WO2018135489A1 - 弾性波装置、高周波フロントエンド回路及び通信装置 - Google Patents

弾性波装置、高周波フロントエンド回路及び通信装置 Download PDF

Info

Publication number
WO2018135489A1
WO2018135489A1 PCT/JP2018/001021 JP2018001021W WO2018135489A1 WO 2018135489 A1 WO2018135489 A1 WO 2018135489A1 JP 2018001021 W JP2018001021 W JP 2018001021W WO 2018135489 A1 WO2018135489 A1 WO 2018135489A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
sound velocity
central region
duty ratio
electrode layer
Prior art date
Application number
PCT/JP2018/001021
Other languages
English (en)
French (fr)
Inventor
三村 昌和
和大 瀧川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201880006651.8A priority Critical patent/CN110178307B/zh
Priority to KR1020197020538A priority patent/KR102272686B1/ko
Publication of WO2018135489A1 publication Critical patent/WO2018135489A1/ja
Priority to US16/511,013 priority patent/US11025221B2/en
Priority to US17/242,457 priority patent/US11777471B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02858Means for compensation or elimination of undesirable effects of wave front distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02881Means for compensation or elimination of undesirable effects of diffraction of wave beam
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/1457Transducers having different finger widths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence

Definitions

  • the present invention relates to an elastic wave device using a piston mode, a high-frequency front end circuit, and a communication device.
  • Patent Document 1 an example of an acoustic wave device using a piston mode is shown.
  • the elastic wave device a region where the plurality of first electrode fingers and the plurality of second electrode fingers of the IDT electrode overlap when viewed in the elastic wave propagation direction is a crossing region.
  • the crossing region includes a central region located in the center in the direction in which the first and second electrode fingers extend, and both sides in the direction in which the first and second electrode fingers in the central region extend. And a first edge region and a second edge region.
  • a low sound velocity region is formed by laminating a mass addition film made of a dielectric or metal on the first and second electrode fingers.
  • a method of forming a low sound velocity region by making the duty ratio in the first and second edge regions larger than the duty ratio in the central region is disclosed.
  • the region outside the low sound velocity region is a high sound velocity region where the sound velocity is higher than the sound velocity in the central region.
  • the method of forming the low sound velocity region by making the duty ratio in the first and second edge regions larger than the duty ratio in the central region is preferable.
  • this method depending on the material and film thickness of the main electrode layer in the IDT electrode, it is difficult to increase the sound speed difference between the low sound speed region and the central region to a certain extent, so that spurious cannot be suppressed. There is a problem that there is.
  • An object of the present invention is to provide a high-order acoustic wave device using a piston mode in which a low sound velocity region is formed by making a duty ratio in a first edge region and a second edge region larger than a duty ratio in a central region. It is an object to provide an acoustic wave device, a high-frequency front-end circuit, and a communication device that can effectively suppress spurious due to the transverse mode.
  • a piezoelectric body and an IDT electrode provided on the piezoelectric body and having a main electrode layer are provided, and the IDT electrodes face each other.
  • Bus bar, second bus bar, a plurality of first electrode fingers having one end connected to the first bus bar, one end connected to the second bus bar, and the plurality of first electrodes A plurality of second electrode fingers interleaved with the fingers, wherein the plurality of first electrode fingers and the plurality of second electrode fingers are overlapping portions in the elastic wave propagation direction
  • the crossing region is the first direction in the length direction.
  • a first low sound velocity region that is disposed outside the central region in the lengthwise direction on the first bus bar side, and has a lower sound velocity than the central region;
  • a second low sound velocity region that is disposed outside the central region on the second bus bar side and has a sound velocity lower than that of the central region, and in the length direction
  • a first high sound velocity region that is disposed outside the first bass bar side of the first low sound velocity region and has a sound speed higher than that of the central region;
  • a second high sound speed region disposed outside the second bus bar side of the second low sound speed region and having a sound speed higher than that of the central region.
  • the IDT electrode includes a plurality of layers including the main electrode layer.
  • the main electrode layer is mainly composed of one of Au, Pt, Ta, Cu, Ni, and Mo.
  • the duty ratio of the central region of the IDT electrode can be further increased under the condition that the spurious due to the high-order transverse mode can be effectively suppressed. Therefore, the electrical resistance of the IDT electrode can be lowered and the insertion loss can be reduced.
  • the duty ratio of the central region of the IDT electrode can be further increased under the condition that the spurious due to the high-order transverse mode can be effectively suppressed. Therefore, the electrical resistance of the IDT electrode can be lowered and the insertion loss can be reduced.
  • the duty ratio of the central region of the IDT electrode can be further increased under the condition that the spurious due to the high-order transverse mode can be effectively suppressed. Therefore, the electrical resistance of the IDT electrode can be lowered and the insertion loss can be reduced.
  • the duty ratio of the central region of the IDT electrode can be further increased under the condition that the spurious due to the high-order transverse mode can be effectively suppressed. Therefore, the electrical resistance of the IDT electrode can be lowered and the insertion loss can be reduced.
  • the piezoelectric body is made of LiNbO 3 , and the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric body are Euler angles (0 ° ⁇ 5 °, ⁇ , 0).
  • ⁇ at the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric body is ⁇ ⁇ 27 °
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) are materials of the main electrode layer (0 ° ⁇ 5 °, ⁇ 0.054 / (T ⁇ r ⁇ 0.044) +31.33 ⁇ °)
  • r ⁇ / ⁇ Pt is the ratio of density ⁇ to Pt density ⁇ Pt ⁇ 1.5 °, 0 ° ⁇ 10 °) and T ⁇ r ⁇ 0.10 ⁇ .
  • spurious due to the SH wave can be further suppressed.
  • an opening is provided in the first bus bar and the second bus bar of the IDT electrode.
  • the portion located on the central region side in the length direction with respect to the opening is the inner busbar portion, and the portion facing the inner busbar portion with the opening is the outer busbar portion.
  • the inner bus bar portion is a low sound velocity region, the region where the opening is provided is the first high sound velocity region, and the second bus bar is the inner sound region.
  • the bus bar portion is a low sound velocity region, and the region where the opening is provided is the second high sound velocity region.
  • the acoustic wave device includes a piezoelectric body and an IDT electrode provided on the piezoelectric body and having a main electrode layer, and the IDT electrodes face each other.
  • One bus bar and a second bus bar a plurality of first electrode fingers having one end connected to the first bus bar, one end connected to the second bus bar, and the plurality of first bus bars
  • a plurality of second electrode fingers interleaved with the electrode fingers, wherein the plurality of first electrode fingers and the plurality of second electrode fingers overlap in the elastic wave propagation direction
  • the crossing region is in the length direction, Located in the center of the first electrode finger and the second electrode finger A central region, and a first low sound velocity region that is disposed in the length direction and outside the first bus bar side of the central region, and has a lower sound speed than the central region;
  • a second low sound velocity region which is the length direction and is disposed outside the central region on the second bus bar side, and has a sound velocity lower than that of the central region,
  • a first high sound velocity region that is disposed outside the first bus bar side of the first low
  • a dielectric film is further provided on the piezoelectric body so as to cover the IDT electrode.
  • the surface of the IDT electrode can be protected, and the IDT electrode is hardly damaged.
  • the high-frequency front-end circuit according to the present invention includes an elastic wave device configured according to the present invention and a power amplifier.
  • the communication device includes a high-frequency front-end circuit configured according to the present invention and an RF signal processing circuit.
  • an acoustic wave device using a piston mode that forms a low sound velocity region by making the duty ratio in the first edge region and the second edge region larger than the duty ratio in the central region It is possible to provide an acoustic wave device, a high-frequency front-end circuit, and a communication device that can effectively suppress spurious due to the transverse mode.
  • FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged front sectional view of the IDT electrode in the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the relationship between the normalized integral overlap value of the basic mode and the sound speed ratio V2 / V1.
  • FIG. 4 is a diagram showing the relationship between the duty ratio and the normalized sound velocity when the thickness of the main electrode layer made of Pt is 0.02 ⁇ .
  • FIG. 5 is a diagram showing the relationship between the duty ratio and the normalized sound velocity when the thickness of the main electrode layer made of Pt is 0.04 ⁇ .
  • FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged front sectional view of the IDT electrode in the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the relationship between the normalized integral overlap value of the basic mode and the sound speed ratio
  • FIG. 6 is a diagram showing the relationship between the duty ratio and the normalized sound velocity when the thickness of the main electrode layer made of Pt is 0.06 ⁇ .
  • FIG. 7 shows the duty ratio in the central region where the sound velocity ratio V2 / V1 is 0.98 and the main electrode made of Pt when the sound velocity V2 in the first low sound velocity region and the second low sound velocity region is the lowest. It is a figure which shows the relationship with the film thickness of a layer.
  • FIG. 8 is a diagram showing the relationship between the maximum value of the duty ratio in the central region where the sound velocity ratio V2 / V1 is 0.98 and the sound velocity v of the transverse bulk wave propagating in the metal that is the main component of the main electrode layer. It is.
  • FIG. 8 is a diagram showing the relationship between the maximum value of the duty ratio in the central region where the sound velocity ratio V2 / V1 is 0.98 and the sound velocity v of the transverse bulk wave propagating in the metal that is the main component of the main electrode layer. It is.
  • FIG. 9 shows a main velocity in which the sound velocity v of the transverse bulk wave propagating in the metal that is the main component of the main electrode layer, the duty ratio in the central region is 0.40, and the sound velocity ratio V2 / V1 is 0.98. It is a figure which shows the relationship with the film thickness T of an electrode layer.
  • FIG. 10 shows the sound velocity v of the transverse bulk wave propagating in the metal that is the main component of the main electrode layer, the duty ratio in the central region is 0.45, and the sound velocity ratio V2 / V1 is 0.98. It is a figure which shows the relationship with the film thickness T of an electrode layer.
  • FIG. 11 shows the sound velocity v of the transverse bulk wave propagating in the metal that is the main component of the main electrode layer, the duty ratio in the central region is 0.50, and the sound velocity ratio V2 / V1 is 0.98. It is a figure which shows the relationship with the film thickness T of an electrode layer.
  • FIG. 12 shows the sound velocity v of the transverse bulk wave propagating in the metal that is the main component of the main electrode layer, the duty ratio in the central region is 0.525, and the sound velocity ratio V2 / V1 is 0.98. It is a figure which shows the relationship with the film thickness T of an electrode layer.
  • FIG. 12 shows the sound velocity v of the transverse bulk wave propagating in the metal that is the main component of the main electrode layer, the duty ratio in the central region is 0.525, and the sound velocity ratio V2 / V1 is 0.98. It is a figure which shows the relationship with the film thickness T of an electrode layer.
  • FIG. 13 shows the sound velocity v of the transverse bulk wave propagating in the metal that is the main component of the main electrode layer, the duty ratio in the central region is 0.55, and the sound velocity ratio V2 / V1 is 0.98. It is a figure which shows the relationship with the film thickness T of an electrode layer.
  • FIG. 14 is an enlarged front cross-sectional view of the first electrode finger of the IDT electrode in the first modification of the first embodiment of the present invention.
  • FIG. 15 is an enlarged front cross-sectional view of the first electrode finger of the IDT electrode in the second modification of the first embodiment of the present invention.
  • FIG. 16 is an enlarged front cross-sectional view of the first electrode finger of the IDT electrode in the third modification of the first embodiment of the present invention.
  • FIG. 17 is an enlarged plan view showing the vicinity of the first bus bar in the fourth modified example of the first embodiment.
  • FIG. 18 is a front sectional view of an acoustic wave device according to a fifth modification of the first embodiment of the present invention.
  • FIG. 19 is a diagram illustrating impedance frequency characteristics of the acoustic wave device according to the second embodiment.
  • FIG. 20 is a diagram illustrating a return loss of the acoustic wave device according to the second embodiment.
  • FIG. 21 is a diagram illustrating impedance frequency characteristics of the elastic wave device of the comparative example.
  • FIG. 22 is a diagram illustrating the return loss of the elastic wave device of the comparative example.
  • FIG. 23 is a diagram illustrating the range of ⁇ in the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric substrate according to the second embodiment of the present invention.
  • FIG. 24 is a configuration diagram of a communication apparatus having a high-frequency front end circuit.
  • FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention.
  • first and second dielectric films described later are omitted.
  • the elastic wave device 1 is a 1-port type elastic wave resonator.
  • the acoustic wave device 1 has a piezoelectric substrate 2 as a piezoelectric body.
  • the piezoelectric substrate 2 is made of LiNbO 3 .
  • An IDT electrode 3 is provided on the piezoelectric substrate 2. By applying an AC voltage to the IDT electrode 3, an elastic wave is excited. Reflectors 4 and 5 are disposed on both sides of the IDT electrode 3 in the elastic wave propagation direction.
  • the IDT electrode 3 has a first bus bar 3a1 and a second bus bar 3b1 which face each other.
  • the IDT electrode 3 has a plurality of first electrode fingers 3a2, one end of which is connected to the first bus bar 3a1. Further, the IDT electrode 3 has a plurality of second electrode fingers 3b2 having one end connected to the second bus bar 3b1.
  • the plurality of first electrode fingers 3a2 and the plurality of second electrode fingers 3b2 are interleaved with each other.
  • the IDT electrode 3 has a crossing region A that is a portion where the first electrode finger 3a2 and the second electrode finger 3b2 overlap in the elastic wave propagation direction.
  • the crossing region A has a central region A1 located on the center side in the length direction, and first and second edge regions A2a and A2b arranged on both sides of the central region A1 in the length direction.
  • the first edge region A2a is located on the first bus bar 3a1 side
  • the second edge region A2b is located on the second bus bar 3b1 side.
  • the IDT electrode 3 has first and second outer regions Ba and Bb, which are regions opposite to the central region A1 side of the first and second edge regions A2a and A2b.
  • the first outer region Ba is located between the first edge region A2a and the first bus bar 3a1.
  • the second outer region Bb is located between the second edge region A2b and the second bus bar 3b1.
  • FIG. 2 is an enlarged front sectional view of the IDT electrode according to the first embodiment.
  • the dimension along the elastic wave propagation direction in the first electrode finger and the second electrode finger is defined as the width.
  • the dimension a in FIG. 2 indicates the width of the first electrode finger or the second electrode finger.
  • the dimension b indicates the distance between one end along the elastic wave propagation direction of the first electrode finger and the one end of the second electrode finger adjacent to the first electrode finger.
  • the IDT electrode 3 is composed of a laminated metal film in which a plurality of metal layers are laminated.
  • the IDT electrode 3 has a main electrode layer 6b.
  • the main electrode layer 6 b is an electrode layer occupying the largest mass among the plurality of metal layers constituting the IDT electrode 3.
  • the main electrode layer is made of a metal having a higher density than Al.
  • a metal it is preferable to use a metal mainly composed of one of Au, Pt, Ta, Cu, Ni and Mo.
  • the material of the main electrode layer 6b is not limited to the above, and may be any metal having a higher density than Al. Thereby, even when a dielectric film is formed on the IDT electrode 3, the reflection coefficient of the elastic wave can be increased.
  • the IDT electrode 3 is provided with a conductive auxiliary electrode layer 6d on a main electrode layer 6b provided on the piezoelectric substrate 2.
  • the conductive auxiliary electrode layer 6d is made of a metal having a lower electrical resistance than the main electrode layer 6b. More specifically, the conductive auxiliary electrode layer 6d is made of, for example, Al. By having the conductive auxiliary electrode layer 6d, the electrical resistance of the IDT electrode 3 can be lowered.
  • the laminated structure of the IDT electrode 3 is not limited to the above.
  • the IDT electrode 3 may be composed of a single-layer metal film having only the main electrode layer 6b.
  • a first dielectric film 7 as a dielectric film of the present invention is provided on the piezoelectric substrate 2 so as to cover the IDT electrode 3.
  • the first dielectric film 7 is made of silicon oxide such as SiO 2 .
  • the frequency temperature characteristic can be improved.
  • the surface of the IDT electrode 3 can be protected, and the IDT electrode 3 is hardly damaged.
  • the material of the first dielectric film 7 is not limited to the above.
  • the first dielectric film 7 may not be provided.
  • a second dielectric film 8 is provided on the first dielectric film 7.
  • the second dielectric film 8 is made of silicon nitride such as SiN. By adjusting the thickness of the second dielectric film 8, the frequency can be easily adjusted.
  • the material of the second dielectric film 8 is not limited to the above. The second dielectric film 8 may not be provided.
  • the plurality of first electrode fingers 3a2 have wide portions 3a3 that are wider than the other portions in the first edge region A2a and the second edge region A2b, respectively.
  • the plurality of second electrode fingers 3b2 each have a wide portion 3b3.
  • the plurality of first and second electrode fingers 3a2 and 3b2 have the wide portions 3a3 and 3b3, so that the first edge region A2a and the first edge region A2a and the first electrode finger 3a2 can be compared with the propagation velocity (hereinafter referred to as sound velocity) in the elastic wave propagation direction in the central region A1.
  • the acoustic velocity of the elastic wave in the second edge region A2b is low.
  • the sound velocity of the elastic wave in the central region A1 is V1
  • the sound velocity of the elastic wave in the first and second edge regions A2a and A2b is V2.
  • V1> V2 As described above, the first edge region A2a is set as the first low sound velocity region, and the second edge region A2b is set as the second low sound velocity region.
  • the part located in the first outer region Ba is only the first electrode finger 3a2.
  • the portion located in the second outer region Bb is only the second electrode finger 3b2.
  • the sound velocity of the elastic wave in the first outer region Ba and the second outer region Bb is higher than the sound velocity of the elastic wave in the central region A1.
  • the acoustic velocity of the elastic wave in the first and second outer regions Ba and Bb is V3.
  • the first outer region Ba and the second outer region Bb are the first high sound velocity region and the second high sound velocity region whose sound speed is higher than that of the central region A1.
  • the first and second low sound velocity regions are arranged outside the central region A1, and the first and second high sound velocity regions are arranged outside the first and second low sound velocity regions.
  • the dimension along the direction orthogonal to the elastic wave propagation direction of the first and second low sound velocity regions is defined as the width of the first and second low sound velocity regions.
  • FIG. 1 shows the relationship between the sound speeds V1, V2 and V3 as described above. In addition, it shows that a sound speed is high as it goes to the outer side in FIG.
  • the present inventors have clarified that, in the acoustic wave device 1 using the piston mode, spurious can be effectively suppressed when the sound speed ratio V2 / V1 is 0.98 or less.
  • the inventors of the present application make the first low sound velocity region and the second low sound velocity region by making the duty ratio in the first edge region A2a and the duty ratio in the second edge region A2b larger than the duty ratio in the central region A1.
  • the acoustic wave device 1 using the piston mode hereinafter referred to as “planar piston mode” that forms the sonic velocity region
  • the conditions under which the sonic velocity ratio V2 / V1 is 0.98 or less are the following 1) and 2). I also made it clear.
  • the duty ratio is the ratio of the portion where the electrode is formed in the elastic wave propagation direction, and is represented by a / b using the dimension a and dimension b in FIG. Further, if the duty ratio is too small, the IDT electrode cannot be formed, and if the duty ratio is too large, a gap between the electrode fingers of the IDT electrode cannot be formed and short-circuited. It is known among those skilled in the art that it is difficult to form an IDT electrode unless it is within the range of 0.80 or less.
  • the inventors of the present application select the material and film thickness of the main electrode layer 6b in the IDT electrode 3 that satisfy the conditions 1) and 2) in the elastic wave device 1 using the planar piston mode. It has been found that the sound velocity difference between the first low sound velocity region, the second low sound velocity region, and the central region can be increased to some extent, and spurious can be suppressed.
  • FIG. 3 is a diagram showing the relationship between the normalized integral overlap value of the basic mode and the sound speed ratio V2 / V1.
  • the vertical axis in FIG. 3 is the overlap integral value of the normalized fundamental mode described in Patent Document 1. This integral value is used as an index indicating the degree of suppression of spurious due to the high-order transverse mode. The closer the value of the normalized integral mode overlap integral value is to 1, the higher the transverse mode is. It shows that spurious is suppressed.
  • the horizontal axis represents the sound velocity ratio V2 / V1 between the first low sound velocity region, the second low sound velocity region, and the central region.
  • the dimension along the direction orthogonal to the elastic wave propagation direction of a crossing area be a crossing width.
  • the direction orthogonal to the elastic wave propagation direction is the cross width direction.
  • Patent Document 1 if the widths of the first low sound velocity region and the second low sound velocity region are set according to the above equation 6, the displacement distribution of the elastic wave in the central region can be made substantially constant, and the piston mode Is established.
  • the overlap integral value is about 0.992 and a value close to 1, which is almost constant.
  • the overlap integral value decreases rapidly. Therefore, spurious due to a high-order transverse mode can be effectively suppressed under the condition where the sound speed ratio V2 / V1 is 0.98 or less.
  • planar piston mode but also an elastic wave device using another general piston mode can effectively suppress spurious when the sound speed ratio V2 / V1 is 0.98 or less.
  • the following 1) shows that one of the conditions for the sound velocity ratio V2 / V1 to be 0.98 or less within the range in which the elastic wave device using the planar piston mode can be manufactured.
  • the minimum value of the sound velocity within the manufacturable range is set to V2, and the maximum value of the sound velocity within the manufacturable range is set. Needs to be V1.
  • Piezoelectric substrate material LiNbO 3 , Euler angles (0 °, 30 °, 0 °)
  • Main electrode layer material Pt, film thickness 0.02 ⁇ , 0.04 ⁇ , 0.06 ⁇
  • Conductive auxiliary electrode layer material Al, film thickness 0.08 ⁇
  • First dielectric film material SiO 2 , film thickness 0.30 ⁇
  • Second dielectric film material SiN, film thickness 0.01 ⁇
  • Elastic wave used Rayleigh wave
  • FIG. 4 is a diagram showing the relationship between the duty ratio and the normalized sound speed when the thickness of the main electrode layer made of Pt is 0.02 ⁇ .
  • FIG. 5 is a diagram showing the relationship between the duty ratio and the normalized sound velocity when the thickness of the main electrode layer made of Pt is 0.04 ⁇ .
  • FIG. 6 is a diagram showing the relationship between the duty ratio and the normalized sound velocity when the thickness of the main electrode layer made of Pt is 0.06 ⁇ . Note that the vertical axis in FIGS. 4 to 6 is the normalized sound velocity normalized with the sound velocity of the elastic wave at a duty ratio of 0.5.
  • the first low sound velocity region can be configured by making the width in the first edge region wider than the width in the central region of the first electrode finger and the second electrode finger.
  • the second low sound velocity region can be configured by making the width in the second edge region wider than the width in the central region of the first electrode finger and the second electrode finger.
  • the sound speed V1 in the center area can be increased and the sound speed ratio V2 / V1 can be decreased as the duty ratio in the center area is decreased. Thereby, spurious due to the higher-order transverse mode can be effectively suppressed.
  • the duty ratio is made too small, the widths of the first electrode finger and the second electrode finger become too narrow, making it difficult to stably form the IDT electrode, which also makes it difficult to manufacture. Therefore, it is desirable that the minimum value of the duty ratio is 0.30 or more.
  • the change in the normalized sound velocity with respect to the change in the duty ratio is a so-called downward convex state. That is, the slope of the curve indicating the change in the normalized sound speed becomes gentler as the duty ratio increases.
  • the normalized sound speed is minimized when the duty ratio is around 0.80. Therefore, it is preferable to set the duty ratio of the first low sound velocity region and the second low sound velocity region to a value at which the sound velocity is minimized.
  • the duty ratio is too large, the withstand voltage between the adjacent first electrode fingers and the second electrode fingers deteriorates, making it difficult to manufacture. desirable.
  • the duty ratio of the first low sound velocity region and the second low sound velocity region is preferably 0.80.
  • the normalized sound velocity becomes 0.989 and becomes minimum when the duty ratio is 0.80. That is, when this condition is selected as the duty ratio of the first low sound velocity region and the second low sound velocity region, the normalized sound velocity V2 of the first low sound velocity region and the second low sound velocity region is 0.989. .
  • the normalized sound speed in the first low sound speed region and the second low sound speed region is indicated by V2 as in the case of the sound speed.
  • the standardized sound speed in the central region is indicated by V1 as with the sound speed.
  • the duty ratio in the central region is 0.41
  • the normalized sound speed V1 in the central region is 1.09.
  • the sound speed ratio V2 / V1 with the region can be set to 0.98 or less.
  • the normalized sound velocity is minimum at 0.980 when the duty ratio is 0.80. That is, when this condition is selected as the duty ratio of the first low sound speed region and the second low sound speed region, the normalized sound speed V2 of the first low sound speed region and the second low sound speed region is 0.980. .
  • the duty ratio in the central region is 0.50
  • the duty ratio of the central region is set to 0.50 or less so that the first low sound velocity region, the second low sound velocity region, and the center
  • the sound speed ratio V2 / V1 with the region can be set to 0.98 or less.
  • the normalized sound velocity is 0.974 and becomes minimum when the duty ratio is 0.80. That is, when this condition is selected as the duty ratio of the first low sound velocity region and the second low sound velocity region, the normalized sound velocity V2 of the first low sound velocity region and the second low sound velocity region is 0.974. .
  • the duty ratio in the central region is 0.53
  • the duty ratio of the central region is set to 0.53 or less so that the first low sound velocity region and the second low sound velocity region are in the center.
  • the sound speed ratio V2 / V1 with the region can be set to 0.98 or less.
  • the duty ratio of the first low sound speed region and the second low sound speed region is set to the duty ratio at which the sound speed V2 is the lowest within the manufacturable range.
  • the duty ratio in the central region where the sound speed ratio V2 / V1 is 0.98 was obtained. This is shown in FIG. 7 below.
  • FIG. 7 shows the duty ratio in the central region where the sound velocity ratio V2 / V1 is 0.98 and the main electrode made of Pt when the sound velocity V2 in the first low sound velocity region and the second low sound velocity region is the lowest. It is a figure which shows the relationship with the film thickness of a layer.
  • the thickness of the main electrode layer As shown in FIG. 7, it is necessary to increase the thickness of the main electrode layer in order to increase the duty ratio in the central region when the sound speed ratio V2 / V1 is 0.98. However, even if the thickness of the main electrode layer is 0.12 ⁇ or more, the duty ratio that can set the sound speed ratio V2 / V1 to 0.98 does not become larger than 0.557. That is, in order to realize the planar piston mode using Pt as the main electrode layer, it is necessary to set the duty ratio of the central region to 0.557 or less and further to set the film thickness of the main electrode layer according to the duty ratio. . More specifically, the film thickness of the main electrode layer needs to be such that the value of the duty ratio in the central region is not less than the value indicated by the curve in FIG.
  • the present inventors have found from this result that the dependence of the speed of sound on the duty ratio does not increase even if the thickness of the main electrode layer is increased to a certain extent. That is, the inventors of the present application have found that there is an upper limit on the duty ratio in the central region where spurious can be suppressed by the planar piston mode.
  • FIG. 8 shows the relationship between the maximum value of the duty ratio in the central region where the sound speed ratio V2 / V1 is 0.98 and the sound speed v of the transverse bulk wave propagating in the metal that is the main component of the main electrode layer.
  • the speed of sound of a transverse bulk wave propagating in a metal is a unique value in each kind of metal.
  • the sound velocity of the transverse bulk wave propagating through the metal that is the main component of the main electrode layer is defined as v (m / s).
  • ⁇ (kg / m 3 ) is the density of the metal
  • c 44 (Pa) is one of the elements of the elastic stiffness constant of the metal. Since the metal handled here can be regarded as an isotropic body, the elastic stiffness constant c ij is expressed by the following determinant.
  • the sound velocity v of the transverse bulk wave is shown in Table 1.
  • the upper limit of the duty ratio in the central region varies depending on the material of the main electrode layer.
  • the inventors of the present application have found from this result that the upper limit value of the duty ratio in the central region is highly correlated with the sound velocity v of the transverse bulk wave propagating in the metal, among the physical property values of the material of the main electrode layer. . Therefore, in order to achieve spurious suppression which is the object of the present invention, the types of metals used for the main electrode layer are limited. That is, it is necessary to use a metal having a low shear wave speed as the main electrode layer.
  • a metal satisfying v ⁇ 3299 m / s is expressed by the above formula using the IDT electrode. It is necessary to use for the main electrode layer.
  • the duty ratio in the central region is smaller than 0.40, the sound speed V1 in the central region is higher than that in the case where the duty ratio is 0.40. Therefore, a metal satisfying the above condition is used for the main electrode layer. Accordingly, the sound speed ratio V2 / V1 can be similarly reduced to 0.98 or less.
  • V1 is set to a value when the duty ratio is 0.40
  • V2 is the duty ratio described above. It is necessary to make the minimum value within the manufacturable range. Since it is necessary to satisfy V2 ⁇ V1, the duty ratio of the first low sound speed region and the second low sound speed region needs to be larger than the duty ratio of the central region, and V2 has a duty ratio of 0.40 or more, 0 It is necessary to make the minimum value within the range of 80 or less.
  • the value when the duty ratio is 0.40 and the minimum value within the range where the duty ratio is 0.4 or more and 0.80 or less are determined depending on the value of the film thickness of the main electrode layer made of metal that satisfies the above condition 1). Different. Therefore, in the following, the conditions under which the sound speed ratio V2 / V1 is 0.98 or less will be examined in detail for the material used for the main electrode layer and the film thickness of the main electrode layer.
  • the duty ratio of the central area is 0.40
  • the duty ratio of the first low sound speed area and the second low sound speed area is the duty ratio that makes the sound speed the lowest in the range of 0.40 to 0.80.
  • the main electrode layer is made of Pt
  • the film of the main electrode layer in which the sound velocity ratio between the first low sound velocity region and the second low sound velocity region and the central region is 0.98.
  • the thickness is 0.019 ⁇ .
  • the same relationship as that shown in FIG. 7 was obtained.
  • the duty ratio of the central area is 0.40
  • the duty ratio of the first low sound speed area and the second low sound speed area is the duty ratio that makes the sound speed the lowest within the range of 0.40 or more and 0.80 or less.
  • the film thickness T of the main electrode layer at which the sound velocity ratio V2 / V1 between the first low sound velocity region, the second low sound velocity region, and the central region was obtained.
  • the relationship between the film thickness T and the sound velocity v of the transverse bulk wave propagating through the metal that is the main component of the main electrode layer was determined.
  • FIG. 9 shows a main velocity in which the sound velocity v of the transverse bulk wave propagating in the metal that is the main component of the main electrode layer, the duty ratio in the central region is 0.40, and the sound velocity ratio V2 / V1 is 0.98. It is a figure which shows the relationship with the film thickness T of an electrode layer.
  • the sound velocity ratio V2 / V1 between the first low sound velocity region and the second low sound velocity region and the central region is 0.98. It can be as follows. When the duty ratio in the central region is smaller than 0.40, the sound speed V1 in the central region is higher than that in the case where the duty ratio is 0.40. By increasing the thickness of the electrode layer, the sound velocity ratio V2 / V1 can be similarly reduced to 0.98 or less. Therefore, by using the metal satisfying the above 1) for the main electrode layer and satisfying the condition of the following formula 1, the sound speed ratio V2 / V1 can be reduced to 0.98 or less.
  • Conditions 1) and 2) are conditions that can effectively suppress spurious when the duty ratio of the central region is 0.4.
  • the duty ratio in the central region is smaller than 0.4, the sound speed V1 in the central region is higher than that in the case where the duty ratio is 0.4. Therefore, a metal satisfying the above conditions 1) and 2) is used for the main electrode layer. By using it, the sound speed ratio V2 / V1 can be reduced to 0.98 or less, and spurious can be effectively suppressed. That is, by using a metal satisfying the conditions 1) and 2) for the main electrode layer, the duty ratio of the central region can be selected in the range of 0.3 to 0.4.
  • the film thickness T of the main electrode layer is desirably T ⁇ 0.20 ⁇ .
  • the sound speed V1 in the center area can be increased and the sound speed ratio V2 / V1 can be decreased as the duty ratio in the center area is decreased.
  • spurious due to the higher-order transverse mode can be effectively suppressed.
  • the duty ratio is too small, the electrical resistance of the first electrode finger and the second electrode finger becomes too large, causing a problem that the insertion loss of the acoustic wave device becomes large.
  • the insertion loss of the elastic wave device can be reduced.
  • the duty ratio of the central region of the IDT electrode when the duty ratio of the central region of the IDT electrode is increased to 0.45 and the sound speed ratio V2 / V1 is 0.98 or less, spurious can be effectively suppressed, and The electric resistance of the IDT electrode can be reduced.
  • the inventors of the present application have found that the conditions under which the duty ratio of the central region of the IDT electrode is 0.45 and the sound speed ratio V2 / V1 is 0.98 or less are the following 3) and 4).
  • the condition for the transverse wave bulk sound velocity v of the metal material that can make the sound velocity ratio 0.98 or less is v ⁇ 2895 m. / S.
  • the sound velocity V1 in the central region is higher than that in the case where the duty ratio is 0.45. Therefore, by using a metal that satisfies the above conditions for the main electrode layer Similarly, the sound speed ratio V2 / V1 can be reduced to 0.98 or less.
  • V1 is set to a duty ratio of. 45
  • V2 is the minimum value within the range of the duty ratio of 0.45 or more and 0.8 or less.
  • the value when the duty ratio is 0.45 and the minimum value within the range of the duty ratio of 0.45 or more and 0.8 or less depending on the value of the film thickness of the main electrode layer made of metal satisfying the condition 3) are as follows. Different. Therefore, in the following, the conditions under which the sound speed ratio V2 / V1 is 0.98 or less will be examined in detail for the material used for the main electrode layer and the film thickness of the main electrode layer.
  • the duty ratio in the center region is 0.45
  • the duty ratio in the low sound velocity region is the duty ratio that gives the lowest sound speed within the range of 0.45 or more and 0.80 or less.
  • the main electrode layer is made of Pt, as shown in FIG. 7, the main electrode in which the sound velocity ratio V2 / V1 between the first low sound velocity region and the second low sound velocity region and the central region is 0.98.
  • the thickness of the layer is 0.027 ⁇ .
  • the duty ratio of the central region is the duty ratio 0.45
  • the duty ratio of the first low sound velocity region and the second low sound velocity region is the duty ratio that makes the sound speed the lowest within the range of 0.45 or more and 0.80 or less.
  • the film thickness T of the main electrode layer at which the sound speed ratio V2 / V1 between the first low sound speed region and the second low sound speed region and the central region is 0.98 was obtained.
  • the relationship between the film thickness T and the sound velocity v of the transverse bulk wave propagating through the metal that is the main component of the main electrode layer was determined.
  • FIG. 10 shows the sound velocity v of the transverse bulk wave propagating in the metal that is the main component of the main electrode layer, the duty ratio in the central region is 0.45, and the sound velocity ratio V2 / V1 is 0.98. It is a figure which shows the relationship with the film thickness T of an electrode layer.
  • the sound velocity ratio V2 / V1 between the first low sound velocity region and the second low sound velocity region and the central region is 0.98. It can be as follows. When the duty ratio in the central region is smaller than 0.45, the sound speed V1 in the central region is higher than that in the case where the duty ratio is 0.45. By increasing the thickness of the electrode layer, the sound speed ratio V2 / V1 can be similarly reduced to 0.98 or less.
  • the sound speed ratio V2 / V1 can be reduced to 0.98 or less by using the metal satisfying the above 3) as the main electrode layer and satisfying the condition of the following formula 2.
  • Conditions 3) and 4) are conditions that can effectively suppress spurious when the duty ratio of the central region is 0.45.
  • the duty ratio in the central region is smaller than 0.45, the sound velocity V1 in the central region is higher than that in the case where the duty ratio is 0.45. Therefore, a metal satisfying the above conditions 3) and 4) is used for the main electrode layer. By using it, the sound speed ratio V2 / V1 can be reduced to 0.98 or less, and spurious can be effectively suppressed. That is, by using a metal satisfying the conditions 3) and 4) for the main electrode layer, the duty ratio of the central region can be selected in the range of 0.3 or more and 0.45 or less. That is, since it becomes possible to select a large duty ratio, the resistance of the electrode fingers can be reduced, and the insertion loss of the acoustic wave device can be reduced.
  • the duty ratio in the central region of the IDT electrode is increased to 0.50, the electric resistance of the IDT electrode can be further reduced, and the insertion loss can be further reduced.
  • the inventors of the present invention have found that the conditions under which the duty ratio of the central region of the IDT electrode is 0.50 and the sound speed ratio V2 / V1 is 0.98 or less are the following 5) and 6).
  • the condition for the transverse wave bulk sound velocity v of a metal material that can make the sound velocity ratio 0.98 or less is v ⁇ 2491 m. / S.
  • the sound velocity V1 in the central region is higher than that in the case where the duty ratio is 0.50. Therefore, by using a metal that satisfies the above conditions for the main electrode layer Similarly, the sound speed ratio V2 / V1 can be reduced to 0.98 or less.
  • V1 is set to a duty ratio of 0.00.
  • the value is 50, and V2 is the minimum value within the range of 0.5 to 0.8.
  • the value when the duty ratio is 0.50 and the minimum value within the range where the duty ratio is 0.50 or more and 0.80 or less are Different. Therefore, in the following, the conditions under which the sound speed ratio V2 / V1 is 0.98 or less will be examined in detail for the material used for the main electrode layer and the film thickness of the main electrode layer.
  • the duty ratio in the central region is 0.50
  • the duty ratio in the low sound velocity region is the duty ratio that gives the lowest sound speed within the range of the duty ratio of 0.50 or more and 0.80 or less.
  • the main electrode layer is made of Pt, as shown in FIG. 7, the main electrode in which the sound velocity ratio V2 / V1 between the first low sound velocity region and the second low sound velocity region and the central region is 0.98.
  • the film thickness of the layer is 0.04 ⁇ .
  • a relationship similar to the relationship shown in FIG. 7 was also obtained when a metal satisfying 5) such as Au and Ta was used for the main electrode layer.
  • the duty ratio of the central area is 0.50
  • the duty ratios of the first low sound speed area and the second low sound speed area are the duty ratio that makes the sound speed the lowest in the range of 0.50 to 0.80.
  • the film thickness T of the main electrode layer at which the sound velocity ratio V2 / V1 between the first low sound velocity region, the second low sound velocity region, and the central region is 0.98 was obtained.
  • the relationship between the film thickness T and the sound velocity v of the transverse bulk wave propagating through the metal that is the main component of the main electrode layer was determined.
  • FIG. 11 shows the sound velocity v of the transverse bulk wave propagating in the metal that is the main component of the main electrode layer, the duty ratio in the central region is 0.50, and the sound velocity ratio V2 / V1 is 0.98. It is a figure which shows the relationship with the film thickness T of an electrode layer.
  • the sound velocity ratio V2 / V1 between the first low sound velocity region and the second low sound velocity region and the central region is 0.98. It can be as follows. When the duty ratio in the central region is smaller than 0.50, the sound speed V1 in the central region is higher than that in the case where the duty ratio is 0.50, so that the main thickness is larger than the film thickness T expressed by the above formula. By increasing the thickness of the electrode layer, the sound velocity ratio V2 / V1 can be similarly reduced to 0.98 or less.
  • the sound speed ratio V2 / V1 can be reduced to 0.98 or less by using a metal satisfying the above 5) as the main electrode layer and satisfying the condition of the following formula 3.
  • Conditions 5) and 6) are conditions that can effectively suppress spurious when the duty ratio of the central region is 0.5.
  • the duty ratio in the central region is smaller than 0.5, the sound velocity V1 in the central region is higher than that in the case where the duty ratio is 0.5. Therefore, a metal that satisfies the above conditions 5) and 6) is used for the main electrode layer. By using it, the sound speed ratio V2 / V1 can be reduced to 0.98 or less, and spurious can be effectively suppressed. That is, by using a metal satisfying the conditions 5) and 6) for the main electrode layer, the duty ratio of the central region can be selected in the range of 0.3 or more and 0.5 or less. That is, since it becomes possible to select a larger duty ratio, the resistance of the electrode finger can be further reduced, and the insertion loss of the acoustic wave device can be further reduced.
  • the duty ratio of the central region of the IDT electrode As the duty ratio of the central region of the IDT electrode is increased, the electrical resistance of the IDT electrode can be lowered and the insertion loss can be reduced. For example, when the duty ratio of the central region of the IDT electrode is increased to 0.525 and the sound speed ratio V2 / V1 is 0.98 or less, spurious can be effectively suppressed, and The electric resistance of the IDT electrode can be further reduced.
  • the inventors of the present application have found that the conditions under which the duty ratio of the central region of the IDT electrode is 0.525 and the sound speed ratio V2 / V1 is 0.98 or less are the following 7) and 8).
  • the condition for the transverse wave bulk sound velocity v of a metal material that can make the sound velocity ratio 0.98 or less is v ⁇ 2289 m. / S.
  • the sound speed V1 in the central region is higher than that in the case where the duty ratio is 0.525. Therefore, by using a metal that satisfies the above conditions for the main electrode layer Similarly, the sound speed ratio V2 / V1 can be reduced to 0.98 or less.
  • V1 is set to a duty ratio of 0.00.
  • V2 is the minimum value within the range of the duty ratio of 0.525 or more and 0.8 or less.
  • the value when the duty ratio is 0.525 and the minimum value within the range where the duty ratio is 0.525 or more and 0.8 or less are Different. Therefore, in the following, the conditions under which the sound speed ratio V2 / V1 is 0.98 or less will be examined in detail for the material used for the main electrode layer and the film thickness of the main electrode layer.
  • the duty ratio in the center region is 0.525
  • the duty ratio in the low sound velocity region is the duty ratio that gives the lowest sound speed within the range of 0.525 to 0.80.
  • the main electrode layer is made of Pt, as shown in FIG. 7, the main electrode in which the sound velocity ratio V2 / V1 between the first low sound velocity region and the second low sound velocity region and the central region is 0.98.
  • the thickness of the layer is 0.053 ⁇ .
  • the duty ratio of the central region is the duty ratio of 0.525
  • the duty ratio of the first low sound velocity region and the second low sound velocity region is the duty that the sound velocity is lowest within the range of 0.525 to 0.80.
  • the film thickness T of the main electrode layer at which the sound speed ratio V2 / V1 between the first low sound speed region and the second low sound speed region and the central region is 0.98 was obtained.
  • the relationship between the film thickness T and the sound velocity v of the transverse bulk wave propagating through the metal that is the main component of the main electrode layer was determined.
  • FIG. 12 shows the sound velocity v of the transverse bulk wave propagating in the metal that is the main component of the main electrode layer, the duty ratio in the central region is 0.525, and the sound velocity ratio V2 / V1 is 0.98. It is a figure which shows the relationship with the film thickness T of an electrode layer.
  • the sound velocity ratio V2 / V1 between the first low sound velocity region and the second low sound velocity region and the central region is 0.98. It can be as follows. When the duty ratio in the central region is smaller than 0.525, the sound speed V1 in the central region is higher than that in the case where the duty ratio is 0.525. By increasing the thickness of the electrode layer, the sound speed ratio V2 / V1 can be similarly reduced to 0.98 or less.
  • the sound speed ratio V2 / V1 can be reduced to 0.98 or less by using the metal satisfying the above 7) as the main electrode layer and satisfying the condition of the following formula 4.
  • Conditions 7) and 8) are conditions that can effectively suppress spurious when the duty ratio of the central region is 0.525.
  • the duty ratio in the central region is smaller than 0.525, the sound speed V1 in the central region is higher than that in the case where the duty ratio is 0.525. Therefore, a metal satisfying the above conditions 7) and 8) is used for the main electrode layer. By using it, the sound speed ratio V2 / V1 can be reduced to 0.98 or less, and spurious can be effectively suppressed. That is, by using a metal satisfying the conditions 7) and 8) for the main electrode layer, the duty ratio of the central region can be selected in the range of 0.3 or more and 0.525 or less. That is, since it becomes possible to select a larger duty ratio, the resistance of the electrode finger can be further reduced, and the insertion loss of the acoustic wave device can be further reduced.
  • the duty ratio of the central region of the IDT electrode As the duty ratio of the central region of the IDT electrode is increased, the electrical resistance of the IDT electrode can be lowered and the insertion loss can be reduced. For example, when the duty ratio of the central region of the IDT electrode is increased to 0.55 and the sound speed ratio V2 / V1 is 0.98 or less, spurious can be effectively suppressed, and The electric resistance of the IDT electrode can be further reduced.
  • the inventors of the present application have found that the conditions under which the duty ratio in the central region of the IDT electrode is 0.55 and the sound speed ratio V2 / V1 is 0.98 or less are the following 9) and 10).
  • the condition for the transverse wave bulk sound velocity v of a metal material that can make the sound velocity ratio 0.98 or less is v ⁇ 2087 m. / S.
  • the sound speed V1 in the central region is higher than that in the case where the duty ratio is 0.55. Therefore, by using a metal satisfying the above condition for the main electrode layer. Similarly, the sound speed ratio V2 / V1 can be reduced to 0.98 or less.
  • V1 is set to a duty ratio of. 55
  • V2 is the minimum value within the range of 0.55 to 0.8.
  • the value when the duty ratio is 0.55 and the minimum value within the range where the duty ratio is 0.55 or more and 0.8 or less depending on the film thickness of the main electrode layer made of a metal that satisfies the above condition 9) are Different. Therefore, in the following, the conditions under which the sound speed ratio V2 / V1 is 0.98 or less will be examined in detail for the material used for the main electrode layer and the film thickness of the main electrode layer.
  • the duty ratio in the center region is 0.55
  • the duty ratio in the low sound velocity region is the duty ratio that gives the lowest sound speed within the range of 0.55 to 0.80.
  • the main electrode layer is made of Pt, as shown in FIG. 7, the main electrode in which the sound velocity ratio V2 / V1 between the first low sound velocity region and the second low sound velocity region and the central region is 0.98.
  • the thickness of the layer is 0.090 ⁇ .
  • the same relationship as the relationship shown in FIG. 7 was obtained for the case where a metal satisfying 9) such as Au was used for the main electrode layer.
  • the duty ratio of the central area is the duty ratio of 0.55
  • the duty ratio of the first low sound speed area and the second low sound speed area is the duty ratio at which the sound speed is the lowest in the range of 0.55 to 0.80.
  • the film thickness T of the main electrode layer at which the sound speed ratio V2 / V1 between the first low sound speed region and the second low sound speed region and the central region is 0.98 was obtained.
  • the relationship between the film thickness T and the sound velocity v of the transverse bulk wave propagating through the metal that is the main component of the main electrode layer was determined.
  • FIG. 13 shows the sound velocity v of the transverse bulk wave propagating in the metal that is the main component of the main electrode layer, the duty ratio in the central region is 0.55, and the sound velocity ratio V2 / V1 is 0.98. It is a figure which shows the relationship with the film thickness T of an electrode layer.
  • the sound velocity ratio V2 / V1 between the first low sound velocity region and the second low sound velocity region and the central region is 0.98. It can be as follows. Note that when the duty ratio in the central region is smaller than 0.55, the sound speed V1 in the central region is higher than that in the case where the duty ratio is 0.55. Therefore, the main area is larger than the film thickness T expressed by the above formula. By increasing the thickness of the electrode layer, the sound speed ratio V2 / V1 can be similarly reduced to 0.98 or less.
  • the sound speed ratio V2 / V1 can be reduced to 0.98 or less by using a metal satisfying the above 9) as the main electrode layer and satisfying the condition of the following formula 5.
  • Conditions 9) and 10) are conditions that can effectively suppress spurious when the duty ratio of the central region is 0.55.
  • the duty ratio in the central region is smaller than 0.55, the sound velocity V1 in the central region is higher than that in the case where the duty ratio is 0.55. Therefore, a metal satisfying the above conditions 9) and 10) is used for the main electrode layer. By using it, the sound speed ratio V2 / V1 can be reduced to 0.98 or less, and spurious can be effectively suppressed. That is, by using a metal satisfying the conditions 9) and 10) for the main electrode layer, the duty ratio of the central region can be selected in the range of 0.3 or more and 0.55 or less. That is, since it becomes possible to select a larger duty ratio, the resistance of the electrode finger can be further reduced, and the insertion loss of the acoustic wave device can be further reduced.
  • the IDT electrode is a laminate of a main electrode layer and a conductive auxiliary electrode layer.
  • the IDT electrode only needs to have a main electrode layer, and the laminated structure is not limited to the above. Examples of the laminated structure of the IDT electrode will be described below by the first to third modifications of the first embodiment.
  • an adhesion layer 6 a is provided on the piezoelectric substrate 2.
  • a main electrode layer 6b is stacked on the adhesion layer 6a.
  • the adhesion layer 6a is made of, for example, Ti or NiCr. Since the adhesion layer 6a is provided, the adhesion of the IDT electrode 13 to the piezoelectric substrate 2 can be improved.
  • the adhesion layer 6a, the main electrode layer 6b, and the adhesion layer 6e are laminated in this order from the piezoelectric substrate 2 side.
  • the adhesion layer 6a, the main electrode layer 6b, the diffusion prevention layer 6c, the conductive auxiliary electrode layer 6d, and the adhesion layer 6e are stacked in this order.
  • the diffusion preventing layer 6c is made of Ti, for example.
  • the first high sound velocity region and the second high sound velocity region are between the first bus bar 3 a 1 and the first edge region A 2 a and the second bus bar. 3b1 and the second edge region A2b. Note that the first high sound velocity region and the second high sound velocity region may be provided in the first bus bar 3a1 and the second bus bar 3b1. This is shown in a fourth modification of the first embodiment below.
  • FIG. 17 is an enlarged plan view showing the vicinity of the first bus bar in the fourth modified example of the first embodiment.
  • a plurality of openings 55 are provided in the first bus bar 53a1, and the first bus bar 53a1 is divided into an inner bus bar portion 53A, a central bus bar portion 53B, and an outer bus bar portion 53C.
  • the inner bus bar portion 53A functions as a first low sound velocity region together with the first edge region
  • the central bus bar portion 53B functions as a first high sound velocity region.
  • V5 is the highest sound speed in the entire region.
  • the sound velocity relationship in each region is V5> V1> (average of V2 to V4), and the piston mode Is established.
  • FIG. 17 shows the relationship between the sound velocities V1 to V6 as described above.
  • FIG. 17 shows that the sound speed increases toward the outside.
  • the second bus bar side is configured in the same manner as the first bus bar 53a1 side.
  • the piezoelectric body is the piezoelectric substrate 2, but the piezoelectric body may be the piezoelectric thin film 42 as in the fifth modification of the first embodiment shown in FIG.
  • a low sound velocity film 43 may be provided on the surface of the piezoelectric thin film 42 opposite to the surface on which the IDT electrode 3 is provided.
  • a high acoustic velocity member 44 may be provided on the surface of the low acoustic velocity film 43 opposite to the piezoelectric thin film 42 side.
  • the low acoustic velocity film 43 is a membrane in which the acoustic velocity of the bulk wave propagating is lower than the acoustic velocity of the elastic wave propagating through the piezoelectric thin film 42.
  • the low acoustic velocity film 43 is made of, for example, a material mainly composed of glass, silicon oxide, silicon oxynitride, tantalum oxide, or a compound obtained by adding fluorine, carbon, or boron to silicon oxide.
  • the material of the low sound velocity film 43 may be a material having a relatively low sound velocity.
  • the high sound velocity member 44 is a member in which the sound velocity of the bulk wave propagating is higher than the sound velocity of the elastic wave propagating through the piezoelectric thin film 42.
  • the high acoustic velocity member 44 is made of, for example, aluminum nitride, aluminum oxide, silicon carbide, silicon oxynitride, silicon, a DLC film, or a material mainly composed of diamond.
  • the material of the high sound speed member 44 may be a material having a relatively high sound speed.
  • the high sound speed member 44 may be a high sound speed film or a high sound speed substrate. As described above, when the low sound velocity film 43 and the high sound velocity member 44 are provided, the energy of the elastic wave can be effectively confined.
  • spurious other than spurious due to higher-order transverse modes suppressed by the piston mode may occur in the vicinity of the passband.
  • the SH wave becomes spurious for an elastic wave device using Rayleigh waves
  • the Rayleigh wave becomes spurious for an elastic wave device using SH waves such as Love waves.
  • spurious due to SH waves can be suppressed when Rayleigh waves are used in addition to spurious due to higher-order transverse modes.
  • the piezoelectric substrate is made of LiNbO 3 and the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric substrate are defined as shown below.
  • a first dielectric film made of silicon oxide is formed.
  • the elastic wave device of the second embodiment has the same configuration as the elastic wave device 1 of the first embodiment shown in FIG. In the second embodiment, Rayleigh waves are used.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric substrate are Euler angles (0 ° ⁇ 5 °, ⁇ , 0 ° ⁇ 10 °).
  • ⁇ at Euler angles ( ⁇ , ⁇ , ⁇ ) is ⁇ ⁇ 27 °.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric substrate 2 are (0 ° ⁇ 5 °, ⁇ 0.054 / (T ⁇ r ⁇ 0.044) +31.33 ⁇ ° ⁇ 1.5 °). , 0 ° ⁇ 10 °).
  • the details of the relational expression between ⁇ at the Euler angles ( ⁇ , ⁇ , ⁇ ) and the film thickness T of the main electrode layer will be described later.
  • the frequency was a normalized frequency with a resonance frequency of 1. The conditions are as follows.
  • Piezoelectric substrate material LiNbO 3 , Euler angles (0 °, 30 °, 0 °)
  • Main electrode layer Material Pt, film thickness 0.085 ⁇
  • Conductive auxiliary electrode layer material Al, film thickness 0.08 ⁇
  • First dielectric film material SiO 2 , film thickness 0.30 ⁇
  • Second dielectric film material SiN, film thickness 0.01 ⁇
  • Duty ratio of center area 0.50
  • Elastic wave used Rayleigh wave
  • impedance frequency characteristics and return loss in a comparative example in which ⁇ at the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric substrate is outside the range of the second embodiment were measured.
  • the conditions are as follows.
  • the film configuration of the IDT electrode is the same as that of the second embodiment, but the Euler angle of the piezoelectric substrate is set as a condition in a conventional acoustic wave device using Rayleigh waves.
  • Piezoelectric substrate material LiNbO 3 , Euler angles (0 °, 38 °, 0 °)
  • Main electrode layer Material Pt, film thickness 0.085 ⁇
  • Conductive auxiliary electrode layer material Al, film thickness 0.08 ⁇
  • First dielectric film material SiO 2 , film thickness 0.30 ⁇
  • Second dielectric film material SiN, film thickness 0.01 ⁇
  • Duty ratio of center area 0.50
  • Elastic wave used Rayleigh wave
  • FIG. 19 is a diagram showing impedance frequency characteristics of the acoustic wave device according to the second embodiment.
  • FIG. 20 is a diagram illustrating a return loss of the acoustic wave device according to the second embodiment.
  • FIG. 21 is a diagram illustrating impedance frequency characteristics of the elastic wave device of the comparative example.
  • FIG. 22 is a diagram illustrating the return loss of the elastic wave device of the comparative example.
  • the electromechanical coupling coefficient of the SH wave varies depending on the value of ⁇ at the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric substrate, the thickness of the main electrode layer of the IDT electrode, and the like.
  • the electromechanical coupling coefficient of the SH wave can be made substantially zero. Therefore, spurious due to the SH wave can be effectively suppressed. Note that, as shown in FIGS. 19 and 20, it is understood that spurious due to the high-order transverse mode hardly occurs.
  • ⁇ at the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric substrate shown in Table 2 above and the film thickness of the main electrode layer is expressed by the following equation. Note that the thickness of the main electrode layer when Pt is used for the main electrode layer is defined as TPt .
  • FIG. 23 is a diagram showing the range of ⁇ in the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric substrate in the second embodiment.
  • the relationship of -1.5 is shown respectively.
  • ⁇ in Euler angles ( ⁇ , ⁇ , ⁇ ) is a value within a range surrounded by a broken line and a one-dot chain line in FIG.
  • is in the range of ⁇ 0.054 / (T ⁇ r ⁇ 0.044) +31.33 ⁇ ° ⁇ 1.5 °
  • spurious due to the SH wave is effectively suppressed.
  • since ⁇ ⁇ 27 °, spurious due to the SH wave can be stably suppressed.
  • T.times.r.ltoreq.0.10.lamda. An IDT electrode can be suitably formed during manufacturing, and cracks are unlikely to occur in the dielectric film.
  • the present invention is also an invention that clarifies that spurious can be effectively suppressed when the sound speed ratio V2 / V1 is set to 0.98 or less.
  • Patent Document 1 does not describe the sound speed ratio V2 / V1.
  • spurious may occur depending on the sound speed ratio V2 / V1, but the present invention effectively suppresses spurious by setting the sound speed ratio V2 / V1 to 0.98 or less. To get.
  • the above conditions include not only the method of forming the first and second low sound velocity regions by making the duty ratio in the first and second edge regions larger than the duty ratio in the central region, but also the first and second A method of forming a low sound velocity region by laminating a mass-added film made of a dielectric or metal on the electrode finger is also valid.
  • the acoustic wave device is a 1-port type acoustic wave resonator.
  • this invention can be applied suitably also for elastic wave apparatuses other than the above.
  • the elastic wave device can be used as a duplexer for a high-frequency front end circuit. This example is described below.
  • FIG. 24 is a configuration diagram of a communication apparatus having a high-frequency front-end circuit.
  • components connected to the high-frequency front-end circuit 230 for example, the antenna element 202 and the RF signal processing circuit (RFIC) 203 are also shown.
  • the high-frequency front end circuit 230 and the RF signal processing circuit 203 constitute a communication device 240.
  • the communication device 240 may include a power supply, a CPU, and a display.
  • the high-frequency front-end circuit 230 includes a switch 225, duplexers 201A and 201B, filters 231, 232, low-noise amplifier circuits 214, 224, and power amplifier circuits 234a, 234b, 244a, 244b. Note that the high-frequency front-end circuit 230 and the communication device 240 in FIG. 24 are examples of the high-frequency front-end circuit and the communication device, and are not limited to this configuration.
  • the duplexer 201A includes filters 211 and 212.
  • the duplexer 201B includes filters 221 and 222.
  • the duplexers 201 ⁇ / b> A and 201 ⁇ / b> B are connected to the antenna element 202 via the switch 225.
  • the said elastic wave apparatus may be duplexers 201A and 201B, and may be filters 211, 212, 221 and 222.
  • the elastic wave device may be an elastic wave resonator constituting the duplexers 201A, 201B and the filters 211, 212, 221, 222.
  • the elastic wave device is also applicable to a multiplexer having three or more filters, such as a triplexer in which the antenna terminals of three filters are shared, and a hexaplexer in which the antenna terminals of six filters are shared. Can do.
  • the acoustic wave device includes an acoustic wave resonator, a filter, a duplexer, and a multiplexer including three or more filters.
  • the multiplexer is not limited to the configuration including both the transmission filter and the reception filter, and may be configured to include only the transmission filter or only the reception filter.
  • the switch 225 connects the antenna element 202 and a signal path corresponding to a predetermined band in accordance with a control signal from a control unit (not shown), and is configured by, for example, a SPDT (Single Pole Double Throw) type switch. .
  • a SPDT Single Pole Double Throw
  • the number of signal paths connected to the antenna element 202 is not limited to one and may be plural. That is, the high frequency front end circuit 230 may support carrier aggregation.
  • the low noise amplifier circuit 214 is a reception amplification circuit that amplifies a high frequency signal (here, a high frequency reception signal) via the antenna element 202, the switch 225, and the duplexer 201A and outputs the amplified signal to the RF signal processing circuit 203.
  • the low noise amplifier circuit 224 is a reception amplification circuit that amplifies a high-frequency signal (here, a high-frequency reception signal) that has passed through the antenna element 202, the switch 225, and the duplexer 201B, and outputs the amplified signal to the RF signal processing circuit 203.
  • the power amplifier circuits 234a and 234b are transmission amplifier circuits that amplify the high frequency signal (here, the high frequency transmission signal) output from the RF signal processing circuit 203 and output the amplified signal to the antenna element 202 via the duplexer 201A and the switch 225.
  • the power amplifier circuits 244a and 244b are transmission amplifier circuits that amplify the high-frequency signal (here, the high-frequency transmission signal) output from the RF signal processing circuit 203 and output the amplified signal to the antenna element 202 via the duplexer 201B and the switch 225. .
  • the RF signal processing circuit 203 processes the high-frequency reception signal input from the antenna element 202 via the reception signal path by down-conversion or the like, and outputs a reception signal generated by the signal processing.
  • the RF signal processing circuit 203 performs signal processing on the input transmission signal by up-conversion or the like, and outputs a high-frequency transmission signal generated by the signal processing to the low noise amplifier circuit 224.
  • the RF signal processing circuit 203 is, for example, an RFIC.
  • the communication apparatus may include a BB (baseband) IC. In this case, the BBIC processes the received signal processed by the RFIC.
  • the BBIC processes the transmission signal and outputs it to the RFIC.
  • the reception signal processed by the BBIC and the transmission signal before the signal processing by the BBIC are, for example, an image signal or an audio signal.
  • the high-frequency front end circuit 230 may include other circuit elements between the above-described components.
  • the high-frequency front end circuit 230 may include a duplexer according to a modification of the duplexers 201A and 201B instead of the duplexers 201A and 201B.
  • the filters 231 and 232 in the communication device 240 are connected between the RF signal processing circuit 203 and the switch 225 without passing through the low noise amplifier circuits 214 and 224 and the power amplifier circuits 234a, 234b, 244a and 244b.
  • the filters 231 and 232 are also connected to the antenna element 202 via the switch 225, similarly to the duplexers 201A and 201B.
  • the high-frequency front-end circuit 230 and the communication device 240 configured as described above, by including the elastic wave device of the present invention, an acoustic wave resonator, a filter, a duplexer, a multiplexer including three or more filters, and the like. Therefore, it is possible to effectively suppress the spurious due to the high-order transverse mode.
  • the elastic wave device, the high-frequency front-end circuit, and the communication device according to the embodiment of the present invention have been described with reference to the embodiment and its modified examples, but are realized by combining arbitrary components in the above-described embodiment and modified examples.
  • the present invention is not limited to the above-described embodiments, various modifications conceived by those skilled in the art without departing from the spirit of the present invention, and the high-frequency front-end circuit and communication device according to the present invention.
  • Various built-in devices are also included in the present invention.
  • the present invention can be widely used in communication devices such as mobile phones as an elastic wave resonator, a filter, a duplexer, a multiplexer, a front-end circuit, and a communication device that can be applied to a multiband system.
  • outer bus bar part 55 ... openings 201A, 201B ... duplexer 202 ... antenna element 203 ... RF signal processing circuits 211,212 ... Filter 214 ... Low noise amplifier circuit 221, 222 ... Filter 224 ... Low noise amplifier circuit 225 ... Switch 230 ... High frequency front end circuit 231, 232 ... Filter 234a, 234b ... power amplifier circuit 240 ... communication device 244a, 244b ... power amplifier circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Ceramic Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

第1のエッジ領域及び第2のエッジ領域におけるデューティ比を中央領域におけるデューティ比より大きくすることにより低音速領域を形成する、ピストンモードを用いた弾性波装置において、高次の横モードによるスプリアスを効果的に抑制することができる、弾性波装置を提供する。 弾性波装置1は圧電基板2(圧電体)と、圧電基板2上に設けられたIDT電極3とを備える。IDT電極3においては中央領域A1、第1,第2の低音速領域及び第1,第2の高音速領域がこの順序で配置されている。複数の第1,第2の電極指3a2,3b2の第1,第2の低音速領域におけるデューティ比が中央領域A1におけるデューティ比より大きい。主電極層の主成分である金属中を伝搬する横波バルク波の音速をv(m/s)としたときに、v≦3299m/sであり、IDT電極3の電極指ピッチにより規定される波長をλとし、波長λにより規格化された主電極層の膜厚をTとしたときに、T≧0.00018e0.002V+0.014を満たす。

Description

弾性波装置、高周波フロントエンド回路及び通信装置
 本発明は、ピストンモードを利用した弾性波装置、高周波フロントエンド回路及び通信装置に関する。
 従来、不要波を抑制するために、ピストンモードを利用した弾性波装置が提案されている。
 例えば、下記の特許文献1には、ピストンモードを利用した弾性波装置の一例が示されている。弾性波装置では、IDT電極の複数の第1の電極指と複数の第2の電極指とが弾性波伝搬方向に見たときに重なっている領域が、交叉領域である。特許文献1に記載の弾性波装置では、交叉領域は、第1,第2の電極指が延びる方向において中央に位置する中央領域と、中央領域の第1,第2の電極指が延びる方向両側に設けられた第1,第2のエッジ領域とを有する。
 そして、下記の特許文献1では、第1,第2のエッジ領域においては、第1,第2の電極指上に誘電体または金属からなる質量付加膜を積層することにより低音速領域を形成する方法や、第1,第2のエッジ領域におけるデューティ比を中央領域におけるデューティ比より大きくすることにより低音速領域を形成する方法が開示されている。低音速領域の外側の領域は、中央領域における音速よりも音速が高い、高音速領域である。中央領域、低音速領域及び高音速領域をこの順序で配置することにより、弾性波のエネルギーを閉じ込め、かつ高次の横モードによるスプリアスを抑制している。
特表2013-518455号公報
 ここで、第1,第2の電極指上に誘電体または金属からなる質量付加膜を積層することにより低音速領域を形成する方法の場合、露光および成膜の工程を必要とするため、生産コストが高くなるという問題がある。
 そのため、生産コストの観点では、第1,第2のエッジ領域におけるデューティ比を中央領域におけるデューティ比より大きくすることにより低音速領域を形成する方法の方が好ましい。しかしながら、この方法の場合、IDT電極における主電極層の材料や膜厚によっては、低音速領域と中央領域の音速差をある程度以上大きくすることが困難であるため、スプリアスを抑制することができない場合がある、という問題がある。
 本発明の目的は、第1のエッジ領域及び第2のエッジ領域におけるデューティ比を中央領域におけるデューティ比より大きくすることにより低音速領域を形成する、ピストンモードを用いた弾性波装置において、高次の横モードによるスプリアスを効果的に抑制することができる、弾性波装置、高周波フロントエンド回路及び通信装置を提供することにある。
 本発明に係る弾性波装置のある広い局面では、圧電体と、前記圧電体上に設けられており、主電極層を有するIDT電極とを備え、前記IDT電極が、対向し合っている第1のバスバー及び第2のバスバーと、前記第1のバスバーに一端が接続された複数の第1の電極指と、前記第2のバスバーに一端が接続されており、かつ前記複数の第1の電極指と間挿し合っている複数の第2の電極指とを有し、前記複数の第1の電極指と前記複数の第2の電極指とが弾性波伝搬方向において重なり合っている部分である交叉領域を有し、前記複数の第1の電極指が延びる方向または前記複数の第2の電極指が延びる方向を長さ方向とした場合に、前記交叉領域が、前記長さ方向における、前記第1の電極指及び前記第2の電極指の中央に位置している中央領域と、前記長さ方向において、前記中央領域の前記第1のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が低速である、第1の低音速領域と、前記長さ方向において、前記中央領域の前記第2のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が低速である、第2の低音速領域とを有し、前記長さ方向において、前記第1の低音速領域の前記第1のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が高速である第1の高音速領域と、前記長さ方向において、前記第2の低音速領域の前記第2のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が高速である第2の高音速領域とが設けられており、前記第1の低音速領域及び前記第2の低音速領域におけるデューティ比が、前記中央領域におけるデューティ比より大きく、前記主電極層の主成分である金属中を伝搬する横波バルク波の音速をv(m/s)としたときに、v≦3299m/sであり、前記IDT電極の電極指ピッチにより規定される波長をλとし、前記波長λにより規格化された前記主電極層の膜厚をTとしたときに、下記の式1
 T≧0.00018e0.002v+0.014…式1
を満たす。
 本発明に係る弾性波装置のある特定の局面では、前記IDT電極が、前記主電極層を含む複数の層からなる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記主電極層が、Au、Pt、Ta、Cu、Ni及びMoのうち1種を主成分とする。
 本発明に係る弾性波装置の他の特定の局面では、前記IDT電極において、v≦2895m/sであり、かつ下記の式2
 T≧0.000029e0.0032v+0.02…式2
を満たす。この場合には、高次の横モードによるスプリアスを効果的に抑制し得る条件において、IDT電極の中央領域のデューティ比を一層大きくすることができる。よって、IDT電極の電気抵抗を低くすることができ、挿入損失を小さくすることができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記IDT電極において、v≦2491m/sであり、かつ下記の式3
 T≧0.000038e0.0035v+0.025…式3
を満たす。この場合には、高次の横モードによるスプリアスを効果的に抑制し得る条件において、IDT電極の中央領域のデューティ比をより一層大きくすることができる。よって、IDT電極の電気抵抗を低くすることができ、挿入損失を小さくすることができる。
 本発明に係る弾性波装置の他の特定の局面では、前記IDT電極において、v≦2289m/sであり、かつ下記の式4
 T≧0.000020e0.0042v+0.03…式4
を満たす。この場合には、高次の横モードによるスプリアスを効果的に抑制し得る条件において、IDT電極の中央領域のデューティ比を一層大きくすることができる。よって、IDT電極の電気抵抗を低くすることができ、挿入損失を小さくすることができる。
 本発明に係る弾性波装置の他の特定の局面では、前記IDT電極において、v≦2087m/sであり、かつ下記の式5
 T≧0.000017e0.0048v+0.033…式5
を満たす。この場合には、高次の横モードによるスプリアスを効果的に抑制し得る条件において、IDT電極の中央領域のデューティ比を一層大きくすることができる。よって、IDT電極の電気抵抗を低くすることができ、挿入損失を小さくすることができる。
 本発明に係る弾性波装置の別の特定の局面では、前記圧電体がLiNbOからなり、前記圧電体のオイラー角(φ,θ,ψ)がオイラー角(0°±5°,θ,0°±10°)であり、前記圧電体の前記オイラー角(φ,θ,ψ)におけるθがθ≧27°であり、前記オイラー角(φ,θ,ψ)が、前記主電極層の材料の密度ρのPtの密度ρPtに対する比をr=ρ/ρPtとしたときに、(0°±5°,{-0.054/(T×r-0.044)+31.33}°±1.5°,0°±10°)であり、かつT×r≦0.10λである。この場合には、SH波によるスプリアスをより一層抑制することができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記IDT電極の前記第1のバスバー及び前記第2のバスバーに、開口部が設けられており、前記第1,第2のバスバーにおいて、前記開口部よりも前記長さ方向において前記中央領域側に位置している部分が内側バスバー部とされ、前記内側バスバー部と前記開口部を挟んで対向している部分が外側バスバー部とされており、前記第1のバスバーにおいて、前記内側バスバー部が低音速領域であり、前記開口部が設けられている領域が前記第1の高音速領域であり、前記第2のバスバーにおいて、前記内側バスバー部が低音速領域であり、前記開口部が設けられている領域が、前記第2の高音速領域である。
 本発明に係る弾性波装置の他の広い局面では、圧電体と、前記圧電体上に設けられており、主電極層を有するIDT電極とを備え、前記IDT電極が、対向し合っている第1のバスバー及び第2のバスバーと、前記第1のバスバーに一端が接続された複数の第1の電極指と、前記第2のバスバーに一端が接続されており、かつ前記複数の第1の電極指と間挿し合っている複数の第2の電極指とを有し、前記複数の第1の電極指と前記複数の第2の電極指とが弾性波伝搬方向において重なり合っている部分である交叉領域を有し、前記複数の第1の電極指が延びる方向または前記複数の第2の電極指が延びる方向を長さ方向とした場合に、前記交叉領域が、前記長さ方向における、前記第1の電極指及び前記第2の電極指の中央に位置している中央領域と、前記長さ方向であって、前記中央領域の前記第1のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が低速である、第1の低音速領域と、前記長さ方向であって、前記中央領域の前記第2のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が低速である、第2の低音速領域とを有し、前記長さ方向において、前記第1の低音速領域の前記第1のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が高速である第1の高音速領域と、前記長さ方向において、前記第2の低音速領域の前記第2のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が高速である第2の高音速領域と、が設けられており、前記中央領域における音速をV1、前記第1の低音速領域及び前記第2の低音速領域における音速をV2としたときに、V2/V1≦0.98である。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記圧電体上に、前記IDT電極を覆うように設けられている誘電体膜がさらに備えられている。この場合には、IDT電極の表面を保護することができ、IDT電極が破損し難い。
 本発明に係る高周波フロントエンド回路は、本発明に従い構成された弾性波装置と、パワーアンプとを備える。
 本発明に係る通信装置は、本発明に従い構成された高周波フロントエンド回路と、RF信号処理回路とを備える。
 本発明によれば、第1のエッジ領域及び第2のエッジ領域におけるデューティ比を中央領域におけるデューティ比より大きくすることにより低音速領域を形成する、ピストンモードを用いた弾性波装置において、高次の横モードによるスプリアスを効果的に抑制することができる、弾性波装置、高周波フロントエンド回路及び通信装置を提供することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の平面図である。 図2は、本発明の第1の実施形態におけるIDT電極の拡大正面断面図である。 図3は、正規化された基本モードの重なり積分値と、音速比V2/V1との関係を示す図である。 図4は、Ptからなる主電極層の厚みを0.02λとした場合の、デューティ比と規格化音速との関係を示す図である。 図5は、Ptからなる主電極層の厚みを0.04λとした場合の、デューティ比と規格化音速との関係を示す図である。 図6は、Ptからなる主電極層の厚みを0.06λとした場合の、デューティ比と規格化音速との関係を示す図である。 図7は、第1の低音速領域及び第2の低音速領域における音速V2が最も低くなる場合において、音速比V2/V1が0.98となる中央領域のデューティ比と、Ptからなる主電極層の膜厚との関係を示す図である。 図8は、音速比V2/V1が0.98となる中央領域のデューティ比の最大値と、主電極層の主成分である金属中を伝搬する横波バルク波の音速vとの関係を示す図である。 図9は、主電極層の主成分である金属中を伝搬する横波バルク波の音速vと、中央領域におけるデューティ比が0.40であり、かつ音速比V2/V1が0.98となる主電極層の膜厚Tとの関係を示す図である 図10は、主電極層の主成分である金属中を伝搬する横波バルク波の音速vと、中央領域におけるデューティ比が0.45であり、かつ音速比V2/V1が0.98となる主電極層の膜厚Tとの関係を示す図である。 図11は、主電極層の主成分である金属中を伝搬する横波バルク波の音速vと、中央領域におけるデューティ比が0.50であり、かつ音速比V2/V1が0.98となる主電極層の膜厚Tとの関係を示す図である。 図12は、主電極層の主成分である金属中を伝搬する横波バルク波の音速vと、中央領域におけるデューティ比が0.525であり、かつ音速比V2/V1が0.98となる主電極層の膜厚Tとの関係を示す図である。 図13は、主電極層の主成分である金属中を伝搬する横波バルク波の音速vと、中央領域におけるデューティ比が0.55であり、かつ音速比V2/V1が0.98となる主電極層の膜厚Tとの関係を示す図である。 図14は、本発明の第1の実施形態の第1の変形例におけるIDT電極の第1の電極指の拡大正面断面図である。 図15は、本発明の第1の実施形態の第2の変形例におけるIDT電極の第1の電極指の拡大正面断面図である。 図16は、本発明の第1の実施形態の第3の変形例におけるIDT電極の第1の電極指の拡大正面断面図である。 図17は、第1の実施形態の第4の変形例における第1のバスバー付近を示す拡大平面図である。 図18は、本発明の第1の実施形態の第5の変形例に係る弾性波装置の正面断面図である。 図19は、第2の実施形態に係る弾性波装置のインピーダンス周波数特性を示す図である。 図20は、第2の実施形態に係る弾性波装置のリターンロスを示す図である。 図21は、比較例の弾性波装置のインピーダンス周波数特性を示す図である。 図22は、比較例の弾性波装置のリターンロスを示す図である。 図23は、本発明の第2の実施形態における圧電基板のオイラー角(φ,θ,ψ)におけるθの範囲を示す図である。 図24は、高周波フロントエンド回路を有する通信装置の構成図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の平面図である。なお、図1においては、後述する第1,第2の誘電体膜を省略している。
 弾性波装置1は、1ポート型の弾性波共振子である。弾性波装置1は圧電体としての圧電基板2を有する。圧電基板2は、LiNbOからなる。
 圧電基板2上には、IDT電極3が設けられている。IDT電極3に交流電圧を印加することにより、弾性波が励振される。IDT電極3の弾性波伝搬方向両側には、反射器4及び反射器5が配置されている。
 IDT電極3は、対向し合っている第1のバスバー3a1及び第2のバスバー3b1を有する。IDT電極3は、第1のバスバー3a1に一端が接続されている、複数の第1の電極指3a2を有する。さらに、IDT電極3は、第2のバスバー3b1に一端が接続されている、複数の第2の電極指3b2を有する。
 複数の第1の電極指3a2と複数の第2の電極指3b2とは、互いに間挿し合っている。IDT電極3は、第1の電極指3a2と第2の電極指3b2とが弾性波伝搬方向において重なり合っている部分である交叉領域Aを有する。ここで、第1の電極指3a2及び第2の電極指3b2が延びる方向を第1の電極指3a2及び第2の電極指3b2の長さ方向とする。このとき、交叉領域Aは、長さ方向中央側に位置している中央領域A1と、長さ方向において、中央領域A1の両側に配置された第1,第2のエッジ領域A2a,A2bを有する。第1のエッジ領域A2aは第1のバスバー3a1側に位置し、第2のエッジ領域A2bは第2のバスバー3b1側に位置している。
 IDT電極3は、第1,第2のエッジ領域A2a,A2bの中央領域A1側とは反対側の領域である、第1,第2の外側領域Ba,Bbを有する。第1の外側領域Baは、第1のエッジ領域A2aと第1のバスバー3a1との間に位置している。第2の外側領域Bbは、第2のエッジ領域A2bと第2のバスバー3b1との間に位置している。
 図2は、第1の実施形態におけるIDT電極の拡大正面断面図である。ここで、第1の電極指及び第2の電極指における弾性波伝搬方向に沿う寸法を幅とする。図2中の寸法aは、第1の電極指または第2の電極指の幅を示す。寸法bは、第1の電極指の弾性波伝搬方向に沿う一方端と、該第1の電極指に隣接する第2の電極指の上記一方端との間の距離を示す。
 IDT電極3は、複数の金属層が積層された積層金属膜からなる。IDT電極3は主電極層6bを有する。主電極層6bは、IDT電極3を構成する複数の金属層のうち、最も大きな質量を占める電極層である。本実施形態では、主電極層はAlより密度が高い金属からなる。このような金属として、Au、Pt、Ta、Cu、Ni及びMoのうち1種を主成分とするものを用いることが好ましい。なお、主電極層6bの材料は上記に限定されず、Alより密度が高い金属であればよい。これにより、IDT電極3上に誘電体膜を形成した場合にも、弾性波の反射係数を高めることができる。
 本実施形態では、IDT電極3は、圧電基板2上に設けられた主電極層6b上に導電補助電極層6dが設けられている。導電補助電極層6dは、主電極層6bより電気抵抗が低い金属からなる。より具体的には、導電補助電極層6dは、例えば、Alからなる。導電補助電極層6dを有することにより、IDT電極3の電気抵抗を低くすることができる。なお、IDT電極3の積層構造は上記に限定されない。また、IDT電極3は主電極層6bのみを有する単層の金属膜からなっていてもよい。
 圧電基板2上には、IDT電極3を覆うように、本発明の誘電体膜としての第1の誘電体膜7が設けられている。本実施形態では、第1の誘電体膜7はSiOなどの酸化ケイ素からなる。これにより、周波数温度特性を改善することができる。加えて、IDT電極3の表面を保護することができ、IDT電極3が破損し難い。なお、第1の誘電体膜7の材料は上記に限定されない。第1の誘電体膜7は設けられていなくともよい。
 第1の誘電体膜7上には、第2の誘電体膜8が設けられている。本実施形態では、第2の誘電体膜8はSiNなどの窒化ケイ素からなる。第2の誘電体膜8の膜厚を調整することにより、周波数調整を容易に行うことができる。なお、第2の誘電体膜8の材料は上記に限定されない。第2の誘電体膜8は設けられていなくともよい。
 図1に戻り、複数の第1の電極指3a2は、第1のエッジ領域A2a及び第2のエッジ領域A2bにおいて、他の部分よりも幅が広い幅広部3a3をそれぞれ有する。同様に、複数の第2の電極指3b2も、それぞれ幅広部3b3を有する。
 複数の第1,第2の電極指3a2,3b2が幅広部3a3,3b3を有することにより、中央領域A1における弾性波の伝搬方向における伝搬速度(以下、音速)より第1のエッジ領域A2a及び第2のエッジ領域A2bにおける弾性波の音速が低速になっている。ここで、中央領域A1における弾性波の音速をV1、第1,第2のエッジ領域A2a,A2bにおける弾性波の音速をV2とする。このとき、V1>V2である。このように、第1のエッジ領域A2aを、第1の低音速領域とし、第2のエッジ領域A2bを、第2の低音速領域とする。
 第1の外側領域Baに位置している部分は、第1の電極指3a2のみである。第2の外側領域Bbに位置している部分は、第2の電極指3b2のみである。それによって、中央領域A1における弾性波の音速より第1の外側領域Ba及び第2の外側領域Bbにおける弾性波の音速が高くなっている。ここで、第1,第2の外側領域Ba,Bbにおける弾性波の音速をV3とする。このとき、V3>V1である。このように、第1の外側領域Ba及び第2の外側領域Bbは、中央領域A1よりも音速が高速である、第1の高音速領域及び第2の高音速領域である。
 中央領域A1の外側に第1,第2の低音速領域が配置され、第1,第2の低音速領域の外側に第1,第2の高音速領域が配置されている。ここで、第1,第2の低音速領域の弾性波伝搬方向に直交する方向に沿う寸法を第1,第2の低音速領域の幅とする。このとき、中央領域A1の音速V1、第1,第2の低音速領域の音速V2、第1,第2の高音速領域の音速V3、第1,第2の低音速領域の幅を調整することにより、中央領域A1における第1の電極指が延びる方向及び第2の電極指が延びる方向の弾性波の変位分布をほぼ一定にすることができる。これによりピストンモードが成立することにより、高次の横モードによるスプリアスを抑制することができる。このように、弾性波装置1はピストンモードを利用している。
 上記のような各音速V1,V2,V3の関係を図1に示す。なお、図1における外側に向かうにつれて、音速が高速であることを示す。
 ここで、本願発明者らは、ピストンモードを利用した弾性波装置1において、音速比V2/V1が0.98以下となる場合に、スプリアスを効果的に抑制し得ることを明らかにした。
 そして、本願発明者らは、第1のエッジ領域A2aにおけるデューティ比及び第2のエッジ領域A2bにおけるデューティ比を中央領域A1におけるデューティ比より大きくすることにより第1の低音速領域及び第2の低音速領域を形成するピストンモード(以下、「平面ピストンモード」とする。)を利用した弾性波装置1において、音速比V2/V1が0.98以下となる条件が、下記1)と2)であることも明らかにした。
 なお、デューティ比とは、弾性波伝搬方向における電極が形成されている部分の割合であり、図2中の寸法a及び寸法bを用いてa/bで表される。
また、デューティ比が小さすぎるとIDT電極を形成することができず、デューティ比が大きすぎるとIDT電極の電極指間のギャップを形成できずショートしてしまうため、デューティ比が0.30以上、0.80以下の範囲内でなければIDT電極の形成が困難であることが当業者の間で知られている。
 1)主電極層6bの主成分である金属中を伝搬する横波バルク波の音速をv(m/s)としたときに、v≦3299m/sである。
 2)IDT電極3の電極指ピッチにより規定される波長をλとし、波長λにより規格化された主電極層6bの膜厚をTとしたときに、下記の式1を満たす。
 T≧0.00018e0.002v+0.014…式1
 つまり、本願発明者らは、平面ピストンモードを利用する弾性波装置1において、上記1)と2)の条件を満たす、IDT電極3における主電極層6bの材料及び膜厚を選択することで、第1の低音速領域及び第2の低音速領域と中央領域との音速差をある程度以上大きくすることを可能とし、スプリアスを抑制し得ることを見出した。
 上述したように、ピストンモードを利用した弾性波装置1において、音速比V2/V1が0.98以下となる場合に、スプリアスを効果的に抑制し得る。これを下記の図3に示す。
 図3は、正規化された基本モードの重なり積分値と、音速比V2/V1との関係を示す図である。図3の縦軸は、特許文献1内に記載されている、正規化された基本モードの重なり積分値である。この積分値は、高次の横モードによるスプリアスを抑制することができる度合いを示す指標として用いられ、正規化された基本モードの重なり積分値の値が1に近いほど、高次の横モードによるスプリアスが抑制されていることを示すものである。横軸は第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1である。
 図3に示す関係を求めるにあたり、以下の条件を用いた。なお、交叉領域の弾性波伝搬方向に直交する方向に沿う寸法を交叉幅とする。弾性波伝搬方向に直交する方向を交叉幅方向とする。
 交叉幅:10λ
 第1の高音速領域及び第2の高音速領域と中央領域の音速比V3/V1:1.08
 異方性係数(下記の式の1+Γ):0.7485
 第1の低音速領域及び第2の低音速領域の幅:下記6の式に従い設定
 なお、下記の式(6)は、日本国特表2013-518455号公報(対応の国際公開番号はWO2011/088904)中の式[数5]で示されている式である。
Figure JPOXMLDOC01-appb-M000001
 なお、特許文献1では、上記の式6に従い第1の低音速領域及び第2の低音速領域の幅を設定すると、中央領域における弾性波の変位分布をほぼ一定にすることができ、ピストンモードが成立する、とある。
 この条件において、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1を変化させた場合の、基本モードの交叉幅方向の変位分布の変化を求めた。これを用いて正規化された重なり積分値を求めたものが、図3に示す関係である。
 図3に示すように、音速比V2/V1が0.98以下の条件では、重なり積分値は約0.992と1に近い値でほぼ一定である。しかしながら、音速比V2/V1が0.98より大きくなると重なり積分値は急激に小さくなる。従って、音速比V2/V1が0.98以下の条件では高次の横モードによるスプリアスを効果的に抑制することができる。
 なお、平面ピストンモードに限らず、他の一般的なピストンモードを利用した弾性波装置においても、音速比V2/V1が0.98以下となる場合に、スプリアスを効果的に抑制し得る。
 次に、平面ピストンモードを利用した弾性波装置を製造可能な範囲内において、音速比V2/V1が0.98以下となる条件の1つが、下記1)であることを、以下において示す。
 1)主電極層6bの主成分である金属中を伝搬する横波バルク波の音速をv(m/s)としたときに、v≦3299m/sである。
 ここで、上記製造可能な範囲内において、音速比V2/V1を最小にするためには、上記製造可能な範囲内における音速の最小値をV2にし、上記製造可能な範囲内における音速の最大値をV1にする必要がある。
 主電極層にPtを用い、主電極層の膜厚を0.02λ、0.04λ、0.06λとした場合の、デューティ比の変化に対する弾性波の音速の変化を求めた。条件は以下の通りである。
 圧電基板:材料LiNbO、オイラー角(0°,30°,0°)
 主電極層:材料Pt、膜厚0.02λ、0.04λ、0.06λ
 導電補助電極層:材料Al、膜厚0.08λ
 第1の誘電体膜:材料SiO、膜厚0.30λ
 第2の誘電体膜:材料SiN、膜厚0.01λ
 使用する弾性波:レイリー波
 図4は、Ptからなる主電極層の厚みを0.02λとした場合の、デューティ比と規格化音速との関係を示す図である。図5は、Ptからなる主電極層の厚みを0.04λとした場合の、デューティ比と規格化音速との関係を示す図である。図6は、Ptからなる主電極層の厚みを0.06λとした場合の、デューティ比と規格化音速との関係を示す図である。なお、図4~図6における縦軸はデューティ比が0.5における弾性波の音速を1として規格化した規格化音速である。
 図4~図6に示すように、主電極層にPtを用いた場合には、デューティ比が小さいほど弾性波の音速は高くなり、大きくなるほど弾性波の音速は低くなる。従って、第1の電極指及び第2の電極指の中央領域における幅よりも第1のエッジ領域における幅を広くすることで、第1の低音速領域を構成することができる。同様に、第1の電極指及び第2の電極指の中央領域における幅よりも第2のエッジ領域における幅を広くすることで、第2の低音速領域を構成することができる。
 また、デューティ比を小さくするほど音速は上昇するので、中央領域のデューティ比を小さくするほど、中央領域の音速V1を大きくすることができ、音速比V2/V1を小さくすることができる。それによって、高次の横モードによるスプリアスを効果的に抑制することができる。
 なお、デューティ比を小さくしすぎることによって、第1の電極指及び第2の電極指の幅が狭くなりすぎ、IDT電極を安定して形成し難くなり、製造が困難になるという問題も生じる。そのため、デューティ比の最小値としては、0.30以上とすることが望ましい。
 図4~図6に示すように、デューティ比の変化に対する規格化音速の変化は、いわゆる下に凸の状態となっている。すなわち、規格化音速の変化を示す曲線の傾きはデューティ比が大きいほど緩やかになっている。規格化音速は、デューティ比が0.80付近において極小となる。従って、第1の低音速領域及び第2の低音速領域のデューティ比は音速が極小となる値に設定することが好ましい。もっとも、デューティ比を大きくしすぎると、隣接し合う第1の電極指と第2の電極指との間での絶縁耐圧が劣化して製造が困難となるので、0.80以下とすることが望ましい。主電極層にPtを用いる場合は、第1の低音速領域及び第2の低音速領域のデューティ比は0.80であることが好ましい。
 Ptからなる主電極層の膜厚が0.02λの場合は、デューティ比0.80の場合に規格化音速は0.989となり、極小となる。つまり、この条件を第1の低音速領域及び第2の低音速領域のデューティ比に選んだ場合、第1の低音速領域及び第2の低音速領域の規格化音速V2は0.989となる。なお、第1の低音速領域及び第2の低音速領域の規格化音速は、音速と同様にV2で示す。中央領域の規格化音速も、音速と同様にV1で示す。
 一方、中央領域のデューティ比を0.41にすると、中央領域の規格化音速V1は1.009となる。このとき、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1=0.989/1.009=0.98となる。従って、Ptからなる主電極層の膜厚が0.02λの場合には、中央領域のデューティ比を0.41以下とすることで、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1を0.98以下とすることができる。
 同様に、主電極層の膜厚が0.04λの場合は、デューティ比0.80の場合に規格化音速は0.980で極小となる。つまり、この条件を第1の低音速領域及び第2の低音速領域のデューティ比に選んだ場合、第1の低音速領域及び第2の低音速領域の規格化音速V2は0.980となる。一方、中央領域のデューティ比を0.50にすると、中央領域の規格化音速V1は1.000となる。このとき、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1=0.980/1.000=0.98となる。従って、Ptからなる主電極層の膜厚が0.04λの場合には、中央領域のデューティ比を0.50以下とすることで、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1を0.98以下とすることができる。
 同様に、主電極層の膜厚が0.06λの場合は、デューティ比0.80の場合に規格化音速は0.974で極小となる。つまり、この条件を第1の低音速領域及び第2の低音速領域のデューティ比に選んだ場合、第1の低音速領域及び第2の低音速領域の規格化音速V2は0.974となる。一方、中央領域のデューティ比を0.53にすると、中央領域の規格化音速V1は0.994となる。このとき、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1=0.974/0.994=0.98となる。従って、Ptからなる主電極層の膜厚が0.06λの場合には、中央領域のデューティ比を0.53以下とすることで、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1を0.98以下とすることができる。
 Ptからなる主電極層の膜厚が上記以外の場合にも、第1の低音速領域及び第2の低音速領域のデューティ比を、上記製造可能な範囲内で音速V2が最も低くなるデューティ比とした場合に、音速比V2/V1が0.98となる中央領域のデューティ比を求めた。これを下記の図7に示す。
 図7は、第1の低音速領域及び第2の低音速領域における音速V2が最も低くなる場合において、音速比V2/V1が0.98となる中央領域のデューティ比と、Ptからなる主電極層の膜厚との関係を示す図である。
 図7に示すように、音速比V2/V1を0.98とした状態において中央領域のデューティ比を大きくするためには、主電極層の膜厚を厚くする必要がある。しかしながら、主電極層の膜厚を0.12λ以上の厚みにしても、音速比V2/V1を0.98とすることができるデューティ比は0.557より大きくならない。つまり、Ptを主電極層に用いて平面ピストンモードを実現するためには、中央領域のデューティ比を0.557以下とし、さらにそのデューティ比に応じた主電極層の膜厚とする必要がある。より具体的には、主電極層の膜厚を、中央領域のデューティ比の値が図7中の曲線により示される値以上となる膜厚にする必要がある。
 従来の知見では、主電極層の膜厚を厚くしていくことにより、音速のデューティ比に対する依存性が高くなり、容易に音速差を大きくするとができると考えられていた。ところが、驚くべきことに、本願発明者らは、音速のデューティ比に対する依存性は、主電極層の膜厚をある程度以上厚くしても高くならないということをこの結果から見出した。つまり、平面ピストンモードによりスプリアスを抑制することが可能な中央領域のデューティ比には上限があることを本願発明者らは見出した。
 同様のことを、Pt以外の金属を主電極層に用いた場合についても行い、音速比V2/V1を0.98とすることができる中央領域の最大のデューティ比を求めた。これを複数の種類の金属において行った。
 そして、上記において求めた音速比V2/V1を0.98とすることができる中央領域の最大のデューティ比と、主電極層を伝搬する横波バルク波の音速vとの関係を求めた。
 その結果を図8に示す。なお、図8は、音速比V2/V1が0.98となる中央領域のデューティ比の最大値と、主電極層の主成分である金属中を伝搬する横波バルク波の音速vとの関係を示す図である。
 ところで、金属中を伝搬する横波バルク波の音速は、各種類の金属において固有の値である。ここで、主電極層の主成分である金属中を伝搬する横波バルク波の音速をv(m/s)とする。金属中を伝搬する横波バルク波の音速vは、v=(c44/ρ)0.5で表される。なお、ρ(kg/m)は金属の密度であり、c44(Pa)は金属の弾性スティフネス定数の要素の一つである。ここで扱う金属は等方体とみなせるため、弾性スティフネス定数cijは、以下の行列式で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、本発明において主電極層に好適に用いられる金属である、Au、Pt、Ta、Cu、Ni及びMoの密度ρ(kg/m)、弾性定数c44、および金属中を伝搬する横波バルク波の音速vを表1に示す。
Figure JPOXMLDOC01-appb-T000003
 図8に示すように、主電極層の主成分である金属中を伝搬する横波バルク波の音速vが低くなるほど、音速比V2/V1を0.98以下にすることができる中央領域のデューティ比の最大値が大きくなっていることがわかる。すなわち、横波バルク波の音速がある一定値以下の金属を主電極層として用いない場合には、第1の低音速領域及び第2の低音速領域のデューティ比をどのように設定したとしても、中央領域のデューティ比を上記最大値以下の小さな値に設定しなければ、音速比V2/V1の値を0.98以下にすることはできない。
 中央領域のデューティ比の上限は、主電極層の材料によって異なる値をとる。そして、その中央領域のデューティ比の上限値は主電極層の材料の物性値の中でも、金属中を伝搬する横波バルク波の音速vと相関が高いことを本願発明者らはこの結果から見出した。従って、本発明の目的であるスプリアスの抑制を達成するためには、主電極層に用いられる金属の種類は限られる。すなわち、横波音速が小さい金属を主電極層として用いる必要がある。
 ここで、図8から音速比V2/V1が0.98となる中央領域のデューティ比の最大値をDとしたとき、Dと、IDT電極の主電極層6bの主成分である金属中を伝搬する横波バルク波の音速v(m/s)との関係式は、下記の式で表すことができる。
 D=-0.0001238v+0.8085
 例えば、IDT電極の中央領域のデューティ比を0.40にしつつ、音速比V2/V1を0.98以下とするためには、上記の式により、v≦3299m/sを満たす金属を、IDT電極の主電極層に用いる必要がある。なお、中央領域のデューティ比が0.40よりも小さい場合には、中央領域の音速V1がデューティ比0.40の場合よりも高くなるので、上記の条件を満たす金属を主電極層に用いることにより、同様に音速比V2/V1を0.98以下にすることができる。
 次に、音速比V2/V1が0.98以下となる条件の1つが、下記2)であることを、以下で示す。
 2)IDT電極の電極指ピッチにより規定される波長をλとし、波長λにより規格化された主電極層の膜厚をTとしたときに、下記の式1を満たす。
 T≧0.00018e0.002v+0.014…式1
 ここでは、中央領域のデューティ比を0.40としているので、音速比V2/V1を最小値にするためには、V1をデューティ比が0.40のときの値にし、V2をデューティ比が上記製造可能な範囲内における最小値にする必要がある。V2<V1とする必要があるので、第1の低音速領域及び第2の低音速領域のデューティ比は中央領域のデューティ比よりも大きくする必要があり、V2はデューティ比0.40以上、0.80以下の範囲内における最小値にする必要がある。
 なお、上記1)の条件を満たす金属からなる主電極層の膜厚の値により、デューティ比0.40のときの値及びデューティ比0.4以上、0.80以下の範囲内における最小値は異なる。そのため、下記において、主電極層に用いられる材料と主電極層の膜厚について、音速比V2/V1が0.98以下となる条件について詳細に検討する。
 中央領域のデューティ比を0.40とし、第1の低音速領域及び第2の低音速領域のデューティ比を、0.40以上、0.80以下の範囲内で音速が最も低くなるデューティ比とする。この場合、主電極層がPtからなるとき、図7に示すように、第1の低音速領域及び第2の低音速領域と中央領域との音速比が0.98となる主電極層の膜厚は、0.019λである。
 同様に、Au,Cu, Mo,Ta,Niなどの上記1)を満たす金属を主電極層に用いた場合についても、図7に示した関係と同様の関係を求めた。中央領域のデューティ比を0.40、第1の低音速領域及び第2の低音速領域のデューティ比を、0.40以上、0.80以下の範囲内で音速が最も低くなるデューティ比とした場合に、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1が0.98となる主電極層の膜厚Tを求めた。この膜厚Tと、主電極層の主成分である金属中を伝搬する横波バルク波の音速vとの関係を求めた。
 図9は、主電極層の主成分である金属中を伝搬する横波バルク波の音速vと、中央領域におけるデューティ比が0.40であり、かつ音速比V2/V1が0.98となる主電極層の膜厚Tとの関係を示す図である。
 図9に示すプロットは、ほぼ下記の式で表される曲線上に位置する。
 T=0.00018e0.002v+0.014
 この式で表される膜厚Tよりも主電極層の膜厚を厚くすることによって、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1を0.98以下とすることができる。なお、中央領域のデューティ比が0.40よりも小さい場合には、中央領域の音速V1がデューティ比0.40の場合よりも高くなるので、上記の式で表される膜厚Tよりも主電極層の膜厚を厚くすることで、同様に音速比V2/V1を0.98以下にすることができる。従って、上記1)を満たす金属を主電極層に用い、下記の式1の条件を満たすことにより、音速比V2/V1を0.98以下にすることができる。
 T≧0.00018e0.002v+0.014…式1
条件1)及び2)は、中央領域のデューティ比が0.4の場合に効果的にスプリアスを抑制することができる条件である。中央領域のデューティ比が0.4より小さい場合には、中央領域の音速V1がデューティ比0.4の場合よりも高くなるので、上記の条件1)及び2)を満たす金属を主電極層に用いることにより、音速比V2/V1を0.98以下にすることができ、スプリアスを効果的に抑制することができる。すなわち、条件1)及び2)を満たす金属を主電極層に用いることにより、中央領域のデューティ比は0.3以上0.4以下の範囲を選択することができる。
 また、主電極層の膜厚が厚すぎる場合には、IDT電極の形成が困難となり、IDT電極上に誘電体膜を形成する際に、誘電体膜中にクラックが生じやすくなるといった問題がある。従って、主電極層の膜厚Tは、T≦0.20λとすることが望ましい。
 前述のように、中央領域のデューティ比を小さくするほど、中央領域の音速V1を大きくすることができ、音速比V2/V1を小さくすることができる。それによって、高次の横モードによるスプリアスを効果的に抑制することができる。ただし、デューティ比を小さくしすぎると、第1の電極指および第2の電極指の電気抵抗が大きくなりすぎ、弾性波装置の挿入損失が大きくなるといった問題が生じる。そのため、中央領域のデューティ比をできるだけ大きくすることが望ましい。これにより、弾性波装置の挿入損失を小さくすることができる。以上のことから、スプリアスの抑制と挿入損失を小さくすることがトレードオフの関係となる。本実施形態ではそのトレードオフを改善し、これらを両立させることが可能となる。
例えば、IDT電極の中央領域のデューティ比を0.45にまで大きくしつつ、かつ、音速比V2/V1が0.98以下となる場合には、スプリアスを効果的に抑制することができ、かつIDT電極の電気抵抗を小さくすることができる。IDT電極の中央領域のデューティ比を0.45にしつつ、かつ、音速比V2/V1が0.98以下となる条件は、下記3)及び4)であることを本願発明者らは見出した。
 3)主電極層の主成分である金属中を伝搬する横波バルク波の音速をv(m/s)としたときに、v≦2895m/sである。
 4)IDT電極の電極指ピッチにより規定される波長をλとし、波長λにより規格化された主電極層の膜厚をTとしたときに、下記の式2を満たす。
 T≧0.000029e0.0032v+0.02…式2
 IDT電極の中央領域のデューティ比を0.45にしつつ、かつ、音速比V2/V1が0.98以下となる条件は、上記3)及び4)であることを、以下において示す。
 まず、図8に示すように、中央領域のデューティ比を0.45とした場合に、音速比を0.98以下にすることができる金属材料の横波バルク波音速vに対する条件は、v≦2895m/sである。なお、中央領域のデューティ比が0.45よりも小さい場合は、中央領域の音速V1がデューティ比0.45の場合よりも高くなるので、上記の条件を満たす金属を主電極層に用いることにより、同様に音速比V2/V1を0.98以下にすることができる。
 そして、上記3)の条件を満たす金属においては、デューティ比が0.45のときに音速が最大値となるので、音速比V2/V1を最小値にするためには、V1をデューティ比0.45のときの値とし、V2をデューティ比0.45以上、0.8以下の範囲内における最小値とする。
 なお、上記3)の条件を満たす金属からなる主電極層の膜厚の値により、デューティ比0.45のときの値及びデューティ比0.45以上、0.8以下の範囲内における最小値は異なる。そのため、下記において、主電極層に用いられる材料と主電極層の膜厚について、音速比V2/V1が0.98以下となる条件について詳細に検討する。
 中央領域のデューティ比を0.45とし、低音速領域のデューティ比を0.45以上、0.80以下の範囲内において音速が最も低くなるデューティ比とする。この場合、主電極層がPtからなるとき、図7に示すように、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1が0.98となる主電極層の膜厚は、0.027λである。
 同様に、Au、Cu、Ta等の上記3)を満たす金属を主電極層に用いた場合についても、図7に示した関係と同様の関係を求めた。中央領域のデューティ比を、デューティ比0.45、第1の低音速領域及び第2の低音速領域のデューティ比を、0.45以上、0.80以下の範囲内で音速が最も低くなるデューティ比とした場合に、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1が0.98となる主電極層の膜厚Tを求めた。この膜厚Tと、主電極層の主成分である金属中を伝搬する横波バルク波の音速vとの関係を求めた。
 図10は、主電極層の主成分である金属中を伝搬する横波バルク波の音速vと、中央領域におけるデューティ比が0.45であり、かつ音速比V2/V1が0.98となる主電極層の膜厚Tとの関係を示す図である。
 図10に示すプロットは、ほぼ下記の式で表される曲線上に位置する。
 T=0.000029e0.0032v+0.02
 この式で表される膜厚Tよりも主電極層の膜厚を厚くすることによって、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1を0.98以下とすることができる。なお、中央領域のデューティ比が0.45よりも小さい場合には、中央領域の音速V1がデューティ比0.45の場合よりも高くなるので、上記の式で表される膜厚Tよりも主電極層の膜厚を厚くすることにより、同様に音速比V2/V1を0.98以下にすることができる。
 従って、上記3)を満たす金属を主電極層として用い、下記式2の条件を満たすことにより、音速比V2/V1を0.98以下にすることができる。
 T≧0.000029e0.0032v+0.02…式2
条件3)及び4)は、中央領域のデューティ比0.45の際に効果的にスプリアスを抑制することができる条件である。中央領域のデューティ比が0.45より小さい場合には、中央領域の音速V1がデューティ比0.45の場合よりも高くなるので、上記の条件3)及び4)を満たす金属を主電極層に用いることにより、音速比V2/V1を0.98以下にすることができ、スプリアスを効果的に抑制することができる。すなわち、条件3)及び4)を満たす金属を主電極層に用いることにより、中央領域のデューティ比は0.3以上、0.45以下の範囲を選択することができる。すなわち、大きなデューティ比を選択することが可能となるので、電極指の抵抗を低くすることができ、弾性波装置の挿入損失を小さくすることができる。
 IDT電極の中央領域のデューティ比を0.50まで大きくした場合には、IDT電極の電気抵抗を更に低くすることができ、挿入損失をより小さくすることができる。IDT電極の中央領域のデューティ比を0.50にしつつ、かつ、音速比V2/V1が0.98以下となる条件は、下記5)と6)であることを本願発明者らは見出した。
 5)主電極層の主成分である金属中を伝搬する横波バルク波の音速をv(m/s)としたときに、v≦2491m/sである。
 6)IDT電極の電極指ピッチにより規定される波長をλとし、波長λにより規格化された主電極層の膜厚をTとしたときに、下記の式3を満たす。
 T≧0.000038e0.0035v+0.025…式3
 まず、図8に示すように、中央領域のデューティ比を0.50とした場合に、音速比を0.98以下にすることができる金属材料の横波バルク波音速vに対する条件は、v≦2491m/sである。なお、中央領域のデューティ比が0.50よりも小さい場合は、中央領域の音速V1がデューティ比0.50の場合よりも高くなるので、上記の条件を満たす金属を主電極層に用いることにより、同様に音速比V2/V1を0.98以下にすることができる。
 そして、上記5)の条件を満たす金属においては、デューティ比が0.50のときに音速が最大値となるので、音速比V2/V1を最小値にするためには、V1をデューティ比0.50のときの値とし、V2をデューティ比0.5以上、0.8以下の範囲内における最小値とする。
 なお、上記5)の条件を満たす金属からなる主電極層の膜厚の値により、デューティ比0.50のときの値及びデューティ比0.50以上、0.80以下の範囲内における最小値は異なる。そのため、下記において、主電極層に用いられる材料と主電極層の膜厚について、音速比V2/V1が0.98以下となる条件について詳細に検討する。
 中央領域のデューティ比を0.50とし、低音速領域のデューティ比を、デューティ比0.50以上、0.80以下の範囲内において音速が最も低くなるデューティ比とする。この場合、主電極層がPtからなるとき、図7に示すように、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1が0.98となる主電極層の膜厚は、0.04λである。
 同様に、Au、Ta等の上記5)を満たす金属を主電極層に用いた場合についても、図7に示した関係と同様の関係を求めた。中央領域のデューティ比を0.50、第1の低音速領域及び第2の低音速領域のデューティ比を、0.50以上、0.80以下の範囲内で音速が最も低くなるデューティ比とした場合に、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1が0.98となる主電極層の膜厚Tを求めた。この膜厚Tと、主電極層の主成分である金属中を伝搬する横波バルク波の音速vとの関係を求めた。
 図11は、主電極層の主成分である金属中を伝搬する横波バルク波の音速vと、中央領域におけるデューティ比が0.50であり、かつ音速比V2/V1が0.98となる主電極層の膜厚Tとの関係を示す図である。
 図11に示すプロットは、ほぼ下記の式で表される曲線上に位置する。
 T=0.000038e0.0035v+0.025
 この式で表される膜厚Tよりも主電極層の膜厚を厚くすることによって、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1を0.98以下とすることができる。なお、中央領域のデューティ比が0.50よりも小さい場合には、中央領域の音速V1がデューティ比0.50の場合よりも高くなるので、上記の式で表される膜厚Tよりも主電極層の膜厚を厚くすることで、同様に音速比V2/V1を0.98以下にすることができる。
 従って、上記5)を満たす金属を主電極層として用い、下記式3の条件を満たすことにより、音速比V2/V1を0.98以下にすることができる。
 T≧0.000038e0.0035v+0.025…式3
条件5)及び6)は、中央領域のデューティ比0.5の際に効果的にスプリアスを抑制することができる条件である。中央領域のデューティ比が0.5より小さい場合には、中央領域の音速V1がデューティ比0.5の場合よりも高くなるので、上記の条件5)及び6)を満たす金属を主電極層に用いることにより、音速比V2/V1を0.98以下にすることができ、スプリアスを効果的に抑制することができる。すなわち、条件5)及び6)を満たす金属を主電極層に用いることにより、中央領域のデューティ比は0.3以上、0.5以下の範囲を選択することができる。すなわち、より一層大きなデューティ比を選択することが可能となるので、電極指の抵抗をより一層低くすることができ、弾性波装置の挿入損失をさらに小さくすることができる。
 ここで、IDT電極の中央領域のデューティ比を大きくするほどIDT電極の電気抵抗を低くすることができ、挿入損失を小さくすることができる。例えば、IDT電極の中央領域のデューティ比を0.525にまで大きくしつつ、かつ、音速比V2/V1が0.98以下となる場合には、スプリアスを効果的に抑制することができ、かつIDT電極の電気抵抗をより一層低くすることができる。IDT電極の中央領域のデューティ比を0.525にしつつ、かつ、音速比V2/V1が0.98以下となる条件は、下記7)及び8)であることを本願発明者らは見出した。
 7)主電極層の主成分である金属中を伝搬する横波バルク波の音速をv(m/s)としたときに、v≦2289m/sである。
 8)IDT電極の電極指ピッチにより規定される波長をλとし、波長λにより規格化された主電極層の膜厚をTとしたときに、下記の式4を満たす。
 T≧0.000020e0.0042v+0.030…式4
 IDT電極の中央領域のデューティ比を0.525にしつつ、かつ、音速比V2/V1が0.98以下となる条件は、上記7)及び8)であることを、以下において示す。
 まず、図8に示すように、中央領域のデューティ比を0.525とした場合に、音速比を0.98以下にすることができる金属材料の横波バルク波音速vに対する条件は、v≦2289m/sである。なお、中央領域のデューティ比が0.525よりも小さい場合は、中央領域の音速V1がデューティ比0.525の場合よりも高くなるので、上記の条件を満たす金属を主電極層に用いることにより、同様に音速比V2/V1を0.98以下にすることができる。
 そして、上記7)の条件を満たす金属においては、デューティ比が0.525のときに音速が最大値となるので、音速比V2/V1を最小値にするためには、V1をデューティ比0.525のときの値とし、V2をデューティ比0.525以上、0.8以下の範囲内における最小値とする。
 なお、上記7)の条件を満たす金属からなる主電極層の膜厚の値により、デューティ比0.525のときの値及びデューティ比0.525以上、0.8以下の範囲内における最小値は異なる。そのため、下記において、主電極層に用いられる材料と主電極層の膜厚について、音速比V2/V1が0.98以下となる条件について詳細に検討する。
 中央領域のデューティ比を0.525とし、低音速領域のデューティ比を0.525以上、0.80以下の範囲内において音速が最も低くなるデューティ比とする。この場合、主電極層がPtからなるとき、図7に示すように、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1が0.98となる主電極層の膜厚は、0.053λである。
 同様に、Au、Ta等の上記7)を満たす金属を主電極層に用いた場合についても、図7に示した関係と同様の関係を求めた。中央領域のデューティ比を、デューティ比0.525、第1の低音速領域及び第2の低音速領域のデューティ比を、0.525以上、0.80以下の範囲内で音速が最も低くなるデューティ比とした場合に、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1が0.98となる主電極層の膜厚Tを求めた。この膜厚Tと、主電極層の主成分である金属中を伝搬する横波バルク波の音速vとの関係を求めた。
 図12は、主電極層の主成分である金属中を伝搬する横波バルク波の音速vと、中央領域におけるデューティ比が0.525であり、かつ音速比V2/V1が0.98となる主電極層の膜厚Tとの関係を示す図である。
 図12に示すプロットは、ほぼ下記の式で表される曲線上に位置する。
 T=0.000020e0.0042v+0.030
 この式で表される膜厚Tよりも主電極層の膜厚を厚くすることによって、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1を0.98以下とすることができる。なお、中央領域のデューティ比が0.525よりも小さい場合には、中央領域の音速V1がデューティ比0.525の場合よりも高くなるので、上記の式で表される膜厚Tよりも主電極層の膜厚を厚くすることにより、同様に音速比V2/V1を0.98以下にすることができる。
 従って、上記7)を満たす金属を主電極層として用い、下記式4の条件を満たすことにより、音速比V2/V1を0.98以下にすることができる。
 T≧0.000020e0.0042v+0.030…式4
条件7)及び8)は、中央領域のデューティ比0.525の際に効果的にスプリアスを抑制することができる条件である。中央領域のデューティ比が0.525より小さい場合には、中央領域の音速V1がデューティ比0.525の場合よりも高くなるので、上記の条件7)及び8)を満たす金属を主電極層に用いることにより、音速比V2/V1を0.98以下にすることができ、スプリアスを効果的に抑制することができる。すなわち、条件7)及び8)を満たす金属を主電極層に用いることにより、中央領域のデューティ比は0.3以上、0.525以下の範囲を選択することができる。すなわち、より一層大きなデューティ比を選択することが可能となるので、電極指の抵抗をより一層低くすることができ、弾性波装置の挿入損失をさらに小さくすることができる。
 ここで、IDT電極の中央領域のデューティ比を大きくするほどIDT電極の電気抵抗を低くすることができ、挿入損失を小さくすることができる。例えば、IDT電極の中央領域のデューティ比を0.55にまで大きくしつつ、かつ、音速比V2/V1が0.98以下となる場合には、スプリアスを効果的に抑制することができ、かつIDT電極の電気抵抗をより一層低くすることができる。IDT電極の中央領域のデューティ比を0.55にしつつ、かつ、音速比V2/V1が0.98以下となる条件は、下記9)及び10)であることを本願発明者らは見出した。
 9)主電極層の主成分である金属中を伝搬する横波バルク波の音速をv(m/s)としたときに、v≦2087m/sである。
 10)IDT電極の電極指ピッチにより規定される波長をλとし、波長λにより規格化された主電極層の膜厚をTとしたときに、下記の式5を満たす。
 T≧0.000017e0.0048v+0.033…式5
 IDT電極の中央領域のデューティ比を0.55にしつつ、かつ、音速比V2/V1が0.98以下となる条件は、上記9)及び10)であることを、以下において示す。
 まず、図8に示すように、中央領域のデューティ比を0.55とした場合に、音速比を0.98以下にすることができる金属材料の横波バルク波音速vに対する条件は、v≦2087m/sである。なお、中央領域のデューティ比が0.55よりも小さい場合は、中央領域の音速V1がデューティ比0.55の場合よりも高くなるので、上記の条件を満たす金属を主電極層に用いることにより、同様に音速比V2/V1を0.98以下にすることができる。
 そして、上記9)の条件を満たす金属においては、デューティ比が0.55のときに音速が最大値となるので、音速比V2/V1を最小値にするためには、V1をデューティ比0.55のときの値とし、V2をデューティ比0.55以上、0.8以下の範囲内における最小値とする。
 なお、上記9)の条件を満たす金属からなる主電極層の膜厚の値により、デューティ比0.55のときの値及びデューティ比0.55以上、0.8以下の範囲内における最小値は異なる。そのため、下記において、主電極層に用いられる材料と主電極層の膜厚について、音速比V2/V1が0.98以下となる条件について詳細に検討する。
 中央領域のデューティ比を0.55とし、低音速領域のデューティ比を0.55以上、0.80以下の範囲内において音速が最も低くなるデューティ比とする。この場合、主電極層がPtからなるとき、図7に示すように、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1が0.98となる主電極層の膜厚は、0.090λである。
 同様に、Au等の上記9)を満たす金属を主電極層に用いた場合についても、図7に示した関係と同様の関係を求めた。中央領域のデューティ比を、デューティ比0.55、第1の低音速領域及び第2の低音速領域のデューティ比を、0.55以上、0.80以下の範囲内で音速が最も低くなるデューティ比とした場合に、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1が0.98となる主電極層の膜厚Tを求めた。この膜厚Tと、主電極層の主成分である金属中を伝搬する横波バルク波の音速vとの関係を求めた。
 図13は、主電極層の主成分である金属中を伝搬する横波バルク波の音速vと、中央領域におけるデューティ比が0.55であり、かつ音速比V2/V1が0.98となる主電極層の膜厚Tとの関係を示す図である。
 図13に示すプロットは、ほぼ下記の式で表される曲線上に位置する。
 T=0.000017e0.0048v+0.033
 この式で表される膜厚Tよりも主電極層の膜厚を厚くすることによって、第1の低音速領域及び第2の低音速領域と中央領域との音速比V2/V1を0.98以下とすることができる。なお、中央領域のデューティ比が0.55よりも小さい場合には、中央領域の音速V1がデューティ比0.55の場合よりも高くなるので、上記の式で表される膜厚Tよりも主電極層の膜厚を厚くすることにより、同様に音速比V2/V1を0.98以下にすることができる。
 従って、上記9)を満たす金属を主電極層として用い、下記式5の条件を満たすことにより、音速比V2/V1を0.98以下にすることができる。
 T≧0.000017e0.0048v+0.033…式5
条件9)及び10)は、中央領域のデューティ比0.55の際に効果的にスプリアスを抑制することができる条件である。中央領域のデューティ比が0.55より小さい場合には、中央領域の音速V1がデューティ比0.55の場合よりも高くなるので、上記の条件9)及び10)を満たす金属を主電極層に用いることにより、音速比V2/V1を0.98以下にすることができ、スプリアスを効果的に抑制することができる。すなわち、条件9)及び10)を満たす金属を主電極層に用いることにより、中央領域のデューティ比は0.3以上、0.55以下の範囲を選択することができる。すなわち、より一層大きなデューティ比を選択することが可能となるので、電極指の抵抗をより一層低くすることができ、弾性波装置の挿入損失をさらに小さくすることができる。
 上述したように、第1の実施形態においては、IDT電極は主電極層及び導電補助電極層の積層体である。なお、IDT電極は主電極層を有していればよく、積層構造は上記に限定されない。IDT電極の積層構造の例を、以下において、第1の実施形態の第1~3の変形例により示す。
 図14に示す第1の実施形態の第1の変形例においては、圧電基板2上に密着層6aが設けられている。密着層6a上に、主電極層6bが積層されている。密着層6aは、例えば、TiまたはNiCrからなる。密着層6aを設けているので、IDT電極13の圧電基板2に対する密着性を高めることができる。
 図15に示す第1の実施形態の第2の変形例におけるIDT電極23では、圧電基板2側から、密着層6a、主電極層6b及び密着層6eがこの順序で積層されている。
 図16に示す第1の実施形態の第3の変形例におけるIDT電極33では、圧電基板2側から、密着層6a、主電極層6b、拡散防止層6c、導電補助電極層6d及び密着層6eがこの順序で積層されている。拡散防止層6cは、例えば、Tiからなる。拡散防止層6cを有することにより、主電極層6bと導電補助電極層6dとの間における相互拡散が生じ難い。よって、IDT電極33の劣化が生じ難い。
 ここで、図1に示す第1の実施形態においては、第1の高音速領域及び第2の高音速領域は、第1のバスバー3a1と第1のエッジ領域A2aとの間及び第2のバスバー3b1と第2のエッジ領域A2bとの間に設けられている。なお、第1の高音速領域及び第2の高音速領域は、第1のバスバー3a1内及び第2のバスバー3b1内に設けられていてもよい。これを下記の第1の実施形態の第4の変形例において示す。
 図17は、第1の実施形態の第4の変形例における第1のバスバー付近を示す拡大平面図である。
 本変形例においては、第1のバスバー53a1内に複数の開口部55が設けられており、第1のバスバー53a1は、内側バスバー部53Aと中央バスバー部53Bと外側バスバー部53Cに分けられる。内側バスバー部53Aは第1のエッジ領域と共に第1の低音速領域として機能し、中央バスバー部53Bが第1の高音速領域として機能する。ここで、内側バスバー部53Aにおける音速をV4、中央バスバー部53Bにおける音速をV5、外側バスバー部53Cにおける音速をV6としたとき、V5が全領域の中で最も高音速となる。音速がV2~V4となる領域が低音速領域、音速がV5となる領域が高音速領域として機能するので、各領域の音速関係は、V5>V1>(V2~V4の平均)となり、ピストンモードが成立する。
 上記のような各音速V1~V6の関係を図17に示す。図17における外側に向かうにつれて、音速が高速であることを示す。なお、第2のバスバー側も第1のバスバー53a1側と同様に構成されている。
 ところで、第1の実施形態では、圧電体は圧電基板2であるが、図18に示す第1の実施形態の第5の変形例のように、圧電体は圧電薄膜42であってもよい。例えば、圧電薄膜42のIDT電極3が設けられている面とは反対側の面には、低音速膜43が設けられていてもよい。低音速膜43の圧電薄膜42側とは反対側の面には、高音速部材44が設けられていてもよい。
 ここで、低音速膜43とは、圧電薄膜42を伝搬する弾性波の音速よりも伝搬するバルク波の音速が低速な膜である。低音速膜43は、例えば、ガラス、酸化ケイ素、酸窒化ケイ素、酸化タンタルまたは酸化ケイ素にフッ素、炭素やホウ素を加えた化合物を主成分とする材料などからなる。なお、低音速膜43の材料は、相対的に低音速な材料であればよい。
 高音速部材44とは、圧電薄膜42を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速な部材である。高音速部材44は、例えば、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、酸窒化ケイ素、ケイ素、DLC膜またはダイヤモンドを主成分とする材料などからなる。なお、高音速部材44の材料は、相対的に高音速な材料であればよい。
 高音速部材44は、高音速膜であってもよく、あるいは、高音速基板であってもよい。このように、低音速膜43及び高音速部材44を有する場合、弾性波のエネルギーを効果的に閉じ込めることができる。
 従来、ピストンモードにより抑制される高次の横モードによるスプリアス以外のスプリアスが、通過帯域近傍に生じることがあった。例えば、レイリー波を用いる弾性波装置に対してはSH波がスプリアスとなり、ラブ波などのSH波を用いる弾性波装置に対してはレイリー波がスプリアスとなる。
 以下において示す第2の実施形態の弾性波装置では、高次の横モードによるスプリアスに加え、レイリー波を用いる場合において、SH波によるスプリアスを抑制することができる。
 第2の実施形態の弾性波装置は、圧電基板がLiNbOからなり、圧電基板のオイラー角(φ,θ,ψ)が下記で示すように規定されている。また、酸化ケイ素からなる第1の誘電体膜が形成されている。上記の点以外においては、第2の実施形態の弾性波装置は、図1に示す第1の実施形態の弾性波装置1と同様の構成を有する。なお、第2の実施形態においては、レイリー波を用いる。
 より具体的には、第2の実施形態では、圧電基板のオイラー角(φ,θ,ψ)は、オイラー角(0°±5°,θ,0°±10°)である。オイラー角(φ,θ,ψ)におけるθはθ≧27°である。
 ここで、主電極層の材料の密度のPtの密度ρPtに対する比をr=ρ/ρPtとする。このとき、圧電基板2のオイラー角(φ,θ,ψ)は、(0°±5°,{-0.054/(T×r-0.044)+31.33}°±1.5°,0°±10°)である。それによって、レイリー波を用いる場合に問題となるSH波によるスプリアスをより一層抑制することができる。加えて、第1の実施形態と同様に、高次の横モードによるスプリアスを抑制することができる。なお、オイラー角(φ,θ,ψ)におけるθと主電極層の膜厚Tとの上記関係式の詳細は後述する。
 以下において、第2の実施形態における効果をより詳細に説明する。
 第2の実施形態において、主電極層にPtを用い、インピーダンス周波数特性及びリターンロスを測定した。ここで、周波数を、共振周波数を1とする規格化周波数とした。なお、条件は以下の通りである。
 圧電基板:材料LiNbO、オイラー角(0°,30°,0°)
 主電極層:材料Pt、膜厚0.085λ
 導電補助電極層:材料Al、膜厚0.08λ
 第1の誘電体膜:材料SiO、膜厚0.30λ
 第2の誘電体膜:材料SiN、膜厚0.01λ
 中央領域のデューティ比:0.50
 使用する弾性波:レイリー波
 さらに、圧電基板のオイラー角(φ,θ,ψ)におけるθが第2の実施形態の範囲外である、比較例におけるインピーダンス周波数特性及びリターンロスを測定した。なお、条件は以下の通りである。比較例は、IDT電極の膜構成は第2の実施形態と同様であるが、圧電基板のオイラー角を、従来レイリー波を用いる弾性波装置における条件としたものである。
 圧電基板:材料LiNbO、オイラー角(0°,38°,0°)
 主電極層:材料Pt、膜厚0.085λ
 導電補助電極層:材料Al、膜厚0.08λ
 第1の誘電体膜:材料SiO、膜厚0.30λ
 第2の誘電体膜:材料SiN、膜厚0.01λ
 中央領域のデューティ比:0.50
 使用する弾性波:レイリー波
 図19は、第2の実施形態に係る弾性波装置のインピーダンス周波数特性を示す図である。図20は、第2の実施形態に係る弾性波装置のリターンロスを示す図である。図21は、比較例の弾性波装置のインピーダンス周波数特性を示す図である。図22は、比較例の弾性波装置のリターンロスを示す図である。
 図21及び図22に示すように、比較例においては共振周波数よりも低域側に大きなスプリアスが生じていることがわかる。このスプリアスはSH波によるものである。
 これに対して、図19及び図20に示すように、第2の実施形態では、SH波によるスプリアスが抑制されていることがわかる。SH波の電気機械結合係数は、圧電基板のオイラー角(φ,θ,ψ)におけるθの値や、IDT電極の主電極層の厚みなどにより異なる。第2の実施形態においては、オイラー角(φ,θ,ψ)を上記範囲内とすることにより、SH波の電気機械結合係数をほぼ0とすることができる。従って、SH波によるスプリアスを効果的に抑制することができる。なお、図19及び図20に示すように、高次の横モードによるスプリアスがほぼ生じていないこともわかる。
 オイラー角(φ,θ,ψ)におけるθと主電極層の膜厚Tとの上記関係式は、以下のように求めた。圧電基板のオイラー角(φ,θ,ψ)におけるθの値を変化させた場合に、SH波の電気機械結合係数が0となる主電極層の膜厚を求めた。このθの値及び主電極層の膜厚を下記の表2に示す。なお、主電極層にはPtを用いた。
Figure JPOXMLDOC01-appb-T000004
 上記表2に示す圧電基板のオイラー角(φ,θ,ψ)におけるθと主電極層の膜厚との関係は、下記の式により表される。なお、主電極層にPtを用いた場合の主電極層の膜厚をTPtとする。
 θ=-0.054/(TPt-0.044)+31.33
 なお、表2において、Ptからなる主電極層の膜厚が比較的薄く、オイラー角(φ,θ,ψ)におけるθが比較的小さい条件においては、主電極層の膜厚の変化に対してSH波の電気機械結合係数が0となるθの値が大きく変化している。これに対して、主電極層の膜厚が比較的厚く、上記θが比較的大きい条件においては、主電極層の膜厚の変化に対してSH波の電気機械結合係数が0となるθの値の変化は極めて小さい。つまり、上記θの値が比較的小さい条件においては、製造時のばらつきなどによる主電極層の厚みの変動に対して、SH波の電気機械結合係数の大きさの変動が大きく、SH波によるスプリアスの大きさの変動も大きくなる。従って、オイラー角(φ,θ,ψ)におけるθは、θ≧27°の範囲とすることが望ましい。
 主電極層にPt以外の金属を用いる場合には、主電極層の膜厚Tを、主電極層の材料の密度ρのPtの密度ρPtに対する比r=ρ/ρPtを用いて換算した膜厚とすればよいことがわかっている。すなわち、主電極層にPt以外の金属を用いたとしても、SH波の電気機械結合係数が0となるときの、オイラー角(φ,θ,ψ)におけるθと主電極層の膜厚Tとの関係を、下記の式により表すことができる。
 θ=-0.054/(T×r-0.044)+31.33
 なお、オイラー角(φ,θ,ψ)におけるθが{-0.054/(T×r-0.044)+31.33}°±1.5°の範囲内においても、SH波の電気機械結合係数を0に近い値とすることができる。よって、SH波によるスプリアスを効果的に抑制することができる。
 図23は、第2の実施形態における圧電基板のオイラー角(φ,θ,ψ)におけるθの範囲を示す図である。図23において、実線は、θ=-0.054/(T×r-0.044)+31.33の関係を示す。各破線は、θ={-0.054/(T×r-0.044)+31.33}+1.5及びθ={-0.054/(T×r-0.044)+31.33}-1.5の関係をそれぞれ示す。各一点鎖線は、T×r=0.10λ及びθ=27°をそれぞれ示す。
 第2の実施形態においては、オイラー角(φ,θ,ψ)におけるθは図23中の破線及び一点鎖線に囲まれた範囲内の値である。上述したように、θが{-0.054/(T×r-0.044)+31.33}°±1.5°の範囲内であるため、SH波によるスプリアスを効果的に抑制することができる。第2の実施形態においては、θ≧27°であるため、SH波によるスプリアスを安定的に抑制することができる。加えて、T×r≦0.10λであるため、製造時においてIDT電極を好適に形成することができ、かつ誘電体膜中にクラックが生じ難い。
 本発明は、上述した通り、音速比V2/V1を0.98以下とした場合に、スプリアスを効果的に抑制し得ることを明らかにした発明でもある。
 特許文献1では音速比V2/V1に関する記載はない。そして、特許文献1の構成では音速比V2/V1によってはスプリアスが出てしまう場合があるが、本発明は音速比V2/V1を0.98以下にすることによって、スプリアスを効果的に抑制し得るものである。
 そして、上記条件は、図1の構成であっても図17の構成であっても成り立つ。
 また、上記条件は、第1,第2のエッジ領域におけるデューティ比を中央領域におけるデューティ比より大きくすることにより第1,第2の低音速領域を形成する方法だけでなく、第1,第2の電極指上に誘電体または金属からなる質量付加膜を積層することにより低音速領域を形成する方法でも成り立つ。
 第1,第2の実施形態及び第1の実施形態の第1~第4の変形例では、弾性波装置が1ポート型の弾性波共振子である例を示した。なお、本発明は上記以外の弾性波装置にも好適に適用することができる。
 上記弾性波装置は、高周波フロントエンド回路のデュプレクサなどとして用いることができる。この例を下記において説明する。
 図24は、高周波フロントエンド回路を有する通信装置の構成図である。なお、同図には、高周波フロントエンド回路230と接続される各構成要素、例えば、アンテナ素子202やRF信号処理回路(RFIC)203も併せて図示されている。高周波フロントエンド回路230及びRF信号処理回路203は、通信装置240を構成している。なお、通信装置240は、電源、CPUやディスプレイを含んでいてもよい。
 高周波フロントエンド回路230は、スイッチ225と、デュプレクサ201A,201Bと、フィルタ231,232と、ローノイズアンプ回路214,224と、パワーアンプ回路234a,234b,244a,244bとを備える。なお、図24の高周波フロントエンド回路230及び通信装置240は、高周波フロントエンド回路及び通信装置の一例であって、この構成に限定されるものではない。
 デュプレクサ201Aは、フィルタ211,212を有する。デュプレクサ201Bは、フィルタ221,222を有する。デュプレクサ201A,201Bは、スイッチ225を介してアンテナ素子202に接続される。なお、上記弾性波装置は、デュプレクサ201A,201Bであってもよいし、フィルタ211,212,221,222であってもよい。上記弾性波装置は、デュプレクサ201A,201Bや、フィルタ211,212,221,222を構成する弾性波共振子であってもよい。
 さらに、上記弾性波装置は、例えば、3つのフィルタのアンテナ端子が共通化されたトリプレクサや、6つのフィルタのアンテナ端子が共通化されたヘキサプレクサなど、3以上のフィルタを備えるマルチプレクサについても適用することができる。
 すなわち、上記弾性波装置は、弾性波共振子、フィルタ、デュプレクサ、3以上のフィルタを備えるマルチプレクサを含む。そして、該マルチプレクサは、送信フィルタ及び受信フィルタの双方を備える構成に限らず、送信フィルタのみ、または、受信フィルタのみを備える構成であってもかまわない。
 スイッチ225は、制御部(図示せず)からの制御信号に従って、アンテナ素子202と所定のバンドに対応する信号経路とを接続し、例えば、SPDT(Single Pole Double Throw)型のスイッチによって構成される。なお、アンテナ素子202と接続される信号経路は1つに限らず、複数であってもよい。つまり、高周波フロントエンド回路230は、キャリアアグリゲーションに対応していてもよい。
 ローノイズアンプ回路214は、アンテナ素子202、スイッチ225及びデュプレクサ201Aを経由した高周波信号(ここでは高周波受信信号)を増幅し、RF信号処理回路203へ出力する受信増幅回路である。ローノイズアンプ回路224は、アンテナ素子202、スイッチ225及びデュプレクサ201Bを経由した高周波信号(ここでは高周波受信信号)を増幅し、RF信号処理回路203へ出力する受信増幅回路である。
 パワーアンプ回路234a,234bは、RF信号処理回路203から出力された高周波信号(ここでは高周波送信信号)を増幅し、デュプレクサ201A及びスイッチ225を経由してアンテナ素子202に出力する送信増幅回路である。パワーアンプ回路244a,244bは、RF信号処理回路203から出力された高周波信号(ここでは高周波送信信号)を増幅し、デュプレクサ201B及びスイッチ225を経由してアンテナ素子202に出力する送信増幅回路である。
 RF信号処理回路203は、アンテナ素子202から受信信号経路を介して入力された高周波受信信号を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号を出力する。また、RF信号処理回路203は、入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波送信信号をローノイズアンプ回路224へ出力する。RF信号処理回路203は、例えば、RFICである。なお、通信装置は、BB(ベースバンド)ICを含んでいてもよい。この場合、BBICは、RFICで処理された受信信号を信号処理する。また、BBICは、送信信号を信号処理し、RFICに出力する。BBICで処理された受信信号や、BBICが信号処理する前の送信信号は、例えば、画像信号や音声信号等である。なお、高周波フロントエンド回路230は、上述した各構成要素の間に、他の回路素子を備えていてもよい。
 なお、高周波フロントエンド回路230は、上記デュプレクサ201A,201Bに代わり、デュプレクサ201A,201Bの変形例に係るデュプレクサを備えていてもよい。
 他方、通信装置240におけるフィルタ231,232は、ローノイズアンプ回路214,224及びパワーアンプ回路234a,234b,244a,244bを介さず、RF信号処理回路203とスイッチ225との間に接続されている。フィルタ231,232も、デュプレクサ201A,201Bと同様に、スイッチ225を介してアンテナ素子202に接続される。
 以上のように構成された高周波フロントエンド回路230及び通信装置240によれば、本発明の弾性波装置である、弾性波共振子、フィルタ、デュプレクサ、3以上のフィルタを備えるマルチプレクサ等を備えることにより、高次の横モードによるスプリアスを効果的に抑制することができることができる。
 以上、本発明の実施形態に係る弾性波装置、高周波フロントエンド回路及び通信装置について、実施形態及びその変形例を挙げて説明したが、上記実施形態及び変形例における任意の構成要素を組み合わせて実現される別の実施形態や、上記実施形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る高周波フロントエンド回路及び通信装置を内蔵した各種機器も本発明に含まれる。
 本発明は、弾性波共振子、フィルタ、デュプレクサ、マルチバンドシステムに適用できるマルチプレクサ、フロントエンド回路及び通信装置として、携帯電話機などの通信機器に広く利用できる。
1…弾性波装置
2…圧電基板
3…IDT電極
3a1,3b1…第1,第2のバスバー
3a2,3b2…第1,第2の電極指
3a3,3b3…幅広部
4,5…反射器
6a…密着層
6b…主電極層
6c…拡散防止層
6d…導電補助電極層
6e…密着層
7,8…第1,第2の誘電体膜
13,23,33…IDT電極
42…圧電薄膜
43…低音速膜
44…高音速部材
53a1…第1のバスバー
53A…内側バスバー部
53B…中央バスバー部
53C…外側バスバー部
55…開口部
201A,201B…デュプレクサ
202…アンテナ素子
203…RF信号処理回路
211,212…フィルタ
214…ローノイズアンプ回路
221,222…フィルタ
224…ローノイズアンプ回路
225…スイッチ
230…高周波フロントエンド回路
231,232…フィルタ
234a,234b…パワーアンプ回路
240…通信装置
244a,244b…パワーアンプ回路

Claims (13)

  1.  圧電体と、
     前記圧電体上に設けられており、主電極層を有するIDT電極と、
    を備え、
     前記IDT電極が、対向し合っている第1のバスバー及び第2のバスバーと、前記第1のバスバーに一端が接続された複数の第1の電極指と、前記第2のバスバーに一端が接続されており、かつ前記複数の第1の電極指と間挿し合っている複数の第2の電極指と、を有し、
     前記複数の第1の電極指と前記複数の第2の電極指とが弾性波伝搬方向において重なり合っている部分である交叉領域を有し、
     前記複数の第1の電極指が延びる方向または前記複数の第2の電極指が延びる方向を長さ方向とした場合に、前記交叉領域が、前記長さ方向における、前記第1の電極指及び前記第2の電極指の中央に位置している中央領域と、前記長さ方向において、前記中央領域の前記第1のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が低速である、第1の低音速領域と、前記長さ方向において、前記中央領域の前記第2のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が低速である、第2の低音速領域と、を有し、
     前記長さ方向において、前記第1の低音速領域の前記第1のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が高速である第1の高音速領域と、前記長さ方向において、前記第2の低音速領域の前記第2のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が高速である第2の高音速領域と、が設けられており、
     前記第1の低音速領域及び前記第2の低音速領域におけるデューティ比が、前記中央領域におけるデューティ比より大きく、
     前記主電極層の主成分である金属中を伝搬する横波バルク波の音速をv(m/s)としたときに、v≦3299m/sであり、
     前記IDT電極の電極指ピッチにより規定される波長をλとし、前記波長λにより規格化された前記主電極層の膜厚をTとしたときに、下記の式1
     T≧0.00018e0.002v+0.014…式1
    を満たす、弾性波装置。
  2.  前記IDT電極が、前記主電極層を含む複数の層からなる、請求項1に記載の弾性波装置。
  3.  前記主電極層が、Au、Pt、Ta、Cu、Ni及びMoのうち1種を主成分とする、請求項1または2に記載の弾性波装置。
  4.  前記IDT電極において、v≦2895m/sであり、かつ下記の式2
     T≧0.000029e0.0032v+0.02…式2
    を満たす、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記IDT電極において、v≦2491m/sであり、かつ下記の式3
     T≧0.000038e0.0035v+0.025…式3
    を満たす、請求項1~3のいずれか1項に記載の弾性波装置。
  6.  前記IDT電極において、v≦2289m/sであり、かつ下記の式4
     T≧0.000020e0.0042v+0.03…式4
    を満たす、請求項1~3のいずれか1項に記載の弾性波装置。
  7.  前記IDT電極において、v≦2087m/sであり、かつ下記の式5
     T≧0.000017e0.0048v+0.033…式5
    を満たす、請求項1~3のいずれか1項に記載の弾性波装置。
  8.  前記圧電体がLiNbOからなり、前記圧電体のオイラー角(φ,θ,ψ)がオイラー角(0°±5°,θ,0°±10°)であり、
     前記圧電体の前記オイラー角(φ,θ,ψ)におけるθがθ≧27°であり、
     前記オイラー角(φ,θ,ψ)が、前記主電極層の材料の密度ρのPtの密度ρPtに対する比をr=ρ/ρPtとしたときに、(0°±5°,{-0.054/(T×r-0.044)+31.33}°±1.5°,0°±10°)であり、かつT×r≦0.10λである、請求項1~7のいずれか1項に記載の弾性波装置。
  9.  前記IDT電極の前記第1のバスバー及び前記第2のバスバーに、開口部が設けられており、前記第1,第2のバスバーにおいて、前記開口部よりも前記長さ方向において前記中央領域側に位置している部分が内側バスバー部とされ、前記内側バスバー部と前記開口部を挟んで対向している部分が外側バスバー部とされており、前記第1のバスバーにおいて、前記内側バスバー部が低音速領域であり、前記開口部が設けられている領域が前記第1の高音速領域であり、前記第2のバスバーにおいて、前記内側バスバー部が低音速領域であり、前記開口部が設けられている領域が、前記第2の高音速領域である、請求項1~8のいずれか1項に記載の弾性波装置。
  10.  圧電体と、
     前記圧電体上に設けられており、主電極層を有するIDT電極と、
    を備え、
     前記IDT電極が、対向し合っている第1のバスバー及び第2のバスバーと、前記第1のバスバーに一端が接続された複数の第1の電極指と、前記第2のバスバーに一端が接続されており、かつ前記複数の第1の電極指と間挿し合っている複数の第2の電極指と、を有し、
     前記複数の第1の電極指と前記複数の第2の電極指とが弾性波伝搬方向において重なり合っている部分である交叉領域を有し、
     前記複数の第1の電極指が延びる方向または前記複数の第2の電極指が延びる方向を長さ方向とした場合に、前記交叉領域が、前記長さ方向における、前記第1の電極指及び前記第2の電極指の中央に位置している中央領域と、前記長さ方向であって、前記中央領域の前記第1のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が低速である、第1の低音速領域と、前記長さ方向であって、前記中央領域の前記第2のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が低速である、第2の低音速領域と、を有し、
     前記長さ方向において、前記第1の低音速領域の前記第1のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が高速である第1の高音速領域と、前記長さ方向において、前記第2の低音速領域の前記第2のバスバー側の外側に配置されており、かつ前記中央領域よりも音速が高速である第2の高音速領域と、が設けられており、
     前記中央領域における音速をV1、前記第1の低音速領域及び前記第2の低音速領域における音速をV2としたときに、V2/V1≦0.98である、弾性波装置。
  11.  前記圧電体上に、前記IDT電極を覆うように設けられている誘電体膜をさらに備える、請求項1~10のいずれか1項に記載の弾性波装置。
  12.  請求項1~11のいずれか1項に記載の弾性波装置と、
     パワーアンプと、
    を備える、高周波フロントエンド回路。
  13.  請求項12に記載の高周波フロントエンド回路と、
     RF信号処理回路と、
    を備える、通信装置。
PCT/JP2018/001021 2017-01-17 2018-01-16 弾性波装置、高周波フロントエンド回路及び通信装置 WO2018135489A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880006651.8A CN110178307B (zh) 2017-01-17 2018-01-16 弹性波装置、高频前端电路以及通信装置
KR1020197020538A KR102272686B1 (ko) 2017-01-17 2018-01-16 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
US16/511,013 US11025221B2 (en) 2017-01-17 2019-07-15 Acoustic wave device, high-frequency front end circuit, and communication device
US17/242,457 US11777471B2 (en) 2017-01-17 2021-04-28 Acoustic wave device, high-frequency front end circuit, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-006106 2017-01-17
JP2017006106 2017-01-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/511,013 Continuation US11025221B2 (en) 2017-01-17 2019-07-15 Acoustic wave device, high-frequency front end circuit, and communication device

Publications (1)

Publication Number Publication Date
WO2018135489A1 true WO2018135489A1 (ja) 2018-07-26

Family

ID=62908508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001021 WO2018135489A1 (ja) 2017-01-17 2018-01-16 弾性波装置、高周波フロントエンド回路及び通信装置

Country Status (4)

Country Link
US (2) US11025221B2 (ja)
KR (1) KR102272686B1 (ja)
CN (1) CN110178307B (ja)
WO (1) WO2018135489A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060523A1 (ja) * 2019-09-27 2021-04-01 株式会社村田製作所 弾性波装置及びフィルタ装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112886938B (zh) * 2020-12-23 2022-04-26 杭州左蓝微电子技术有限公司 可抑制横向模式的声表面波谐振器及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254507A (ja) * 2002-07-24 2006-09-21 Murata Mfg Co Ltd 弾性表面波装置及びその製造方法
WO2015182522A1 (ja) * 2014-05-26 2015-12-03 株式会社村田製作所 弾性波装置
JP2016136712A (ja) * 2015-01-20 2016-07-28 太陽誘電株式会社 弾性波デバイス
WO2016208677A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 弾性波フィルタ、マルチプレクサ、デュプレクサ、高周波フロントエンド回路、および通信装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841053B2 (ja) * 2002-07-24 2006-11-01 株式会社村田製作所 弾性表面波装置及びその製造方法
US7576471B1 (en) * 2007-09-28 2009-08-18 Triquint Semiconductor, Inc. SAW filter operable in a piston mode
JP5156448B2 (ja) * 2008-03-24 2013-03-06 太陽誘電株式会社 弾性波素子、フィルタ、通信モジュール、および通信装置
US7939989B2 (en) * 2009-09-22 2011-05-10 Triquint Semiconductor, Inc. Piston mode acoustic wave device and method providing a high coupling factor
DE102010005596B4 (de) * 2010-01-25 2015-11-05 Epcos Ag Elektroakustischer Wandler mit verringerten Verlusten durch transversale Emission und verbesserter Performance durch Unterdrückung transversaler Moden
WO2012098816A1 (ja) 2011-01-18 2012-07-26 株式会社村田製作所 弾性表面波フィルタ装置
KR20170034939A (ko) * 2013-05-29 2017-03-29 가부시키가이샤 무라타 세이사쿠쇼 탄성파 필터장치
US10355668B2 (en) 2015-01-20 2019-07-16 Taiyo Yuden Co., Ltd. Acoustic wave device
JP6415469B2 (ja) * 2016-03-22 2018-10-31 太陽誘電株式会社 弾性波共振器、フィルタおよびマルチプレクサ並びに弾性波共振器の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254507A (ja) * 2002-07-24 2006-09-21 Murata Mfg Co Ltd 弾性表面波装置及びその製造方法
WO2015182522A1 (ja) * 2014-05-26 2015-12-03 株式会社村田製作所 弾性波装置
JP2016136712A (ja) * 2015-01-20 2016-07-28 太陽誘電株式会社 弾性波デバイス
WO2016208677A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 弾性波フィルタ、マルチプレクサ、デュプレクサ、高周波フロントエンド回路、および通信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060523A1 (ja) * 2019-09-27 2021-04-01 株式会社村田製作所 弾性波装置及びフィルタ装置

Also Published As

Publication number Publication date
US11777471B2 (en) 2023-10-03
CN110178307B (zh) 2023-02-28
US11025221B2 (en) 2021-06-01
KR20190093657A (ko) 2019-08-09
US20190341905A1 (en) 2019-11-07
KR102272686B1 (ko) 2021-07-05
US20210250013A1 (en) 2021-08-12
CN110178307A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
JP6791403B2 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
KR102142866B1 (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
JP6964603B2 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2018146910A1 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
KR102142868B1 (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
JP6791266B2 (ja) 弾性表面波装置、高周波フロントエンド回路及び通信装置
US11799444B2 (en) Acoustic wave device, high frequency front end circuit, and communication apparatus
JP6777240B2 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2018164211A1 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2020080465A1 (ja) 弾性波装置
WO2020261763A1 (ja) 弾性波装置
US11777471B2 (en) Acoustic wave device, high-frequency front end circuit, and communication device
KR102132777B1 (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
WO2018164210A1 (ja) 弾性波装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2020050401A1 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
JP6950654B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
WO2015052888A1 (ja) 弾性波素子と、これを用いたデュプレクサ、電子機器
WO2018142812A1 (ja) 弾性波装置、デュプレクサ及びフィルタ装置
JP6747387B2 (ja) 高周波モジュール
JP2008072332A (ja) 共振子型弾性表面波フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197020538

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18742247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP