WO2020050401A1 - 弾性波装置、高周波フロントエンド回路及び通信装置 - Google Patents

弾性波装置、高周波フロントエンド回路及び通信装置 Download PDF

Info

Publication number
WO2020050401A1
WO2020050401A1 PCT/JP2019/035184 JP2019035184W WO2020050401A1 WO 2020050401 A1 WO2020050401 A1 WO 2020050401A1 JP 2019035184 W JP2019035184 W JP 2019035184W WO 2020050401 A1 WO2020050401 A1 WO 2020050401A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
elastic wave
pass
wavelength
thickness
Prior art date
Application number
PCT/JP2019/035184
Other languages
English (en)
French (fr)
Inventor
中川 亮
英樹 岩本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020217004365A priority Critical patent/KR102586511B1/ko
Priority to CN201980058308.2A priority patent/CN112655150B/zh
Priority to JP2020541316A priority patent/JP7074198B2/ja
Publication of WO2020050401A1 publication Critical patent/WO2020050401A1/ja
Priority to US17/183,429 priority patent/US11855609B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6406Filters characterised by a particular frequency characteristic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to an elastic wave device having two or more elastic wave filters, and a high-frequency front-end circuit and a communication device having the elastic wave device.
  • Each band-pass filter is formed by a surface acoustic wave filter chip.
  • Each surface acoustic wave filter chip has a plurality of surface acoustic wave resonators.
  • the elastic wave resonator described in Patent Document 2 below discloses an elastic wave device in which an insulating film made of silicon dioxide and a piezoelectric substrate made of lithium tantalate are stacked on a silicon support substrate. The heat resistance is enhanced by bonding at the (111) plane of silicon.
  • a plurality of acoustic wave filters having different frequencies are commonly connected on the antenna terminal side.
  • an elastic wave resonator in which a lithium tantalate film is directly or indirectly laminated on a silicon support substrate, a plurality of spurious components are generated on a higher frequency side than the main mode to be used. I found it to appear.
  • the spurious appearing in the elastic wave filter has a pass band of another elastic wave filter having a higher pass band. May appear in Therefore, the filter characteristics of another acoustic wave filter may be deteriorated.
  • An object of the present invention is to provide an elastic wave device, a high-frequency front-end circuit having the elastic wave device, and a communication device in which ripples due to the spurious noise hardly occur in a pass band of another band-pass filter.
  • An elastic wave device is an elastic wave device provided with N (here, N is an integer of 2 or more) band-pass filters having one end commonly connected and different pass bands.
  • N band-pass filters are band-pass filter (1), band-pass filter (2),... Band-pass filter (N) in order from the one having the lowest pass-band frequency.
  • At least one band-pass filter (n) (1 ⁇ n ⁇ N) excluding the band-pass filter having the highest pass-band frequency among the N band-pass filters has at least one elastic wave resonance.
  • the at least one elastic wave resonator (t) of the one or more elastic wave resonators has a Euler angle ( ⁇ Si , ⁇ Si , Si Si ).
  • the elastic wave is provided on the lithium tantalate film, the IDT electrode having an electrode finger, and a protective film covering at least a part of the IDT electrode.
  • the wavelength normalized thickness of the lithium tantalate film is T LT
  • the Euler angles theta LT of the lithium tantalate film the wavelength normalized thickness T S
  • the wavelength normalized thickness of the IDT the density of the electrode and divided by the density of aluminum IDT electrodes of the silicon oxide film Determined by the product of the, the wavelength normalized thickness of the IDT electrode in terms of aluminum of thickness T E, the thickness of the value of density was divided by the density of the silicon oxide of the protective film and the protective film by the wavelength ⁇
  • the wavelength normalized thickness of the protective film which is obtained by multiplying the normalized wavelength normalized thickness by T p
  • the propagation direction in the silicon support substrate is ⁇ Si
  • the wavelength normalized thickness of the silicon support substrate is T Si
  • All the band-pass filters (m) (n ⁇ m ⁇ N) satisfy the following expression (3) or the following expression (4).
  • the ⁇ t (n) is a wavelength determined by the electrode finger pitch of the IDT electrode in the elastic wave resonator (t) included in the band pass filter (n), and the fu (m) is F 1 (m) is the frequency of the lower end of the pass band of the band-pass filter (m), and f l (m) is the frequency of the lower end of the pass band of the band-pass filter (m).
  • the coefficients in the formula (1) are values shown in Table 1 below for each crystal orientation of the silicon support substrate.
  • An elastic wave device is an elastic wave device provided with N (where N is an integer of 2 or more) band-pass filters having one end commonly connected and having different pass bands.
  • N band-pass filters are band-pass filter (1), band-pass filter (2),... Band-pass filter (N) in order from the one having the lowest pass-band frequency.
  • At least one band-pass filter (n) (1 ⁇ n ⁇ N) excluding the band-pass filter having the highest pass-band frequency among the N band-pass filters has at least one elastic wave resonance.
  • the at least one elastic wave resonator (t) of the one or more elastic wave resonators has a Euler angle ( ⁇ Si , ⁇ Si , Si Si ).
  • the elastic wave is provided on the lithium tantalate film, the IDT electrode having an electrode finger, and a protective film covering at least a part of the IDT electrode.
  • the wavelength normalized thickness of the lithium tantalate film is T LT
  • the Euler angles theta LT of the lithium tantalate film the wavelength normalized thickness T S
  • the wavelength normalized thickness of the IDT the density of the electrode and divided by the density of aluminum IDT electrodes of the silicon oxide film Determined by the product of the, the wavelength normalized thickness of the IDT electrode in terms of aluminum of thickness T E, the thickness of the value of density was divided by the density of the silicon oxide of the protective film and the protective film by the wavelength ⁇
  • the wavelength normalized thickness of the protective film which is obtained by multiplying the normalized wavelength normalized thickness by T p
  • the propagation direction in the silicon support substrate is ⁇ Si
  • the wavelength normalized thickness of the silicon support substrate is T Si
  • the ⁇ t (n) is a wavelength determined by the electrode finger pitch of the IDT electrode in the elastic wave resonator (t) included in the band pass filter (n), and the fu (m) is F 1 (m) is the frequency of the lower end of the pass band of the band-pass filter (m), and f l (m) is the frequency of the lower end of the pass band of the band-pass filter (m).
  • the coefficients in the formula (1) are values shown in Table 2 below for each crystal orientation of the silicon support substrate.
  • An elastic wave device is an elastic wave device provided with N (here, N is an integer of 2 or more) band-pass filters having one end commonly connected and different pass bands.
  • N band-pass filters are band-pass filter (1), band-pass filter (2),... Band-pass filter (N) in order from the one having the lowest pass-band frequency.
  • At least one band-pass filter (n) (1 ⁇ n ⁇ N) excluding the band-pass filter having the highest pass-band frequency among the N band-pass filters has at least one elastic wave resonance.
  • the at least one elastic wave resonator (t) of the one or more elastic wave resonators has a Euler angle ( ⁇ Si , ⁇ Si , Si Si ).
  • the elastic wave is provided on the lithium tantalate film, the IDT electrode having an electrode finger, and a protective film covering at least a part of the IDT electrode.
  • the wavelength normalized thickness of the lithium tantalate film is T LT
  • the Euler angles theta LT of the lithium tantalate film the wavelength normalized thickness T S
  • the wavelength normalized thickness of the IDT the density of the electrode and divided by the density of aluminum IDT electrodes of the silicon oxide film Determined by the product of the, the wavelength normalized thickness of the IDT electrode in terms of aluminum of thickness T E, the thickness of the value of density was divided by the density of the silicon oxide of the protective film and the protective film by the wavelength ⁇
  • the wavelength normalized thickness of the protective film which is obtained by multiplying the normalized wavelength normalized thickness by T p
  • the propagation direction in the silicon support substrate is ⁇ Si
  • the wavelength normalized thickness of the silicon support substrate is T Si
  • All the band-pass filters (m) (n ⁇ m ⁇ N) satisfy the following expression (3) or the following expression (4).
  • the ⁇ t (n) is a wavelength determined by the electrode finger pitch of the IDT electrode in the elastic wave resonator (t) included in the band pass filter (n), and the fu (m) is F 1 (m) is the frequency of the lower end of the pass band of the band-pass filter (m), and f l (m) is the frequency of the lower end of the pass band of the band-pass filter (m).
  • the coefficients in the formula (1) are values shown in Table 3 below for each crystal orientation of the silicon support substrate.
  • the high-frequency front-end circuit according to the present invention includes the elastic wave device configured according to the present invention and a power amplifier.
  • the communication device includes a high-frequency front-end circuit having an elastic wave device and a power amplifier configured according to the present invention, and an RF signal processing circuit.
  • the spurious generated by at least one elastic wave resonator constituting the band pass filter having the lower pass band is generated by another band pass type filter whose pass band is on the high band side. It hardly occurs in the pass band of the filter. Therefore, deterioration of the filter characteristics of the other band-pass filters hardly occurs. Therefore, it is possible to provide a high-frequency front-end circuit and a communication device having an acoustic wave device having excellent filter characteristics.
  • FIG. 1 is a circuit diagram of the elastic wave device according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a first elastic wave filter used in the elastic wave device according to the first embodiment.
  • FIG. 3A is a schematic front sectional view of an elastic wave resonator used in the elastic wave device according to the first embodiment, and
  • FIG. 3B is a schematic diagram illustrating an electrode structure of the elastic wave resonator.
  • FIG. FIG. 4 is a schematic diagram showing pass bands of the first to fourth elastic wave filters in the first embodiment.
  • FIG. 5 is a diagram illustrating admittance characteristics of the elastic wave resonator.
  • FIG. 6 is a diagram showing the propagation direction [psi Si of the silicon supporting substrate, the relationship between the wave sound velocity as a main mode and a spurious A.
  • FIG. 7 is a diagram showing the relationship between the wavelength normalized thickness of the lithium tantalate film and the sound speed of the wave serving as the main mode and the spurious A.
  • FIG. 8 is a diagram showing the relationship between the cut angle (90 ° ⁇ LT ) of the lithium tantalate film and the speed of sound of the wave serving as the main mode and the spurious A.
  • FIG. 9 is a diagram showing the relationship between the wavelength normalized thickness of the silicon oxide film and the sound speed of the wave serving as the main mode and the spurious A.
  • FIG. 10 is a diagram showing the relationship between the wavelength normalized thickness of the IDT electrode and the sound speed of the wave serving as the main mode and the spurious A.
  • FIG. 11 is a diagram showing the relationship between the wavelength-normalized thickness of the protective film made of a silicon oxide film and the sound speed of a wave serving as spurious A.
  • FIG. 12A is a diagram illustrating a filter characteristic of the elastic wave device of the comparative example
  • FIG. 12B is a diagram illustrating a filter characteristic of the elastic wave device of the first embodiment.
  • FIG. 13 is a diagram illustrating a relationship between the wavelength normalized thickness of the silicon support substrate and the phase maximum values of the spurious A, the spurious B, and the spurious C.
  • FIG. 14 is a diagram showing the propagation direction [psi Si of the silicon supporting substrate, the relationship between the wave sound velocity as a main mode and a spurious B.
  • FIG. 15 is a diagram illustrating a relationship between the wavelength normalized thickness of the lithium tantalate film and the sound speed of the wave serving as the main mode and the spurious B.
  • FIG. 16 is a diagram showing the relationship between the cut angle (90 ° ⁇ LT ) of the lithium tantalate film and the speed of sound of the wave serving as the main mode and the spurious B.
  • FIG. 17 is a diagram illustrating a relationship between the wavelength normalized thickness of the silicon oxide film and the sound speed of the wave serving as the main mode and the spurious B.
  • FIG. 18 is a diagram showing the relationship between the wavelength normalized thickness of the IDT electrode and the sound speed of the wave serving as the main mode and the spurious B.
  • FIG. 19 is a diagram showing the relationship between the wavelength normalized thickness of the protective film made of a silicon oxide film and the sound speed of a wave serving as spurious B.
  • Figure 20 is a diagram showing the propagation direction [psi Si of the silicon supporting substrate, the relationship between the wave sound velocity as the main mode and spurious C.
  • FIG. 21 is a diagram showing the relationship between the wavelength normalized thickness of the lithium tantalate film and the sound speed of the wave serving as the main mode and the spurious C.
  • FIG. 22 is a diagram showing the relationship between the cut angle (90 ° ⁇ LT ) of the lithium tantalate film and the speed of sound of the wave serving as the main mode and the spurious C.
  • FIG. 23 is a diagram showing the relationship between the wavelength normalized thickness of the silicon oxide film and the sound speed of the wave serving as the main mode and the spurious C.
  • FIG. 24 is a diagram showing the relationship between the wavelength normalized thickness of the IDT electrode and the sound speed of the wave serving as the main mode and the spurious C.
  • FIG. 25 is a diagram showing the relationship between the wavelength-normalized thickness of the protective film made of a silicon oxide film and the sound speed of the wave serving as the spurious C.
  • FIG. 26 is a diagram showing the relationship between the thickness of the LiTaO 3 film and the Q value in the acoustic wave device.
  • FIG. 27 is a diagram showing the relationship between the thickness of the LiTaO 3 film in the acoustic wave device and the frequency temperature coefficient TCF.
  • FIG. 28 is a diagram showing the relationship between the thickness of the LiTaO 3 film in the acoustic wave device and the speed of sound.
  • FIG. 29 is a diagram showing the relationship between the thickness of the piezoelectric film made of LiTaO 3 and the bandwidth ratio.
  • FIG. 30 is a diagram showing the relationship between the thickness of the SiO 2 film, the material of the high sound speed film, and the sound speed.
  • FIG. 31 is a diagram showing the relationship between the thickness of the SiO 2 film, the material of the high sonic film, and the electromechanical coupling coefficient.
  • FIG. 32 is a partially enlarged front cross-sectional view for explaining a modification in which the thickness of the protective film is partially different.
  • FIG. 33 is a partially enlarged front cross-sectional view for explaining another modification in which the thickness of the protective film is partially different.
  • FIG. 34 is a partially enlarged front cross-sectional view for explaining still another modification in which the thickness of the protective film is partially different.
  • FIG. 35 is a front sectional view showing a modification of the elastic wave resonator used in the elastic wave device of the present invention.
  • FIG. 36 is a front sectional view showing still another modified example of the elastic wave resonator used in the elastic wave device of the present invention.
  • FIG. 37 is a partially enlarged front sectional view for explaining a modification in which the protective film is a laminated film.
  • FIG. 38 is a schematic diagram for explaining the crystal orientation Si (100).
  • FIG. 39 is a schematic diagram for explaining the crystal orientation Si (110).
  • FIG. 40 is a schematic diagram for explaining the crystal orientation Si (111).
  • FIG. 41 is a schematic configuration diagram of a communication device having a high-frequency front-end circuit according to an embodiment of the present invention.
  • FIG. 1 is a circuit diagram of the elastic wave device according to the first embodiment of the present invention.
  • the elastic wave device 1 has an antenna terminal 2.
  • the antenna terminal 2 is a terminal connected to an antenna of a smartphone, for example.
  • the first to fourth elastic wave filters 3 to 6 are commonly connected to the antenna terminal 2.
  • the first to fourth elastic wave filters 3 to 6 each include an elastic wave filter.
  • the first to fourth elastic wave filters 3 to 6 are all band-pass filters.
  • the first to fourth elastic wave filters 3 to 6 are used as a plurality of band-pass filters, in the present invention, not all of the plurality of band-pass filters need to be elastic filters. . That is, an elastic wave device having one end commonly connected and N bandpass filters having different passbands, wherein the bandpass filter having the highest passband frequency among the N bandpass filters. It is sufficient that at least one band-pass filter except for the above is an elastic wave filter including an elastic wave resonator described below. Therefore, the commonly connected band-pass filters may be LC filters other than elastic wave filters.
  • FIG. 4 is a schematic diagram showing the relationship between the pass bands of the first to fourth elastic wave filters. As shown in FIG. 4, the pass bands of the first to fourth acoustic wave filters are different. The pass bands of the first to fourth elastic wave filters are respectively referred to as first to fourth pass bands.
  • the first pass band is on the lowest frequency side, and the pass bands are higher in the order of the second pass band, the third pass band, and the fourth pass band. That is, the first passband ⁇ the second passband ⁇ the third passband ⁇ the fourth passband.
  • the lower end is f l (m)
  • the higher end is f u (m) .
  • the low-frequency end is the low-frequency end of the pass band.
  • the high-frequency end is the high-frequency end of the pass band.
  • the lower band end and the higher band end of the pass band for example, the end of the frequency band of each band standardized by 3GPP or the like can be used.
  • (m) is 2, 3 or 4, respectively, depending on the second to fourth passbands. That is, m is the number of an elastic wave filter other than the elastic wave filter.
  • the first to fourth elastic wave filters 3 to 6 each have a plurality of elastic wave resonators.
  • FIG. 2 is a circuit diagram of the first acoustic wave filter 3.
  • the first elastic wave filter 3 has series arm resonators S1 to S3, each of which is an elastic wave resonator, and parallel arm resonators P1 and P2. That is, the first acoustic wave filter 3 is a ladder-type filter.
  • the number of series arm resonators and the number of parallel arm resonators in the ladder filter are not limited to these.
  • the second to fourth elastic wave filters 4 to 6 are also composed of ladder filters, and have a plurality of series arm resonators and a plurality of parallel arm resonators.
  • the first to fourth elastic wave filters 3 to 6 may have a circuit configuration other than the ladder-type filter as long as the filter has a plurality of elastic wave resonators.
  • an elastic wave filter in which an elastic wave resonator is connected in series to a longitudinally coupled resonator type elastic wave filter may be used.
  • an elastic wave filter in which a ladder type filter is connected to the longitudinally coupled resonator type elastic wave filter may be used.
  • FIG. 3A is a schematic front sectional view of an elastic wave resonator constituting the series arm resonators S1 to S3 of the first elastic wave filter 3 or the parallel arm resonators P1 and P2.
  • FIG. 3B is a schematic plan view showing the electrode structure.
  • the elastic wave resonator 11 has a silicon support substrate 12, a silicon oxide film 13 laminated on the silicon support substrate 12, and a lithium tantalate film 14 laminated on the silicon oxide film 13.
  • the silicon support substrate 12 is made of silicon. Although the silicon support substrate 12 is single crystal silicon, the silicon support substrate 12 need not have perfect single crystal as long as it has a crystal orientation.
  • the silicon oxide film 13 is a SiO 2 film. As long as the silicon oxide film 13 is silicon oxide, for example, a film obtained by doping SiO 2 with fluorine or the like may be included.
  • the silicon oxide film 13 may have a multilayer structure having a plurality of layers made of silicon oxide. An intermediate layer made of titanium, nickel, or the like may be included between the plurality of layers. In this case, the thickness of the silicon oxide film 13 indicates the thickness of the entire multilayer structure.
  • the lithium tantalate film 14 is a single-crystal lithium tantalate film, the lithium tantalate film 14 does not have to be a perfect single crystal as long as it has a crystal orientation.
  • the thickness of the silicon oxide film 13 may be zero. That is, the silicon oxide film 13 may not be provided.
  • An IDT (Interdigital Transducer) electrode 15 is provided on the upper surface of the lithium tantalate film 14. More specifically, reflectors 16 and 17 are provided on both sides of the IDT electrode 15 in the direction in which the acoustic wave propagates, thereby forming a one-port type surface acoustic wave resonator.
  • a protective film 18 is provided so as to cover the IDT electrode 15 and the reflectors 16 and 17.
  • the protective film 18 is made of a silicon oxide film.
  • the protective film 18 may be various dielectric films such as silicon oxynitride and silicon nitride.
  • the protective film 18 is provided so as to cover not only the upper part of the electrode finger of the IDT electrode 15 but also the upper surface of the lithium tantalate film 14 and both side surfaces of the electrode finger.
  • the form of the protective film 18 is not limited to this.
  • the inventors of the present application excited the IDT electrode 15 to obtain a response other than the main mode response to be used. In addition, they found that a plurality of spurs appeared on the higher frequency side than in the main mode. The plurality of spurious components will be described with reference to FIG.
  • FIG. 5 is a diagram showing admittance characteristics of an example of an elastic wave resonator in which a silicon oxide film and a lithium tantalate film are laminated on a silicon support substrate.
  • spurious signals A, B, and C appear at a frequency position higher than the response of the main mode that appears near 3.9 GHz.
  • Spurious A appears around 4.7 GHz.
  • Spurious B is higher and appears around 5.2 GHz.
  • Spurious C appears around 5.7 GHz.
  • the frequency of the spurious A is f1
  • the frequency of the spurious B is f2
  • the frequency of the spurious C is f3, f1 ⁇ f2 ⁇ f3.
  • the frequencies of the spurious signals A to C are the peak positions of the impedance phase characteristics of the waves that become the spurious signals AC.
  • the above-described spurious due to the elastic wave filter having a low frequency side pass band is reduced.
  • it appears in the pass band of another elastic wave filter having a band it becomes a ripple. Therefore, it is desirable that at least one of spurious A, spurious B, and spurious C does not appear in the pass band of the second to fourth acoustic wave filters 4 to 6.
  • two of the spurious components A, B and C do not appear in the passbands of the second to fourth acoustic wave filters 4 to 6.
  • spurious A and spurious B, spurious A and spurious C, or spurious B and spurious C do not appear in the passbands of the second to fourth acoustic wave filters 4 to 6. Further, it is preferable that all of spurious A, spurious B, and spurious C do not appear in the pass bands of the second to fourth elastic wave filters 4 to 6.
  • a feature of the elastic wave device 1 of the present embodiment is that, in at least one elastic wave resonator constituting the first elastic wave filter 3, the spurious signal A is generated by the second to fourth passages shown in FIG. Is not appearing in the band. Therefore, the filter characteristics of the second to fourth acoustic wave filters 4 to 6 are unlikely to deteriorate.
  • the wavelength normalized thickness T LT of the lithium tantalate film 14, the Euler angle ⁇ LT of the lithium tantalate film 14, the wavelength normalized thickness T S of the silicon oxide film 13, and the density of the IDT electrode 15 are divided by the density of aluminum. And the value obtained by dividing the density of the protective film 18 by the density of the silicon oxide, and the wavelength normalized thickness T E of the IDT electrode 15 converted to the thickness of aluminum, which is obtained by the product of the obtained value and the wavelength normalized thickness of the IDT electrode 15.
  • the wavelength normalized thickness of the protective film 18 obtained by multiplying the thickness of the protective film 18 by the wavelength normalized thickness normalized by the wavelength ⁇ is T P , the propagation direction ⁇ ⁇ ⁇ ⁇ Si in the silicon support substrate 12, and the value of the wavelength normalized thickness T Si is f h1 _ t of frequency of spurious a determined by the following equation (1) and (2) (n), all of m Nitsu is m> n Te lies in that it is a value that satisfies the formula (3) or the following formula (4) below.
  • the spurious component A is located outside the pass band of the second to fourth acoustic wave filters 4 to 6. Therefore, deterioration of the filter characteristics of the second to fourth acoustic wave filters 4 to 6 due to the spurious signal A does not easily occur.
  • the fact that the frequency of spurious A is outside the second to fourth passbands by satisfying the above condition will be described in more detail below.
  • the density of the IDT electrode 15 is not a measured value but a value obtained from the density of the metal material forming the IDT electrode 15.
  • the density of aluminum is 2698.9 kg / m 3 . This value can be obtained from the Chemical Handbook, Basic Edition II, 4th revised edition, edited by The Chemical Society of Japan, published by Maruzen (1993), p. 26.
  • the density of the protective film 18 is not a measured value but a value obtained based on the density of the material forming the protective film 18.
  • the density of silicon oxide is 2200 kg / m 3 . This value can be obtained from the Chemical Handbook, Applied Edition II Materials Edition, 4th Edition, edited by The Chemical Society of Japan, Maruzen (1993) 922.
  • the thickness of the protective film 18 refers to the thickness of the protective film in a portion of the IDT electrode located above the electrode finger.
  • the wavelength-normalized thickness is a thickness obtained by normalizing the thickness with the wavelength of the IDT electrode.
  • the wavelength refers to a wavelength ⁇ determined by the electrode finger pitch of the IDT electrode. Therefore, the wavelength normalized thickness is a thickness obtained by normalizing the actual thickness with ⁇ being 1, and is a value obtained by dividing the actual thickness by ⁇ .
  • the wavelength ⁇ determined by the electrode finger pitch of the IDT electrode may be determined by the average value of the electrode finger pitch.
  • the present inventors have found that the frequency position of spurious A is affected by the parameters described above.
  • the sound speed in the main mode hardly changes depending on the propagation direction ⁇ Si of the silicon support substrate, but the sound speed of the wave serving as spurious A greatly changes.
  • the sound speed of the wave serving as the spurious A changes depending on the wavelength normalized thickness T LT of the lithium tantalate film.
  • the sound speed of the wave serving as spurious A also changes depending on the cut angle of the lithium tantalate film, that is, (90 ° ⁇ LT ).
  • the sound speed of the wave serving as the spurious A slightly changes depending on the wavelength normalized thickness T S of the silicon oxide film.
  • f h1 — t (n) is higher than f u (m) or lower than f l (m) . That is, the second pass band, the third pass band, and the fourth pass band shown in FIG. 4 are lower than the lower end portions or higher than the upper end portions. Therefore, it can be seen that the frequency f h1 — t (n) of the spurious A is not located in the second to fourth pass bands.
  • ⁇ LT is ⁇ 180 ° ⁇ LT ⁇ 0 °, but ⁇ LT and ⁇ LT + 180 ° may be treated as having the same meaning.
  • the range of 0 ° ⁇ 5 ° in the Euler angle (within the range of 0 ° ⁇ 5 °, ⁇ , within the range of 0 ° ⁇ 15 °) means ⁇ 5 ° or more and + 5 ° or less.
  • the range of 0 ° ⁇ 15 ° means a range of ⁇ 15 ° or more and + 15 ° or less.
  • the range of 0 ° ⁇ 5 ° may be simply described as 0 ° ⁇ 5 °.
  • Wavelength normalized thickness T E of the IDT electrode 15 is the thickness in terms of the film thickness of the IDT electrodes made of aluminum.
  • the electrode material is not limited to Al.
  • Various metals such as Ti, NiCr, Cu, Pt, Au, Mo, and W can be used. Further, an alloy mainly composed of these metals may be used. Alternatively, a stacked metal film formed by stacking a plurality of metal films made of these metals and alloys may be used.
  • FIG. 12A is a diagram illustrating filter characteristics of an elastic wave device according to a comparative example in which the elastic wave resonator does not satisfy Expressions (3) and (4)
  • FIG. FIG. 4 is a diagram illustrating filter characteristics of the elastic wave device according to the first embodiment.
  • FIG. 12 (a) and 12 (b) each show the filter characteristics of the first elastic wave filter and the second elastic wave filter.
  • the solid line is the filter characteristic of the first acoustic wave filter.
  • ripples appear in the pass band in the filter characteristics of the second acoustic wave filter. This ripple is due to spurious components of the elastic wave resonator in the first elastic wave filter.
  • FIG. 12B in the elastic wave device of the first embodiment, such a ripple does not appear in the pass band of the second elastic wave filter. That is, since the elastic wave resonator is configured to satisfy Expression (3) or Expression (4), the ripple does not appear in the second pass band of the second elastic wave filter.
  • FIG. 13 is a diagram illustrating a relationship between the wavelength normalized thickness of the silicon support substrate and the phase maximum values of the spurious A, the spurious B, and the spurious C.
  • the wavelength normalized thickness of the silicon supporting substrate is larger than 4
  • the size of the spurious A becomes substantially constant, and it becomes easy to allow the variation of the wavelength normalized thickness of the silicon supporting substrate. Understand. If the wavelength normalized thickness of the silicon support substrate is larger than 10, the spurious B and spurious C become constant, and if it is larger than 20, all of the spurious A, B and C become constant. Therefore, it is preferable that the wavelength normalized thickness T Si of the silicon support substrate is T Si > 4. More preferably, the wavelength-normalized thickness T Si of the silicon support substrate is T Si > 10. More preferably, the wavelength-normalized thickness T Si of the silicon support substrate is T Si > 20.
  • the frequency of the spurious A in at least one of the plurality of elastic wave resonators constituting the first elastic wave filter 3 is expressed by Expression (3) or Expression (4). Had met. More preferably, in the elastic wave resonator closest to the antenna terminal, it is desirable that the frequency of the spurious A satisfies Expression (3) or Expression (4). The effect of spurious A on the elastic wave resonator closest to the antenna terminal tends to appear larger in the pass bands of the other second to fourth elastic wave filters 4 to 6 than in the other elastic wave resonators. by.
  • the structure of the present invention When the structure of the present invention is applied, as described above, there is a tendency that a wave serving as a spurious A is trapped in a portion where the silicon oxide film 13 and the lithium tantalate film 14 are stacked.
  • the wavelength-normalized thickness of the lithium film 14 By setting the wavelength-normalized thickness of the lithium film 14 to 3.5 ⁇ or less, the laminated portion of the silicon oxide film 13 and the lithium tantalate film 14 becomes thinner, so that the wave serving as spurious A is less likely to be trapped.
  • the wavelength normalized thickness of the lithium tantalate film 14 is 2.5 ⁇ or less, in which case the absolute value of the frequency temperature coefficient TCF can be reduced. More preferably, the wavelength normalized thickness of the lithium tantalate film 14 is 1.5 ⁇ or less. In this case, the electromechanical coupling coefficient can be easily adjusted. More preferably, the wavelength normalized thickness of the lithium tantalate film 14 is 0.5 ⁇ or less. In this case, the electromechanical coupling coefficient can be easily adjusted in a wide range.
  • a wave of sound to be spurious B changes the propagation direction [psi Si.
  • the sound speed of the wave serving as the spurious B also changes depending on the wavelength normalized thickness T LT of the lithium tantalate film.
  • the sound speed of the wave serving as the spurious B also changes depending on the cut angle (90 ° ⁇ LT ) of the lithium tantalate film.
  • the sound speed of the wave serving as the spurious B also changes depending on the wavelength normalized thickness T S of the silicon oxide film.
  • T E of the IDT electrode by the wavelength normalized thickness T E of the IDT electrode, the wave becomes a spurious B sound speed varies. Furthermore, as shown in FIG.
  • the frequency position f h2 — t (n) V h2 — t / ⁇ t of the spurious B is obtained from the sound velocity V h2 — t of the wave that becomes the spurious B by the equation (2) as described above. (N) is required. Then, in the second embodiment, the frequency position f h2 — t (n) of the spurious B is set so that the frequency position of the spurious B satisfies the following expression (3A) or (4A). . Therefore, in the second embodiment, the spurious B is located outside the second to fourth pass bands of the second to fourth acoustic wave filters 4 to 6. Therefore, ripples in the filter characteristics of the second to fourth acoustic wave filters 4 to 6 due to the spurious B are unlikely to occur.
  • the frequency position of the spurious B satisfies Expression (3A) or Expression (4A).
  • Expression (3A) or Expression (4A) ripples due to spurious B are more unlikely to occur in the pass bands of the second to fourth acoustic wave filters 4 to 6.
  • the frequency position of the spurious B only needs to satisfy Expression (3A) or Expression (4A).
  • a wave of sound to be spurious C varies by propagation direction [psi Si.
  • the sound speed of the wave serving as the spurious C also changes depending on the wavelength normalized thickness T LT of the lithium tantalate film.
  • the sound speed of the wave serving as the spurious C also changes depending on the cut angle (90 ° ⁇ LT ) of the lithium tantalate film.
  • the wave becomes a spurious C sound speed varies.
  • the wavelength normalized thickness T E of the IDT electrode the wave becomes a spurious C sound speed varies. Further, as shown in FIG.
  • the frequency position f h3 — t (n) V h3 — t / ⁇ t of the spurious C is obtained from the sound velocity V h3 — t of the wave that becomes the spurious C by the equation (2) as described above.
  • the frequency position of the spurious C is obtained from (n) .
  • the frequency position of the spurious C is set such that the frequency position of the spurious C satisfies the following expression (3B) or (4B). Therefore, in the third embodiment, the spurious C is located outside the second to fourth pass bands of the second to fourth acoustic wave filters 4 to 6. Therefore, in the filter characteristics of the second to fourth elastic wave filters 4 to 6, ripples due to the spurious C hardly occur.
  • the frequency position of the spurious C satisfies the expression (3B) or the expression (4B).
  • ripples due to spurious C are more unlikely to occur in the pass bands of the second to fourth acoustic wave filters 4 to 6.
  • the frequency position of the spurious C may satisfy Expression (3B) or Expression (4B).
  • the fourth embodiment satisfies all of the first, second, and third embodiments.
  • the specific structure of the elastic wave device according to the fourth embodiment is the same as in the first to third embodiments.
  • s is 1, 2, or 3.
  • the second frequency f h2 — t (n) that is the frequency of the spurious B
  • the frequency of the spurious C are used.
  • Each of the third frequencies f h3 — t (n) is higher than f u (m) or lower than f l (m) . Therefore, the spurious components A, B, and C are located outside the second to fourth pass bands of the second to fourth elastic wave filters 4 to 6. Therefore, the filter characteristics of the second to fourth acoustic wave filters 4 to 6 are less likely to deteriorate.
  • f hs _ t (n) (where, s is 1, 2 or 3) in any case is s is 1, 2, and 3, f hs _ t (n)> f u ( m) or would meet f hs _ t (n) ⁇ f l (m). Also in the fourth embodiment, it is preferable that T Si > 20 is satisfied, whereby the magnitudes of the spurious components A, B, and C can be made constant.
  • the spurious A, the spurious B, and the spurious C do not exist in the pass bands of the second to fourth elastic wave filters, which are other elastic wave filters.
  • two of spurious A, B, and C may be arranged outside the pass band of the second to fourth acoustic wave filters. Even in such a case, the influence of spurious can be further reduced than in the first to third embodiments.
  • FIG. 26 shows an acoustic wave device in which a low sound speed film composed of a SiO 2 film having a thickness of 0.35 ⁇ and a LiTaO 3 film having an Euler angle (0 °, 140.0 °, 0 °) are laminated on a high sound speed silicon support substrate.
  • 3 is a diagram showing a relationship between the thickness of the LiTaO 3 film and the Q value in FIG.
  • the vertical axis in FIG. 26 represents the Q characteristic of the resonator, which is represented by the product of the Q value and the fractional band ( ⁇ f).
  • FIG. 27 is a diagram showing the relationship between the thickness of the LiTaO 3 film and the frequency temperature coefficient TCF.
  • the thickness of the LiTaO 3 film is preferably equal to or less than 3.5 ⁇ . In that case, the Q value becomes higher than that in the case of exceeding 3.5 ⁇ . More preferably, to further increase the Q value, the thickness of the LiTaO 3 film is desirably 2.5 ⁇ or less.
  • the absolute value of the frequency temperature coefficient TCF can be made smaller than when it exceeds 2.5 ⁇ . More preferably, the thickness of the LiTaO 3 film is desirably 2 ⁇ or less, in which case the absolute value of the frequency temperature coefficient TCF is 10 ppm / ° C. or less. In order to reduce the absolute value of the frequency temperature coefficient TCF, it is more preferable that the thickness of LiTaO 3 be 1.5 ⁇ or less.
  • the thickness of the LiTaO 3 film when the thickness of the LiTaO 3 film is in the range of 0.05 ⁇ or more and 0.5 ⁇ or less, the fractional band greatly changes. Therefore, the electromechanical coupling coefficient can be adjusted in a wider range. Therefore, in order to widen the adjustment range of the electromechanical coupling coefficient and the bandwidth ratio, it is desirable that the thickness of the LiTaO 3 film be in a range of 0.05 ⁇ or more and 0.5 ⁇ or less.
  • FIGS. 30 and 31 are diagrams showing the relationship between the thickness ( ⁇ ) of the SiO 2 film, the sound speed, and the electromechanical coupling coefficient, respectively.
  • a silicon nitride film, an aluminum oxide film, and a diamond film were used as high sonic films below the low sonic film made of SiO 2 .
  • the thickness of the high sonic film was 1.5 ⁇ .
  • the sound speed of bulk waves in silicon nitride is 6000 m / s
  • the sound speed of bulk waves in aluminum oxide is 6000 m / s
  • the sound speed of bulk waves in diamond is 12800 m / s.
  • the electromechanical coupling coefficient and the sound speed hardly change.
  • the thickness of the SiO 2 film is 0.1 ⁇ or more and 0.5 ⁇ or less, the electromechanical coupling coefficient hardly changes regardless of the material of the high sound speed film.
  • FIG. 30 shows that if the thickness of the SiO 2 film is 0.3 ⁇ or more and 2 ⁇ or less, the sound speed does not change regardless of the material of the high sound speed film. Therefore, the thickness of the low-sonic film made of silicon oxide is preferably 2 ⁇ or less, more preferably 0.5 ⁇ or less.
  • FIGS. 32 to 34 are partially enlarged front cross-sectional views for explaining each modification in which the thickness of the protective film is partially different in the elastic wave resonator used in the present invention.
  • the protective film 18 is provided so as to cover the upper surface and side surfaces of the lithium tantalate film 14 and the electrode fingers 15a of the IDT electrode 15.
  • the thickness of the protective film 18 covering the side surface of the electrode finger 15a is smaller than the thickness of the protective film 18 covering the upper surface of the electrode finger 15a. In this case, the Q value can be increased and the electromechanical coupling coefficient can be increased.
  • the electromechanical coupling coefficient decreases. However, if the thickness of the protective film 18 on the side surface of the electrode finger 15a is reduced, the electromechanical coupling coefficient can be increased.
  • the thickness of the protective film 18 on the lithium tantalate film 14 is smaller than the thickness of the protective film 18 covering the upper surface of the electrode finger 15a.
  • the electromechanical coupling coefficient can be increased. That is, the electromechanical coupling coefficient can be increased by reducing the thickness of the portion of the protective film 18 covering the lithium tantalate film 14.
  • the thickness of the protective film 18 on the lithium tantalate film 14 is larger than the thickness of the protective film 18 covering the upper surface of the electrode finger 15a.
  • the electromechanical coupling coefficient can be reduced, and the band can be narrowed.
  • FIG. 35 is a front sectional view for explaining a modification of the elastic wave resonator used in the present invention.
  • the elastic wave resonator of this modification has the same configuration as the elastic wave resonator 11 shown in FIG. 3A except that the silicon oxide film 13 is not provided.
  • the elastic wave resonator used in the present invention may have a structure in which the lithium tantalate film 14 is directly laminated on the silicon support substrate 12. In that case, the thickness of the silicon oxide film 13 becomes zero.
  • FIG. 36 is a front sectional view showing still another modification of the elastic wave resonator used in the elastic wave device of the present invention.
  • the protective film 18 is stacked on the upper surface of the electrode finger of the IDT electrode 15.
  • the protective film 18 is provided so as not to reach the side surface of the electrode finger of the lithium tantalate film 14.
  • the protective film 18 may be laminated only on the upper surface of the electrode finger.
  • FIG. 37 is a partially enlarged front cross-sectional view for describing a structure when the protective film 18 is a laminated film.
  • the protective film 18 has a structure in which a first protective film layer 18a, a second protective film layer 18b, and a third protective film layer 18c are stacked.
  • the protective film 18 may be a laminated film of a plurality of protective film layers.
  • T P of the protective layer 18 a value obtained by dividing the density of each protective layer at a density of silicon oxide, the product of the wavelength normalized thickness of the protective layer Determined by the total.
  • the density of the first protective film layer 18a is d1
  • the wavelength normalized thickness is t1
  • the density of the second protective film layer 18b is d2
  • the wavelength normalized thickness is t2
  • Si (100) is a substrate cut in a (100) plane orthogonal to a crystal axis represented by a Miller index [100] in a crystal structure of silicon having a diamond structure. Indicates that Note that a crystallographically equivalent surface such as Si (010) is also included.
  • Si (110) refers to a substrate cut in a (110) plane orthogonal to a crystal axis represented by a Miller index [110] in a crystal structure of silicon having a diamond structure. Show. Note that other crystallographically equivalent planes are also included.
  • Si (111) indicates a substrate cut in a (111) plane orthogonal to a crystal axis represented by a Miller index [111] in a crystal structure of silicon having a diamond structure. . Note that other crystallographically equivalent planes are also included.
  • the elastic wave device in each of the above embodiments can be used as a component such as a duplexer of a high-frequency front-end circuit.
  • a high-frequency front-end circuit An example of such a high-frequency front-end circuit will be described below.
  • FIG. 41 is a schematic configuration diagram of a communication device having a high-frequency front-end circuit.
  • the communication device 240 has an antenna 202, a high-frequency front-end circuit 230, and an RF signal processing circuit 203.
  • the high-frequency front-end circuit 230 is a circuit part connected to the antenna 202.
  • the high-frequency front-end circuit 230 includes an elastic wave device 210 and amplifiers 221 to 224.
  • the elastic wave device 210 has first to fourth filters 211 to 214.
  • the elastic wave device 210 the above-described elastic wave device of the present invention can be used.
  • the elastic wave device 210 has an antenna common terminal 225 connected to the antenna 202.
  • first to third filters 211 to 213 as reception filters and one end of fourth filter 214 as a transmission filter are commonly connected to antenna common terminal 225.
  • Output terminals of the first to third filters 211 to 213 are connected to amplifiers 221 to 223, respectively.
  • An amplifier 224 is connected to the input terminal of the fourth filter 214.
  • the output terminals of the amplifiers 221 to 223 are connected to the RF signal processing circuit 203.
  • An input terminal of the amplifier 224 is connected to the RF signal processing circuit 203.
  • the elastic wave device according to the present invention can be suitably used as the elastic wave device 210 in such a communication device 240.
  • the elastic wave device according to the present invention is used for various communication bands, and as the pass band in the elastic wave filter, for example, a communication band pass band defined by the 3GPP standard is preferable.
  • the elastic wave device it is preferable that all of the one or more elastic wave resonators are elastic wave resonators satisfying the above formula (3) or the above formula (4).
  • the elastic wave device according to the present invention is used for various communication applications, but is preferably used as a composite filter for carrier aggregation. That is, the composite filter for carrier aggregation further includes an antenna terminal to which one ends of a plurality of elastic wave filters are commonly connected, and three or more elastic wave filters are commonly connected to the antenna terminal side. Then, a plurality of elastic wave filters transmit and receive signals of a plurality of communication bands simultaneously.
  • the elastic wave device according to the present invention may have only a plurality of transmission filters or may have a plurality of reception filters. Note that the elastic wave device includes n band-pass filters, where n is 2 or more. Therefore, the duplexer is also an elastic wave device in the present invention.
  • the present invention is widely applicable to communication devices such as mobile phones as filters, elastic wave devices applicable to multi-band systems, front-end circuits, and communication devices.

Abstract

他の帯域通過型フィルタの通過帯域における、リップルが生じ難い、弾性波装置を提供することにある。 一端が共通接続されている通過帯域が異なるN個の(但し、Nは2以上の整数)帯域通過型フィルタが備えられている。少なくとも1つの帯域通過型フィルタが、オイラー角(φLT=0°±5°の範囲内,θLT,ψLT=0°±15°の範囲内)のタンタル酸リチウム膜14と、シリコン支持基板12と、タンタル酸リチウム膜14とシリコン支持基板12との間に積層されている酸化ケイ素膜13と、IDT電極15、保護膜18とを有する、複数の弾性波共振子を有している。前記複数の弾性波共振子のうち少なくとも1つの弾性波共振子において、周波数fh1_ (n)が、m>nである全てのmにおいて、下記の式(3)または下記の式(4)を満たしている、弾性波装置。 fh1_ (n)>f (m) 式(3) fh1_ (n)<f (m) 式(4) なお、式(3)及び式(4)において、f (m)及びf (m)は、m個の帯域通過型フィルタにおける通過帯域の高域側端部及び低域側端部の周波数を示す。

Description

弾性波装置、高周波フロントエンド回路及び通信装置
 本発明は、2以上の弾性波フィルタを有する弾性波装置、並びに該弾性波装置を有する高周波フロントエンド回路及び通信装置に関する。
 従来、携帯電話やスマートフォンの高周波フロントエンド回路に、複数の弾性波フィルタが広く用いられている。例えば、下記の特許文献1に記載の分波器では、周波数が異なる2以上の帯域通過型フィルタの一端が共通接続されている。そして、各帯域通過型フィルタは、それぞれ、弾性表面波フィルタチップで構成されている。各弾性表面波フィルタチップは、複数の弾性表面波共振子を有している。
 下記の特許文献2に記載の弾性波共振子では、シリコン支持基板上に、二酸化珪素からなる絶縁膜と、タンタル酸リチウムからなる圧電基板とを積層してなる弾性波装置が開示されている。そして、シリコンの(111)面で接合させることにより耐熱性を高めている。
特開2014-68123号公報 特開2010-187373号公報
 特許文献1に記載のような弾性波装置では、アンテナ端子側において、周波数が異なる複数の弾性波フィルタが共通接続されている。
 ところで、本願の発明者らは、シリコン支持基板上に、直接または間接に、タンタル酸リチウム膜が積層されている弾性波共振子では、利用するメインモードよりも高周波数側に、複数のスプリアスが現れることを見出した。このような弾性波共振子を、弾性波装置における通過帯域が低い側の弾性波フィルタに用いた場合、該弾性波フィルタで現れるスプリアスが、通過帯域が高い側の他の弾性波フィルタの通過帯域に現れるおそれがある。よって、他の弾性波フィルタのフィルタ特性が劣化するおそれがある。
 本発明の目的は、他の帯域通過型フィルタの通過帯域内において、上記スプリアスによるリップルが生じ難い、弾性波装置、該弾性波装置を有する高周波フロントエンド回路及び通信装置を提供することにある。
 本願の第1の発明に係る弾性波装置は、一端が共通接続されており、通過帯域が異なるN個の(但し、Nは2以上の整数)帯域通過型フィルタを備える弾性波装置であって、前記N個の帯域通過型フィルタを通過帯域の周波数が低い方から順番に、帯域通過型フィルタ(1)、帯域通過型フィルタ(2)・・・帯域通過型フィルタ(N)とした場合に、前記N個の帯域通過型フィルタのうち最も通過帯域の周波数が高い帯域通過型フィルタを除く少なくとも1つの帯域通過型フィルタ(n)(1≦n<N)が、1つ以上の弾性波共振子を含む弾性波フィルタであり、前記1つ以上の弾性波共振子のうちの少なくとも1つの弾性波共振子(t)は、オイラー角(φSi,θSi,ψSi)を有するシリコン支持基板と、前記シリコン支持基板上に積層されている、酸化ケイ素膜と、前記酸化ケイ素膜上に積層されており、オイラー角(φLT=0°±5°の範囲内,θLT,ψLT=0°±15°の範囲内)を有するタンタル酸リチウム膜と、前記タンタル酸リチウム膜上に設けられており、電極指を有するIDT電極と、前記IDT電極の少なくとも一部を覆う保護膜と、を有し、前記弾性波共振子(t)において、前記IDT電極の電極指ピッチで定まる波長をλとし、前記波長λにより規格化した厚みを波長規格化厚みとしたときに、前記タンタル酸リチウム膜の波長規格化厚みをTLT、前記タンタル酸リチウム膜のオイラー角をθLT、前記酸化ケイ素膜の波長規格化厚みをT、前記IDT電極の密度をアルミニウムの密度で除した値と前記IDT電極の波長規格化厚みとの積で求められる、アルミニウムの厚みに換算した前記IDT電極の波長規格化厚みをT、前記保護膜の密度を酸化ケイ素の密度で除した値と前記保護膜の厚みを前記波長λにより規格化した波長規格化厚みとの積で求められる前記保護膜の波長規格化厚みをT、前記シリコン支持基板内における伝搬方位をψSi、前記シリコン支持基板の波長規格化厚みをTSiの値とした場合に、前記TLT、前記θLT、前記T、前記T、前記T、前記ψSi、前記TSiで定まる下記の式(1)及び式(2)で決定される第1、第2及び第3の周波数fhs_ (n)のうちのs=1である第1の周波数fh1_ (n)と、前記帯域通過型フィルタ(n)の通過帯域よりも高い周波数域にある通過帯域を有するすべての帯域通過型フィルタ(m)(n<m≦N)とが、下記の式(3)または下記の式(4)を満たす。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
  fhs_ (n)>f (m)   式(3)
  fhs_ (n)<f (m)   式(4)
 但し、上記式(2)~(4)においては、s=1である。
 前記λ (n)は、前記帯域通過型フィルタ(n)に含まれる前記弾性波共振子(t)における前記IDT電極の電極指ピッチで定まる波長であり、前記f (m)は、前記帯域通過型フィルタ(m)における通過帯域の高域側端部の周波数であり、前記f (m)は、前記帯域通過型フィルタ(m)における通過帯域の低域側端部の周波数であり、前記式(1)における各係数は、前記シリコン支持基板の結晶方位毎に下記の表1に示すそれぞれの値である。
Figure JPOXMLDOC01-appb-T000012
 本願の第2の発明に係る弾性波装置は、一端が共通接続されており、通過帯域が異なるN個の(但し、Nは2以上の整数)帯域通過型フィルタを備える弾性波装置であって、前記N個の帯域通過型フィルタを通過帯域の周波数が低い方から順番に、帯域通過型フィルタ(1)、帯域通過型フィルタ(2)・・・帯域通過型フィルタ(N)とした場合に、前記N個の帯域通過型フィルタのうち最も通過帯域の周波数が高い帯域通過型フィルタを除く少なくとも1つの帯域通過型フィルタ(n)(1≦n<N)が、1つ以上の弾性波共振子を含む弾性波フィルタであり、前記1つ以上の弾性波共振子のうちの少なくとも1つの弾性波共振子(t)は、オイラー角(φSi,θSi,ψSi)を有するシリコン支持基板と、前記シリコン支持基板上に積層されている、酸化ケイ素膜と、前記酸化ケイ素膜上に積層されており、オイラー角(φLT=0°±5°の範囲内,θLT,ψLT=0°±15°の範囲内)を有するタンタル酸リチウム膜と、前記タンタル酸リチウム膜上に設けられており、電極指を有するIDT電極と、前記IDT電極の少なくとも一部を覆う保護膜と、を有し、前記弾性波共振子(t)において、前記IDT電極の電極指ピッチで定まる波長をλとし、前記波長λにより規格化した厚みを波長規格化厚みとしたときに、前記タンタル酸リチウム膜の波長規格化厚みをTLT、前記タンタル酸リチウム膜のオイラー角をθLT、前記酸化ケイ素膜の波長規格化厚みをT、前記IDT電極の密度をアルミニウムの密度で除した値と前記IDT電極の波長規格化厚みとの積で求められる、アルミニウムの厚みに換算した前記IDT電極の波長規格化厚みをT、前記保護膜の密度を酸化ケイ素の密度で除した値と前記保護膜の厚みを前記波長λにより規格化した波長規格化厚みとの積で求められる前記保護膜の波長規格化厚みをT、前記シリコン支持基板内における伝搬方位をψSi、前記シリコン支持基板の波長規格化厚みをTSiの値とした場合に、前記TLT、前記θLT、前記T、前記T、前記T、前記ψSi、前記TSiで定まる下記の式(1)及び式(2)で決定される第1、第2及び第3の周波数fhs_ (n)のうちのs=2である第2の周波数fh2_ (n)と、前記帯域通過型フィルタ(n)の通過帯域よりも高い周波数域にある通過帯域を有するすべての帯域通過型フィルタ(m)(n<m≦N)とが、下記の式(3)または下記の式(4)を満たす。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
  fhs_ (n)>f (m)   式(3)
  fhs_ (n)<f (m)   式(4)
 但し、上記式(2)~(4)においては、s=2である。
 前記λ (n)は、前記帯域通過型フィルタ(n)に含まれる前記弾性波共振子(t)における前記IDT電極の電極指ピッチで定まる波長であり、前記f (m)は、前記帯域通過型フィルタ(m)における通過帯域の高域側端部の周波数であり、前記f (m)は、前記帯域通過型フィルタ(m)における通過帯域の低域側端部の周波数であり、前記式(1)における各係数は、前記シリコン支持基板の結晶方位毎に下記の表2に示すそれぞれの値である。
Figure JPOXMLDOC01-appb-T000015
 本願の第3の発明に係る弾性波装置は、一端が共通接続されており、通過帯域が異なるN個の(但し、Nは2以上の整数)帯域通過型フィルタを備える弾性波装置であって、前記N個の帯域通過型フィルタを通過帯域の周波数が低い方から順番に、帯域通過型フィルタ(1)、帯域通過型フィルタ(2)・・・帯域通過型フィルタ(N)とした場合に、前記N個の帯域通過型フィルタのうち最も通過帯域の周波数が高い帯域通過型フィルタを除く少なくとも1つの帯域通過型フィルタ(n)(1≦n<N)が、1つ以上の弾性波共振子を含む弾性波フィルタであり、前記1つ以上の弾性波共振子のうちの少なくとも1つの弾性波共振子(t)は、オイラー角(φSi,θSi,ψSi)を有するシリコン支持基板と、前記シリコン支持基板上に積層されている、酸化ケイ素膜と、前記酸化ケイ素膜上に積層されており、オイラー角(φLT=0°±5°の範囲内,θLT,ψLT=0°±15°の範囲内)を有するタンタル酸リチウム膜と、前記タンタル酸リチウム膜上に設けられており、電極指を有するIDT電極と、前記IDT電極の少なくとも一部を覆う保護膜と、を有し、前記弾性波共振子(t)において、前記IDT電極の電極指ピッチで定まる波長をλとし、前記波長λにより規格化した厚みを波長規格化厚みとしたときに、前記タンタル酸リチウム膜の波長規格化厚みをTLT、前記タンタル酸リチウム膜のオイラー角をθLT、前記酸化ケイ素膜の波長規格化厚みをT、前記IDT電極の密度をアルミニウムの密度で除した値と前記IDT電極の波長規格化厚みとの積で求められる、アルミニウムの厚みに換算した前記IDT電極の波長規格化厚みをT、前記保護膜の密度を酸化ケイ素の密度で除した値と前記保護膜の厚みを前記波長λにより規格化した波長規格化厚みとの積で求められる前記保護膜の波長規格化厚みをT、前記シリコン支持基板内における伝搬方位をψSi、前記シリコン支持基板の波長規格化厚みをTSiの値とした場合に、前記TLT、前記θLT、前記T、前記T、前記T、前記ψSi、前記TSiで定まる下記の式(1)及び式(2)で決定される第1、第2及び第3の周波数fhs_ (n)のうちのs=3である第3の周波数fh3_ (n)と、前記帯域通過型フィルタ(n)の通過帯域よりも高い周波数域にある通過帯域を有するすべての帯域通過型フィルタ(m)(n<m≦N)とが、下記の式(3)または下記の式(4)を満たす。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
  fhs_ (n)>f (m)   式(3)
  fhs_ (n)<f (m)   式(4)
 但し、上記式(2)~(4)においては、s=3である。
 前記λ (n)は、前記帯域通過型フィルタ(n)に含まれる前記弾性波共振子(t)における前記IDT電極の電極指ピッチで定まる波長であり、前記f (m)は、前記帯域通過型フィルタ(m)における通過帯域の高域側端部の周波数であり、前記f (m)は、前記帯域通過型フィルタ(m)における通過帯域の低域側端部の周波数であり、前記式(1)における各係数は、前記シリコン支持基板の結晶方位毎に下記の表3に示すそれぞれの値である。
Figure JPOXMLDOC01-appb-T000018
 本発明に係る高周波フロントエンド回路は、本発明に従って構成されている弾性波装置と、パワーアンプと、を備える。
 本発明に係る通信装置は、本発明に従って構成されている弾性波装置及びパワーアンプを有する高周波フロントエンド回路と、RF信号処理回路と、を備える。
 本発明に係る弾性波装置によれば、通過帯域が低い方の帯域通過型フィルタを構成する少なくとも1つの弾性波共振子によって発生するスプリアスが、通過帯域が高域側にある他の帯域通過型フィルタの通過帯域内に生じ難い。従って、上記他の帯域通過型フィルタのフィルタ特性の劣化が生じ難い。よって、フィルタ特性に優れた弾性波装置を有する高周波フロントエンド回路及び通信装置を提供することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の回路図である。 図2は、第1の実施形態の弾性波装置で用いられている第1の弾性波フィルタを示す回路図である。 図3(a)は第1の実施形態の弾性波装置で用いられている弾性波共振子の模式的正面断面図であり、図3(b)は該弾性波共振子の電極構造を示す模式的平面図である。 図4は、第1の実施形態における第1~第4の弾性波フィルタの通過帯域を示す模式図である。 図5は、弾性波共振子のアドミタンス特性を示す図である。 図6は、シリコン支持基板の伝搬方位ψSiと、メインモード及びスプリアスAとなる波の音速との関係を示す図である。 図7は、タンタル酸リチウム膜の波長規格化厚みと、メインモード及びスプリアスAとなる波の音速との関係を示す図である。 図8は、タンタル酸リチウム膜のカット角(90°-θLT)と、メインモード及びスプリアスAとなる波の音速との関係を示す図である。 図9は、酸化ケイ素膜の波長規格化厚みと、メインモード及びスプリアスAとなる波の音速との関係を示す図である。 図10は、IDT電極の波長規格化厚みと、メインモード及びスプリアスAとなる波の音速との関係を示す図である。 図11は、酸化ケイ素膜からなる保護膜の波長規格化厚みと、スプリアスAとなる波の音速との関係を示す図である。 図12(a)は、比較例の弾性波装置のフィルタ特性を示す図であり、図12(b)は第1の実施形態の弾性波装置のフィルタ特性を示す図である。 図13は、シリコン支持基板の波長規格化厚みと、スプリアスA、スプリアスB及びスプリアスCの位相最大値との関係を示す図である。 図14は、シリコン支持基板の伝搬方位ψSiと、メインモード及びスプリアスBとなる波の音速との関係を示す図である。 図15は、タンタル酸リチウム膜の波長規格化厚みと、メインモード及びスプリアスBとなる波の音速との関係を示す図である。 図16は、タンタル酸リチウム膜のカット角(90°-θLT)と、メインモード及びスプリアスBとなる波の音速との関係を示す図である。 図17は、酸化ケイ素膜の波長規格化厚みと、メインモード及びスプリアスBとなる波の音速との関係を示す図である。 図18は、IDT電極の波長規格化厚みと、メインモード及びスプリアスBとなる波の音速との関係を示す図である。 図19は、酸化ケイ素膜からなる保護膜の波長規格化厚みと、スプリアスBとなる波の音速との関係を示す図である。 図20は、シリコン支持基板の伝搬方位ψSiと、メインモード及びスプリアスCとなる波の音速との関係を示す図である。 図21は、タンタル酸リチウム膜の波長規格化厚みと、メインモード及びスプリアスCとなる波の音速との関係を示す図である。 図22は、タンタル酸リチウム膜のカット角(90°-θLT)と、メインモード及びスプリアスCとなる波の音速との関係を示す図である。 図23は、酸化ケイ素膜の波長規格化厚みと、メインモード及びスプリアスCとなる波の音速との関係を示す図である。 図24は、IDT電極の波長規格化厚みと、メインモード及びスプリアスCとなる波の音速との関係を示す図である。 図25は、酸化ケイ素膜からなる保護膜の波長規格化厚みと、スプリアスCとなる波の音速との関係を示す図である。 図26は、弾性波装置におけるLiTaO膜の膜厚とQ値との関係を示す図である。 図27は、弾性波装置におけるLiTaO膜の膜厚と、周波数温度係数TCFとの関係を示す図である。 図28は、弾性波装置におけるLiTaO膜の膜厚と、音速との関係を示す図である。 図29は、LiTaOからなる圧電膜の厚みと、比帯域との関係を示す図である。 図30は、SiO膜の膜厚と、高音速膜の材質と音速との関係を示す図である。 図31は、SiO膜の膜厚と、高音速膜の材質と電気機械結合係数との関係を示す図である。 図32は、保護膜の厚みが部分的に異なる変形例を説明するための部分拡大正面断面図である。 図33は、保護膜の厚みが部分的に異なる他の変形例を説明するための部分拡大正面断面図である。 図34は、保護膜の厚みが部分的に異なるさらに他の変形例を説明するための部分拡大正面断面図である。 図35は、本発明の弾性波装置で用いられる弾性波共振子の変形例を示す正面断面図である。 図36は、本発明の弾性波装置で用いられる弾性波共振子のさらに他の変形例を示す正面断面図である。 図37は、保護膜が積層膜である変形例を説明するための部分拡大正面断面図である。 図38は、結晶方位Si(100)を説明するための模式図である。 図39は、結晶方位Si(110)を説明するための模式図である。 図40は、結晶方位Si(111)を説明するための模式図である。 図41は、本発明の実施形態である高周波フロントエンド回路を有する通信装置の概略構成図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る弾性波装置の回路図である。弾性波装置1は、アンテナ端子2を有する。アンテナ端子2は、例えばスマートフォンのアンテナに接続される端子である。
 弾性波装置1では、アンテナ端子2に、第1~第4の弾性波フィルタ3~6が共通接続されている。第1~第4の弾性波フィルタ3~6は、それぞれ、弾性波フィルタからなる。また、第1~第4の弾性波フィルタ3~6は、いずれも、帯域通過型フィルタである。なお、第1~第4の弾性波フィルタ3~6が複数の帯域通過型フィルタとして用いられているが、本発明においては、複数の帯域通過型フィルタの全てが弾性波フィルタである必要はない。すなわち、一端が共通接続されており、通過帯域が異なるN個の帯域通過型フィルタを備える弾性波装置であって、N個の帯域通過型フィルタのうち最も通過帯域の周波数が高い帯域通過型フィルタを除く少なくとも1つの帯域通過型フィルタが、以下に述べる弾性波共振子を含む弾性波フィルタであればよい。従って、共通接続される帯域通過型フィルタは、弾性波フィルタ以外のLCフィルタなどであってもよい。
 図4は、第1~第4の弾性波フィルタの通過帯域の関係を示す模式図である。図4に示すように、第1~第4の弾性波フィルタの通過帯域は異なっている。第1~第4の弾性波フィルタの通過帯域を、それぞれ、第1~第4の通過帯域とする。
 第1の通過帯域が最も低周波数側にあり、第2の通過帯域、第3の通過帯域及び第4の通過帯域の順に、通過帯域が高くなっている。すなわち、第1の通過帯域<第2の通過帯域<第3の通過帯域<第4の通過帯域である。第2~第4の通過帯域において、低域側端部をf (m)、高域側端部をf (m)とする。なお、低域側端部は、通過帯域の低域側端部である。また、高域側端部は、通過帯域の高域側端部である。通過帯域の低域側端部及び高域側端部としては、例えば、3GPPなどで標準化されている各バンドの周波数帯域の端部を用いることができる。
 ここで、(m)は、第2~第4の通過帯域に応じて、それぞれ、2、3または4である。すなわち、mは、当該弾性波フィルタ以外の弾性波フィルタの番号である。
 第1~第4の弾性波フィルタ3~6は、それぞれ、複数の弾性波共振子を有する。図2は、第1の弾性波フィルタ3の回路図である。第1の弾性波フィルタ3は、それぞれが弾性波共振子からなる直列腕共振子S1~S3及び並列腕共振子P1,P2を有する。すなわち、第1の弾性波フィルタ3は、ラダー型フィルタである。もっとも、ラダー型フィルタにおける直列腕共振子の数及び並列腕共振子の数はこれに限定されるものではない。
 また、第2~第4の弾性波フィルタ4~6についても、本実施形態では、同様にラダー型フィルタからなり、複数の直列腕共振子及び複数の並列腕共振子を有する。
 なお、第1~第4の弾性波フィルタ3~6は、複数の弾性波共振子を有する限り、ラダー型フィルタ以外の回路構成を有していてもよい。例えば、縦結合共振子型弾性波フィルタに、直列に弾性波共振子が接続されている弾性波フィルタであってもよい。また、縦結合共振子型弾性波フィルタにラダー型フィルタが接続されている弾性波フィルタでもよい。
 図3(a)は、第1の弾性波フィルタ3の直列腕共振子S1~S3または、並列腕共振子P1,P2を構成している弾性波共振子の模式的正面断面図であり、図3(b)は、その電極構造を示す模式的平面図である。
 弾性波共振子11は、シリコン支持基板12と、シリコン支持基板12上に積層された酸化ケイ素膜13と、酸化ケイ素膜13上に積層された、タンタル酸リチウム膜14とを有する。
 シリコン支持基板12は、シリコンで構成されている。シリコン支持基板12は、単結晶シリコンであるが、完全な単結晶でなくても結晶方位を有していればよい。酸化ケイ素膜13は、SiO膜である。酸化ケイ素膜13は、酸化ケイ素であれば、例えば、SiOにフッ素等をドープしたものも含んでいてもよい。酸化ケイ素膜13は酸化ケイ素からなる複数の層を有する多層構造であってもよい。複数の層の間にチタンやニッケルなどからなる中間層を含んでいてもよい。この場合の酸化ケイ素膜13の厚さは多層構造全体の厚さを示すものとする。タンタル酸リチウム膜14は、単結晶タンタル酸リチウム膜であるが、完全な単結晶でなくても結晶方位を有していればよい。
 なお、酸化ケイ素膜13の厚みは、0であってもよい。すなわち酸化ケイ素膜13が設けられずともよい。
 上記タンタル酸リチウム膜14の上面に、IDT(Interdigital Transducer)電極15が設けられている。より具体的には、IDT電極15の弾性波伝搬方向両側に反射器16,17が設けられており、それによって1ポート型の弾性表面波共振子が構成されている。
 IDT電極15及び反射器16,17を覆うように、保護膜18が設けられている。保護膜18は、本実施形態では、酸化ケイ素膜からなる。もっとも、保護膜18は、酸窒化ケイ素、窒化ケイ素などの様々な誘電体膜であってもよい。また、本実施形態では、保護膜18は、IDT電極15の電極指上方を覆っているだけでなく、タンタル酸リチウム膜14の上面及び電極指の両側面をも覆うように設けられている。もっとも、保護膜18の形態はこれに限定されるものではない。
 本願発明者らは、上記シリコン支持基板12上に直接または間接に、タンタル酸リチウム膜14が積層されている弾性波フィルタ装置において、IDT電極15を励振すると、利用しようとするメインモードの応答以外に、メインモードよりも高周波数側に複数のスプリアスが現れることを見出した。図5を参照して、この複数のスプリアスを説明する。
 図5は、シリコン支持基板上に酸化ケイ素膜及びタンタル酸リチウム膜が積層されている弾性波共振子の一例のアドミタンス特性を示す図である。図5から明らかなように、3.9GHz付近に現れるメインモードの応答よりも高い周波数位置に、スプリアスA,B,Cが現れている。スプリアスAは、4.7GHz付近に現れている。スプリアスBは、それよりも高く、5.2GHz付近に現れている。スプリアスCは、5.7GHz付近に現れている。スプリアスAの周波数をf1、スプリアスBの周波数をf2、スプリアスCの周波数をf3とした場合、f1<f2<f3である。なお、上記スプリアスA~Cの周波数は、スプリアスA~Cとなる波のインピーダンス位相特性のピーク位置である。
 前述したように、通過帯域が異なる複数の弾性波フィルタがアンテナ端子側で共通接続されている弾性波装置では、低い周波数側の通過帯域をもつ弾性波フィルタによる上記スプリアスが、高い周波数側の通過帯域をもつ他の弾性波フィルタの通過帯域に現れると、リップルとなる。従って、スプリアスA、スプリアスB及びスプリアスCのうち少なくとも1つが、第2~第4の弾性波フィルタ4~6の通過帯域に現れないことが望ましい。好ましくは、スプリアスA、スプリアスB及びスプリアスCのうち2つのスプリアスが第2~第4の弾性波フィルタ4~6の通過帯域に現れないことが望ましい。例えば、スプリアスA及びスプリアスB、スプリアスA及びスプリアスC、またはスプリアスB及びスプリアスCが第2~第4の弾性波フィルタ4~6の通過帯域に現れないことが好ましい。さらに、好ましくは、スプリアスA、スプリアスB及びスプリアスCの全てが、第2~第4の弾性波フィルタ4~6の通過帯域に現れないことが望ましい。
 本実施形態の弾性波装置1の特徴は、第1の弾性波フィルタ3を構成している少なくとも1つの弾性波共振子において、上記スプリアスAが、図4に示した第2~第4の通過帯域に現れていないことにある。そのため、第2~第4の弾性波フィルタ4~6におけるフィルタ特性の劣化が生じ難い。
 本実施形態の特徴は、以下のi)にある。
 i)タンタル酸リチウム膜14の波長規格化厚みTLT、タンタル酸リチウム膜14のオイラー角のθLT、酸化ケイ素膜13の波長規格化厚みT、IDT電極15の密度をアルミニウムの密度で除した値とIDT電極15の波長規格化厚みとの積で求められる、アルミニウムの厚みに換算したIDT電極15の波長規格化厚みT、保護膜18の密度を酸化ケイ素の密度で除した値と保護膜18の厚みを波長λにより規格化した波長規格化厚みとの積で求められる保護膜18の波長規格化厚みをT、シリコン支持基板12における伝搬方位ψSi、及びシリコン支持基板12の波長規格化厚みTSiの値が、下記の式(1)及び式(2)で決定されるスプリアスAの周波数のfh1_ (n)が、m>nである全てのmについて、下記の式(3)または下記の式(4)を満たす値とされていることにある。
 それによって、スプリアスAが第2~第4の弾性波フィルタ4~6の通過帯域外に位置することとなる。従って、スプリアスAによる第2~第4の弾性波フィルタ4~6のフィルタ特性の劣化が生じ難い。上記条件を満たすことにより、スプリアスAの周波数が第2~第4の通過帯域外に位置することを、以下においてより詳細に説明する。
 なお、IDT電極15の密度は、測定値ではなく、IDT電極15を構成している金属材料の密度から求められた値である。また、アルミニウムの密度は、2698.9kg/mである。この値は、化学便覧、基礎編II 改訂4版 日本化学学会編、丸善発行(1993)P.26に記載の値である。
 ここで、保護膜18の密度とは、測定値ではなく、保護膜18を構成している材料の密度に基づいて求められた値である。また、酸化ケイ素の密度は、2200kg/mである。この値は、化学便覧、応用編II材料編 改訂4版 日本化学学会編、丸善発行(1993)P.922に記載の値である。
 また、本明細書において、保護膜18の厚みとは、IDT電極の電極指の上方に位置している部分における保護膜の厚みをいうものとする。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
  fhs_ (n)>f (m)   式(3)
  fhs_ (n)<f (m)   式(4)
 なお、式(2)~式(4)において、s=1である。
 なお、式(1)~式(4)において、hはメインモードより高い周波数に位置するスプリアスであることを示し、nはn番目のフィルタを表し、tはn番目のフィルタおけるt番目の素子(共振子)を表し、mはm(m>n)番目のフィルタを表す。また、本明細書において、波長規格化厚みとは、厚みを、IDT電極の波長で規格化した厚みである。ここで、波長とはIDT電極の電極指ピッチで定まる波長λをいうものとする。従って、波長規格化厚みとは、λを1として実際の厚みを規格化した厚みであり、実際の厚みをλで除算した値となる。なお、IDT電極の電極指ピッチで定まる波長λとは、電極指ピッチの平均値で定めてもよい。
 本願発明者らは、スプリアスAの周波数位置が、上述した各パラメータに影響されることを見出した。
 図6に示すように、シリコン支持基板の伝搬方位ψSiによって、メインモードの音速はほとんど変化しないが、スプリアスAとなる波の音速は大きく変化する。図7に示すように、スプリアスAとなる波の音速は、タンタル酸リチウム膜の波長規格化厚みTLTによって変化する。図8に示すように、タンタル酸リチウム膜のカット角すなわち(90°-θLT)によっても、スプリアスAとなる波の音速が変化する。図9に示すように、酸化ケイ素膜の波長規格化厚みTによっても、スプリアスAとなる波の音速が、若干変化する。図11に示すように、酸化ケイ素膜である保護膜の波長規格化厚みTによっても、上記スプリアスAとなる波の音速が変化している。また、図10に示すように、IDT電極の波長規格化厚みTによっても、スプリアスAとなる波の音速が若干変化する。本願発明者らは、これらのパラメータを自由に変化させ、スプリアスAとなる波の音速を求めた。その結果、スプリアスAとなる波の音速は、式(1)で表されることを見出した。そして、式(1)における係数は、シリコン支持基板の結晶方位毎に、下記の表4に示す値であればよいことを確かめた。
Figure JPOXMLDOC01-appb-T000021
 そして、スプリアスAとなる波の音速をVh1_とすると、スプリアスAの周波数は、式(2)により、fh1_ (n)=Vh1_/λ (n)で表される。ここで、fh1は、スプリアスAの周波数であることを意味し、tは、n番目のフィルタを構成している共振子などの素子の番号である。
 本実施形態では、式(3)または式(4)に示すように、fh1_ (n)がf (m)より高いか、または、f (m)よりも低い。すなわち、図4に示した第2の通過帯域、第3の通過帯域及び第4の通過帯域の各低域側端部よりも低いか、または、各高域側端部よりも高い。従って、第2~第4の通過帯域内に、スプリアスAの周波数fh1_ (n)が位置しないことがわかる。
 なお、上記式(1)において、
 a)Si(100)(オイラー角(φSi=0°±5°,θSi=0°±5°,ψSi)とする)を使用する場合、ψSiの範囲は0°≦ψSi≦45°とする。もっとも、Si(100)の結晶構造の対称性から、ψSiとψSi±(n×90°)とは同義である(但し、n=1,2,3・・・)。同様に、ψSiと-ψSiとは同義である。
 b)Si(110)(オイラー角(φSi=-45°±5°,θSi=-90°±5°,ψSi)とする)を使用する場合、ψsiの範囲は0°≦ψSi≦90°とする。もっとも、Si(110)の結晶構造の対称性から、ψSiとψSi±(n×180°)とは同義である(但し、n=1,2,3・・・)。同様に、ψSiと-ψSiとは同義である。
 c)Si(111)(オイラー角(φSi=-45°±5°,θSi=-54.73561°±5°,ψSi)とする)を使用する場合、ψSiの範囲は0°≦ψSi≦60°とする。もっとも、Si(111)の結晶構造の対称性から、ψSiとψSi±(n×120°)とは同義である(但し、n=1,2,3・・・)。
 また、θLTの範囲は-180°<θLT≦0°とするが、θLTとθLT+180°とは同義であるとして扱えばよい。
 なお、本明細書において、オイラー角(0°±5°の範囲内,θ,0°±15°の範囲内)における0°±5°の範囲内とは、-5°以上、+5°以下の範囲内を意味し、0°±15°の範囲内とは、-15°以上、+15°以下の範囲内を意味する。本明細書においては、例えば0°±5°の範囲内を、単に0°±5°と記載することもある。
 IDT電極15の波長規格化厚みTは、アルミニウムからなるIDT電極の膜厚に換算した厚みである。もっとも、電極材料はAlに限らない。Ti、NiCr、Cu、Pt、Au、Mo、Wなどの様々な金属を用いることができる。また、これらの金属を主体とする合金を用いてもよい。また、これらの金属や合金からなる金属膜を複数積層してなる積層金属膜を用いてもよい。
 図12(a)は、上記弾性波共振子が、式(3)及び式(4)を満たしていない比較例の弾性波装置のフィルタ特性を示す図であり、図12(b)は、第1の実施形態の弾性波装置のフィルタ特性を示す図である。
 図12(a)及び図12(b)では、いずれにおいても、第1の弾性波フィルタ及び第2の弾性波フィルタのフィルタ特性が示されている。実線が第1の弾性波フィルタのフィルタ特性である。図12(a)において破線で示すように、第2の弾性波フィルタのフィルタ特性において、通過帯域にリップルが現れている。このリップルは、第1の弾性波フィルタ中の弾性波共振子のスプリアスによる。これに対して、図12(b)に示すように、第1の実施形態の弾性波装置では、第2の弾性波フィルタの通過帯域にこのようなリップルが現れていない。すなわち、式(3)または式(4)を満たすように、弾性波共振子が構成されているため、上記リップルが、第2の弾性波フィルタの第2の通過帯域に現れていない。
 図13は、シリコン支持基板の波長規格化厚みと、スプリアスA、スプリアスB及びスプリアスCの位相最大値との関係を示す図である。図13から明らかなように、シリコン支持基板の波長規格化厚みが4より大きければ、スプリアスAの大きさは、ほぼ一定となり、シリコン支持基板の波長規格化厚みのばらつきを許容しやすくなることがわかる。なお、シリコン支持基板の波長規格化厚みが、10より大きければ、スプリアスB及びスプリアスCも一定になり、20より大きければ、スプリアスA,B,Cのいずれもが、一定になる。よって、シリコン支持基板の波長規格化厚みTSiは、TSi>4であることが好ましい。より好ましくは、シリコン支持基板の波長規格化厚みTSiが、TSi>10である。さらに好ましくは、シリコン支持基板の波長規格化厚みTSiは、TSi>20である。
 本実施形態では、第1の弾性波フィルタ3を構成している複数の弾性波共振子の内少なくとも1つの弾性波共振子において、スプリアスAの周波数は、式(3)または式(4)を満たしていた。より好ましくは、アンテナ端子に最も近い弾性波共振子において、スプリアスAの周波数が、式(3)または式(4)を満たしていることが望ましい。アンテナ端子に最も近い弾性波共振子におけるスプリアスAの影響が、他の弾性波共振子に比べて、他の第2~第4の弾性波フィルタ4~6の通過帯域に大きく現れがちであることによる。
 さらに好ましくは、全ての弾性波共振子において、スプリアスAの周波数位置が、式(3)または式(4)を満たしていることが望ましい。それによって、スプリアスAによるリップルが、第2~第4の弾性波フィルタ4~6の通過帯域により一層生じ難い。
 本願発明の構造を適用する場合には、上述したように、酸化ケイ素膜13と、タンタル酸リチウム膜14とが積層されている部分にスプリアスAとなる波が閉じこもる傾向があるが、上記タンタル酸リチウム膜14の波長規格化厚みを3.5λ以下とすることによって、酸化ケイ素膜13とタンタル酸リチウム膜14との積層部分が薄くなるため、スプリアスAとなる波が閉じこもりにくくなる。
 より好ましくは、タンタル酸リチウム膜14の波長規格化厚みは、2.5λ以下であり、その場合には周波数温度係数TCFの絶対値を小さくし得る。さらに、好ましくは、タンタル酸リチウム膜14の波長規格化厚みは、1.5λ以下である。この場合には、電気機械結合係数を容易に調整することができる。さらに、より好ましくは、タンタル酸リチウム膜14の波長規格化厚みは、0.5λ以下である。この場合には、広い範囲で電気機械結合係数を容易に調整できる。
 (第2の実施形態)
 第2の実施形態では、スプリアスAではなく、スプリアスBによるリップルが、第2~第4の弾性波フィルタ4~6の通過帯域に位置していない。これを図14~図19を参照しつつ説明する。
 図14に示すように、スプリアスBとなる波の音速は、伝搬方位ψSiにより変化する。同様に、図15に示すように、タンタル酸リチウム膜の波長規格化厚みTLTによっても、スプリアスBとなる波の音速は変化する。図16に示すように、タンタル酸リチウム膜のカット角(90°-θLT)によっても、スプリアスBとなる波の音速は変化する。図17に示すように、酸化ケイ素膜の波長規格化厚みTによっても、スプリアスBとなる波の音速は変化する。図18に示すように、IDT電極の波長規格化厚みTによっても、スプリアスBとなる波の音速は変化する。さらに、図19に示すように、酸化ケイ素膜である保護膜の波長規格化厚みTによっても、スプリアスBとなる波の音速が変化することがわかる。そして、図14~図19に示す結果から、第1の実施形態の場合と同様にして、スプリアスBとなる波の音速も式(1)で表されることを見出した。もっとも、式(1)の係数については、スプリアスBとなる波の場合には、シリコン支持基板の結晶方位毎に、下記の表5に示す値とする必要がある。
Figure JPOXMLDOC01-appb-T000022
 そして、上記のようにして、求められたスプリアスBとなる波の音速Vh2_から、式(2)により、スプリアスBの周波数位置fh2_ (n)=Vh2_/λ (n)が求められる。そして、第2の実施形態では、上記スプリアスBの周波数位置が、下記の式(3A)または式(4A)を満たすように、スプリアスBの周波数位置fh2_ (n)が設定されている。従って、第2の実施形態においては、スプリアスBが、第2~第4の弾性波フィルタ4~6の第2~第4の通過帯域外に位置することとなる。よって、スプリアスBによる第2~第4の弾性波フィルタ4~6のフィルタ特性のリップルが生じ難い。
  fh2_ (n)>f (m)     式(3A)
  fh2_ (n)<f (m)     式(4A)
 より好ましくは、全ての弾性波共振子において、スプリアスBの周波数位置が、式(3A)または式(4A)を満たしていることが望ましい。それによって、スプリアスBによるリップルが、第2~第4の弾性波フィルタ4~6の通過帯域においてより一層生じ難い。もっとも、第1の弾性波フィルタ3の少なくとも1つの弾性波共振子において、スプリアスBの周波数位置が、式(3A)または式(4A)を満たしていればよい。
 (第3の実施形態)
 第3の実施形態では、スプリアスAではなく、スプリアスCによるリップルが、第2~第4の弾性波フィルタ4~6の通過帯域に位置していない。これを図20~図25を参照しつつ説明する。
 図20に示すように、スプリアスCとなる波の音速は、伝搬方位ψSiにより変化する。同様に、図21に示すように、タンタル酸リチウム膜の波長規格化厚みTLTによっても、スプリアスCとなる波の音速は変化する。図22に示すように、タンタル酸リチウム膜のカット角(90°-θLT)によっても、スプリアスCとなる波の音速は変化する。図23に示すように、酸化ケイ素膜の波長規格化厚みTによっても、スプリアスCとなる波の音速は変化する。図24に示すように、IDT電極の波長規格化厚みTによっても、スプリアスCとなる波の音速は変化する。また、図25に示すように、酸化ケイ素膜である保護膜の波長規格化厚みTによっても、スプリアスCとなる波の音速が変化している。そして、図20~図25に示す結果から、第1の実施形態の場合と同様にして、スプリアスCとなる波の音速も式(1)で表されることを見出した。もっとも、式(1)の係数については、スプリアスCの場合には、シリコン支持基板の結晶方位毎に、下記の表6に示す値とする必要がある。
Figure JPOXMLDOC01-appb-T000023
 そして、上記のようにして、求められたスプリアスCとなる波の音速Vh3_から、式(2)により、スプリアスCの周波数位置fh3_ (n)=Vh3_/λ (n)によりスプリアスCの周波数位置が求められる。そして、第3の実施形態では、上記スプリアスCの周波数位置が、下記の式(3B)または式(4B)を満たすように、スプリアスCの周波数位置が設定されている。従って、第3の実施形態においては、スプリアスCが、第2~第4の弾性波フィルタ4~6の第2~第4の通過帯域外に位置することとなる。よって、第2~第4の弾性波フィルタ4~6のフィルタ特性において、スプリアスCによるリップルが生じ難い。
  fh3_ (n)>f (m)     式(3B)
  fh3_ (n)<f (m)     式(4B)
 より好ましくは、全ての弾性波共振子において、スプリアスCの周波数位置が、式(3B)または式(4B)を満たしていることが望ましい。それによって、スプリアスCによるリップルが、第2~第4の弾性波フィルタ4~6の通過帯域においてより一層生じ難い。もっとも、第1の弾性波フィルタ3の少なくとも1つの弾性波共振子において、スプリアスCの周波数位置が、式(3B)または式(4B)を満たしていればよい。
 (第4の実施形態)
 第4の実施形態は、第1の実施形態、第2の実施形態及び第3の実施形態の全てを満たすものである。第4の実施形態の弾性波装置の具体的な構造は、第1~第3の実施形態と同様である。
 第4の実施形態では、各スプリアスA、スプリアスB及びスプリアスCとなる波の音速を、Vh1_、Vh2_、Vh3_とした場合、式(2)で示されるスプリアスA,B,Cの周波数位置は、fhs_ (n)=Vhs_/λ (n)で表される。ここで、sは、1、2、または3である。そして、第4の実施形態では、スプリアスAの周波数である第1の周波数fh1_ (n)、スプリアスBの周波数である第2の周波数fh2_ (n)及びスプリアスCの周波数である第3の周波数fh3_ (n)のいずれもが、f (m)よりも高く、またはf (m)よりも低い。従って、第2~第4の弾性波フィルタ4~6の第2~第4の通過帯域外に、スプリアスA,B,Cが位置することとなる。従って、第2~第4の弾性波フィルタ4~6のフィルタ特性の劣化がより一層生じ難い。
 よって、上記第4の実施形態の条件をまとめると、fhs_ (n)(但し、sは1、2または3)がsが1、2及び3のいずれの場合においても、fhs_ (n)>f (m)または、fhs_ (n)<f (m)を満たすこととなる。第4の実施形態においても、好ましくは、TSi>20であることが望ましく、それによって、スプリアスA,B,Cの大きさを一定にすることができる。
 第4の実施形態では、スプリアスA、スプリアスB及びスプリアスCが、他の弾性波フィルタである第2~第4の弾性波フィルタの通過帯域に存在していなかったが、スプリアスA及びスプリアスB、スプリアスA及びスプリアスCまたはスプリアスB及びスプリアスCのように、スプリアスA,B,Cの内の2種が第2~第4の弾性波フィルタの通過帯域外に配置されていてもよい。その場合においても、第1~第3の実施形態よりもスプリアスの影響をより一層小さくすることができる。
 図26は、高音速シリコン支持基板上に、厚み0.35λのSiO膜からなる低音速膜及びオイラー角(0°,140.0°,0°)のLiTaO膜を積層した弾性波装置におけるLiTaO膜の膜厚と、Q値との関係を示す図である。この図26における縦軸は、共振子のQ特性であり、Q値と比帯域(Δf)との積で表される。また、図27は、LiTaO膜の膜厚と、周波数温度係数TCFとの関係を示す図である。図28は、LiTaO膜の膜厚と音速との関係を示す図である。図26より、LiTaO膜の膜厚が、3.5λ以下であることが好ましい。その場合には、3.5λ超えた場合に比べて、Q値が高くなる。より好ましくは、Q値をより高めるには、LiTaO膜の膜厚は、2.5λ以下であることが望ましい。
 また、図27より、LiTaO膜の膜厚が、2.5λ以下の場合、周波数温度係数TCFの絶対値を2.5λを超えた場合に比べて小さくすることができる。より好ましくは、LiTaO膜の膜厚を2λ以下とすることが望ましく、その場合には、周波数温度係数TCFの絶対値が、10ppm/℃以下となる。周波数温度係数TCFの絶対値を小さくするには、LiTaOの膜厚を1.5λ以下とすることがさらに好ましい。
 図28より、LiTaO膜の膜厚が1.5λを超えると、音速の変化が極めて小さい。
 もっとも、図29に示すように、LiTaO膜の膜厚が、0.05λ以上、0.5λ以下の範囲では、比帯域が大きく変化する。従って、電気機械結合係数をより広い範囲で調整することができる。よって、電気機械結合係数及び比帯域の調整範囲を広げるためには、LiTaO膜の膜厚が、0.05λ以上、0.5λ以下の範囲が望ましい。
 図30及び図31は、SiO膜の膜厚(λ)と、音速及び電気機械結合係数との関係をそれぞれ示す図である。ここでは、SiOからなる低音速膜の下方に、高音速膜として、窒化ケイ素膜、酸化アルミニウム膜及びダイヤモンド膜をそれぞれ用いた。高音速膜の膜厚は、1.5λとした。窒化ケイ素におけるバルク波の音速は6000m/秒であり、酸化アルミニウムにおけるバルク波の音速は6000m/秒であり、ダイヤモンドにおけるバルク波の音速は12800m/秒である。図30及び図31に示すように、高音速膜の材質及びSiO膜の膜厚を変更したとしても、電気機械結合係数及び音速はほとんど変化しない。特に、SiO膜の膜厚が、0.1λ以上、0.5λ以下では、高音速膜の材質の如何に関わらず、電気機械結合係数はほとんど変わらない。また、図30よりSiO膜の膜厚が、0.3λ以上、2λ以下であれば、高音速膜の材質の如何に関わらず、音速が変わらないことがわかる。従って、好ましくは、酸化ケイ素からなる低音速膜の膜厚は、2λ以下、より望ましくは0.5λ以下であることが好ましい。
 図32~図34は、本発明で用いられる弾性波共振子において、保護膜の厚みが部分的に異なる各変形例を説明するための部分拡大正面断面図である。図32~図34に示す各変形例では、保護膜18は、タンタル酸リチウム膜14及びIDT電極15の電極指15aの上面及び側面を覆うように設けられている。図32に示す変形例では、電極指15aの側面を覆っている保護膜18の厚みは、電極指15aの上面を覆っている保護膜18の厚みよりも薄くされている。この場合、Q値を高めることができ、かつ電気機械結合係数を大きくすることができる。より詳細には、保護膜18のQmが小さいため、電極指15aの側面上の保護膜18を薄くすれば、弾性波共振子のQを高めることができる。従って、弾性波フィルタの損失を小さくすることができる。また、タンタル酸リチウム膜14上に、保護膜18が存在すると、電極指15aが設けられている部分と、電極指15a間のギャップとの間の音響インピーダンス差が小さくなる。そのため、電気機械結合係数が小さくなる。しかしながら、電極指15aの側面上の保護膜18の厚みを薄くすれば、電気機械結合係数を大きくすることができる。
 他方、図33に示す変形例では、タンタル酸リチウム膜14上の保護膜18の厚みは、電極指15aの上面を覆っている保護膜18の厚みより薄くされている。この場合にも、電気機械結合係数を大きくすることができる。すなわち、タンタル酸リチウム膜14を覆っている部分の保護膜18の厚みを薄くすることにより、電気機械結合係数を大きくすることができる。
 図34に示す変形例では、タンタル酸リチウム膜14上の保護膜18の厚みは、電極指15aの上面を覆っている保護膜18の厚みよりも厚くされている。この場合には、電気機械結合係数を小さくすることができ、狭帯域化を図ることができる。
 図35は、本発明で用いられる弾性波共振子の変形例を説明するための正面断面図である。本変形例の弾性波共振子では、酸化ケイ素膜13が配置されていないことを除いては図3(a)に示した弾性波共振子11と同様に構成されている。このように、本発明で用いられる弾性波共振子は、シリコン支持基板12上に直接タンタル酸リチウム膜14が積層されている構造を有していてもよい。その場合、酸化ケイ素膜13の厚みは0となる。
 図36は、本発明の弾性波装置で用いられる弾性波共振子のさらに他の変形例を示す正面断面図である。弾性波共振子11Aでは、保護膜18は、IDT電極15の電極指の上面に積層されている。保護膜18は、タンタル酸リチウム膜14の電極指の側面には至らないように設けられている。このように、電極指の上面にのみ保護膜18が積層されていてもよい。
 図37は、保護膜18が積層膜である場合の構造を説明するための部分拡大正面断面図である。保護膜18は、第1の保護膜層18a、第2の保護膜層18b及び第3の保護膜層18cを積層した構造を有する。このように、保護膜18は、複数の保護膜層の積層膜であってもよい。この場合、保護膜18の波長規格化厚みTとしては、各保護膜層の密度を酸化ケイ素の密度で除算して得られた値と、当該保護膜層の波長規格化厚みとの積の総合計により求められる。例えば、第1の保護膜層18aの密度がd1、波長規格化厚みがt1、第2の保護膜層18bの密度がd2、波長規格化厚みがt2、第3の保護膜層18cの密度がd3、波長規格化厚みがt3とした場合、保護膜18の波長規格化厚みTは、酸化ケイ素の密度をd0とした場合、T=(d1/d0)t1+(d2/d0)t2+(d3/d0)t3となる。
 なお、図38に示すように、Si(100)とは、ダイヤモンド構造を有するシリコンの結晶構造において、ミラー指数[100]で表される結晶軸に直交する(100)面においてカットした基板であることを示す。なお、Si(010)など結晶学的に等価な面も含む。
 図39に示すように、Si(110)とは、ダイヤモンド構造を有するシリコンの結晶構造において、ミラー指数[110]で表される結晶軸に直交する(110)面においてカットした基板であることを示す。なお、その他の結晶学的に等価な面も含む。
 図40に示すように、Si(111)とはダイヤモンド構造を有するシリコンの結晶構造において、ミラー指数[111]で表される結晶軸に直交する(111)面においてカットした基板であることを示す。なお、その他の結晶学的に等価な面も含む。
 上記各実施形態における上記弾性波装置は、高周波フロントエンド回路のデュプレクサなどの部品として用いることができる。このような高周波フロントエンド回路の例を下記において説明する。
 図41は、高周波フロントエンド回路を有する通信装置の概略構成図である。通信装置240は、アンテナ202と、高周波フロントエンド回路230と、RF信号処理回路203とを有する。高周波フロントエンド回路230は、アンテナ202に接続される回路部分である。高周波フロントエンド回路230は、弾性波装置210と、増幅器221~224とを有する。弾性波装置210は、第1~第4のフィルタ211~214を有する。この弾性波装置210として、上述した本発明の弾性波装置を用いることができる。弾性波装置210は、アンテナ202に接続されるアンテナ共通端子225を有する。アンテナ共通端子225に受信フィルタとしての第1~第3のフィルタ211~213の一端と、送信フィルタとしての第4のフィルタ214の一端とが共通接続されている。第1~第3のフィルタ211~213の出力端が、増幅器221~223にそれぞれ接続されている。また、第4のフィルタ214の入力端に、増幅器224が接続されている。
 増幅器221~223の出力端がRF信号処理回路203に接続されている。増幅器224の入力端がRF信号処理回路203に接続されている。
 本発明に係る弾性波装置は、このような通信装置240における弾性波装置210として好適に用いることができる。
 本発明に係る弾性波装置は、様々な通信バンドに用いられるが、弾性波フィルタにおける通過帯域としては、例えば、3GPP規格で定められた通信バンド通過帯域が好適である。
 また、本発明に係る弾性波装置は、1以上の弾性波共振子の全てが上記式(3)または上記式(4)を満たす弾性波共振子であることが好ましい。本発明に係る弾性波装置は、様々な通信用途に用いられるが、好ましくは、キャリアアグリゲーション用複合フィルタとして用いられる。すなわち、キャリアアグリゲーション用複合フィルタでは、複数の弾性波フィルタの一端が共通接続されているアンテナ端子がさらに備えられ、3個以上の弾性波フィルタがアンテナ端子側に共通接続されている。そして、複数の弾性波フィルタが複数の通信バンドの信号を同時に送受信する。
 なお、本発明における弾性波装置は、複数の送信フィルタのみを有するものであってもよく、複数の受信フィルタを有するものであってもよい。なお、弾性波装置は、n個の帯域通過型フィルタを備えるものであり、nは2以上である。従って、デュプレクサも本発明における弾性波装置である。
 本発明は、フィルタ、マルチバンドシステムに適用できる弾性波装置、フロントエンド回路及び通信装置として、携帯電話などの通信機器に広く利用できる。
1…弾性波装置
2…アンテナ端子
3~6…第1~第4の弾性波フィルタ
11,11A…弾性波共振子
12…シリコン支持基板
13…酸化ケイ素膜
14…タンタル酸リチウム膜
15…IDT電極
15a…電極指
16,17…反射器
18…保護膜
18a…第1の保護膜層
18b…第2の保護膜層
18c…第3の保護膜層
202…アンテナ
203…RF信号処理回路
210…弾性波装置
211~214…第1~第4のフィルタ
221~224…増幅器
225…アンテナ共通端子
230…高周波フロントエンド回路
240…通信装置
P1,P2…並列腕共振子
S1~S3…直列腕共振子

Claims (27)

  1.  一端が共通接続されており、通過帯域が異なるN個の(但し、Nは2以上の整数)帯域通過型フィルタを備える弾性波装置であって、
     前記N個の帯域通過型フィルタを通過帯域の周波数が低い方から順番に、帯域通過型フィルタ(1)、帯域通過型フィルタ(2)・・・帯域通過型フィルタ(N)とした場合に、前記N個の帯域通過型フィルタのうち最も通過帯域の周波数が高い帯域通過型フィルタを除く少なくとも1つの帯域通過型フィルタ(n)(1≦n<N)が、1つ以上の弾性波共振子を含む弾性波フィルタであり、
     前記1つ以上の弾性波共振子のうちの少なくとも1つの弾性波共振子(t)は、
     オイラー角(φSi,θSi,ψSi)を有するシリコン支持基板と、
     前記シリコン支持基板上に積層されている、酸化ケイ素膜と、
     前記酸化ケイ素膜上に積層されており、オイラー角(φLT=0°±5°の範囲内,θLT,ψLT=0°±15°の範囲内)を有するタンタル酸リチウム膜と、
     前記タンタル酸リチウム膜上に設けられており、電極指を有するIDT電極と、
     前記IDT電極の少なくとも一部を覆う保護膜と、
    を有し、
     前記弾性波共振子(t)において、前記IDT電極の電極指ピッチで定まる波長をλとし、前記波長λにより規格化した厚みを波長規格化厚みとしたときに、前記タンタル酸リチウム膜の波長規格化厚みをTLT、前記タンタル酸リチウム膜のオイラー角をθLT、前記酸化ケイ素膜の波長規格化厚みをT、前記IDT電極の密度をアルミニウムの密度で除した値と前記IDT電極の波長規格化厚みとの積で求められる、アルミニウムの厚みに換算した前記IDT電極の波長規格化厚みをT、前記保護膜の密度を酸化ケイ素の密度で除した値と前記保護膜の厚みを前記波長λにより規格化した波長規格化厚みとの積で求められる前記保護膜の波長規格化厚みをT、前記シリコン支持基板内における伝搬方位をψSi、前記シリコン支持基板の波長規格化厚みをTSiの値とした場合に、前記TLT、前記θLT、前記T、前記T、前記T、前記ψSi、前記TSiで定まる下記の式(1)及び式(2)で決定される第1、第2及び第3の周波数fhs_ (n)のうちのs=1である第1の周波数fh1_ (n)と、前記帯域通過型フィルタ(n)の通過帯域よりも高い周波数域にある通過帯域を有するすべての帯域通過型フィルタ(m)(n<m≦N)とが、下記の式(3)または下記の式(4)を満たす、弾性波装置。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
      fhs_ (n)>f (m)   式(3)
      fhs_ (n)<f (m)   式(4)
     但し、上記式(2)~(4)においては、s=1である。
     前記λ (n)は、前記帯域通過型フィルタ(n)に含まれる前記弾性波共振子(t)における前記IDT電極の電極指ピッチで定まる波長であり、
     前記f (m)は、前記帯域通過型フィルタ(m)における通過帯域の高域側端部の周波数であり、
     前記f (m)は、前記帯域通過型フィルタ(m)における通過帯域の低域側端部の周波数であり、
     前記式(1)における各係数は、前記シリコン支持基板の結晶方位毎に下記の表1に示すそれぞれの値である。
    Figure JPOXMLDOC01-appb-T000003
  2.  一端が共通接続されており、通過帯域が異なるN個の(但し、Nは2以上の整数)帯域通過型フィルタを備える弾性波装置であって、
     前記N個の帯域通過型フィルタを通過帯域の周波数が低い方から順番に、帯域通過型フィルタ(1)、帯域通過型フィルタ(2)・・・帯域通過型フィルタ(N)とした場合に、前記N個の帯域通過型フィルタのうち最も通過帯域の周波数が高い帯域通過型フィルタを除く少なくとも1つの帯域通過型フィルタ(n)(1≦n<N)が、1つ以上の弾性波共振子を含む弾性波フィルタであり、
     前記1つ以上の弾性波共振子のうちの少なくとも1つの弾性波共振子(t)は、
     オイラー角(φSi,θSi,ψSi)を有するシリコン支持基板と、
     前記シリコン支持基板上に積層されている、酸化ケイ素膜と、
     前記酸化ケイ素膜上に積層されており、オイラー角(φLT=0°±5°の範囲内,θLT,ψLT=0°±15°の範囲内)を有するタンタル酸リチウム膜と、
     前記タンタル酸リチウム膜上に設けられており、電極指を有するIDT電極と、
     前記IDT電極の少なくとも一部を覆う保護膜と、
    を有し、
     前記弾性波共振子(t)において、前記IDT電極の電極指ピッチで定まる波長をλとし、前記波長λにより規格化した厚みを波長規格化厚みとしたときに、前記タンタル酸リチウム膜の波長規格化厚みをTLT、前記タンタル酸リチウム膜のオイラー角をθLT、前記酸化ケイ素膜の波長規格化厚みをT、前記IDT電極の密度をアルミニウムの密度で除した値と前記IDT電極の波長規格化厚みとの積で求められる、アルミニウムの厚みに換算した前記IDT電極の波長規格化厚みをT、前記保護膜の密度を酸化ケイ素の密度で除した値と前記保護膜の厚みを前記波長λにより規格化した波長規格化厚みとの積で求められる前記保護膜の波長規格化厚みをT、前記シリコン支持基板内における伝搬方位をψSi、前記シリコン支持基板の波長規格化厚みをTSiの値とした場合に、前記TLT、前記θLT、前記T、前記T、前記T、前記ψSi、前記TSiで定まる下記の式(1)及び式(2)で決定される第1、第2及び第3の周波数fhs_ (n)のうちのs=2である第2の周波数fh2_ (n)と、前記帯域通過型フィルタ(n)の通過帯域よりも高い周波数域にある通過帯域を有するすべての帯域通過型フィルタ(m)(n<m≦N)とが、下記の式(3)または下記の式(4)を満たす、弾性波装置。
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
      fhs_ (n)>f (m)   式(3)
      fhs_ (n)<f (m)   式(4)
     但し、上記式(2)~(4)においては、s=2である。
     前記λ (n)は、前記帯域通過型フィルタ(n)に含まれる前記弾性波共振子(t)における前記IDT電極の電極指ピッチで定まる波長であり、
     前記f (m)は、前記帯域通過型フィルタ(m)における通過帯域の高域側端部の周波数であり、
     前記f (m)は、前記帯域通過型フィルタ(m)における通過帯域の低域側端部の周波数であり、
     前記式(1)における各係数は、前記シリコン支持基板の結晶方位毎に下記の表2に示すそれぞれの値である。
    Figure JPOXMLDOC01-appb-T000006
  3.  一端が共通接続されており、通過帯域が異なるN個の(但し、Nは2以上の整数)帯域通過型フィルタを備える弾性波装置であって、
     前記N個の帯域通過型フィルタを通過帯域の周波数が低い方から順番に、帯域通過型フィルタ(1)、帯域通過型フィルタ(2)・・・帯域通過型フィルタ(N)とした場合に、前記N個の帯域通過型フィルタのうち最も通過帯域の周波数が高い帯域通過型フィルタを除く少なくとも1つの帯域通過型フィルタ(n)(1≦n<N)が、1つ以上の弾性波共振子を含む弾性波フィルタであり、
     前記1つ以上の弾性波共振子のうちの少なくとも1つの弾性波共振子(t)は、
     オイラー角(φSi,θSi,ψSi)を有するシリコン支持基板と、
     前記シリコン支持基板上に積層されている、酸化ケイ素膜と、
     前記酸化ケイ素膜上に積層されており、オイラー角(φLT=0°±5°の範囲内,θLT,ψLT=0°±15°の範囲内)を有するタンタル酸リチウム膜と、
     前記タンタル酸リチウム膜上に設けられており、電極指を有するIDT電極と、
     前記IDT電極の少なくとも一部を覆う保護膜と、
    を有し、
     前記弾性波共振子(t)において、前記IDT電極の電極指ピッチで定まる波長をλとし、前記波長λにより規格化した厚みを波長規格化厚みとしたときに、前記タンタル酸リチウム膜の波長規格化厚みをTLT、前記タンタル酸リチウム膜のオイラー角をθLT、前記酸化ケイ素膜の波長規格化厚みをT、前記IDT電極の密度をアルミニウムの密度で除した値と前記IDT電極の波長規格化厚みとの積で求められる、アルミニウムの厚みに換算した前記IDT電極の波長規格化厚みをT、前記保護膜の密度を酸化ケイ素の密度で除した値と前記保護膜の厚みを前記波長λにより規格化した波長規格化厚みとの積で求められる前記保護膜の波長規格化厚みをT、前記シリコン支持基板内における伝搬方位をψSi、前記シリコン支持基板の波長規格化厚みをTSiの値とした場合に、前記TLT、前記θLT、前記T、前記T、前記T、前記ψSi、前記TSiで定まる下記の式(1)及び式(2)で決定される第1、第2及び第3の周波数fhs_ (n)のうちのs=3である第3の周波数fh3_ (n)と、前記帯域通過型フィルタ(n)の通過帯域よりも高い周波数域にある通過帯域を有するすべての帯域通過型フィルタ(m)(n<m≦N)とが、下記の式(3)または下記の式(4)を満たす、弾性波装置。
    Figure JPOXMLDOC01-appb-M000007
    Figure JPOXMLDOC01-appb-M000008
      fhs_ (n)>f (m)   式(3)
      fhs_ (n)<f (m)   式(4)
     但し、上記式(2)~(4)においては、s=3である。
     前記λ (n)は、前記帯域通過型フィルタ(n)に含まれる前記弾性波共振子(t)における前記IDT電極の電極指ピッチで定まる波長であり、
     前記f (m)は、前記帯域通過型フィルタ(m)における通過帯域の高域側端部の周波数であり、
     前記f (m)は、前記帯域通過型フィルタ(m)における通過帯域の低域側端部の周波数であり、
     前記式(1)における各係数は、前記シリコン支持基板の結晶方位毎に下記の表3に示すそれぞれの値である。
    Figure JPOXMLDOC01-appb-T000009
  4.  前記第2の周波数fh2_ (n)が、前記式(3)または前記式(4)を満たすように、前記TLT、前記θLT、前記T、前記T、前記T、前記T、前記ψSi及び前記TSiの値が選択されている、請求項1に記載の弾性波装置。
  5.  前記第3の周波数fh3_ (n)が、前記式(3)または前記式(4)を満たすように、前記TLT、前記θLT、前記T、前記T、前記T、前記T、前記ψSi及び前記TSiの値が選択されている、請求項1に記載の弾性波装置。
  6.  前記第2及び第3の周波数fh2_ (n)及びfh3_ (n)が、前記式(3)または前記式(4)を満たすように、前記TLT、前記θLT、前記T、前記T、前記T、前記T、前記ψSi及び前記TSiの値が選択されている、請求項1に記載の弾性波装置。
  7.  前記第3の周波数fh3_ (n)が、前記式(3)または前記式(4)を満たすように、前記TLT、前記θLT、前記T、前記T、前記T、前記T、前記ψSi及び前記TSiの値が選択されている、請求項2に記載の弾性波装置。
  8.  前記弾性波フィルタ(m)における通過帯域は、3GPP規格で定められた通信バンドの通過帯域である、請求項1~7のいずれか1項に記載の弾性波装置。
  9.  前記酸化ケイ素膜の膜厚が、2λ以下である、請求項1~8のいずれか1項に記載の弾性波装置。
  10.  前記シリコン支持基板の波長規格化厚みTSiが、TSi>4である、請求項1~9のいずれか1項に記載の弾性波装置。
  11.  TSi>10である、請求項10に記載の弾性波装置。
  12.  TSi>20である、請求項11に記載の弾性波装置。
  13.  前記タンタル酸リチウム膜の波長規格化厚みが、3.5λ以下である、請求項1~12のいずれか1項に記載の弾性波装置。
  14.  前記タンタル酸リチウム膜の波長規格化厚みが、2.5λ以下である、請求項13に記載の弾性波装置。
  15.  前記タンタル酸リチウム膜の波長規格化厚みが、1.5λ以下である、請求項13に記載の弾性波装置。
  16.  前記タンタル酸リチウム膜の波長規格化厚みが、0.5λ以下である、請求項13に記載の弾性波装置。
  17.  前記保護膜が、前記タンタル酸リチウム膜と、前記IDT電極の電極指の側面及び上面とを覆っており、前記電極指の側面上の前記保護膜の厚みが、前記電極指の上面を覆っている前記保護膜の厚みよりも薄い、請求項1~16のいずれか1項に記載の弾性波装置。
  18.  前記保護膜が、前記タンタル酸リチウム膜と、前記IDT電極の電極指の側面及び上面とを覆っており、前記タンタル酸リチウム膜上の前記保護膜の厚みが、前記電極指の上面を覆っている前記保護膜の厚みよりも薄い、請求項1~16のいずれか1項に記載の弾性波装置。
  19.  前記保護膜が、前記タンタル酸リチウム膜と、前記IDT電極の上面及び側面とを覆っており、前記タンタル酸リチウム膜上における前記保護膜の厚みが、前記電極指の上面を覆っている前記保護膜の厚みよりも厚い、請求項1~16のいずれか1項に記載の弾性波装置。
  20.  前記複数の帯域通過型フィルタの一端が共通接続されているアンテナ端子をさらに備え、
     前記式(3)または前記式(4)を満たす前記弾性波共振子が、前記アンテナ端子に最も近い、弾性波共振子である、請求項1~19のいずれか1項に記載の弾性波装置。
  21.  前記式(3)または前記式(4)を満たす前記弾性波共振子が、前記1つ以上の弾性波共振子の全てである、請求項1~19のいずれか1項に記載の弾性波装置。
  22.  デュプレクサである、請求項1~21のいずれか1項に記載の弾性波装置。
  23.  前記複数の帯域通過型フィルタの一端が共通接続されているアンテナ端子をさらに備え、
     3個以上の前記帯域通過型フィルタが前記アンテナ端子側で共通接続されている複合フィルタである、請求項1~21のいずれか1項に記載の弾性波装置。
  24.  前記複数の帯域通過型フィルタが複数の通信バンドの信号を同時に送受信する、複合フィルタである、請求項23に記載の弾性波装置。
  25.  前記1つ以上の弾性波共振子を有する前記弾性波フィルタが、複数の直列腕共振子と複数の並列腕共振子とを有するラダー型フィルタである、請求項1~24のいずれか1項に記載の弾性波装置。
  26.  請求項1~25のいずれか1項に記載の弾性波装置と、
     パワーアンプと、
    を備える、高周波フロントエンド回路。
  27.  請求項1~25のいずれか1項に記載の弾性波装置及びパワーアンプを有する高周波フロントエンド回路と、
     RF信号処理回路と、
    を備える、通信装置。
PCT/JP2019/035184 2018-09-07 2019-09-06 弾性波装置、高周波フロントエンド回路及び通信装置 WO2020050401A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217004365A KR102586511B1 (ko) 2018-09-07 2019-09-06 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
CN201980058308.2A CN112655150B (zh) 2018-09-07 2019-09-06 弹性波装置、高频前端电路以及通信装置
JP2020541316A JP7074198B2 (ja) 2018-09-07 2019-09-06 弾性波装置、高周波フロントエンド回路及び通信装置
US17/183,429 US11855609B2 (en) 2018-09-07 2021-02-24 Acoustic wave device, radio-frequency front end circuit, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018168266 2018-09-07
JP2018-168266 2018-09-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/183,429 Continuation US11855609B2 (en) 2018-09-07 2021-02-24 Acoustic wave device, radio-frequency front end circuit, and communication device

Publications (1)

Publication Number Publication Date
WO2020050401A1 true WO2020050401A1 (ja) 2020-03-12

Family

ID=69721741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035184 WO2020050401A1 (ja) 2018-09-07 2019-09-06 弾性波装置、高周波フロントエンド回路及び通信装置

Country Status (5)

Country Link
US (1) US11855609B2 (ja)
JP (1) JP7074198B2 (ja)
KR (1) KR102586511B1 (ja)
CN (1) CN112655150B (ja)
WO (1) WO2020050401A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102215435B1 (ko) * 2017-03-09 2021-02-16 가부시키가이샤 무라타 세이사쿠쇼 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치
TWI829722B (zh) 2018-07-18 2024-01-21 美商天工方案公司 與諧振(lc)濾波器級聯之混合式聲音諧振(lc)濾波器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208447A1 (ja) * 2015-06-25 2016-12-29 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2017209131A1 (ja) * 2016-05-30 2017-12-07 京セラ株式会社 複合基板、およびそれを用いた弾性波素子
WO2018092511A1 (ja) * 2016-11-18 2018-05-24 株式会社村田製作所 弾性表面波フィルタおよびマルチプレクサ
WO2018164211A1 (ja) * 2017-03-09 2018-09-13 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2019031201A1 (ja) * 2017-08-09 2019-02-14 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
JP2019036963A (ja) * 2017-08-18 2019-03-07 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. キャリアアグリゲーションシステム用の弾性表面波デバイスを備えたフィルタ
WO2019082806A1 (ja) * 2017-10-23 2019-05-02 京セラ株式会社 弾性波素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100495910C (zh) * 2003-10-29 2009-06-03 株式会社村田制作所 弹性表面波装置
CN100553128C (zh) * 2008-01-29 2009-10-21 南京大学 声表面波复合结构材料和应用
JP2010187373A (ja) 2009-01-19 2010-08-26 Ngk Insulators Ltd 複合基板及びそれを用いた弾性波デバイス
JP5120497B2 (ja) 2009-04-14 2013-01-16 株式会社村田製作所 弾性境界波装置
JP5835480B2 (ja) * 2012-06-22 2015-12-24 株式会社村田製作所 弾性波装置
JP5942740B2 (ja) 2012-09-25 2016-06-29 株式会社村田製作所 ラダー型フィルタ及び分波器
JP6304369B2 (ja) * 2014-03-13 2018-04-04 株式会社村田製作所 弾性波装置
KR101989462B1 (ko) * 2015-06-24 2019-06-14 가부시키가이샤 무라타 세이사쿠쇼 필터 장치
CN107852144B (zh) 2015-10-30 2021-12-10 京瓷株式会社 弹性波谐振器、弹性波滤波器、分波器、通信装置以及弹性波谐振器的设计方法
WO2017159408A1 (ja) * 2016-03-16 2017-09-21 株式会社村田製作所 弾性波装置、帯域通過型フィルタ及び複合フィルタ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208447A1 (ja) * 2015-06-25 2016-12-29 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2017209131A1 (ja) * 2016-05-30 2017-12-07 京セラ株式会社 複合基板、およびそれを用いた弾性波素子
WO2018092511A1 (ja) * 2016-11-18 2018-05-24 株式会社村田製作所 弾性表面波フィルタおよびマルチプレクサ
WO2018164211A1 (ja) * 2017-03-09 2018-09-13 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2019031201A1 (ja) * 2017-08-09 2019-02-14 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
JP2019036963A (ja) * 2017-08-18 2019-03-07 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. キャリアアグリゲーションシステム用の弾性表面波デバイスを備えたフィルタ
WO2019082806A1 (ja) * 2017-10-23 2019-05-02 京セラ株式会社 弾性波素子

Also Published As

Publication number Publication date
US11855609B2 (en) 2023-12-26
US20210184654A1 (en) 2021-06-17
CN112655150B (zh) 2024-02-09
JPWO2020050401A1 (ja) 2021-08-30
CN112655150A (zh) 2021-04-13
KR102586511B1 (ko) 2023-10-10
KR20210030450A (ko) 2021-03-17
JP7074198B2 (ja) 2022-05-24

Similar Documents

Publication Publication Date Title
CN110999080B (zh) 弹性波装置、多工器、高频前端电路以及通信装置
JP6777240B2 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
KR102215435B1 (ko) 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치
WO2017159408A1 (ja) 弾性波装置、帯域通過型フィルタ及び複合フィルタ装置
US11855609B2 (en) Acoustic wave device, radio-frequency front end circuit, and communication device
JP6624337B2 (ja) 弾性波装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
US11888461B2 (en) Acoustic wave device, acoustic wave filter, and composite filter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541316

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217004365

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858523

Country of ref document: EP

Kind code of ref document: A1