WO2018117101A1 - リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極の製造方法 - Google Patents

リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極の製造方法 Download PDF

Info

Publication number
WO2018117101A1
WO2018117101A1 PCT/JP2017/045533 JP2017045533W WO2018117101A1 WO 2018117101 A1 WO2018117101 A1 WO 2018117101A1 JP 2017045533 W JP2017045533 W JP 2017045533W WO 2018117101 A1 WO2018117101 A1 WO 2018117101A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
ion secondary
secondary battery
current collector
Prior art date
Application number
PCT/JP2017/045533
Other languages
English (en)
French (fr)
Inventor
寺師 吉健
紀旺 閻
Original Assignee
京セラ株式会社
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, 学校法人慶應義塾 filed Critical 京セラ株式会社
Priority to JP2018527824A priority Critical patent/JP6530866B2/ja
Priority to US16/470,882 priority patent/US20190326595A1/en
Priority to EP17883476.8A priority patent/EP3557662B1/en
Priority to CN201780004300.9A priority patent/CN108475773B/zh
Publication of WO2018117101A1 publication Critical patent/WO2018117101A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/025Electrodes composed of, or comprising, active material with shapes other than plane or cylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the disclosed embodiment relates to a method for producing a negative electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a negative electrode for a lithium ion secondary battery.
  • a lithium ion secondary battery in which lithium ions contained in an electrolytic solution move between a positive electrode and a negative electrode are known.
  • a lithium ion secondary battery includes a negative electrode active material layer that occludes lithium ions during charging and releases lithium ions during discharging.
  • a material using a carbon-based material such as graphite is widely used.
  • a lithium ion secondary battery including a negative electrode active material layer using a silicon-based material having a higher lithium ion storage capacity than graphite has been studied (for example, see Patent Document 1). ).
  • a silicon-based material is used alone or in combination in the negative electrode active material layer.
  • a negative electrode for a lithium ion secondary battery includes a current collector and an active material layer.
  • the active material layer is disposed on the current collector.
  • the active material layer has a plurality of needle-like bodies containing silicon. The needle-like body is fused to the current collector.
  • FIG. 1A is a diagram schematically showing a negative electrode for a lithium ion secondary battery according to the first embodiment.
  • FIG. 1B is a diagram schematically illustrating the negative electrode for a lithium ion secondary battery according to the first embodiment.
  • FIG. 2 is a diagram schematically illustrating a method for manufacturing the negative electrode for a lithium ion secondary battery according to the first embodiment.
  • FIG. 3 is a diagram illustrating an outline of a needle-like body included in the negative electrode for a lithium ion secondary battery according to the first embodiment.
  • FIG. 4A is a diagram schematically illustrating a negative electrode for a lithium ion secondary battery according to a modification of the first embodiment.
  • FIG. 1A is a diagram schematically showing a negative electrode for a lithium ion secondary battery according to the first embodiment.
  • FIG. 1B is a diagram schematically illustrating the negative electrode for a lithium ion secondary battery according to the first embodiment.
  • FIG. 2 is a diagram schematically illustrating a
  • FIG. 4B is a diagram illustrating an outline of a negative electrode for a lithium ion secondary battery according to a modification of the first embodiment.
  • FIG. 5 is a diagram schematically illustrating the lithium ion secondary battery according to the first embodiment.
  • FIG. 6A is a diagram illustrating an outline of a needle-like body included in a negative electrode for a lithium ion secondary battery according to a modified example of the first embodiment.
  • FIG. 6B is a diagram illustrating an outline of a needle-like body included in the negative electrode for a lithium ion secondary battery according to a modification of the first embodiment.
  • FIG. 6C is a diagram illustrating an outline of a needle-like body included in a negative electrode for a lithium ion secondary battery according to a modification of the first embodiment.
  • FIG. 6A is a diagram illustrating an outline of a needle-like body included in a negative electrode for a lithium ion secondary battery according to a modified example of the first embodiment.
  • FIG. 6B is
  • FIG. 6D is a diagram illustrating an outline of a needle-like body included in a negative electrode for a lithium ion secondary battery according to a modified example of the first embodiment.
  • FIG. 6E is a diagram illustrating an outline of a needle-like body included in a negative electrode for a lithium ion secondary battery according to a modified example of the first embodiment.
  • FIG. 7 is a diagram illustrating an outline of a negative electrode for a lithium ion secondary battery according to a modification of the first embodiment.
  • FIG. 8 is a flowchart for explaining an example of a method for producing a negative electrode for a lithium ion secondary battery according to the first embodiment.
  • FIG. 9 is a diagram schematically illustrating a negative electrode for a lithium ion secondary battery according to the second embodiment.
  • FIG. 1A is a plan view schematically showing the negative electrode for a lithium ion secondary battery according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along the line II of FIG. 1A.
  • a negative electrode (hereinafter also referred to as “negative electrode”) 8 shown in FIGS. 1A and 1B includes a negative electrode current collector (hereinafter also referred to as “current collector”) 6 and a current collector 6. And a negative electrode active material layer (hereinafter also referred to as “active material layer”) 7.
  • FIGS. 1A and 1B show a three-dimensional orthogonal coordinate system including a Z-axis having a vertically upward direction as a positive direction and a vertically downward direction as a negative direction. Such an orthogonal coordinate system may also be shown in other drawings used in the following description.
  • the current collector 6 for example, copper, nickel, titanium, stainless steel, or the like can be used.
  • the active material layer 7 has a plurality of needle-like bodies 13 containing a negative electrode active material.
  • the acicular body 13 has a conical shape that is erected with respect to the current collector 6 so as to have a circular bottom surface 13 a on the current collector 6.
  • the acicular body 13 has a first end and a second end in the longitudinal direction. “Erecting” means that the region of the circular bottom surface 13a that is the first end portion of the needle-like body 13 and the vertex P that is the second end portion of the needle-like body 13 overlap in plan view. .
  • the “conical shape” of the needle-like body 13 is not limited to a right cone in which the center (not shown) of the circular bottom surface 13a coincides with the apex P of the needle-like body 13 in plan view, but is an oblique cone. There may be.
  • lithium ions are occluded in the negative electrode active material included in the needle-shaped body 13 during charging.
  • the adjacent needle-like bodies 13 have apexes P separated from each other, and even if the negative electrode active material sufficiently occludes lithium ions, the adjacent needle-like bodies 13 interfere with each other, or the apparent volume of the active material layer 7 A change in the structure of the needle-like body 13 that accompanies a change is unlikely to occur. For this reason, cycle deterioration accompanying the change in the structure of the active material layer 7 due to repeated insertion and extraction of lithium ions can be suppressed.
  • FIG. 2 is a diagram showing an outline of a method for manufacturing the negative electrode 8 according to the first embodiment.
  • the negative electrode 8 (see FIG. 1A and FIG. 1B) is a sheet-like negative electrode material (hereinafter also referred to as “negative electrode sheet”) 17 containing silicon particles 18 and a binder (not shown) placed on the current collector 6.
  • the negative electrode sheet 17 can be manufactured by irradiating the laser beam 19 with an oxygen-containing atmosphere such as the air.
  • the reason why the needle-like body 13 standing with respect to the current collector 6 is formed by irradiating the laser beam 19 in this way is estimated as follows.
  • the silicon particles 18 absorb the laser light 19 irradiated to the negative electrode sheet 17. Part of the silicon particles 18 that have absorbed the laser light 19 are melted and partly vaporized due to a rapid temperature rise.
  • the silicon particles 18 melted at a location close to the current collector 6 serve as a nucleus to be fused with the current collector 6.
  • a part of the silicon particles 18 melted or vaporized around the fused core with the current collector 6 is fused so as to be taken into the fused core with the current collector 6, and in the irradiation direction of the laser beam 19. Crystals grow sequentially along the line. Thereby, an active material layer 7 having a plurality of needle-like bodies 13 fused to the current collector 6 is formed on the current collector 6.
  • the active material layer 7 formed on the current collector 6 has a plurality of needle-like bodies 13, and the needle-like bodies 13 have a fusion part that is directly fused to the current collector 6.
  • the main component of the active material layer 7 is silicon constituting the needle-like body 13.
  • silicon melted on the current collector 6 tends to be spherical.
  • the silicon particles 18 are irradiated with the laser beam 19 together with the binder. Due to the presence of the binder or carbon contained in the binder, it is considered that the melted silicon can be fused to the current collector 6, and further, the silicon can be successively grown along the irradiation direction of the laser beam 19.
  • the average particle diameter of the silicon particles 18 can be a relatively large size of, for example, 1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness t1 of the negative electrode sheet 17 can be, for example, 10 ⁇ m or more and 30 ⁇ m or less.
  • the average particle diameter of the silicon particles 18 and the thickness t1 of the negative electrode sheet 17 are not limited to these ranges.
  • FIG. 3 is a diagram showing an outline of the acicular body 13 included in the negative electrode 8 according to the first embodiment, and corresponds to a partially enlarged view of the negative electrode 8 shown in FIG. 1B.
  • the needle-like body 13 may include single crystal silicon 14 fused to the current collector 6.
  • the current collector 6 is compared with the case where the current collector 6 and the active material layer 7 are bonded via an insulating adhesive material.
  • the contact resistance between the active material layer 7 and the charge / discharge response characteristics is improved.
  • charging time can be shortened, for example.
  • the single crystal silicon 14 and the current collector 6 are fused without using an adhesive material, peeling at the interface between the single crystal silicon 14 and the current collector 6 hardly occurs even when charging and discharging are repeated. Cycle deterioration can be suppressed.
  • the needle-like body 13 may have a coating layer containing amorphous silicon dioxide 15 on the surface.
  • the coating layer containing the amorphous silicon dioxide 15 may cover at least a part of the single crystal silicon 14.
  • the coating layer containing the amorphous silicon dioxide 15 is formed, for example, by oxidizing silicon on the surface of the needle-like body 13 in an atmosphere containing oxygen.
  • the thickness of the amorphous silicon dioxide 15 may be, for example, 1 nm or more.
  • the thickness of the amorphous silicon dioxide 15 is 1 nm or more, the oxidation of the single crystal silicon 14 can be suppressed.
  • the thickness of the amorphous silicon dioxide 15 is particularly It may be 1 nm or more and 1 ⁇ m or less.
  • the diameter d1 of the bottom surface 13a (see FIG. 1B) of the needle-like body 13 may have an average value of 1 ⁇ m to 20 ⁇ m, particularly 3 ⁇ m to 10 ⁇ m.
  • the needle-like body 13 has a strength that causes no problem in practice.
  • Such a needle-like body 13 can be increased in height, and sufficient battery capacity can be ensured.
  • gap is obtained between the adjacent acicular bodies 13, the influence which the volume change by lithium occlusion of the acicular body 13 has on the structure of the active material layer 7 whole can be reduced.
  • the average value of the diameter d1 is 20 ⁇ m or less, the specific surface area of the active material layer 7 can be sufficiently obtained as compared with the case where the diameter d1 is larger in the same active material layer 7, and sufficient battery capacity is ensured. Can do.
  • the average value of the height h1 of the acicular body 13 from the fusion surface of the current collector 6 and the single crystal silicon 14, that is, the bottom surface 14a of the single crystal silicon 14, may be 100 ⁇ m or less, particularly 1 ⁇ m or more and 30 ⁇ m. Or may be 15 ⁇ m or more and 25 ⁇ m or less.
  • the average value of the height h1 is 100 ⁇ m or less, the physique of the lithium ion secondary battery can be reduced.
  • the specific surface area of the active material layer 7 is fully obtained, and sufficient battery capacity can be ensured. Note that the fused surface between the current collector 6 and the single crystal silicon 14 is an interface between the current collector 6 and the single crystal silicon 14.
  • the volume density of the active material layer 7 may be, for example, 0.8 ⁇ 10 3 kg / m 3 or more and 1.1 ⁇ 10 3 kg / m 3 or less.
  • the volume density of the active material layer 7 refers to a value obtained by dividing the mass of the active material layer 7 per unit area as viewed from above by the average value of the height h1 of the needle-like body 13.
  • the “diameter d1” and the “height h1” of the needle-like body 13 are measured based on an SEM (Scanning Electron Microscope) image of the active material layer 7 cut in the thickness direction. Specifically, for example, the active material layer 7 is fractured in the thickness direction together with the current collector 6, and the fractured active material layer 7 is observed from the fracture surface using an SEM, and the size of the fused surface of the needle-like body 13 is increased. The height from the fused surface to the apex P is measured. The size of the measured fused surface is “diameter d1”, and the height from the fused surface to the apex P is “height h1”.
  • the “mass of the active material layer 7” is obtained by, for example, removing the current collector 6 from the active material layer 7 disposed on the current collector 6 and measuring the mass of the obtained active material layer 7. can get.
  • the needle-like bodies 13 arranged on the current collector 6 are shown to be aligned in the X-axis direction and the Y-axis direction.
  • the present invention is not limited to this, and the needle-like bodies 13 are randomly arranged. May be.
  • the adjacent needle-like bodies 13 may be in contact with each other at the outer peripheral portion of the bottom surface 13a as shown in FIGS. 1A and 1B, or may be separated as shown in FIGS. 4A and 4B.
  • the part which the outer peripheral part of the bottom face 13a mutually contacts, and the part from which the outer peripheral part of the bottom face 13a is mutually separated may be mixed.
  • FIG. 5 is a cross-sectional view schematically showing the lithium ion secondary battery according to the first embodiment.
  • a lithium ion secondary battery (hereinafter also referred to as “lithium secondary battery”) 1 illustrated in FIG. 5 includes a positive electrode for lithium ion secondary battery (hereinafter also referred to as “positive electrode”) 4, a negative electrode 8, and a separator 10. Insulating material 11 and electrolyte 12 are provided.
  • the positive electrode 4 includes a positive electrode current collector 2 and a positive electrode active material layer 3.
  • the positive electrode current collector 2 is electrically connected to a positive electrode can 5 that also serves as a positive electrode terminal.
  • the positive electrode active material layer 3 contains a positive electrode active material.
  • a positive electrode active material for example, at least one of lithium cobalt composite oxide, lithium manganese composite oxide, lithium nickel composite oxide, lithium nickel cobalt composite oxide, and lithium vanadium composite oxide can be used.
  • the positive electrode active material layer 3 may contain a conductive support agent and other additives as needed.
  • the negative electrode 8 includes a current collector 6 and an active material layer 7.
  • the negative electrode 8 is an electrode having a lower potential than the positive electrode 4.
  • the current collector 6 is electrically connected to a negative electrode can 9 that also serves as a negative electrode terminal.
  • the active material layer 7 is located between the current collector 6 and the separator 10 and contains an active material.
  • the active material layer 7 may include an electrolyte such as the electrolytic solution 12 between the acicular bodies 13 in addition to the acicular bodies 13.
  • the thickness t2 of the active material layer 7 should just be more than the maximum value of the height h1 of the acicular body 13, for example, can be 100 micrometers or less, especially 1 micrometer or more and 30 micrometers or less. As shown in FIG. 5, when the active material layer 7 and the separator 10 are in contact with each other, the thickness t ⁇ b> 2 of the active material layer 7 may be regarded as a distance between the current collector 6 and the separator 10.
  • the separator 10 is disposed between the positive electrode 4 and the negative electrode 8 and partitions the positive electrode 4 and the negative electrode 8.
  • an organic resin fiber or inorganic fiber nonwoven fabric for example, an organic resin fiber or inorganic fiber nonwoven fabric, a ceramic porous material, polyethylene, polypropylene, or other polyolefins can be used.
  • the insulating material 11 is disposed between the positive electrode can 5 and the negative electrode can 9 to prevent a short circuit between the positive electrode can 5 and the negative electrode can 9 and to prevent leakage of the electrolyte solution 12 enclosed therein.
  • an insulating material having an electrolytic solution resistance for example, a fluorine-based material such as polypropylene, fluorine resin, or fluorine rubber can be used.
  • the electrolytic solution 12 is a non-aqueous electrolytic solution that includes an organic solvent and a lithium salt that is a lithium ion source and has fluidity.
  • organic solvent include ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, methylethyl carbonate, dimethyl What mixed 1 type, or 2 or more types chosen from carbonate, diethyl carbonate, etc. can be used.
  • Such organic solvents have a high dielectric constant, low viscosity, and low vapor pressure.
  • the electrolyte solution 12 may contain an additive capable of improving the performance of the lithium secondary battery 1, for example, preventing overcharging or imparting flame retardancy, as necessary.
  • the shape of the lithium secondary battery 1 may be any shape such as a square shape, a cylindrical shape, a button shape, a coin shape, or a flat shape. Further, the lithium secondary battery 1 may have an insulating container including a positive electrode terminal and a negative electrode terminal instead of the positive electrode can 5 and the negative electrode can 9. Furthermore, the electrode structure of the lithium secondary battery 1 is not limited to a single layer structure having a pair of positive electrodes 4 and negative electrodes 8, and may be a laminated structure having a plurality of positive electrodes 4 and negative electrodes 8.
  • the needle-like body 13 has been described as having a conical shape, but is not limited thereto. This point will be described with reference to FIGS. 6A and 6B.
  • 6A and 6B are diagrams showing an outline of the needle-like body 13 included in the negative electrode 8 according to the modified example of the first embodiment.
  • symbol is attached
  • 6A is different from the needle-like body 13 shown in FIG. 1B in that the needle-like body 13 shown in FIG. 6A has a truncated cone shape having a top surface 13b that is a circular plane parallel to the bottom surface 13a at the second end.
  • 6B is different from the needle-like body 13 shown in FIG. 6A in that the top surface 13b is not a flat surface but a curved surface.
  • Adjacent needle-like bodies 13 have top surfaces 13b separated from each other, and the volume change of the active material layer 7 hardly occurs even when lithium ions are sufficiently occluded.
  • the lithium secondary battery 1 including the negative electrode 8 having the needle-like body 13 shown in FIGS. 6A and 6B is also similar to the lithium secondary battery 1 including the negative electrode 8 having the conical needle-like body 13.
  • a decrease in charge / discharge performance due to cycle deterioration can be suppressed.
  • 6A and 6B show an example in which the outer peripheral portions of the bottom surface 13a are in contact with each other. In these modified examples, the outer peripheral portions of the bottom surface 13a may be separated from each other as shown in FIG. A portion where the outer peripheral portions are in contact with each other and a portion where they are separated may be mixed.
  • the needle-like body 13 has been described as being disposed on the current collector 6, but is not limited thereto. This point will be described with reference to FIG.
  • FIG. 7 is a diagram showing an outline of the negative electrode 8 according to a modified example of the first embodiment.
  • the negative electrode 8 shown in FIG. 7 has the same configuration as that of the negative electrode 8 according to the first embodiment except that the active material layer 7 further includes a conductive pillar 20.
  • the conductive pillar 20 has a conical shape having a bottom surface on the current collector 6.
  • the conductive pillar 20 is made of a highly conductive metal material such as copper, aluminum, or gold, and is welded or integrally formed with the current collector 6.
  • the needle-shaped body 13 is provided so that the conductive pillar 20 may be covered, and the external shape of the needle-shaped body 13 is the same as that of the needle-shaped body 13 shown to FIG. 1B.
  • the lithium secondary battery 1 including the negative electrode 8 having the conductive pillar 20 that is electrically connected to the current collector 6 inside the needle-shaped body 13, the lithium secondary battery 1 collects while suppressing a decrease in charge / discharge performance due to cycle deterioration. By reducing the contact resistance between the electric body 6 and the active material layer 7, the charge / discharge response characteristics can be further improved.
  • FIG. 7 shows the case where the conductive pillar 20 is at the center of the bottom surface 13a, the conductive pillar 20 may be located at a position shifted from the center of the bottom surface 13a.
  • the conductive pillars 20 may be located in different portions of the bottom surface 13 a for each needle-like body 13.
  • FIG. 8 is a flowchart showing a processing procedure for manufacturing the negative electrode 8 according to the first embodiment.
  • a negative electrode sheet 17 containing silicon particles 18 and a binder (not shown) is prepared (step S11).
  • the negative electrode sheet 17 may include carbon particles.
  • step S12 the negative electrode sheet 17 is placed on the current collector 6 (step S12), and the negative electrode sheet 17 on the current collector 6 is irradiated with the laser beam 19 in an atmosphere containing oxygen (step S13).
  • step S13 The manufacture of the negative electrode 8 according to the first embodiment is completed through the above steps.
  • step S12 has been described as a separate process from step S11.
  • steps S11 and S12 may be combined into one process. That is, a negative electrode material including silicon particles 18 and a binder may be applied to the current collector 6 to produce the negative electrode sheet 17 placed on the current collector 6.
  • the needle-like body 13 is described as being erected with respect to the current collector 6, but is not limited thereto. This point will be described with reference to FIG.
  • FIG. 9 is a diagram showing an outline of the negative electrode according to the second embodiment.
  • the negative electrode 8A shown in FIG. 9 has the same configuration as that of the negative electrode 8 shown in FIG. 1B, except that the needle-like body 13A is provided obliquely with respect to the current collector 6 instead of the needle-like body 13. Yes.
  • “being inclined” means that the area of the circular bottom surface 13Aa, which is the first end portion of the needle-like body 13A, and the apex P, which is the second end portion of the needle-like body 13A, overlap in plan view. That does n’t fit. That is, the “conical shape” of the needle-like body 13A is an oblique cone.
  • a needle-like body 13A obliquely provided by an angle ⁇ 1 is obtained as compared with the needle-like body 13 provided upright with respect to the current collector 6.
  • the irradiation angle ⁇ 2 of the laser light 19 with respect to the negative electrode sheet 17 is 10 ° or more and less than 90 °.
  • ⁇ 1 is generally a value obtained by subtracting ⁇ 2 from 90 °.
  • ⁇ 1 of the obliquely arranged needle-like bodies 13A is shown to be the same. However, if the obliquely arranged directions of the needle-like bodies 13A are generally aligned, ⁇ 1 is different from each other. It may be.
  • the specific surface area of the needle-shaped body 13A of the negative electrode 8A is larger than that of the needle-shaped body 13 provided upright with respect to the current collector 6. For this reason, according to the negative electrode 8A having the acicular body 13A obliquely arranged with respect to the current collector 6, the battery capacity is suppressed while suppressing the decrease in charge / discharge performance accompanying the cycle deterioration of the lithium secondary battery 1. Can be further increased.
  • the negative electrode 8 or 8A may have both the standing needle-like body 13 and the oblique needle-like body 13A.
  • the negative electrode 8 is a case where 50% by mass or more of the standing acicular body 13 is included, and the negative electrode 8A is a case of including 50% by mass or more of the acicular body 13A which is obliquely provided.
  • the bottom surfaces 13a and 13Aa of the needle-like bodies 13 and 13A have been described as having a circular shape.
  • the present invention is not limited thereto, and may be, for example, an elliptical shape, a polygonal shape, or an indefinite shape. Good.
  • a circle-equivalent diameter can be applied as the diameter d1 of each bottom surface.
  • the needle-like bodies 13 and 13A have the largest cross-sectional areas along the XY plane at the bottom surfaces 13a and 13Aa, and are smaller than the bottom surfaces 13a and 13Aa at other points toward the apex P or the top surface 13b. Any shape may be used as long as it has the following.
  • the needle-like bodies 13 and 13A may have irregularities on the side surface located between the first end and the second end (see FIGS. 6C and 6D). Needle-like bodies 13 and 13A may have two or more vertices P to one bottom face 13a and 13Aa (refer to Drawing 6E).
  • the negative electrodes 8 and 8A may have an active material having a structure other than the needle-like bodies 13 and 13A.
  • the negative electrodes 8 and 8A are made of an active material that is not fused to the current collector 6 or an active material that has the largest cross-sectional area other than the bottom surfaces 13a and 13Aa that are fused to the current collector 6, You may contain 10 mass% or less.
  • the needles 13 have the diameter d1 and the height h1 that are all the same, but may be different from each other.
  • the height h1 of the needle-like body 13 having two or more vertices P is the height of the vertex P having the largest height among the heights of the vertices P.
  • the needle-like body 13 has been described as including the single crystal silicon 14 fused to the current collector 6, but is not limited thereto. As long as the acicular body 13 contains silicon and is fused to the current collector 6, it does not matter whether the acicular body 13 has silicon crystallinity.
  • the needle-like body 13 may include amorphous silicon instead of the single crystal silicon 14 or separately from the single crystal silicon 14. When the acicular body 13 includes amorphous silicon and does not include the single crystal silicon 14, the amorphous silicon and the current collector 6 may be fused. In this case as well, cycle deterioration of the lithium battery 1 can be suppressed and charge / discharge response characteristics can be improved.
  • Example 1 [Preparation of negative electrode coating solution] Silicon powder (average particle size 5 ⁇ m, purity 99.9% by mass) 75% by mass, conductive additive (acetylene black) 10% by mass, binder (PVDF (polyvinylidene fluoride)) 15% by mass, solvent (NMP (N— Methylpyrrolidone)) was mixed and stirred to prepare a negative electrode coating solution having a solid content of 65%.
  • conductive additive acetylene black
  • binder PVDF (polyvinylidene fluoride)
  • solvent NMP (N— Methylpyrrolidone)
  • a negative electrode coating solution was applied onto a 40 mm ⁇ 35 mm ⁇ 30 ⁇ m copper foil (corresponding to “current collector 6”) to prepare a negative electrode sheet 17 of 30 mm ⁇ 35 mm ⁇ 15 ⁇ m.
  • the negative electrode sheet 17 was irradiated with a laser beam 19 to produce a negative electrode 8 including an active material layer 7 having a plurality of needles 13.
  • Table 1 shows the irradiation conditions of the laser beam 19.
  • the laser beam 19 reciprocated on the negative electrode sheet 17 in a straight line a predetermined number of times.
  • the entire position on the negative electrode sheet 17 was scanned with the laser light 19 by shifting the position on the negative electrode sheet 17 through which the laser light 19 passes in the forward path and the return path.
  • the line pitch is an interval between a position where the center of the laser beam 19 passes on the forward path and a position where the center of the laser beam 19 passes on the return path.
  • the negative electrode 8 was evaluated after removing silicon particles and the like that were not fused to the current collector 6.
  • Table 2 shows the average value of the diameter d 1, the average value of the height h 1, and the volume density of the active material layer 7 of the obtained needle-like body 13.
  • the average value of d1 may be simply referred to as d1
  • the average value of h1 may be simply referred to as h1.
  • Example 2 Except that the laser fluence was changed to 1752 mJ / cm 2 , a negative electrode 8 and a test cell were produced in the same manner as in Example 1, and a charge / discharge test was performed.
  • Table 2 shows the diameter d1, the height h1, and the volume density of the active material layer 7 of the acicular body 13 included in the obtained negative electrode 8 together with the results of the charge / discharge test.
  • Example 3 Except that the laser fluence was changed to 1410 mJ / cm 2 , a negative electrode 8 and a test cell were produced in the same manner as in Example 1, and a charge / discharge test was performed.
  • Table 2 shows the diameter d1, the height h1, and the volume density of the active material layer 7 of the acicular body 13 included in the obtained negative electrode 8 together with the results of the charge / discharge test.
  • Example 4 A negative electrode 8 and a test cell were produced in the same manner as in Example 3 except that the line pitch was changed to 42.5 ⁇ m, and a charge / discharge test was performed.
  • Table 2 shows the diameter d1, the height h1, and the volume density of the active material layer 7 of the acicular body 13 included in the obtained negative electrode 8 together with the results of the charge / discharge test.
  • Example 5 Except that the laser fluence was changed to 1750 mJ / cm 2 , the scanning speed was changed to 1 mm / s, and the line pitch was changed to 40 ⁇ m, the negative electrode 8 and the test cell were produced in the same manner as in Example 1, and the charge / discharge test was performed.
  • Table 2 shows the diameter d1, the height h1, and the volume density of the active material layer 7 of the acicular body 13 included in the obtained negative electrode 8 together with the results of the charge / discharge test.
  • Example 6 A negative electrode 8 and a test cell were prepared in the same manner as in Example 5 except that the laser fluence was changed to 1500 mJ / cm 2 and the scanning speed was changed to 6 mm / s, and a charge / discharge test was performed.
  • Table 2 shows the diameter d1, the height h1, and the volume density of the active material layer 7 of the acicular body 13 included in the obtained negative electrode 8 together with the results of the charge / discharge test.
  • all needle-like bodies 13 in the range observed with the SEM were erected.
  • Example 7 Except that the irradiation angle ( ⁇ 2) was changed to 60 °, a negative electrode 8 and a test cell were produced in the same manner as in Example 1, and a charge / discharge test was performed.
  • Table 2 shows the diameter d1, the height h1, and the volume density of the active material layer 7 of the acicular body 13 included in the obtained negative electrode 8 together with the results of the charge / discharge test.
  • the needle-like body 13 was inclined along the irradiation direction of the laser beam 19. As a result of observation by SEM, the inclined needle-like body 13 included both the oblique needle-like body 13 and the standing needle-like body 13. There were more needle-like bodies 13 provided obliquely than needle-like bodies 13 provided upright.
  • the average value of ⁇ 1 was about 30 °.
  • Example 1 (Comparative Example 1) Except not performing laser irradiation, the negative electrode 8 and the test cell were produced similarly to Example 1, and the charging / discharging test was done.
  • the volume density of the active material layer 7 included in the obtained negative electrode 8 is shown in Table 2 together with the results of the charge / discharge test.
  • Negative electrode current collector positive electrode for lithium ion secondary battery (positive electrode)
  • Positive electrode positive electrode
  • Negative electrode current collector positive electrode
  • Negative electrode active material layer active material layer
  • Negative electrode for lithium ion secondary battery negative electrode
  • DESCRIPTION OF SYMBOLS 9 Negative electrode can 10 Separator 11 Insulation material 12 Electrolytic solution 13 Needle-like body 14 Single crystal silicon 15 Amorphous silicon dioxide 17 Negative electrode material (negative electrode sheet) 18 Silicon particles 19 Laser light 20 Conductive pillar

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

実施形態に係るリチウムイオン二次電池用負極(8)は、集電体(6)と活物質層(7)とを備える。活物質層(7)は、集電体(6)上に配置される。活物質層(7)は、シリコンを含む針状体(13)を複数有する。針状体(13)は、集電体(6)に融着されている。

Description

リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極の製造方法
 開示の実施形態は、リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極の製造方法に関する。
 従来、正極と負極との間を電解液中に含まれるリチウムイオンが移動するリチウムイオン二次電池が知られている。リチウムイオン二次電池は、充電時にはリチウムイオンを吸蔵し、放電時にはリチウムイオンを放出する負極活物質層を備える。
 負極活物質層としてはグラファイトなどの炭素系材料を適用したものが広く採用されている。近年、電池容量をさらに増大させるために、グラファイトよりもリチウムイオンの吸蔵能力が高いケイ素系材料を用いた負極活物質層を備えるリチウムイオン二次電池が検討されている(例えば、特許文献1参照)。このようなリチウムイオン二次電池では、ケイ素系材料が負極活物質層に単独で使用され、あるいは併用される。
特開2014-191927号公報
 実施形態の一態様に係るリチウムイオン二次電池用負極は、集電体と活物質層とを備える。該活物質層は、前記集電体上に配置される。前記活物質層は、シリコンを含む針状体を複数有する。該針状体は、前記集電体に融着されている。
図1Aは、第1の実施形態に係るリチウムイオン二次電池用負極の概略を示す図である。 図1Bは、第1の実施形態に係るリチウムイオン二次電池用負極の概略を示す図である。 図2は、第1の実施形態に係るリチウムイオン二次電池用負極の製造方法の概略を示す図である。 図3は、第1の実施形態に係るリチウムイオン二次電池用負極が有する針状体の概略を示す図である。 図4Aは、第1の実施形態の変更例に係るリチウムイオン二次電池用負極の概略を示す図である。 図4Bは、第1の実施形態の変更例に係るリチウムイオン二次電池用負極の概略を示す図である。 図5は、第1の実施形態に係るリチウムイオン二次電池の概略を示す図である。 図6Aは、第1の実施形態の変更例に係るリチウムイオン二次電池用負極が備える針状体の概略を示す図である。 図6Bは、第1の実施形態の変更例に係るリチウムイオン二次電池用負極が備える針状体の概略を示す図である。 図6Cは、第1の実施形態の変更例に係るリチウムイオン二次電池用負極が備える針状体の概略を示す図である。 図6Dは、第1の実施形態の変更例に係るリチウムイオン二次電池用負極が備える針状体の概略を示す図である。 図6Eは、第1の実施形態の変更例に係るリチウムイオン二次電池用負極が備える針状体の概略を示す図である。 図7は、第1の実施形態の変更例に係るリチウムイオン二次電池用負極の概略を示す図である。 図8は、第1の実施形態に係るリチウムイオン二次電池用負極の製造方法の一例について説明するフローチャートである。 図9は、第2の実施形態に係るリチウムイオン二次電池用負極の概略を示す図である。
 以下、添付図面を参照して、本願の開示するリチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極の製造方法の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。
 まず、第1の実施形態に係るリチウムイオン二次電池用負極の構成について、図1A、図1Bを用いて説明する。図1Aは、第1の実施形態に係るリチウムイオン二次電池用負極の概略を示す平面図であり、図1Bは、図1AのI-I断面図である。
 図1A、図1Bに示すリチウムイオン二次電池用負極(以下、「負極」とも称する)8は、負極集電体(以下、「集電体」とも称する)6と、集電体6上に配置された負極活物質層(以下、「活物質層」とも称する)7とを備える。
 なお、説明を分かりやすくするために、図1A、図1Bには、鉛直上向きを正方向とし、鉛直下向きを負方向とするZ軸を含む3次元の直交座標系を図示している。かかる直交座標系は、後述の説明に用いる他の図面でも示す場合がある。
 集電体6としては、例えば、銅、ニッケル、チタン、ステンレス鋼などを用いることができる。
 また、活物質層7は、負極活物質を含む複数の針状体13を有する。針状体13は、円形状の底面13aを集電体6上に有するよう、集電体6に対して立設される円錐形状を有する。針状体13は、長手方向に第1端部と第2端部とを有する。「立設される」とは、針状体13の第1端部である円形状の底面13aの領域と針状体13の第2端部である頂点Pとが平面視で重なり合うことをいう。すなわち、針状体13が有する「円錐形状」は、円形状の底面13aの中心(図示せず)と針状体13の頂点Pとが平面視で一致する直円錐に限らず、斜円錐であってもよい。
 このような負極8を備えるリチウムイオン二次電池では、充電時には針状体13に含まれる負極活物質にリチウムイオンが吸蔵される。隣り合う針状体13は、頂点Pが互いに離れており、負極活物質がリチウムイオンを十分に吸蔵しても隣り合う針状体13同士が干渉し、あるいは活物質層7の見かけ上の体積変化を伴うような針状体13の構造の変化が生じにくい。このため、リチウムイオンの吸蔵と放出の繰り返しによる活物質層7の構造の変化に伴うサイクル劣化を抑制することができる。
 ここで、負極8の製造方法の一例について、図2を用いて説明する。図2は、第1の実施形態に係る負極8の製造方法の概略を示す図である。
 負極8(図1A、図1B参照)は、ケイ素粒子18とバインダ(図示せず)とを含むシート状の負極材料(以下、「負極シート」とも称する)17を集電体6上に載せ、次いで負極シート17にレーザ光19を例えば大気中などの酸素を含む雰囲気下で照射することにより作製することができる。レーザ光19は、負極シート17に対して垂直、すなわちθ2=90°の角度で照射される。このようにレーザ光19を照射することで集電体6に対して立設された針状体13が形成される理由としては、次のようなことが推定されている。
 すなわち、ケイ素粒子18は、負極シート17に対して照射されたレーザ光19を吸収する。レーザ光19を吸収したケイ素粒子18は、急峻な温度上昇により一部が溶融し、一部が気化する。集電体6に近い箇所で溶融したケイ素粒子18は、集電体6と融着する核となる。そして、集電体6と融着した核の周囲で溶融または気化したケイ素粒子18の一部は、集電体6と融着した核に取り込まれるように融合され、レーザ光19の照射方向に沿うように順次結晶成長する。これにより、集電体6に融着された針状体13を複数有する活物質層7が集電体6上に形成される。すなわち、集電体6上に形成された活物質層7は針状体13を複数有し、当該針状体13は集電体6と直接融着した融着部を有する。なお、有機ゲル化材などで構成されるバインダは、レーザ光19が照射される過程で大部分が酸化されて揮発する。このため、活物質層7の主成分は、針状体13を構成するケイ素となる。通常、集電体6上で溶融したケイ素は球状になる傾向がある。上記の製造方法では、ケイ素粒子18はバインダとともにレーザ光19を照射される。バインダまたはバインダに含まれる炭素が存在することにより、溶融したケイ素が集電体6と融着でき、さらにレーザ光19の照射方向に沿うようにケイ素が順次結晶成長できると考えられる。
 ここで、ケイ素粒子18の平均粒子径は、例えば、1μm以上10μm以下の比較的大きなサイズとすることができる。また、負極シート17の厚みt1は、例えば、10μm以上30μm以下とすることができる。ただし、ケイ素粒子18の平均粒子径および負極シート17の厚みt1は、これらの範囲に限らず、例えばレーザ光19のビーム径、エネルギ量および走査速度、ならびに作製すべき針状体13の形状等に応じて適宜変更することができる。
 次に、第1の実施形態に係る負極8の活物質層7が有する針状体13について、図3を用いてさらに説明する。図3は、第1の実施形態に係る負極8が有する針状体13の概略を示す図であり、図1Bに示す負極8の部分拡大図に相当する。
 針状体13は、集電体6に融着された単結晶シリコン14を含んでもよい。単結晶シリコン14の底面14aが集電体6に融着されると、例えば絶縁性の接着材料を介して集電体6および活物質層7が接合された場合と比較して集電体6と活物質層7との接触抵抗が低減され、充放電応答特性が向上する。これにより、第1の実施形態に係る負極8を備えるリチウムイオン二次電池1によれば、例えば充電時間を短縮することができる。また、単結晶シリコン14および集電体6が接着材料を介さずに融着されていると、充放電を繰り返しても単結晶シリコン14と集電体6との界面での剥離が生じにくく、サイクル劣化を抑制することができる。
 また、針状体13は、表面に、非晶質二酸化ケイ素15を含む被覆層を有してもよい。非晶質二酸化ケイ素15を含む被覆層は、単結晶シリコン14の少なくとも一部を覆っていてもよい。針状体13が単結晶シリコン14を覆う非晶質二酸化ケイ素15を有することにより、単結晶シリコン14の酸化に伴う構造の変化を抑制することができる。非晶質二酸化ケイ素15を含む被覆層は、たとえば針状体13の表面のケイ素が、酸素を含む雰囲気中で酸化され、形成される。
 ここで、非晶質二酸化ケイ素15の厚みは、たとえば1nm以上であってもよい。非晶質二酸化ケイ素15の厚みが1nm以上であることで、単結晶シリコン14の酸化を抑制することができる。また、非晶質二酸化ケイ素15の厚みが増大し、針状体13における単結晶シリコン14の含有量が相対的に小さくなると電池容量が低下することから、非晶質二酸化ケイ素15の厚みは特に1nm以上1μm以下でもよい。なお、上記した「単結晶シリコン14」および「非晶質二酸化ケイ素15」は、厚さ方向に切断した活物質層7のTEM(Transmission Electron Microscope)画像に基づいて観察、計測される。
 また、針状体13の底面13a(図1B参照)の直径d1は、平均値が1μm以上20μm以下であってもよく、特に3μm以上10μm以下であってもよい。直径d1の平均値が1μm以上であると、針状体13が実用上問題ない強度を有する。このような針状体13は、高さを高くすることができ、十分な電池容量を確保することができる。また、隣り合う針状体13間に十分な空隙が得られるため、活物質層7全体の構造に対して、針状体13のリチウム吸蔵による体積変化が与える影響を低減することができる。一方、直径d1の平均値が20μm以下であると、同じ活物質層7で直径d1がさらに大きい場合と比較して活物質層7の比表面積が十分得られ、十分な電池容量を確保することができる。
 また、集電体6と単結晶シリコン14との融着面、すなわち単結晶シリコン14の底面14aからの針状体13の高さh1は平均値が100μm以下であればよく、特に1μm以上30μm以下であってもよく、さらには15μm以上25μm以下であってもよい。高さh1の平均値が100μm以下であると、リチウムイオン二次電池の体格を小さくすることができる。なお、高さh1の下限には制限はないものの、高さh1の平均値が1μm以上であると、活物質層7の比表面積が十分得られ、十分な電池容量を確保することができる。なお、集電体6と単結晶シリコン14との融着面とは、集電体6と単結晶シリコン14との界面である。
 また、活物質層7の体積密度はたとえば0.8×10kg/m以上1.1×10kg/m以下であってもよい。活物質層7の体積密度を上記の範囲としたリチウムイオン二次電池では、サイクル劣化に伴う充放電性能の低下を抑制しつつ十分な電池容量を確保することができる。なお、活物質層7の体積密度とは、上面視した単位面積当たりの活物質層7の質量を、針状体13の高さh1の平均値で除した値をいう。
 ここで、上記した針状体13の「直径d1」および「高さh1」は、厚さ方向に切断した活物質層7のSEM(Scanning Electron Microscope)画像に基づいて計測される。具体的には、たとえば活物質層7を集電体6とともに厚さ方向に破断し、破断した活物質層7を破断面からSEMを用いて観察し、針状体13の融着面の大きさ、および融着面から頂点Pまでの高さを計測する。計測した融着面の大きさが「直径d1」であり、融着面から頂点Pまでの高さが「高さh1」である。また、「活物質層7の質量」は、たとえば集電体6上に配置された活物質層7から、集電体6を除去し、得られた活物質層7の質量を計測することにより得られる。
 また、図1Aでは、集電体6上に配置された針状体13は、X軸方向およびY軸方向に整列するように図示したが、これに限らず、針状体13はランダムに配置されてよい。また、隣り合う針状体13は、図1A、図1Bに示すように底面13aの外周部分が互いに接していてもよく、あるいは図4A、図4Bに示すように離れていてもよい。また、底面13aの外周部分が互いに接している部分と、底面13aの外周部分が互いに離れている部分とが、混在していてもよい。隣り合う針状体13の底面13aの外周部分が互いに離れていると、負極活物質がリチウムイオンを十分に吸蔵しても隣り合う針状体13の底面13a同士が干渉しにくい。このため、リチウムイオンの吸蔵と放出の繰り返しによる活物質層7の構造の変化に伴うサイクル劣化を、より抑制することができる。
 次に、上記した負極8を備えるリチウムイオン二次電池について、図5を用いて説明する。図5は、第1の実施形態に係るリチウムイオン二次電池の概略を示す断面図である。
 図5に示すリチウムイオン二次電池(以下、「リチウム二次電池」とも称する)1は、リチウムイオン二次電池用正極(以下、「正極」とも称する)4と、負極8と、セパレータ10と、絶縁材11と、電解液12とを備える。
 正極4は、正極集電体2と正極活物質層3とを備える。正極集電体2は、正極端子を兼ねた正極缶5と電気的に接続されている。正極集電体2としては、例えば、アルミニウムを用いることができる。
 また、正極活物質層3は、正極活物質を含んでいる。正極活物質としては、例えば、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物、およびリチウムバナジウム複合酸化物などのうち少なくとも1種を用いることができる。また、正極活物質層3は、必要に応じて導電助剤その他の添加剤を含んでもよい。
 負極8は、集電体6と活物質層7とを備える。負極8は、正極4よりも電位の低い電極である。集電体6は、負極端子を兼ねた負極缶9と電気的に接続されている。活物質層7は、集電体6とセパレータ10との間に位置し、活物質を含む。活物質層7は、針状体13以外に、たとえば針状体13間に電解液12などの電解質を含んでもよい。また、活物質層7の厚さt2は、針状体13の高さh1の最大値以上であればよく、例えば100μm以下、特には1μm以上30μm以下とすることができる。図5に示すように活物質層7とセパレータ10とが接する場合、活物質層7の厚さt2は、集電体6とセパレータ10との間の距離とみなしてもよい。
 セパレータ10は、正極4と負極8との間に配置され、正極4および負極8を区画する。セパレータ10としては、例えば、有機樹脂繊維または無機繊維の不織布、セラミックス製の多孔質材料、ポリエチレンやポリプロピレンその他のポリオレフィンなどを用いることができる。
 絶縁材11は、正極缶5と負極缶9との間に配置され、正極缶5と負極缶9との短絡を防止するとともに内部に封入した電解液12の漏出を防止する。絶縁材11としては、耐電解液性を有する絶縁性材料、例えば、ポリプロピレンや、フッ素樹脂またはフッ素ゴムなどのフッ素系材料を用いることができる。
 電解液12は、有機溶媒と、リチウムイオン源であるリチウム塩とを含み、流動性を有する非水電解液である。有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、スルホラン、1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、メチルエチルカーボネート、ジメチルカーボネート、ジエチルカーボネートなどから選ばれる1種もしくは2種以上を混合したものを用いることができる。このような有機溶媒は、高誘電率、低粘性、および低蒸気圧を有する。
 また、リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiCFSO、LiN(CFSO)、LiN(CSO)などを用いることができる。電解液12は、必要に応じて、たとえば過充電を防止する、難燃性を付与する等、リチウム二次電池1の性能向上が可能な添加剤を含んでもよい。
 なお、リチウム二次電池1の形状は角型、円筒型、ボタン型、コイン型、扁平型など、用途に応じていかなるものであってもよい。また、リチウム二次電池1は、正極缶5および負極缶9に代えて、正極端子および負極端子を備える絶縁性の容器を有していてもよい。さらに、リチウム二次電池1の電極構造は、一対の正極4および負極8を有する単層構造に限らず、複数の正極4および負極8を有する積層構造であってもよい。
 上記した実施形態では、針状体13は円錐形状を有するとして説明したが、これに限らない。この点について、図6A、図6Bを用いて説明する。
 図6A、図6Bは、第1の実施形態の変更例に係る負極8が備える針状体13の概略を示す図である。なお、上記の説明と同じ構成には同じ符号を付し、その説明を省略し、または簡潔にとどめる。
 図6Aに示す針状体13は、第2端部に底面13aと平行な円形状の平面である天面13bを有する円錐台形状である点で図1Bに示す針状体13と相違する。また、図6Bに示す針状体13は、天面13bが平面ではなく曲面である点で図6Aに示す針状体13と相違する。
 隣り合う針状体13は、天面13bが互いに離れており、リチウムイオンを十分に吸蔵しても活物質層7の体積変化が生じにくい。このため、図6A、図6Bに示す針状体13を有する負極8を備えるリチウム二次電池1によっても、円錐形状の針状体13を有する負極8を備えるリチウム二次電池1と同様に、サイクル劣化に伴う充放電性能の低下を抑制することができる。なお、図6A、図6Bでは底面13aの外周部分が互いに接している例を示したが、これらの変更例でも図4Bのように底面13aの外周部分が互いに離れていてもよいし、底面13aの外周部分が互いに接している部分と、離れている部分とが混在していてもよい。
 上記した実施形態では、針状体13は集電体6上に配置されるとして説明したが、これに限らない。この点について、図7を用いて説明する。
 図7は、第1の実施形態の変更例に係る負極8の概略を示す図である。図7に示す負極8では、活物質層7が導電ピラー20をさらに有することを除き、第1の実施形態に係る負極8と同様の構成を有している。
 導電ピラー20は集電体6上に底面を有する円錐形状を有する。また、導電ピラー20は、銅、アルミニウム、または金などの導電性の高い金属材料で構成され、集電体6と溶着または一体に形成されている。そして、針状体13は導電ピラー20を覆うように設けられており、針状体13の外観形状は図1Bに示す針状体13と同様である。
 このように、針状体13の内部に集電体6と導通する導電ピラー20を有する負極8を備えるリチウム二次電池1によれば、サイクル劣化に伴う充放電性能の低下を抑制しつつ集電体6と活物質層7との間の接触抵抗を低減させることで充放電応答特性をさらに向上させることができる。図7には、導電ピラー20が底面13aの中心にある場合を記載したが、導電ピラー20は底面13aの中心からずれた部位に位置してもよい。導電ピラー20は、針状体13毎に、底面13aのそれぞれ異なる部位に位置してもよい。
 次に、第1の実施形態に係る負極8を製造する方法について、図8を用いて詳細に説明する。図8は、第1の実施形態に係る負極8を製造する処理手順を示すフローチャートである。
 図8に示すように、まず、ケイ素粒子18とバインダ(図示せず)とを含む負極シート17を作製する(ステップS11)。負極シート17は、炭素粒子を含んでもよい。
 続いて、負極シート17を集電体6上に載置し(ステップS12)、集電体6上の負極シート17に、酸素を含む雰囲気下でレーザ光19を照射する(ステップS13)。以上の各工程により、第1の実施形態に係る負極8の製造が終了する。
 以上、本発明の各実施形態について説明したが、本発明は上記各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。
 例えば、上記した実施形態では、ステップS12はステップS11と別工程として説明したが、これに限らず、ステップS11とS12とをまとめて一工程としてもよい。すなわち、ケイ素粒子18とバインダとを含む負極材料を集電体6に塗工し、集電体6に載置された負極シート17を作製してもよい。
 また、上記した実施形態では、針状体13は集電体6に対して立設されるとして説明したが、これに限らない。この点について、図9を用いて説明する。
 図9は、第2の実施形態に係る負極の概略を示す図である。図9に示す負極8Aは、針状体13に代えて集電体6に対して斜設された針状体13Aを有することを除き、図1Bに示す負極8と同様の構成を有している。
 ここで、「斜設される」とは、針状体13Aの第1端部である円形状の底面13Aaの領域と針状体13Aの第2端部である頂点Pとが平面視で重なり合わないことをいう。すなわち、針状体13Aが有する「円錐形状」は、斜円錐である。
 なお、集電体6に対して斜設された針状体13Aを作製する場合、図2に示す負極シート17に対してθ2=90°の角度で照射されたレーザ光19を、θ2<90°となるように任意の角度に傾けて照射すると、集電体6に対して立設された針状体13と比較して角度θ1だけ斜設された針状体13Aが得られる。このとき、負極シート17に対するレーザ光19の照射角度θ2は、10°以上90°未満とすることが実用上好ましい。θ1はおおむね90°からθ2を差し引いた値となる。なお、図9には斜設された各針状体13Aのθ1はすべて同じであるように示したが、各針状体13Aの斜設された方向がおおむね揃っていれば、θ1はそれぞれ異なっていてもよい。
 このような負極8Aが有する針状体13Aは、集電体6に対して立設された針状体13と比較して比表面積が大きくなる。このため、このような集電体6に対して斜設された針状体13Aを有する負極8Aによれば、リチウム二次電池1のサイクル劣化に伴う充放電性能の低下を抑制しつつ電池容量をさらに増大することができる。負極8または8Aは、立設された針状体13と斜設された針状体13Aとの両方を有してもよい。含有する全活物質のうち、立設された針状体13を50質量%以上含む場合を負極8とし、斜設された針状体13Aを50質量%以上含む場合を負極8Aとする。
 また、上記した各実施形態では、針状体13,13Aの各底面13a,13Aaは円形状であるとして説明したが、これに限らず、例えば楕円形状、多角形状、または不定形状であってもよい。この場合、各底面の直径d1として円相当径を適用することができる。さらに、針状体13,13Aは、XY平面に沿った断面積が、各底面13a,13Aaにおいて最大となり、頂点Pまたは天面13bに向かう他の箇所では各底面13a,13Aaよりも小さい断面積を有するものであればいかなる形状であってもよい。たとえば、針状体13,13Aは、第1端部と第2端部との間に位置する側面に凹凸を有していてもよい(図6C、図6Dを参照)。また、針状体13,13Aは、ひとつの底面13a,13Aaに対し2つ以上の頂点Pを有してもよい(図6Eを参照)。また、負極8,8Aは上記の針状体13,13A以外の構造を有する活物質を有していてもよい。たとえば、負極8,8Aは、集電体6に融着しない活物質、または集電体6に融着した底面13a,13Aa以外の断面で最大の断面積を有する活物質を、全活物質の10質量%以下含んでいてもよい。
 また、上記した実施形態では、針状体13の直径d1および高さh1はすべて同じであるように示したが、それぞれ異なっていてもよい。2つ以上の頂点Pを有する針状体13の高さh1は、各頂点Pの高さのうち最も大きい高さを有する頂点Pの高さとする。
 また、上記した実施形態では、針状体13は集電体6に融着された単結晶シリコン14を含むとして説明したが、これに限らない。針状体13がシリコンを含み、かつ集電体6に融着されていれば、針状体13が有するシリコンの結晶性の有無は問わない。針状体13は、例えば、単結晶シリコン14に代えて、あるいは単結晶シリコン14とは別に、非晶質シリコンを含んでいてもよい。針状体13が非晶質シリコンを含み、かつ単結晶シリコン14を含まない場合、非晶質シリコンと集電体6とが融着されていてもよい。この場合も、リチウム電池1のサイクル劣化を抑制することができるとともに、充放電応答特性を向上させることができる。
(実施例1)
[負極塗工液の調製]
 シリコン粉末(平均粒径5μm、純度99.9質量%)75質量%、導電助剤(アセチレンブラック)10質量%、バインダ(PVDF(ポリフッ化ビニリデン))15質量%を、溶剤(NMP(N-メチルピロリドン))と混合攪拌し、固形分65%の負極塗工液を調製した。
[負極シートの作製]
 40mm×35mm×30μmの銅箔(「集電体6」に対応)上に負極塗工液を塗工し、30mm×35mm×15μmの負極シート17を調製した。
[レーザ光の照射(負極の作製)]
 負極シート17にレーザ光19を照射し、複数の針状体13を有する活物質層7を備える負極8を作製した。レーザ光19の照射条件について表1に示す。レーザ光19は、負極シート17上を直線状に所定回数往復させた。往路と復路とで、レーザ光19が通る負極シート17上の位置をずらすことで、レーザ光19により負極シート17上全体を走査した。ラインピッチは、往路でレーザ光19の中心が通る位置と、復路でレーザ光19の中心が通る位置との間隔である。負極8の評価は、集電体6に融着していないシリコン粒子等を除去した後に行った。得られた針状体13の直径d1の平均値、高さh1の平均値および活物質層7の体積密度について、表2に示す。以下、d1の平均値を単にd1、h1の平均値を単にh1という場合もある。
Figure JPOXMLDOC01-appb-T000001
[充放電試験用セル(ハーフセル)の作製]
 上記のように作製した負極8の上に、セパレータ10を積層し、さらにセパレータ10の上に対極を積層したハーフセルを2組用意し、これらを直列に接続したものを電解液12とともにアルミラミネートフィルムに収納し、試験用セルとした。なお、セパレータ10として、厚さ20μmのポリエチレンを使用し、対極として、厚さ30μmのリチウム箔を使用した。また、エチレンカーボネートとジエチルカーボネートを体積比で1:1の割合で混合した溶媒に、1Mの濃度となるようにLiPFを溶解させ、電解液12とした。
[充放電試験]
 充放電装置として、北斗電工製HJ1001SD8を使用した。また、充電を800mA/gの定電流で充電電圧が1500mVに到達するまで行い、放電を800mA/gの定電流で放電電圧が5mVに到達するまで行う1サイクルを、10分間の休止を挟みながら300サイクルまで繰り返し行った。1サイクル後の充放電容量(初期容量)と、100サイクル後、300サイクル後の充放電容量および容量維持率を、表2にまとめて示す。
(実施例2)
 レーザフルエンスを1752mJ/cmに変更したことを除き、実施例1と同様に負極8および試験用セルを作製し、充放電試験を行った。得られた負極8が有する針状体13の直径d1、高さh1、活物質層7の体積密度を、充放電試験の結果とともに表2に示す。
(実施例3)
 レーザフルエンスを1410mJ/cmに変更したことを除き、実施例1と同様に負極8および試験用セルを作製し、充放電試験を行った。得られた負極8が有する針状体13の直径d1、高さh1、活物質層7の体積密度を、充放電試験の結果とともに表2に示す。
(実施例4)
 ラインピッチを42.5μmに変更したことを除き、実施例3と同様に負極8および試験用セルを作製し、充放電試験を行った。得られた負極8が有する針状体13の直径d1、高さh1、活物質層7の体積密度を、充放電試験の結果とともに表2に示す。
(実施例5)
 レーザフルエンスを1750mJ/cm、走査速度を1mm/s、ラインピッチを40μmにそれぞれ変更したことを除き、実施例1と同様に負極8および試験用セルを作製し、充放電試験を行った。得られた負極8が有する針状体13の直径d1、高さh1、活物質層7の体積密度を、充放電試験の結果とともに表2に示す。
(実施例6)
 レーザフルエンスを1500mJ/cm、走査速度を6mm/sにそれぞれ変更したことを除き、実施例5と同様に負極8および試験用セルを作製し、充放電試験を行った。得られた負極8が有する針状体13の直径d1、高さh1、活物質層7の体積密度を、充放電試験の結果とともに表2に示す。なお、実施例1~6では、SEMで観察した範囲のすべての針状体13が立設されていた。
(実施例7)
 照射角度(θ2)を60°に変更したことを除き、実施例1と同様に負極8および試験用セルを作製し、充放電試験を行った。得られた負極8が有する針状体13の直径d1、高さh1、活物質層7の体積密度を、充放電試験の結果とともに表2に示す。実施例7では、針状体13はレーザ光19の照射方向に沿って傾斜していた。SEMで観察した結果、傾斜した針状体13には、斜設された針状体13と立設された針状体13の両方が含まれていた。斜設された針状体13は立設された針状体13よりも多かった。θ1の平均値は約30°であった。
(比較例1)
 レーザ照射を実施しないことを除き、実施例1と同様に負極8および試験用セルを作製し、充放電試験を行った。得られた負極8が有する活物質層7の体積密度を、充放電試験の結果とともに表2に示す。
Figure JPOXMLDOC01-appb-T000002
 さらなる効果および変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
 1 リチウムイオン二次電池(リチウム二次電池)
 2 正極集電体
 3 正極活物質層
 4 リチウムイオン二次電池用正極(正極)
 5 正極缶
 6 負極集電体(集電体)
 7 負極活物質層(活物質層)
 8 リチウムイオン二次電池用負極(負極)
 9 負極缶
 10 セパレータ
 11 絶縁材
 12 電解液
 13 針状体
 14 単結晶シリコン
 15 非晶質二酸化ケイ素
 17 負極材料(負極シート)
 18 ケイ素粒子
 19 レーザ光
 20 導電ピラー

Claims (11)

  1.  集電体と、前記集電体上に配置された活物質層とを備え、
     前記活物質層は、シリコンを含む針状体を複数有し、
     該針状体は、前記集電体に融着されている、
     リチウムイオン二次電池用負極。
  2.  前記集電体と前記針状体との融着面からの前記針状体の高さの平均値は100μm以下である、
     請求項1に記載のリチウムイオン二次電池用負極。
  3.  前記針状体は、非晶質二酸化ケイ素を含む被覆層を有し、
     該被覆層は、前記シリコンの少なくとも一部を被覆する、
     請求項1または2に記載のリチウムイオン二次電池用負極。
  4.  前記シリコンは、単結晶シリコンを含む、
     請求項1~3のいずれか1つに記載のリチウムイオン二次電池用負極。
  5.  前記シリコンは、非晶質シリコンを含む、
     請求項1~4のいずれか1つに記載のリチウムイオン二次電池用負極。
  6.  前記活物質層の体積密度は0.8×10kg/m以上1.1×10kg/m以下である、
     請求項1~5のいずれか1つに記載のリチウムイオン二次電池用負極。
  7.  前記針状体は、前記集電体に対して立設される、
     請求項1~6のいずれか1つに記載のリチウムイオン二次電池用負極。
  8.  前記針状体は、前記集電体に対して斜設される、
     請求項1~6のいずれか1つに記載のリチウムイオン二次電池用負極。
  9.  リチウムイオンを含有する電解液を挟んで互いに向かい合う正極および負極を備え、
     前記負極が、請求項1~8のいずれか1つに記載のリチウムイオン二次電池用負極である、
     リチウムイオン二次電池。
  10.  ケイ素粒子とバインダとを含むシート状の負極材料を前記集電体に載置し、
     前記負極材料に酸素を含む雰囲気下でレーザ光を照射する、
     請求項1~8のいずれか1つに記載のリチウムイオン二次電池用負極の製造方法。
  11.  前記レーザ光は、シート状の前記負極材料に対して10°以上90°以下の角度で照射される、
     請求項10に記載のリチウムイオン二次電池用負極の製造方法。
PCT/JP2017/045533 2016-12-19 2017-12-19 リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極の製造方法 WO2018117101A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018527824A JP6530866B2 (ja) 2016-12-19 2017-12-19 リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極の製造方法
US16/470,882 US20190326595A1 (en) 2016-12-19 2017-12-19 Lithium-ion secondary battery anode, lithium-ion secondary battery, method for producing lithium-ion secondary battery anode
EP17883476.8A EP3557662B1 (en) 2016-12-19 2017-12-19 Negative electrode for lithium ion secondary batteries, lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary batteries
CN201780004300.9A CN108475773B (zh) 2016-12-19 2017-12-19 锂离子二次电池用负极、锂离子二次电池、锂离子二次电池用负极的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-245846 2016-12-19
JP2016245846 2016-12-19

Publications (1)

Publication Number Publication Date
WO2018117101A1 true WO2018117101A1 (ja) 2018-06-28

Family

ID=62627382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045533 WO2018117101A1 (ja) 2016-12-19 2017-12-19 リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極の製造方法

Country Status (5)

Country Link
US (1) US20190326595A1 (ja)
EP (1) EP3557662B1 (ja)
JP (1) JP6530866B2 (ja)
CN (1) CN108475773B (ja)
WO (1) WO2018117101A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210376388A1 (en) * 2020-06-02 2021-12-02 Millibatt, Inc. Method for forming a 3d battery with horizontally-interdigitated electrodes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102348461B1 (ko) * 2019-12-19 2022-01-10 일진머티리얼즈 주식회사 표면처리 동박, 이의 제조방법 및 이를 포함한 이차전지용 음극
CN111785952B (zh) * 2020-01-19 2021-10-29 成都拓米电子装备制造有限公司 一种二次电池负极材料用纳米硅粒子的制造方法
SE2250838A1 (en) * 2022-07-04 2024-01-05 Northvolt Ab Electrode for a secondary cell
SE2250839A1 (en) * 2022-07-04 2024-01-05 Northvolt Ab Electrode for a secondary cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165508A (ja) * 2009-01-14 2010-07-29 Sony Corp 負極および二次電池
JP2012033472A (ja) * 2010-06-30 2012-02-16 Semiconductor Energy Lab Co Ltd 蓄電装置の作製方法
JP2014523089A (ja) * 2011-07-01 2014-09-08 アンプリウス、インコーポレイテッド 接着特性が向上したテンプレート電極構造
JP2014191927A (ja) 2013-03-26 2014-10-06 Toppan Printing Co Ltd リチウムイオン二次電池用負極、それを備えたリチウムイオン二次電池、負極の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265897A (ja) * 2003-01-20 2004-09-24 Sharp Corp 結晶化半導体素子およびその製造方法ならびに結晶化装置
JP4947386B2 (ja) * 2008-11-14 2012-06-06 ソニー株式会社 リチウムイオン二次電池およびリチウムイオン二次電池用負極
CN101476157A (zh) * 2008-12-31 2009-07-08 南京航空航天大学 激光照射纳米碳化硅粉末材料制备碳化硅晶须的方法
JP5617265B2 (ja) * 2010-02-05 2014-11-05 ソニー株式会社 リチウムイオン二次電池用負極、リチウムイオン二次電池、電動工具、電気自動車および電力貯蔵システム
KR101941142B1 (ko) * 2010-06-01 2019-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전장치 및 그 제작 방법
JP6000017B2 (ja) * 2011-08-31 2016-09-28 株式会社半導体エネルギー研究所 蓄電装置及びその作製方法
CN103474632B (zh) * 2012-06-07 2016-08-03 中国科学院物理研究所 一种用于锂电池的负极材料及其制备方法和应用
JP6211775B2 (ja) * 2013-03-12 2017-10-11 学校法人慶應義塾 焼結体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165508A (ja) * 2009-01-14 2010-07-29 Sony Corp 負極および二次電池
JP2012033472A (ja) * 2010-06-30 2012-02-16 Semiconductor Energy Lab Co Ltd 蓄電装置の作製方法
JP2014523089A (ja) * 2011-07-01 2014-09-08 アンプリウス、インコーポレイテッド 接着特性が向上したテンプレート電極構造
JP2014191927A (ja) 2013-03-26 2014-10-06 Toppan Printing Co Ltd リチウムイオン二次電池用負極、それを備えたリチウムイオン二次電池、負極の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210376388A1 (en) * 2020-06-02 2021-12-02 Millibatt, Inc. Method for forming a 3d battery with horizontally-interdigitated electrodes

Also Published As

Publication number Publication date
US20190326595A1 (en) 2019-10-24
CN108475773A (zh) 2018-08-31
CN108475773B (zh) 2020-03-17
EP3557662A4 (en) 2020-08-19
JP6530866B2 (ja) 2019-06-12
JPWO2018117101A1 (ja) 2018-12-20
EP3557662B1 (en) 2021-04-21
EP3557662A1 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
WO2018117101A1 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極の製造方法
CN104508860B (zh) 二次电池
US10164247B2 (en) Sulfur-carbon composite, nonaqueous electrolyte battery including electrode containing sulfur-carbon composite, and method for producing sulfur-carbon composite
WO2016039263A1 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6630071B2 (ja) 電極材料、電極及び蓄電デバイス
JP2018106879A (ja) 絶縁層付き負極
JP2007265846A (ja) 円筒形電池およびその製造方法
TWI504050B (zh) 鋰二次電池用之陽極活性材料及含彼之鋰二次電池
JP2019140054A (ja) 正極及び非水電解液二次電池
CN110098409A (zh) 一种二次电池集流体及使用该集流体的二次电池
JP2016058282A (ja) 非水電解質電池
JP2013127860A (ja) 非水電解質二次電池用の負極とその製造方法、及び非水電解質二次電池
JP2015060719A (ja) 非水電解質電池
JP4836185B2 (ja) 非水電解液二次電池
JP6610692B2 (ja) 電極及び蓄電素子
JP2013097925A (ja) リチウム二次電池の電極の製造方法、リチウム二次電池の電極及びリチウム二次電池
JPWO2018198738A1 (ja) 二次電池用正極、及び二次電池
JP6211317B2 (ja) 非水電解質二次電池用セパレータ、および非水電解質二次電池
WO2019021581A1 (ja) 二次電池用正極、及び二次電池
JP2010244788A (ja) 非水系二次電池
KR102664816B1 (ko) 비수전해질 이차 전지
KR102328262B1 (ko) 황-탄소 복합체, 이를 포함하는 양극 및 리튬 이차전지
US20240234733A9 (en) Method of manufacturing electrode for rechargeable lithium battery, electrode manufactured therefrom, and rechargeable lithium battery including the electrode
WO2024181513A1 (ja) 二次電池用電極および二次電池
KR102664760B1 (ko) 전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527824

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017883476

Country of ref document: EP