CN113532287B - 基于dic的海洋柔性管道螺旋构件相对滑移的测量方法 - Google Patents

基于dic的海洋柔性管道螺旋构件相对滑移的测量方法 Download PDF

Info

Publication number
CN113532287B
CN113532287B CN202110843060.XA CN202110843060A CN113532287B CN 113532287 B CN113532287 B CN 113532287B CN 202110843060 A CN202110843060 A CN 202110843060A CN 113532287 B CN113532287 B CN 113532287B
Authority
CN
China
Prior art keywords
pipeline
relative
cross
section
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110843060.XA
Other languages
English (en)
Other versions
CN113532287A (zh
Inventor
汤明刚
李生鹏
郭泽鹏
郑文慧
韦朋余
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
702th Research Institute of CSIC
Original Assignee
702th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 702th Research Institute of CSIC filed Critical 702th Research Institute of CSIC
Priority to CN202110843060.XA priority Critical patent/CN113532287B/zh
Publication of CN113532287A publication Critical patent/CN113532287A/zh
Application granted granted Critical
Publication of CN113532287B publication Critical patent/CN113532287B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了基于DIC的海洋柔性管道螺旋构件相对滑移的测量方法,涉及海洋柔性管道结构响应分析领域,该方法包括确定管道横截面位置;剥离管道曲率平滑区域的管道外皮,露出最外层螺旋构件层;分别标识出管道横截面环线以及外曲率轴向直线;在每根螺旋构件外表面上标记mark点;基于DIC技术记录所有mark点的绝对位移矢量;将位于外曲率轴向直线上的mark点作为参考点,计算得到其他mark点相对于参考点的相对位移矢量;将除参考点外的各个mark点分别映射到参考点所在螺旋构件外表面的相同相位上,该方法解决了海洋柔性管道螺旋构件相对于内部组份滑移响应无法直接测量的问题,具有不破坏试件、与管体表面非接触等优点。

Description

基于DIC的海洋柔性管道螺旋构件相对滑移的测量方法
技术领域
本发明涉及海洋柔性管道结构响应分析领域,尤其是基于DIC的海洋柔性管道螺旋构件相对滑移的测量方法。
背景技术
海洋柔性管道是深水油气资源开发过程中一类重要的输运装备,通常由多层金属螺旋构件缠绕层非粘结复合而成,其中受力形式最为复杂的即为位于最外侧的抗拉螺旋构件。当管道同时受到轴向拉伸载荷与横向弯曲作用时,由于层间具有较大摩擦力,使得螺旋构件呈现出典型的粘-滑形态,即随着曲率逐渐增大,单根螺旋构件相对于内部圆柱组份的滑移形态变化将明显不同,进而引起螺旋构件应力响应显著变化。因此掌握螺旋构件相对滑移形态是准确评估海洋柔性管道在复杂载荷作用下极限强度和疲劳寿命的重要基础。当前国际上通常采用理论方法和数值方法对滑移形态进行分析,但都基于一定假设条件而无法反应其真实行为,因此需要采用试验测量方法获取海洋柔性管道螺旋构件相对滑移形态。
数字图像相关法(Digital Image Correlation,DIC)技术是一种基于物体表面散斑灰度分析,从而获得物体运动和变形信息的新型光测方法,具有光路简单、受外界影响小、测量范围与精度可调等优势。通过在被测物体表面标记散斑(mark点)、照明与相机图像采集、图形分析等流程,可实现全场信息非接触无损测量。DIC技术当前应用越来越广泛,国际上已经采用该技术进行过海洋柔性管道管径变化实时测量并取得成效。
采用DIC技术直接测量海洋柔性管道螺旋构件相对内部组份的滑移形态,在理想状态下,仅需要分别在螺旋构件表层和内部组份表层标记mark点,然后通过分析两个表层mark点的相对位移矢量即可直接获取螺旋构件的相对滑移情况。但是在现实状态中,内部组份被外部螺旋构件包裹且同层螺旋构件之间空隙非常小,导致无法在内部组份表层标记mark点,因此如何通过仅在螺旋构件表层标记mark点来测量螺旋构件相对内部组份的滑移形态是需要解决的关键问题。
发明内容
本发明人针对上述问题及技术需求,提出了基于DIC的海洋柔性管道螺旋构件相对滑移的测量方法,本发明的技术方案如下:
基于DIC的海洋柔性管道螺旋构件相对滑移的测量方法,包括如下步骤:
对海洋柔性管道试件施加组合力,确定位于管道曲率平滑区域中心的管道横截面位置;
剥离管道曲率平滑区域的管道外皮,露出最外层螺旋构件层,最外层螺旋构件层包括多个紧密排列的单根螺旋构件;
在最外层螺旋构件层表面分别标识出管道横截面环线以及管道弯曲处的外曲率轴向直线,外曲率轴向直线为管体弯曲的最长轴线;
在每根螺旋构件外表面与管道横截面环线的交点处标记mark点;
利用光学摄像采集仪接收所有mark点反馈的光信息,并利用DIC技术记录所有mark点的绝对位移矢量;
将位于外曲率轴向直线上的mark点作为参考点,通过绝对位移矢量计算得到其他mark点相对于参考点的相对位移矢量;
除参考点外将管道横截面环线上的各个mark点分别映射到参考点所在的螺旋构件外表面的相同相位上,得到最外层螺旋构件层相对于内部组份的相对滑移分布。
其进一步的技术方案为,对海洋柔性管道试件施加组合力,确定位于管道曲率平滑区域中心的管道横截面位置,包括:
将海洋柔性管道试件放置在试验装置上,同时施加轴向拉伸力和横向剪力;
对试验加载过程中的海洋柔性管道试件的整体线形进行分析,试件整体线形和曲率分布通过求解如下方程得到:
Figure BDA0003179587170000021
其中,ω(x)为沿管道轴向的挠度分布,表征管道整体线形;ω″(x)为沿管道轴向的曲率分布;A、B分别表示与横向剪力加载特征和管道长度相关的代数式;n2=F/EI,F为管道轴向拉伸力,EI为管道弯曲刚度。
其进一步的技术方案为,相对位移矢量的计算公式为:
Figure BDA0003179587170000022
其中,
Figure BDA0003179587170000023
为参考点的绝对位移矢量测量结果;
Figure BDA0003179587170000024
为管道横截面环线上除参考点外的第i个mark点的绝对位移矢量测量结果,
Figure BDA0003179587170000031
为管道横截面环线上第i个mark点相对于参考点的相对位移矢量。
其进一步的技术方案为,除参考点外将管道横截面环线上的各个mark点映射到参考点所在的螺旋构件外表面的相同相位上,包括:
除参考点外,在各个mark点上分别作沿管道轴线平行的线,平行线分别与参考点所在的螺旋构件外表面相交,交点作为相同相位的映射点,则每根螺旋构件外表面上各个映射点与内部组份的相对滑移矢量与管道横截面环线上相应的mark点的相对位移矢量相同。
其进一步的技术方案为,参考点相对于内部组份的相对滑移矢量为零,且未发生弯曲时管道横截面环线上的所有mark点的位置不发生相对位移,则管道横截面环线上其他mark点相对于参考点的相对位移矢量看作其他mark点相对于内部组份的相对滑移矢量。
本发明的有益技术效果是:
通过在每根螺旋构件外表面与管道横截面环线的交点处标记mark点,并利用DIC技术记录试验过程中所有mark点的绝对位移矢量,实现标记点响应无接触精细化直接测量。以外曲率轴向直线上的mark点为参考点,计算得到其他mark点相对于参考点的相对位移矢量,并将环线上除参考点外的其他mark点映射到参考点所在的螺旋构件的相同相位上,也即将其他mark点的相对位移矢量映射给参考点所在的螺旋构件外表面的各个映射点,以此获取螺旋构件相对于内部组份的整体滑移形态。由于该方法仅在最外层螺旋构件层标记mark点而不用在内部组份层上标记mark点,因此不需要破坏管道本体且操作性强,从而解决了测量螺旋构件相对滑移但是无法直接在内部组份上标记mark点的难题。
附图说明
图1是本申请提供的海洋柔性管道螺旋构件相对滑移的测量方法流程图。
图2是本申请提供的柔性管道试件在典型载荷条件下弯矩分布结果示意。
图3是本申请提供的管道横截面环线和管道弯曲处的内/外曲率轴向直线的示意图。
图4是本申请提供的管道横截面环线上各个mark点与参考点所在的单根螺旋构件的映射示意图。
图5是本申请提供的特定曲率下最外层螺旋构件层相对于内部组份的滑移量分布示意。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
如图1所示,一种基于DIC的海洋柔性管道螺旋构件相对滑移的测量方法,包括如下步骤:
步骤1:对海洋柔性管道试件施加组合力,确定位于管道曲率平滑区域中心的管道横截面位置。
将海洋柔性管道试件放置在试验装置上,同时施加轴向拉伸力和横向剪力,此时管体整体呈现非线性弯曲模式。
为了确定管道曲率分布,对试验加载过程中的海洋柔性管道试件的整体线形进行分析,试件整体线形和曲率分布通过求解如下方程得到:
Figure BDA0003179587170000041
其中,ω(x)为沿管道轴向的挠度分布,表征管道整体线形;ω″(x)为沿管道轴向的曲率分布;A、B分别表示与横向剪力加载特征和管道长度相关的代数式;n2=F/EI,F为管道轴向拉伸力,EI为管道弯曲刚度。
可选的,也可以在结构有限元软件中建立管体整体三维有限元模型,通过数值计算方法获取管道整体线性和曲率分布。
图2示出了计算得到的柔性管道试件在不同载荷条件下弯矩分布结果,其曲率分布结果与弯矩分布结果一致。可以看出,尽管在不同的载荷条件下其弯曲的程度并不相同,但是容易发现其中间区域曲率均较为平滑,因此在该区域进行螺旋构件滑移响应测量研究将具有可操作性,能够使曲率突变引起的测量误差降至最低。进一步的,在该区域容易确定位于管道正中心的管道横截面位置。
步骤2:用角磨机等切割工具剥离管道曲率平滑区域的管道外皮,露出最外层螺旋构件层,最外层螺旋构件层包括多个紧密排列的单根螺旋构件,后续相关测量工作将围绕该区域中心的管道横截面位置展开。
步骤3:如图3所示,在最外层螺旋构件层表面,根据试验所加载荷的方向,用标记工具分别标识出管道横截面环线1以及管道弯曲处的外曲率轴向直线2,可选的,还可以标识出内曲率轴向直线3和管道中轴线4。其中,管道横截面环线1位于管道正中心,外曲率轴向直线2为管体弯曲的最长轴线,内曲率轴向直线3为管体弯曲的最短轴线。
步骤4:如图4所示,在每根螺旋构件5外表面与管道横截面环线1的交点处标记mark点,该点能够反射光学系统发出的光源从而被准确识别到。
步骤5:利用光学摄像采集仪接收所有mark点反馈的光信息,并利用DIC技术同步追踪记录试验加载过程中所有mark点的绝对位移矢量。
可选的,光学摄像采集仪的数量和布放位置根据实际试验环境进行调整,以能够覆盖到环线上所有mark点为主要目的。光学摄像采集仪通过发射和捕捉光学信号来对mark点的光信息进行高精度实时分析处理,通常称为DIC技术。该项技术较为成熟,内部运行模式本申请不再赘述。
mark点的绝对位移矢量通常包含了随着管体整体弯曲所导致的横向挠度位移矢量、管道轴向位移矢量和相对于内部组份相对滑移矢量三个成分。根据管道结构特征,认为管道横截面环线1上所有mark点的横向挠度位移矢量与管道轴向位移矢量均相同,因此在记录得到的横截面环线上所有mark点的绝对位移矢量中,相互之间的差别主要体现在与内部组份相对滑移矢量上面。
步骤6:将位于外曲率轴向直线2上的mark点作为参考点,通过绝对位移矢量计算得到其他mark点相对于参考点的相对位移矢量。
相对位移矢量的计算公式为:
Figure BDA0003179587170000051
其中,
Figure BDA0003179587170000052
为参考点的绝对位移矢量测量结果;
Figure BDA0003179587170000053
为管道横截面环线上除参考点外的第i个mark点的绝对位移矢量测量结果,
Figure BDA0003179587170000054
为管道横截面环线上第i个mark点相对于参考点的相对位移矢量。
如图5所示,不同曲率作用下螺旋构件相对滑移量分布趋势基本相同,均为中轴线上的螺旋构件相对滑移量最大,而在内曲率和外曲率处的螺旋构件相对滑移量非常小,特别是对于外曲率处的钢丝滑移量可以忽略不计。通过上述步骤,有效剔除了管道横截面环线1上所有mark点相同的横向挠度位移矢量和管道轴向位移矢量,获得相对于参考点的相对位移矢量。
进一步的,由于参考点相对于内部组份的相对滑移矢量为零,且未发生弯曲时管道横截面环线上的所有mark点的位置不发生相对位移,则管道横截面环线上其他mark点相对于参考点的相对位移矢量看作其他mark点相对于内部组份的相对滑移矢量。
步骤7:除参考点外将管道横截面环线1上的各个mark点分别映射到参考点所在的螺旋构件外表面的相同相位上,得到最外层螺旋构件层相对于内部组份的相对滑移分布。
由于曲率平滑区域内管道外层每个螺旋构件在相同相位处的相对滑移量可认为相等,因此本实施例以参考点所在的单根螺旋构件6为例进行说明:
如图4所示,除参考点s外,在各个mark点上分别作沿管道轴线平行的线,平行线7(也即相同相位映射线)分别与参考点s所在的单根螺旋构件6外表面相交,交点作为相同相位的映射点o,则单根螺旋构件6外表面上各个映射点o与内部组份的相对滑移矢量与管道横截面环线1上相应的mark点的相对位移矢量相同。
通过上述步骤,根据管道整体变形和滑移量分布特点,实现了仅在最外层螺旋构件层标记mark点而不在内部组份层上标记mark点的条件下,方便有效的获取特定曲率下每根螺旋构件相对于内部组份滑移形态的目的。
以上所述的仅是本申请的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。

Claims (5)

1.基于DIC的海洋柔性管道螺旋构件相对滑移的测量方法,其特征在于,所述测量方法包括:
对海洋柔性管道试件施加组合力,确定位于管道曲率平滑区域中心的管道横截面位置;
剥离所述管道曲率平滑区域的管道外皮,露出最外层螺旋构件层,所述最外层螺旋构件层包括多个紧密排列的单根螺旋构件;
在所述最外层螺旋构件层表面分别标识出管道横截面环线以及管道弯曲处的外曲率轴向直线,所述外曲率轴向直线为管体弯曲的最长轴线;
在每根螺旋构件外表面与所述管道横截面环线的交点处标记mark点;
利用光学摄像采集仪接收所有mark点反馈的光信息,并利用DIC技术记录所有mark点的绝对位移矢量;
将位于所述外曲率轴向直线上的mark点作为参考点,通过所述绝对位移矢量计算得到其他mark点相对于所述参考点的相对位移矢量;
除所述参考点外将所述管道横截面环线上的各个mark点分别映射到参考点所在的螺旋构件外表面的相同相位上,得到所述最外层螺旋构件层相对于内部组份的相对滑移分布。
2.根据权利要求1所述的测量方法,其特征在于,所述对海洋柔性管道试件施加组合力,确定位于管道曲率平滑区域中心的管道横截面位置,包括:
将所述海洋柔性管道试件放置在试验装置上,同时施加轴向拉伸力和横向剪力;
对试验加载过程中的所述海洋柔性管道试件的整体线形进行分析,试件整体线形和曲率分布通过求解如下方程得到:
Figure FDA0003179587160000011
其中,ω(x)为沿管道轴向的挠度分布,表征管道整体线形;ω″(x)为沿管道轴向的曲率分布;A、B分别表示与横向剪力加载特征和管道长度相关的代数式;n2=F/EI,F为管道轴向拉伸力,EI为管道弯曲刚度。
3.根据权利要求1所述的测量方法,其特征在于,所述相对位移矢量的计算公式为:
Figure FDA0003179587160000012
其中,
Figure FDA0003179587160000021
为所述参考点的绝对位移矢量测量结果;
Figure FDA0003179587160000022
为所述管道横截面环线上除参考点外的第i个mark点的绝对位移矢量测量结果,
Figure FDA0003179587160000023
为所述管道横截面环线上第i个mark点相对于所述参考点的相对位移矢量。
4.根据权利要求1所述的测量方法,其特征在于,所述除所述参考点外将所述管道横截面环线上的各个mark点映射到参考点所在的螺旋构件外表面的相同相位上,包括:
除所述参考点外,在各个mark点上分别作沿管道轴线平行的线,平行线分别与所述参考点所在的螺旋构件外表面相交,交点作为相同相位的映射点,则每根螺旋构件外表面上各个映射点与内部组份的相对滑移矢量与所述管道横截面环线上相应的mark点的相对位移矢量相同。
5.根据权利要求1-4任一所述的测量方法,其特征在于,所述参考点相对于内部组份的相对滑移矢量为零,且未发生弯曲时所述管道横截面环线上的所有mark点的位置不发生相对位移,则所述管道横截面环线上其他mark点相对于所述参考点的相对位移矢量看作其他mark点相对于所述内部组份的相对滑移矢量。
CN202110843060.XA 2021-07-26 2021-07-26 基于dic的海洋柔性管道螺旋构件相对滑移的测量方法 Active CN113532287B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110843060.XA CN113532287B (zh) 2021-07-26 2021-07-26 基于dic的海洋柔性管道螺旋构件相对滑移的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110843060.XA CN113532287B (zh) 2021-07-26 2021-07-26 基于dic的海洋柔性管道螺旋构件相对滑移的测量方法

Publications (2)

Publication Number Publication Date
CN113532287A CN113532287A (zh) 2021-10-22
CN113532287B true CN113532287B (zh) 2022-12-27

Family

ID=78088942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110843060.XA Active CN113532287B (zh) 2021-07-26 2021-07-26 基于dic的海洋柔性管道螺旋构件相对滑移的测量方法

Country Status (1)

Country Link
CN (1) CN113532287B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324769A (ja) * 2003-04-24 2004-11-18 Cosmo Koki Co Ltd 伸縮可撓管の移動規制装置
FR2970056A1 (fr) * 2011-01-04 2012-07-06 Technip France Dispositif de pose d'une conduite dans une etendue d'eau, structure et procede associes
CN107002910A (zh) * 2014-10-03 2017-08-01 伊特里克公司 海洋管道铺设系统中的端头配件操作
CN110307407A (zh) * 2019-07-21 2019-10-08 天津大学 一种柔性管道铠装层
CN112257269A (zh) * 2020-10-23 2021-01-22 中国船舶科学研究中心 一种海洋柔性管道层间相对滑移形态确定方法
CN212616923U (zh) * 2020-05-26 2021-02-26 天津德图科技有限公司 一种楼宇通风空调设备用软接设备
CN113089230A (zh) * 2021-03-26 2021-07-09 安徽省伊贝雅纺织有限公司 一种毛巾抗菌整理工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324769A (ja) * 2003-04-24 2004-11-18 Cosmo Koki Co Ltd 伸縮可撓管の移動規制装置
FR2970056A1 (fr) * 2011-01-04 2012-07-06 Technip France Dispositif de pose d'une conduite dans une etendue d'eau, structure et procede associes
CN107002910A (zh) * 2014-10-03 2017-08-01 伊特里克公司 海洋管道铺设系统中的端头配件操作
CN110307407A (zh) * 2019-07-21 2019-10-08 天津大学 一种柔性管道铠装层
CN212616923U (zh) * 2020-05-26 2021-02-26 天津德图科技有限公司 一种楼宇通风空调设备用软接设备
CN112257269A (zh) * 2020-10-23 2021-01-22 中国船舶科学研究中心 一种海洋柔性管道层间相对滑移形态确定方法
CN113089230A (zh) * 2021-03-26 2021-07-09 安徽省伊贝雅纺织有限公司 一种毛巾抗菌整理工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Monitoring the slip of helical wires in a flexible riser under combined tension and bending;Minggang Tang;《Ocean Engineering》;20220517;全文 *
无粘结柔性管抗拉伸层结构分析;杨旭;《船舶力学》;20150415;全文 *
海洋柔性管道螺旋结构弯曲行为的有限元分析;郭泽鹏;《哈尔滨工程大学学报》;20220311;全文 *

Also Published As

Publication number Publication date
CN113532287A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
US8497901B2 (en) Method and device for exact measurement of objects
Ohka et al. An experimental optical three-axis tactile sensor for micro-robots
EP1637835A2 (en) Reference coordinate calculating method, reference coordinate calculating program, recording medium thereof, reference plate and form measuring machine
JP5845373B2 (ja) 形状測定・校正装置
KR101613815B1 (ko) 불확실한 하중 조건 및 지점 조건을 가지는 구조물에 적합한 영상 기반 구조물 안전성 평가 시스템 및 방법
JP7099215B2 (ja) ホースの耐疲労性評価システム
CN105758719A (zh) 一种基于双镜反射的均匀应变光学测量装置及方法
CN115735093A (zh) 针对视频引伸计系统和方法的厚度校正
CN113532287B (zh) 基于dic的海洋柔性管道螺旋构件相对滑移的测量方法
CN112729087A (zh) 差分式电涡流微位移传感器标定装置、方法、计算机设备和存储介质
JP4981356B2 (ja) 光学式振動歪み計測方法
CN108548729B (zh) 一种测量材料最大弯曲应力的方法和装置
JP2010256277A (ja) 被測定物の外形測定方法及び外形測定装置
WO2018142613A1 (ja) 検出装置
CN110887448A (zh) 一种基于光纤应变测量的梁结构形态重构方法
CN108709531B (zh) 平面度测量的柔性装置
Ettemeyer Combination of 3-D deformation and shape measurement by electronic speckle pattern interferometry for quantitative strain-stress analysis
JP4910140B2 (ja) 棒材の真直度測定システム
Ouyang et al. Ball array calibration on a coordinate measuring machine using a gage block
CN113820214A (zh) 一种测量固体推进剂泊松比的方法及系统
JP2885422B2 (ja) 形状評価装置および形状評価方法
Bashevskaya et al. An investigation of the influence of temperature deformations on the precision of linear measurements
RU2790885C2 (ru) Способ измерения радиуса кривизны длинномерной трубы и устройство для его осуществления (варианты)
CN112927185A (zh) 一种基于数字图像相关法的真应力-真应变曲线测试计算方法
Wegner et al. Miniaturization of speckle interferometry for rapid strain analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant