WO2018128093A1 - 基板洗浄装置および基板洗浄方法 - Google Patents

基板洗浄装置および基板洗浄方法 Download PDF

Info

Publication number
WO2018128093A1
WO2018128093A1 PCT/JP2017/046090 JP2017046090W WO2018128093A1 WO 2018128093 A1 WO2018128093 A1 WO 2018128093A1 JP 2017046090 W JP2017046090 W JP 2017046090W WO 2018128093 A1 WO2018128093 A1 WO 2018128093A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
holding layer
particle holding
liquid
heated
Prior art date
Application number
PCT/JP2017/046090
Other languages
English (en)
French (fr)
Inventor
幸史 吉田
鮎美 樋口
山口 直子
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017241845A external-priority patent/JP6951229B2/ja
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020197018180A priority Critical patent/KR102182951B1/ko
Priority to CN202310622850.4A priority patent/CN116646279A/zh
Priority to KR1020207033239A priority patent/KR102285776B1/ko
Priority to CN201780080558.7A priority patent/CN110121762B/zh
Priority to US16/471,629 priority patent/US11413662B2/en
Publication of WO2018128093A1 publication Critical patent/WO2018128093A1/ja
Priority to US17/859,809 priority patent/US11919051B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0014Cleaning by methods not provided for in a single other subclass or a single group in this subclass by incorporation in a layer which is removed with the contaminants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention relates to a semiconductor wafer, a glass substrate for a liquid crystal display device, a glass substrate for an organic EL display device, a glass substrate for a plasma display, a substrate for an optical disk, a substrate for a magnetic disk, a substrate for a magneto-optical disk, a glass substrate for a photomask, solar Removes various contaminants adhering to the substrate from the battery substrate (hereinafter simply referred to as “substrate”), residues of the processing solution and resist in the previous process, various particles (hereinafter simply referred to as “particle”). Related to technology.
  • the substrate manufacturing process includes a cleaning process for removing particles from the substrate.
  • a cleaning process for removing particles from the substrate.
  • DIW deionized water
  • a topcoat liquid is supplied onto the substrate, and particles are pulled away from the substrate by using a contraction force when the topcoat liquid is solidified or cured. Thereafter, the top coat film and particles are removed from the substrate by dissolving the top coat film in a removing solution.
  • JP-A-2015-95583 the topcoat film formed on the substrate with the topcoat solution is peeled off from the substrate by DIW. Subsequently, a dissolution treatment liquid is supplied onto the substrate. The peeled top coat film is dissolved and removed on the substrate.
  • the film in the case of a substrate on which no pattern is formed, the film is peeled off from the substrate by DIW, and the film is not dissolved without continuing to supply DIW. Removed.
  • particle holding layer when a film formed on the substrate (hereinafter referred to as “particle holding layer”) is removed from the substrate while being dissolved, there is a possibility that particles fall off from the particle holding layer and reattach to the substrate. Further, when the particle holding layer is not dissolved, it is not easy to remove the particle holding layer from the substrate. In particular, as suggested in Japanese Patent Application Laid-Open No. 2015-95583, when a pattern is formed on a substrate, it is difficult to remove the particle holding layer from the substrate without dissolving the particle holding layer. . This is considered to be because the particle holding layer remains on the pattern in a certain large lump state.
  • An object of the present invention is to improve the particle removal rate in a technique for removing particles from a substrate using a particle holding layer.
  • a substrate cleaning apparatus includes a treatment liquid supply unit that supplies a treatment liquid containing a solvent and a solute on a substrate, a removal liquid supply unit that supplies a removal liquid onto the substrate, A control unit that controls the treatment liquid supply unit and the removal liquid supply unit.
  • the solvent is volatile. At least a part of the solvent is volatilized from the processing liquid supplied onto the substrate and the processing liquid is solidified or hardened, whereby the processing liquid becomes a particle holding layer.
  • the solute component which is the solute contained in the particle holding layer or the solute component derived from the solute is insoluble or hardly soluble in the removal solution.
  • the solvent is soluble in the removal solution.
  • the solute component contained in the particle holding layer has the property of being denatured and becoming soluble in the removal liquid when heated to a temperature above the denature temperature.
  • the removal is performed from the removal liquid supply unit to the particle holding layer without undergoing a process of modifying the solute component of the particle holding layer.
  • the particle holding layer is removed from the substrate.
  • the particle removal rate can be improved by the substrate cleaning apparatus.
  • the substrate cleaning apparatus further includes a heating unit that heats the particle holding layer. Under the control of the control unit, the particle holding layer is heated to a temperature lower than the alteration temperature by the heating unit before the removal liquid is supplied to the particle holding layer.
  • the processing liquid is supplied to the upper surface of the substrate in a horizontal posture by the processing liquid supply unit, and the heating unit supplies heated deionized water to the lower surface of the substrate.
  • the holding layer is heated.
  • the processing liquid is supplied to the upper surface of the horizontal substrate by the processing liquid supply unit, and the heating unit supplies heated deionized water to the upper surface of the substrate.
  • the particle holding layer is heated.
  • the removal liquid supply unit supplies the removal liquid heated to a temperature lower than the alteration temperature onto the substrate.
  • the processing liquid supply unit supplies the processing liquid heated to a temperature lower than the alteration temperature onto the substrate.
  • the substrate cleaning apparatus may include other heating that heats the substrate to a temperature lower than the alteration temperature before the processing liquid is supplied to the substrate or in parallel with the supply.
  • the unit is further provided.
  • the substrate cleaning apparatus preferably further includes a substrate holding unit that holds the substrate. In a state where the substrate is held by the substrate holding unit, steps from the supply of the processing liquid to the substrate to the supply of the removal liquid to the substrate are performed.
  • a substrate cleaning method includes: a) supplying a treatment liquid containing a solvent and a solute onto a substrate; and b) supplying a removal liquid onto the substrate.
  • the solvent is volatile.
  • the step a) at least a part of the solvent is volatilized from the processing liquid supplied onto the substrate and the processing liquid is solidified or cured, whereby the processing liquid becomes a particle holding layer.
  • the solute component which is the solute contained in the particle holding layer or the solute component derived from the solute is insoluble or hardly soluble in the removal solution.
  • the solvent is soluble in the removal solution.
  • the solute component contained in the particle holding layer has the property of being denatured and becoming soluble in the removal liquid when heated to a temperature above the denature temperature.
  • the substrate cleaning method according to a further preferred embodiment of the present invention further includes a step of c) heating the particle holding layer to a temperature lower than the alteration temperature between the step a) and the step b).
  • the processing liquid is supplied to the upper surface of the substrate in a horizontal posture, and in the step c), heated deionized water is supplied to the lower surface of the substrate.
  • the particle holding layer is heated.
  • the processing liquid is supplied to the upper surface of the substrate in a horizontal posture
  • heated deionized water is supplied to the upper surface of the substrate.
  • the particle holding layer is heated.
  • the removal liquid heated to a temperature lower than the alteration temperature is supplied onto the substrate.
  • the treatment liquid heated to a temperature lower than the alteration temperature is supplied onto the substrate.
  • the substrate is heated to a temperature lower than the alteration temperature before the step a) or in the step a).
  • the steps from the supply of the treatment liquid to the substrate to the supply of the removal liquid to the substrate are performed in a state where the substrate is held by the same substrate holder.
  • PRE particle removal rate
  • FIG. 1 is a plan view showing a configuration of a substrate cleaning system 1 according to an embodiment of the present invention.
  • the substrate cleaning system 1 includes a carrier holding unit 2, a substrate delivery unit 3, an indexer robot 101, a center robot 102, four substrate cleaning apparatuses 4, and a control unit 10.
  • the control unit 10 may be regarded as a part of the substrate cleaning apparatus 4.
  • the carrier 90 is a container that can receive and stack a plurality of substrates 9.
  • the carrier 90 accommodates the unprocessed substrate 9 and the processed substrate 9.
  • the substrate 9 in the present embodiment is a semiconductor substrate, which is a so-called wafer.
  • the carrier holding unit 2 supports a plurality of carriers 90.
  • the indexer robot 101 can transport the substrate 9 to an arbitrary position by a swingable and advanceable arm while holding the substrate 9.
  • the indexer robot 101 can move in the vertical direction while holding the substrate 9.
  • the unprocessed substrate 9 in the carrier 90 placed on the carrier holding unit 2 is transferred to the path 31 of the substrate delivery unit 3 by the indexer robot 101.
  • the path 31 functions as a buffer that temporarily stores a plurality of substrates 9.
  • the processed substrate 9 placed on the path 31 is transferred into the carrier 90 placed on the carrier holding unit 2 by the indexer robot 101.
  • the path 31 is indicated by a two-dot chain line.
  • the center robot 102 can transport the substrate 9 to an arbitrary position by an arm that can turn and advance and retract while holding the substrate 9. With this operation, the central robot 102 transports the substrate 9 between the path 31 of the substrate delivery unit 3 and the substrate cleaning device 4.
  • FIG. 2 is a diagram showing a configuration of the substrate cleaning apparatus 4.
  • the substrate cleaning apparatus 4 includes a substrate holding unit 42, a substrate rotating mechanism 41, a cup 43 surrounding the substrate holding unit 42, a supply unit 44, a heating unit 46, and a chamber 47. At least the substrate holding unit 42, the cup 43, and the heating unit 46 are located in the chamber 47.
  • the substrate holding unit 42 includes a spin base 421, a chuck 422, and a first shaft 423.
  • the spin base 421 has a disk shape with the central axis J1 of the first shaft 423 as the center.
  • a plurality of (for example, six) chucks 422 are disposed on the upper surface of the outer peripheral portion of the spin base 421.
  • the unprocessed substrate 9 delivered from the center robot 102 is placed on the chuck 422.
  • the substrate 9 is held by the substrate holder 42 in a horizontal posture.
  • the first shaft 423 is connected to the lower surface of the spin base 421 and extends downward from the spin base 421.
  • a central axis J1 of the first shaft 423 passes through the center of the substrate 9.
  • the substrate rotation mechanism 41 rotates the first shaft 423.
  • substrate 9 rotate centering on the central axis J1.
  • the substrate rotation mechanism 41 is a motor having the first shaft 423 as a rotation axis.
  • the substrate rotation mechanism 41 may have another structure. Another structure may be adopted for the substrate holding portion 42, for example, a structure that sucks the lower surface of the substrate 9 may be used.
  • the heating unit 46 includes a heating plate 461, a second shaft 462, and a plate lifting mechanism 463.
  • the heating plate 461 has a disk shape extending in a direction perpendicular to the central axis J1.
  • the heating plate 461 is located above the spin base 421. When the substrate 9 is held by the chuck 422, the heating plate 461 is located between the substrate 9 and the spin base 421.
  • a heater 464 is provided in the heating plate 461.
  • the second shaft 462 extends downward from the center of the heating plate 461 along the central axis J1.
  • the first shaft 423 is hollow, and the second shaft 462 is positioned inside the first shaft 423 so as to penetrate the first shaft 423.
  • the plate lifting mechanism 463 moves the second shaft 462 up and down. Thereby, the heating plate 461 moves up and down.
  • the supply unit 44 includes a treatment liquid supply unit 441, a removal liquid supply unit 442, and a rinse liquid supply unit 443.
  • the processing liquid supply unit 441 includes a processing liquid supply source 451, a first nozzle 452, and a first nozzle moving mechanism (not shown).
  • the removal liquid supply unit 442 includes a removal liquid supply source 453, a second nozzle 454, and a second nozzle moving mechanism (not shown).
  • the rinse liquid supply unit 443 includes a rinse liquid supply source 455, a second nozzle 454, a second nozzle moving mechanism, and a lower nozzle 456.
  • the second nozzle 454 and the second nozzle moving mechanism are included in both the removal liquid supply unit 442 and the rinse liquid supply unit 443.
  • the first nozzle moving mechanism selectively arranges the first nozzle 452 at a facing position facing the upper surface 91 of the substrate 9 and a standby position away from the substrate 9 in the horizontal direction.
  • the second nozzle moving mechanism selectively arranges the second nozzle 454 at a facing position facing the upper surface 91 of the substrate 9 and another standby position away from the substrate 9 in the horizontal direction.
  • the lower nozzle 456 is provided at the center of the heating plate 461 and faces the lower surface 92 of the substrate 9.
  • a flow path 465 connected to the rinse liquid supply source 455 is provided in the second shaft 462.
  • a valve is provided between the treatment liquid supply source 451 and the first nozzle 452, between the removal liquid supply source 453 and the rinse liquid supply source 455 and the second nozzle 454, between the rinse liquid supply source 455 and the lower nozzle 456, as appropriate.
  • a valve is provided. The opening / closing of each valve and the first and second nozzle moving mechanisms are controlled by the control unit 10.
  • the control unit 10 controls the valve, the treatment liquid is discharged from the first nozzle 452, the removal liquid is discharged from the second nozzle 454, the rinse liquid is discharged from the second nozzle 454, and the lower nozzle 456 is discharged.
  • the rinsing liquid discharge is controlled.
  • the control unit 10 also controls the substrate rotation mechanism 41, the substrate holding unit 42, the heating unit 46, and the like. Therefore, some of the functions of the control unit 10 may be regarded as being included in the substrate cleaning apparatus 4. A part of the control unit 10 may be provided in the chamber 47 as a dedicated component of each substrate cleaning apparatus 4.
  • FIG. 3 is a diagram showing a flow of cleaning the substrate 9 in the substrate cleaning apparatus 4. 3 is performed by the control unit 10 controlling the substrate rotation mechanism 41, the heating unit 46, the processing liquid supply unit 441, the removal liquid supply unit 442, the rinse liquid supply unit 443, and the like.
  • the unprocessed substrate 9 in the carrier 90 is transferred into the substrate cleaning apparatus 4 by the indexer robot 101 and the center robot 102.
  • the outer edge portion of the substrate 9 is held by the chuck 422, and the upper surface 91 that is one main surface of the substrate 9 faces upward.
  • the processing liquid supply unit 441 supplies the processing liquid to the upper surface of the horizontal substrate 9 (step S11). Specifically, the first nozzle 452 moves to the center of the upper surface 91 of the substrate 9, and the processing liquid is discharged from the first nozzle 452 toward the center of the upper surface 91.
  • the processing liquid is supplied to the substrate 9 in the form of a liquid column or a droplet that naturally falls from a nozzle.
  • the treatment liquid in this embodiment includes a polymer as a solute and an organic liquid having volatility as a solvent.
  • “having volatility” means having higher volatility than water.
  • the substrate 9 When the processing liquid is supplied, the substrate 9 is rotated about the central axis J1 together with the substrate holder 42 by the substrate rotation mechanism 41 at, for example, 10 to several tens rpm, and the processing liquid is applied to the upper surface 91 of the substrate 9. Spread. Thereafter, the substrate 9 is rotated at a high speed of 500 to 1500 rpm, and excess processing liquid is scattered from the substrate 9 and received by the cup 43.
  • the treatment liquid spreads uniformly on the upper surface 91 and the solvent is volatilized to some extent, the treatment liquid is solidified or cured to form a solid layer. As a result, the particles on the substrate 9 are held in the layer.
  • the layer in which the treatment liquid is changed to a solid state is referred to as a “particle holding layer”.
  • solidification refers to the solidification of a solute due to, for example, a force acting between molecules or atoms. “Curing” refers to hardening due to chemical changes in the solute such as polymerization and crosslinking. Therefore, “solidification or curing” expresses “hardening” due to various factors. Note that the treatment liquid only needs to be solidified or cured to such an extent that particles can be retained, and the solvent does not need to be completely vaporized.
  • the treatment liquid shrinks and becomes a particle holding layer.
  • the particles on the substrate 9 are separated from the surface of the substrate 9 by the force received from the particle holding layer.
  • step S12 the substrate 9 is heated by the heating unit 46 (step S12). It is considered that the particle holding layer is further contracted by heating. The heating of the substrate 9 is also the heating of the particle holding layer. Step S12 is not necessarily performed. When step S12 is not performed, the state in which the substrate 9 is held by the substrate holding unit 42 is maintained for a predetermined time.
  • the heater 464 in the heating plate 461 raises the temperature of the heating plate 461 to a predetermined value. As shown in FIG. 4, the heating plate 461 is raised by the plate lifting mechanism 463, and the upper surface of the heating plate 461 comes into contact with the lower surface 92 of the substrate 9 to lift the substrate 9. As a result, the substrate 9 is heated by receiving heat from the heating plate 461.
  • the heating of the substrate 9 may be performed by the heating plate 461 approaching the lower surface 92 of the substrate 9, and is performed using both the contact state and proximity of the heating plate 461 and the lower surface 92 of the substrate 9. It may be broken.
  • the treatment liquid supply in step S11 and the heating in step S12 may be performed in parallel. That is, the heating may be performed after the treatment liquid is solidified or cured, or may be performed while the solvent is volatilized.
  • the heating may be performed after the treatment liquid is solidified or cured, or may be performed while the solvent is volatilized.
  • the solvent When forming the particle holding layer, usually only a part of the solvent contained in the treatment liquid is volatilized, but the solvent may be almost completely volatilized from the treatment liquid. That is, the solute component of the treatment liquid is solidified or hardened by volatilization of at least a part of the solvent.
  • the component corresponding to the solute of the treatment liquid in the particle holding layer is referred to as “solute component”.
  • the solute component may be the solute itself of the treatment liquid, or may be derived from the solute, for example, obtained as a result of chemical change or the like.
  • the solute component of the particle holding layer is altered and becomes water-soluble when heated to a temperature above the alteration temperature.
  • step S ⁇ b> 12 the particle holding layer is heated only to a temperature below the alteration temperature by the heating unit 46 under the control of the control unit 10. Thereby, while volatilization of the solvent is promoted, the solute component remains water-insoluble without being altered.
  • the alteration temperature varies depending on the type of solute, and the alteration temperature can be specified through experiments, as shown in the experimental examples described later. Similarly, when the particle holding layer is not heated, the solute component is maintained in water-insoluble without being altered.
  • DIW deionized water
  • the DIW is supplied by the rinse liquid supply unit 443.
  • a DIW supply unit having the same structure as the rinse liquid supply unit 443 may be separately provided.
  • the hydrophilicity of the particle holding layer is enhanced.
  • the second nozzle 454 moves to the center of the upper surface 91 of the rotating substrate 9, and DIW is supplied from the second nozzle 454 to the center of the upper surface 91.
  • the DIW is supplied to the substrate 9 in the form of a liquid column or a droplet that naturally falls from the nozzle, not in the form of a spray. DIW scattered from the rotating substrate 9 is received by the cup 43.
  • the second nozzle 454 may swing in the horizontal direction.
  • the supply of DIW to the particle holding layer may be omitted.
  • the removal liquid is supplied to the particle holding layer on the substrate 9 by the removal liquid supply unit 442 (step S14).
  • the second nozzle 454 moves to the center of the upper surface 91 of the substrate 9 and, for example, the removal liquid is supplied from the second nozzle 454 to the center of the upper surface 91 while the substrate 9 rotates at 500 to 800 rpm.
  • the removal liquid is supplied to the substrate 9 in the form of a liquid column or a droplet that naturally falls from a nozzle, not in the form of a spray.
  • the removing liquid scatters from the outer edge of the substrate 9 and is received by the cup 43 and collected.
  • an aqueous solution used in SC-1 cleaning that is, an aqueous solution of ammonia and hydrogen peroxide is used as the removal solution.
  • An aqueous ammonia solution may be used as the removal liquid.
  • the solute component of the particle holding layer is insoluble in water. That is, in this embodiment, the solute component is insoluble in the removal solution.
  • the solvent remaining in the particle holding layer is water-soluble. That is, in this embodiment, the solvent is soluble in the removal solution. Therefore, by supplying the removal liquid to the particle retention layer without deliberately changing the solute component of the particle retention layer, the particle retention layer retains the particles without dissolving the solvent component in the removal liquid. Then, it is removed from the substrate 9 together with the remaining solvent. At this time, it is estimated that the solute component is removed in an infinite number of fine masses due to the influence of the solvent remaining in the particle holding layer.
  • particles are not emitted from the particle holding layer onto the substrate 9, and a high particle removal rate is obtained.
  • the solvent may not remain in the particle holding layer as long as the solute component of the particle holding layer can be removed by the removing liquid.
  • the rinse liquid is further supplied onto the substrate 9 by the rinse liquid supply unit 443 (step S15).
  • DIW is used as the rinse liquid.
  • DIW is supplied from the second nozzle 454 to the center of the upper surface 91 of the substrate 9 rotating.
  • the rinse liquid is supplied to the substrate 9 in the form of a liquid column or a droplet that naturally falls from a nozzle, not in the form of a spray.
  • DIW is simultaneously supplied from the lower nozzle 456 to the center of the lower surface 92 of the substrate 9.
  • DIW scattered from the substrate 9 is received by the cup 43.
  • the second nozzle 454 may swing in the horizontal direction.
  • the supply of DIW is stopped and the substrate 9 is further rotated, whereby the substrate 9 is dried (step S16).
  • the substrate 9 may be dried by other methods such as supply of dried gas, decompression, and heating.
  • the process from the supply of the processing liquid to the substrate 9 to the supply of the removal liquid to the substrate 9 is performed in a state where the substrate 9 is held by the same substrate holding unit 42. That is, these processes are performed without the substrate 9 being carried out of the chamber 47. Thereby, the space which installs the board
  • the process up to drying is performed in a state where the substrate 9 is held by the substrate holding part 42.
  • the processing performed on the substrate 9 while being held by the substrate holding unit 42 means that the processing on the substrate 9 is performed in the chamber 47.
  • the substrate 9 is not heated to the alteration temperature or the substrate 9 is not heated. Therefore, the treatment is performed in the same chamber as compared with the case where the substrate 9 is heated to a temperature exceeding the alteration temperature. It becomes easy to design the substrate cleaning apparatus 4 to be performed. Further, by performing a series of processes in the same chamber, the possibility of particles adhering to the substrate 9 can be reduced.
  • FIG. 5 is a diagram for explaining the property that the solute component of the particle holding layer formed in the present embodiment changes to water solubility by heating.
  • FIG. 5 shows the measurement results by the QCM (Quartz Crystal Microbalance) method.
  • QCM Quadrat Crystal Microbalance
  • a gold film was formed on a crystal resonator, and a particle holding layer was formed thereon.
  • the particle holding layer was immersed in the SC-1 solution, and vibration was applied by a vibrator.
  • the vibration frequency increases as the mass of the particle holding layer attached to the gold film increases.
  • the lines indicated by reference numerals 811, 812, 813, and 814 indicate the results when the particle holding layer is heated to 250 ° C., 200 ° C., 150 ° C., and 100 ° C., respectively, and the lines indicated by reference numeral 815 indicate no heating.
  • the result of the case is shown.
  • the alteration temperature of the particle retention layer is about 200 ° C., and the frequency increases when the particle retention layer is heated to 250 ° C. and 200 ° C., and the particle retention layer is dissolved in the SC-1 solution. I understand. When the heating is 150 ° C. or lower, it can be seen that the particle holding layer remains attached on the gold film and is not dissolved.
  • FIG. 6 is a diagram showing the results of measuring the removal rate of particles having a predetermined particle diameter or more when the SiO 2 particles are adhered on the Si substrate and the cleaning shown in FIG. 3 is performed.
  • the particle removal rate is expressed as “PRE”.
  • steps such as pretreatment are added to the steps shown in FIG. From the left, the case where heating at 60 ° C., 80 ° C., 100 ° C., 150 ° C., and 200 ° C. is performed without heating in step S12 (room temperature) is shown. Room temperature is 20 degreeC or more and 30 degrees C or less, for example.
  • the broken line indicates the PRE when the cleaning is performed only with the SC-1 solution, which is 39%.
  • FIG. 7 is a diagram showing a result of measuring PRE having a predetermined particle diameter or more when a PSL (polystyrene latex) particle is adhered on a Si substrate and cleaning is performed in the same manner as in FIG. From the left, the case where heating at 100 ° C. without heating (room temperature) in step S12 is shown. In addition, when making PSL particle adhere, the particle holding layer is heated to 120 degreeC. The broken line indicates the PRE when the SC-1 solution alone is used for cleaning, which is 0.8%. In either case, it can be seen that a very high PRE can be obtained as compared with cleaning with the SC-1 solution alone.
  • FIG. 8 is a diagram showing a result of measuring PRE having a predetermined particle diameter or more when SiO 2 particles are adhered on a SiN substrate and cleaning is performed in the same manner as in FIG. From the left, the case where heating at 60 ° C., 100 ° C., 150 ° C. and 200 ° C. is performed without heating (room temperature) in step S12 is shown.
  • the broken line indicates the PRE when washed with the SC-1 solution alone, which is 39.9%.
  • FIG. 9 is a diagram showing a result of measuring PRE having a predetermined particle diameter or more when PSL particles are adhered on the SiN substrate and cleaning is performed in the same manner as in FIG. From the left, the case where heating at 60 ° C., 100 ° C., and 150 ° C. is performed without heating (room temperature) in step S12 is shown.
  • the broken line indicates the PRE when the cleaning is performed only with the SC-1 solution, which is 0.5%. In either case, it can be seen that a very high PRE can be obtained as compared with cleaning with the SC-1 solution alone.
  • FIG. 10 is a diagram showing still another measurement result of PRE.
  • a line denoted by reference numeral 821 represents a relationship between the heating temperature and PRE when a particle holding layer having a thickness of 30 nm is formed on a substrate having no pattern.
  • a line denoted by reference numeral 822 represents the relationship between the heating temperature and PRE when a particle holding layer having a thickness of 30 nm is formed on a substrate having a pattern.
  • a line indicated by reference numeral 831 indicates the relationship between the heating temperature and PRE when a particle holding layer having a thickness of 75 nm is formed on a substrate having no pattern.
  • a line denoted by reference numeral 832 indicates the relationship between the heating temperature and PRE when a particle holding layer having a thickness of 75 nm is formed on a substrate having a pattern. In either case, SiO 2 particles were used as the particles.
  • FIG. 10 shows that PRE is lower when the heating temperature is 200 ° C. than when the heating temperature is 150 ° C.
  • PRE is drastically lowered when heated to 200 ° C. and the particle holding layer becomes soluble in the removal liquid.
  • the heating temperature is lower than 150 ° C., PRE decreases, but this may be due to insufficient volatilization of the solvent.
  • PRE can be improved by deliberately maintaining the insolubility of the particle holding layer in the solute component removal solution as compared with the case of dissolving the solute component. Further, by heating at as high a temperature as possible without changing the quality, the particle holding layer can be solidified and cured efficiently, and a high PRE can be realized in a short time. This method is particularly suitable for cleaning the substrate 9 on which the pattern is formed. Further, the damage given to the pattern is small as compared with the conventional physical cleaning using the SC-1 liquid spray.
  • FIG. 11A is a conceptual diagram showing the particle holding layer 901 formed on the substrate 9.
  • the particle holding layer 901 holds the particles 902 so as to surround the periphery of the particles 902 attached on the substrate 9.
  • the particle holding layer 901 separates the particles 902 from the surface of the substrate 9.
  • the solute component of the particle holding layer 901 is insoluble in the removal liquid
  • the particle holding layer 901 is removed from the removal liquid. It is considered that a fine fragment 903 is removed from the substrate 9 by the physical force received. As a result, the particles 902 are removed from the substrate 9 without being emitted from the particle holding layer 901.
  • the solvent is soluble in the removal liquid, it is considered that the solvent remaining between the substrate 9 and the particle holding layer 901 realizes easy peeling of the particle holding layer 901 from the substrate 9. .
  • the removal liquid is discharged from the nozzle with a weak momentum, the removal liquid is supplied onto the substrate 9 as a liquid column or a large droplet. Therefore, the damage given to the pattern is small as compared with the case where the cleaning liquid is vigorously sprayed to the substrate 9 as in the prior art.
  • the treatment liquid that is soluble in the removal liquid when heated to the alteration temperature is used without heating or by heating to a temperature below the alteration temperature and above the room temperature.
  • High PRE is realized. This effect utilizes the property that the particle retention layer that is altered by heat can be removed by the removal liquid.
  • the solute component of the particle holding layer is insoluble in the removal liquid
  • the property that it can be removed from the substrate as fine fragments with the removal liquid may be realized by other factors.
  • the removal of the insoluble solute component by the removal of the insoluble solute component by the solvent molecules entering between the molecules of the solute component That is, the removal of the particle holding layer (more precisely, the solute component) by the removing liquid may be realized.
  • the property that the solute component becomes soluble in the removal solution by heating is not necessarily required.
  • the heating unit 46 of the substrate cleaning apparatus 4 shown in FIG. 2 performs heating of the substrate 9 by the heating plate 461, that is, heating of the particle holding layer, but various other methods can be employed for heating the particle holding layer. is there.
  • the substrate 9 may be heated by light irradiation from a lamp.
  • the surface to be heated may be the upper surface 91 or the lower surface 92 of the substrate 9.
  • the particle holding layer may be heated by bringing a heated plate closer to the upper surface 91 of the substrate 9. Further, as described below, the particle holding layer may be heated by supplying heated DIW or other liquid to the substrate 9.
  • step S12 in FIG. 3 heating of the substrate 9 is performed by supplying heated DIW to the lower surface of the substrate 9 in the horizontal posture, as shown in step S12a of FIG. That is, the particle holding layer is heated.
  • the particle holding layer is heated to a temperature higher than room temperature and lower than 100 ° C.
  • the particle holding layer contracts due to the heating of the particle holding layer.
  • a heater that preheats DIW discharged from the lower nozzle 456 is provided as the heating unit 46, and the heater and the lower nozzle 456 function as the heating unit 46.
  • the heating plate 461 can be omitted.
  • the substrate 9 can be heated with a simple structure without affecting the upper surface to be cleaned.
  • the operation of the substrate cleaning apparatus 4 is the same as in FIG. 3 except that heated DIW is supplied to the lower surface of the substrate 9 to heat the particle holding layer.
  • the room temperature DIW is supplied in step S13, but may be omitted.
  • the heating of the substrate 9 may be performed by supplying heated DIW to the upper surface of the substrate 9 in the horizontal posture.
  • Step S12b is a process in which steps S12 and S13 of FIG. 3 are combined.
  • a heater that preheats DIW discharged from the second nozzle 454 is provided as the heating unit 46.
  • the heater and the second nozzle 454 function as the heating unit 46. Since the substrate 9 is heated by DIW, the heating plate 461 can be omitted.
  • the DIW usually does not completely remove the particle holding layer in DIW. It does not have a function as a removing liquid.
  • the heating of the substrate 9 may be performed by supplying heated DIW to the upper surface and the lower surface of the substrate 9 in a horizontal posture. This operation is also a process in which steps S12 and S13 in FIG. 3 are combined.
  • the heated removal liquid may be supplied onto the substrate 9 by the removal liquid supply unit 442 instead of step S14 of FIG. That is, the removal liquid heated to a temperature lower than the alteration temperature is supplied to the upper surface of the substrate 9 in the horizontal posture.
  • Step S14a also serves as the particle holding layer heating step in step S12 of FIG. Therefore, step S12 is usually omitted. However, step S14a may be performed after step S12 is performed.
  • the DIW supply in step S13 may or may not be performed.
  • the heated DIW supply in steps S12a and / or S12b shown in FIGS. 12 and 13 may be performed before step S14a.
  • step S11a of FIG. 15 performed instead of step S11 of FIG. 3, the heated processing liquid is supplied onto the substrate 9 by the processing liquid supply unit 441. That is, the processing liquid heated to a temperature lower than the alteration temperature is supplied onto the upper surface of the substrate 9 in the horizontal posture. Accordingly, the solvent is volatilized in parallel with the formation of the particle holding layer, and the separation of the particles from the substrate 9 due to the shrinkage of the particle holding layer is promoted.
  • step S11b of FIG. 16 performed instead of step S11 of FIG. 3, the heating of the substrate 9 and the supply of the processing liquid are performed in parallel. That is, the formation of the particle holding layer and the heating of the particle holding layer are performed simultaneously. While the particle holding layer is formed, the particle holding layer contracts due to volatilization and heating of the solvent.
  • the heating of the substrate 9 below the alteration temperature is performed using, for example, the heating unit 46 in FIG. As described above, the heating is performed by irradiating the upper surface or lower surface of the substrate 9 with light from a lamp, bringing a heated plate closer to the upper surface of the substrate 9, supplying heated DIW to the lower surface of the substrate 9, or the like. Other methods may be used.
  • steps S11c and S11d of FIG. 17 performed in place of step S11 of FIG. 3 the substrate 9 is heated and then the processing liquid is supplied.
  • the substrate 9 is heated to a temperature lower than the alteration temperature before the treatment liquid is supplied.
  • the heating of the substrate 9 below the alteration temperature in step S11c is performed using, for example, the heating unit 46 in FIG. As shown in FIGS. 12 and 13, the heating may be performed by supplying heated DIW.
  • the upper surface and the lower surface of the substrate 9 are irradiated with light from a lamp, or the substrate 9 is heated. It may be performed by other methods such as bringing a heated plate close to the upper surface of the plate. Note that both the step of heating the substrate 9 before or during the supply of the processing liquid and the step of supplying the heated processing liquid to the substrate 9 may be performed.
  • step S12 the heating of the particle holding layer and the supply of heated DIW or removal liquid in step S12 are performed. It is unnecessary. However, these steps may be performed. Of course, room temperature DIW may be supplied to the upper surface of the substrate 9 in step S13.
  • the heating unit configured to heat the particle holding layer in step S12 of FIG. 3 and the heating unit that heats the particle holding layer in step S11b of FIG. 16 and step S11c of FIG. 17 may be different.
  • the substrate 9 may be heated by the heating plate 461, and in step S12, the substrate 9 may be heated by the heated DIW.
  • a heating unit that heats the substrate 9 before the removal liquid is supplied to the substrate 9 and another heating unit that heats the substrate 9 before the processing liquid is supplied to the substrate 9 or in parallel with the supply.
  • the heating unit may be different or the same.
  • the substrate cleaning system 1 and the substrate cleaning apparatus 4 can be variously modified.
  • the treatment liquid supply by the treatment liquid supply unit 441 may be performed by a method other than the discharge from the nozzle.
  • the supply of the removal liquid and the rinse liquid by the removal liquid supply unit 442 and the rinse liquid supply unit 443 may also be performed by a method other than the discharge from the nozzle.
  • a technique that hardly damages the pattern on the surface of the substrate 9 is employed.
  • the substrate 9 may be heated by supplying a high-temperature gas to the upper surface 91 and the lower surface 92 of the substrate 9.
  • the heating of the substrate 9 may be performed in another dedicated chamber. Furthermore, the formation, heating, and removal of the particle holding layer may be performed in different chambers.
  • the solute component of the particle holding layer changes from water-insoluble to water-soluble by being heated to an alteration temperature.
  • Various solute components and removal solutions may be utilized.
  • the solvent is not limited to water solubility as long as it is soluble in the removal solution.
  • the heating temperature of the particle holding layer only needs to be lower than the alteration temperature, and may be a temperature at which the particle holding layer changes slightly to water solubility.
  • the solute component of the particle holding layer does not need to be completely insoluble in the removal solution, and may be hardly soluble.
  • the volatile solvent contained in the treatment liquid is preferably organic, that is, an organic compound, but may contain other volatile substances.
  • the solute is a polymer, but may be an organic compound other than the polymer. Furthermore, it may be a mixture of an organic compound and another substance, or may be a compound other than an organic compound.
  • Removal liquid is not limited to SC-1 liquid.
  • SC-1 solution or the aqueous ammonia solution is preferable, but other removal solutions may be used.
  • the substrate 9 to be cleaned by the substrate cleaning system 1 is not limited to a Si substrate or a SiN substrate, and may be another semiconductor substrate.
  • the substrate 9 is not limited to a semiconductor substrate, but is a glass substrate for a liquid crystal display device, a glass substrate for an organic EL display device, a glass substrate for a plasma display, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask substrate.
  • Other substrates such as a glass substrate and a solar cell substrate may be used.
  • Substrate cleaning device 9 Substrate 10 Control unit 42 Substrate holding unit 46 Heating unit 441 Processing liquid supply unit 442 Removal liquid supply unit 901 Particle holding layer S11 to S14, S11a, S11b, S11c, S12a, S12b, S14a Step

Abstract

基板(9)上に、溶媒および溶質を含む処理液が供給される。処理液から溶媒の少なくとも一部が揮発して処理液が固化または硬化することにより、処理液がパーティクル保持層となる。基板(9)上に除去液が供給され、パーティクル保持層が基板(9)から除去される。パーティクル保持層に含まれる溶質成分は、除去液に対して不溶性または難溶性であり、溶媒は可溶性である。パーティクル保持層に含まれる溶質成分は、変質温度以上に加熱した場合に変質して除去液に対して可溶性になる性質を有する。除去液は、パーティクル保持層が形成された後、溶質成分を変質させる工程を経ることなく供給される。

Description

基板洗浄装置および基板洗浄方法
 本発明は、半導体ウェハ、液晶表示装置用ガラス基板、有機EL表示装置用ガラス基板、プラズマディスプレイ用ガラス基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用ガラス基板、太陽電池用基板等(以下、単に「基板」という。)から、基板に付着した各種汚染物や、前工程における処理液やレジスト等の残渣、各種パーティクル等(以下、単に「パーティクル」という)を除去する技術に関連する。
 従来より、基板の製造工程は、基板上からパーティクルを除去する洗浄工程を含む。洗浄工程では、多くの場合、脱イオン水(以下、「DIW」と表記する。)等の洗浄液を基板に供給することにより、基板から物理的にパーティクルが除去されたり、薬液を基板に供給することにより、化学的にパーティクルが除去される。
 しかし、パターンが微細化かつ複雑化すると、パターンは物理的または化学的なダメージを受けやすくなる。そこで、例えば、特開2014-197717号公報の手法では、基板上にトップコート液を供給し、トップコート液が固化または硬化する際の収縮力を利用してパーティクルを基板から引き離す。その後、トップコート膜を除去液に溶解させることにより、トップコートおよびパーティクルは基板から除去される。
 一方、特開2015-95583号公報では、トップコート液により基板上に形成されたトップコート膜は、DIWにより基板から剥離される。続いて、基板上には溶解処理液が供給され。剥離されたトップコート膜は、基板上で溶解されて除去される。なお、特開2015-95583号公報の第4の実施形態では、パターンが形成されていない基板の場合に、DIWにより膜を基板から剥離させ、さらにDIWを供給し続けて溶解させずに膜が除去される。
 ところで、基板上に形成した膜(以下、「パーティクル保持層」という。)を溶解しつつ基板から除去する場合、パーティクル保持層からパーティクルが脱落して基板に再付着する虞がある。また、パーティクル保持層を溶解させない場合、パーティクル保持層を基板から除去することは容易ではない。特に、特開2015-95583号公報にて示唆されているように、基板上にパターンが形成されている場合、パーティクル保持層を溶解させることなく基板からパーティクル保持層を除去することは困難となる。これは、パーティクル保持層がある程度大きな塊の状態でパターン上に残るためであると考えられる。
 本発明は、パーティクル保持層を利用して基板からパーティクルを除去する技術において、パーティクル除去率を向上することを目的としている。
 本発明の好ましい一の形態に係る基板洗浄装置は、基板上に、溶媒および溶質を含む処理液を供給する処理液供給部と、前記基板上に、除去液を供給する除去液供給部と、前記処理液供給部および前記除去液供給部を制御する制御部とを備える。前記溶媒は揮発性を有する。前記基板上に供給された前記処理液から前記溶媒の少なくとも一部が揮発して前記処理液が固化または硬化することにより、前記処理液がパーティクル保持層となる。前記パーティクル保持層に含まれる前記溶質である溶質成分、または、前記溶質から導かれる溶質成分は、前記除去液に対して不溶性または難溶性である。前記溶媒は、前記除去液に対して可溶性である。前記パーティクル保持層に含まれる前記溶質成分は、変質温度以上に加熱した場合に変質して前記除去液に対して可溶性になる性質を有する。
 前記制御部の制御により、前記基板上に前記パーティクル保持層が形成された後、前記パーティクル保持層の前記溶質成分を変質させる工程を経ることなく前記除去液供給部から前記パーティクル保持層に前記除去液が供給されることにより、前記基板上から前記パーティクル保持層が除去される。基板洗浄装置により、パーティクル除去率を向上することができる。
 本発明のさらに好ましい形態に係る基板洗浄装置は、前記パーティクル保持層を加熱する加熱部、をさらに備える。前記制御部の制御により、前記除去液が前記パーティクル保持層に供給される前に、前記加熱部により、前記パーティクル保持層が前記変質温度を下回る温度まで加熱される。
 好ましい一例では、前記処理液供給部により、前記処理液が水平姿勢の前記基板の上面に供給され、前記加熱部が、加熱された脱イオン水を前記基板の下面に供給することにより、前記パーティクル保持層を加熱する。
 好ましい他の例では、前記処理液供給部により、前記処理液が水平姿勢の前記基板の上面に供給され、前記加熱部が、加熱された脱イオン水を前記基板の上面に供給することにより、前記パーティクル保持層を加熱する。
 好ましいさらに他の例では、前記除去液供給部は、前記変質温度を下回る温度まで加熱された前記除去液を前記基板上に供給する。
 好ましいさらに他の例では、前記処理液供給部は、前記変質温度を下回る温度まで加熱された前記処理液を前記基板上に供給する。
 本発明の好ましい他の形態に係る基板洗浄装置は、前記処理液が前記基板に供給される前に、または、供給と並行して、前記基板を前記変質温度を下回る温度まで加熱する他の加熱部をさらに備える。
 基板洗浄装置は、好ましくは、基板を保持する基板保持部、をさらに備える。前記基板が前記基板保持部に保持された状態で、前記基板への前記処理液の供給から前記基板への前記除去液の供給までの工程が行われる。
 本発明は、基板洗浄方法にも向けられている。本発明の好ましい一の形態に係る基板洗浄方法は、a)基板上に、溶媒および溶質を含む処理液を供給する工程と、b)前記基板上に、除去液を供給する工程とを備える。前記溶媒は揮発性を有する。前記a)工程において、前記基板上に供給された前記処理液から溶媒の少なくとも一部が揮発して前記処理液が固化または硬化することにより、前記処理液がパーティクル保持層となる。前記パーティクル保持層に含まれる前記溶質である溶質成分、または、前記溶質から導かれる溶質成分は、前記除去液に対して不溶性または難溶性である。前記溶媒は、前記除去液に対して可溶性である。前記パーティクル保持層に含まれる前記溶質成分は、変質温度以上に加熱した場合に変質して前記除去液に対して可溶性になる性質を有する。前記a)工程の後、前記パーティクル保持層の前記溶質成分を変質させる工程を経ることなく前記b)工程が実行されることにより、前記基板上から前記パーティクル保持層が除去される。
 本発明のさらに好ましい形態に係る基板洗浄方法は、前記a)工程と前記b)工程との間に、c)前記パーティクル保持層を前記変質温度を下回る温度まで加熱する工程をさらに備える。
 好ましい一例では、前記a)工程において、前記処理液が水平姿勢の前記基板の上面に供給され、前記c)工程において、加熱された脱イオン水が前記基板の下面に供給されることにより、前記パーティクル保持層が加熱される。
 好ましい他の例では、前記a)工程において、前記処理液が水平姿勢の前記基板の上面に供給され、前記c)工程において、加熱された脱イオン水が前記基板の上面に供給されることにより、前記パーティクル保持層が加熱される。
 好ましいさらに他の例では、前記b)工程において、前記変質温度を下回る温度まで加熱された前記除去液が前記基板上に供給される。
 好ましいさらに他の例では、前記a)工程において、前記変質温度を下回る温度まで加熱された前記処理液が前記基板上に供給される。
 本発明の好ましい他の形態に係る基板洗浄方法では、前記a)工程の前または前記a)工程において、前記基板が前記変質温度を下回る温度まで加熱される。
 上記基板洗浄方法では、好ましくは、前記基板が同一の基板保持部に保持された状態で、前記基板への前記処理液の供給から前記基板への前記除去液の供給までの工程が行われる。
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。
基板洗浄システムの構成を示す平面図である。 基板洗浄装置の構成を示す図である。 基板洗浄の流れを示す図である。 基板洗浄装置による加熱処理を示す図である。 QCM法による測定結果を示す図である。 PRE(パーティクル除去率)の測定結果を示す図である。 PREの測定結果を示す図である。 PREの測定結果を示す図である。 PREの測定結果を示す図である。 PREの測定結果を示す図である。 パーティクル保持層を示す概念図である。 パーティクル保持層が除去される様子を示す概念図である。 基板洗浄装置の他の動作例の一部を示す図である。 基板洗浄装置のさらに他の動作例の一部を示す図である。 基板洗浄装置のさらに他の動作例の一部を示す図である。 基板洗浄装置のさらに他の動作例の一部を示す図である。 基板洗浄装置のさらに他の動作例の一部を示す図である。 基板洗浄装置のさらに他の動作例の一部を示す図である。
 図1は、本発明の一の実施の形態に係る基板洗浄システム1の構成を示す平面図である。基板洗浄システム1は、キャリア保持部2と、基板受渡部3と、インデクサロボット101と、センターロボット102と、4つの基板洗浄装置4と、制御部10とを備える。後述するように、制御部10は基板洗浄装置4の一部として捉えられてもよい。
 キャリア90は、複数の基板9を積層して収容可能な収容器である。キャリア90は、未処理の基板9や、処理済の基板9を収容する。本実施の形態における基板9は、半導体基板であり、いわゆるウエハである。キャリア保持部2は、複数のキャリア90を支持する。
 図1において破線の矢印で概念的に示すように、インデクサロボット101は、基板9を保持した状態で旋回および進退自在のアームにより、基板9を任意の位置に搬送することが可能である。インデクサロボット101は、基板9を保持した状態で上下方向にも移動可能である。キャリア保持部2に載置されたキャリア90内の未処理の基板9は、インデクサロボット101によって、基板受渡部3のパス31に搬送される。パス31は、複数の基板9を一時的に保管するバッファとして機能する。
 パス31に載置された処理済の基板9は、インデクサロボット101によってキャリア保持部2に載置されたキャリア90内に搬送される。図1では、図示の都合上、パス31を二点鎖線にて示している。センターロボット102は、基板9を保持した状態で旋回および進退自在のアームにより、基板9を任意の位置に搬送することが可能である。センターロボット102は、この動作により、基板受渡部3のパス31と、基板洗浄装置4との間で基板9を搬送する。
 図2は、基板洗浄装置4の構成を示す図である。基板洗浄装置4は、基板保持部42と、基板回転機構41と、基板保持部42の周囲を囲むカップ43と、供給部44と、加熱部46と、チャンバ47とを備える。少なくとも基板保持部42と、カップ43と、加熱部46とは、チャンバ47内に位置する。基板保持部42は、スピンベース421と、チャック422と、第1シャフト423とを備える。スピンベース421は、第1シャフト423の中心軸J1を中心とする円板状である。複数(例えば6個)のチャック422はスピンベース421の外周部の上面上に配置される。センターロボット102から渡された未処理の基板9は、チャック422上に載置される。基板9は水平な姿勢にて基板保持部42に保持される。
 第1シャフト423は、スピンベース421の下面に接続され、スピンベース421から下方に伸びる。第1シャフト423の中心軸J1は、基板9の中心を通る。基板回転機構41は、第1シャフト423を回転する。これにより、基板保持部42および基板9が中心軸J1を中心として回転する。本実施の形態では、基板回転機構41は、第1シャフト423を回転軸として有するモータである。基板回転機構41は、他の構造であってもよい。基板保持部42にも他の構造が採用されてよく、例えば、基板9の下面を吸着する構造であってもよい。
 加熱部46は、加熱プレート461と、第2シャフト462と、プレート昇降機構463とを備える。加熱プレート461は、中心軸J1に垂直な方向に広がる円板状である。加熱プレート461は、スピンベース421の上方に位置する。基板9がチャック422に保持された状態では、加熱プレート461は基板9とスピンベース421との間に位置する。加熱プレート461内にはヒータ464が設けられる。第2シャフト462は、加熱プレート461の中央から中心軸J1に沿って下方に伸びる。第1シャフト423は中空になっており、第2シャフト462は第1シャフト423を貫通するように第1シャフト423の内側に位置する。プレート昇降機構463は、第2シャフト462を昇降する。これにより、加熱プレート461が昇降する。
 供給部44は、処理液供給部441と、除去液供給部442と、リンス液供給部443とを備える。処理液供給部441は、処理液供給源451と、第1ノズル452と、図示しない第1ノズル移動機構とを備える。除去液供給部442は、除去液供給源453と、第2ノズル454と、図示しない第2ノズル移動機構とを備える。リンス液供給部443は、リンス液供給源455と、第2ノズル454と、第2ノズル移動機構と、下ノズル456とを備える。第2ノズル454と第2ノズル移動機構とは、除去液供給部442とリンス液供給部443との双方に含まれる。
 第1ノズル移動機構は、第1ノズル452を、基板9の上面91に対向する対向位置と、水平方向において基板9から離れた待機位置とに選択的に配置する。第2ノズル移動機構は、第2ノズル454を、基板9の上面91に対向する対向位置と、水平方向において基板9から離れた他の待機位置とに選択的に配置する。下ノズル456は、加熱プレート461の中央に設けられ、基板9の下面92に対向する。第2シャフト462内にはリンス液供給源455に接続される流路465が設けられる。
 処理液供給源451と第1ノズル452との間、除去液供給源453およびリンス液供給源455と第2ノズル454との間、リンス液供給源455と下ノズル456との間には、適宜、弁が設けられる。各弁の開閉や第1および第2ノズル移動機構は、制御部10により制御される。制御部10が弁を制御することにより、第1ノズル452からの処理液の吐出、第2ノズル454からの除去液の吐出、第2ノズル454からのリンス液の吐出、および、下ノズル456からのリンス液の吐出が制御される。
 制御部10は、基板回転機構41、基板保持部42、加熱部46等の制御も行う。したがって、制御部10の機能の一部は、基板洗浄装置4に含まれると捉えられてよい。制御部10の一部は、各基板洗浄装置4の専用の構成要素としてチャンバ47内に設けられてもよい。
 図3は、基板洗浄装置4における基板9の洗浄の流れを示す図である。図3に示す動作は、制御部10が基板回転機構41、加熱部46、処理液供給部441、除去液供給部442、リンス液供給部443等を制御することにより行われる。
 まず、キャリア90内の未処理の基板9が、インデクサロボット101およびセンターロボット102により基板洗浄装置4内へと搬送される。基板洗浄装置4では、チャック422により基板9の外縁部が保持され、基板9の一方の主面である上面91が上方を向く。
 処理液供給部441は、水平姿勢の基板9の上面に処理液を供給する(ステップS11)。具体的には、第1ノズル452が基板9の上面91の中央まで移動し、第1ノズル452から上面91の中央に向けて処理液が吐出される。処理液は、液柱状またはノズルから自然に落下する液滴状にて基板9に供給される。本実施の形態における処理液は、溶質としてポリマーを含み、溶媒として揮発性を有する有機系の液体を含む。ここで、「揮発性を有する」とは、水と比較して揮発性が高いことを意味する。処理液が供給される際には、基板回転機構41により基板9は、例えば、10~数10rpmにて基板保持部42と共に中心軸J1を中心として回転し、処理液は基板9の上面91にて広がる。その後、基板9は500~1500rpmにて高速回転し、余剰の処理液は基板9から飛散してカップ43にて受けられる。
 処理液が上面91上に均一に広がり、さらに溶媒がある程度揮発すると、処理液は固化または硬化して固体状の層となる。その結果、基板9上のパーティクルは層中に保持される。以下、処理液が固体状に変化した層を「パーティクル保持層」と呼ぶ。
 ここで、「固化」とは、例えば分子間や原子間に作用する力等により溶質が固まることを指す。「硬化」とは、例えば重合や架橋等の溶質の化学的変化により固まることを指す。したがって、「固化または硬化」とは、様々な要因により「固まること」を表現している。なお、パーティクルを保持できる程度に処理液は固化または硬化すればよく、溶媒は完全に気化する必要はない。
 好ましくは、溶媒の揮発に従って、処理液は収縮しつつパーティクル保持層となる。これにより、基板9上のパーティクルはパーティクル保持層から受ける力により、基板9の表面から分離される。
 次に、加熱部46により基板9が加熱される(ステップS12)。加熱によってパーティクル保持層はさらに収縮すると考えられる。基板9の加熱は、パーティクル保持層の加熱でもある。ステップS12は、必ずしも行われる必要はない。ステップS12が行われない場合は、基板9が基板保持部42に保持された状態が、所定時間維持される。
 基板9の加熱が行われる場合、加熱プレート461内のヒータ464により加熱プレート461の温度が予め定められた値まで上昇する。図4に示すように、プレート昇降機構463により加熱プレート461は上昇し、加熱プレート461の上面は基板9の下面92に接触して基板9を持ち上げる。これにより、基板9は加熱プレート461から熱を受けて加熱される。基板9の加熱は、加熱プレート461が基板9の下面92に近接することにより行われてもよく、加熱プレート461と基板9の下面92との接触と近接との双方の状態を利用して行われてもよい。
 ステップS11の処理液供給とステップS12の加熱とは並行して行われてもよい。すなわち、加熱は、処理液の固化または硬化後に行われてもよく、溶媒の揮発中に行われてもよい。パーティクル保持層の形成時に、通常、処理液に含まれる溶媒の一部のみが揮発するが、処理液から溶媒がほぼ完全に揮発してもよい。すなわち、溶媒の少なくとも一部が揮発することにより、処理液の溶質成分が固化または硬化する。
 以下の説明では、パーティクル保持層における処理液の溶質に対応する成分を「溶質成分」という。溶質成分は、処理液の溶質そのものであってもよいし、溶質から導かれるもの、例えば、化学的変化等の結果得られるものであってもよい。本実施の形態では、パーティクル保持層の溶質成分は、変質温度以上に加熱されると変質して水溶性になる。しかし、ステップS12では、制御部10の制御により、パーティクル保持層は、加熱部46により、変質温度を下回る温度までしか加熱されない。これにより、溶媒の揮発が促進される一方で、溶質成分は、変質せずに非水溶性を維持する。変質温度は溶質の種類毎に異なり、後述の実験例に示すように、変質温度は実験を通して特定可能である。パーティクル保持層の加熱が行われない場合も同様に、溶質成分は変質することなく非水溶性が維持される。
 パーティクル保持層上には、DIW(脱イオン水)が供給される(ステップS13)。本実施の形態では、DIWの供給は、リンス液供給部443により行われるが、リンス液供給部443と同構造のDIW供給部が別途設けられてもよい。パーティクル保持層にDIWが供給されることにより、パーティクル保持層の親水性が高められる。DIWの供給では、第2ノズル454は回転する基板9の上面91の中央に移動し、DIWは、第2ノズル454から上面91の中央に供給される。DIWは、スプレー状ではなく、液柱状またはノズルから自然に落下する液滴状にて基板9に供給される。回転する基板9から飛散するDIWはカップ43にて受けられる。ステップS13では、第2ノズル454は水平方向に揺動してもよい。なお、パーティクル保持層へのDIWの供給は省略されてもよい。
 次に、除去液供給部442により基板9上のパーティクル保持層に除去液が供給される(ステップS14)。具体的には、第2ノズル454が基板9の上面91の中央に移動し、例えば、500~800rpmにて基板9が回転する状態で第2ノズル454から除去液が上面91の中央に供給される。除去液は、スプレー状ではなく、液柱状またはノズルから自然に落下する液滴状にて基板9に供給される。除去液は基板9の外縁部から飛散し、カップ43にて受けられて回収される。本実施の形態では、除去液としてSC-1洗浄にて使用される水溶液(以下、「SC-1液」という。)、すなわち、アンモニアおよび過酸化水素の水溶液が用いられる。除去液としては、アンモニア水溶液が用いられてもよい。
 ここで、既述のように、パーティクル保持層の溶質成分は非水溶性である。すなわち、本実施の形態では溶質成分は除去液に対して不溶性である。一方、パーティクル保持層に残存する溶媒は水溶性である。すなわち、本実施の形態では溶媒は除去液に対して可溶性である。したがって、パーティクル保持層の溶質成分を変質させる工程を敢えて経ることなくパーティクル保持層に除去液を供給することにより、パーティクル保持層は、その溶媒成分が除去液に溶解することなくパーティクルを保持したまま、残存する溶媒と共に基板9上から除去される。このとき、パーティクル保持層に残存する溶媒の影響により、溶質成分は無数の微細な固まりの状態で除去されると推定される。その結果、後述するように、パーティクル保持層からパーティクルが基板9上に放出されることはなく、高いパーティクル除去率が得られる。なお、パーティクル保持層の溶質成分が除去液で除去可能であれば、溶媒はパーティクル保持層に残存していなくてもよい。
 基板9上にはリンス液供給部443によりさらにリンス液が供給される(ステップS15)。本実施の形態では、リンス液としてDIWが使用される。DIWは、第2ノズル454から回転する基板9の上面91の中央に供給される。リンス液は、スプレー状ではなく、液柱状またはノズルから自然に落下する液滴状にて基板9に供給される。このとき、下ノズル456から基板9の下面92の中央にDIWが同時に供給される。基板9から飛散するDIWはカップ43にて受けられる。ステップS14およびS15では、第2ノズル454は水平方向に揺動してもよい。DIWの供給を停止して基板9がさらに回転することにより、基板9の乾燥が行われる(ステップS16)。基板9の乾燥は、乾燥したガスの供給や減圧、加熱等の他の手法により行われてもよい。
 基板洗浄装置4では、基板9が同一の基板保持部42に保持された状態で、基板9への処理液の供給から基板9への除去液の供給までの工程が行われる。すなわち、基板9はチャンバ47から搬出されることなくこれらの処理が行われる。これにより、基板洗浄装置4を設置するスペースを小さく抑えることができる。なお、本実施の形態では、乾燥までの工程も基板9が基板保持部42に保持された状態で行われる。基板保持部42に保持された状態で基板9に処理が行われることは、基板9に対する処理がチャンバ47内で行われることを意味する。
 なお、上記一連の処理では、基板9は変質温度までは加熱されない、または、基板9は加熱されないため、基板9を変質温度を上回る温度まで加熱する場合と比べて、同一のチャンバ内で処理を行う基板洗浄装置4の設計が容易となる。また、同一のチャンバ内で一連の処理を行うことにより、基板9にパーティクルが付着する可能性を低減することができる。
 図5は、本実施の形態にて形成されるパーティクル保持層の溶質成分が、加熱により水溶性に変化する性質を説明するための図である。図5は、QCM(Quartz Crystal Microbalance)法による測定結果を示す。実験では、水晶振動子上に金の膜を形成し、その上にパーティクル保持層を形成した。そして、パーティクル保持層をSC-1液に浸漬し、振動子による振動を与えた。QCM法では、金の膜に付着しているパーティクル保持層の質量が大きいほど、振動周波数は大きくなる。
 符号811、812、813、814にて示す線は、それぞれパーティクル保持層を250℃、200℃、150℃、100℃に加熱した場合の結果を示し、符号815にて示す線は、加熱なしの場合の結果を示す。パーティクル保持層の変質温度は約200℃であり、パーティクル保持層を250℃および200℃に加熱した場合に周波数が高くなっており、パーティクル保持層がSC-1液中に溶解していることが判る。加熱が150℃以下の場合は、パーティクル保持層は金の膜上に付着した状態が維持され、溶解していないことが判る。
 図6は、Si基板上にSiOのパーティクルを付着させ、図3に示す洗浄を行った場合の所定の粒径以上のパーティクルの除去率を測定した結果を示す図である。以下、パーティクル除去率を「PRE」と表記する。正確には、図3に示す工程に前処理等の工程が追加される。左から順に、ステップS12での加熱なし(室温)、60℃、80℃、100℃、150℃、200℃の加熱を行った場合を示す。室温は、例えば、20℃以上30℃以下である。破線はSC-1液のみで洗浄を行った場合のPREを示し、39%である。
 いずれの場合も、SC-1液のみでの洗浄に比べて高いPREが得られることが判る。なお、200℃に加熱した場合はパーティクル保持層の溶質成分は溶解しており、150℃に加熱した場合よりも僅かではあるがPREは低下している。
 図7は、Si基板上にPSL(ポリスチレンラテックス)のパーティクルを付着させ、図6と同様の洗浄を行った場合の所定の粒径以上のPREを測定した結果を示す図である。左から順に、ステップS12での加熱なし(室温)、100℃の加熱を行った場合を示す。なお、PSL粒子を付着させる際に、パーティクル保持層は120℃まで加熱されている。破線はSC-1液のみで洗浄を行った場合のPREを示し、0.8%である。いずれの場合も、SC-1液のみでの洗浄に比べて非常に高いPREが得られることが判る。
 図8は、SiN基板上にSiOのパーティクルを付着させ、図6と同様の洗浄を行った場合の所定の粒径以上のPREを測定した結果を示す図である。左から順に、ステップS12での加熱なし(室温)、60℃、100℃、150℃、200℃の加熱を行った場合を示す。破線はSC-1液のみで洗浄を行った場合のPREを示し、39.9%である。
 いずれの場合も、SC-1液のみでの洗浄に比べて高いPREが得られることが判る。なお、200℃に加熱した場合はパーティクル保持層の溶質成分は溶解しており、150℃に加熱した場合よりも大きくPREは低下している。
 図9は、SiN基板上にPSLのパーティクルを付着させ、図6と同様の洗浄を行った場合の所定の粒径以上のPREを測定した結果を示す図である。左から順に、ステップS12での加熱なし(室温)、60℃、100℃、150℃の加熱を行った場合を示す。破線はSC-1液のみで洗浄を行った場合のPREを示し、0.5%である。いずれの場合も、SC-1液のみでの洗浄に比べて非常に高いPREが得られることが判る。
 図6ないし図9から、本実施の形態の洗浄方法により、基板9の種類に依存することなく高いPREを得られることが判る。
 図10は、PREのさらに他の測定結果を示す図である。符号821にて示す線は、パターンを有しない基板に厚さ30nmのパーティクル保持層を形成した場合の、加熱温度とPREとの関係を示す。符号822にて示す線は、パターンを有する基板に厚さ30nmのパーティクル保持層を形成した場合の、加熱温度とPREとの関係を示す。符号831にて示す線は、パターンを有しない基板に厚さ75nmのパーティクル保持層を形成した場合の、加熱温度とPREとの関係を示す。符号832にて示す線は、パターンを有する基板に厚さ75nmのパーティクル保持層を形成した場合の、加熱温度とPREとの関係を示す。いずれの場合も、パーティクルとしてSiO粒子が用いられた。
 図10から、加熱温度が200℃の場合、150℃の場合よりもPREが低下することが判る。特に、基板上にパターンが形成されている場合、200℃に加熱されてパーティクル保持層が除去液に対して可溶性になると、PREが急激に低下する。なお、図10では、150℃よりも加熱温度が低い場合、PREは低下しているが、これは溶媒の揮発が不十分であった可能性がある。
 以上のことから、パーティクル保持層の溶質成分の除去液に対する不溶性を敢えて維持することにより、溶質成分を溶解させる場合よりもPREを向上することができるといえる。また、変質させずになるべく高い温度で加熱することにより、効率よくパーティクル保持層を固化また硬化させることができ、高いPREを短時間で実現することができる。この手法は、パターンが形成された基板9の洗浄に特に適している。また、従来のSC-1液のスプレーを用いる物理洗浄に比べてパターンに与えるダメージは小さい。
 図11Aは、基板9上に形成されたパーティクル保持層901を示す概念図である。パーティクル保持層901は、基板9上に付着しているパーティクル902の周囲を囲むようにしてパーティクル902を保持する。処理液から溶媒が揮発して溶質成分が収縮することにより、パーティクル保持層901は、基板9の表面からパーティクル902を引き離す。なお、溶媒の揮発による溶質成分の収縮のみならず、他の要因により溶質成分自体がさらに収縮する性質を有することが好ましい。他の要因としては、例えば、溶質成分自体の自然収縮、加熱による収縮、化学的変化が挙げられる。
 既述のように、パーティクル保持層901の溶質成分は除去液に対して不溶性であるため、除去液を基板9に供給することにより、図11Bに示すように、パーティクル保持層901は除去液から受ける物理的な力により、微細な断片903となって基板9から除去されると考えられる。これにより、パーティクル902はパーティクル保持層901から放出されることなく基板9から除去される。特に、溶媒が除去液に対して可溶性であるため、基板9とパーティクル保持層901との間に残存する溶媒が、基板9からのパーティクル保持層901の容易な剥離を実現していると考えられる。
 変質温度を有しないパーティクル保持層を溶解させずに基板から剥離する場合、特開2015-95583号公報に記載のように、パターンを有する基板からパーティクル保持層の剥離が困難になる。これは、パーティクル保持層が大きな塊のまま基板上に残留することが原因であると考えられる。しかし、このような問題は、変質温度を有するパーティクル保持層(正確には、溶質成分)の場合には現れないことが発明者により発見された。この場合、パーティクル保持層は、溶解させなくても肉眼で観察不可能な程度の微細な破片となって基板上から除去されると考えられる。そのため、パターンを有する基板であってもパーティクルを効率よく除去することができる。
 なお、除去液はノズルから弱い勢いで吐出されるため、除去液は液柱または大きな液滴として基板9上に供給される。したがって、従来のように勢いよくスプレー状に洗浄液を基板9に供給する場合と比べてパターン与えるダメージは小さい。
 上記実施の形態では、変質温度まで加熱した場合に除去液に対して可溶性となる処理液を、敢えて加熱することなく、または、変質温度未満かつ室温を超える温度まで加熱して利用することにより、高いPREを実現している。この効果は、熱により変質するパーティクル保持層が除去液で除去できるという性質を利用している。
 一方、パーティクル保持層の溶質成分が除去液に対して不溶性であるにも関わらず除去液で微細な断片となって基板から除去できるという性質は、他の要因により実現されてもよい。例えば、除去液に対して可溶性の溶媒の一部が揮発することなくパーティクル保持層に残存する場合、溶質成分の分子の間に溶媒の分子が入り込むことによって、不溶性の溶質成分の除去液による除去、すなわち、パーティクル保持層(正確には、溶質成分)の除去液による除去が実現されてもよい。この場合、溶質成分が加熱することにより除去液に対して可溶性となる性質は必ずしも必要ではない。
 図2に示す基板洗浄装置4の加熱部46は、加熱プレート461により基板9の加熱、すなわち、パーティクル保持層の加熱を行うが、パーティクル保持層の加熱には他の様々な手法が採用可能である。例えば、基板9はランプからの光の照射により加熱されてもよい。加熱される面は、基板9の上面91でも下面92でもよい。基板9の上面91に加熱されたプレートが近づけられることによりパーティクル保持層の加熱が行われてもよい。また、以下に説明するように加熱されたDIWや他の液を基板9に供給することにより、パーティクル保持層の加熱が行われてもよい。
 次に、基板洗浄装置4の他の幾つかの動作例について説明する。好ましい一の動作例では、図3のステップS12に代えて、図12のステップS12aにて示すように、水平姿勢の基板9の下面に加熱されたDIWを供給することにより、基板9の加熱、すなわち、パーティクル保持層の加熱が行われる。パーティクル保持層は、室温よりも高く、かつ、100℃未満の温度まで加熱される。パーティクル保持層の加熱により、パーティクル保持層に収縮が生じる。この動作例の場合、加熱部46として、下ノズル456から吐出されるDIWを予め加熱するヒータが設けられ、ヒータおよび下ノズル456が加熱部46として機能する。
 DIWにより基板9の加熱を行う場合、加熱プレート461は省略可能である。基板9の下面に加熱されたDIWを供給することにより、洗浄対象である上面に影響を与えることなく、簡単な構造で基板9を加熱することができる。基板洗浄装置4の動作は、基板9の下面に加熱したDIWを供給してパーティクル保持層の加熱が行われる点を除いて、図3と同様である。なお、好ましくは、ステップS13の常温のDIWの供給は行われるが、省略されてよい。
 図13のステップS12bにて示すように、基板9の加熱は、水平姿勢の基板9の上面に加熱されたDIWを供給することにより行われてもよい。ステップS12bは、図3のステップS12およびS13を合わせた工程となる。この動作例の場合、加熱部46として、第2ノズル454から吐出されるDIWを予め加熱するヒータが設けられる。ヒータおよび第2ノズル454は加熱部46として機能する。DIWにより基板9の加熱を行うため、加熱プレート461は省略可能である。基板9の上面に加熱されたDIWを供給することにより、パーティクル保持層に残留する溶媒の除去および加熱によりパーティクル保持層の収縮が生じると考えられる。
 なお、DIWの供給によりパーティクル保持層の溶質成分の一部が基板9上から除去される可能性があるが、通常、DIWではパーティクル保持層の完全な除去は生じないことから、DIWはステップS14における除去液としての機能は有しない。基板9の加熱は、水平姿勢の基板9の上面および下面に加熱されたDIWを供給することにより行われてもよい。この動作も、図3のステップS12およびS13を合わせた工程である。
 図14のステップS14aにて示すように、図3のステップS14に代えて、除去液供給部442により、加熱された除去液が基板9上に供給されてもよい。すなわち、変質温度を下回る温度まで加熱された除去液が、水平姿勢の基板9の上面に供給される。ステップS14aは、図3のステップS12におけるパーティクル保持層の加熱工程を兼ねる。したがって、通常は、ステップS12は省略される。しかし、ステップS12が行われた上で、ステップS14aが行われてもよい。
 加熱された除去液の供給が行われる場合、ステップS13のDIWの供給は行われなくてもよく、行われてもよい。ステップS14aのみではパーティクル保持層の加熱が十分でない場合、図12および図13に示したステップS12aおよび/またはS12bによる加熱されたDIWの供給がステップS14aの前に行われてもよい。加熱された除去液の供給により、パーティクル保持層の加熱と除去液の供給とを同時に行うことができる。
 図15ないし図17は、パーティクル保持層を形成する段階でパーティクル保持層を加熱する例を示す図である。図3のステップS11に代えて行われる図15のステップS11aでは、処理液供給部441により、加熱された処理液が基板9上に供給される。すなわち、水平姿勢の基板9の上面上に変質温度を下回る温度まで加熱された処理液が供給される。これにより、パーティクル保持層の形成と並行して溶媒が揮発し、パーティクル保持層の収縮によるパーティクルの基板9からの分離が促進される。
 図3のステップS11に代えて行われる図16のステップS11bでは、基板9の加熱と処理液の供給とが並行して行われる。すなわち、パーティクル保持層の形成とパーティクル保持層の加熱とが同時に行われる。パーティクル保持層が形成されつつ溶媒の揮発および加熱によりパーティクル保持層は収縮する。基板9の変質温度未満の加熱は、例えば、図2の加熱部46を用いて行われる。加熱は、既述のように基板9の上面や下面にランプからの光を照射したり、基板9の上面に加熱されたプレートを近づけたり、基板9の下面に加熱されたDIWを供給する等の他の手法により行われてもよい。
 図3のステップS11に代えて行われる図17のステップS11cおよびS11dでは、基板9の加熱が行われた後、処理液の供給が行われる。換言すれば、処理液の供給の前に変質温度を下回る温度まで基板9が加熱される。ステップS11cにおける基板9の変質温度未満の加熱は、例えば、図2の加熱部46を用いて行われる。加熱は、図12や図13に示すように、加熱されたDIWの供給により行われてもよく、既述のように、基板9の上面や下面にランプからの光を照射したり、基板9の上面に加熱されたプレートを近づける等の他の手法により行われてもよい。なお、処理液の供給前または供給途上に基板9を加熱する工程と、加熱された処理液を基板9に供給する工程の双方が行われてもよい。
 図15ないし図17に示すように、パーティクル保持層の形成とほぼ同時にパーティクル保持層の加熱が行われる場合、原則として、ステップS12によるパーティクル保持層の加熱や加熱されたDIWまたは除去液の供給は不要である。しかし、これらの工程は行われてもよい。もちろん、ステップS13にて常温のDIWが基板9の上面に供給されてもよい。
 図3のステップS12においてパーティクル保持層の加熱を行う構成である加熱部と、図16のステップS11bおよび図17のステップS11cにおいてパーティクル保持層の加熱を行う加熱部とは、異なるものであってもよい。例えば、ステップS11bまたはS11cでは加熱プレート461にて基板9が加熱され、ステップS12では加熱されたDIWにより基板9が加熱されてもよい。換言すれば、除去液が基板9に供給される前に基板9を加熱する加熱部と、処理液が基板9に供給される前に、または、供給と並行して基板9を加熱する他の加熱部とは、異なっても同一でもよい。
 上記基板洗浄システム1および基板洗浄装置4では様々な変形が可能である。
 処理液供給部441による処理液の供給は、ノズルからの吐出以外の方法により行われてよい。除去液供給部442やリンス液供給部443による除去液やリンス液の供給も、ノズルからの吐出以外の方法により行われてよい。好ましくは、基板9の表面のパターンにダメージを与えにくい手法が採用される。
 基板9の加熱によるパーティクル保持層の加熱として、さらに他の手法を採用することが可能である。例えば、高温のガスが基板9の上面91や下面92に供給されることにより、基板9が加熱されてもよい。
 基板9の加熱は専用の他のチャンバ内で行われてもよい。さらには、パーティクル保持層の形成、加熱、パーティクル保持層の除去は、それぞれ異なるチャンバ内で行われてもよい。
 上記実施の形態では、パーティクル保持層の溶質成分は、変質温度まで加熱されることにより、非水溶性から水溶性に変化するが、除去液に対して不溶性から可溶性に変化するのであれば、様々な溶質成分および除去液が利用されてよい。溶媒も、除去液に対して可溶性であれば、水溶性には限定されない。
 パーティクル保持層の加熱温度は、変質温度未満であればよく、パーティクル保持層が若干水溶性に変化する温度であってもよい。パーティクル保持層の溶質成分は、除去液に対して完全に不溶性である必要はなく、難溶性であってもよい。
 処理液に含まれる揮発性を有する溶媒は、好ましくは有機系、すなわち、有機化合物であるが、他の揮発性を有する物質が含まれていてもよい。上記実施の形態では、溶質は、ポリマーであるが、ポリマー以外の有機化合物であってもよい。さらには、有機化合物と他の物質との混合物であってもよいし、有機系以外の化合物であってもよい。
 除去液はSC-1液には限定されない。除去されたパーティクル保持層の再付着を防止するためには、SC-1液またはアンモニア水溶液が好ましいが、他の除去液が使用されてもよい。
 基板洗浄装置4における洗浄工程には、上記実施の形態にて示した工程に他の工程が追加されてよい。例えば、各工程に前処理や後処理が追加されてよい。
 基板洗浄システム1にて洗浄される基板9はSi基板やSiN基板には限定されず、他の半導体基板であってもよい。基板9は半導体基板には限定されず、液晶表示装置用ガラス基板、有機EL表示装置用ガラス基板、プラズマディスプレイ用ガラス基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用ガラス基板、太陽電池用基板等の他の基板であってもよい。
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。
 4  基板洗浄装置
 9  基板
 10  制御部
 42  基板保持部
 46  加熱部
 441  処理液供給部
 442  除去液供給部
 901  パーティクル保持層
 S11~S14,S11a,S11b,S11c,S12a,S12b,S14a  ステップ

Claims (16)

  1.  基板洗浄装置であって、
     基板上に、溶媒および溶質を含む処理液を供給する処理液供給部と、
     前記基板上に、除去液を供給する除去液供給部と、
     前記処理液供給部および前記除去液供給部を制御する制御部と、
    を備え、
     前記溶媒は揮発性を有し、
     前記基板上に供給された前記処理液から前記溶媒の少なくとも一部が揮発して前記処理液が固化または硬化することにより、前記処理液がパーティクル保持層となり、
     前記パーティクル保持層に含まれる前記溶質である溶質成分、または、前記溶質から導かれる溶質成分は、前記除去液に対して不溶性または難溶性であり、前記溶媒は、前記除去液に対して可溶性であり、
     前記パーティクル保持層に含まれる前記溶質成分は、変質温度以上に加熱した場合に変質して前記除去液に対して可溶性になる性質を有し、
     前記制御部の制御により、前記基板上に前記パーティクル保持層が形成された後、前記パーティクル保持層の前記溶質成分を変質させる工程を経ることなく前記除去液供給部から前記パーティクル保持層に前記除去液が供給されることにより、前記基板上から前記パーティクル保持層が除去される。
  2.  請求項1に記載の基板洗浄装置であって、
     前記パーティクル保持層を加熱する加熱部、をさらに備え、
     前記制御部の制御により、前記除去液が前記パーティクル保持層に供給される前に、前記加熱部により、前記パーティクル保持層が前記変質温度を下回る温度まで加熱される。
  3.  請求項2に記載の基板洗浄装置であって、
     前記処理液供給部により、前記処理液が水平姿勢の前記基板の上面に供給され、
     前記加熱部が、加熱された脱イオン水を前記基板の下面に供給することにより、前記パーティクル保持層を加熱する。
  4.  請求項2または3に記載の基板洗浄装置であって、
     前記処理液供給部により、前記処理液が水平姿勢の前記基板の上面に供給され、
     前記加熱部が、加熱された脱イオン水を前記基板の上面に供給することにより、前記パーティクル保持層を加熱する。
  5.  請求項1ないし4のいずれか1つに記載の基板洗浄装置であって、
     前記除去液供給部が、前記変質温度を下回る温度まで加熱された前記除去液を前記基板上に供給する。
  6.  請求項1ないし5のいずれか1つに記載の基板洗浄装置であって、
     前記処理液供給部が、前記変質温度を下回る温度まで加熱された前記処理液を前記基板上に供給する。
  7.  請求項1ないし6のいずれかに記載の基板洗浄装置であって、
     前記処理液が前記基板に供給される前に、または、供給と並行して、前記基板を前記変質温度を下回る温度まで加熱する他の加熱部をさらに備える。
  8.  請求項1ないし7のいずれか1つに記載の基板洗浄装置であって、
     基板を保持する基板保持部、をさらに備え、
     前記基板が前記基板保持部に保持された状態で、前記基板への前記処理液の供給から前記基板への前記除去液の供給までの工程が行われる。
  9.  基板洗浄方法であって、
     a)基板上に、溶媒および溶質を含む処理液を供給する工程と、
     b)前記基板上に、除去液を供給する工程と、
    を備え、
     前記溶媒は揮発性を有し、
     前記a)工程において、前記基板上に供給された前記処理液から溶媒の少なくとも一部が揮発して前記処理液が固化または硬化することにより、前記処理液がパーティクル保持層となり、
     前記パーティクル保持層に含まれる前記溶質である溶質成分、または、前記溶質から導かれる溶質成分は、前記除去液に対して不溶性または難溶性であり、前記溶媒は、前記除去液に対して可溶性であり、
     前記パーティクル保持層に含まれる前記溶質成分は、変質温度以上に加熱した場合に変質して前記除去液に対して可溶性になる性質を有し、
     前記a)工程の後、前記パーティクル保持層の前記溶質成分を変質させる工程を経ることなく前記b)工程が実行されることにより、前記基板上から前記パーティクル保持層が除去される。
  10.  請求項9に記載の基板洗浄方法であって、
     前記a)工程と前記b)工程との間に、
     c)前記パーティクル保持層を前記変質温度を下回る温度まで加熱する工程、
    をさらに備える。
  11.  請求項10に記載の基板洗浄方法であって、
     前記a)工程において、前記処理液が水平姿勢の前記基板の上面に供給され、
     前記c)工程において、加熱された脱イオン水が前記基板の下面に供給されることにより、前記パーティクル保持層が加熱される。
  12.  請求項10または11に記載の基板洗浄方法であって、
     前記a)工程において、前記処理液が水平姿勢の前記基板の上面に供給され、
     前記c)工程において、加熱された脱イオン水が前記基板の上面に供給されることにより、前記パーティクル保持層が加熱される。
  13.  請求項9ないし12のいずれか1つに記載の基板洗浄方法であって、
     前記b)工程において、前記変質温度を下回る温度まで加熱された前記除去液が前記基板上に供給される。
  14.  請求項9ないし13のいずれか1つに記載の基板洗浄方法であって、
     前記a)工程において、前記変質温度を下回る温度まで加熱された前記処理液が前記基板上に供給される。
  15.  請求項9ないし14のいずれか1つに記載の基板洗浄方法であって、
     前記a)工程の前または前記a)工程において、前記基板が前記変質温度を下回る温度まで加熱される。
  16.  請求項9ないし15のいずれか1つに記載の基板洗浄方法であって、
     前記基板が同一の基板保持部に保持された状態で、前記基板への前記処理液の供給から前記基板への前記除去液の供給までの工程が行われる。
PCT/JP2017/046090 2017-01-05 2017-12-22 基板洗浄装置および基板洗浄方法 WO2018128093A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197018180A KR102182951B1 (ko) 2017-01-05 2017-12-22 기판 세정 장치 및 기판 세정 방법
CN202310622850.4A CN116646279A (zh) 2017-01-05 2017-12-22 基板清洗装置及基板清洗方法
KR1020207033239A KR102285776B1 (ko) 2017-01-05 2017-12-22 기판 세정 장치 및 기판 세정 방법
CN201780080558.7A CN110121762B (zh) 2017-01-05 2017-12-22 基板清洗装置及基板清洗方法
US16/471,629 US11413662B2 (en) 2017-01-05 2017-12-22 Substrate cleaning apparatus and substrate cleaning method
US17/859,809 US11919051B2 (en) 2017-01-05 2022-07-07 Substrate cleaning apparatus and substrate cleaning method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017000676 2017-01-05
JP2017-000676 2017-01-05
JP2017241845A JP6951229B2 (ja) 2017-01-05 2017-12-18 基板洗浄装置および基板洗浄方法
JP2017-241845 2017-12-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/471,629 A-371-Of-International US11413662B2 (en) 2017-01-05 2017-12-22 Substrate cleaning apparatus and substrate cleaning method
US17/859,809 Continuation US11919051B2 (en) 2017-01-05 2022-07-07 Substrate cleaning apparatus and substrate cleaning method

Publications (1)

Publication Number Publication Date
WO2018128093A1 true WO2018128093A1 (ja) 2018-07-12

Family

ID=62791107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046090 WO2018128093A1 (ja) 2017-01-05 2017-12-22 基板洗浄装置および基板洗浄方法

Country Status (4)

Country Link
US (1) US11919051B2 (ja)
JP (1) JP7232299B2 (ja)
CN (1) CN116646279A (ja)
WO (1) WO2018128093A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161525A (ja) * 2019-03-25 2020-10-01 株式会社Screenホールディングス 基板処理方法および基板処理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101970A (ja) * 1997-09-29 1999-04-13 Advanced Display Inc 基板洗浄方法
JP2015095583A (ja) * 2013-11-13 2015-05-18 東京エレクトロン株式会社 基板洗浄方法、基板洗浄システムおよび記憶媒体

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421897A (en) * 1992-07-17 1995-06-06 Grawe; John Abatement process for contaminants
US20020088608A1 (en) 1999-07-26 2002-07-11 Park Chan-Hoon Method and apparatus for heating a wafer, and method and apparatus for baking a photoresist film on a wafer
US20040242121A1 (en) 2003-05-16 2004-12-02 Kazuto Hirokawa Substrate polishing apparatus
US7799141B2 (en) 2003-06-27 2010-09-21 Lam Research Corporation Method and system for using a two-phases substrate cleaning compound
US20060154186A1 (en) 2005-01-07 2006-07-13 Advanced Technology Materials, Inc. Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings
JP4727355B2 (ja) 2005-09-13 2011-07-20 株式会社フジクラ 成膜方法
JP2011101970A (ja) 2009-11-10 2011-05-26 Canon Inc 記録装置および記録方法
JP2011192885A (ja) 2010-03-16 2011-09-29 Toshiba Corp 半導体基板の洗浄方法
JP5254308B2 (ja) 2010-12-27 2013-08-07 東京エレクトロン株式会社 液処理装置、液処理方法及びその液処理方法を実行させるためのプログラムを記録した記録媒体
KR101811066B1 (ko) * 2011-07-12 2017-12-20 도쿄엘렉트론가부시키가이샤 액처리 장치 및 액처리 방법
JP2014039014A (ja) 2012-07-20 2014-02-27 Central Glass Co Ltd 撥水性保護膜及び保護膜形成用薬液
JP5586734B2 (ja) 2012-08-07 2014-09-10 東京エレクトロン株式会社 基板洗浄装置、基板洗浄システム、基板洗浄方法および記憶媒体
JP6054343B2 (ja) 2012-08-07 2016-12-27 東京エレクトロン株式会社 基板洗浄装置、基板洗浄システム、基板洗浄方法および記憶媒体
US8898928B2 (en) 2012-10-11 2014-12-02 Lam Research Corporation Delamination drying apparatus and method
JP5543633B2 (ja) 2012-11-26 2014-07-09 東京エレクトロン株式会社 基板洗浄システム、基板洗浄方法および記憶媒体
JP6000822B2 (ja) 2012-11-26 2016-10-05 東京エレクトロン株式会社 基板洗浄方法および基板洗浄システム
TWI517235B (zh) 2013-03-01 2016-01-11 栗田工業股份有限公司 半導體基板洗淨系統以及半導體基板的洗淨方法
US20150064911A1 (en) 2013-08-27 2015-03-05 Tokyo Electron Limited Substrate processing method, substrate processing apparatus and storage medium
JP5977720B2 (ja) 2013-08-27 2016-08-24 東京エレクトロン株式会社 基板処理方法、基板処理システムおよび記憶媒体
JP6308910B2 (ja) 2013-11-13 2018-04-11 東京エレクトロン株式会社 基板洗浄方法、基板洗浄システムおよび記憶媒体
JP6371253B2 (ja) 2014-07-31 2018-08-08 東京エレクトロン株式会社 基板洗浄システム、基板洗浄方法および記憶媒体
JP6426936B2 (ja) * 2014-07-31 2018-11-21 東京エレクトロン株式会社 基板洗浄方法および記憶媒体
KR20180059442A (ko) 2015-09-30 2018-06-04 제이에스알 가부시끼가이샤 반도체 기판 세정용 막 형성 조성물 및 반도체 기판의 세정 방법
US10734255B2 (en) * 2016-05-25 2020-08-04 Tokyo Electron Limited Substrate cleaning method, substrate cleaning system and memory medium
JP6951229B2 (ja) * 2017-01-05 2021-10-20 株式会社Screenホールディングス 基板洗浄装置および基板洗浄方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101970A (ja) * 1997-09-29 1999-04-13 Advanced Display Inc 基板洗浄方法
JP2015095583A (ja) * 2013-11-13 2015-05-18 東京エレクトロン株式会社 基板洗浄方法、基板洗浄システムおよび記憶媒体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161525A (ja) * 2019-03-25 2020-10-01 株式会社Screenホールディングス 基板処理方法および基板処理装置
WO2020195722A1 (ja) * 2019-03-25 2020-10-01 株式会社Screenホールディングス 基板処理方法および基板処理装置
KR20210139418A (ko) * 2019-03-25 2021-11-22 가부시키가이샤 스크린 홀딩스 기판 처리 방법 및 기판 처리 장치
JP7191748B2 (ja) 2019-03-25 2022-12-19 株式会社Screenホールディングス 基板処理方法および基板処理装置
KR102652831B1 (ko) * 2019-03-25 2024-03-29 가부시키가이샤 스크린 홀딩스 기판 처리 방법 및 기판 처리 장치

Also Published As

Publication number Publication date
US11919051B2 (en) 2024-03-05
JP2021192463A (ja) 2021-12-16
CN116646279A (zh) 2023-08-25
US20220339676A1 (en) 2022-10-27
JP7232299B2 (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
JP6951229B2 (ja) 基板洗浄装置および基板洗浄方法
KR101932160B1 (ko) 기판 세정 시스템, 기판 세정 방법 및 기억 매체
TWI553699B (zh) A substrate cleaning device, a substrate cleaning system, a substrate cleaning method and a memory medium
TWI566293B (zh) Substrate cleaning method and substrate cleaning system
JP5681560B2 (ja) 基板乾燥方法及び基板処理装置
JP6308910B2 (ja) 基板洗浄方法、基板洗浄システムおよび記憶媒体
JP6325067B2 (ja) 基板乾燥方法及び基板処理装置
KR20150055591A (ko) 기판 세정 방법, 기판 세정 시스템 및 기억 매체
JP7008489B2 (ja) 基板処理方法および基板処理装置
JP6356207B2 (ja) 基板乾燥方法及び基板処理装置
JP2015092619A (ja) 基板乾燥方法及び基板処理装置
JP6982478B2 (ja) 基板洗浄方法および基板洗浄装置
JP2018139331A (ja) 基板乾燥方法及び基板処理装置
JP7232299B2 (ja) 基板洗浄装置および基板洗浄方法
JP7053835B2 (ja) 基板処理方法及び基板処理装置
TWI648767B (zh) 基板處理方法及基板處理裝置
WO2019230404A1 (ja) 基板処理方法および基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197018180

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890795

Country of ref document: EP

Kind code of ref document: A1