランドが縒り合わされることによって形成される。このため、ロープ1は、表面に周期的な模様を有する。本検出装置の検出対象は、表面に周期的な模様を有する長尺体である。「模様」には、例えば形状、図形、色及び色の濃淡が含まれる。例えば、ロープ1の表面には、複数のストランドが縒り合わされることによって形成される凹凸が規則的に並んでいる。ロープ1の断面形状は、縒りピッチをストランドの数で割った距離毎にほぼ同じになる。上記断面とは、ロープ1の長手の方向と直交する方向の断面である。
 検出装置は、例えばセンサヘッド2と制御装置3とを備える。
 センサヘッド2は、長尺体の表面データを取得する手段の一例である。「表面データ」は、長尺体の表面の模様に関するデータである。例えば、センサヘッド2は、ロープ1の表面に形成された凹凸を表すデータを表面データとして取得する。図1は、センサヘッド2が光学式のプロファイル測定器である例を示す。センサヘッド2は、例えば光源4及び受光素子5を備える。
 光源4は、ロープ1の表面に光を照射する。図1及び図2は、光源4がロープ1の長手の方向と直交する方向にレーザ光を照射する例を示す。図1及び図2に示す例では、光源4から照射された光は、ロープ1を横断するようにロープ1の一側の端から他側の端にかけて直線状に当たる。
 受光素子5は、光源4から照射された光のうちロープ1の表面で反射した光(反射光)を受光する。受光素子5は、光源4が光を照射する方向に対して斜めに配置される。受光素子5は、上記反射光のうちロープ1の長手の方向に対して一定の角度で斜めに反射した光を受光する。
 図1及び図2に示す光aは、光源4からロープ1に向けて照射された光である。光b及び光cは、ロープ1の表面で反射した光のうち、受光素子5によって受光される角度で反射した光である。光bは、ストランドの最も外側に膨らんだ部分で反射した光である。光cは、隣り合うストランドによって形成された溝の部分で反射した光である。受光素子5が光b及び光c等を受光することにより、センサヘッド2は、光源4からの光が当たった部分の断面形状を表す表面データを取得する。
 図3は、センサヘッド2によって取得された表面データの例を示す図である。図3に示すS1は、センサヘッド2によって取得された表面データの一例である。図3の横軸は、表面データS1がロープ1の長手の方向と直交する方向に150個のデータを含むことを示す。なお、表面データが含むデータの個数は任意に決定される。
 図4は、センサヘッド2によって取得された表面データを色の濃淡で表した図である。図5は、図4の一部を拡大した図である。図4及び図5は、出願人が光学式のプロファイル測定器を用いて実際に取得した多数の表面データを繋ぎ合わせて作成したものを示す。
 センサヘッド2は、光学式のプロファイル測定器に限定されない。例えば、センサヘッド2は、カメラを備えても良い。センサヘッド2は、カメラによってロープ1の表面を撮影したデータを表面データとして取得しても良い。かかる場合、表面データには高さに関する情報が含まれない。センサヘッド2は、ロープ1の表面に付された色及び色の濃淡を表すデータを表面データとして取得する。
 制御装置3は、センサヘッド2によって取得された表面データに基づいて、長尺体の位置を検出する。即ち、制御装置3は、長尺体が長手の方向に移動した距離を検出する。図1は、制御装置3が信号線6によってセンサヘッド2に接続される例を示す。センサヘッド2と制御装置3とを同じ筐体内に配置しても良い。制御装置3が有する機能の一部をセンサヘッド2が備えても良い。
 図6は、制御装置3の構成例を示す図である。制御装置3は、例えば記憶部7、データ処理部8、類似度算出部9、位相算出部10及び位置検出部11を備える。
 記憶部7にリファレンスデータが記憶される。本実施の形態では、記憶部7に2つのリファレンスデータが記憶される例について説明する。以下の説明では、記憶部7に記憶された一方のリファレンスデータを第1リファレンスデータと表記する。記憶部7に記憶されたもう一方のリファレンスデータを第2リファレンスデータと表記する。
 データ処理部8は、センサヘッド2によって取得された表面データから処理データを生成する。処理データは、第1リファレンスデータ及び第2リファレンスデータと比較するためのデータである。ロープ1の位置等を検出する上では、センサヘッド2によって取得された表面データからバイアス成分或いは高調波成分を除去する処理を行うことが望ましい。これにより、ロープ1が表面に有する周期的な模様の成分を強調することができる。
 図7及び図8は、制御装置3のデータ処理機能を説明するための図である。本実施の形態では、センサヘッド2によって取得された表面データからバイアス成分を除去する例について説明する。即ち、データ処理部8は、表面データに対してバイアス除去処理を行うことによって処理データを生成する。図7に示すS2はバイアス成分である。バイアス成分S2は、ロープ1の表面に凹凸がない場合にセンサヘッド2が取得する表面データに相当する。図8に示すPは、処理データである。処理データPは、表面データS1とバイアス成分S2との差に相当する。データ処理部8は、例えば、センサヘッド2によって取得された表面データS1からロープ1の径の影響を除去することにより、処理データPを生成する。
 表面データS1が複数個のデータを含む場合、処理データPは、表面データS1と同様に下記のようにn行1列の行列で表記できる。nは、例えば2以上の整数である。図8に示す例ではn=150である。
Figure JPOXMLDOC01-appb-M000001
 図9は、リファレンスデータの選定方法を説明するための図である。上述したように、ロープ1は、表面に周期的な模様を有する。例えば、図9に示す直線c1でロープ1を切断した断面形状と直線c4でロープ1を切断した断面形状とはほぼ同じになる。即ち、直線c1と直線c4との距離L1は、位相差が2πとなる距離である。同様に、直線c1と直線c3との距離L2は、位相差がπとなる距離である。直線c1と直線c2との距離L3は、位相差がπ/2となる距離である。
 第1リファレンスデータと第2リファレンスデータとは、互いに直交するデータ或いはほぼ直交するデータであることが好ましい。例えば、直線c1の部分に光を当てた時に得られる処理データに相当するデータを第1リファレンスデータに設定する。かかる場合、直線c2の部分に光を当てた時に得られる処理データに相当するデータを第2リファレンスデータに設定することが好ましい。図10は、記憶部7に記憶された2つのリファレンスデータの例を示す図である。
 図10に示す第1リファレンスデータRef1及び第2リファレンスデータRef2は、例えば下記のようにn行1列の行列で表記できる。nは、例えば2以上の整数である。図10に示す例ではn=150である。
Figure JPOXMLDOC01-appb-M000002
 本実施の形態では、処理データP、第1リファレンスデータRef1及び第2リファレンスデータRef2が多次元のベクトルデータ(要素数nのベクトル)である例について説明する。第1リファレンスデータRef1及び第2リファレンスデータRef2の内積は、0或いは0に近い値であることが好ましい。
 制御装置3は、データ設定部12を備えても良い。データ設定部12は、センサヘッド2によって取得された表面データに基づいて、リファレンスデータを設定する。例えば、データ設定部12は、ロープ1のある部分に光源4からの光を当てた時に得られた処理データを第1リファレンスデータとして記憶部7に記憶させる。更に、データ設定部12は、上記部分から位相差がπ/2となる部分に光を当てた時に得られた処理データを第2リファレンスデータとして記憶部7に記憶させる。データ設定部12の機能は、リファレンスデータが既知でない場合に有効である。
 類似度算出部9は、処理データとリファレンスデータとの類似度を算出する。類似度は、2つの処理データが類似する度合いを表す指標である。本実施の形態に示す例では、記憶部7に2つのリファレンスデータが記憶される。かかる場合、類似度算出部9は、第1類似度と第2類似度とを算出する機能を有する。第1類似度は、処理データと第1リファレンスデータとの類似度である。第2類似度は、処理データと第2リファレンスデータとの類似度である。
 例えば、類似度算出部9は、処理データと第1リファレンスデータとの相関係数ρ1を第1類似度として算出する。類似度算出部9は、処理データと第2リファレンスデータとの相関係数ρ2を第2類似度として算出する。
 図11は、制御装置3の位相算出機能を説明するための図である。位相算出部10は、類似度ベクトルの位相θを算出する。類似度ベクトルは、類似度算出部9によって算出された第1類似度と第2類似度とを要素とするベクトルである。本実施の形態に示す例では、類似度ベクトルは(ρ1、ρ2)で表記される。位相θは、例えば類似度ベクトルと(ρ1、0)で示されるベクトルとのなす角で表される。
 位置検出部11は、長尺体の位置を検出する。即ち、位置検出部11は、長尺体が長手の方向にどれだけ移動したかを検出する。位置検出部11は、位相算出部10によって算出された位相に基づいて上記検出を行う。
 例えば、図9に示す直線c1の部分に光源4からの光を当てた時に得られる類似度ベクトルが(ρ1、0)で表される理想的な例を考える。ロープ1が下方に移動して直線c2の部分に光源4からの光が当たると、得られる類似度ベクトルは(0、ρ2)で表される。この時の位相θはπ/2(rad)になる(図11参照)。ロープ1が下方に更に移動して直線c3の部分に光が当たると、得られる類似度ベクトルは(-ρ1、0)で表される。この時の位相θはπ(rad)になる。ロープ1が下方に更に移動して直線c4の部分に光が当たると、得られる類似度ベクトルは(ρ1、0)で表される。この時の位相θは2π(rad)になる。このように、位相算出部10によって算出された位相θに基づいてロープ1の位置を検出することができる。
 図12は、制御装置3の位置検出機能を説明するための図である。図12の(a)は、センサヘッド2によって取得された表面データを色の濃淡で表した図である。図12の(a)に示す図は、3500個の表面データを繋げたものを示す。表面データは、例えば一定の周期で取得される。図12に示す区間1は、ロープ1がほぼ停止している状態を示す。図12に示す区間2は、ロープ1の走行が開始された後の状態を示す。図12の(b)は、相関係数ρ1及びρ2の変化を示す。図12の(c)は、位相θの変化を示す。
 図13は、図12に示す区間1での類似度ベクトルの軌跡を示す図である。図14は、図12に示す区間2での類似度ベクトルの軌跡を示す図である。図14に示すように、ロープ1が長手の方向に移動すると、類似度ベクトルの軌跡は点(0、0)の周囲を回るように描かれる。
 上記構成を有する検出装置であれば、類似度ベクトルの位相に基づいて長尺体の位置を検出できる。類似度ベクトルの要素である第1類似度及び第2類似度は、長尺体の表面の模様に関する表面データを利用して算出される。このため、ノイズの影響を低減できる。本実施の形態に示す例では、n=150の多次元のベクトルデータを用いて相関係数ρ1及びρ2が算出される。多数のデータから相関係数ρ1及びρ2を算出するため、必然的にノイズの影響を受け難くなる。
 シルエットからストランドの頂点を見つける従来の方法では、フィルタ処理に必要なフィルタ係数をロープの形状及び走行速度に合わせて調整しなければならない。上記構成を有する検出装置であれば、このような調整を行う必要がない。
 なお、図14では、類似度ベクトルの軌跡がいびつな円で描かれている。これは、第1リファレンスデータと第2リファレンスデータとが完全に直交するものではないために生じた結果である。しかし、換言すれば、第1リファレンスデータと第2リファレンスデータとが完全に直交するものではなくても上記効果を奏することができる。
 以下に、制御装置3が備えることが可能な他の機能について説明する。
 制御装置3は、方向検出部13を備えても良い。方向検出部13は、長尺体の移動方向を検出する。方向検出部13は、位相算出部10によって算出された位相に基づいて上記検出を行う。例えば、方向検出部13は、位相算出部10によって算出された位相の変化速度dθ/dtを算出する。方向検出部13は、算出した変化速度dθ/dtの符号から長尺体の移動方向を判定する。
 図6は、制御装置3が位置検出部11及び方向検出部13の双方を備える例を示す。制御装置3は、位置検出部11を備えず、方向検出部13を備えても良い。かかる場合、検出装置は、長尺体の移動方向を検出する装置となる。
 制御装置3は、周期検出部14を備えても良い。周期検出部14は、長尺体が表面に有する模様の周期を検出する。周期検出部14は、位相算出部10によって算出された位相に基づいて上記検出を行う。例えば、周期検出部14は、位相算出部10によって算出された位相の変化速度dθ/dtを算出する。長尺体の移動速度が一定であれば、算出した変化速度dθ/dtから模様の周期を判定することができる。
実施の形態2.
 実施の形態1では、リファレンスデータがn行1列の行列で表記できる例について説明した。本実施の形態では、n行m列の行列で表記できるデータがリファレンスデータとして記憶部7に記憶される例について説明する。mは、例えば2以上の整数である。m=nでも良い。
 図15は、リファレンスデータを選定する他の方法を説明するための図である。例えば、範囲C1に光源4からの光を当てた時に得られる処理データに相当するデータを第1リファレンスデータとして記憶部7に記憶する。直線c1が1本分の測定ラインに相当し、範囲C1はm本分の測定ラインに相当する。また、範囲C2に光源4からの光を当てた時に得られる処理データに相当するデータを第2リファレンスデータとして記憶部7に記憶する。第1リファレンスデータRef1及び第2リファレンスデータRef2は、下記のように表記できる。第1リファレンスデータRef1と第2リファレンスデータRef2との内積は、0或いは0に近い値であることが好ましい。
Figure JPOXMLDOC01-appb-M000003
 n行m列の行列で表記できるデータがリファレンスデータとして記憶部7に記憶されている場合、データ処理部8は、n行m列の行列で表記できるデータを処理データPとして生成する。なお、表面データS1もn行m列の行列で表記できる。
Figure JPOXMLDOC01-appb-M000004
 上記構成を有する検出装置であれば、ノイズの影響を更に低減できる。本実施の形態で説明しない構成については、実施の形態1で開示した構成と同じである。
実施の形態3.
 実施の形態1では、センサヘッド2によって取得される表面データから得られるデータ或いはそれに相当するデータがリファレンスデータとして記憶部7に記憶される例について説明した。本実施の形態では、設計情報から得られるデータがリファレンスデータとして記憶部7に記憶される例について説明する。
 図16は、リファレンスデータを選定する他の方法を説明するための図である。例えば、長尺体が表面に有する模様の周期と同じ周期を有する正弦波を第1リファレンスデータとして記憶部7に記憶する。長尺体が表面に有する模様の周期と同じ周期を有する余弦波を第2リファレンスデータとして記憶部7に記憶する。第1リファレンスデータRef1及び第2リファレンスデータRef2は、上記式2で示すようにn行1列の行列で表記できる。
 上記構成を有する検出装置であれば、第1リファレンスデータRef1及び第2リファレンスデータRef2の内積を完全に0にすることができる。即ち、互いに直交するデータを第1リファレンスデータ及び第2リファレンスデータとして採用できる。
 図17は、制御装置3の位置検出機能を説明するための図である。図17の(a)から(c)は、図12の(a)から(c)に対応する。図17の(b)に示す図は、図16に示す第1リファレンスデータRef1及び第2リファレンスデータRef2を用いて作成された。図18は、図17に示す区間1での類似度ベクトルの軌跡を示す図である。図19は、図17に示す区間2での類似度ベクトルの軌跡を示す図である。図19に示すように、互いに直交する2つのリファレンスデータを用いた場合は、類似度ベクトルの軌跡が真円に近い円になる。
 本実施の形態に示す例において、n行m列の行列で表記できるデータをリファレンスデータとして採用しても良い。かかる場合、第1リファレンスデータRef1及び第2リファレンスデータRef2は、上記式3で示すような行列で表記できる。第1リファレンスデータRef1と第2リファレンスデータRef2との内積を0に設定すれば良い。
 本実施の形態で説明しない構成については、実施の形態1或いは2で開示した構成と同じである。
実施の形態4.
 実施の形態1から3では、検出装置が長尺体の位置を検出する例について説明した。本実施の形態では、検出装置が長尺体の異常を検出する例について説明する。本実施の形態における検出装置の全体の構成は、図1に示す構成と同じである。
 図20は、制御装置3の構成例を示す図である。本実施の形態における制御装置3は、例えば記憶部7、データ処理部8、類似度算出部9及び異常検出部15を備える。記憶部7、データ処理部8及び類似度算出部9の各機能は、実施の形態1で開示した各機能と同じである。また、本実施の形態で説明しない構成については、実施の形態1から3で開示した何れかの構成と同じである。
 異常検出部15は、長尺体の異常を検出する。例えば、異常検出部15は、類似度算出部9によって算出された第1類似度と第2類似度とを要素とする類似度ベクトルに基づいて上記検出を行う。
 図21から図23は、制御装置3の異常検出機能を説明するための図である。図21から図23では、ロープ1の正常な部分に光源4からの光を当てた時のデータを(a)に示す。ロープ1の異常がある部分に光源4からの光を当てた時のデータを(b)に示す。図21の上段に、センサヘッド2によって取得された表面データを色の濃淡で表した図を示す。図21の下段に、相関係数ρ1及びρ2の変化を示す。
 図22は、図21の下段に示す相関係数ρ1及びρ2が算出された時に得られる類似度ベクトルの軌跡を示す。図22の(a)では、類似度ベクトルの軌跡が真円に近い円になる。一方、図22の(b)では、類似度ベクトルの軌跡がきれいな形にならない。図22の(b)では、類似度ベクトルの軌跡が点(0、0)に近い位置にも存在する。このため、異常検出部15は、類似度ベクトルの軌跡に基づいてロープ1の異常を検出することができる。例えば、図22の(a)に示す軌跡の内側の範囲に、異常を検出するための異常範囲が設定される。異常検出部15は、類似度ベクトルの軌跡が異常範囲に入ると、ロープ1の異常を検出する。異常検出部15は、類似度ベクトルの軌跡が異常範囲に入る頻度に基づいてロープ1の異常を検出しても良い。異常検出部15は、他の基準に基づいてロープ1の異常を検出しても良い。
 図23は、図21の下段に示す相関係数ρ1及びρ2が算出された時に得られる類似度ベクトルのノルムを示す。図23の(a)では、類似度ベクトルのノルムは1に近い範囲でほぼ一定になる。一方、図23の(b)では、類似度ベクトルのノルムが広い範囲に渡って存在する。図23の(b)では、類似度ベクトルのノルムが0に近い値にもなる。このため、異常検出部15は、類似度ベクトルのノルムに基づいてロープ1の異常を検出することができる。例えば、図23の(a)に示すノルムより下方の位置に、閾値が設定される。異常検出部15は、類似度ベクトルのノルムが閾値を下回ると、ロープ1の異常を検出する。異常検出部15は、類似度ベクトルのノルムが閾値を下回る頻度に基づいてロープ1の異常を検出しても良い。異常検出部15は、他の基準に基づいてロープ1の異常を検出しても良い。
 上記構成を有する検出装置であれば、第1類似度と第2類似度とを要素とする類似度ベクトルに基づいて長尺体の異常を検出できる。このため、ノイズの影響を受け難い異常検出装置を提供できる。上記構成を有する検出装置であれば、従来のようにフィルタ係数の調整等を行う必要もない。
 制御装置3は、図6に示す構成に加えて異常検出部15を備えても良い。
実施の形態5.
 本実施の形態では、実施の形態4と同様に、検出装置が長尺体の異常を検出する例について説明する。本実施の形態における検出装置の全体の構成は、図1に示す構成と同じである。制御装置3の構成は、図20に示す構成と同じである。本実施の形態で説明しない構成については、実施の形態1から4で開示した何れかの構成と同じである。また、制御装置3は、図6に示す構成に加えて異常検出部15を備えても良い。
 図24から図27は、制御装置3の異常検出機能を説明するための図である。図24は、類似度ベクトルのノルムを示す。図24に示す区間3は、ロープ1の正常な部分に光源4からの光を当てた時のデータを示す。区間3には例えば100個のデータが含まれる。図24に示す区間4は、ロープ1の異常がある部分に光源4からの光を当てた時のデータを示す。区間4には例えば100個のデータが含まれる。図25は、区間3のデータ及び区間4のデータを拡大した図である。
 図26は、図24に示す区間3での類似度ベクトルの軌跡を示す図である。図26の(a)は、前半50個分のデータによって作成された軌跡を示す。図26の(b)は、後半50個分のデータによって作成された軌跡を示す。図26の(a)に示す軌跡と(b)に示す軌跡とは、双方とも真円に近い円で描かれる。図26の(a)に示す軌跡は、図26の(b)に示す軌跡とほぼ一致する。
 図27は、図24に示す区間4での類似度ベクトルの軌跡を示す図である。図27の(a)は、前半50個分のデータによって作成された軌跡を示す。図27の(b)は、後半50個分のデータによって作成された軌跡を示す。図27の(a)に示す軌跡と(b)に示す軌跡とは、双方ともきれいな形にならない。図27の(a)に示す軌跡は、図27の(b)に示す軌跡に一致しない。このため、異常検出部15は、ある区間の前半のデータから得られた類似度ベクトルの軌跡と後半のデータから得られた類似度ベクトルの軌跡とを比較することにより、ロープ1の異常を検出することができる。
実施の形態6.
 実施の形態1から5では、検出装置がロープ1の位置及び異常を検出する例について説明した。本実施の形態では、検出装置が他の長尺体の位置及び異常を検出する例について説明する。
 図28は、この発明の実施の形態6における検出装置の構成を示す図である。図29は、図28のD-D断面を示す図である。検出装置の検出対象となる長尺体には、エスカレータ等で使用される移動手摺16が含まれる。移動手摺16は、矢印Bの方向に移動する。矢印Bは、移動手摺16の長手の方向と一致する。移動手摺16が移動する方向は一方向でも良い。移動手摺16は、帆布17を備える。帆布17は、移動手摺16の走行抵抗を低減させるために備えられる。帆布17は、移動手摺16の内側の表面を形成する。帆布17は、例えば複数の糸を用いて織られた織物である。このため、帆布17は、表面に周期的な模様を有する。
 検出装置の構成は、実施の形態1から5で開示した何れかの構成と同じである。上記構成の検出装置を使用することにより、移動手摺16の位置及び異常を検出できる。
 図30は、制御装置3の位置検出機能を説明するための図である。図30の(a)から(c)は、図12の(a)から(c)に対応する。図30の(a)は、センサヘッド2によって取得された表面データを色の濃淡で表した図である。図30の(a)に示す図は、200個の表面データを繋げたものを示す。図12の(b)は、相関係数ρ1及びρ2の変化を示す。図12の(c)は、位相θの変化を示す。図30に示すように、上記構成を有する検出装置であれば、移動手摺16の位置及び異常を検出できる。例えば、検出装置によって移動手摺16の形状異常を検出できる。検出装置によって移動手摺16のスリップを検出しても良い。
 各実施の形態において、符号7~15に示す各部は、制御装置3が有する機能を示す。図31は、制御装置3のハードウェア構成を示す図である。制御装置3は、ハードウェア資源として、例えばプロセッサ18とメモリ19とを含む回路を備える。制御装置3は、メモリ19に記憶されたプログラムをプロセッサ18によって実行することにより、各部7~15が有する各機能を実現する。制御装置3は、複数のプロセッサ18を備えても良い。制御装置3は、複数のメモリ19を備えても良い。即ち、複数のプロセッサ18と複数のメモリ19とが連携して各部7~15が有する各機能を実現しても良い。各部7~15が有する各機能の一部又は全部をハードウェアによって実現しても良い。
 各実施の形態では、類似度算出部9が処理データとリファレンスデータとの類似度を算出する例について説明した。各実施の形態で説明した検出装置の機能は、制御装置3にデータ処理部8が備えられていなくても実現できる。
 かかる場合、例えば、センサヘッド2によって取得される表面データと比較可能なリファレンスデータが記憶部7に記憶される。制御装置3がデータ設定部12を備える場合、データ設定部12は、センサヘッド2によって取得された表面データをリファレンスデータとして記憶部7に記憶させる。例えば、データ設定部12は、ロープ1のある部分に光源4からの光を当てた時に得られた表面データを第1リファレンスデータとして記憶部7に記憶させる。更に、データ設定部12は、上記部分から位相差がπ/2となる部分に光を当てた時に得られた表面データを第2リファレンスデータとして記憶部7に記憶させる。
 また、類似度算出部9は、センサヘッド2によって取得された表面データとリファレンスデータとの類似度を算出する。例えば、類似度算出部9は、表面データと第1リファレンスデータとの相関係数ρ1を第1類似度として算出する。類似度算出部9は、表面データと第2リファレンスデータとの相関係数ρ2を第2類似度として算出する。
 上記構成を有する検出装置であっても、長尺体の位置検出及び異常検出等を行うことができる。
 各実施の形態では、記憶部7に複数のリファレンスデータが記憶される例について説明した。記憶部7に1つのリファレンスデータしか記憶されていなくても、検出装置が長尺体の位置を非連続的に検出すること自体は可能である。かかる場合、例えば、類似度算出部9によって図12の(b)に示すRef1に相当する類似度(相関係数)が算出される。類似度算出部9は、表面データとリファレンスデータとの類似度を算出しても良い。位置検出部11は、類似度算出部9によって算出された類似度に基づいて長尺体の位置を検出する。例えば、基準値が予め設定される。位置検出部11は、類似度が基準値に一致する回数をカウントし、長尺体の位置を検出する。複数の基準値を設定しても良い。また、一定期間中に基準値に一致する回数をカウントすることにより、長尺体が表面に有する模様の周期を検出することも可能である。
 各実施の形態では、長尺体の位置或いは異常を検出する装置について説明した。本発明を位置或いは異常を検出する前の段階までの機能を有する検査装置として活用しても良い。かかる場合、検査装置は、例えば記憶部7、データ処理部8及び類似度算出部9を備える。記憶部7、データ処理部8及び類似度算出部9は、何れかの実施の形態で開示された機能を備える。また、検査装置は、類似度算出部9によって算出された第1類似度と第2類似度とを要素とする類似度ベクトルを算出する機能を有する。類似度算出部9は、表面データとリファレンスデータとの類似度を算出しても良い。検査装置は、算出した類似度ベクトルを使用者が後から活用できるように保存しておく。検査装置は、算出した類似度ベクトルを表示器(図示せず)に表示させる機能を備えても良い。
 この発明に係る検出装置は、表面に周期的な模様を有する長尺体を検出の対象とする装置に適用できる。
 1 ロープ
 2 センサヘッド
 3 制御装置
 4 光源
 5 受光素子
 6 信号線
 7 記憶部
 8 データ処理部
 9 類似度算出部
 10 位相算出部
 11 位置検出部
 12 データ設定部
 13 方向検出部
 14 周期検出部
 15 異常検出部
 16 移動手摺
 17 帆布
 18 プロセッサ
 19 メモリ

Claims (21)

  1.  表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、
     第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、
     前記データ取得手段によって取得された表面データと前記第1リファレンスデータとの第1類似度を算出する第1類似度算出手段と、
     前記データ取得手段によって取得された表面データと前記第2リファレンスデータとの第2類似度を算出する第2類似度算出手段と、
     前記第1類似度算出手段によって算出された第1類似度と前記第2類似度算出手段によって算出された第2類似度とを要素とする類似度ベクトルの位相を算出する位相算出手段と、
    を備えた検出装置。
  2.  表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、
     第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、
     前記データ取得手段によって取得された表面データから前記第1リファレンスデータ及び前記第2リファレンスデータと比較するための処理データを生成するデータ処理手段と、
     前記データ処理手段によって生成された処理データと前記第1リファレンスデータとの第1類似度を算出する第1類似度算出手段と、
     前記データ処理手段によって生成された処理データと前記第2リファレンスデータとの第2類似度を算出する第2類似度算出手段と、
     前記第1類似度算出手段によって算出された第1類似度と前記第2類似度算出手段によって算出された第2類似度とを要素とする類似度ベクトルの位相を算出する位相算出手段と、
    を備えた検出装置。
  3.  前記位相算出手段によって算出された位相に基づいて、前記長尺体の位置を検出する位置検出手段と、
    を更に備えた請求項1又は請求項2に記載の検出装置。
  4.  前記位相算出手段によって算出された位相の変化速度に基づいて、前記長尺体の移動方向を検出する方向検出手段と、
    を更に備えた請求項1又は請求項2に記載の検出装置。
  5.  前記位相算出手段によって算出された位相の変化速度に基づいて、前記長尺体が表面に有する模様の周期を検出する周期検出手段と、
    を更に備えた請求項1又は請求項2に記載の検出装置。
  6.  前記第1類似度算出手段によって算出された第1類似度と前記第2類似度算出手段によって算出された第2類似度とを要素とする類似度ベクトルのノルムに基づいて、前記長尺体の異常を検出する異常検出手段と、
    を更に備えた請求項3から請求項5の何れか一項に記載の検出装置。
  7.  前記第1類似度算出手段によって算出された第1類似度と前記第2類似度算出手段によって算出された第2類似度とを要素とする類似度ベクトルが描く軌跡に基づいて、前記長尺体の異常を検出する異常検出手段と、
    を更に備えた請求項3から請求項5の何れか一項に記載の検出装置。
  8.  表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、
     第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、
     前記データ取得手段によって取得された表面データと前記第1リファレンスデータとの第1類似度を算出する第1類似度算出手段と、
     前記データ取得手段によって取得された表面データと前記第2リファレンスデータとの第2類似度を算出する第2類似度算出手段と、
     前記第1類似度算出手段によって算出された第1類似度と前記第2類似度算出手段によって算出された第2類似度とを要素とする類似度ベクトルのノルムに基づいて、前記長尺体の異常を検出する異常検出手段と、
    を備えた検出装置。
  9.  表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、
     第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、
     前記データ取得手段によって取得された表面データから前記第1リファレンスデータ及び前記第2リファレンスデータと比較するための処理データを生成するデータ処理手段と、
     前記データ処理手段によって生成された処理データと前記第1リファレンスデータとの第1類似度を算出する第1類似度算出手段と、
     前記データ処理手段によって生成された処理データと前記第2リファレンスデータとの第2類似度を算出する第2類似度算出手段と、
     前記第1類似度算出手段によって算出された第1類似度と前記第2類似度算出手段によって算出された第2類似度とを要素とする類似度ベクトルのノルムに基づいて、前記長尺体の異常を検出する異常検出手段と、
    を備えた検出装置。
  10.  表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、
     第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、
     前記データ取得手段によって取得された表面データと前記第1リファレンスデータとの第1類似度を算出する第1類似度算出手段と、
     前記データ取得手段によって取得された表面データと前記第2リファレンスデータとの第2類似度を算出する第2類似度算出手段と、
     前記第1類似度算出手段によって算出された第1類似度と前記第2類似度算出手段によって算出された第2類似度とを要素とする類似度ベクトルが描く軌跡に基づいて、前記長尺体の異常を検出する異常検出手段と、
    を備えた検出装置。
  11.  表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、
     第1リファレンスデータ及び第2リファレンスデータを記憶する記憶手段と、
     前記データ取得手段によって取得された表面データから前記第1リファレンスデータ及び前記第2リファレンスデータと比較するための処理データを生成するデータ処理手段と、
     前記データ処理手段によって生成された処理データと前記第1リファレンスデータとの第1類似度を算出する第1類似度算出手段と、
     前記データ処理手段によって生成された処理データと前記第2リファレンスデータとの第2類似度を算出する第2類似度算出手段と、
     前記第1類似度算出手段によって算出された第1類似度と前記第2類似度算出手段によって算出された第2類似度とを要素とする類似度ベクトルが描く軌跡に基づいて、前記長尺体の異常を検出する異常検出手段と、
    を備えた検出装置。
  12.  前記第1リファレンスデータ及び前記第2リファレンスデータは、互いに直交する多次元のベクトルデータである請求項1から請求項11の何れか一項に記載の検出装置。
  13.  前記第1リファレンスデータは、前記長尺体が表面に有する模様の周期と同じ周期を有する正弦波を含む請求項12に記載の検出装置。
  14.  前記データ取得手段によって取得された表面データを前記第1リファレンスデータ及び前記第2リファレンスデータとして前記記憶手段に記憶させるデータ設定手段と、
    を更に備えた請求項1、請求項8又は請求項10に記載の検出装置。
  15.  前記データ取得手段によって取得された表面データから得られたデータを前記第1リファレンスデータ及び前記第2リファレンスデータとして前記記憶手段に記憶させるデータ設定手段と、
    を更に備えた請求項2、請求項9又は請求項11に記載の検出装置。
  16.  表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、
     リファレンスデータを記憶する記憶手段と、
     前記データ取得手段によって取得された表面データと前記リファレンスデータとの類似度に基づいて、前記長尺体の位置又は前記長尺体が表面に有する模様の周期を検出する検出手段と、
    を備えた検出装置。
  17.  表面に周期的な模様を有する長尺体の表面データを取得するデータ取得手段と、
     リファレンスデータを記憶する記憶手段と、
     前記データ取得手段によって取得された表面データを前記リファレンスデータと比較するためのデータに処理するデータ処理手段と、
     前記データ処理手段によって処理されたデータと前記リファレンスデータとの類似度に基づいて、前記長尺体の位置又は前記長尺体が表面に有する模様の周期を検出する検出手段と、
    を備えた検出装置。
  18.  前記データ取得手段は、複数行1列の行列で表記可能なデータを表面データとして取得する請求項1から請求項17の何れか一項に記載の検出装置。
  19.  前記データ取得手段は、複数行複数列の行列で表記可能なデータを表面データとして取得する請求項1から請求項17の何れか一項に記載の検出装置。
  20.  前記データ取得手段は、
     前記長尺体の表面に光を照射する光源と、
     前記長尺体の表面で反射した前記光源からの光のうち、前記長尺体の長手の方向に対して一定の角度で斜めに反射した光を受光する受光素子と、
    を備えた請求項1から請求項17の何れか一項に記載の検出装置。
  21.  前記データ取得手段は、前記長尺体の表面を撮影するカメラを備えた請求項1から請求項17の何れか一項に記載の検出装置。
PCT/JP2015/059611 2015-03-27 2015-03-27 検出装置 WO2016157290A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177022831A KR101936009B1 (ko) 2015-03-27 2015-03-27 검출 장치
JP2017508825A JP6365765B2 (ja) 2015-03-27 2015-03-27 検出装置
CN201580076503.XA CN107250715B (zh) 2015-03-27 2015-03-27 检测装置
PCT/JP2015/059611 WO2016157290A1 (ja) 2015-03-27 2015-03-27 検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059611 WO2016157290A1 (ja) 2015-03-27 2015-03-27 検出装置

Publications (1)

Publication Number Publication Date
WO2016157290A1 true WO2016157290A1 (ja) 2016-10-06

Family

ID=57006807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059611 WO2016157290A1 (ja) 2015-03-27 2015-03-27 検出装置

Country Status (4)

Country Link
JP (1) JP6365765B2 (ja)
KR (1) KR101936009B1 (ja)
CN (1) CN107250715B (ja)
WO (1) WO2016157290A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142613A1 (ja) * 2017-02-06 2018-08-09 三菱電機株式会社 検出装置
JP2018179632A (ja) * 2017-04-07 2018-11-15 三菱電機株式会社 ロープの表面凹凸検出方法および表面凹凸検出装置
WO2021014645A1 (ja) * 2019-07-25 2021-01-28 三菱電機株式会社 検査装置及び方法、並びにプログラム及び記録媒体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117783128B (zh) * 2023-12-26 2024-08-06 广东荣骏建设工程检测股份有限公司 一种建筑用索体检测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219635A (ja) * 1986-12-06 1988-09-13 ローベルト・マーセン 糸またはロープの特性の測定および/または監視方法および装置
US20050002036A1 (en) * 2003-07-01 2005-01-06 Sang-Joon Bae Method and apparatus for measuring a pitch of stranded cable
JP2011007641A (ja) * 2009-06-26 2011-01-13 Suncall Corp ねじれ角検出方法及びねじれ角検出装置
JP2011196994A (ja) * 2010-02-25 2011-10-06 Jfe Steel Corp ワイヤロープピッチの測定方法とワイヤロープピッチ測定装置およびワイヤロープの製造方法
JP2012185145A (ja) * 2011-02-15 2012-09-27 Shikoku Res Inst Inc 測定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057126A (ja) * 2007-08-30 2009-03-19 Graphin Co Ltd エレベータ用ロープの変形検出装置
JP5413148B2 (ja) * 2009-11-20 2014-02-12 株式会社明電舎 ワイヤーロープ検査装置
CN201653377U (zh) * 2009-12-08 2010-11-24 郭三华 一种拉索套管节点螺纹质量检测系统
WO2011108173A1 (ja) * 2010-03-03 2011-09-09 三菱電機株式会社 ロープ検査装置
CN102252611B (zh) * 2011-05-09 2013-11-27 深圳市澎湃图像技术有限公司 几何定位方法
CN102890824B (zh) * 2011-07-19 2015-07-29 株式会社东芝 运动对象轮廓跟踪方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219635A (ja) * 1986-12-06 1988-09-13 ローベルト・マーセン 糸またはロープの特性の測定および/または監視方法および装置
US20050002036A1 (en) * 2003-07-01 2005-01-06 Sang-Joon Bae Method and apparatus for measuring a pitch of stranded cable
JP2011007641A (ja) * 2009-06-26 2011-01-13 Suncall Corp ねじれ角検出方法及びねじれ角検出装置
JP2011196994A (ja) * 2010-02-25 2011-10-06 Jfe Steel Corp ワイヤロープピッチの測定方法とワイヤロープピッチ測定装置およびワイヤロープの製造方法
JP2012185145A (ja) * 2011-02-15 2012-09-27 Shikoku Res Inst Inc 測定装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142613A1 (ja) * 2017-02-06 2018-08-09 三菱電機株式会社 検出装置
CN110226075A (zh) * 2017-02-06 2019-09-10 三菱电机株式会社 检测装置
JPWO2018142613A1 (ja) * 2017-02-06 2019-11-07 三菱電機株式会社 検出装置
US11099138B2 (en) 2017-02-06 2021-08-24 Mitsubishi Electric Corporation Detection device
JP2018179632A (ja) * 2017-04-07 2018-11-15 三菱電機株式会社 ロープの表面凹凸検出方法および表面凹凸検出装置
WO2021014645A1 (ja) * 2019-07-25 2021-01-28 三菱電機株式会社 検査装置及び方法、並びにプログラム及び記録媒体
JPWO2021014645A1 (ja) * 2019-07-25 2021-12-09 三菱電機株式会社 検査装置及び方法、並びにプログラム及び記録媒体
JP7146092B2 (ja) 2019-07-25 2022-10-03 三菱電機株式会社 検査装置及び方法、並びにプログラム及び記録媒体

Also Published As

Publication number Publication date
CN107250715A (zh) 2017-10-13
JPWO2016157290A1 (ja) 2017-07-27
CN107250715B (zh) 2019-09-17
KR20170102557A (ko) 2017-09-11
KR101936009B1 (ko) 2019-01-07
JP6365765B2 (ja) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6365765B2 (ja) 検出装置
JP6621836B2 (ja) 光パターンの強度変動を利用した体積内の物体の深さマッピング
Violato et al. Three-dimensional evolution of flow structures in transitional circular and chevron jets
US11301712B2 (en) Pointer recognition for analog instrument image analysis
JP6756417B1 (ja) ワークの表面欠陥検出装置及び検出方法、ワークの表面検査システム並びにプログラム
JP2011030626A5 (ja)
JP2018068748A5 (ja)
JP5964788B2 (ja) データ生成方法及びデータ生成装置
US10684120B2 (en) Wire rope measuring device and wire rope measuring method
JP6590088B2 (ja) 検出装置
JP2012112952A (ja) 表面形状測定方法及び測定装置
JP2015015592A5 (ja)
JP2014021562A5 (ja) 検出装置、検出方法及びプログラム
JP2021056182A (ja) ワークの表面欠陥検出装置及び検出方法、ワークの表面検査システム並びにプログラム
JP5554689B2 (ja) 位置および動作判定方法および入力装置
CN105982658B (zh) 生理信息侦测方法及装置
CN105353406B (zh) 一种生成角道集的方法和装置
JP6228222B2 (ja) フレネル回折の境界プロファイルを評価する方法
WO2016157289A1 (ja) 検出装置
JP2021081791A5 (ja)
WO2021065349A1 (ja) ワークの表面欠陥検出装置及び検出方法、ワークの表面検査システム並びにプログラム
JP6158734B2 (ja) 光沢度計測装置、光沢度演算装置及び光沢度計測方法
JP7146092B2 (ja) 検査装置及び方法、並びにプログラム及び記録媒体
KR102159996B1 (ko) 이벤트 필터링 장치 및 이를 이용한 동작 인식 장치
Lu et al. Research on vision-based error detection system for optic fiber winding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508825

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177022831

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887445

Country of ref document: EP

Kind code of ref document: A1