WO2018121104A1 - 一种csp芯片级封装件及封装方法 - Google Patents

一种csp芯片级封装件及封装方法 Download PDF

Info

Publication number
WO2018121104A1
WO2018121104A1 PCT/CN2017/110638 CN2017110638W WO2018121104A1 WO 2018121104 A1 WO2018121104 A1 WO 2018121104A1 CN 2017110638 W CN2017110638 W CN 2017110638W WO 2018121104 A1 WO2018121104 A1 WO 2018121104A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent
film
scale package
chip scale
parts
Prior art date
Application number
PCT/CN2017/110638
Other languages
English (en)
French (fr)
Inventor
兰有金
Original Assignee
江苏稳润光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏稳润光电有限公司 filed Critical 江苏稳润光电有限公司
Publication of WO2018121104A1 publication Critical patent/WO2018121104A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to the field of flip chip packaging, and in particular to a CSP chip scale package and a packaging method.
  • Chip Scale Package has become the most topical technology in the LED industry in 2013. Compared with CSP technology, it has been in the semiconductor industry for many years. CSP is still an advanced technology in the LED industry. It is said that the development of CSP technology in the past is to reduce the package size, improve the heat dissipation problem and improve the reliability of the chip.
  • the industry has defined the CSP technology as the package volume is the same as the LED chip, or the volume is not more than LED chip 20%, and fully functional package components.
  • the booming development of CSP technology in the semiconductor industry comes from the development of miniaturization of package size and improvement of heat dissipation, in response to the demand for semiconductor wafers to shrink and the number of pins to increase.
  • CSP technology not only reduces device parasitics, but also improves the integration level of Level 2 package.
  • the innovation of packaging technology will inevitably extend to the semiconductor industry. Under the characteristics of space demand, the development trend of CSP technology in LED industry is already Forming.
  • CSP is suitable for the general lighting market due to its small size, large illumination angle, high current drive, excellent heat dissipation performance and high reliability.
  • the lighting market demand is currently the market with the largest LED demand, accounting for more than 40% of the total LED market share.
  • the lighting chip devices in the domestic market are mainly 2835, with a power of 0.5W, and gradually develop to 1W and higher power.
  • the high reliability of CSP products can replace 2835 products in the future market, and some well-known foreign packaging companies are also vigorously developing CSP products.
  • Fluorescent film is a commonly used material in the packaging process. Currently, yellow phosphor is commonly used, and its price is relatively high. It is also expected to develop low-cost and high-performance products while developing higher-power and more energy-saving package products. Packaged products.
  • the object of the present invention is to provide a CSP chip-scale package and a packaging method for overcoming the deficiencies of the prior art, and to improve the utilization rate of the chip.
  • a CSP chip scale package comprising a fluorescent film covered flip chip, wherein the fluorescent film is formed by curing a red phosphor, a green phosphor, a fluorescent carbon dot solution having blue light emission, and an organic binder.
  • the organic binder is composed of bisphenol A epoxy resin, polyoxyethylene ether, toluene diisocyanate, antioxidant, ammonium hydrogen sulfate and antifoaming agent.
  • the fluorescent carbon dot solution having blue light emission is obtained by hydrothermal reaction of citric acid and ethylene diamine.
  • the fluorescent film is prepared by uniformly mixing a red phosphor, a green phosphor, a fluorescent carbon dot solution having blue light emission, and an organic binder on a film forming mold. And then at After curing at 80-90 ° C for 2-3 h, the film after preliminary curing is removed, and then cured at 120-130 ° C for 1-2 h.
  • the antioxidant in the organic binder component is triethyl phosphite
  • the antifoaming agent is a silicone defoamer
  • the steps of preparing the organic binder are as follows:
  • Step one 70-80 parts by weight of bisphenol A epoxy resin, 2-5 parts of polyoxyethylene ether, 2-7 parts of toluene diisocyanate and 3-5 parts of ammonium hydrogen sulfate are stirred and mixed uniformly to obtain materials.
  • Step 2 the material is transferred into the reaction vessel, and the temperature is raised to 80-90 ° C under inert gas protection conditions, and maintained for 120-150 minutes to obtain the second material;
  • the third step 0.02-0.06 parts of the antifoaming agent and 0.2-0.5 parts of the antioxidant are added to the second material, and the mixture is uniformly mixed, and vacuum defoaming is performed to obtain an organic binder.
  • glacial acetic acid is further added to the citric acid and ethylenediamine by hydrothermal reaction, and the mass ratio of glacial acetic acid to citric acid added is 0.02-0.06:1.
  • the CSP chip scale package has a blue light emitting fluorescent carbon dot solution prepared by adding 10-18 parts by weight of citric acid, 30-50 parts of deionized water and ethylenediamine 3- 5 parts, stirred and mixed, added to the hydrothermal kettle, and hydrothermally reacted at 170-180 ° C for 5-6 h to obtain a fluorescent carbon dot solution with blue light emission, and the prepared water having a blue-emitting fluorescent carbon dot solution was evaporated. After 80-90%, it is used to prepare a fluorescent film, wherein the mass ratio of the red phosphor, the green phosphor, the fluorescent carbon dot solution with blue light emission and the organic binder after the evaporation of the fluorescent film is 0.2:0.3: 300:1000.
  • the CSP chip scale package provided by the invention is formed by directly covering the flip chip with a fluorescent film, wherein the fluorescent film is prepared by using a red phosphor, a green phosphor and a fluorescent carbon dot solution with blue emission and a specific organic binder. It forms white light through three kinds of fluorescence, avoids the use of common yellow phosphors, and uses blue-emitting fluorescent carbon dot solution instead of blue phosphor, and the specific organic binder can enhance the electrical performance. , further reducing the amount of phosphor used.
  • the invention provides a CSP chip scale package, wherein a fluorescent film is prepared by adding a glacial acetic acid to a fluorescent carbon dot solution having a blue light emission during the preparation process, and it is found that the nano colloidal particles in the formed solution can be obtained.
  • the addition of glacial acetic acid increases the ionization of the solution, further enhancing the fluorescence effect.
  • the binder can be cured with a fluorescent film to form a fluorescent film, and the phosphor and the fluorescent carbon are irradiated during the ultraviolet irradiation of the fluorescent film.
  • the point light emits synergistic interaction, which promotes the excitation of light to a certain extent and improves the light efficiency.
  • the CSP chip-scale package provided by the invention does not need a substrate substrate, and the chip is fixed on the blue film by using a blue film with double-sided adhesiveness, and the blue film is removed after the molding is completed, and the flip chip is used.
  • the electrode is at the bottom of the chip and does not require gold wire soldering. It saves the process of soldering wire compared to the finished product and reduces the number of process steps. Small size, easy to install, high brightness, fast heat dissipation, long life, high power can replace other small and medium power models.
  • the invention provides a CSP chip scale package comprising a fluorescent film covered flip chip, wherein the fluorescent film is formed by curing a red phosphor, a green phosphor, a fluorescent carbon dot solution having blue light emission, and an organic binder.
  • the above package is to place the flip chip on the viscous blue film, press the fluorescent film on the flip chip with a laminating machine, heat and bake the film after lamination, firstly bake at 80-100 ° C. 2h, then continue to cure at 130-140 ° C for 2-3 h, so that the fluorescent film and flip chip better combined, while eliminating bubbles, get CSP chip scale package.
  • the fluorescent film used above is formed by curing a red phosphor, a green phosphor, a fluorescent carbon dot solution having blue light emission, and an organic binder, and it is relatively easy to obtain a blue light emission by hydrothermal reaction using citric acid and ethylenediamine.
  • the fluorescent carbon dot solution is relatively easy to control, and therefore the present invention uses the above method to prepare a fluorescent carbon dot solution having blue light emission, which is capable of stably emitting blue light under ultraviolet conditions.
  • the preparation method comprises the following steps: 10-18 parts of citric acid, 30-50 parts of deionized water and 3-5 parts of ethylenediamine in parts by weight, stirred and mixed, and added to a hydrothermal kettle, and water is obtained at 170-180 ° C.
  • Thermal reaction 5-6h gives a fluorescent carbon dot solution with blue light emission.
  • the fluorescent carbon dot solution prepared above can produce bright blue fluorescence under ultraviolet light, and it is found through the adjustment of components in the hydrothermal reaction that the luminance and luminescence stability are comprehensive under the composition range and control conditions provided above. best effect.
  • the water of the fluorescent carbon dot solution prepared above is evaporated by 80-90%, and then uniformly mixed with the red phosphor, the green phosphor and the organic binder, and laid flat on the film forming mold, and then at 80-90. After curing at °C for 2-3 h, the film after preliminary curing was removed, and then cured at 120-130 ° C for 1-2 h to obtain a fluorescent film.
  • the above organic binder used in the preparation of the fluorescent film is a specific adhesive provided by the invention, which is composed of bisphenol A epoxy resin, polyoxyethylene ether, toluene diisocyanate, antioxidant, ammonium hydrogen sulfate and antifoaming agent.
  • the specific preparation steps are as follows:
  • Step one 70-80 parts by weight of bisphenol A epoxy resin, 2-5 parts of polyoxyethylene ether, 2-7 parts of toluene diisocyanate and 3-5 parts of ammonium hydrogen sulfate are stirred and mixed uniformly to obtain materials.
  • Step 2 the material is transferred into the reaction vessel, and the temperature is raised to 80-90 ° C under inert gas protection conditions, and maintained for 120-150 minutes to obtain the second material;
  • the silicone antifoaming agent and 0.2-0.5 parts of the antioxidant triethyl phosphite are added to the second material, and the mixture is uniformly mixed, and vacuum defoaming is performed to obtain an organic binder.
  • the above vacuum defoaming is carried out in a vacuum deaerator.
  • the organic binder prepared by the above method can provide a good adhesion curing effect while being applied to the package of the present invention, and can enhance the light effect while improving the color rendering index.
  • the mass ratio of the red phosphor, the green phosphor, and the fluorescent carbon dot solution having blue light emission after 80-90% evaporation of water and the organic binder is 0.2:0.3:300:1000.
  • the fluorescent film is prepared into a package, and the optical parameters of the package are measured. The results are as follows:
  • the above results show that the above several different fluorescent film group distribution ratio tests and comparative tests using the currently used encapsulants have been used. As a result, it can be seen that the fluorescent film of the present invention can simultaneously obtain high light efficiency and color development.
  • different distribution ratios of the fluorescent film groups are adopted.
  • the above comparative examples 1-3 are only selected for explanation. A large number of studies have found that red fluorescent powder and green fluorescent light are used in the preparation process of the fluorescent film of the present invention. When the mass ratio of the fluorescent carbon dot solution with blue light emission and the organic binder after the evaporation of water and water is 80-90% is 0.2:0.3:300:1000, the obtained fluorescent film is prepared into a package and the optical parameters of the package are tested.
  • the organic binder provided by the invention can simultaneously exert an effect on the optical performance of the fluorescent film at the same time, and is explained by the following comparative test:
  • the organic binder provided by the invention can improve the performance of the fluorescent film, and the addition of toluene diisocyanate and ammonium hydrogen sulfate to the two components can effectively improve the performance of the fluorescent film, and both of them are indispensable.
  • the addition of these two components in the binder and the phosphor and the carbon dot solution have a synergistic effect in the excitation luminescence process, further promoting the excitation luminescence, and the exact mechanism has not yet been obtained. .
  • the CSP chip scale package provided by the present invention obtains an LED package having excellent light efficiency and color rendering index through specific preparation of the fluorescent film, which significantly improves the utilization rate of the light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

提供一种CSP芯片级封装件及封装方法,封装件包括荧光膜覆盖的倒装芯片,其中荧光膜由红色荧光粉、绿色荧光粉、具有蓝光发射的荧光碳点溶液和有机粘合剂固化形成。封装方法为先将倒装芯片放置于粘性蓝膜上,然后使用压膜机将荧光膜覆盖在倒装芯片上,最后将其加热固化后除去粘性蓝膜,得到CSP芯片级封装件。通过特定的荧光组分配比以及有机粘合剂的固化,显著同时提高了显色性与光效。

Description

一种CSP芯片级封装件及封装方法 技术领域
本发明涉及倒装芯片封装领域,具体涉及一种CSP芯片级封装件及封装方法。
背景技术
晶片级封装(Chip Scale Package,CSP)成为2013年LED业界最具话题性技术,相较于CSP技术已在半导体产业行之有年,CSP在LED产业仍属先进技术,最新探讨CSP技术文章中谈到,CSP技术过去自在半导体(矽)的发展正是为了缩小封装体积、改善散热问题以及提升晶片可靠度,而业界已将CSP技术传统定义为封装体积与LED晶片相同,或是体积不大于LED晶片20%,且功能完整的封装元件。CSP技术在半导体产业的蓬勃发展来自于封装体积微型化的发展与改善散热问题,因应半导体晶片不断微缩、接脚数不断增加所衍生的需求。此外,CSP技术不但减少了器件寄生,还能提高Level 2封装的集成程度,封装技术的革新必然将延伸至半导体以外产业,LED产品在空间需求的特性下,CSP技术在LED产业的发展态势已然成形。
目前侧入式背光LED产品种类较多,如:3014、4014、5630、5730、7020等,而直下式背光产品相对较少,CSP LED可以针对直下式背光领域而开发的出的封装形式,在直下式背光领域应用非常广泛,直下式背光已成为主流的背光方式。
CSP因其小尺寸、大发光角度、大电流驱动、优异的散热性能及高可靠性适用于通用照明市场,照明市场需求目前是LED需求最大的市场,约占整个LED市场份额的40%以上。目前国内市场照明类贴片器件以2835为主,功率0.5W,并逐步向1W及更高功率发展。CSP产品的高可靠性在未来市场是可以代替2835产品,国外一些知名封装企业也在大力发展CSP产品。而荧光膜是封装过程中常用的材料,目前常用的是黄色荧光粉,其价格较高用量也较大,在向更高功率更节能的封装产品开发的同时也更希望能够开发低成本高性能的封装产品。
发明内容
本发明的目的在于为了克服以上现有技术的不足而提供一种CSP芯片级封装件及封装方法,提高芯片发光利用率。
本发明的技术方案如下:
一种CSP芯片级封装件,包括荧光膜覆盖的倒装芯片,其中荧光膜由红色荧光粉、绿色荧光粉、具有蓝光发射的荧光碳点溶液和有机粘合剂固化形成。
进一步地,所述的CSP芯片级封装件,所述有机粘合剂为由双酚A环氧树脂、聚氧乙烯醚、甲苯二异氰酸酯、抗氧化剂、硫酸氢铵和消泡剂组成。
进一步地,所述的CSP芯片级封装件,所述具有蓝光发射的荧光碳点溶液为柠檬酸与乙二胺通过水热反应得到。
进一步地,所述的CSP芯片级封装件,荧光膜的制备方法为将红色荧光粉、绿色荧光粉、具有蓝光发射的荧光碳点溶液和有机粘合剂混合均匀后平铺于成膜模具上,然后在 80-90℃条件下固化2-3h,将初步固化后的膜取下,然后再在120-130℃条件下固化1-2h得到。
进一步地,所述的CSP芯片级封装件,有机粘合剂组分中抗氧化剂为亚磷酸三乙酯,消泡剂为有机硅消泡剂。
进一步地,所述的CSP芯片级封装件,有机粘合剂的制备方法步骤如下:
步骤一,将以重量份计的双酚A环氧树脂70-80份,聚氧乙烯醚2-5份,甲苯二异氰酸酯2-7份和硫酸氢铵3-5份搅拌混合均匀,得到物料一;
步骤二,将物料一转入反应釜中,在惰性气体保护条件下升温至80-90℃,保持120-150分钟,得到物料二;
步骤三,将在物料二中加入消泡剂0.02-0.06份和抗氧化剂0.2-0.5份,混合均匀,进行真空脱泡后得到有机粘合剂。
更进一步地,所述的CSP芯片级封装件,柠檬酸与乙二胺通过水热反应中还加入了冰醋酸,且加入的冰醋酸与柠檬酸的质量比为0.02-0.06:1。
更进一步地,所述的CSP芯片级封装件,具有蓝光发射的荧光碳点溶液制备方法为将以重量份计的柠檬酸10-18份、去离子水30-50份和乙二胺3-5份,搅拌混合后加入到水热釜中,在170-180℃条件下水热反应5-6h得到具有蓝光发射的荧光碳点溶液,将制备得到的具有蓝光发射的荧光碳点溶液的水分蒸发80-90%后用于制备荧光膜,其中荧光膜制备方法中红色荧光粉、绿色荧光粉、水分蒸发后的具有蓝光发射的荧光碳点溶液和有机粘合剂的质量比为0.2:0.3:300:1000。
一种权利要求1所述的CSP芯片级封装件的封装方法,先将倒装芯片放置于粘性蓝膜上,然后使用压膜机将荧光膜覆盖在倒装芯片上,最后将其加热固化后除去粘性蓝膜,得到CSP芯片级封装件。
本发明提供的CSP芯片级封装件,通过荧光膜直接覆盖于倒装芯片形成,其中荧光膜采用了红色荧光粉、绿色荧光粉和具有蓝光发射的荧光碳点溶液以及特定的有机粘合剂制备而成,通过三种荧光形成白光,避免了使用常用的黄色荧光粉,同时使用蓝光发射的荧光碳点溶液代替蓝色荧光粉,且采用的特定有机粘合剂能够起到增强电学性能的效果,进一步减少了荧光粉的使用量。
本发明提供的CSP芯片级封装件,其中荧光膜在制备过程中,采用的具有蓝光发射的荧光碳点溶液中加入了冰醋酸,经研究发现,其能够对于所形成的溶液中的纳米胶体颗粒起到一定程度的解聚作用,同时加入冰醋酸后,溶液电离度增强,进一步增强了荧光效果。有机粘合剂中引入的甲苯二异氰酸酯和硫酸氢铵两种组分形成粘合剂后,该粘合剂能够在固化形成荧光膜后在经紫外照射荧光膜发光过程中与荧光粉及荧光碳点发光进行协同互动,在一定程度上促进激发发光,提高光效。
本发明提供的CSP芯片级封装件,不需要基板衬底,用具有双面粘性的蓝膜将芯片固定在蓝膜上进行模压,模压完成烘烤后将蓝膜揭去,使用倒装芯片,电极在芯片底部,不需要金线焊接,跟正装产品相比省去焊线的工序,减少了工艺步骤。体积小易于安装,而且亮度高、散热快,寿命长,功率大可以替换其他中小功率型号的产品。
具体实施方式:
实施例1
本发明提供的一种CSP芯片级封装件,包括荧光膜覆盖的倒装芯片,其中荧光膜由红色荧光粉、绿色荧光粉、具有蓝光发射的荧光碳点溶液和有机粘合剂固化形成。
以上封装件是将倒装芯片放置于粘性蓝膜上,使用压膜机将荧光膜压合在倒装芯片上,压膜后进行加热烘烤固化,首先在80-100℃烘烤固化1-2h,然后在130-140℃条件下继续固化2-3h,使得荧光膜与倒装芯片更好的结合,同时消除气泡,得到CSP芯片级封装件。
以上所使用的荧光膜由红色荧光粉、绿色荧光粉、具有蓝光发射的荧光碳点溶液和有机粘合剂固化形成,由于利用柠檬酸与乙二胺通过水热反应比较容易获得具有蓝光发射的荧光碳点溶液,且较易控制,因此本发明采用以上方法制备具有蓝光发射的荧光碳点溶液,能够在紫外条件下稳定地发射蓝光。具体制备方法为将以重量份计的柠檬酸10-18份、去离子水30-50份和乙二胺3-5份,搅拌混合后加入到水热釜中,在170-180℃条件下水热反应5-6h得到具有蓝光发射的荧光碳点溶液。以上制备得到的荧光碳点溶液,在紫外光下能够产生明亮的蓝色荧光,通过水热反应中组分的调整发现,在以上提供的组分范围以及控制条件下发光亮度与发光稳定性综合效果最好。
在制备荧光膜时,将以上制备的荧光碳点溶液水分蒸发80-90%后与红色荧光粉、绿色荧光粉和有机粘合剂混合均匀,平铺于成膜模具上,然后在80-90℃条件下固化2-3h,将初步固化后的膜取下,然后再在120-130℃条件下固化1-2h得到荧光膜。
以上制备荧光膜所使用的有机粘合剂为本发明提供的特定粘合剂,其由双酚A环氧树脂、聚氧乙烯醚、甲苯二异氰酸酯、抗氧化剂、硫酸氢铵和消泡剂组成,具体制备步骤如下:
步骤一,将以重量份计的双酚A环氧树脂70-80份,聚氧乙烯醚2-5份,甲苯二异氰酸酯2-7份和硫酸氢铵3-5份搅拌混合均匀,得到物料一;
步骤二,将物料一转入反应釜中,在惰性气体保护条件下升温至80-90℃,保持120-150分钟,得到物料二;
步骤三,将在物料二中加入有机硅消泡剂0.02-0.06份和抗氧化剂亚磷酸三乙酯0.2-0.5份,混合均匀,进行真空脱泡后得到有机粘合剂。
以上真空脱泡在真空脱泡机中进行。
通过上述方法制备得到的有机粘合剂在应用于本发明的封装件时,能够起到很好的粘合固化作用的同时,可以增强光效,同时提高显色指数。
以上荧光膜在制备过程中,红色荧光粉、绿色荧光粉、水分蒸发80-90%后的具有蓝光发射的荧光碳点溶液和有机粘合剂的质量比为0.2:0.3:300:1000。
在研究过程中考察了荧光膜制备过程中不同组分的比例最后得到的荧光膜的特性,同时采用常规粘合剂代替本发明提供的有机粘合剂进行对比试验,将其制备为厚度1mm的荧光膜,并制备成封装件,对封装件的光学参数进行测定,结果如下:
Figure PCTCN2017110638-appb-000001
以上结果显示,以上采用了几种不同的荧光膜组分配比试验以及采用目前常用的封装胶进行对比试验,结果可以看出,采用本发明的荧光膜能够同时得到较高的光效和显色指数,在本发明研究过程中采用了不同的荧光膜组分配比,以上对比例1-3只是选取了部分进行说明,大量研究发现,在本发明荧光膜制备过程中采用红色荧光粉、绿色荧光粉、水分蒸发80-90%后的具有蓝光发射的荧光碳点溶液和有机粘合剂的质量比为0.2:0.3:300:1000时,得到的荧光膜制备成封装件测试其光学参数最好,其他比例得到的参数均有显著下降,且与常用封装胶(如对比例4和对比例5)的效果差别不大。因此可以肯定,本发明提供的荧光膜制备过程的组分配比具有特定性。与对比例4和对比例5相比,本发明采用的有机粘合剂能够同时提高光效与显色指数。
在本发明研究具有蓝光发射的荧光碳点溶液的荧光性能时,在制备过程中加入了冰醋酸,冰醋酸为与柠檬酸同时加入,加入冰醋酸的量与柠檬酸的质量比为0.02-0.06:1,结果显示,加入冰醋酸后,最后得到的碳点溶液在紫外光下的荧光亮度要强于不加冰醋酸,进一步研究发现,荧光亮度与溶液中氨离子的含量与状态有一定关系,在水热反应后,紫外光照发射蓝光时,溶液中会形成一定的离子型团聚胶体,该胶体的产生会在一定程度上削弱发光强度,而冰醋酸的加入能够起到解聚作用,同时提供较为稳定的溶液发光环境,因此在一定程度上增强了荧光亮度。
本发明提供的有机粘合剂能够同时对荧光膜最终发挥光学性能发挥作用,通过以下对比试验进行说明:
Figure PCTCN2017110638-appb-000002
通过以上可以得出,本发明提供的有机粘合剂确实能够提高荧光膜的性能,其中两种组分的加入甲苯二异氰酸酯与硫酸氢铵,能够有效提升荧光膜的性能,二者缺一不可,经研究得出,这两种组分的加入在粘合剂中与荧光粉以及碳点溶液在激发发光过程中产生了某同协同作用,进一步促进了激发发光,其确切机理目前还未得到。
综上所述,本发明提供的CSP芯片级封装件,通过对于荧光膜的特定制备,得到了具有优良光效与显色指数的LED封装件,显著提高了光源利用率。

Claims (9)

  1. 一种CSP芯片级封装件,其特征在于,包括荧光膜覆盖的倒装芯片,其中荧光膜由红色荧光粉、绿色荧光粉、具有蓝光发射的荧光碳点溶液和有机粘合剂固化形成。
  2. 根据权利要求1所述的CSP芯片级封装件,其特征在于,所述有机粘合剂为由双酚A环氧树脂、聚氧乙烯醚、甲苯二异氰酸酯、抗氧化剂、硫酸氢铵和消泡剂组成。
  3. 根据权利要求1所述的CSP芯片级封装件,其特征在于,所述具有蓝光发射的荧光碳点溶液为柠檬酸与乙二胺通过水热反应得到。
  4. 根据权利要求1所述的CSP芯片级封装件,其特征在于,荧光膜的制备方法为将红色荧光粉、绿色荧光粉、具有蓝光发射的荧光碳点溶液和有机粘合剂混合均匀后平铺于成膜模具上,然后在80-90℃条件下固化2-3h,将初步固化后的膜取下,然后再在120-130℃条件下固化1-2h得到。
  5. 根据权利要求2所述的CSP芯片级封装件,其特征在于,抗氧化剂为亚磷酸三乙酯,消泡剂为有机硅消泡剂。
  6. 根据权利要求2所述的CSP芯片级封装件,其特征在于,有机粘合剂的制备方法步骤如下:
    步骤一,将以重量份计的双酚A环氧树脂70-80份,聚氧乙烯醚2-5份,甲苯二异氰酸酯2-7份和硫酸氢铵3-5份搅拌混合均匀,得到物料一;
    步骤二,将物料一转入反应釜中,在惰性气体保护条件下升温至80-90℃,保持120-150分钟,得到物料二;
    步骤三,将在物料二中加入消泡剂0.02-0.06份和抗氧化剂0.2-0.5份,混合均匀,进行真空脱泡后得到有机粘合剂。
  7. 根据权利要求3所述的CSP芯片级封装件,其特征在于,柠檬酸与乙二胺通过水热反应中还加入了冰醋酸,且加入的冰醋酸与柠檬酸的质量比为0.02-0.06:1。
  8. 根据权利要求4所述的CSP芯片级封装件,其特征在于,具有蓝光发射的荧光碳点溶液制备方法为将以重量份计的柠檬酸10-18份、去离子水30-50份和乙二胺3-5份,搅拌混合后加入到水热釜中,在170-180℃条件下水热反应5-6h得到具有蓝光发射的荧光碳点溶液,将制备得到的具有蓝光发射的荧光碳点溶液的水分蒸发80-90%后用于制备荧光膜,其中荧光膜制备方法中红色荧光粉、绿色荧光粉、水分蒸发后的具有蓝光发射的荧光碳点溶液和有机粘合剂的质量比为0.2:0.3:300:1000。
  9. 一种权利要求1所述的CSP芯片级封装件的封装方法,其特征在于,先将倒装芯片放置于粘性蓝膜上,然后使用压膜机将荧光膜覆盖在倒装芯片上,最后将其加热固化后除去粘性蓝膜,得到CSP芯片级封装件。
PCT/CN2017/110638 2016-12-30 2017-11-13 一种csp芯片级封装件及封装方法 WO2018121104A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611256188.1 2016-12-30
CN201611256188.1A CN106684231B (zh) 2016-12-30 2016-12-30 一种csp芯片级封装件及封装方法

Publications (1)

Publication Number Publication Date
WO2018121104A1 true WO2018121104A1 (zh) 2018-07-05

Family

ID=58873399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110638 WO2018121104A1 (zh) 2016-12-30 2017-11-13 一种csp芯片级封装件及封装方法

Country Status (2)

Country Link
CN (1) CN106684231B (zh)
WO (1) WO2018121104A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113637439A (zh) * 2021-08-03 2021-11-12 四川天邑康和通信股份有限公司 应用于光模块核心光器件封装的胶水配方及其调配方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684231B (zh) * 2016-12-30 2018-08-21 江苏稳润光电有限公司 一种csp芯片级封装件及封装方法
CN113956839B (zh) * 2021-11-05 2023-06-13 南京科矽新材料科技有限公司 一种大功率led倒装芯片封装用荧光膜粘接剂

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390719A (zh) * 2012-05-09 2013-11-13 五邑大学 一种用于白光led模组芯片的荧光膜
CN104253194A (zh) * 2014-09-18 2014-12-31 易美芯光(北京)科技有限公司 一种芯片尺寸白光led的封装结构及方法
CN104868041A (zh) * 2015-06-10 2015-08-26 吉林大学 全碳基量子点混合荧光粉led及其制备方法
CN105244427A (zh) * 2015-10-08 2016-01-13 五邑大学 一种新型白光led荧光膜以及基于荧光膜的led
CN105304793A (zh) * 2015-10-08 2016-02-03 五邑大学 一种隔离式液体封装led及其制备方法
CN105990503A (zh) * 2015-02-04 2016-10-05 晶能光电(江西)有限公司 一种白光led芯片的制备方法
CN106098903A (zh) * 2016-08-03 2016-11-09 深圳市兆驰节能照明股份有限公司 多面出光csp光源及其制造方法
US9502610B2 (en) * 2014-11-07 2016-11-22 Nichia Corporation Method for manufacturing light emitting device
CN106684231A (zh) * 2016-12-30 2017-05-17 江苏稳润光电有限公司 一种csp芯片级封装件及封装方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827342B (zh) * 2012-02-03 2014-06-04 黑龙江省科学院石油化学研究院 含有环氧基的异氰酸酯化丙烯酸酯单体的应用
CN103012747A (zh) * 2012-12-28 2013-04-03 艾达索高新材料无锡有限公司 可降解混合多胺类环氧树脂固化剂、制备及其复合材料回收
CN102637792A (zh) * 2012-05-14 2012-08-15 上海祥羚光电科技发展有限公司 一种白光led用荧光粉预制薄膜的制备方法
CN103094461B (zh) * 2013-01-08 2016-03-30 江苏脉锐光电科技有限公司 光学波长转换组件、其制备方法及白光发光装置
CN103123950B (zh) * 2013-02-06 2016-01-20 深圳市蓝科电子有限公司 一种led光源的封装结构及封装方法
CN103311417A (zh) * 2013-06-04 2013-09-18 左洪波 一种大功率led荧光粉涂覆方法
CN104031642B (zh) * 2014-06-24 2016-03-30 山西大学 一种荧光碳量子点及其制备方法和应用
CN106047281A (zh) * 2016-05-27 2016-10-26 李红玉 一种电力电子器件用密封胶

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390719A (zh) * 2012-05-09 2013-11-13 五邑大学 一种用于白光led模组芯片的荧光膜
CN104253194A (zh) * 2014-09-18 2014-12-31 易美芯光(北京)科技有限公司 一种芯片尺寸白光led的封装结构及方法
US9502610B2 (en) * 2014-11-07 2016-11-22 Nichia Corporation Method for manufacturing light emitting device
CN105990503A (zh) * 2015-02-04 2016-10-05 晶能光电(江西)有限公司 一种白光led芯片的制备方法
CN104868041A (zh) * 2015-06-10 2015-08-26 吉林大学 全碳基量子点混合荧光粉led及其制备方法
CN105244427A (zh) * 2015-10-08 2016-01-13 五邑大学 一种新型白光led荧光膜以及基于荧光膜的led
CN105304793A (zh) * 2015-10-08 2016-02-03 五邑大学 一种隔离式液体封装led及其制备方法
CN106098903A (zh) * 2016-08-03 2016-11-09 深圳市兆驰节能照明股份有限公司 多面出光csp光源及其制造方法
CN106684231A (zh) * 2016-12-30 2017-05-17 江苏稳润光电有限公司 一种csp芯片级封装件及封装方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113637439A (zh) * 2021-08-03 2021-11-12 四川天邑康和通信股份有限公司 应用于光模块核心光器件封装的胶水配方及其调配方法

Also Published As

Publication number Publication date
CN106684231B (zh) 2018-08-21
CN106684231A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
KR100540848B1 (ko) 이중 몰드로 구성된 백색 발광다이오드 소자 및 그 제조방법
WO2019109867A1 (zh) 白光led器件及其制备方法、led灯
WO2018121104A1 (zh) 一种csp芯片级封装件及封装方法
CN202094175U (zh) 一种远荧光粉的led封装结构
TWI649903B (zh) Slice white light emitting diode, preparing chip white light emitting diode Body method and package adhesive
CN106972092B (zh) 一种高发光效率的量子点白光led及其制备方法
CN107342348B (zh) 一种led器件的制备方法
CN106684227A (zh) 一种紫外led封装方法
CN103489996A (zh) 白光led封装工艺
CN104393145A (zh) 一种低热阻、高亮度、陶瓷基白光led
CN104882529A (zh) 一种cob型led芯片的快速封装方法
CN109742220B (zh) 含液态量子点的白光led及其制备方法
CN106566256A (zh) 一种黏结强度高的、具有荧光功能的led封装材料及其制备方法
JP5228464B2 (ja) 発光装置及び電子機器
CN106159060A (zh) 一种led封装工艺
CN105244427A (zh) 一种新型白光led荧光膜以及基于荧光膜的led
CN102544343A (zh) 一种提高led基板散热性能的方法
CN101197412A (zh) 白光发光二极管的封装方法
CN111969092B (zh) 一种led芯片的封装工艺
CN103378270B (zh) 一种led组件的制备方法及led组件
CN102339936A (zh) 发光装置封装结构及其制造方法
CN102544244A (zh) 一种led组件的制备方法
CN205282499U (zh) 一种陶瓷荧光基板及发光装置
CN106298755A (zh) 一种分立式盖板倒装led白光发光装置
CN111987207A (zh) 一种led芯片的封装件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887133

Country of ref document: EP

Kind code of ref document: A1