WO2018135431A1 - ポリアミドイミド樹脂及び該ポリアミドイミド樹脂を含んでなる光学部材 - Google Patents

ポリアミドイミド樹脂及び該ポリアミドイミド樹脂を含んでなる光学部材 Download PDF

Info

Publication number
WO2018135431A1
WO2018135431A1 PCT/JP2018/000804 JP2018000804W WO2018135431A1 WO 2018135431 A1 WO2018135431 A1 WO 2018135431A1 JP 2018000804 W JP2018000804 W JP 2018000804W WO 2018135431 A1 WO2018135431 A1 WO 2018135431A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
optical member
polyamideimide resin
polyamideimide
structural unit
Prior art date
Application number
PCT/JP2018/000804
Other languages
English (en)
French (fr)
Inventor
皓史 宮本
希望 増井
紘子 杉山
勝紀 望月
池内 淳一
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017216756A external-priority patent/JP7084710B2/ja
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201880007377.6A priority Critical patent/CN110191910B/zh
Priority to KR1020197023866A priority patent/KR102475748B1/ko
Priority to US16/478,713 priority patent/US11274206B2/en
Publication of WO2018135431A1 publication Critical patent/WO2018135431A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a polyamideimide resin and an optical member comprising the polyamideimide resin.
  • image display devices such as liquid crystal display devices and organic EL display devices are widely used not only for televisions but also for various applications such as mobile phones and smart watches. With the expansion of such applications, an image display device (flexible display) having flexible characteristics is required.
  • the image display apparatus is composed of display elements such as a liquid crystal display element or an organic EL display element, as well as constituent members such as a polarizing plate, a phase difference plate, and a front plate. In order to achieve a flexible display, all these components need to be flexible.
  • Glass has been used as the front plate. Glass is highly transparent and can exhibit high hardness depending on the type of glass, but it is very rigid and easily broken, making it difficult to use as a front plate material for flexible displays.
  • polymer materials as a substitute for glass is being studied. Since the front plate made of a polymer material is easy to exhibit flexible characteristics, it can be expected to be used for various applications.
  • Various resins can be used as the flexible resin, and one of them is a polyamideimide resin.
  • Polyamideimide resins are used in various applications from the viewpoints of transparency and heat resistance (Patent Document 1).
  • the flexible display When the flexible display is bent, all the components are bent. If the flexibility of each component is insufficient, other components may be damaged. Therefore, high flexibility is also required for the front plate which is one of the constituent members. At the same time, if the weave remains on the surface after the front plate is bent, there is a problem in the visibility of the display. Therefore, the front plate needs to have high bending resistance.
  • the present invention provides a polyamide-imide resin for an optical member that achieves both high flexibility and bending resistance, particularly a polyamide-imide resin for a front plate of an image display device, and an optical member such as a front plate including the polyamide-imide resin.
  • the purpose is to provide.
  • Formula (1) and Formula (2) [In Formula (1) and Formula (2), X and Z each independently represent a divalent organic group, Y represents a tetravalent organic group, At least part of Z is represented by formula (3): [In Formula (3), R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and hydrogen contained in R 1 to R 8 Each atom may be independently substituted with a halogen atom, A represents —O—, —S—, —CO— or NR 9 —, R 9 represents a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom, m is an integer from 1 to 4, (* Represents a bond) Is a structural unit represented by A polyamideimide resin having a structural unit represented
  • At least part of X is represented by formula (4): [In the formula (4), R 10 to R 17 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and hydrogen contained in R 10 to R 17 Each atom may be independently substituted with a halogen atom, * Represents a bond]
  • At least part of Y is represented by formula (5): [In the formula (5), R 18 to R 25 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and hydrogen contained in R 18 to R 25 Each atom may be independently substituted with a halogen atom, * Represents a bond]
  • a polyamide-imide resin for an optical member having both high flexibility and bending resistance in particular, a polyamide-imide resin for a front plate of an image display device, and an optical such as a front plate including the polyamide-imide resin.
  • a member can be provided.
  • an optical member having excellent surface hardness can be provided.
  • the polyamideimide resin which is one embodiment of the present invention has a structural unit represented by the formula (1) and a structural unit represented by the formula (2).
  • Z represents a bivalent organic group each independently.
  • the polyamideimide resin which is one embodiment of the present invention may contain a plurality of types of Z, and the plurality of types of Z may be the same as or different from each other. At least a part of Z is a structural unit represented by the formula (3).
  • R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and hydrogen contained in R 1 to R 8 Each atom may be independently substituted with a halogen atom, A represents —O—, —S—, —CO— or NR 9 —, R 9 represents a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom, m is an integer from 1 to 4, * Represents a bond. ]
  • each A independently represents —O—, —S—, —CO— or NR 9 —, preferably from the viewpoint of the flexibility of the optical member comprising the polyamideimide resin.
  • —O— or S— is represented, more preferably —O—.
  • R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and the flexibility and surface hardness of the optical member comprising the polyamideimide resin
  • each hydrogen atom contained in R 1 to R 8 may be independently substituted with a halogen atom.
  • R 9 represents a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom.
  • m is an integer in the range of 1 to 4, and when m is within this range, the flexibility of the optical member is good.
  • m is preferably an integer in the range of 1 to 3, more preferably 1 or 2, and still more preferably 1. When m is within this range, the flexibility of the optical member is increased. At the same time, the raw material availability is relatively good.
  • the formula (3) is a structural unit represented by the formula (3 ′), that is, at least a part of the plurality of Zs is a structural unit represented by the formula (3 ′). It is.
  • the optical member comprising the polyamideimide resin exhibits high surface hardness, and at the same time has a low elastic modulus and high flexibility.
  • the content of the structural unit represented by the formula (3) is preferably 3 mol% or more, more preferably 5 with respect to the total of Y and Z in the polyamideimide resin.
  • Mol% or more more preferably 7 mol% or more, even more preferably 9 mol% or more, particularly preferably 15 mol% or more, very preferably 30 mol% or more, preferably 90 mol% or less, more preferably It is 87 mol% or less, more preferably 85 mol% or less, particularly preferably 83 mol% or less, and very preferably 80 mol% or less.
  • the optical member including the polyamideimide resin has an elastic modulus. Low, excellent flexibility, and at the same time can exhibit high surface hardness.
  • the content of the structural unit represented by formula (3) is less than or equal to the above upper limit with respect to the total of Y and Z in the polyamideimide resin, thickening due to hydrogen bonding between amide bonds derived from formula (3) By suppressing the viscosity, the viscosity of the polyamideimide varnish described later can be suppressed, and the processing of the optical member can be facilitated.
  • the content of the structural unit represented by the formula (3) can be measured using, for example, 1 H-NMR, or can be calculated from the raw material charge ratio.
  • Z in the polyamideimide resin is preferably 5 mol% or more, more preferably 7 mol% or more, still more preferably 9 mol% or more, particularly preferably 11 mol% or more. It is represented by (3).
  • the optical member comprising the polyamideimide resin exhibits a high surface hardness, and at the same time has a low elastic modulus and a high flexibility. Can have.
  • it is preferable that 100 mol% or less of Z in the said polyamideimide resin is represented by Formula (3).
  • the content rate of the structural unit represented by Formula (3) in the said polyamideimide resin can be measured, for example using 1 H-NMR, or can also be computed from the preparation ratio of a raw material.
  • the total of the structural unit represented by the formula (1) and the structural unit represented by the formula (2) in the polyamideimide resin is represented by the formula (3).
  • the proportion of the constituent units is preferably 3 mol% or more, more preferably 5 mol% or more, still more preferably 7 mol% or more, even more preferably 9 mol% or more, particularly preferably 15 mol% or more, and very preferably It is 30 mol% or more, preferably 90 mol% or less, more preferably 87 mol% or less, further preferably 85 mol% or less, particularly preferably 83 mol% or less, and most preferably 80 mol% or less.
  • the ratio of the structural unit represented by the formula (3) to the total of the structural unit represented by the formula (1) and the structural unit represented by the formula (2) in the polyamideimide resin is not less than the above lower limit value. If it exists, the optical member containing this polyamideimide resin has a low elasticity modulus, is excellent in a softness
  • the ratio of the structural unit represented by the formula (3) to the total of the structural unit represented by the formula (1) and the structural unit represented by the formula (2) in the polyamideimide resin is not more than the above upper limit value.
  • the viscosity of the polyamidoimide varnish mentioned later can be suppressed by suppressing the thickening by the hydrogen bond between amide bonds derived from Formula (3), and the processing of the optical member can be facilitated.
  • the content of the structural unit represented by the formula (3) can be measured using, for example, 1 H-NMR, or can be calculated from the raw material charge ratio.
  • X each independently represents a divalent organic group, and preferably a hydrogen atom in the organic group is substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. It is an organic group that may be present.
  • X in formula (1) may be the same as or different from X in formula (2).
  • the polyamideimide resin which is one embodiment of the present invention may contain a plurality of types of X, and the plurality of types of X may be the same as or different from each other.
  • X is the following formula (10), formula (11), formula (12), formula (13), formula (14), formula (15), formula (16), formula (17) or formula (18).
  • V 1 ⁇ V 3 are each independently a single bond, -O -, - S -, - CH 2 -, - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2- , -C (CF 3 ) 2- , -SO 2 -or CO- is represented.
  • the bonding position of V 1 and V 2 with respect to each ring and the bonding position of V 2 and V 3 with respect to each ring are preferably in the meta position or the para position with respect to each ring, respectively. More preferably.
  • V 1 to V 3 are each independently preferably a single bond, —O— or S— from the viewpoint of the surface hardness and flexibility of the optical member comprising the polyamideimide resin. More preferably, it is a bond or O-.
  • At least a part of the plurality of Xs in the formulas (1) and (2) is a structural unit represented by the formula (4).
  • the optical member including the polyamideimide resin exhibits high transparency.
  • high surface hardness can be expressed.
  • R 10 to R 17 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and hydrogen contained in R 10 to R 17 Each atom may be independently substituted with a halogen atom, * Represents a bond.
  • R 10 to R 17 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, preferably a hydrogen atom or 1 to 6 carbon atoms. More preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, wherein each of the hydrogen atoms contained in R 10 to R 17 may be independently substituted with a halogen atom.
  • R 10 to R 17 are each independently more preferably a hydrogen atom, a methyl group, a fluoro group, a chloro group or a trimethyl group from the viewpoint of the surface hardness, flexibility and transparency of the optical member comprising the polyamideimide resin.
  • a fluoromethyl group particularly preferably a hydrogen atom or a trifluoromethyl group.
  • the structural unit represented by formula (4) is the structural unit represented by formula (4 ′), that is, at least some of the plurality of Xs are represented by formula (4 ′). ).
  • the optical member comprising the polyamide-imide resin exhibits high transparency, and at the same time, improves the solubility of the polyamide-imide resin in the solvent by the skeleton containing the fluorine element, thereby increasing the viscosity of the polyamide-imide varnish. Therefore, the processing of the optical member can be facilitated.
  • X in the polyamideimide resin is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 60 mol% or more, and even more preferably 70 mol% or more.
  • the optical member comprising the polyamideimide resin exhibits high transparency and at the same time, elemental fluorine.
  • X in the said polyamideimide resin is represented by Formula (4), especially Formula (4 ').
  • X in the polyamide-imide resin may be the formula (4), particularly the formula (4 ′).
  • the content of the structural unit represented by the formula (4) of X in the polyamideimide resin can be measured using, for example, 1 H-NMR, or can be calculated from the raw material charge ratio.
  • each Y independently represents a tetravalent organic group, and preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group It is.
  • the polyamideimide resin which is one embodiment of the present invention may contain a plurality of types of Y, and the plurality of types of Y may be the same as or different from each other.
  • W 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, -Ar -, - SO 2 -, - CO -, - O-Ar-O -, - Ar-O-Ar -, - Ar-CH 2 -Ar -, - Ar-C (CH 3) 2 -Ar- Or represents Ar—SO 2 —Ar—.
  • Ar represents an arylene group having 6 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom, and specific examples thereof include a phenylene group.
  • Formula (20), Formula (21), Formula (22), Formula (23), Formula (24), Formula (25), Formula (26), Formula (27), Formula (28), and Formula (29) are preferable from the viewpoint of the surface hardness and flexibility of the optical member comprising the polyamideimide resin.
  • the group represented by (26) is more preferable. From the viewpoint of easily suppressing yellowness, preferably the formula (20), the formula (21), the formula (22), the formula (23), the formula (24), the formula (25), the formula (26), or the formula (27).
  • W 1 from the viewpoint of surface hardness and flexibility of the optical member comprising the polyamide-imide resin, each independently, a single bond, -O -, - CH 2 - , - CH 2 -CH 2 - , —CH (CH 3 ) —, —C (CH 3 ) 2 — or C (CF 3 ) 2 —, preferably a single bond, —O—, —CH 2 —, —CH (CH 3 ) —.
  • —C (CH 3 ) 2 — or C (CF 3 ) 2 — more preferably a single bond, —O—, —C (CH 3 ) 2 — or C (CF 3 ) 2 —. Is more preferably —O— or C (CF 3 ) 2 —.
  • At least some of the plurality of Ys in the formula (1) are structural units represented by the formula (5).
  • the optical member including the polyamideimide resin exhibits high transparency and at the same time has high flexibility. Derived from the skeleton, the solubility of the polyamideimide resin in the solvent can be improved, the viscosity of the polyamideimide varnish can be suppressed low, and the processing of the optical member can be facilitated.
  • R 18 to R 25 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and hydrogen contained in R 18 to R 25 Each atom may be independently substituted with a halogen atom, * Represents a bond.
  • R 18 to R 25 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, preferably a hydrogen atom or 1 to 6 carbon atoms. More preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, wherein each of the hydrogen atoms contained in R 18 to R 25 may be independently substituted with a halogen atom.
  • R 18 to R 25 are each independently more preferably a hydrogen atom, a methyl group, a fluoro group, a chloro group, or a trifluoromethyl group from the viewpoint of the surface hardness and flexibility of the optical member comprising the polyamideimide resin. And particularly preferably a hydrogen atom or a trifluoromethyl group.
  • the structural unit represented by the formula (5) is a group represented by the formula (5 ′), that is, at least some of the plurality of Y are represented by the formula (5 ′).
  • the optical member comprising the polyamideimide resin can have high transparency. [In formula (5 ′), * represents a bond]
  • Y in the polyamide-imide resin is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more of formula (5), particularly formula (5).
  • the optical member comprising the polyamideimide resin can have high transparency, and further fluorine The solubility of the polyamide-imide resin in the solvent can be improved by the skeleton containing the element, the viscosity of the polyamide-imide varnish can be suppressed low, and the production of the optical member is easy.
  • Y in the said polyamideimide resin is represented by Formula (5), especially Formula (5 ').
  • Y in the polyamide-imide resin may be the formula (5), particularly the formula (5 ′).
  • the content of the structural unit represented by the formula (5) of Y in the polyamideimide resin can be measured using, for example, 1 H-NMR, or can be calculated from the raw material charge ratio.
  • the weight average molecular weight (Mw) of the polyamideimide resin is preferably 5,000 or more, more preferably 10,000 or more, still more preferably 50,000 or more, particularly preferably 70,000 or more, and even more preferably 100. , 000 or more, preferably 800,000 or less, more preferably 600,000 or less, further preferably 500,000 or less, and particularly preferably 450,000 or less.
  • the optical member comprising the polyamide-imide resin has even better bending resistance.
  • the weight average molecular weight (Mw) of the polyamideimide resin is not more than the above upper limit, the viscosity of the polyamideimide varnish can be suppressed low, and the optical member, particularly the optical film can be easily stretched. Is good.
  • the weight average molecular weight (Mw) can be determined by, for example, GPC measurement and standard polystyrene conversion, and can be specifically determined by the method described in the examples.
  • the content of the structural unit represented by the formula (1) is preferably relative to the total of the structural unit represented by the formula (1) and the structural unit represented by the formula (2). 10 mol% or more, more preferably 15 mol% or more, further preferably 18 mol% or more, particularly preferably 20 mol% or more, preferably 90 mol% or less, more preferably 70 mol% or less, still more preferably 60 mol%. The mol% or less, particularly preferably 50 mol% or less.
  • the optical member when the content of the structural unit represented by the formula (1) is equal to or higher than the lower limit, the viscosity increase due to the hydrogen bond between the amide bonds in the formula (2) is suppressed, and the polyamideimide varnish Thus, the optical member can be easily manufactured.
  • the optical member including the polyamideimide resin when the content of the structural unit represented by the formula (1) is not more than the upper limit, the optical member including the polyamideimide resin exhibits high surface hardness.
  • the above ratio can be measured, for example, using 1 H-NMR, or can be calculated from the raw material charge ratio.
  • the content of the structural unit represented by the formula (2) is preferably relative to the total of the structural unit represented by the formula (1) and the structural unit represented by the formula (2). 20 mol% or more, more preferably 30 mol% or more, further preferably 40 mol% or more, particularly preferably 50 mol% or more, preferably 80 mol% or less, more preferably 70 mol% or less, still more preferably 60 mol% or more. The mol% or less, particularly preferably 50 mol% or less.
  • the optical member when the content of the structural unit represented by the formula (1) is not more than the above upper limit, the viscosity increase due to the hydrogen bond between the amide bonds in the formula (2) is suppressed, and the polyamideimide varnish Thus, the optical member can be easily manufactured.
  • the optical member including the polyamideimide resin when the content of the structural unit represented by the formula (1) is not less than the lower limit, the optical member including the polyamideimide resin exhibits high surface hardness.
  • the above ratio can be measured, for example, using 1 H-NMR, or can be calculated from the raw material charge ratio.
  • the polyamide-imide resin has a glass transition temperature Tg calculated by tan ⁇ in dynamic viscoelasticity measurement (DMA measurement), preferably less than 380 ° C., more preferably 379 ° C. or less, further preferably 378 ° C. or less, for example 370 ° C. It is as follows. When the glass transition temperature Tg of the polyamideimide resin is less than (or below) the upper limit, the optical member comprising the polyamideimide resin exhibits high surface hardness, and at the same time has a low elastic modulus and high flexibility. Can have.
  • DMA measurement dynamic viscoelasticity measurement
  • the monomer constituting the polyamideimide contains a monomer having a divalent group capable of imparting flexibility to the polyamideimide film obtained by film formation.
  • the divalent group capable of imparting properties include —O—, —CH 2 —, —CF 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — More preferably, the monomer having a divalent group capable of imparting the property includes a monomer having a divalent group containing —O—.
  • the glass transition temperature Tg of the polyamideimide resin is usually 300 ° C. or higher.
  • the method for calculating the glass transition temperature by tan ⁇ in the dynamic viscoelasticity measurement (DMA measurement) can be specifically performed as in the examples.
  • the polyamideimide resin is composed of the structural unit represented by the formula (10-2) and / or the formula (11). -2) may be included.
  • each Y 1 is independently a tetravalent organic group, and preferably a hydrogen atom in the organic group is substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. It is also a good organic group.
  • the Y 1, equation (20), equation (21), equation (22), equation (23), equation (24), equation (25), equation (26), equation (27), equation (28) or Examples thereof include a group represented by the formula (29) and a tetravalent chain hydrocarbon group having 6 or less carbon atoms.
  • Polyamide-imide resin which is an embodiment of the present invention may include a plurality of kinds of Y 1, Y 1 of the plurality of kinds may identical to one another or may be different.
  • Y 2 is a trivalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group .
  • the Y 2 the above equation (20), equation (21), equation (22), equation (23), equation (24), equation (25), equation (26), equation (27), formula (28 ) Or a group in which any one of the bonds of the group represented by formula (29) is replaced by a hydrogen atom, and a trivalent chain hydrocarbon group having 6 or less carbon atoms.
  • Polyamide-imide resin which is an embodiment of the present invention may include a plurality of kinds of Y 2, Y 2 of plural types may identical to one another or may be different.
  • X 1 and X 2 are each independently a divalent organic group, preferably a hydrogen atom in the organic group is a hydrocarbon group or a fluorine-substituted group It is an organic group that may be substituted with a hydrocarbon group.
  • X 1 and X 2 include formula (10), formula (11), formula (12), formula (13), formula (14), formula (15), formula (16), formula (17) or formula ( 18): a group in which hydrogen atoms in the groups represented by these formulas are substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group; and a chain hydrocarbon having 6 or less carbon atoms Examples are groups.
  • the polyamideimide resin comprises a structural unit represented by the formula (1) and a structural unit represented by the formula (2), and optionally the formula (10-2) and / or the formula ( 11-2).
  • the structural unit represented by the formula (1) and the structural unit represented by the formula (2) are Based on the structural units represented by formula (1) and formula (2) and optionally formula (10-2) and formula (11-2), preferably 80% or more, more preferably 90% or more More preferably, it is 95% or more.
  • the content of the structural unit represented by the formula (1) and the structural unit represented by the formula (2) is the formula (1) or the formula (2), or the formula (10 -2) or based on all structural units represented by formula (11-2), it is usually 100% or less.
  • the content can be measured, for example, using 1 H-NMR, or can be calculated from the raw material charge ratio.
  • the polyamideimide resin can be produced using, for example, a tetracarboxylic acid compound, a dicarboxylic acid compound, and a diamine compound described later as main raw materials.
  • the dicarboxylic acid compound includes at least a compound represented by the formula (3 ′′).
  • R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and is included in R 1 to R 8 .
  • Each hydrogen atom independently may be substituted with a halogen atom
  • A represents —O—, —S—, —CO— or NR 9 —
  • R 9 represents a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom
  • m is an integer from 1 to 4
  • R 31 and R 32 are each independently —OH or Cl.
  • the dicarboxylic acid compound is a compound represented by formula (3 ′′), wherein A is —O—.
  • the dicarboxylic acid compound is a compound represented by formula (3 ′′), wherein R 32 is —Cl.
  • a diisocyanate compound may be used in place of the diamine compound.
  • Examples of the tetracarboxylic acid compound used for the synthesis of the polyamide-imide resin include aromatic tetracarboxylic acid and its anhydride, preferably aromatic tetracarboxylic acid compound such as its dianhydride; and aliphatic tetracarboxylic acid and its anhydride.
  • An aliphatic tetracarboxylic acid compound such as its dianhydride is preferable.
  • a tetracarboxylic acid compound may be used independently and may use 2 or more types together.
  • the tetracarboxylic acid compound may be a dianhydride or a tetracarboxylic acid compound analog such as an acid chloride compound. These can be used alone or in combination of two or more.
  • Aromatic tetracarboxylic dianhydrides include non-condensed polycyclic aromatic tetracarboxylic dianhydrides, monocyclic aromatic tetracarboxylic dianhydrides, and condensed polycyclic aromatic tetracarboxylic dianhydrides. Anhydrides are mentioned.
  • non-condensed polycyclic aromatic tetracarboxylic dianhydride examples include 4,4′-oxydiphthalic dianhydride (may be described as OPDA), 3,3 ′, 4,4′- Benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (may be described as BPDA) 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,4) Dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4′
  • 1,2,4,5-benzenetetracarboxylic dianhydride is used as the monocyclic aromatic tetracarboxylic dianhydride
  • 1,4,5-benzenetetracarboxylic dianhydride is used as the condensed polycyclic aromatic tetracarboxylic dianhydride.
  • 2,4,5-benzenetetracarboxylic dianhydride and condensed polycyclic aromatic tetracarboxylic dianhydride include 2,3,6,7-naphthalenetetracarboxylic dianhydride. These can be used alone or in combination of two or more.
  • Examples of the aliphatic tetracarboxylic dianhydride include cyclic or acyclic aliphatic tetracarboxylic dianhydrides.
  • the cycloaliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • acyclic aliphatic tetracarboxylic dianhydride examples include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, etc. These may be used alone or in combination of two or more. Moreover, you may use combining a cycloaliphatic tetracarboxylic dianhydride and an acyclic aliphatic tetracarboxylic dianhydride.
  • 4,4′-oxydiphthalic dianhydride 3, 3 from the viewpoint of high surface hardness, high flexibility, high bending resistance, high transparency, and low colorability of the optical member.
  • 4,4'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) Diphthalic dianhydride and mixtures thereof are preferred and include 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dian
  • 4,4′-oxybisbenzoic acid and / or its acid chloride compound is preferably used.
  • 4,4′-oxybis (benzoyl chloride) is a preferred example.
  • other dicarboxylic acid compounds may be used. Examples of other dicarboxylic acid compounds include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like, and two or more of them may be used in combination.
  • dicarboxylic acid compounds of terephthalic acid include dicarboxylic acid compounds of terephthalic acid; isophthalic acid; naphthalenedicarboxylic acid; 4,4′-biphenyldicarboxylic acid; 3,3′-biphenyldicarboxylic acid; Compounds in which two benzoic acids are linked by a single bond, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 — or a phenylene group, and acid chloride compounds thereof. It is done. Specifically, terephthaloyl chloride is a preferred example.
  • the polyamideimide resin is not limited to the various physical properties of the optical member comprising the polyamideimide resin. Further, those anhydrides and derivatives may be further reacted.
  • tetracarboxylic acid examples include anhydrous water adducts of the above tetracarboxylic acid compounds.
  • tricarboxylic acid compound examples include aromatic tricarboxylic acid, aliphatic tricarboxylic acid and related acid chloride compounds, acid anhydrides, and the like, and two or more kinds may be used in combination. Specific examples include 1,2,4-benzenetricarboxylic acid anhydride; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; phthalic acid anhydride and benzoic acid are a single bond, —O— , —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 —, or a compound connected by a phenylene group.
  • the diamine compound used for the synthesis of the polyamideimide resin examples include aliphatic diamines, aromatic diamines, and mixtures thereof.
  • the “aromatic diamine” represents a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group or other substituent may be included in a part of the structure.
  • the aromatic ring may be a single ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring. Among these, a benzene ring is preferable.
  • the “aliphatic diamine” refers to a diamine in which an amino group is directly bonded to an aliphatic group, and an aromatic ring or other substituent may be included in a part of the structure.
  • aliphatic diamine examples include acyclic aliphatic diamines such as hexamethylene diamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, norbornane diamine, and 4,4 ′.
  • -Cyclic aliphatic diamines such as diaminodicyclohexylmethane. These can be used alone or in combination of two or more.
  • aromatic diamines examples include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, and 2,6-diamino.
  • An aromatic diamine having one aromatic ring such as naphthalene; 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether (sometimes referred to as ODA), 3, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis (4-amino Phenoxy) benzene, 1,3-bis (4-aminophenoxy) Benzene, 4,4′-diaminodiphenylsulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy)
  • aromatic diamine preferably 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenylsulfone, 1,4-bis (4-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2′-dimethylbenzidine, 2,2′-bis (Trifluoromethyl) -4,4′-diaminodiphenyl, 4,
  • the diamine compounds from the viewpoint of high surface hardness, high flexibility, high bending resistance, high transparency and low colorability of the optical member, at least one selected from the group consisting of aromatic diamines having a biphenyl structure is used. It is preferable to use it.
  • One selected from the group consisting of 2,2'-dimethylbenzidine, 2,2'-bis (trifluoromethyl) benzidine, 4,4'-bis (4-aminophenoxy) biphenyl, and 4,4'-diaminodiphenyl ether The above is more preferably used, and 2,2′-bis (trifluoromethyl) benzidine is more preferably used.
  • the structural units represented by formula (1) and formula (10-2) are usually derived from diamines and tetracarboxylic acid compounds.
  • the structural unit represented by formula (2) is usually derived from a diamine and a dicarboxylic acid compound.
  • the structural unit represented by the formula (11-2) is usually derived from a diamine and a tricarboxylic acid compound.
  • the polyamideimide resin may contain a halogen atom as described above.
  • the fluorine-containing substituent include a fluoro group and a trifluoromethyl group.
  • the yellowness (may be described as YI) of the optical member containing the polyamide-imide resin may be reduced in some cases, and higher flexibility and bending resistance can be obtained. There is a tendency to make it compatible.
  • the halogen atom is preferably a fluorine atom.
  • the content of halogen atoms in the polyamide-imide resin is preferably from 1 to 5 on the basis of the mass of the polyamide-imide resin from the viewpoint of reducing yellowness (improving transparency), reducing water absorption, and suppressing deformation of the optical member. It is 40% by mass, more preferably 3 to 35% by mass, and still more preferably 5 to 32% by mass.
  • an imidization catalyst may be present in the synthesis reaction of the polyamideimide resin.
  • imidation catalysts include aliphatic amines such as tripropylamine, dibutylpropylamine, and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidine, N-butylpyrrolidine, N-butylpiperidine, and N-propylhexahydro Alicyclic amines (monocyclic) such as azepine; azabicyclo [2.2.1] heptane, azabicyclo [3.2.1] octane, azabicyclo [2.2.2] octane, and azabicyclo [3.2.
  • Cycloaliphatic amines such as nonane; and pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2, 4-dimethylpyridine, 2,4,6-trimethylpyridine, 3,4-cyclopentenopyridine, 5, 7,8 tetrahydroisoquinoline, and aromatic amines isoquinoline.
  • the reaction temperature of the diamine compound, tetracarboxylic acid compound and dicarboxylic acid compound is not particularly limited, but is, for example, 50 to 350 ° C.
  • the reaction time is not particularly limited, but is, for example, about 30 minutes to 10 hours. If necessary, the reaction may be carried out under an inert atmosphere or under reduced pressure. Further, the reaction may be carried out in a solvent, and examples of the solvent include a solvent described later used for preparing a polyamideimide varnish.
  • an optical member that is a polyamide-imide film comprising the polyamide-imide resin is also provided.
  • the optical member include an optical film. Since the optical member is excellent in flexibility, bending resistance and surface hardness, it is suitable as a front plate of an image display device, particularly as a front plate (window film) of a flexible display.
  • the optical member may be a single layer or a multilayer. When the optical member is a multilayer, each layer may have the same composition or a different composition.
  • the content of the polyamideimide resin in the optical member is preferably 40% by mass or more, more preferably 50% by mass or more, and further preferably 70% by mass, based on the total mass of the optical member. Above, especially preferably 80% by mass or more, very preferably 90% by mass or more.
  • the bending resistance of an optical member is favorable in the content rate of a polyamidoimide resin being more than the said lower limit.
  • the content rate of the polyamidoimide resin in an optical member is 100 mass% or less normally on the basis of the total mass of an optical member.
  • the optical member may further contain an inorganic material such as inorganic particles in addition to the polyamideimide resin.
  • the inorganic material include inorganic particles such as titania particles, alumina particles, zirconia particles, and silica particles, and silicon compounds such as quaternary alkoxysilanes such as tetraethyl orthosilicate.
  • the inorganic material is preferably inorganic particles, particularly silica particles.
  • the inorganic particles may be bonded by a molecule having a siloxane bond (that is, —SiOSi—).
  • the average primary particle diameter of the inorganic particles is preferably 10 to 100 nm, and more preferably 20 to 80 nm, from the viewpoint of transparency of the optical member, mechanical properties, and aggregation suppression of the inorganic particles.
  • the average primary particle diameter can be determined by measuring a 10-point average value of the unidirectional diameter by a transmission electron microscope.
  • the content of the inorganic material in the optical member is preferably 0% by mass to 90% by mass, more preferably 0.01% by mass to 60% by mass, and still more preferably 5% by mass, based on the total mass of the optical member. % To 40% by mass. When the content of the inorganic material is within the above range, the transparency and mechanical properties of the optical member tend to be compatible.
  • the optical member may contain 1 type, or 2 or more types of ultraviolet absorbers.
  • the ultraviolet absorber can be appropriately selected from those usually used as an ultraviolet absorber in the field of resin materials.
  • the ultraviolet absorber may contain a compound that absorbs light having a wavelength of 400 nm or less.
  • Examples of the ultraviolet absorber include at least one compound selected from the group consisting of benzophenone compounds, salicylate compounds, benzotriazole compounds, and triazine compounds.
  • the optical member contains the ultraviolet absorber, the deterioration of the polyamideimide resin is suppressed, so that the visibility of the optical member can be enhanced.
  • the “system compound” refers to a derivative of the compound to which the “system compound” is attached.
  • a “benzophenone compound” refers to a compound having benzophenone as a host skeleton and a substituent bonded to benzophenone.
  • the content of the ultraviolet absorber is preferably 1% by mass or more, more preferably 2% by mass or more, and further preferably 3% by mass or more with respect to the total mass of the optical member. Preferably, it is 10 mass% or less, More preferably, it is 8 mass% or less, More preferably, it is 6 mass% or less.
  • the preferred content varies depending on the ultraviolet absorber to be used, but adjusting the ultraviolet absorber content so that the light transmittance at 400 nm is about 20 to 60%, the light resistance of the optical member is improved and the transparency is improved. High optical member can be obtained.
  • the optical member may further contain other additives.
  • additives include antioxidants, mold release agents, stabilizers, bluing agents, flame retardants, pH adjusters, silica dispersants, lubricants, thickeners, and leveling agents.
  • the content of other additives is preferably 0% by mass to 20% by mass and more preferably 0% by mass to 10% by mass with respect to the mass of the optical member.
  • the thickness of the optical member, particularly the optical film is appropriately adjusted depending on the application, but is usually 10 to 1000 ⁇ m, preferably 15 to 500 ⁇ m, more preferably 20 to 400 ⁇ m, and further preferably 25 to 300 ⁇ m. In the present invention, the thickness can be measured by a contact-type digimatic indicator.
  • the total light transmittance Tt based on JIS K 7105: 1981 is preferably 70% or more, more preferably 80% or more, still more preferably 85% or more, and particularly preferably 90% or more.
  • the total light transmittance Tt of the optical member is equal to or higher than the lower limit, sufficient visibility can be secured when the optical member is incorporated into the image display device.
  • the upper limit of the total light transmittance Tt of the optical member is usually 100% or less.
  • the method for producing the optical member, particularly the optical film is not particularly limited as long as the optical member contains the polyamideimide resin.
  • the optical member, in particular the optical film for example, comprises the following steps: (A) Applying a liquid (polyamideimide varnish) containing a polyamideimide resin to a substrate to form a coating film (application process), and (b) drying the applied liquid (polyamideimide varnish) to obtain an optical Process for forming members, especially optical film (polyamideimide film) (formation process) It can manufacture with the manufacturing method containing. Steps (a) and (b) can usually be performed in this order.
  • a liquid containing a polyamideimide resin (polyamideimide varnish) is prepared.
  • the diamine compound, the tetracarboxylic acid compound, the dicarboxylic acid compound, and, if necessary, other components such as a tertiary amine that acts as an imidization catalyst and a dehydrating agent are mixed.
  • a tertiary amine that acts as an imidization catalyst and a dehydrating agent are mixed.
  • the tertiary amine include the aromatic amines and aliphatic amines described above.
  • Examples of the dehydrating agent include acetic anhydride, propionic anhydride, isobutyric anhydride, pivalic anhydride, butyric anhydride, isovaleric anhydride, and the like.
  • a poor solvent is added to this polyamideimide mixed solution to precipitate a polyamideimide resin by a reprecipitation method, dried and taken out as a precipitate.
  • the taken-out polyamideimide resin deposit is melt
  • the solvent used for the preparation of the polyamideimide varnish is not particularly limited as long as the polyamideimide resin can be dissolved.
  • solvents include amide solvents such as N, N-dimethylacetamide and N, N-dimethylformamide; lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone; and sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide, and sulfolane.
  • Examples thereof include carbonate solvents such as ethylene carbonate and propylene carbonate; and combinations (mixed solvents) thereof.
  • amide solvents or lactone solvents are preferable.
  • the polyamideimide varnish may contain water, alcohol solvents, ketone solvents, acyclic ester solvents, ether solvents and the like.
  • a coating film is formed on a substrate such as a resin substrate, a SUS belt, or a glass substrate by using a polyamideimide varnish by fluency molding or the like. be able to.
  • the optical member can be formed by drying the coating film and peeling it from the substrate. You may perform the drying process which dries an optical member further after peeling.
  • the coating film can be dried usually at a temperature of 50 to 350 ° C. If necessary, the coating film may be dried under an inert atmosphere or under reduced pressure.
  • a surface treatment step of performing a surface treatment on at least one surface of the optical member may be performed.
  • the surface treatment include UV ozone treatment, plasma treatment, and corona discharge treatment.
  • the resin substrate examples include PET film, PEN film, polyimide film, and polyamideimide film.
  • a PET film, a PEN film, a polyimide film, and other polyamideimide films are preferable.
  • a PET film is more preferable from the viewpoints of adhesion to an optical member and cost.
  • the optical member which is one embodiment of the present invention may include a functional layer.
  • the functional layer include layers having various functions such as an ultraviolet absorbing layer, an adhesive layer, a hue adjusting layer, and a refractive index adjusting layer.
  • the optical member may include one or more functional layers.
  • One functional layer may have a plurality of functions.
  • the ultraviolet absorbing layer is a layer having an ultraviolet absorbing function.
  • a main material selected from an ultraviolet curable transparent resin, an electron beam curable transparent resin, and a thermosetting transparent resin It is composed of dispersed UV absorbers.
  • the adhesive layer is a layer having an adhesive function and has a function of adhering the optical member to another member.
  • a conventionally known material can be used.
  • a thermosetting resin composition or a photocurable resin composition can be used.
  • the adhesive layer may be composed of a resin composition containing a component having a polymerizable functional group. In this case, strong adhesion can be realized by further polymerizing the resin composition constituting the adhesive layer after the optical member is brought into close contact with another member.
  • the adhesive strength between the optical member and the adhesive layer may be 0.1 N / cm or more, or 0.5 N / cm or more.
  • the adhesive layer may contain a thermosetting resin composition or a photocurable resin composition as a material.
  • the resin composition can be polymerized and cured by supplying energy afterwards.
  • the pressure-sensitive adhesive layer may be a layer composed of an adhesive called pressure-sensitive adhesive (Pressure Sensitive Adhesive, PSA) that is attached to an object by pressing.
  • PSA Pressure Sensitive Adhesive
  • the pressure-sensitive adhesive may be a pressure-sensitive adhesive that is “a substance that is sticky at normal temperature and adheres to an adherend with light pressure” (JIS K6800). And an adhesive that can maintain stability until the coating is broken by appropriate means (pressure, heat, etc.) (JIS K6800).
  • the hue adjustment layer is a layer having a hue adjustment function, and is a layer capable of adjusting the optical member to a target hue.
  • a hue adjustment layer is a layer containing resin and a coloring agent, for example.
  • the colorant include inorganic pigments such as titanium oxide, zinc oxide, dial, titanium oxide-based fired pigment, ultramarine, cobalt aluminate, and carbon black; azo-based compounds, quinacridone-based compounds, anthraquinone-based compounds, Organic pigments such as perylene compounds, isoindolinone compounds, phthalocyanine compounds, quinophthalone compounds, selenium compounds, and diketopyrrolopyrrole compounds; extender pigments such as barium sulfate and calcium carbonate; and basic dyes, Examples include acid dyes and mordant dyes.
  • the refractive index adjusting layer is a layer having a function of adjusting the refractive index, has a refractive index different from that of the optical member, and can give a predetermined refractive index to the optical member.
  • the refractive index adjustment layer may be, for example, an appropriately selected resin, and optionally a resin layer further containing a pigment, or may be a metal thin film.
  • Examples of the pigment for adjusting the refractive index include silicon oxide, aluminum oxide, antimony oxide, tin oxide, titanium oxide, zirconium oxide and tantalum oxide.
  • the average primary particle diameter of the pigment may be 0.1 ⁇ m or less. By setting the average primary particle diameter of the pigment to 0.1 ⁇ m or less, irregular reflection of light transmitted through the refractive index adjusting layer can be prevented, and a decrease in transparency can be prevented.
  • metal used for the refractive index adjustment layer examples include metals such as titanium oxide, tantalum oxide, zirconium oxide, zinc oxide, tin oxide, silicon oxide, indium oxide, titanium oxynitride, titanium nitride, silicon oxynitride, and silicon nitride. Oxides or metal nitrides may be mentioned.
  • the optical member may include a hard coat layer.
  • the hard coat layer include known hard coats such as acrylic, epoxy, urethane, benzyl chloride, and vinyl.
  • the optical member can exhibit high surface hardness even without a hard coat layer. For this reason, the hard coat layer laminate including the optical member made of the polyamideimide resin can express higher surface hardness than the hard coat laminate including the optical member which cannot express high surface hardness alone.
  • the optical member can exhibit high surface hardness.
  • the surface hardness of the optical member is preferably 2B or more, more preferably B or more, still more preferably HB or more, particularly preferably H or more, and most preferably 2H or more.
  • the surface hardness of the optical member is equal to or more than the above lower limit, the surface of the image display device can be advantageously suppressed when used as a front plate (window film) of the image display device, and the shrinkage of the optical member And it can contribute to prevention of expansion.
  • the surface hardness of the optical member is usually 9H or less. In the present invention, the surface hardness can be measured according to JIS K5600-5-4: 1999.
  • the load is 100 g
  • the scanning speed is 60 mm / min
  • the presence or absence of scratches is evaluated in an environment of 4000 lux. be able to.
  • the image display device can be made various shapes as well as flat shape. Increases the chance of direct contact with other objects. Therefore, the optical member which is one embodiment of the present invention is very useful as a front plate of a flexible display.
  • the optical member can exhibit high flexibility.
  • the elastic modulus of the optical member is preferably 5.9 GPa or less, more preferably 5.5 GPa or less, still more preferably 5.2 GPa or less, particularly preferably 5.0 GPa or less, Preferably it is 4.5 GPa or less.
  • the elastic modulus of the optical member is usually 2.0 GPa or more.
  • the elastic modulus was measured from the slope of an SS curve measured using an autograph AG-IS manufactured by Shimadzu Corporation with a 10 mm wide test piece at a distance between chucks of 500 mm and a tensile speed of 20 mm / min. Can be measured.
  • the optical member can exhibit excellent bending resistance.
  • it is 20,000 times or more, more preferably 30,000 times or more, particularly preferably 40,000 times or more, very preferably 50,000 times or more.
  • the number of reciprocal bending of the optical member is not limited, but it is usually practical if it can be bent 1,000,000 times.
  • the number of reciprocal bendings can be determined using, for example, a test piece (optical member) having a thickness of 50 ⁇ m and a width of 10 mm using an MIT folding fatigue tester (model 0530) manufactured by Toyo Seiki Seisakusho.
  • the optical member can exhibit excellent transparency. Therefore, the optical member is very useful as a front plate (window film) of an image display device, particularly a flexible display.
  • the optical member has a yellowness YI based on JIS K 7373: 2006, preferably 5 or less, more preferably 3 or less, and even more preferably 2.5 or less.
  • An optical member whose yellowness YI is not more than the above upper limit value can contribute to high visibility of a display device or the like.
  • the yellowness of the optical member is preferably 0 or more.
  • the optical member, particularly the optical film, which is an embodiment of the present invention is useful as a front plate of an image display device, particularly as a front plate (window film) of a flexible display.
  • the optical member can be disposed as a front plate on the viewing side surface of an image display device, particularly a flexible display.
  • the front plate has a function of protecting the image display element in the flexible display.
  • the image display device including the optical member has high flexibility and bending resistance, and at the same time has high surface hardness, so that other members are not damaged when bent, and the optical member itself is folded. Is less likely to occur, and surface damage can be advantageously suppressed.
  • Examples of the image display device include wearable devices such as a television, a smartphone, a mobile phone, a car navigation system, a tablet PC, a portable game machine, electronic paper, an indicator, a bulletin board, a clock, and a smart watch.
  • Examples of the flexible display include an image display device having flexible characteristics, such as a television, a smartphone, a mobile phone, a car navigation system, a tablet PC, a portable game machine, electronic paper, an indicator, a bulletin board, a clock, and a wearable device.
  • the elastic modulus of the polyamideimide film obtained in the examples was measured using an autograph AG-IS manufactured by Shimadzu Corporation. A 10 mm wide film was prepared, an SS curve was measured under the conditions of a distance between chucks of 500 mm and a tensile speed of 20 mm / min, and the elastic modulus was calculated from the slope.
  • Tt total light transmittance
  • Tg glass transition temperature
  • Example 1 [Preparation of polyamideimide resin (1)]
  • 52 g (162.38 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and 734.10 g of N, N-dimethylacetamide (DMAc) were added.
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • DMAc N, N-dimethylacetamide
  • TFMB was dissolved in DMAc with stirring at room temperature.
  • 28.90 g (65.05 mmol) of 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was added to the flask and stirred at room temperature for 3 hours.
  • Example 2 [Preparation of polyamideimide resin (2)] The amount of DMAc used is 701.64 g, the amount of 6FDA used is 14.45 g (32.52 mmol), the amount of OBBC used is 38.39 g (130.10 mmol), and the amount of pyridine used is 9.98 g (126.20 mmol).
  • a polyamideimide resin (2) was obtained in the same manner as in [Preparation of polyamideimide resin (1)] in Example 1, except that the amount of acetic anhydride used was changed to 13.28 g (130.10 mmol). The molar ratio of each component is as shown in Table 1.
  • Example 3 [Preparation of polyamideimide resin (3)] Under a nitrogen gas atmosphere, 52 g (162.38 mmol) of TFMB and 697.82 g of DMAc were added to a 1 L separable flask equipped with a stirring blade, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 21.67 g (48.79 mmol) of 6FDA was added to the flask and stirred at room temperature for 3 hours. Thereafter, 24.00 g (81.31 mmol) of OBBC and then 6.60 g (32.52 mmol) of terephthaloyl chloride (TPC) were added to the flask and stirred at room temperature for 1 hour.
  • TPC terephthaloyl chloride
  • Example 4 [Preparation of Polyamideimide Resin (4)] The amount of DMAc used is 667.75 g, the amount of 6FDA used is 21.67 g (162.38 mmol), the amount of OBBC used is 9.60 g (48.79 mmol), and the amount of TPC used is 16.51 g (81.31 mmol).
  • Example 5 [Preparation of polyamideimide resin (5)] The amount of DMAc used is 884.53 g, the amount of 6FDA used is 21.67 g (38.79 mmol), the amount of OBBC used is 4.80 g (16.26 mmol), and the amount of TPC used is 19.81 g (97.57 mmol).
  • Example 6 [Preparation of polyamideimide resin (6)] The amount of DMAc used is 849.23 g, the amount of 6FDA used is 14.45 g (32.52 mmol), the amount of OBBC used is 4.80 g (16.26 mmol), and the amount of TPC used is 23.11 g (113.84 mmol).
  • a polyimide film (9) having a film thickness of 50 ⁇ m was obtained in the same manner as in [Film formation of polyamideimide film (1)] in Example 1, except that polyimide resin (9) was used instead of polyamideimide resin (1).
  • Mw weight average molecular weight
  • Tt total light transmittance
  • YI glass transition temperature
  • Tg glass transition temperature
  • Example 7 [Preparation of polyamideimide resin (10)] Under a nitrogen gas atmosphere, 45.00 g (140.5 mmol) of TFMB and 600.9 g of DMAc were added to a 1 L separable flask equipped with a stirring blade, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 4.14 g (14.1 mmol) of BPDA was added to the flask and stirred at room temperature for 2.5 hours, followed by addition of 25.01 g (56.3 mmol) of 6FDA and stirred at room temperature for 15 hours.
  • Example 8 [Preparation of Polyamideimide Resin (11)] Under a nitrogen gas atmosphere, 14.67 g (45.8 mmol) of TFMB and 233.3 g of DMAc were added to a 1 L separable flask equipped with a stirring blade, and TFMB was dissolved in DMAc while stirring at room temperature. Next, 4.283 g (13.8 mmol) of 4,4′-oxydiphthalic dianhydride (OPDA) was added to the flask, and the mixture was stirred at room temperature for 16.5 hours. Thereafter, 1.359 g (4.61 mmol) of OBBC and 5.609 g (27.6 mmol) of TPC were added to the flask and stirred at room temperature for 1 hour.
  • OPDA 4,4′-oxydiphthalic dianhydride
  • Example 9 [Preparation of polyamideimide resin (12)] Changed to 4.283 g of 4,4′-oxydiphthalic dianhydride (OPDA), 6.140 g of 6FDA, changed to 14.67 g (45.8 mmol) of TFMB, 8.809 g (27.5 mmol) of TFMB and 2,2′-dimethyl A polyamideimide resin (12) was obtained in the same manner as in [Preparation of polyamideimide resin (11)] in Example 8, except that 3.889 g (18.3 mmol) of benzidine (MB) was used. The molar ratio of each component is as shown in Table 1.
  • Example 10 [Preparation of polyamideimide resin (13)] A polyamide was prepared in the same manner as in [Preparation of polyamideimide resin (12)] in Example 9, except that 3.670 g (18.3 mmol) of 4,4′-diaminodiphenyl ether (ODA) was used instead of MB3.889 g. An imide resin (13) was obtained. The molar ratio of each component is as shown in Table 1.
  • the polyamide-imide film (optical member) made of the polyamide-imide resin according to the present invention has a low elastic modulus and excellent flexibility while having high bending resistance. At the same time, it has been shown to have a high surface hardness, and it is also possible to suppress surface damage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

高い柔軟性及び屈曲耐性を両立する光学部材のためのポリアミドイミド樹脂、特に画像表示装置の前面板のためのポリアミドイミド樹脂、及び該ポリアミドイミド樹脂を含む前面板等の光学部材を提供する。 下式(1)及び下式(2)で表される構成単位を有するポリアミドイミド樹脂; [式(1)及び式(2)中、X及びZは、それぞれ独立に、2価の有機基を表し、Yは4価の有機基を表し、Zの少なくとも一部は、式(3):(式(3)中、R~Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R~Rに含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、Aは、-O-、-S-、-CO-又は-NR-を表し、Rはハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表し、mは1~4の整数であり、*は結合手を表す) で表される構成単位である]。

Description

ポリアミドイミド樹脂及び該ポリアミドイミド樹脂を含んでなる光学部材
 本発明は、ポリアミドイミド樹脂、及び該ポリアミドイミド樹脂を含んでなる光学部材に関する。
 現在、液晶表示装置や有機EL表示装置等の画像表示装置は、テレビのみならず、携帯電話やスマートウォッチといった種々の用途で広く活用されている。こうした用途の拡大に伴い、フレキシブル特性を有する画像表示装置(フレキシブルディスプレイ)が求められている。
 画像表示装置は、液晶表示素子又は有機EL表示素子等の表示素子の他、偏光板や位相差板及び前面板等の構成部材から構成される。フレキシブルディスプレイを達成するためには、これら全ての構成部材が柔軟性を有する必要がある。
 これまで前面板としてはガラスが用いられている。ガラスは、透明度が高く、ガラスの種類によっては高硬度を発現できる反面、非常に剛直であり、割れやすいため、フレキシブルディスプレイの前面板材料としての利用は難しい。
 そのため、ガラスに代わる材料として高分子材料の活用が検討されている。高分子材料からなる前面板はフレキシブル特性を発現し易いため、種々の用途に用いることが期待できる。柔軟性を有する樹脂としては種々のものが挙げられるが、その一つにポリアミドイミド樹脂がある。ポリアミドイミド樹脂は、透明性や耐熱性の観点から、種々の用途で使用されている(特許文献1)。
特開2010-150552号公報
 フレキシブルディスプレイが屈曲する際には、全ての構成部材が屈曲する。各構成部材の柔軟性が不十分であると、他の構成部材の損傷させることがある。そのため、構成部材の1つである前面板にも高い柔軟性が求められる。同時に、前面板が屈曲した後、その表面に織り皺が残ると、ディスプレイの視認性に問題が生じるため、前面板は高い屈曲耐性を有する必要がある。
 そこで本発明は、高い柔軟性及び屈曲耐性を両立する光学部材のためのポリアミドイミド樹脂、特に画像表示装置の前面板のためのポリアミドイミド樹脂、及び該ポリアミドイミド樹脂を含む前面板等の光学部材を提供することを目的とする。
 本発明者等は、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。
 すなわち、本発明は、以下の好適な態様を提供するものである。
[1]式(1)及び式(2):
Figure JPOXMLDOC01-appb-C000005
[式(1)及び式(2)中、X及びZは、それぞれ独立に、2価の有機基を表し、
Yは4価の有機基を表し、
Zの少なくとも一部は、式(3):
Figure JPOXMLDOC01-appb-C000006
〔式(3)中、R~Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R~Rに含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、
Aは、-O-、-S-、-CO-又はNR-を表し、Rはハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表し、
mは1~4の整数であり、
*は結合手を表す〕
で表される構成単位である]
で表される構成単位を有するポリアミドイミド樹脂。
[2]Y及びZの合計に対して、式(3)で表される構成単位の含有率が3モル%以上90モル%以下である、前記[1]に記載のポリアミドイミド樹脂。
[3]Zの5モル%以上100モル%以下は式(3)で表される、前記[1]に記載のポリアミドイミド樹脂。
[4]式(1)で表される構成単位及び式(2)で表される構成単位の合計に対して、式(3)で表される構成単位の比率が、3モル%以上90モル%以下である、前記[1]に記載のポリアミドイミド樹脂。
[5]式(1)で表される構成単位の含有率は、式(1)で表される構成単位及び式(2)で表される構成単位の合計に対して、10モル%以上90モル%以下である、前記[1]~[4]のいずれかに記載のポリアミドイミド樹脂。
[6]Xの少なくとも一部は式(4):
Figure JPOXMLDOC01-appb-C000007
[式(4)中、R10~R17は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R10~R17に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、
*は結合手を表す]
で表される構成単位である、前記[1]~[5]のいずれかに記載のポリアミドイミド樹脂。
[7]Yの少なくとも一部は式(5):
Figure JPOXMLDOC01-appb-C000008
[式(5)中、R18~R25は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R18~R25に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、
*は結合手を表す]
で表される構成単位である、前記[1]~[6]のいずれかに記載のポリアミドイミド樹脂。
[8]DMA測定におけるtanδにより算出されたガラス転移温度Tgが380℃未満である、前記[1]~[7]のいずれかに記載のポリアミドイミド樹脂。
[9]前記[1]~[8]のいずれかに記載のポリアミドイミド樹脂を含んでなる、光学部材。
[10]前記[9]記載の光学部材を備えた画像表示装置。
 本発明によれば、高い柔軟性及び屈曲耐性を両立する光学部材のためのポリアミドイミド樹脂、特に画像表示装置の前面板のためのポリアミドイミド樹脂、及び該ポリアミドイミド樹脂を含む前面板などの光学部材を提供することができる。加えて、本発明によれば表面硬度が優れる光学部材を提供することができる。
 以下、本発明の実施の形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。
 本発明の一実施態様であるポリアミドイミド樹脂は、式(1)で表される構成単位及び式(2)で表される構成単位を有するものである。
Figure JPOXMLDOC01-appb-C000009
 式(2)において、Zは、それぞれ独立に、2価の有機基を表す。本発明の一実施態様であるポリアミドイミド樹脂は、複数種のZを含み得、複数種のZは、互いに同一でよく、異なっていてもよい。Zの少なくとも一部は、式(3)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000010
[式(3)中、R~Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R~Rに含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、
Aは、-O-、-S-、-CO-又はNR-を表し、Rはハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表し、
mは1~4の整数であり、
*は結合手を表す。]
 式(3)において、Aは、それぞれ独立に、-O-、-S-、-CO-又はNR-を表し、該ポリアミドイミド樹脂を含んでなる光学部材の柔軟性の観点から、好ましくは-O-又はS-を表し、より好ましくは-O-を表す。R~Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、該ポリアミドイミド樹脂を含んでなる光学部材の柔軟性及び表面硬度の観点から、好ましくは水素原子又は炭素数1~6のアルキル基を表し、より好ましくは水素原子又は炭素数1~3のアルキル基を表し、さらに好ましくは水素原子を表す。ここで、R~Rに含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよい。Rはハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表す。
 式(3)において、mは、1~4の範囲の整数であり、mがこの範囲内であると、光学部材の柔軟性が良好である。また、式(3)において、mは、好ましくは1~3の範囲の整数、より好ましくは1又は2、さらに好ましくは1であり、mがこの範囲内であると、光学部材の柔軟性が良好であると同時に、原料の入手性が比較的良好である。
 本発明の好適な実施態様においては、式(3)は式(3’)で表される構成単位であり、すなわち、複数のZの少なくとも一部は式(3’)で表される構成単位である。この場合、該ポリアミドイミド樹脂を含んでなる光学部材は、高い表面硬度を発揮すると同時に、弾性率が低く、高い柔軟性を有することができる。
Figure JPOXMLDOC01-appb-C000011
 本発明の好適な実施態様において、上記ポリアミドイミド樹脂中のY及びZの合計に対して、式(3)で表される構成単位の含有率は、好ましくは3モル%以上、より好ましくは5モル%以上、さらに好ましくは7モル%以上、さらにより好ましくは9モル%以上、特に好ましくは15モル%以上、非常に好ましくは30モル%以上であり、好ましくは90モル%以下、より好ましくは87モル%以下、さらに好ましくは85モル%以下、特に好ましくは83モル%以下、非常に好ましくは80モル%以下である。ポリアミドイミド樹脂中のY及びZの合計に対して、式(3)で表される構成単位の含有率が上記下限値以上であると、該ポリアミドイミド樹脂を含んでなる光学部材は弾性率が低く、柔軟性に優れ、同時に高い表面硬度を発現することができる。ポリアミドイミド樹脂中のY及びZの合計に対して、式(3)で表される構成単位の含有率が上記上限値以下であると、式(3)由来のアミド結合間水素結合による増粘を抑制することで、後述するポリアミドイミドワニスの粘度を抑制することができ、光学部材の加工を容易にすることができる。なお、式(3)で表される構成単位の含有率は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 本発明の好適な実施態様において、上記ポリアミドイミド樹脂中のZの、好ましくは5モル%以上、より好ましくは7モル%以上、さらに好ましくは9モル%以上、特に好ましくは11モル%以上が式(3)で表される。上記ポリアミドイミド樹脂中のZの上記下限値以上が式(3)で表されると、該ポリアミドイミド樹脂を含んでなる光学部材は高い表面硬度を発現すると同時に、弾性率が低く、高い柔軟性を有することができる。なお、上記ポリアミドイミド樹脂中のZの100モル%以下が式(3)で表されることが好ましい。なお、上記ポリアミドイミド樹脂中の式(3)で表される構成単位の含有率は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 本発明の好適な実施態様において、上記ポリアミドイミド樹脂中の式(1)で表される構成単位及び式(2)で表される構成単位の合計に対して、式(3)で表される構成単位の比率は、好ましくは3モル%以上、より好ましくは5モル%以上、さらに好ましくは7モル%以上、さらにより好ましくは9モル%以上、特に好ましくは15モル%以上、非常に好ましくは30モル%以上であり、好ましくは90モル%以下、より好ましくは87モル%以下、さらに好ましくは85モル%以下、特に好ましくは83モル%以下、非常に好ましくは80モル%以下である。ポリアミドイミド樹脂中の式(1)で表される構成単位及び式(2)で表される構成単位の合計に対して、式(3)で表される構成単位の比率が上記下限値以上であると、該ポリアミドイミド樹脂を含んでなる光学部材は弾性率が低く、柔軟性に優れ、同時に高い表面硬度を発現することができる。ポリアミドイミド樹脂中の式(1)で表される構成単位及び式(2)で表される構成単位の合計に対して、式(3)で表される構成単位の比率が上記上限値以下であると、式(3)由来のアミド結合間水素結合による増粘を抑制することで、後述するポリアミドイミドワニスの粘度を抑制することができ、光学部材の加工を容易にすることができる。なお、式(3)で表される構成単位の含有率は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 式(1)及び式(2)において、Xは、それぞれ独立して、2価の有機基を表し、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。なお、式(1)におけるXは、式(2)におけるXと同一であってもよいし、異なってもよい。本発明の一実施態様であるポリアミドイミド樹脂は、複数種のXを含み得、複数種のXは、互いに同一でよく、異なっていてもよい。Xとしては、以下の式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)又は式(18)で表される基;それらの式で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基が例示される。
Figure JPOXMLDOC01-appb-C000012
[式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)又は式(18)中、*は結合手を表し、
 V~Vは、それぞれ独立して、単結合、-O-、-S-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-又はCO-を表す。]
 VとVとの各環に対する結合位置、及び、VとVとの各環に対する結合位置は、それぞれ、各環に対してメタ位又はパラ位であることが好ましく、パラ位であることがより好ましい。
 式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)又は式(18)で表される基の中でも、該ポリアミドイミド樹脂を含んでなる光学部材の表面硬度及び柔軟性の観点から、式(13)、式(14)、式(15)、式(16)又は式(17)で表される基が好ましく、式(14)、式(15)又は式(16)で表される基がより好ましい。また、V~Vは、該ポリアミドイミド樹脂を含んでなる光学部材の表面硬度及び柔軟性の観点から、それぞれ独立して、単結合、-O-又はS-であることが好ましく、単結合又はO-であることがより好ましい。
 本発明の好適な実施態様において、式(1)及び式(2)中の複数のXの少なくとも一部は、式(4)で表される構成単位である。式(1)及び式(2)中の複数のXの少なくとも一部が式(4)で表される基であると、該ポリアミドイミド樹脂を含んでなる光学部材は、高い透明性を発現すると同時に、高い表面硬度を発現することができる。
Figure JPOXMLDOC01-appb-C000013

[式(4)中、R10~R17は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R10~R17に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、
*は結合手を表す。]
 式(4)において、R10~R17は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、好ましくは水素原子又は炭素数1~6のアルキル基を表し、より好ましくは水素原子又は炭素数1~3のアルキル基を表し、ここで、R10~R17に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよい。R10~R17は、それぞれ独立に、該ポリアミドイミド樹脂を含んでなる光学部材の表面硬度、柔軟性及び透明性の観点から、さらに好ましくは水素原子、メチル基、フルオロ基、クロロ基又はトリフルオロメチル基であり、特に好ましくは水素原子又はトリフルオロメチル基である。
 本発明の好適な実施態様においては、式(4)で表される構成単位は式(4’)で表される構成単位であり、すなわち、複数のXの少なくとも一部は、式(4’)で表される構成単位である。この場合、該ポリアミドイミド樹脂を含んでなる光学部材は、高い透明性を発現すると同時に、フッ素元素を含有する骨格により該ポリアミドイミド樹脂の溶媒への溶解性を向上し、ポリアミドイミドワニスの粘度を低く抑制することができ、光学部材の加工を容易にすることができる。
Figure JPOXMLDOC01-appb-C000014
[式(4’)中、*は結合手を表す]
 本発明の好適な実施態様において、上記ポリアミドイミド樹脂中のXの、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは60モル%以上、ことさら好ましくは70モル%以上が式(4)、特に式(4’)で表される。上記ポリアミドイミド樹脂における上記範囲内のXが式(4)、特に式(4’)で表されると、該ポリアミドイミド樹脂を含んでなる光学部材は、高い透明性を発現すると同時に、フッ素元素を含有する骨格により該ポリアミドイミド樹脂の溶媒への溶解性を向上し、ポリアミドイミドワニスの粘度を低く抑制することができ、また光学部材の加工を容易にすることができる。なお、好ましくは、上記ポリアミドイミド樹脂中のXの100モル%以下が式(4)、特に式(4’)で表される。上記ポリアミドイミド樹脂中のXは式(4)、特に式(4’)であってもよい。上記ポリアミドイミド樹脂中のXの式(4)で表される構成単位の含有率は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 式(1)において、Yは、それぞれ独立に、4価の有機基を表し、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。本発明の一実施態様であるポリアミドイミド樹脂は、複数種のYを含み得、複数種のYは、互いに同一でよく、異なっていてもよい。Yとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)で表される基;それらの式で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに4価の炭素数6以下の鎖式炭化水素基が例示される。
Figure JPOXMLDOC01-appb-C000015
[式(20)~式(29)中、
 *は結合手を表し、
 Wは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又はAr-SO-Ar-を表す。Arは、水素原子がフッ素原子で置換されていてもよい炭素数6~20のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。]
 式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基の中でも、該ポリアミドイミド樹脂を含んでなる光学部材の表面硬度及び柔軟性の観点から、式(26)、式(28)又は式(29)で表される基が好ましく、式(26)で表される基がより好ましい。黄色度を抑制しやすい観点から、好ましくは式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)又は式(27)で表される基;及びこれらの基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基が挙げられる。また、Wは、該ポリアミドイミド樹脂を含んでなる光学部材の表面硬度及び柔軟性の観点から、それぞれ独立して、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-又はC(CF-であることが好ましく、単結合、-O-、-CH-、-CH(CH)-、-C(CH-又はC(CF-であることがより好ましく、単結合、-O-、-C(CH-又はC(CF-であることがさらに好ましく、-O-又はC(CF-であることがことさら好ましい。
 本発明の好適な実施態様において、式(1)中の複数のYの少なくとも一部は、式(5)で表される構成単位である。式(1)中の複数のYの少なくとも一部が式(5)で表される基であると、該ポリアミドイミド樹脂を含んでなる光学部材は、高い透明性を発現すると同時に、高い屈曲性骨格に由来して、該ポリアミドイミド樹脂の溶媒への溶解性を向上し、ポリアミドイミドワニスの粘度を低く抑制することができ、また光学部材の加工を容易にすることができる。
Figure JPOXMLDOC01-appb-C000016
[式(5)中、R18~R25は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R18~R25に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、
*は結合手を表す。]
 式(5)において、R18~R25は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、好ましくは水素原子又は炭素数1~6のアルキル基を表し、より好ましくは水素原子又は炭素数1~3のアルキル基を表し、ここで、R18~R25に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよい。R18~R25は、それぞれ独立に、該ポリアミドイミド樹脂を含んでなる光学部材の表面硬度及び柔軟性の観点から、さらに好ましくは水素原子、メチル基、フルオロ基、クロロ基又はトリフルオロメチル基であり、特に好ましくは水素原子又はトリフルオロメチル基である。
 本発明の好適な実施態様においては、式(5)で表される構成単位は、式(5’)で表される基であり、すなわち、複数のYの少なくとも一部は、式(5’)で表される構成単位である。この場合、該ポリアミドイミド樹脂を含んでなる光学部材は、高い透明性を有することができる。
Figure JPOXMLDOC01-appb-C000017
[式(5’)中、*は結合手を表す]
 本発明の好適な実施態様において、上記ポリアミドイミド樹脂中のYの、好ましくは50モル%以上、より好ましくは60モル%以上、さらに好ましくは70モル%以上が式(5)、特に式(5’)で表される。上記ポリアミドイミド樹脂における上記範囲内のYが式(5)、特に式(5’)で表されると、該ポリアミドイミド樹脂を含んでなる光学部材は高い透明性を有することができ、さらにフッ素元素を含有する骨格により該ポリアミドイミド樹脂の溶媒への溶解性を向上し、ポリアミドイミドワニスの粘度を低く抑制することができ、また光学部材の製造が容易である。なお、好ましくは、上記ポリアミドイミド樹脂中のYの100モル%以下が式(5)、特に式(5’)で表される。上記ポリアミドイミド樹脂中のYは式(5)、特に式(5’)であってもよい。上記ポリアミドイミド樹脂中のYの式(5)で表される構成単位の含有率は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 上記ポリアミドイミド樹脂の重量平均分子量(Mw)は、好ましくは5,000以上、より好ましくは10,000以上、さらに好ましくは50,000以上、特に好ましくは70,000以上であり、ことさら好ましくは100,000以上であり、好ましくは800,000以下、より好ましくは600,000以下、さらに好ましくは500,000以下、特に好ましくは450,000以下である。上記ポリアミドイミド樹脂の重量平均分子量(Mw)が上記下限値以上であると、該ポリアミドイミド樹脂を含んでなる光学部材はさらに良好な屈曲耐性を有する。上記ポリアミドイミド樹脂の重量平均分子量(Mw)が上記上限値以下であると、ポリアミドイミドワニスの粘度を低く抑制することができ、また光学部材、特に光学フィルムの延伸が容易であるため、加工性が良好である。なお、本発明において重量平均分子量(Mw)は、例えば、GPC測定を行い、標準ポリスチレン換算によって求めることができ、具体的には実施例に記載の方法により求めることができる。
 上記ポリアミドイミド樹脂において、式(1)で表される構成単位の含有率は、式(1)で表される構成単位及び式(2)で表される構成単位の合計に対して、好ましくは10モル%以上、より好ましくは15モル%以上、さらに好ましくは18モル%以上、特に好ましくは20モル%以上であり、好ましくは90モル%以下、より好ましくは70モル%以下、さらに好ましくは60モル%以下、特に好ましくは50モル%以下である。上記ポリアミドイミド樹脂において、式(1)で表される構成単位の含有率が上記下限値以上であると、式(2)中のアミド結合間の水素結合による増粘を抑制し、ポリアミドイミドワニスの粘度を低減することができ、光学部材の製造が容易である。上記ポリアミドイミド樹脂において、式(1)で表される構成単位の含有率が上記上限値以下であると、該ポリアミドイミド樹脂を含んでなる光学部材は、高い表面硬度を発揮する。なお、上記割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 上記ポリアミドイミド樹脂において、式(2)で表される構成単位の含有率は、式(1)で表される構成単位及び式(2)で表される構成単位の合計に対して、好ましくは20モル%以上、より好ましくは30モル%以上、さらに好ましくは40モル%以上、特に好ましくは50モル%以上であり、好ましくは80モル%以下、より好ましくは70モル%以下、さらに好ましくは60モル%以下、特に好ましくは50モル%以下である。上記ポリアミドイミド樹脂において、式(1)で表される構成単位の含有率が上記上限値以下であると、式(2)中のアミド結合間の水素結合による増粘を抑制し、ポリアミドイミドワニスの粘度を低減することができ、光学部材の製造が容易である。上記ポリアミドイミド樹脂において、式(1)で表される構成単位の含有率が上記下限値以上であると、該ポリアミドイミド樹脂を含んでなる光学部材は、高い表面硬度を発揮する。なお、上記割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 上記ポリアミドイミド樹脂は、動的粘弾性測定(DMA測定)におけるtanδにより算出されたガラス転移温度Tgが、好ましくは380℃未満、より好ましくは379℃以下、さらに好ましくは378℃以下、例えば370℃以下である。上記ポリアミドイミド樹脂の上記ガラス転移温度Tgが上記上限値未満(又は以下)であると、該ポリアミドイミド樹脂を含んでなる光学部材が高い表面硬度を発現すると同時に、弾性率が低く、高い柔軟性を有することができる。ガラス転移温度を上記範囲に制御するためには、ポリアミドイミドを構成するモノマーとして、製膜して得られるポリアミドイミドフィルムに柔軟性を与え得る二価の基を有するモノマーを含むことが好ましく、柔軟性を与え得る二価の基として具体的には、-O-、-CH-、-CF-、-C(CH-、-C(CF-が挙げられ、柔軟性を与え得る二価の基を有するモノマーとして、-O-を含む二価の基を有するモノマーを含むことがより好ましい。なお、上記ポリアミドイミド樹脂の上記ガラス転移温度Tgは通常300℃以上である。動的粘弾性測定(DMA測定)におけるtanδによりガラス転移温度を算出する方法は、具体的には実施例の通りに行うことができる。
 上記ポリアミドイミド樹脂は、式(1)で表される構成単位及び式(2)で表される構成単位の他に、式(10-2)で表される構成単位、及び/又は式(11-2)で表される構成単位を含んでもよい。
Figure JPOXMLDOC01-appb-C000018
 式(10-2)において、Yは、それぞれ独立して、4価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)で表される基、並びに4価の炭素数6以下の鎖式炭化水素基が例示される。本発明の一実施態様であるポリアミドイミド樹脂は、複数種のYを含み得、複数種のYは、互いに同一でよく、異なっていてもよい。
 式(11-2)において、Yは3価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、上記の式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)で表される基の結合手のいずれか1つが水素原子に置き換わった基、及び3価の炭素数6以下の鎖式炭化水素基が例示される。本発明の一実施態様であるポリアミドイミド樹脂は、複数種のYを含み得、複数種のYは、互いに同一でよく、異なっていてもよい。
 式(10-2)及び式(11-2)において、X及びXは、それぞれ独立して、2価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。X及びXとしては、式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)又は式(18)で表される基;それらの式で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基が例示される。
 本発明の一実施態様において、上記ポリアミドイミド樹脂は、式(1)で表される構成単位及び式(2)で表される構成単位、並びに場合により式(10-2)及び/又は式(11-2)で表される構成単位からなる。また、該ポリアミドイミド樹脂を含んでなる光学部材の柔軟性及び表面硬度の観点から、上記ポリアミドイミド樹脂において、式(1)で表される構成単位及び式(2)で表される構成単位は、式(1)及び式(2)、並びに場合により式(10-2)及び式(11-2)で表される全構成単位に基づいて、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上である。なお、上記ポリアミドイミド樹脂において、式(1)で表される構成単位及び式(2)で表される構成単位の含有率は、式(1)又は式(2)、若しくは場合により式(10-2)又は式(11-2)で表される全構成単位に基づいて、通常100%以下である。なお、上記含有率は、例えば、H-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 ポリアミドイミド樹脂は、例えば、後述するテトラカルボン酸化合物、ジカルボン酸化合物及びジアミン化合物を主な原料として製造することができる。ここで、ジカルボン酸化合物は少なくとも式(3’’)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000019
[式(3’’)中、R~Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R~Rに含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、
 Aは、-O-、-S-、-CO-又はNR-を表し、Rはハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表し、
 mは1~4の整数であり、
 R31及びR32は、それぞれ独立して、-OH又はClである。]
 好適な実施態様においては、ジカルボン酸化合物は、Aが-O-である、式(3’’)で表される化合物である。また、別の好適な実施態様においては、ジカルボン酸化合物は、R32が-Clである、式(3’’)で表される化合物である。また、ジアミン化合物に代えて、ジイソシアネート化合物を用いてもよい。
 ポリアミドイミド樹脂の合成に用いられるテトラカルボン酸化合物としては、芳香族テトラカルボン酸及びその無水物、好ましくはその二無水物等の芳香族テトラカルボン酸化合物;及び脂肪族テトラカルボン酸及びその無水物、好ましくはその二無水物等の脂肪族テトラカルボン酸化合物等が挙げられる。テトラカルボン酸化合物は、単独で用いてもよいし、2種以上を併用してもよい。テトラカルボン酸化合物は、二無水物の他、酸クロリド化合物等のテトラカルボン酸化合物類縁体であってもよい。これらは単独又は2種以上を組み合わせて使用できる。
 芳香族テトラカルボン酸二無水物としては、非縮合多環式の芳香族テトラカルボン酸二無水物、単環式の芳香族テトラカルボン酸二無水物及び縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。非縮合多環式の芳香族テトラカルボン酸二無水物の具体例としては、4,4’-オキシジフタル酸二無水物(OPDAと記載することがある)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDAと記載することがある)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDAと記載することがある)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。また、単環式の芳香族テトラカルボン酸二無水物としては1,2,4,5-ベンゼンテトラカルボン酸二無水物が、縮合多環式の芳香族テトラカルボン酸二無水物としては1,2,4,5-ベンゼンテトラカルボン酸二無水物が、縮合多環式の芳香族テトラカルボン酸二無水物としては2,3,6,7-ナフタレンテトラカルボン酸二無水物が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
 これらの中でも、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物及び4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が好ましく、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物がより好ましい。
 脂肪族テトラカルボン酸二無水物としては、環式又は非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル3,3’-4,4’-テトラカルボン酸二無水物及びこれらの位置異性体が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、及び1,2,3,4-ペンタンテトラカルボン酸二無水物等が挙げられ、これらは単独で又は2種以上を組み合わせて用いることができる。また、環式脂肪族テトラカルボン酸二無水物及び非環式脂肪族テトラカルボン酸二無水物を組み合わせて用いてもよい。
 上記テトラカルボン酸二無水物の中でも、光学部材の高表面硬度、高柔軟性、高屈曲耐性、高透明性及び低着色性の観点から、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、並びにこれらの混合物が好ましく、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、並びにこれらの混合物がより好ましく、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物がさらに好ましい。
 ポリアミドイミド樹脂の合成に用いられるジカルボン酸化合物としては、好ましくは4,4’-オキシビス安息香酸及び/又はその酸クロリド化合物が用いられる。具体的には、4,4’-オキシビス(ベンゾイルクロリド)が好ましい例としてあげられる。4,4’-オキシビス安息香酸又はその酸クロリド化合物に加えて、他のジカルボン酸化合物が用いられてもよい。他のジカルボン酸化合物としては、芳香族ジカルボン酸、脂肪族ジカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を併用してもよい。具体例としては、テレフタル酸;イソフタル酸;ナフタレンジカルボン酸;4,4’-ビフェニルジカルボン酸;3,3’-ビフェニルジカルボン酸;炭素数8以下である鎖式炭化水素、のジカルボン酸化合物及び2つの安息香酸が単結合、-CH-、-C(CH-、-C(CF-、-SO-若しくはフェニレン基で連結された化合物並びにそれらの酸クロリド化合物が挙げられる。具体的には、テレフタロイルクロリドが好ましい例として挙げられる。
 なお、上記ポリアミドイミド樹脂は、該ポリアミドイミド樹脂を含んでなる光学部材の各種物性を損なわない範囲で、上記のポリアミドイミド合成に用いられるテトラカルボン酸化合物に加えて、テトラカルボン酸及びトリカルボン酸並びにそれらの無水物及び誘導体を更に反応させたものであってもよい。
 テトラカルボン酸としては、上記テトラカルボン酸化合物の無水物の水付加体が挙げられる。
 トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を併用してもよい。
具体例としては、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-若しくはフェニレン基で連結された化合物が挙げられる。
 ポリアミドイミド樹脂の合成に用いられるジアミン化合物としては、例えば、脂肪族ジアミン、芳香族ジアミン及びこれらの混合物が挙げられる。なお、本実施形態において「芳香族ジアミン」とは、アミノ基が芳香環に直接結合しているジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。この芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環である。また「脂肪族ジアミン」とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に芳香環やその他の置換基を含んでいてもよい。
 脂肪族ジアミンとしては、例えば、ヘキサメチレンジアミン等の非環式脂肪族ジアミン、並びに1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン及び4,4’-ジアミノジシクロヘキシルメタン等の環式脂肪族ジアミン等が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
 芳香族ジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、及び2,6-ジアミノナフタレン等の、芳香環を1つ有する芳香族ジアミン;4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル(ODAと記載することがある)、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ジアミノジフェニルスルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン(MBと記載することがある)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMBと記載することがある)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、及び9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン等の、芳香環を2つ以上有する芳香族ジアミンが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
 芳香族ジアミンとしては、好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニルであり、より好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニルである。これらは単独又は2種以上を組み合わせて使用できる。
 上記ジアミン化合物の中でも、光学部材の高表面硬度、高柔軟性、高屈曲耐性、高透明性及び低着色性の観点からは、ビフェニル構造を有する芳香族ジアミンからなる群から選ばれる1種以上を用いることが好ましい。2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル及び4,4’-ジアミノジフェニルエーテルからなる群から選ばれる1種以上を用いることがより好ましく、2,2’-ビス(トリフルオロメチル)ベンジジンを用いることがよりさらに好ましい。
 本発明の一実施態様であるポリアミドイミド樹脂は、ジアミン化合物と、テトラカルボン酸化合物(酸クロリド化合物、テトラカルボン酸二無水物等のテトラカルボン酸化合物類縁体)及びジカルボン酸化合物(酸クロリド化合物等のジカルボン酸化合物類縁体)、並びに場合によりトリカルボン酸化合物(酸クロリド化合物、トリカルボン酸無水物等のトリカルボン酸化合物類縁体)との重縮合生成物である縮合型高分子である。式(1)及び式(10-2)で表される構成単位は、通常、ジアミン類及びテトラカルボン酸化合物から誘導される。式(2)で表される構成単位は、通常、ジアミン及びジカルボン酸化合物から誘導される。式(11-2)で表される構成単位は、通常、ジアミン及びトリカルボン酸化合物から誘導される。
 本発明の好ましい実施態様において、上記ポリアミドイミド樹脂には、上記の通り、ハロゲン原子が含まれ得る。含フッ素置換基の具体例としては、フルオロ基及びトリフルオロメチル基が挙げられる。ポリアミドイミド樹脂がハロゲン原子を含むことにより、ポリアミドイミド樹脂を含んでなる光学部材の黄色度(YIと記載することがある)を低減させることができる場合があり、さらに高い柔軟性及び屈曲耐性を両立させることができる傾向がある。また、光学部材の黄色度の低減(すなわち、透明性の向上)、吸水率の低減、及び耐屈曲性の観点から、ハロゲン原子は好ましくはフッ素原子である。
 ポリアミドイミド樹脂におけるハロゲン原子の含有率は、黄色度の低減(透明性の向上)、吸水率の低減、及び光学部材の変形抑制の観点から、ポリアミドイミド樹脂の質量を基準として、好ましくは1~40質量%、より好ましくは3~35質量%、さらに好ましくは5~32質量%である。
 本発明の一実施態様において、ポリアミドイミド樹脂の合成反応において、イミド化触媒が存在してもよい。イミド化触媒としては、例えばトリプロピルアミン、ジブチルプロピルアミン、エチルジブチルアミン等の脂肪族アミン;N-エチルピペリジン、N-プロピルピペリジン、N-ブチルピロリジン、N-ブチルピペリジン、及びN-プロピルヘキサヒドロアゼピン等の脂環式アミン(単環式);アザビシクロ[2.2.1]ヘプタン、アザビシクロ[3.2.1]オクタン、アザビシクロ[2.2.2]オクタン、及びアザビシクロ[3.2.2]ノナン等の脂環式アミン(多環式);並びにピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3,4-シクロペンテノピリジン、5,6,7,8-テトラヒドロイソキノリン、及びイソキノリン等の芳香族アミンが挙げられる。
 ジアミン化合物、テトラカルボン酸化合物及びジカルボン酸化合物の反応温度は、特に限定されないが、例えば50~350℃である。反応時間も特に限定されないが、例えば30分~10時間程度である。必要に応じて、不活性雰囲気又は減圧の条件下において反応を行ってよい。また、反応は溶剤中で行ってよく、溶剤としては例えば、ポリアミドイミドワニスの調製に用いられる後述する溶剤が挙げられる。
(光学部材)
 本発明の別の実施態様においては、上記ポリアミドイミド樹脂を含んでなるポリアミドイミドフィルムである光学部材も提供される。光学部材としては、例えば光学フィルムが挙げられる。該光学部材は、柔軟性、屈曲耐性及び表面硬度に優れるため、画像表示装置の前面板、特にフレキシブルディスプレイの前面板(ウィンドウフィルム)として適当である。光学部材は単層であってもよく、複層であってもよい。光学部材が複層である場合、各層は同一の組成であってよく、異なる組成であってもよい。
 本発明の一実施態様において、光学部材中におけるポリアミドイミド樹脂の含有率は、光学部材の全質量を基準として、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは70質量%以上、特に好ましくは80質量%以上、非常に好ましくは90質量%以上である。ポリアミドイミド樹脂の含有率が上記下限値以上であると、光学部材の屈曲耐性が良好である。なお、光学部材中におけるポリアミドイミド樹脂の含有率は、光学部材の全質量を基準として、通常100質量%以下である。
(無機材料)
 光学部材は、ポリアミドイミド樹脂の他に無機粒子等の無機材料を更に含有してもよい。無機材料として、例えば、チタニア粒子、アルミナ粒子、ジルコニア粒子、シリカ粒子等の無機粒子、及びオルトケイ酸テトラエチル等の4級アルコキシシラン等のケイ素化合物等が挙げられる。光学部材を製造するためのポリアミドイミドワニスの安定性の観点から、無機材料は無機粒子、特にシリカ粒子であることが好ましい。無機粒子同士は、シロキサン結合(すなわち、-SiOSi-)を有する分子により結合されていてもよい。
 無機粒子の平均一次粒子径は、光学部材の透明性、機械物性、及び無機粒子の凝集抑制の観点から、好ましくは10~100nmであり、より好ましくは20~80nmである。本発明において、平均一次粒子径は、透過型電子顕微鏡による定方向径の10点平均値を測定することにより決定することができる。
 光学部材中の無機材料の含有率は、光学部材の全質量を基準として、好ましくは0質量%以上90質量%以下、より好ましくは0.01質量%以上60質量%以下、さらに好ましくは5質量%以上40質量%以下である。無機材料の含有率が上記範囲内であると、光学部材の透明性及び機械物性を両立させやすい傾向がある。
(紫外線吸収剤)
 光学部材は、1種又は2種以上の紫外線吸収剤を含有していてもよい。紫外線吸収剤は、樹脂材料の分野で紫外線吸収剤として通常用いられているものから、適宜選択することができる。紫外線吸収剤は、400nm以下の波長の光を吸収する化合物を含んでいてもよい。紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、サリシレート系化合物、ベンゾトリアゾール系化合物、及びトリアジン系化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。光学部材が紫外線吸収剤を含有することにより、ポリアミドイミド樹脂の劣化が抑制されるため、光学部材の視認性を高めることができる。
 本明細書において、「系化合物」とは、当該「系化合物」が付される化合物の誘導体を指す。例えば、「ベンゾフェノン系化合物」とは、母体骨格としてのベンゾフェノンと、ベンゾフェノンに結合している置換基とを有する化合物を指す。
 光学部材が紫外線吸収剤を含有する場合、紫外線吸収剤の含有率は、光学部材の全質量に対して、好ましくは1質量%以上、より好ましくは2質量%以上、さらに好ましくは3質量%以上であり、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは6質量%以下である。好適な含有率は用いる紫外線吸収剤により異なるが、400nmの光線透過率が20~60%程度になるように紫外線吸収剤の含有率を調節すると、光学部材の耐光性が高められるとともに、透明性の高い光学部材を得ることができる。
(他の添加剤)
 光学部材は、更に他の添加剤を含有していてもよい。他の成分としては、例えば、酸化防止剤、離型剤、安定剤、ブルーイング剤、難燃剤、pH調整剤、シリカ分散剤、滑剤、増粘剤、及びレベリング剤等が挙げられる。
 他の添加剤の含有率は、光学部材の質量に対して、好ましくは0質量%以上20質量%以下、より好ましくは0質量%以上10質量%以下である。
 光学部材、特に光学フィルムの厚さは、用途に応じて適宜調整されるが、通常10~1000μm、好ましくは15~500μm、より好ましくは20~400μm、さらに好ましくは25~300μmである。なお、本発明において、厚さは接触式のデジマチックインジケーターによって測定することができる。
 光学部材において、JIS K 7105:1981に準拠した全光線透過率Ttが好ましくは70%以上、より好ましくは80%以上、さらに好ましくは85%以上、特に好ましくは90%以上である。光学部材の全光線透過率Ttが上記下限値以上であると、光学部材を画像表示装置に組み込んだ際に、十分な視認性を確保することができる。なお、光学部材の全光線透過率Ttの上限値は通常100%以下である。
(光学部材の製造方法)
 上記光学部材、特に光学フィルムの製造方法は、光学部材が上記ポリアミドイミド樹脂を含んでなる限り、特に限定されない。本発明の一実施態様において光学部材、特に光学フィルムは、例えば以下の工程:
(a)ポリアミドイミド樹脂を含む液(ポリアミドイミドワニス)を基材に塗布して塗膜を形成する工程(塗布工程)、及び
(b)塗布された液(ポリアミドイミドワニス)を乾燥させて光学部材、特に光学フィルム(ポリアミドイミドフィルム)を形成する工程(形成工程)
を含む製造方法によって製造することができる。工程(a)及び(b)は、通常この順で行うことができる。
 塗布工程においては、まずポリアミドイミド樹脂を含む液(ポリアミドイミドワニス)を調製する。ポリアミドイミドワニスの調製のために、前記ジアミン化合物、前記テトラカルボン酸化合物、前記ジカルボン酸化合物、及び必要に応じて、イミド化触媒として作用する三級アミン、脱水剤などの他の成分を混合し、反応させてポリアミドイミド混合液を調製する。三級アミンとしては、前述の芳香族アミンや脂肪族アミンなどが挙げられる。脱水剤としては、無水酢酸やプロピオン酸無水物、イソ酪酸無水物、ピバル酸無水物、酪酸無水物、イソ吉草酸無水物などが挙げられる。このポリアミドイミド混合液に貧溶媒を加えて再沈殿法によりポリアミドイミド樹脂を析出させ、乾燥し沈殿物で取り出す。
取り出したポリアミドイミド樹脂沈殿物を溶剤に溶解し、必要に応じて上記紫外線吸収剤及び他の添加剤を添加し、撹拌することにより、ポリアミドイミド樹脂を含む液(ポリアミドイミドワニス)を調製する。
 ポリアミドイミドワニスの調製に用いられる溶剤は、ポリアミドイミド樹脂を溶解可能であれば特に限定されない。かかる溶剤としては、例えばN,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶剤;γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶剤;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶剤;及びそれらの組み合わせ(混合溶剤)が挙げられる。これらの溶剤の中でも、アミド系溶剤又はラクトン系溶剤が好ましい。また、ポリアミドイミドワニスには水、アルコール系溶剤、ケトン系溶剤、非環状エステル系溶剤、エーテル系溶剤などが含まれてもよい。
 次に、例えば公知のロール・ツー・ロールやバッチ方式により、樹脂基材、SUSベルト、又はガラス基材等の基材上に、ポリアミドイミドワニスを用いて、流涎成形等によって塗膜を形成することができる。
 形成工程において、塗膜を乾燥し、基材から剥離することによって、光学部材を形成することができる。剥離後に更に光学部材を乾燥する乾燥工程を行ってもよい。塗膜の乾燥は、通常50~350℃の温度にて行うことができる。必要に応じて、不活性雰囲気又は減圧の条件下において塗膜の乾燥を行ってよい。
 光学部材の少なくとも一方の表面に、表面処理を施す表面処理工程を行ってもよい。表面処理としては、例えばUVオゾン処理、プラズマ処理、及びコロナ放電処理が挙げられる。
 樹脂基材の例としては、PETフィルム、PENフィルム、ポリイミドフィルム、及びポリアミドイミドフィルム等が挙げられる。中でも、耐熱性に優れる観点から、PETフィルム、PENフィルム、ポリイミドフィルム、及び他のポリアミドイミドフィルムが好ましい。さらに、光学部材との密着性及びコストの観点から、PETフィルムがより好ましい。
[機能層]
 本発明の一実施態様である光学部材は機能層を備えてもよい。機能層としては、紫外線吸収層、粘着層、色相調整層、屈折率調整層等の種々の機能を有する層が挙げられる。光学部材は、単数又は複数の機能層を備えていてもよい。また、1つの機能層が複数の機能を有してもよい。
 紫外線吸収層は、紫外線吸収の機能を有する層であり、例えば、紫外線硬化型の透明樹脂、電子線硬化型の透明樹脂、及び熱硬化型の透明樹脂から選ばれる主材と、この主材に分散した紫外線吸収剤とから構成される。機能層として紫外線吸収層を設けることにより、光照射による黄色度の変化を容易に抑制することができる。
 粘着層は、粘着性の機能を有する層であり、光学部材を他の部材に接着させる機能を有する。粘着層の形成材料としては、通常知られたものを用いることができる。例えば、熱硬化性樹脂組成物又は光硬化性樹脂組成物を用いることができる。
 粘着層は、重合性官能基を有する成分を含む樹脂組成物から構成されていてもよい。この場合、光学部材を他の部材に密着させた後に粘着層を構成する樹脂組成物をさらに重合させることにより、強固な接着を実現することができる。光学部材と粘着層との接着強度は、0.1N/cm以上、又は0.5N/cm以上であってもよい。
 粘着層は、熱硬化性樹脂組成物又は光硬化性樹脂組成物を材料として含んでいてもよい。この場合、事後的にエネルギーを供給することで樹脂組成物を高分子化し硬化させることができる。
 粘着層は、感圧型接着剤(Pressure Sensitive Adhesive、PSA)と呼ばれる、押圧により対象物に貼着される接着剤から構成される層であってもよい。感圧型接着剤は、「常温で粘着性を有し、軽い圧力で被着材に接着する物質」(JIS K6800)である粘着剤であってもよく、「特定成分を保護被膜(マイクロカプセル)に内容し、適当な手段(圧力、熱等)によって被膜を破壊するまでは安定性を保持できる接着剤」(JIS K6800)であるカプセル型接着剤であってもよい。
 色相調整層は、色相調整の機能を有する層であり、光学部材を目的の色相に調整することができる層である。色相調整層は、例えば、樹脂及び着色剤を含有する層である。この着色剤としては、例えば、酸化チタン、酸化亜鉛、弁柄、チタニウムオキサイド系焼成顔料、群青、アルミン酸コバルト、及びカーボンブラック等の無機顔料;アゾ系化合物、キナクリドン系化合物、アンスラキノン系化合物、ペリレン系化合物、イソインドリノン系化合物、フタロシアニン系化合物、キノフタロン系化合物、スレン系化合物、及びジケトピロロピロール系化合物等の有機顔料;硫酸バリウム、及び炭酸カルシウム等の体質顔料;並びに塩基性染料、酸性染料、及び媒染染料等の染料を挙げることができる。
 屈折率調整層は、屈折率調整の機能を有する層であり、光学部材とは異なる屈折率を有し、光学部材に所定の屈折率を付与することができる層である。屈折率調整層は、例えば、適宜選択された樹脂、及び場合によりさらに顔料を含有する樹脂層であってもよいし、金属の薄膜であってもよい。
 屈折率を調整する顔料としては、例えば、酸化珪素、酸化アルミニウム、酸化アンチモン、酸化錫、酸化チタン、酸化ジルコニウム及び酸化タンタルが挙げられる。顔料の平均一次粒子径は、0.1μm以下であってもよい。顔料の平均一次粒子径を0.1μm以下とすることにより、屈折率調整層を透過する光の乱反射を防止し、透明度の低下を防止することができる。
 屈折率調整層に用いられる金属としては、例えば、酸化チタン、酸化タンタル、酸化ジルコニウム、酸化亜鉛、酸化錫、酸化ケイ素、酸化インジウム、酸窒化チタン、窒化チタン、酸窒化ケイ素、窒化ケイ素等の金属酸化物又は金属窒化物が挙げられる。
 また、光学部材は、ハードコート層を備えてもよい。ハードコート層としては、アクリル系、エポキシ系、ウレタン系、ベンジルクロライド系、ビニル系などの公知のハードコートが挙げられる。なお、本発明の好適な実施態様においては、光学部材は、ハードコート層がなくとも、高い表面硬度を発現することができる。このため、該ポリアミドイミド樹脂からなる光学部材を含むハードコート層積層体は、単独で高い表面硬度を発現し得ない光学部材を含むハードコート積層体よりも高い表面硬度を発現することができる。
 上記光学部材は、高い表面硬度を発現することができる。本発明の好適な実施態様において、上記光学部材の表面硬度は、好ましくは2B以上、より好ましくはB以上、さらに好ましくはHB以上、特に好ましくはH以上、非常に好ましくは2H以上である。光学部材の表面硬度が上記下限値以上であると、画像表示装置の前面板(ウィンドウフィルム)として使用した場合に画像表示装置表面の傷つきを有利に抑制することができ、また、光学部材の収縮及び膨張防止に寄与することができる。なお、光学部材の表面硬度は、通常9H以下である。なお、本発明において、表面硬度はJIS K5600-5-4:1999に従って測定することができ、例えば荷重は100g、走査速度は60mm/minとして、4000ルクスの環境下で傷の有無の評価を行うことができる。フレキシブルディスプレイの柔軟性を利用して、画像表示装置をフラット形状だけでなく様々な形状にすることができるが、画像表示装置のフレキシブル化に伴い、使用者が画面を直接触ったり、画面に周囲の物体が直接接触したりする機会が増える。それゆえ、本発明の一実施態様である光学部材は、フレキシブルディスプレイの前面板として非常に有用である。
 上記光学部材は、高い柔軟性を発現することができる。本発明の好適な実施態様において、上記光学部材の弾性率は、好ましくは5.9GPa以下、より好ましくは5.5GPa以下、さらに好ましくは5.2GPa以下、特に好ましくは5.0GPa以下、非常に好ましくは4.5GPa以下である。光学部材の弾性率が上記上限値以下であると、フレキシブルディスプレイが屈曲する際に、上記光学部材による他の部材の損傷を抑制することができる。なお、光学部材の弾性率は、通常2.0GPa以上である。弾性率は、例えば(株)島津製作所製オートグラフAG-ISを用いて、10mm幅の試験片をチャック間距離500mm、引張速度20mm/minの条件でS-S曲線を測定し、その傾きから測定することができる。
 上記光学部材、特に光学フィルムは、優れた屈曲耐性を発現することができる。本発明の好適な実施態様において、光学部材は、R=1mmで135°を加重0.75kgfで速度175cpmにて測定した際に破断するまでの往復折り曲げ回数が好ましくは10,000回以上、より好ましくは20,000回以上、さらに好ましくは30,000回以上、特に好ましくは40,000回以上、非常に好ましくは50,000回以上である。光学部材の往復折り曲げ回数が上記下限値以上であると、光学部材を屈曲した際に生じ得る織り皺をさらに抑制することができる。なお、光学部材の往復折り曲げ回数は制限されないが、通常1,000,000回の折り曲げが可能であれば十分実用的である。往復折り曲げ回数は、例えば(株)東洋精機製作所製MIT耐折疲労試験機(型式0530)で厚さ50μm、幅10mmの試験片(光学部材)を用いて求めることができる。
 上記光学部材は、優れた透明性を発現することができる。そのため、上記光学部材は、画像表示装置、特にフレキシブルディスプレイの前面板(ウィンドウフィルム)として非常に有用である。本発明の好適な実施態様において、光学部材は、JIS K 7373:2006に準拠した黄色度YIが、好ましくは5以下、より好ましくは3以下、さらに好ましくは2.5以下である。黄色度YIが上記上限値以下である光学部材は、表示装置等の高い視認性に寄与することができる。なお、上記光学部材の黄色度は好ましくは0以上である。
 本発明の一実施態様である光学部材、特に光学フィルムは、画像表示装置の前面板、特にフレキシブルディスプレイの前面板(ウィンドウフィルム)として有用である。上記光学部材は、画像表示装置、特にフレキシブルディスプレイの視認側表面に前面板として配置することができる。この前面板は、フレキシブルディスプレイ内の画像表示素子を保護する機能を有する。上記光学部材を備える画像表示装置は、高い柔軟性及び屈曲耐性を有すると同時に、高い表面硬度を有するため、屈曲した際に他の部材を損傷することがなく、また光学部材自体にも折り皺が生じ難く、さらに表面の傷つきを有利に抑制できる。
 画像表示装置としては、テレビ、スマートフォン、携帯電話、カーナビゲーション、タブレットPC、携帯ゲーム機、電子ペーパー、インジケーター、掲示板、時計、及びスマートウォッチ等のウェアラブルデバイス等が挙げられる。フレキシブルディスプレイとしては、フレキシブル特性を有する画像表示装置、例えばテレビ、スマートフォン、携帯電話、カーナビゲーション、タブレットPC、携帯ゲーム機、電子ペーパー、インジケーター、掲示板、時計、及びウェアラブルデバイス等が挙げられる。
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記ない限り、質量%及び質量部を意味する。まず評価方法について説明する。
<弾性率の測定>
 実施例において得られたポリアミドイミドフィルムの弾性率を(株)島津製作所製オートグラフAG-ISを用いて測定した。10mm幅のフィルムを作製し、チャック間距離500mm、引張速度20mm/minの条件でS-S曲線を測定し、その傾きから弾性率を算出した。
<表面硬度測定>
 実施例において得られたポリアミドイミドフィルムの表面硬度としては、JIS K5600-5-4:1999に準拠して、フィルム表面の鉛筆硬度を採用した。荷重は100g、走査速度60mm/minとし、4000ルクスの環境下で傷の有無の評価を行った。
<屈曲耐性の測定>
 実施例において得られたポリアミドイミドフィルムの屈曲耐性を、(株)東洋精機製作所製MIT耐折疲労試験機(型式0530)を用いて測定した。厚み50μm、10mm幅のフィルムを作製し、R=1mmで135°を加重0.75kgfで速度175cpmにて測定した際に破断するまでの往復折り曲げ回数を評価した。
<重量平均分子量(Mw)の測定>
 ゲル浸透クロマトグラフィー(GPC)測定
(1)前処理方法
 サンプルにDMF溶離液(10mM臭化リチウム溶液)を濃度2mg/mLとなるように加え、80℃にて30分間攪拌しながら加熱し、冷却後、0.45μmメンブランフィルターろ過したものを測定溶液とした。
(2)測定条件
カラム:TSKgel SuperAWM-H×2+SuperAW2500×1(6.0mm I.D.×150mm×3本)(いずれも、東ソー(株)製)
溶離液:DMF(10mMの臭化リチウム添加)
流量:1.0mL/min.
検出器:RI検出器
カラム温度:40℃
注入量:100μL
分子量標準:標準ポリスチレン
<全光線透過率(Tt)の測定>
 実施例において得られたポリアミドイミドフィルムの全光線透過率Ttを、JIS K7105:1981に準拠して、スガ試験機(株)製の全自動直読ヘーズコンピューターHGM-2DPにより測定した。
<黄色度(YI)の測定>
 実施例において得られたポリアミドイミドフィルムの黄色度(Yellow Index:YI)を、JIS K 7373:2006に準拠して、日本分光(株)製の紫外可視近赤外分光光度計V-670を用いて測定した。フィルムがない状態でバックグランド測定を行った後、フィルムをサンプルホルダーにセットして、300~800nmの光に対する透過率測定を行い、3刺激値(X、Y、Z)を求めた。YIを、下記の式に基づいて算出した。
   YI=100×(1.2769X-1.0592Z)/Y
<ガラス転移温度(Tg)の測定>
 TA Instrument社製DMA Q800を用い、実施例において得られたポリアミドイミドフィルムを以下のような試料とし、以下の条件下で測定して、損失弾性率と保存弾性率の値の比であるtanδ曲線を得た。tanδ曲線のピークの最頂点からTgを算出した。
 -試料:長さ5-15mm、幅5mm
 -実験モード:DMA Multi-Frequency-Strain
 -実験モード詳細条件:
 (1)Clamp:Tension:Film
 (2)Amplitude:5μm
 (3)Frequncy:10Hz(全温度区間で変動なし)
 (4)Preload Force:0.01N
 (5)Force Track:125N
 -温度条件:(1)昇温範囲:常温~400℃、(2)昇温速度:5℃/分
 -主要収集データ:(1)保存弾性率(Storage modulus、E')、(2)損失弾性率(Loss modulus、E'')、(3)tanδ(E''/E')
実施例1
[ポリアミドイミド樹脂(1)の調製]
 窒素雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)52g(162.38mmol)及びN,N-ジメチルアセトアミド(DMAc)734.10gを加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)28.90g(65.05mmol)を添加し、室温で3時間撹拌した。その後、4,4’-オキシビス(ベンゾイルクロリド)(OBBC)28.80g(97.57mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコにピリジン7.49g(94.65mmol)と無水酢酸26.56g(260.20mmol)とを加え、室温で30分間撹拌した後、オイルバスを用いて70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(1)を得た。
[ポリアミドイミドフィルム(1)の製膜]
 得られたポリアミドイミド樹脂(1)に、濃度が15質量%となるようにDMAcを加え、ポリアミドイミドワニス(1)を作製した。得られたポリアミドイミドワニス(1)をポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の膜厚が55μmとなるようにアプリケーターを用いて塗工し、50℃30分間、次いで140℃15分間で乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに窒素雰囲気下で300℃30分間乾燥し、膜厚50μmのポリアミドイミドフィルム(1)を得た。上記測定方法に従ってポリアミドイミドフィルム(1)の重量平均分子量(Mw)、全光線透過率Tt、黄色度YI及びガラス転移温度Tgを測定したところ、Mwは120,000、Ttは91%、YIは2.2、Tgは345℃であった。なお、各成分のモル比は表1の通りである。
実施例2
[ポリアミドイミド樹脂(2)の調製]
 DMAcの使用量を701.64g、6FDAの使用量を14.45g(32.52mmol)、OBBCの使用量を38.39g(130.10mmol)、ピリジンの使用量を9.98g(126.20mmol)、無水酢酸の使用量を13.28g(130.10mmol)に変更した以外は、実施例1の[ポリアミドイミド樹脂(1)の調製]と同様にして、ポリアミドイミド樹脂(2)を得た。なお、各成分のモル比は表1の通りである。
[ポリアミドイミドフィルム(2)の製膜]
 ポリアミドイミド樹脂(1)に代えて、ポリアミドイミド樹脂(2)を用いた以外は、実施例1の[ポリアミドイミドフィルム(1)の製膜]と同様にして、膜厚50μmのポリアミドイミドフィルム(2)を得た。上記測定方法に従ってポリアミドイミドフィルム(2)の重量平均分子量(Mw)、全光線透過率Tt、黄色度YI及びガラス転移温度Tgを測定したところ、Mwは150,000、Ttは91%、YIは2.5、Tgは345℃であった。
実施例3
[ポリアミドイミド樹脂(3)の調製]
 窒素ガス雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、TFMB52g(162.38mmol)及びDMAc697.82gを加え、室温で撹拌しながらTFMBをDMAcに溶解させた。次に、フラスコに6FDA21.67g(48.79mmol)を添加し、室温で3時間撹拌した。その後、OBBC24.00g(81.31mmol)、次いでテレフタロイルクロリド(TPC)6.60g(32.52mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコにピリジン8.73g(110.42mmol)と無水酢酸19.92g(195.15mmol)とを加え、室温で30分間撹拌後、オイルバスを用いて70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノールで6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(3)を得た。なお、各成分のモル比は表1の通りである。
[ポリアミドイミドフィルム(3)の製膜]
 ポリアミドイミド樹脂(1)に代えて、ポリアミドイミド樹脂(3)を用いた以外は、実施例1の[ポリアミドイミドフィルム(1)の製膜]と同様にして、膜厚50μmのポリアミドイミドフィルム(3)を得た。上記測定方法に従ってポリアミドイミドフィルム(3)の重量平均分子量(Mw)、全光線透過率Tt、黄色度YI及びガラス転移温度Tgを測定したところ、Mwは100,000、Ttは91%、YIは2.3、Tgは340℃であった。
実施例4
[ポリアミドイミド樹脂(4)の調製]
 DMAcの使用量を667.75g、6FDAの使用量を21.67g(162.38mmol)、OBBCの使用量を9.60g(48.79mmol)、TPCの使用量を16.51g(81.31mmol)、ピリジンの使用量を8.73g(110.42mmol)、無水酢酸の使用量を19.92g(195.15mmol)に変更した以外は、実施例3の[ポリアミドイミド樹脂(3)の調製]と同様にして、ポリアミドイミド樹脂(4)を得た。なお、各成分のモル比は表1の通りである。
[ポリアミドイミドフィルム(4)の製膜]
 ポリアミドイミド樹脂(1)に代えて、ポリアミドイミド樹脂(4)を用いた以外は、実施例1の[ポリアミドイミドフィルム(1)の製膜]と同様にして、膜厚50μmのポリアミドイミドフィルム(4)を得た。上記測定方法に従ってポリアミドイミドフィルム(4)の重量平均分子量(Mw)、全光線透過率Tt、黄色度YI及びガラス転移温度Tgを測定したところ、Mwは230,000、Ttは91%、YIは2.3、Tgは369℃であった。
実施例5
[ポリアミドイミド樹脂(5)の調製]
 DMAcの使用量を884.53g、6FDAの使用量を21.67g(38.79mmol)、OBBCの使用量を4.80g(16.26mmol)、TPCの使用量を19.81g(97.57mmol)、ピリジンの使用量を8.73g(110.42mmol)、無水酢酸の使用量を19.92g(195.15mmol)に変更した以外は、実施例3の[ポリアミドイミド樹脂(3)の調製]と同様にして、ポリアミドイミド樹脂(5)を得た。なお、各成分のモル比は表1の通りである。
[ポリアミドイミドフィルム(5)の製膜]
 ポリアミドイミド樹脂(1)に代えて、ポリアミドイミド樹脂(5)を用いた以外は、実施例1の[ポリアミドイミドフィルム(1)の製膜]と同様にして、膜厚50μmのポリアミドイミドフィルム(5)を得た。上記測定方法に従ってポリアミドイミドフィルム(5)の重量平均分子量(Mw)、全光線透過率Tt、黄色度YI及びガラス転移温度Tgを測定したところ、Mwは345,000、Ttは91%、YIは2.2、Tgは377℃であった。
実施例6
[ポリアミドイミド樹脂(6)の調製]
 DMAcの使用量を849.23g、6FDAの使用量を14.45g(32.52mmol)、OBBCの使用量を4.80g(16.26mmol)、TPCの使用量を23.11g(113.84mmol)、ピリジンの使用量を9.98g(126.20mmol)、無水酢酸の使用量を13.28g(130.10mmol)に変更した以外は、実施例3の[ポリアミドイミド樹脂(3)の調製]と同様にして、ポリアミドイミド樹脂(6)を得た。なお、各成分のモル比は表1の通りである。
[ポリアミドイミドフィルム(6)の製膜]
 ポリアミドイミド樹脂(1)に代えて、ポリアミドイミド樹脂(6)を用いた以外は、実施例1の[ポリアミドイミドフィルム(1)の製膜]と同様にして、膜厚50μmのポリアミドイミドフィルム(6)を得た。上記測定方法に従ってポリアミドイミドフィルム(6)の重量平均分子量(Mw)、全光線透過率Tt、黄色度YI及びガラス転移温度Tgを測定したところ、Mwは341,000、Ttは91%、YIは2.4、Tgは378℃であった。
比較例1
[ポリアミドイミド樹脂(7)の調製]
 DMAcの使用量を647.70g、6FDAの使用量を21.67g(48.79mmol)、TPCの使用量を23.11g(113.84mmol)、ピリジンの使用量を8.73g(110.42mmol)、無水酢酸の使用量を19.92g(195.15mmol)に変更したこと、及びOBBCを添加しなかったこと以外は、実施例3の[ポリアミドイミド樹脂(3)の調製]と同様にして、ポリアミドイミド樹脂(7)を得た。なお、各成分のモル比は表1の通りである。
[ポリアミドイミドフィルム(7)の製膜]
 ポリアミドイミド樹脂(1)に代えて、ポリアミドイミド樹脂(7)を用いた以外は、実施例1の[ポリアミドイミドフィルム(1)の製膜]と同様にして、膜厚50μmのポリアミドイミドフィルム(7)を得た。上記測定方法に従ってポリアミドイミドフィルム(7)の重量平均分子量(Mw)、全光線透過率Tt、黄色度YI及びガラス転移温度Tgを測定したところ、Mwは80,000、Ttは90%、YIは2.4、Tgは380℃であった。
比較例2
[ポリイミド樹脂(8)の調製]
 DMAcの使用量を831.46g、6FDAの使用量を72.24g(162.62mmol)、ピリジンの使用量を18.72g(236.62mmol)、無水酢酸の使用量を66.41g(650.49mmol)に変更したこと、及びOBBCを添加しなかったこと以外は、実施例1の[ポリアミドイミド樹脂(1)の調製]と同様にして、ポリイミド樹脂(8)を得た。なお、各成分のモル比は表1の通りである。
[ポリイミドフィルム(8)の製膜]
 ポリアミドイミド樹脂(1)に代えて、ポリイミド樹脂(8)を用いた以外は、実施例1の[ポリアミドイミドフィルム(1)の製膜]と同様にして、膜厚50μmのポリイミドフィルム(8)を得た。上記測定方法に従ってポリイミドフィルム(8)の重量平均分子量(Mw)、全光線透過率Tt、黄色度YI及びガラス転移温度Tgを測定したところ、Mwは268,000、Ttは92%、YIは2.0、Tgは361℃であった。
比較例3
[ポリイミド樹脂(9)の調製]
 DMAcの使用量を732.20g、6FDAの使用量を28.9g(65.05mmol)、ピリジンの使用量を18.72g(236.62mmol)、無水酢酸の使用量を66.41g(650.49mmol)に変更したこと、及びOBBCを添加せず、6FDAと同時に4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)28.51g(97.57mmol)を添加したこと以外は、実施例1の[ポリアミドイミド樹脂(1)の調製]と同様にして、ポリイミド樹脂(9)を得た。なお、各成分のモル比は表1の通りである。
[ポリイミドフィルム(9)の製膜]
 ポリアミドイミド樹脂(1)に代えて、ポリイミド樹脂(9)を用いた以外は、実施例1の[ポリアミドイミドフィルム(1)の製膜]と同様にして、膜厚50μmのポリイミドフィルム(9)を得た。上記測定方法に従ってポリイミドフィルム(9)の重量平均分子量(Mw)、全光線透過率Tt、黄色度YI及びガラス転移温度Tgを測定したところ、Mwは276,000、Ttは85%、YIは5.8、Tgは365℃であった。
実施例7
[ポリアミドイミド樹脂(10)の調製]
 窒素ガス雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、TFMB45.00g(140.5mmol)及びDMAc600.9gを加え、室温で撹拌しながらTFMBをDMAcに溶解させた。次に、フラスコにBPDA4.14g(14.1mmol)を加え、室温で2.5時間撹拌した後、6FDA25.01g(56.3mmol)を加え、室温で15時間撹拌した。さらに、OBBC4.15g(14.1mmol)及びTPC11.43g(56.3mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコに無水酢酸21.55g(211.1mmol)と4-ピコリン3.28g(35.2mmol)とを加え、室温で30分間撹拌後、オイルバスを用いて70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却した後、メタノール647g及びイオン交換水180gを加えてポリアミドイミドの沈殿を得た。それをメタノール中に12時間浸漬し、濾過で回収してメタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(10)を得た。なお、各成分のモル比は表1の通りである。
[ポリアミドイミドフィルム(10)の製膜]
 ポリアミドイミド樹脂(1)に代えて、ポリアミドイミド樹脂(10)を用い、窒素雰囲気下での300℃で30分間の乾燥に代えて大気下での200℃で30分間の乾燥を行ったこと以外は、実施例1の[ポリアミドイミドフィルム(1)の製膜]と同様にして、膜厚50μmのポリアミドイミドフィルム(10)を得た。上記測定方法に従ってポリアミドイミドフィルム(10)の重量平均分子量(Mw)、全光線透過率Tt、黄色度YI及びガラス転移温度Tgを測定したところ、Mwは208,000、Ttは91.8%、YIは1.8、Tgは373℃であった。
実施例8
[ポリアミドイミド樹脂(11)の調製]
 窒素ガス雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、TFMB14.67g(45.8mmol)及びDMAc233.3gを加え、室温で撹拌しながらTFMBをDMAcに溶解させた。次に、フラスコに4,4’-オキシジフタル酸二無水物(OPDA)4.283g(13.8mmol)を加え、室温で16.5時間撹拌した。その後、OBBC1.359g(4.61mmol)及びTPC5.609g(27.6mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコに無水酢酸4.937g(48.35mmol)と4-ピコリン1.501g(16.12mmol)とを加え、室温で30分間撹拌後、オイルバスを用いて70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却した後、メタノール360g及びイオン交換水170gを加えてポリアミドイミドの沈殿を得た。それをメタノール中に12時間浸漬し、濾過で回収してメタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(11)を得た。なお、各成分のモル比は表1の通りである。
[ポリアミドイミドフィルム(11)の製膜]
 ポリアミドイミド樹脂(10)に代えて、ポリアミドイミド樹脂(11)を用いた以外は、実施例7の[ポリアミドイミドフィルム(10)の製膜]と同様にして、膜厚50μmのポリアミドイミドフィルム(11)を得た。上記測定方法に従ってポリアミドイミドフィルム(11)の重量平均分子量(Mw)、全光線透過率Tt、黄色度YI及びガラス転移温度Tgを測定したところ、Mwは259,000、Ttは91.0%、YIは1.9、Tgは362℃であった。
実施例9
[ポリアミドイミド樹脂(12)の調製]
 4,4’-オキシジフタル酸二無水物(OPDA)4.283gに変えて6FDA6.140gを、TFMB14.67g(45.8mmol)に変えてTFMB8.809g(27.5mmol)及び2,2’-ジメチルベンジジン(MB)3.889g(18.3mmol)を用いた以外は、実施例8の[ポリアミドイミド樹脂(11)の調製]と同様にして、ポリアミドイミド樹脂(12)を得た。なお、各成分のモル比は表1の通りである。
[ポリアミドイミドフィルム(12)の製膜]
 ポリアミドイミド樹脂(11)に代えて、ポリアミドイミド樹脂(12)を用いた以外は、実施例8の[ポリアミドイミドフィルム(11)の製膜]と同様にして、膜厚50μmのポリアミドイミドフィルム(12)を得た。上記測定方法に従ってポリアミドイミドフィルム(12)の重量平均分子量(Mw)、全光線透過率Tt、黄色度YI及びガラス転移温度Tgを測定したところ、Mwは189,000、Ttは91.1%、Tgは393℃であった。
実施例10
[ポリアミドイミド樹脂(13)の調製]
 MB3.889gに変えて4,4’-ジアミノジフェニルエーテル(ODA)3.670g(18.3mmol)を用いた以外は、実施例9の[ポリアミドイミド樹脂(12)の調製]と同様にして、ポリアミドイミド樹脂(13)を得た。なお、各成分のモル比は表1の通りである。
[ポリアミドイミドフィルム(13)の製膜]
 ポリアミドイミド樹脂(12)に代えて、ポリアミドイミド樹脂(13)を用いた以外は、実施例9の[ポリアミドイミドフィルム(12)の製膜]と同様にして、膜厚50μmのポリアミドイミドフィルム(13)を得た。上記測定方法に従ってポリアミドイミドフィルム(13)の重量平均分子量(Mw)、全光線透過率Tt、黄色度YI及びガラス転移温度Tgを測定したところ、Mwは166,000、Ttは91.3%、Tgは350℃であった。
 上記実施例及び比較例における各成分のモル比は以下の表1の通りである。
Figure JPOXMLDOC01-appb-T000020
 得られたポリアミドフィルム(1)~(9)について、上記測定方法に従って、弾性率、表面硬度、及び屈曲耐性を測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000021
 上記より、本発明に係るポリアミドイミド樹脂からなるポリアミドイミドフィルム(光学部材)は、弾性率が低く、柔軟性に優れつつも高い屈曲耐性を有することが分かる。同時に、高い表面硬度を有することが示されており、表面の傷つきを抑制することもできる。

Claims (10)

  1.  式(1)及び式(2):
    Figure JPOXMLDOC01-appb-C000001
    [式(1)及び式(2)中、X及びZは、それぞれ独立に、2価の有機基を表し、
    Yは4価の有機基を表し、
    Zの少なくとも一部は、式(3):
    Figure JPOXMLDOC01-appb-C000002
    〔式(3)中、R~Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R~Rに含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、
    Aは、-O-、-S-、-CO-又は-NR-を表し、Rはハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表し、
    mは1~4の整数であり、
    *は結合手を表す〕
    で表される構成単位である]
    で表される構成単位を有するポリアミドイミド樹脂。
  2.  Y及びZの合計に対して、式(3)で表される構成単位の含有率が3モル%以上90モル%以下である、請求項1に記載のポリアミドイミド樹脂。
  3.  Zの5モル%以上100モル%以下は式(3)で表される、請求項1に記載のポリアミドイミド樹脂。
  4.  式(1)で表される構成単位及び式(2)で表される構成単位の合計に対して、式(3)で表される構成単位の比率が、3モル%以上90モル%以下である、請求項1に記載のポリアミドイミド樹脂。
  5.  式(1)で表される構成単位の含有率は、式(1)で表される構成単位及び式(2)で表される構成単位の合計に対して、10モル%以上90モル%以下である、請求項1~4のいずれかに記載のポリアミドイミド樹脂。
  6.  Xの少なくとも一部は式(4):
    Figure JPOXMLDOC01-appb-C000003
    [式(4)中、R10~R17は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R10~R17に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、
    *は結合手を表す]
    で表される構成単位である、請求項1~5のいずれかに記載のポリアミドイミド樹脂。
  7.  Yの少なくとも一部は式(5):
    Figure JPOXMLDOC01-appb-C000004
    [式(5)中、R18~R25は、それぞれ独立に、水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基を表し、R18~R25に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよく、
    *は結合手を表す]
    で表される構成単位である、請求項1~6のいずれかに記載のポリアミドイミド樹脂。
  8.  DMA測定におけるtanδにより算出されたガラス転移温度Tgが380℃未満である、請求項1~7のいずれかに記載のポリアミドイミド樹脂。
  9.  請求項1~8のいずれかに記載のポリアミドイミド樹脂を含んでなる、光学部材。
  10.  請求項9記載の光学部材を備えた画像表示装置。
PCT/JP2018/000804 2017-01-20 2018-01-15 ポリアミドイミド樹脂及び該ポリアミドイミド樹脂を含んでなる光学部材 WO2018135431A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880007377.6A CN110191910B (zh) 2017-01-20 2018-01-15 聚酰胺酰亚胺树脂及包含该聚酰胺酰亚胺树脂的光学构件
KR1020197023866A KR102475748B1 (ko) 2017-01-20 2018-01-15 폴리아미드이미드 수지 및 당해 폴리아미드이미드 수지를 포함하여 이루어지는 광학 부재
US16/478,713 US11274206B2 (en) 2017-01-20 2018-01-15 Polyamideimide resin and optical member including polyamideimide resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-008685 2017-01-20
JP2017008685 2017-01-20
JP2017-216756 2017-11-09
JP2017216756A JP7084710B2 (ja) 2017-01-20 2017-11-09 ポリアミドイミド樹脂および該ポリアミドイミド樹脂を含んでなる光学部材

Publications (1)

Publication Number Publication Date
WO2018135431A1 true WO2018135431A1 (ja) 2018-07-26

Family

ID=62908322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000804 WO2018135431A1 (ja) 2017-01-20 2018-01-15 ポリアミドイミド樹脂及び該ポリアミドイミド樹脂を含んでなる光学部材

Country Status (3)

Country Link
US (1) US11274206B2 (ja)
TW (1) TWI748038B (ja)
WO (1) WO2018135431A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111378129A (zh) * 2018-12-28 2020-07-07 住友化学株式会社 聚酰胺酰亚胺系树脂、聚酰胺酰亚胺系树脂清漆、光学膜及柔性显示装置
TWI725700B (zh) * 2019-01-11 2021-04-21 南韓商Lg化學股份有限公司 聚醯胺-醯亞胺共聚物、包含其之組成物與聚合物薄膜以及生產聚合物薄膜的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11550179B2 (en) 2018-09-28 2023-01-10 Sumitomo Chemical Company, Limited Optical film
CN111378279A (zh) * 2018-12-28 2020-07-07 住友化学株式会社 光学膜
JP2020122122A (ja) * 2019-01-31 2020-08-13 住友化学株式会社 ポリイミド系樹脂粉体及びポリイミド系樹脂粉体の製造方法
KR102147349B1 (ko) 2019-09-30 2020-08-25 에스케이이노베이션 주식회사 윈도우 커버 필름 및 이를 이용한 플렉서블 디스플레이 패널
KR102147299B1 (ko) 2019-09-30 2020-08-24 에스케이이노베이션 주식회사 윈도우 커버 필름 및 이를 포함하는 플렉서블 디스플레이 패널
KR102147330B1 (ko) * 2019-09-30 2020-08-24 에스케이이노베이션 주식회사 대전방지 폴리이미드계 필름 및 이를 이용한 플렉서블 디스플레이 패널

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073474A (ja) * 2001-09-04 2003-03-12 Chisso Corp ポリアミドイミド、液晶配向剤ワニス、および液晶表示素子
JP2009013165A (ja) * 2007-06-06 2009-01-22 Chisso Corp 酸二無水物、液晶配向膜および液晶表示素子
JP2009163217A (ja) * 2007-12-11 2009-07-23 Chisso Corp 液晶配向剤、液晶配向膜および液晶表示素子
WO2010041644A1 (ja) * 2008-10-10 2010-04-15 東洋紡績株式会社 ポリアミドイミド樹脂、該樹脂を用いた接着剤組成物、該接着剤組成物を用いたプリント回路基板用インク、カバーレイフィルム、接着剤シート及びプリント回路基板
JP2014128787A (ja) * 2012-11-28 2014-07-10 Central Glass Co Ltd 気体分離膜
JP2017203984A (ja) * 2016-05-10 2017-11-16 住友化学株式会社 光学フィルム、及びこれを用いたフレキシブルデバイス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796816B2 (en) * 2011-05-18 2017-10-24 Samsung Electronics Co., Ltd. Poly(amide-imide) block copolymer, article including same, and display device including the article
US9050566B2 (en) 2012-11-28 2015-06-09 Central Glass Company, Limited Gas separation membrane
KR101870341B1 (ko) * 2013-12-26 2018-06-22 코오롱인더스트리 주식회사 투명 폴리아마이드―이미드 수지 및 이를 이용한 필름
KR20160083738A (ko) * 2015-01-02 2016-07-12 삼성전자주식회사 표시 장치용 윈도우 및 이를 포함하는 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073474A (ja) * 2001-09-04 2003-03-12 Chisso Corp ポリアミドイミド、液晶配向剤ワニス、および液晶表示素子
JP2009013165A (ja) * 2007-06-06 2009-01-22 Chisso Corp 酸二無水物、液晶配向膜および液晶表示素子
JP2009163217A (ja) * 2007-12-11 2009-07-23 Chisso Corp 液晶配向剤、液晶配向膜および液晶表示素子
WO2010041644A1 (ja) * 2008-10-10 2010-04-15 東洋紡績株式会社 ポリアミドイミド樹脂、該樹脂を用いた接着剤組成物、該接着剤組成物を用いたプリント回路基板用インク、カバーレイフィルム、接着剤シート及びプリント回路基板
JP2014128787A (ja) * 2012-11-28 2014-07-10 Central Glass Co Ltd 気体分離膜
JP2017203984A (ja) * 2016-05-10 2017-11-16 住友化学株式会社 光学フィルム、及びこれを用いたフレキシブルデバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111378129A (zh) * 2018-12-28 2020-07-07 住友化学株式会社 聚酰胺酰亚胺系树脂、聚酰胺酰亚胺系树脂清漆、光学膜及柔性显示装置
TWI725700B (zh) * 2019-01-11 2021-04-21 南韓商Lg化學股份有限公司 聚醯胺-醯亞胺共聚物、包含其之組成物與聚合物薄膜以及生產聚合物薄膜的方法

Also Published As

Publication number Publication date
TW201831564A (zh) 2018-09-01
US20190390057A1 (en) 2019-12-26
TWI748038B (zh) 2021-12-01
US11274206B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
JP7084710B2 (ja) ポリアミドイミド樹脂および該ポリアミドイミド樹脂を含んでなる光学部材
JP6675509B2 (ja) フィルム、樹脂組成物およびポリアミドイミド樹脂の製造方法
KR102461806B1 (ko) 광학 필름 및 광학 필름의 제조 방법
TWI758399B (zh) 光學膜及光學膜之製造方法
JP7005680B2 (ja) ポリイミドフィルム
WO2018135431A1 (ja) ポリアミドイミド樹脂及び該ポリアミドイミド樹脂を含んでなる光学部材
JP7164304B2 (ja) ポリイミド系フィルム及び積層体
JP7257901B2 (ja) 光学フィルム
JP2019202551A (ja) 光学積層体
JP2020019938A (ja) ポリアミドイミド樹脂
KR20190053105A (ko) 광학 필름
JP7083272B2 (ja) 光学フィルム
JP2020019935A (ja) ポリアミド系樹脂粉体の製造方法およびポリアミド系樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197023866

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18741874

Country of ref document: EP

Kind code of ref document: A1