WO2018116687A1 - 電子制御装置 - Google Patents

電子制御装置 Download PDF

Info

Publication number
WO2018116687A1
WO2018116687A1 PCT/JP2017/040495 JP2017040495W WO2018116687A1 WO 2018116687 A1 WO2018116687 A1 WO 2018116687A1 JP 2017040495 W JP2017040495 W JP 2017040495W WO 2018116687 A1 WO2018116687 A1 WO 2018116687A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
value
candidate value
air
air flow
Prior art date
Application number
PCT/JP2017/040495
Other languages
English (en)
French (fr)
Inventor
山口 昭
哲也 武知
義治 遠藤
樋口 輝一
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018116687A1 publication Critical patent/WO2018116687A1/ja
Priority to US16/431,863 priority Critical patent/US11446983B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00828Ventilators, e.g. speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00914Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is a bypass of the condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00807Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a specific way of measuring or calculating an air or coolant temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3266Cooling devices information from a variable is obtained related to the operation of the vehicle

Definitions

  • the present disclosure relates to an electronic control device applied to an air conditioner.
  • This disclosure is intended to provide an electronic control device that can appropriately control the air flow rate of a blower.
  • a heating unit that heats a heat medium, a casing that circulates an air flow toward a room, a blower that generates an air flow in the casing, and a heating unit that is disposed in the casing
  • An electronic control device applied to an air conditioner including a heat exchanger that heats an air flow by heat exchange between a heated heat medium and the air flow, A temperature calculation unit for obtaining an estimated blowing temperature which is an estimated value of the temperature of the air flow heated by the heat exchanger; A first determination unit that determines a candidate value for the target air flow rate of the blower based on the estimated blow-off temperature; A temperature calculation unit for obtaining a necessary blown air temperature that is an air temperature that needs to be blown out of the casing into the room in order to bring the indoor air temperature close to the set temperature; A control unit that performs warm-up to control the heating unit to increase the temperature of the heat medium to reach the target temperature; A determination unit that determines whether or not the warm-up is in an intermediate state
  • the third determination unit determines the candidate value determined by the first determination unit and the second determination unit.
  • the predetermined value can be selected as the largest candidate value among the candidate values to be set.
  • the heat pump cycle 10 of the present disclosure is applied to the vehicle air conditioner 1 of an electric vehicle or a hybrid vehicle that obtains driving force for traveling from a traveling electric motor.
  • the heat pump cycle 10 functions to cool or heat the vehicle interior air blown into the vehicle interior of the present disclosure in the vehicle air conditioner 1.
  • the heat pump cycle 10 employs an HFC-based refrigerant (for example, R134a) as a refrigerant, and constitutes a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
  • HFC-based refrigerant for example, R134a
  • coolants for example, R1234yf
  • This refrigerant is mixed with lubricating oil as refrigerating machine oil for lubricating components such as the compression mechanism and bearings of the compressor 11, and the lubricating oil circulates in the refrigerant circuit together with the refrigerant.
  • the refrigerant corresponds to the heat medium.
  • the housing of the compressor 11 is provided with a suction port 11a for sucking low-pressure refrigerant from the outside of the housing to the low-stage compression mechanism. Further, the housing is provided with an intermediate pressure port 11b that allows an intermediate pressure refrigerant to flow from the outside of the housing into the housing to join the refrigerant in the compression process. Further, the housing is provided with a discharge port 11c that discharges the high-pressure refrigerant discharged from the high-stage compression mechanism to the outside of the housing.
  • the intermediate pressure port 11b is connected to the refrigerant discharge port side of the low-stage compression mechanism (that is, the refrigerant suction port side of the high-stage compression mechanism).
  • the compressor 11 compresses the refrigerant sucked through the suction port 11a to a refrigerant having an intermediate pressure lower than that of the high-pressure refrigerant (that is, a refrigerant in the compression process), and the compressed refrigerant and the intermediate pressure port 11b.
  • the refrigerant sucked through the refrigerant is combined and compressed to a high-pressure refrigerant.
  • the electric motor is one whose operation (for example, the number of revolutions) is controlled by a control signal output from an electronic control unit 40 described later, and for example, an AC synchronous motor may be employed. And the refrigerant
  • the compressor 11 which accommodated two compression mechanisms in one housing is employ
  • adopted the format of a compressor is not limited to this.
  • one fixed capacity type compression mechanism and an electric motor that rotationally drives the compression mechanism are provided inside the housing.
  • An electric compressor configured to house a motor may be used.
  • the discharge port 11 c of the compressor 11 is connected to the inlet 12 a side of the indoor condenser (that is, the first heat exchanger) 12.
  • the indoor condenser 12 is disposed in a casing 31 of an indoor air conditioning unit 30 of the vehicle air conditioner 1 to be described later, and dissipates high-pressure refrigerant discharged from the high-stage compression mechanism of the compressor 11 so as to evaporate indoors to be described later. It is a heat radiator that heats the air blown into the passenger compartment that has passed through the vessel 23.
  • a high stage side expansion valve 13 Connected to the outlet 12b side of the indoor condenser 12 is an inlet side of a high stage side expansion valve 13 as a high stage side decompression section capable of decompressing the high pressure refrigerant flowing out of the indoor condenser 12 until it becomes an intermediate pressure refrigerant.
  • the high stage side expansion valve 13 is configured to be able to be set to a throttling state in which the refrigerant decompression action is exhibited and a fully open state in which the refrigerant decompression action is not exhibited.
  • the high stage side expansion valve 13 is configured to be in a fully closed state in which the refrigerant flow path between the outlet of the indoor condenser 12 and the inlet of the gas-liquid separator 14 is fully closed.
  • the operation of the high stage side expansion valve 13 is controlled by a control signal output from the electronic control unit 40.
  • a gas-liquid separator 14 as a separator for separating the gas-liquid of the intermediate pressure refrigerant flowing out of the indoor condenser 12 and decompressed by the high stage expansion valve 13.
  • a refrigerant inflow port is connected.
  • the gas-liquid separator 14 of this embodiment is a centrifugal separator that separates the refrigerant sucked from the refrigerant inflow port into “a gas-phase refrigerant excluding lubricating oil” and “the remaining refrigerant including lubricating oil” by the action of centrifugal force. Separation method.
  • a type other than the centrifugal separation type may be used.
  • the gas-liquid separator 14 is provided with a gas-phase refrigerant outflow port 14a through which the gas-phase refrigerant excluding lubricating oil flows out.
  • An intermediate pressure port 11 b of the compressor 11 is connected to the gas phase refrigerant outlet port 14 a through an intermediate pressure refrigerant passage 15.
  • An intermediate pressure side opening / closing valve 16 a is disposed in the intermediate pressure refrigerant passage 15.
  • the intermediate pressure side opening / closing valve 16 a is an electromagnetic valve that opens and closes the intermediate pressure refrigerant passage 15, and its operation is controlled by a control signal output from the electronic control device 40.
  • the intermediate pressure side opening / closing valve 16a only allows the refrigerant to flow from the gas phase refrigerant outlet port 14a of the gas-liquid separator 14 to the intermediate pressure port 11b side of the compressor 11 when the intermediate pressure refrigerant passage 15 is opened. It also functions as a check valve. This prevents the refrigerant from flowing back from the compressor 11 side to the gas-liquid separator 14 when the intermediate pressure side on-off valve 16a opens the intermediate pressure refrigerant passage 15.
  • the intermediate pressure side opening / closing valve 16 a functions to switch the cycle configuration (that is, the refrigerant flow path) by opening and closing the intermediate pressure refrigerant passage 15.
  • the gas-liquid separator 14 is provided with a liquid phase refrigerant outflow port 14c through which the remaining refrigerant liquid phase refrigerant containing the lubricating oil flows out.
  • the liquid-phase refrigerant outflow port 14c of the gas-liquid separator 14 is connected to the inlet side of the low-stage decompression section that can decompress the remaining refrigerant liquid-phase refrigerant including the lubricating oil, and is connected to the outlet side of the low-stage decompression section.
  • the low-stage decompression section of the present embodiment is configured to include a low-stage fixed throttle 17, a fixed throttle bypass passage 18, and a low-pressure side opening / closing valve 16b.
  • the low-stage fixed throttle 17 reduces the pressure of the refrigerant flowing out from the liquid-phase refrigerant outflow port 14c of the gas-liquid separator 14 until it becomes a low-pressure refrigerant.
  • the fixed throttle bypass passage 18 guides the refrigerant flowing out from the liquid-phase refrigerant outflow port 14c of the gas-liquid separator 14 to the outdoor heat exchanger 20 side by bypassing the low-stage fixed throttle 17.
  • the low pressure side opening / closing valve 16b is a passage opening / closing valve for opening / closing the fixed throttle bypass passage 18.
  • the basic configuration of the low pressure side on / off valve 16b is the same as that of the intermediate pressure side on / off valve 16a, and is an electromagnetic valve whose opening / closing operation is controlled by a control signal output from the electronic control unit 40.
  • the pressure loss that occurs when the refrigerant passes through the low-pressure side on-off valve 16 b is extremely small with respect to the pressure loss that occurs when the refrigerant passes through the low-stage side fixed throttle 17. Therefore, the refrigerant flowing out of the indoor condenser 12 flows into the outdoor heat exchanger 20 via the fixed throttle bypass passage 18 side when the low pressure side opening / closing valve 16b is open, and the low pressure side opening / closing valve 16b is When it is closed, it flows into the outdoor heat exchanger 20 through the low stage side fixed throttle 17.
  • the low-stage decompression unit can be changed between a throttle state that exhibits a decompression action and a fully open state that does not exhibit a decompression action by opening and closing the low-pressure side on-off valve 16b.
  • the three-way valve includes a refrigerant circuit that connects the liquid-phase refrigerant outlet port 14c outlet side of the gas-liquid separator 14 and the low-stage fixed throttle 17 inlet side, and the liquid-phase refrigerant outlet port 14c outlet side and the fixed throttle bypass passage 18. Switch the refrigerant circuit connecting the inlet side.
  • a nozzle or an orifice having a fixed throttle opening can be employed as the low stage side fixed throttle 17, a nozzle or an orifice having a fixed throttle opening.
  • the outdoor heat exchanger 20 is disposed in the engine room (that is, the engine room) of the automobile, and exchanges heat between the low-pressure refrigerant circulating inside and the outside air blown from the blower fan 21.
  • the outdoor heat exchanger 20 functions as an evaporator that evaporates the low-pressure refrigerant and exerts an endothermic effect from the outside air when the heating mode described later is performed.
  • the outdoor heat exchanger 20 functions as a radiator that radiates the high-pressure refrigerant to the outside air. It is a functioning heat exchanger.
  • the inlet side of the cooling expansion valve 22 is connected to the outlet side of the outdoor heat exchanger 20 via the check valve 9.
  • the cooling expansion valve 22 decompresses the refrigerant flowing from the outlet of the outdoor heat exchanger 20 to the inlet of the indoor evaporator 23 when the cooling mode is performed.
  • the cooling expansion valve 22 is an electric variable throttle mechanism configured in the same manner as the high stage side expansion valve 13.
  • the cooling expansion valve 22 is configured to be able to be set to a throttled state in which the refrigerant decompression action is exhibited, a fully open state in which the refrigerant decompression action is not exhibited, and a fully closed state in which the throttle opening is fully closed.
  • the throttle opening is the opening of the refrigerant flow path between the outlet of the outdoor heat exchanger 20 and the inlet of the indoor evaporator 23.
  • the operation of the cooling expansion valve 22 is controlled by a control signal output from the electronic control unit 40.
  • the check valve 9 prevents the refrigerant from flowing from the inlet side of the cooling expansion valve 22 to the outlet side of the outdoor heat exchanger 20.
  • the inlet side 23 a of the indoor evaporator 23 is connected to the outlet side of the cooling expansion valve 22.
  • the indoor evaporator 23 is disposed in the casing 31 of the indoor air conditioning unit 30 on the upstream side of the air flow in the vehicle interior of the indoor condenser 12.
  • the indoor evaporator 23 is an evaporator that cools the air blown into the vehicle interior by evaporating the refrigerant flowing through the interior and exhibiting an endothermic effect in the cooling mode and the first and second dehumidifying modes.
  • the inlet side of the accumulator 24 is connected to the outlet 23 b side of the indoor evaporator 23 via the fixed throttle valve 8 and the refrigerant flow path 51.
  • the fixed throttle valve 8 depressurizes the refrigerant flowing from the outlet 23b of the indoor evaporator 23 to the inlet side of the accumulator 24 through the refrigerant flow path 51.
  • the accumulator 24 separates the refrigerant flowing into the gas phase refrigerant and the liquid phase refrigerant and stores the liquid phase refrigerant as an excess refrigerant. Furthermore, the suction port 11 a of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 24. Therefore, the accumulator 24 is connected so that the gas-phase refrigerant flows out to the suction port 11a side of the compressor 11.
  • an expansion valve bypass passage 25 that guides the refrigerant flowing out of the outdoor heat exchanger 20 to the inlet side of the accumulator 24 by bypassing the cooling expansion valve 22 and the indoor evaporator 23. Is connected.
  • An outlet 25 a of the expansion valve bypass passage 25 is connected to the refrigerant flow path 51.
  • a cooling on-off valve 16c for opening and closing the expansion valve bypass passage 25 is disposed.
  • the refrigerant flow path 51 is a refrigerant flow path that connects between the outlet 23 b of the indoor evaporator 23 and the inlet of the accumulator 24.
  • the basic configuration of the cooling on-off valve 16c is the same as that of the intermediate pressure side on-off valve 16a, and is an electromagnetic valve whose opening / closing operation is controlled by a control signal output from the electronic control unit 40. Further, the pressure loss that occurs when the refrigerant passes through the cooling on-off valve 16 c is extremely small compared to the pressure loss that occurs when the refrigerant passes through the cooling expansion valve 22. Therefore, the refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 through the expansion valve bypass passage 25 when the cooling on-off valve 16c is open.
  • the high stage side expansion valve 13, the low stage side fixed throttle 17, the fixed throttle bypass passage 18, the low pressure side opening / closing valve 16 b, and the outdoor heat exchanger 20 are bypassed to enter the cooling expansion valve 22.
  • a bypass passage 50 that connects the outlet 12b side of the indoor condenser 12 is provided.
  • the inlet 50 a of the bypass passage 50 is connected between the outlet 12 b of the indoor condenser 12 and the inlet of the high stage side expansion valve 13.
  • the outlet 50 b of the bypass passage 50 is connected between the outlet of the check valve 9 and the inlet of the cooling expansion valve 22.
  • a bypass opening / closing valve 60 is disposed between the inlet 50a and the outlet 50b in the bypass passage 50.
  • the bypass opening / closing valve 60 is an electromagnetic valve that opens and closes the bypass passage 50, and its operation is controlled by a control signal output from the electronic control unit 40.
  • a fixed throttle valve 8 is connected between the outlet 25 a of the expansion valve bypass passage 25 and the outlet 23 b of the indoor evaporator 23 in the refrigerant flow path 51.
  • the fixed throttle valve 8 depressurizes the refrigerant flowing from the outlet 23 b of the indoor evaporator 23 to the inlet of the accumulator 24.
  • the indoor air-conditioning unit 30 is disposed inside the instrument panel (i.e., the instrument panel) at the foremost part of the vehicle interior to form an outer shell of the indoor air-conditioning unit 30 and blown into the interior of the vehicle interior. It has a casing 31 that forms an air passage for the air blown into the passenger compartment. And the air blower 32, the above-mentioned indoor condenser 12, the indoor evaporator 23, etc. are accommodated in this air passage.
  • the inside / outside air switching device 33 is disposed on the most upstream side of the air flow in the casing 31.
  • the inside / outside air switching device 33 includes an inside air introduction port 33a that introduces vehicle interior air into the casing 31, an outside air introduction port 33b that introduces outside air into the casing 31, and an inside / outside air switching door that opens and closes the introduction ports 33a and 33b by rotation. 33c.
  • the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port 33a and the opening area of the outside air introduction port 33b by the inside / outside air switching door 33c, and the air volume ratio between the air volume of the inside air and the air volume of the outside air. Is continuously changed.
  • the inside / outside air switching door 33c is driven and rotated by a servo motor 33d.
  • a blower 32 is disposed on the downstream side of the air flow of the inside / outside air switching device 33 to blow the air sucked through the inside / outside air switching device 33 into the vehicle interior as indicated by an arrow K.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan (for example, a sirocco fan) with an electric motor, and the number of rotations and the amount of blown air are controlled by a control signal output from the electronic control unit 40.
  • the indoor evaporator 23 and the indoor condenser 12 are arranged in the order of the indoor evaporator 23 and the indoor condenser 12 with respect to the flow of the air blown into the vehicle interior.
  • the indoor evaporator 23 is disposed on the upstream side of the air flow with respect to the indoor condenser 12.
  • a bypass passage 35 is provided in the casing 31 to flow the blown air that has passed through the indoor evaporator 23, bypassing the indoor condenser 12.
  • An air mix door 34 is disposed downstream of the indoor evaporator 23 and upstream of the indoor condenser 12.
  • the air mix door 34 adjusts the air volume ratio between the air volume that passes through the indoor condenser 12 and the air volume that passes through the bypass passage 35 in the blown air that has passed through the indoor evaporator 23 by the rotation of the air mix door 34.
  • the heat exchange capacity of the vessel 12 is adjusted.
  • the air mix door 34 is driven by a servo motor 34 a whose operation is controlled by a control signal output from the electronic control device 40.
  • a merging space in which the indoor blast air merges is provided.
  • an opening for blowing the blast air that has merged in the merging space into the vehicle interior that is the air-conditioning target space is disposed.
  • the opening includes a defroster opening 37a that blows conditioned air toward the inner surface of the vehicle front window glass, a face opening 37b that blows conditioned air toward the upper body of the passenger in the vehicle interior, and the feet of the passenger A foot opening 37c is provided to blow conditioned air toward the front.
  • the temperature of the blown air in the merge space 36 is adjusted by adjusting the air volume ratio between the air volume that allows the air mix door 34 to pass through the indoor condenser 12 and the air volume that passes through the bypass passage.
  • a defroster door 38a, a face door 38b, and a foot door 38c are disposed on the upstream side of the air flow of the defroster opening 37a, the face opening 37b, and the foot opening 37c, respectively.
  • the defroster door 38a adjusts the opening area of the defroster opening 37a.
  • the face door 38b adjusts the opening area of the face opening 37b.
  • the foot door 38c adjusts the opening area of the foot opening 37c.
  • the defroster door 38a, the face door 38b, and the foot door 38c constitute an opening mode switching unit that switches the opening mode.
  • the defroster door 38a, the face door 38b, and the foot door 38c are driven by a servo motor 38d (not shown) whose operation is controlled by a control signal output from the electronic control unit 40 via a link mechanism or the like.
  • the downstream side of the air flow of the defroster opening 37a, the face opening 37b, and the foot opening 37c is a face air outlet, a foot air outlet, and a defroster air outlet provided in the vehicle interior via ducts that form air passages, respectively. Connected to the exit.
  • the electronic control unit 40 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits.
  • the electronic control unit 40 performs various calculations and processes based on the air conditioning control program stored in the ROM (first storage unit, second storage unit, third storage unit), and various air conditioning units connected to the output side. Control the operation of control equipment.
  • ROM and RAM are non-transitional physical storage media.
  • a sensor group 41 for air conditioning control is connected to the input side of the electronic control unit 40.
  • the sensor group 41 includes an inside air sensor 41a, an outside air sensor 41b, a solar radiation sensor 41j, an evaporator temperature sensor 41d, refrigerant pressure sensors 41f and 41h, refrigerant temperature sensors 41c, 41e, 41g, and 41i.
  • the inside air sensor 41a detects the passenger compartment temperature.
  • the outside air sensor 41b detects the outside air temperature.
  • the solar radiation sensor 41j detects the amount of solar radiation in the passenger compartment.
  • the evaporator temperature sensor 41d detects the temperature of air blown from the indoor evaporator 23.
  • the refrigerant temperature sensor 41c detects the refrigerant temperature flowing out from the indoor evaporator 23.
  • the refrigerant temperature sensor 41 e detects the temperature of the high-pressure refrigerant that flows between the discharge port 11 c of the compressor 11 and the inlet 12 a of the indoor condenser 12.
  • the refrigerant pressure sensor 41 f detects the pressure of the refrigerant flowing between the outlet 12 b of the indoor condenser 12 and the inlet of the high stage side expansion valve 13.
  • the refrigerant pressure sensor 41 h detects the pressure of the refrigerant flowing from the outlet of the outdoor heat exchanger 20 to the expansion valve bypass passage 25 or the cooling expansion valve 22.
  • the refrigerant temperature sensor 41g detects the temperature of the refrigerant flowing between the outlet 12b of the indoor condenser 12 and the inlet of the high stage side expansion valve 13.
  • the refrigerant temperature sensor 41 i detects the temperature of the refrigerant flowing from the outlet of the outdoor heat exchanger 20 to the expansion valve bypass passage 25 or the cooling expansion valve 22.
  • an operation panel 42 disposed near the instrument panel in the front of the passenger compartment is connected to the input side of the electronic control unit 40, and operation signals from various air conditioning operation switches provided on the operation panel 42 are input.
  • the various air conditioning operation switches provided on the operation panel specifically, a start switch of the vehicle air conditioner 1 and a vehicle interior temperature setting switch for setting a set temperature Test as a target temperature of the vehicle interior temperature are provided. .
  • an operation selection switch for selecting a cooling mode, a heating mode, a dehumidifying mode, or the like is further provided.
  • the electronic control unit 40 is configured integrally with a control unit that controls the operation of various air conditioning control devices connected to the output side thereof.
  • the configuration that controls the operation of each control target device constitutes a control unit that controls the operation of each control target device.
  • the configuration may be hardware or software.
  • the configuration that controls the operation of the electric motor of the compressor 11 constitutes the discharge capacity control unit.
  • the configuration may be hardware or software.
  • the configuration for controlling the operation of the refrigerant flow switching units 16a to 16c constitutes the refrigerant flow control unit.
  • the configuration may be hardware or software.
  • the discharge capacity control unit and the refrigerant flow path control unit may be configured as separate control devices for the electronic control device 40.
  • FIG. 3 is a flowchart showing the air conditioning control process of the electronic control unit 40.
  • the electronic control unit 40 executes the air conditioning control process according to the flowchart of FIG.
  • the electronic control unit 40 determines an operation mode to be executed among the cooling mode, the heating mode, and the first and second dehumidifying heating modes based on the detected temperature of the outside air sensor 41b, the set temperature Tes, and the like.
  • the determined operation mode is executed.
  • the electronic control unit 40 sets the high-stage side expansion valve 13 to a fully opened state where the pressure reducing action is not exerted, sets the cooling expansion valve 22 to the throttling state which exerts the pressure reducing action, and closes the cooling on-off valve 16c And
  • the electronic control unit 40 opens the low-pressure side opening / closing valve 16b and sets the low-stage pressure reducing unit to a fully open state that does not exert a pressure reducing action. Further, the electronic control unit 40 closes the intermediate pressure side opening / closing valve 16a in conjunction with the state of the low pressure side opening / closing valve 16b. Further, the electronic control unit 40 closes the bypass passage 50 with the bypass opening / closing valve 60 closed.
  • the high-pressure refrigerant discharged from the discharge port 11 c of the compressor 11 flows into the indoor condenser 12.
  • the air mix door 34 closes the air passage of the indoor condenser 12
  • the refrigerant flowing into the indoor condenser 12 flows out of the indoor condenser 12 without radiating heat to the air blown into the passenger compartment. Go.
  • the refrigerant that has flowed out of the indoor condenser 12 flows in the order of the high-stage expansion valve 13, the gas-liquid separator 14, and the low-pressure side opening / closing valve 16 b and flows into the outdoor heat exchanger 20.
  • the gas-phase refrigerant that has flowed into the outdoor heat exchanger 20 exchanges heat with the outside air blown from the blower fan 21 to radiate heat.
  • the refrigerant that has flowed out of the outdoor heat exchanger 20 flows into the cooling expansion valve 22 through the check valve 9 because the cooling on-off valve 16c is closed. For this reason, the refrigerant flowing out of the outdoor heat exchanger 20 is decompressed and expanded in an enthalpy manner until it becomes a low-pressure refrigerant by the cooling expansion valve 22. Then, the low-pressure refrigerant decompressed by the cooling expansion valve 22 flows into the indoor evaporator 23, absorbs heat from the indoor air blown from the blower 32, and evaporates. Thereby, vehicle interior blowing air is cooled.
  • the refrigerant that has flowed out of the indoor evaporator 23 flows into the accumulator 24 through the fixed throttle valve 8, and is separated into a gas-phase refrigerant and a liquid-phase refrigerant by the accumulator 24.
  • the separated gas-phase refrigerant is sucked from the suction port 11a of the compressor 11 and compressed again in the order of the low-stage side compression mechanism and the high-stage side compression mechanism.
  • the separated liquid-phase refrigerant is stored in the accumulator 24 as surplus refrigerant that is not necessary for exhibiting the refrigerating capacity required for the cycle.
  • the electronic control unit 40 When executing the first dehumidifying heating, the electronic control unit 40, like the cooling mode, the high stage expansion valve 13, the cooling expansion valve 22, the intermediate pressure side opening / closing valve 16a, the cooling opening / closing valve 16c, the low pressure side opening / closing.
  • the valve 16b and the bypass opening / closing valve 60 are controlled.
  • the ratio between the amount of air flowing through the indoor condenser 12 and the amount of air flowing through the bypass passage 35 in the cold air blown from the indoor evaporator 23 is adjusted according to the opening degree of the air mix door 34, thereby opening portions 37 a and 37 b. , 37c to adjust the air temperature blown into the room.
  • the electronic control unit 40 places the high stage side expansion valve 13 in a fully closed state and places the cooling expansion valve 22 in a throttle state that exerts a pressure reducing action.
  • the high-pressure refrigerant discharged from the discharge port 11 c of the compressor 11 flows into the indoor condenser 12.
  • the refrigerant that has flowed into the indoor condenser 12 dissipates heat to the air blown into the passenger compartment and flows out of the indoor condenser 12.
  • the refrigerant that has flowed out of the indoor condenser 12 flows to the cooling expansion valve 22 through the bypass passage 50 and the bypass opening / closing valve 60.
  • the low-pressure refrigerant decompressed by the cooling expansion valve 22 flows into the indoor evaporator 23 and evaporates by absorbing heat from the indoor air blown from the blower 32. Thereby, vehicle interior blowing air is cooled.
  • the refrigerant that has flowed out of the indoor evaporator 23 flows into the accumulator 24 through the fixed throttle valve 8, and is separated into a gas-phase refrigerant and a liquid-phase refrigerant by the accumulator 24.
  • the separated gas-phase refrigerant is sucked from the suction port 11a of the compressor 11 and compressed again in the order of the low-stage side compression mechanism and the high-stage side compression mechanism.
  • the ratio between the amount of air flowing through the indoor condenser 12 and the amount of air flowing through the bypass passage 35 in the cold air blown from the indoor evaporator 23 is adjusted according to the opening degree of the air mix door 34, thereby opening portions 37 a and 37 b. , 37c to adjust the air temperature blown into the room.
  • Heating mode Next, it demonstrates with reference to heating mode.
  • the electronic control unit 40 controls the rotation speed Na of the electric motor of the compressor 11 (that is, the refrigerant discharge capacity of the compressor 11) based on the required blowing temperature TAO.
  • a control signal for controlling the electric motor of the compressor 11 is determined so that the estimated blowing temperature TAV approaches the necessary blowing temperature TAO by feedback control.
  • the estimated blowing temperature TAV is an estimated value of the air temperature blown out from the indoor condenser 12.
  • the estimated blowing temperature TAV is obtained from the evaporator temperature Te, which is a detected value of the evaporator temperature sensor 41d, the amount of air blown by the blower 32, and the temperature detected by the refrigerant temperature sensor 41g.
  • the electronic control unit 40 controls the throttle opening degree in the high stage side expansion valve 13 to bring the high stage side expansion valve 13 into a throttled state that exerts the decompression action of the refrigerant.
  • the throttle opening degree of the high stage side expansion valve 13 is determined so that the degree of supercooling of the refrigerant flowing from the indoor condenser 12 to the high stage side expansion valve 13 is determined in advance so that the COP approaches the maximum value. It is decided to approach.
  • the degree of supercooling is calculated based on the detected pressure of the refrigerant pressure sensor 41f and the detected temperature of the refrigerant temperature sensor 41g.
  • the electronic control unit 40 closes the bypass opening / closing valve 60, closes the bypass passage 50, fully closes the cooling expansion valve 22, opens the cooling opening / closing valve 16c, and opens the low pressure side opening / closing valve 16b. Is closed, and the low-stage decompression section is brought into a throttled state that exerts a decompression action.
  • the electronic control unit 40 opens the intermediate pressure side opening / closing valve 16a in conjunction with the state of the low pressure side opening / closing valve 16b.
  • the electronic control unit 40 controls the bypass opening / closing valve 60 to close the bypass passage 50.
  • the heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the thick arrows in FIG.
  • the air mix door 34 closes the bypass passage 35 so that the entire flow rate of the blown air after passing through the indoor evaporator 23 passes through the indoor condenser 12. To be determined.
  • the high-pressure refrigerant discharged from the discharge port 11 c of the compressor 11 flows into the indoor condenser 12.
  • the refrigerant that has flowed into the indoor condenser 12 exchanges heat with the vehicle interior blown air that has been blown from the blower 32 and passed through the indoor evaporator 23 to dissipate heat. Thereby, vehicle interior blowing air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 is decompressed and expanded in an enthalpy manner until it becomes an intermediate pressure refrigerant by the high-stage expansion valve 13 that is in a throttled state. Then, the intermediate pressure refrigerant decompressed by the high stage side expansion valve 13 is separated in the gas-liquid separator 14 into a gas phase refrigerant from which the lubricating oil has been removed and a liquid phase refrigerant containing the lubricating oil.
  • the gas-phase refrigerant separated by the gas-liquid separator 14 (that is, the gas-phase refrigerant from which the lubricating oil has been removed) flows into the intermediate pressure port 11b of the compressor 11 via the intermediate pressure refrigerant passage 15, and the low stage It merges with the refrigerant discharged from the side compression mechanism and is sucked into the higher stage compression mechanism. This is because the intermediate pressure side on-off valve 16a is in an open state.
  • the liquid refrigerant containing the lubricating oil separated by the gas-liquid separator 14 is decompressed until it becomes a low-pressure refrigerant in the low-stage decompression section because the low-stage decompression section is in the throttled state. It flows out and flows into the outdoor heat exchanger 20.
  • the low-pressure side opening / closing valve 16b is closed in the low-stage decompression section, it is decompressed and expanded in an enthalpy manner until it flows into the low-stage fixed throttle 17 and becomes low-pressure refrigerant.
  • the refrigerant that has flowed out of the low stage side fixed throttle 17 flows into the outdoor heat exchanger 20 and exchanges heat with the outside air blown from the blower fan 21 to absorb heat.
  • the refrigerant flowing out of the outdoor heat exchanger 20 flows into the accumulator 24 through the expansion valve bypass passage 25 and is separated into gas and liquid because the cooling on-off valve 16c is in the open state.
  • the separated gas-phase refrigerant is sucked from the suction port 11a of the compressor 11 and compressed again.
  • the separated liquid-phase refrigerant is stored in the accumulator 24 as surplus refrigerant that is not necessary for exhibiting the refrigerating capacity required for the cycle.
  • the heat of the refrigerant discharged from the compressor 11 by the indoor condenser 12 can be radiated to the vehicle interior air, and the heated room air can be blown into the vehicle interior. Thereby, heating of a vehicle interior is realizable.
  • the low-pressure refrigerant decompressed by the low-stage fixed throttle 17 is sucked from the suction port 11a of the compressor 11, and the intermediate-pressure refrigerant decompressed by the high-stage expansion valve 13 is taken as the intermediate pressure port 11b.
  • a gas injection cycle that is, an economizer refrigeration cycle
  • the compression efficiency of the high-stage compression mechanism can be improved by sucking the low-temperature mixed refrigerant into the high-stage compression mechanism.
  • the pressure difference between the suction refrigerant pressure and the discharge refrigerant pressure of both the low-stage compression mechanism and the high-stage compression mechanism can be reduced, and the compression efficiency of both compression mechanisms can be improved.
  • the COP of the heat pump cycle 10 as a whole can be improved.
  • the refrigerant flowing out of the indoor condenser 12 causes the high-stage side expansion valve 13 and the gas-liquid separator 14 that are in a throttled state, and the low-stage side pressure reduction that is in a throttled state.
  • the refrigerant circuit which flows in order of a part, the outdoor heat exchanger 20, the cooling on-off valve 16c, the accumulator 24, the compressor 11, and the indoor condenser 12 is comprised.
  • the gas-phase refrigerant separated by the gas-liquid separator 14 is caused to flow from the intermediate pressure refrigerant passage 15 to the intermediate pressure port 11 b of the compressor 11.
  • FIG. 3 is a flowchart showing the air conditioning control processing of the electronic control unit 40.
  • the electronic control unit 40 executes the air conditioning control process according to the flowchart of FIG.
  • the execution of the air conditioning control process is started when the ignition switch IG is turned on.
  • step S1 a timer is initialized and time measurement by the timer is started.
  • This timer is a timer for measuring the time elapsed since the start of the next step S2.
  • the air conditioning operation signal of each air conditioning operation switch on the operation panel 42 is read.
  • detection signals output from the sensors 41a, 41b, 41c, 41d, 41e, 41f, 41h, 41g, and 41i are read.
  • a necessary blowing temperature TAO of the conditioned air blown into the vehicle interior is calculated.
  • the necessary blowout temperature TAO is a blowout temperature required to maintain the temperature in the vehicle interior at the set temperature Tset of the vehicle interior temperature setting switch, and is calculated based on the following Equation 1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts + C (Equation 1)
  • Tr The inside air temperature detected by the inside air sensor 41a Tam: The outside air temperature detected by the outside air sensor 41b
  • Ts The amount of solar radiation detected by the solar radiation sensor 41j Kset, Kr, Kam, Ks: Control gain
  • C For correction Constant
  • a target value that is, a target air flow rate
  • a blower voltage Ve that is an applied voltage to the motor 6b for driving the blower is required for the required blowing temperature TAO. Determine based on. A method for determining the target air flow rate of the blower 32 will be described later.
  • the inside / outside air mode is determined in step S6. For example, as the required blowing temperature TAO rises from the low temperature side to the high temperature side, the switching is determined from the inside air mode to the inside / outside air mixing mode and from the inside / outside air mixing mode to the outside air mode. In order to implement the inside / outside air mode determined in this way, the servo motor 33d is controlled to drive the inside / outside air switching door 33c.
  • step S7 based on the deviation between the estimated blowing temperature TAV and the required blowing temperature TAO, the electric motor of the compressor 11 is controlled so that the estimated blowing temperature TAV approaches the necessary blowing temperature TAO by feedback control. A control signal is determined.
  • step S8 the target opening degree SW of the air mix door 34 is calculated.
  • the target opening degree SW of the air mix door 34 is set to the maximum heating position at which the bypass passage 35 is fully opened and the air inlet of the indoor condenser 12 is fully opened.
  • step S9 the blowing mode is determined according to the required blowing temperature TAO.
  • the blowing mode is switched from the face mode to the bilevel mode and from the bilevel mode to the foot mode as the required blowing temperature TAO increases from the low temperature side to the high temperature side.
  • step S10 that is, the control unit
  • the control showing the blower voltage Ve, the inside / outside air mode, the rotation speed Na of the compressor 11, the target opening degree SW of the air mix door 34, and the blowing mode determined in this way.
  • the signal is output to a corresponding electric actuator among the electric motor, the blower 32, and the servo motors 34a and 33d of the compressor 11.
  • step S11 it is determined whether or not the time measured by the timer (hereinafter referred to as timer measurement time) has reached a certain time ⁇ .
  • the fixed time ⁇ is a time indicating a control cycle for performing the processes of steps S2, S3, S4, S5, S6, S7, S8, S9, and S10.
  • the measurement time of the timer is shorter than the predetermined time ⁇ , it is determined as NO in step S11, and the determination in step S11 is performed.
  • step S10 determines whether the measurement time of the timer reaches a certain time ⁇ . Thereafter, when the measurement time of the timer reaches a certain time ⁇ , YES is determined in step S11, the process returns to step S1, the timer is initialized, and time measurement by the timer is started.
  • the electronic control unit 40 controls the rotation speed Na of the electric motor of the compressor 11 so that the estimated blowing temperature TAV approaches the necessary blowing temperature TAO by feedback control. That is, the electronic control unit 40 performs warm-up to control the rotational speed Na of the electric motor of the compressor 11 to increase the temperature of the high-pressure refrigerant discharged from the compressor 11 to reach the target temperature.
  • the target temperature of the high-pressure refrigerant is determined by the required blowing temperature TAO.
  • the electronic control unit 40 controls the blower 32 so that the blown amount blown from the blower 32 approaches the target blown amount.
  • the electronic control unit 40 controls the inside / outside air switching door 33c via the servo motor 33d so as to implement the inside / outside air mode determined in step S6.
  • the electronic control unit 40 controls the servo motor 34a so that the actual opening degree of the air mix door 34 approaches the target opening degree SW.
  • step S5 the details of the calculation process of the target value of the blower amount of the blower 32 in this embodiment (ie, step S5) will be described with reference to FIG.
  • step S20 that is, the first temperature calculation unit
  • estimation is performed based on the detected value of the evaporator temperature sensor 41d, the detected temperature of the refrigerant temperature sensor 41g, and the current blown amount of the blower 32 (that is, the blower voltage Ve).
  • the blowing temperature TAV is obtained.
  • the temperature detected by the evaporator temperature sensor 41d indicates the temperature of the air blown into the vehicle interior that has passed through the indoor evaporator 23
  • the temperature detected by the refrigerant temperature sensor 41g is the vehicle interior that has passed through the indoor condenser 12. It shows the temperature of the blown air.
  • step S21 that is, the first determination unit
  • TAV target air flow rate
  • the air volume map Ha is a graph in which the horizontal axis represents the estimated blowing temperature TAV, the vertical axis represents the candidate value f (TAV), and the estimated blowing temperature TAV and the candidate value f (TAV) are identified on a one-to-one basis.
  • the air volume map Ha corresponds to the third air volume map.
  • the candidate value f (TAV) when the estimated blowing temperature TAV is smaller than the lower reference value (that is, 29, 40), the candidate value f (TAV) is zero, which is the minimum value. These lower reference values correspond to the third lower reference value. When the estimated blowing temperature TAV is larger than the upper reference value (that is, 56, 60), the candidate value f (TAV) is 31 which is the maximum value. These upper reference values correspond to the third upper reference value. When the estimated blowing temperature TAV is between the lower reference value (ie, 29, 40) and the upper reference value (ie, 56, 60), the estimated blowing temperature TAV is changed from the lower reference value (ie, 29, 40) to the upper reference value. The candidate value f (TAV) gradually increases toward (that is, 56, 60).
  • the candidate value f (TAV) is 1, and the estimated blowing temperature TAV is on the lower side.
  • the candidate value f (TAV) becomes the minimum value (that is, zero).
  • a hysteresis characteristic is set such that if the estimated blowing temperature TAV becomes the lower reference value 40 or more, the candidate value f (TAV) becomes larger than the minimum value (that is, zero).
  • the candidate value f (TAV) becomes smaller than the maximum value (that is, 31) when the estimated blowing temperature TAV becomes the upper reference value 60 or less when the estimated blowing temperature TAV becomes small. Further, in the air volume map Ha, when the estimated blowing temperature TAV increases, if the estimated blowing temperature TAV becomes equal to or higher than the upper reference value 56, the candidate value f (TAV) becomes the maximum value (that is, 31). That is, the hysteresis characteristic is set.
  • a candidate value f (TAV) specified on a one-to-one basis with respect to the estimated blowing temperature TAV is determined.
  • step S22 that is, the determination unit, the second determination unit, and the third determination unit
  • the horizontal axis is the deviation (TAO-TAV)
  • the vertical axis is the candidate value f (TAO-TAV)
  • the deviation (TAO-TAV) and the candidate value f (TAO-TAV) are 1: 1. It is a specified graph.
  • the air volume map Hb corresponds to the second air volume map.
  • the candidate value f (TAO-TAV) is zero, which is the minimum value.
  • the upper reference values correspond to the second upper reference values.
  • the candidate value f (TAO ⁇ TAV) is 4 which is the maximum value (that is, a predetermined value).
  • This lower reference value corresponds to the second lower reference value.
  • the deviation (TAO-TAV) is between the lower reference value (ie 1) and the upper reference value (ie 5, 100)
  • the deviation (TAO-TAV) is changed from the lower reference value (ie 1) to the upper reference value.
  • the candidate value f (TAO ⁇ TAV) gradually decreases toward (that is, 5, 100).
  • the candidate value f (TAO-TAV) becomes 1 when the deviation (TAO-TAV) falls within the range of 5 to 100.
  • the candidate value f (TAO-TAV) becomes the minimum value (that is, zero).
  • the candidate value f (TAV) becomes larger than the minimum value (that is, zero) when the estimated blowing temperature TAV becomes the upper reference value 5 or more. That is, the hysteresis characteristic is set.
  • a candidate value f (TAO-TAV) specified one-to-one with respect to the deviation (TAO-TAV) is determined.
  • the electronic control unit 40 determines that the warm-up is in an intermediate state, and is specified one-to-one with respect to the deviation (TAO-TAV) in the airflow map Hb.
  • a candidate value f (TAO-TAV) is determined.
  • step S24 the upper limit value Va of the air flow determined in step S23 and the upper limit value of the air flow determined by other requirements other than the air flow maps Ha and Hb are adjusted to obtain the target air flow.
  • the target air flow rate of the blower 32 is determined using the candidate values f (TAO-TAV) and f (TAV).
  • the electronic control unit 40 includes a step S22 of determining a predetermined value (that is, 4) as a candidate value f (TAO-TAV) of the target air flow rate of the blower 32 when it is determined that the warm-up is completed.
  • FIG. 5 shows the overall configuration of the vehicle air conditioner 1 of the present embodiment.
  • the same reference numerals as those in FIG. 5 are identical reference numerals as those in FIG. 5
  • step S24 the target air flow rate is obtained by adjusting the upper limit value Va of the air flow rate thus determined and candidates determined by other requirements than the air flow maps Ha, Hb, Hc, and Hd.
  • the target air volume of the blower 32 can be appropriately determined as in the first embodiment.
  • the candidate value f (TW) or the candidate value f (TAV) is selected as Max ⁇ f (TW), f (TAV), f (TAO-TAV) ⁇ .
  • the candidate value f (TW) is determined as the target air flow rate of the blower 32 by mediation between the candidate value f (TW) and the candidate value determined by other requirements. Then, even when the air-conditioning load in the vehicle interior is large, the amount of air blown from the blower 32 can be suppressed to a low level, and the blowing of cool air from the foot opening 37c into the vehicle interior can be suppressed.
  • the estimated blowing temperature TAV is the evaporator temperature Te detected by the evaporator temperature sensor 41d, the amount of air blown by the blower 32, and the temperature detected by the refrigerant temperature sensor 41g.
  • the example obtained by the above was explained.
  • a temperature sensor that detects the temperature of air blown from the indoor condenser 12 may be adopted, and the detected value of this temperature sensor may be used as the estimated blowing temperature TAV.
  • the estimated blowing temperature TAV may be obtained based on the detected pressure of the refrigerant pressure sensor 41f. Specifically, the estimated blowing temperature TAV may be calculated based on the evaporator temperature Te, which is a detection value of the evaporator temperature sensor 41d, the amount of air blown by the blower 32, and the detection pressure of the refrigerant pressure sensor 41f. .
  • the indoor air conditioning unit 30 configured to divide the air passage in the casing 31 into the outside air passage and the inside air passage may be adopted.

Abstract

電子制御装置は、熱交換器(12)により加熱された空気流の推定吹出温度(TAV)を求める、前記推定吹出温度に基づいて、前記送風機の目標送風量の第1の候補値を決め、前記室内の空気温度を設定温度に近づけるための必要吹出し空気温度(TAO)を求め、加熱部(11)を制御して前記熱媒体の温度を上昇させて目標温度に到達させるウォームアップを実施し、前記ウォームアップが中途状態であるか否か判定し、前記ウォームアップが中途状態であるとき、前記必要吹出し空気温度と前記推定吹出温度とに基づいて前記送風機の目標送風量の第2の候補値を決め、前記ウォームアップが完了したとき前記送風機の目標送風量の第2の候補値を所定値とし、第1、第2の候補値を用いて前記送風機の目標送風量を決める。

Description

電子制御装置 関連出願への相互参照
 本出願は、2016年12月20日に出願された日本特許出願番号2016-246982号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、空調装置に適用される電子制御装置に関するものである。
 従来、走行用エンジンの冷却水を熱媒体とする車両用空調装置において、快適な吹き出し温感を得るために、エンジン冷却水の水温に応じて送風機から吹出口を通して車室内へ吹き出す送風量の目標風量を自動制御する風量制御が提案されている(例えば、特許文献1参照)。
 この車両用空調装置では、送風機の目標風量は、第1風量マップと第2風量マップとを用いて決められる。
 第1風量マップは、送風機の送風量V1と吹出口の吹出温度TAHとが1対1で対応づけられている風量マップである。第2風量マップは、送風機の送風量V2と必要吹出し温度TAOとが1対1で対応づけられている風量マップである。吹出温度TAHは、吹出口から吹き出される空気温度である。
 第1風量マップにおいて吹出温度TAHに対応する送風量V1と、第2風量マップにおいて必要吹出し温度TAOに対応する送風量V2とを求める。このように算出された送風量V1、V2のうち小さい送風量を送風量の目標風量とする。
特開平5-58142号公報
 しかし、電動圧縮機等から吐出される冷媒により空気流を加熱するヒートポンプの如く、走行用エンジンとは特性が違う冷媒をエンジン冷却水に代えて用いる空調装置においては、上記特許文献1の風量制御だけでは、車室内に吹き出す風量を最適に調整することができず、快適性を損なう場合がある。
 具体的には、上記ヒートポンプを用いた空調装置では、上記特許文献1の様な、走行用エンジンの冷却水を加熱源とする車両用空調装置とは異なり、電動圧縮機を制御することにより冷媒温度を制御して、送風空気を加熱する加熱能力を状況に応じて調整することができる。このため、例えば車室内の空調負荷が小さい場合、送風空気の加熱能力を低く抑えて車室内への吹出し温度を低く抑える、といった吹出温度制御が可能である。
 しかし、この様な吹出空気温度制御の手法を、上記特許文献1における送風機の目標風量の算出手法に組合わせた場合には、次のような問題が生じることが、本願発明者の検討により判明した。
 車室内の空調負荷が小さい場合において、冷媒温度を上昇させて目標温度に近づけるウォームアップが中途状態であるとき、吹出温度TAHは小さい値になる。このため、第1風量マップと吹出温度TAHとによって決められる送風量V1は、極めて小さい風量に設定されて、送風量V2の最低値よりも低くなる。このため、送風量の目標風量として、送風量V1が選択されて、送風量の目標風量が極めて小さい値になり、送風機の送風量は実質的に零になる。
 しかし、車室内の空調負荷が小さい場合には、冷媒温度が目標温度に到達してウォームアップが完了しても、必要吹出し温度TAOが低くなり(例えば、TAO=30℃)、推定吹出温度TAVは小さい値になる。このため、送風量V1は、引き続き、極めて低い風量に設定されて、送風量V2よりも低くなる。
 すなわち、車室内の空調負荷が小さい場合には、ウォームアップが完了しても、ウォームアップの中途における送風量の目標風量が継続されて、送風機の送風量が実質的に零となる状態が継続される。このため、送風機の送風量が車室内の空調負荷に応じた値にならない。よって、送風量を適切に制御することができなく、快適性を損なうといった課題がある。
 本開示は、送風機の送風量を適切に制御することを可能にした電子制御装置を提供することを目的とする。
 本開示の1つの観点によれば、熱媒体を加熱する加熱部と、室内に向けて空気流を流通させるケーシングと、ケーシング内の空気流を発生させる送風機と、ケーシングに配置されて加熱部により加熱された熱媒体と空気流との間の熱交換により空気流を加熱する熱交換器とを備える空調装置に適用される電子制御装置は、
 熱交換器により加熱された空気流の温度の推定値である推定吹出温度を求める温度算出部と、
 推定吹出温度に基づいて、送風機の目標送風量の候補値を決める第1決定部と、
 室内の空気温度を設定温度に近づけるためにケーシングから室内に吹き出すことが必要となる空気温度である必要吹出し空気温度を求める温度算出部と、
 加熱部を制御して熱媒体の温度を上昇させて目標温度に到達させるウォームアップを実施する制御部と、
 ウォームアップが中途状態であるか否かについて、推定吹出温度と必要吹出し空気温度とに基づいて判定する判定部と、
 ウォームアップが中途状態であると判定部が判定したとき、必要吹出し空気温度と推定吹出温度とに基づいて送風機の目標送風量の候補値を決め、ウォームアップが完了したと判定部が判定したとき送風機の目標送風量の候補値を所定値とする第2決定部と、
 第1決定部により決定される候補値と第2決定部により決定される候補値とを用いて送風機の目標送風量を決める第3決定部と、を備える。
 以上により、送風機の送風量を適切に制御することを可能にした電子制御装置を提供することができる。但し、所定値としては、零よりも大きな送風量が設定される。
 他の観点によれば、第3決定部は、第1決定部により決定される候補値、および第2決定部により決定される候補値のうち最も大きい候補値を用いて送風機の目標送風量を決める。
 他の観点によれば、推定吹出温度が第3上側基準値よりも大きいとき、目標送風量の候補値が最大値となり、かつ推定吹出温度が第3上側基準値未満である第3下側基準値未満であるとき、目標送風量の候補値が最小値となり、さらに推定吹出温度が第3下側基準値と3上側基準値との間の値であるとき、推定吹出温度が大きくなるほど目標送風量の候補値が大きくなるように設定されて候補値と推定吹出温度とが1対1で対応づけられている第3風量マップを記憶する第2記憶部を電子制御装置が備え、第1決定部は、推定吹出温度と第3風量マップとに基づいて目標送風量の候補値を決める。
 他の観点によれば、所定値は、第3風量マップにおける目標送風量の候補値の最小値よりも、大きい。
 したがって、車室内の空調負荷が小さい場合において、ウォームアップが完了したとき、他の観点によれば、第3決定部は、第1決定部により決定される候補値、および第2決定部により決定される候補値のうち最も大きい候補値として、前記所定値を選択することができる。
 このため、前記所定値を送風機の目標送風量とした場合には、ウォームアップが完了したときには、室内の空調負荷が小さいときでも、送風機の送風量として必要最低限の送風量を確保することができる。
第1実施形態におけるヒートポンプサイクルの全体構成を示す図である。 図1のヒートポンプサイクルの電気的構成を示す図である。 図2の電子制御装置の制御処理の一部を示すフローチャートである。 図2の電子制御装置の制御処理の一部を示すフローチャートである。 第2実施形態におけるヒートポンプサイクルの全体構成を示す図である。 第2実施形態における電子制御装置の制御処理の一部を示すフローチャートである。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
 (第1実施形態)
 図1により、本開示の第1実施形態について説明する。本実施形態では、本開示のヒートポンプサイクル10を走行用電動モータから車両走行用の駆動力を得る電気自動車やハブリット自動車の車両用空調装置1に適用している。このヒートポンプサイクル10は、車両用空調装置1において、本開示の室内である車室内へ送風される車室内送風空気を冷却あるいは加熱する機能を果たす。
 したがって、本実施形態のヒートポンプサイクル10は、車室内を暖房する暖房モードの冷媒回路、車室内を冷房する冷房モードの冷媒回路、或いは、車室内を除湿して暖房する除湿・暖房モードの冷媒回路を切替可能に構成されている。なお、図1では、極太矢印が暖房モードにおける冷媒の流れを示している。
 ヒートポンプサイクル10では、冷媒としてHFC系冷媒(例えば、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。もちろん、HFO系冷媒(例えば、R1234yf)等を採用してもよい。この冷媒には、圧縮機11の圧縮機構や軸受け等の部品を潤滑するための冷凍機油としての潤滑油が混入されており、潤滑油は冷媒とともに冷媒回路を循環している。冷媒が熱媒体に対応する。
 ヒートポンプサイクル10の構成機器のうち、圧縮機11は、車両のボンネット内に配置され、ヒートポンプサイクル10において冷媒を吸入し、圧縮して吐出するものである。この圧縮機11は、その外殻を形成するハウジングの内部に、固定容量型の圧縮機構からなる低段側圧縮機構と高段側圧縮機構との2つの圧縮機構、および、双方の圧縮機構を回転駆動する電動モータを収容して構成された二段昇圧式の電動圧縮機である。
 圧縮機11のハウジングには、ハウジングの外部から低段側圧縮機構へ低圧冷媒を吸入させる吸入ポート11aが設けられている。更に当該ハウジングには、ハウジングの外部からハウジングの内部へ中間圧冷媒を流入させて圧縮過程の冷媒に合流させる中間圧ポート11bが設けられている。更に当該ハウジングには、高段側圧縮機構から吐出された高圧冷媒をハウジングの外部へ吐出させる吐出ポート11cが設けられている。ここで、中間圧ポート11bは、低段側圧縮機構の冷媒吐出口側(すなわち、高段側圧縮機構の冷媒吸入口側)に接続されている。
 換言すれば、圧縮機11は、吸入ポート11aを介して吸入した冷媒を高圧冷媒よりも低い中間圧力の冷媒(すなわち、圧縮過程の冷媒)まで圧縮して、この圧縮した冷媒と中間圧ポート11bを介して吸入した冷媒とを合流させて高圧冷媒まで圧縮する。
 なお、低段側圧縮機構および高段側圧縮機は、スクロール型圧縮機構、ベーン型圧縮機構、ローリングピストン型圧縮機構等の各種形式のものを採用することができる。圧縮機11は、加熱部に対応する。
 電動モータは、後述する電子制御装置40から出力される制御信号によって、その作動(例えば回転数)が制御されるもので、例えば、交流同期型モータを採用してもよい。そして、この回転数制御によって、圧縮機11の冷媒吐出容量が変更される。
 なお、本実施形態では、2つの圧縮機構を1つのハウジング内に収容した圧縮機11を採用しているが、圧縮機の形式はこれに限定されない。つまり、中間圧ポート11bから中間圧冷媒を流入させて圧縮過程の冷媒に合流させることが可能であれば、ハウジングの内部に、1つの固定容量型の圧縮機構およびこの圧縮機構を回転駆動する電動モータを収容して構成された電動圧縮機であってもよい。
 圧縮機11の吐出ポート11cには、室内凝縮器(すなわち第1熱交換器)12の入口12a側が接続されている。室内凝縮器12は、後述する車両用空調装置1の室内空調ユニット30のケーシング31内に配置され、圧縮機11の高段側圧縮機構から吐出された高圧冷媒を放熱させて、後述する室内蒸発器23を通過した車室内送風空気を加熱する放熱器である。
 室内凝縮器12の出口12b側には、室内凝縮器12から流出した高圧冷媒を中間圧冷媒となるまで減圧可能な高段側減圧部としての高段側膨脹弁13の入口側が接続されている。
 この高段側膨脹弁13は、絞り開度を変更可能に構成された弁体と、この弁体の絞り開度を変化させるステッピングモータからなるアクチュエータとを有して構成される電気式の可変絞り機構である。絞り開度とは、室内凝縮器12の出口および気液分離器14の入口の間の冷媒流路の開度である。
 高段側膨脹弁13は、冷媒の減圧作用を発揮する絞り状態と冷媒の減圧作用を発揮しない全開状態とに設定可能に構成されている。高段側膨脹弁13は、室内凝縮器12の出口および気液分離器14の入口の間の冷媒流路を全閉する全閉状態にすることも可能に構成されている。なお、高段側膨脹弁13は、電子制御装置40から出力される制御信号によって、その作動が制御される。
 高段側膨脹弁13の出口側には、室内凝縮器12から流出して高段側膨脹弁13にて減圧された中間圧冷媒の気液を分離する分離器としての気液分離器14の冷媒流入ポートが接続されている。
 本実施形態の気液分離器14は、冷媒流入ポートから吸入された冷媒を「潤滑油を除いた気相冷媒」と「潤滑油を含む残りの冷媒」とに遠心力の作用によって分離する遠心分離方式のものである。なお、気液分離器14としては、遠心分離方式以外のタイプのものを用いてもよい。
 ここで、気液分離器14には、潤滑油を除いた気相冷媒を流出する気相冷媒流出ポート14aが設けられている。気相冷媒流出ポート14aには、中間圧冷媒通路15を介して、圧縮機11の中間圧ポート11bが接続されている。この中間圧冷媒通路15には、中間圧側開閉弁16aが配置されている。この中間圧側開閉弁16aは、中間圧冷媒通路15を開閉する電磁弁であり、電子制御装置40から出力される制御信号によって、その作動が制御される。
 なお、中間圧側開閉弁16aは、中間圧冷媒通路15を開けた際に気液分離器14の気相冷媒流出ポート14aから圧縮機11の中間圧ポート11b側へ冷媒が流れることのみを許容する逆止弁としての機能を兼ね備えている。これにより、中間圧側開閉弁16aが中間圧冷媒通路15を開けた際に、圧縮機11側から気液分離器14へ冷媒が逆流することが防止される。中間圧側開閉弁16aは、中間圧冷媒通路15を開閉することによって、サイクル構成(すなわち冷媒流路)を切り替える機能を果たす。
 一方、気液分離器14には、上記潤滑油を含む残りの冷媒液相冷媒を流出する液相冷媒流出ポート14cが設けられている。気液分離器14の液相冷媒流出ポート14cには、上記潤滑油を含む残りの冷媒液相冷媒を減圧可能な低段側減圧部の入口側が接続され、低段側減圧部の出口側には、室外熱交換器20の入口側が接続されている。
 本実施形態の低段側減圧部は、低段側固定絞り17、固定絞り迂回用通路18、および低圧側開閉弁16bを有して構成されている。低段側固定絞り17は、気液分離器14の液相冷媒流出ポート14cから流れ出る冷媒を低圧冷媒となるまで減圧させる。固定絞り迂回用通路18は、気液分離器14の液相冷媒流出ポート14cから流れ出る冷媒を低段側固定絞り17を迂回させて室外熱交換器20側へ導く。低圧側開閉弁16bは、固定絞り迂回用通路18を開閉する通路開閉弁である。
 なお、低圧側開閉弁16bの基本的構成は、中間圧側開閉弁16aと同等であり、電子制御装置40から出力される制御信号によって、その開閉作動が制御される電磁弁である。
 ここで、冷媒が低圧側開閉弁16bを通過する際に生じる圧力損失は、低段側固定絞り17を通過する際に生じる圧力損失に対して極めて小さい。したがって、室内凝縮器12から流出した冷媒は、低圧側開閉弁16bが開いている場合には、固定絞り迂回用通路18側を介して室外熱交換器20へ流入し、低圧側開閉弁16bが閉じている場合には低段側固定絞り17を介して室外熱交換器20へ流入する。
 これにより、低段側減圧部は、低圧側開閉弁16bの開閉により、減圧作用を発揮する絞り状態と、減圧作用を発揮しない全開状態とに変更することが可能となっている。
 なお、低圧側開閉弁16bとして、電気式の三方弁等を採用してもよい。当該三方弁は、気液分離器14の液相冷媒流出ポート14c出口側と低段側固定絞り17入口側とを接続する冷媒回路および液相冷媒流出ポート14c出口側と固定絞り迂回用通路18入口側とを接続する冷媒回路を切り替える。低段側固定絞り17としては、絞り開度が固定されたノズル、オリフィスを採用することができる。
 室外熱交換器20は、自動車の機関室(すなわち、エンジンルーム)内に配置されて、内部を流通する低圧冷媒と送風ファン21から送風された外気とを熱交換させるものである。この室外熱交換器20は、後述する暖房モードの実施時には、低圧冷媒を蒸発させて外気から吸熱作用を発揮させる蒸発器として機能し、冷房モードには、高圧冷媒を外気に放熱させる放熱器として機能する熱交換器である。
 室外熱交換器20の出口側には、逆止弁9を介して冷房用膨脹弁22の入口側が接続されている。冷房用膨脹弁22は、冷房モードの実施時に、室外熱交換器20の出口から室内蒸発器23の入口へ流入する冷媒を減圧させるものである。この冷房用膨脹弁22は、高段側膨脹弁13と同様に構成されている電気式の可変絞り機構である。
 冷房用膨脹弁22は、冷媒の減圧作用を発揮する絞り状態、冷媒の減圧作用を発揮しない全開状態、および絞り開度を全閉する全閉状態に設定可能に構成されている。絞り開度とは、室外熱交換器20の出口および室内蒸発器23の入口の間の冷媒流路の開度である。冷房用膨脹弁22は、電子制御装置40から出力される制御信号によって、その作動が制御される。
 逆止弁9は、冷房用膨脹弁22の入口側から室外熱交換器20の出口側に冷媒が流れることを防止する。
 冷房用膨脹弁22の出口側には、室内蒸発器23の入口23a側が接続されている。室内蒸発器23は、室内空調ユニット30のケーシング31内のうち、室内凝縮器12の車室内送風空気流れ上流側に配置される。室内蒸発器23は、冷房モード時、第1、第2除湿モード時にその内部を流通する冷媒を蒸発させて吸熱作用を発揮させることにより車室内送風空気を冷却する蒸発器である。
 室内蒸発器23の出口23b側には、固定絞り弁8、冷媒流路51を介してアキュムレータ24の入口側が接続されている。固定絞り弁8は、室内蒸発器23の出口23bから冷媒流路51を介してアキュムレータ24の入口側に流れる冷媒を減圧する。
 アキュムレータ24は、その内部に流入した冷媒の気相冷媒と液相冷媒とに分離して液相冷媒を余剰冷媒として蓄える。さらに、アキュムレータ24の気相冷媒出口には、圧縮機11の吸入ポート11aが接続されている。したがって、アキュムレータ24は、気相冷媒を圧縮機11の吸入ポート11a側へ流出させるように接続されている。
 さらに、室外熱交換器20の出口側には、室外熱交換器20から流出した冷媒を冷房用膨脹弁22および室内蒸発器23を迂回させてアキュムレータ24の入口側へ導く膨脹弁迂回用通路25が接続されている。膨脹弁迂回用通路25の出口25aは、冷媒流路51に接続されている。膨脹弁迂回用通路25には、膨脹弁迂回用通路25を開閉する冷房用開閉弁16cが配置されている。冷媒流路51は、室内蒸発器23の出口23bおよびアキュムレータ24の入口の間を接続する冷媒流路である。
 冷房用開閉弁16cの基本的構成は、中間圧側開閉弁16aと同等であり、電子制御装置40から出力される制御信号によって、その開閉作動が制御される電磁弁である。また、冷媒が冷房用開閉弁16cを通過する際に生じる圧力損失は、冷房用膨脹弁22を通過する際に生じる圧力損失に対して極めて小さい。したがって、室外熱交換器20から流出した冷媒は、冷房用開閉弁16cが開いている場合には膨脹弁迂回用通路25を介してアキュムレータ24へ流入する。
 本実施形態では、高段側膨脹弁13、低段側固定絞り17、固定絞り迂回用通路18、低圧側開閉弁16b、室外熱交換器20を迂回して、冷房用膨脹弁22の入口と室内凝縮器12の出口12b側との間を接続するバイパス通路50が設けられている。
 具体的には、バイパス通路50の入口50aは、室内凝縮器12の出口12bおよび高段側膨脹弁13の入口の間に接続されている。バイパス通路50の出口50bは、逆止弁9の出口および冷房用膨脹弁22の入口の間に接続されている。
 バイパス通路50のうち入口50aおよび出口50bの間には、バイパス開閉弁60が配置されている。このバイパス開閉弁60は、バイパス通路50を開閉する電磁弁であり、電子制御装置40から出力される制御信号によって、その作動が制御される。
 冷媒流路51のうち膨脹弁迂回用通路25の出口25aと室内蒸発器23の出口23bとの間には、固定絞り弁8が接続されている。固定絞り弁8は、室内蒸発器23の出口23bからアキュムレータ24の入口に流れる冷媒を減圧する。
 次に、室内空調ユニット30について図1を参照して説明する。
 まず、室内空調ユニット30は、車室内最前部の計器盤(すなわち、インストルメントパネル)の内側に配置されて、室内空調ユニット30の外殻を形成するとともに、その内部に車室内に送風される車室内送風空気の空気通路を形成するケーシング31を有している。そして、この空気通路に送風機32、前述の室内凝縮器12、室内蒸発器23等が収容されている。
 ケーシング31の空気流れ最上流側には、内外気切替装置33が配置されている。内外気切替装置33は、車室内空気をケーシング31内に導入する内気導入口33aと外気をケーシング31内に導入する外気導入口33bと、導入口33a、33bを回転により開閉する内外気切替ドア33cとを備える。この内外気切替装置33は、内気導入口33aの開口面積と外気導入口33bの開口面積とを、内外気切替ドア33cによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。内外気切替ドア33cは、サーボモータ33dにより駆動されて、回転させる。
 内外気切替装置33の空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて矢印Kの如く送風する送風機32が配置されている。この送風機32は、遠心多翼ファン(例えば、シロッコファン)を電動モータにて駆動する電動送風機であって、電子制御装置40から出力される制御信号によって回転数ひいては送風量が制御される。
 送風機32の空気流れ下流側には、前述の室内蒸発器23および室内凝縮器12が、車室内送風空気の流れに対して、室内蒸発器23、室内凝縮器12の順に配置されている。換言すると、室内蒸発器23は、室内凝縮器12に対して、空気流れ上流側に配置されている。
 また、ケーシング31内には、室内蒸発器23通過後の送風空気を、室内凝縮器12を迂回して流すバイパス通路35が設けられている。室内蒸発器23の空気流れ下流側であって、かつ、室内凝縮器12の空気流れ上流側には、エアミックスドア34が配置されている。
 このエアミックスドア34は、その回転により、室内蒸発器23通過後の送風空気のうち、室内凝縮器12を通過させる風量とバイパス通路35を通過させる風量との風量割合を調整して、室内凝縮器12の熱交換能力を調整する。なお、エアミックスドア34は、電子制御装置40から出力される制御信号によって作動が制御されるサーボモータ34aによって駆動される。
 また、室内凝縮器12およびバイパス通路35の空気流れ下流側には、室内凝縮器12にて冷媒と熱交換して加熱された車室内送風空気とバイパス通路35を通過して加熱されていない車室内送風空気が合流する合流空間が設けられている。
 ケーシング31の空気流れ最下流部には、この合流空間にて合流した送風空気を、空調対象空間である車室内へ吹き出す開口部が配置されている。具体的には、この開口部としては、車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口部37a、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口部37b、乗員の足元に向けて空調風を吹き出すフット開口部37cが設けられている。
 したがって、エアミックスドア34が室内凝縮器12を通過させる風量とバイパス通路を通過させる風量との風量割合を調整することによって、合流空間36内の送風空気の温度が調整される。
 さらに、デフロスタ開口部37a、フェイス開口部37bおよびフット開口部37cの空気流れ上流側には、それぞれ、デフロスタドア38a、フェイスドア38b、フットドア38cが配置されている。デフロスタドア38aはデフロスタ開口部37aの開口面積を調整する。フェイスドア38bはフェイス開口部37bの開口面積を調整する。フットドア38cはフット開口部37cの開口面積を調整する。
 これらのデフロスタドア38a、フェイスドア38bおよびフットドア38cは、開口部モードを切り替える開口部モード切替部を構成するものである。これらのデフロスタドア38a、フェイスドア38bおよびフットドア38cは、リンク機構等を介して、電子制御装置40から出力される制御信号によってその作動が制御される図示しないサーボモータ38dによって駆動される。
 また、デフロスタ開口部37a、フェイス開口部37bおよびフット開口部37cの空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口に接続されている。
 次に、本実施形態の電気制御部について図2を参照して説明する。
 電子制御装置40は、CPU、ROM、およびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。電子制御装置40は、そのROM(第1記憶部、第2記憶部、第3記憶部)内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種空調制御機器の作動を制御する。各種空調制御機器としては、圧縮機11、高段側膨脹弁13、中間圧側開閉弁16a、低圧側開閉弁16b、冷房用開閉弁16c、冷房用膨脹弁22、バイパス開閉弁60、送風機32、サーボモータ34a、33d等がある。ROMおよびRAMは、非遷移的実体的記憶媒体である。
 また、電子制御装置40の入力側には、空調制御用のセンサ郡41が接続されている。センサ郡41は、内気センサ41a、外気センサ41b、日射センサ41j、蒸発器温度センサ41d、冷媒圧力センサ41f、41h、および冷媒温度センサ41c、41e、41g、41i等からなる。
 内気センサ41aは、車室内温度を検出する。外気センサ41bは、外気温を検出する。日射センサ41jは、車室内の日射量を検出する。蒸発器温度センサ41dは、室内蒸発器23から吹出される空気温度検出する。
 冷媒温度センサ41cは、室内蒸発器23から流れ出る冷媒温度を検出する。冷媒温度センサ41eは、圧縮機11の吐出ポート11cと室内凝縮器12の入口12aとの間を流れる高圧冷媒の温度を検出する。冷媒圧力センサ41fは、室内凝縮器12の出口12bと高段側膨脹弁13の入口との間を流れる冷媒の圧力を検出する。冷媒圧力センサ41hは、室外熱交換器20の出口から膨脹弁迂回用通路25或いは、冷房用膨脹弁22に流れる冷媒の圧力を検出する。
 冷媒温度センサ41gは、室内凝縮器12の出口12bと高段側膨脹弁13の入口との間を流れる冷媒の温度を検出する。冷媒温度センサ41iは、室外熱交換器20の出口から膨脹弁迂回用通路25或いは、冷房用膨脹弁22に流れる冷媒の温度を検出する。
 さらに、電子制御装置40の入力側には、車室内前部の計器盤付近に配置された操作パネル42が接続され、この操作パネル42に設けられた各種空調操作スイッチからの操作信号が入力される。操作パネルに設けられた各種空調操作スイッチとしては、具体的に、車両用空調装置1のスタートスイッチ、車室内温度の目標温度としての設定温度Testを設定する車室内温度設定スイッチが設けられている。操作パネルに設けられた各種空調操作スイッチとしては、更に、冷房モード、暖房モード、除湿モード等を選択する運転選択スイッチ等が設けられている。
 なお、電子制御装置40は、その出力側に接続された各種空調制御機器の作動を制御する制御部が一体に構成されたものである。しかし、それぞれの制御対象機器の作動を制御する構成が、それぞれの制御対象機器の作動を制御する制御部を構成している。当該構成は、ハードウェアであってもソフトウェアであってもよい。
 例えば、本実施形態では、圧縮機11の電動モータの作動を制御する構成が吐出能力制御部を構成している。当該構成はハードウェアでもソフトウェアでもよい。また、冷媒流路切替部16a~16cの作動を制御する構成が冷媒流路制御部を構成している。当該構成はハードウェアでもソフトウェアでもよい。もちろん、吐出能力制御部および冷媒流路制御部を電子制御装置40に対して別体の制御装置として構成してもよい。
 次に、上記構成における本実施形態の車両用空調装置1の作動について説明する。図3は、電子制御装置40の空調制御処理を示すフローチャートである。電子制御装置40は、図3のフローチャートにしたがって、空調制御処理を実行する。
 まず、電子制御装置40は、外気センサ41bの検出温度、設定温度Tes等に基づいて、冷房モード、暖房モード、および、第1、第2除湿暖房モードのうち実行すべき運転モードを決定し、この決定した運転モードを実行する。
 以下、冷房モード、暖房モード、および、第1、第2除湿暖房モードについてそれぞれの概略を説明する。
 (冷房モード)
 冷房モードでは、電子制御装置40が、高段側膨脹弁13を減圧作用が発揮しない全開状態とし、冷房用膨脹弁22を減圧作用を発揮する絞り状態とし、冷房用開閉弁16cを閉弁状態とする。
 さらに、電子制御装置40が、低圧側開閉弁16bを開弁状態として低段側減圧部を減圧作用を発揮しない全開状態とする。さらに電子制御装置40が、低圧側開閉弁16bの状態に連動して中間圧側開閉弁16aを閉弁状態とする。さらに電子制御装置40が、バイパス開閉弁60を閉弁状態としてバイパス通路50を全閉する。
 したがって、冷房モードのヒートポンプサイクル10では、圧縮機11の吐出ポート11cから吐出された高圧冷媒が室内凝縮器12へ流入する。この際、エアミックスドア34が室内凝縮器12の空気通路を閉塞しているので、室内凝縮器12へ流入した冷媒は殆ど車室内送風空気へ放熱することなく、室内凝縮器12を流出していく。
 室内凝縮器12から流出した冷媒は、高段側膨脹弁13、気液分離器14、低圧側開閉弁16bの順に流れて室外熱交換器20へ流入する。室外熱交換器20へ流入した気相冷媒は、送風ファン21から送風された外気と熱交換して放熱する。
 室外熱交換器20から流出した冷媒は、冷房用開閉弁16cが閉弁状態となっているので、逆止弁9を通して冷房用膨脹弁22へ流入する。このため、室外熱交換器20から流れ出る冷媒は、冷房用膨脹弁22によって、低圧冷媒となるまで等エンタルピ的に減圧膨脹される。そして、冷房用膨脹弁22にて減圧された低圧冷媒は、室内蒸発器23へ流入し、送風機32から送風された室内送風空気から吸熱して蒸発する。これにより、車室内送風空気が冷却される。
 室内蒸発器23から流出した冷媒は、固定絞り弁8を通して、アキュムレータ24へ流入してアキュムレータ24で気相冷媒と液相冷媒とに分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11aから吸入されて低段側圧縮機構、高段側圧縮機構の順に再び圧縮される。一方、分離された液相冷媒はサイクルが要求されている冷凍能力を発揮するために必要としていない余剰冷媒としてアキュムレータ24内に蓄えられる。
 (第1除湿暖房モード)
 次に、第1除湿暖房について説明する。
 電子制御装置40は、第1除湿暖房を実行する際に、冷房モードと同様に、高段側膨脹弁13、冷房用膨脹弁22、中間圧側開閉弁16a、冷房用開閉弁16c、低圧側開閉弁16b、およびバイパス開閉弁60を制御する。
 このため、冷房モードと同様に、圧縮機11、室内凝縮器12、高段側膨脹弁13、気液分離器14、低圧側開閉弁16b、室外熱交換器20、逆止弁9、冷房用膨脹弁22、固定絞り弁8、アキュムレータ24、圧縮機11の順に冷媒が流れる。
 この際に、エアミックスドア34の開度によって室内蒸発器23から送風される冷風のうち室内凝縮器12に流れる風量とバイパス通路35に流れる風量との比率を調整して、開口部37a、37b、37cから室内に吹き出される空気温度を調整する。
 (第2除湿暖房モード)
 第2除湿暖房モードでは、電子制御装置40が、高段側膨脹弁13を全閉状態とし、冷房用膨脹弁22を減圧作用を発揮する絞り状態とする。
 したがって、第2除湿暖房モードのヒートポンプサイクル10では、圧縮機11の吐出ポート11cから吐出された高圧冷媒が室内凝縮器12へ流入する。この際、室内凝縮器12へ流入した冷媒は車室内送風空気へ放熱して、室内凝縮器12を流出していく。
 室内凝縮器12から流出した冷媒は、バイパス通路50、およびバイパス開閉弁60を通して冷房用膨脹弁22に流れる。冷媒は、この冷房用膨脹弁22で減圧された低圧冷媒は、室内蒸発器23へ流入し、送風機32から送風された室内送風空気から吸熱して蒸発する。これにより、車室内送風空気が冷却される。
 室内蒸発器23から流出した冷媒は、固定絞り弁8を通して、アキュムレータ24へ流入してアキュムレータ24で気相冷媒と液相冷媒とに分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11aから吸入されて低段側圧縮機構、高段側圧縮機構の順に再び圧縮される。
 この際に、エアミックスドア34の開度によって室内蒸発器23から送風される冷風のうち室内凝縮器12に流れる風量とバイパス通路35に流れる風量との比率を調整して、開口部37a、37b、37cから室内に吹き出される空気温度を調整する。
 (暖房モード)
 次に、暖房モードについてを参照して説明する。
 電子制御装置40は、必要吹出し温度TAOに基づいて圧縮機11の電動モータの回転数Na(すなわち、圧縮機11の冷媒吐出容量)を制御する。
 例えば、推定吹出温度TAVと必要吹出し温度TAOとの偏差に基づいて、フィードバック制御により推定吹出温度TAVが必要吹出し温度TAOに近づくように、圧縮機11の電動モータを制御する制御信号が決定される。
 推定吹出温度TAVは、室内凝縮器12から吹き出される空気温度の推定値である。推定吹出温度TAVは、蒸発器温度センサ41dの検出値である蒸発器温度Teと、送風機32の送風量と、冷媒温度センサ41gの検出温度とによって求められる。
 電子制御装置40が、高段側膨脹弁13において絞り開度を制御して、高段側膨脹弁13を冷媒の減圧作用を発揮させる絞り状態とする。高段側膨脹弁13の絞り開度は、室内凝縮器12から高段側膨脹弁13へ流入する冷媒の過冷却度が、COPを略最大値に近づくように予め決定された目標過冷却度に近づくように決定される。
 このことにより、室内凝縮器12において冷媒が車室内送風空気を加熱する暖房能力を発揮させることができる。
 ここで、過冷却度は、冷媒圧力センサ41fの検出圧力、および冷媒温度センサ41gの検出温度に基づいて算出される。
 電子制御装置40は、バイパス開閉弁60を全閉状態にしてバイパス通路50を閉じて、冷房用膨脹弁22を全閉状態とし、冷房用開閉弁16cを開弁状態とし、低圧側開閉弁16bを閉弁状態として低段側減圧部を減圧作用を発揮する絞り状態とする。
 電子制御装置40は、低圧側開閉弁16bの状態に連動して中間圧側開閉弁16aを開弁状態とする。電子制御装置40は、バイパス開閉弁60を制御してバイパス通路50を閉じる。これにより、ヒートポンプサイクル10は、図1の極太矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
 また、エアミックスドア34のサーボモータを制御する制御信号については、エアミックスドア34がバイパス通路35を閉塞し、室内蒸発器23通過後の送風空気の全流量が室内凝縮器12を通過するように決定される。
 したがって、暖房モードのヒートポンプサイクル10では、圧縮機11の吐出ポート11cから吐出された高圧冷媒が室内凝縮器12へ流入する。室内凝縮器12へ流入した冷媒は、送風機32から送風されて室内蒸発器23を通過した車室内送風空気と熱交換して放熱する。これにより、車室内送風空気が加熱される。
 ここで、室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨脹弁13にて中間圧冷媒となるまで等エンタルピ的に減圧膨脹される。そして、高段側膨脹弁13にて減圧された中間圧冷媒は、気液分離器14において、潤滑油が除かれた気相冷媒と潤滑油を含む液相冷媒とに分離される。
 気液分離器14で分離された気相冷媒(すなわち、潤滑油が除かれた気相冷媒)は、中間圧冷媒通路15を介して、圧縮機11の中間圧ポート11bへ流入し、低段側圧縮機構吐出冷媒と合流して、高段側圧縮機構へ吸入される。これは、中間圧側開閉弁16aが開弁状態となっているからである。
 一方、気液分離器14にて分離された前記潤滑油を含む液相冷媒は、低段側減圧部が絞り状態となっているので、低段側減圧部にて低圧冷媒となるまで減圧されて流出し、室外熱交換器20へ流入する。つまり、低段側減圧部では、低圧側開閉弁16bが閉弁状態となっているので、低段側固定絞り17へ流入して低圧冷媒となるまで等エンタルピ的に減圧膨脹される。低段側固定絞り17から流出した冷媒は、室外熱交換器20へ流入して、送風ファン21から送風された外気と熱交換して吸熱する。
 室外熱交換器20から流出した冷媒は、冷房用開閉弁16cが開弁状態となっているので、膨脹弁迂回用通路25を介して、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11aから吸入されて再び圧縮される。一方、分離された液相冷媒はサイクルが要求されている冷凍能力を発揮するために必要としていない余剰冷媒としてアキュムレータ24内に蓄えられる。
 以上の如く、暖房モードでは、室内凝縮器12にて圧縮機11から吐出された冷媒の有する熱を車室内送風空気に放熱させて、加熱された室内送風空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。
 さらに、暖房モードでは、低段側固定絞り17にて減圧された低圧冷媒を圧縮機11の吸入ポート11aから吸入させ、高段側膨脹弁13にて減圧された中間圧冷媒を中間圧ポート11bへ流入させて昇圧過程の冷媒と合流させることができる。すなわち、ガスインジェクションサイクル(すなわち、エコノマイザ式冷凍サイクル)を構成することができる。
 したがって、高段側圧縮機構に、温度の低い混合冷媒を吸入させることによって、高段側圧縮機構の圧縮効率を向上させることができる。それとともに、低段側圧縮機構および高段側圧縮機構の双方の吸入冷媒圧力と吐出冷媒圧力との圧力差を縮小させて、双方の圧縮機構の圧縮効率を向上させることができる。その結果、ヒートポンプサイクル10全体としてのCOPを向上させることができる。
 また、上記の説明から明らかなように、暖房モードでは、室内凝縮器12から流出した冷媒を、絞り状態とした高段側膨脹弁13、気液分離器14、絞り状態とした低段側減圧部、室外熱交換器20、冷房用開閉弁16c、アキュムレータ24、圧縮機11、室内凝縮器12の順に流す冷媒回路を構成している。冷媒回路では、気液分離器14にて分離された気相冷媒を中間圧冷媒通路15から圧縮機11の中間圧ポート11bへ流入させている。
 次に、本実施形態の特徴である暖房モード時の作動について説明する。図3は電子制御装置40の空調制御処理を示すフローチャートである。電子制御装置40は、図3のフローチャートにしたがって、空調制御処理に実行する。空調制御処理の実行はイグニッションスイッチIGがオンされたときに開始される。
 先ず、ステップS1において、タイマを初期化して、タイマによる計時を開始させる。このタイマは、次のステップS2の処理を開始してから経過した時間を計るためのタイマである。
 次のステップS2では、操作パネル42の各空調操作スイッチの空調操作信号を読み込む。次のステップS3で、センサ41a、41b、41c、41d、41e、41f、41h、41g、41iからそれぞれ出力される検出信号を読み込む。
 続いて、ステップS4(すなわち、第2温度算出部)にて、車室内へ吹き出される空調風の必要吹出し温度TAOを算出する。この必要吹出し温度TAOは車室内の温度を車室内温度設定スイッチの設定温度Tsetに維持するために必要な吹出温度であり、下記数式1に基づいて算出される。
 TAO=Kset×Tset-Kr×Tr
       -Kam×Tam-Ks×Ts+C・・・・・(数1)
 但し、Tr:内気センサ41aにより検出される内気温
    Tam:外気センサ41bにより検出される外気温
    Ts:日射センサ41jにより検出される日射量
    Kset、Kr、Kam、Ks:制御ゲイン
    C:補正用の定数
 次に、ステップS5にて送風機32により送風される送風量の目標値(すなわち、目標送風量)、具体的には送風機駆動用のモータ6bに対する印加電圧であるブロワ電圧Veを必要吹出し温度TAOに基づいて決定する。送風機32の目標送風量の決定方法は、後述する。
 次に、ステップS6にて内外気モードを決定する。例えば、必要吹出し温度TAOが低温側から高温側へ上昇するにつれて、内気モードから内外気混入モードへ、内外気混入モードから外気モードへと切替決定する。このように決定される内外気モードを実施するために、サーボモータ33dを制御して内外気切替ドア33cを駆動する。
 次に、ステップS7にて、推定吹出温度TAVと必要吹出し温度TAOとの偏差に基づいて、フィードバック制御により推定吹出温度TAVが必要吹出し温度TAOに近づくように、圧縮機11の電動モータを制御する制御信号が決定される。
 次に、ステップS8にて、エアミックスドア34の目標開度SWを算出する。暖房モード時においては、エアミックスドア34の目標開度SWは、バイパス通路35を全開し、かつ室内凝縮器12の空気入口を全開する最大暖房位置に設定される。
 次に、ステップS9において、吹出モードを必要吹出し温度TAOに応じて決定する。吹出モードは、必要吹出し温度TAOが低温側から高温側へ上昇するにつれてフェイスモードからバイレベルモードへ、バイレベルモードからフットモードと切替設定される。
 次に、ステップS10(すなわち制御部)において、このように決定されるブロワ電圧Ve、内外気モード、圧縮機11の回転数Na、エアミックスドア34の目標開度SW、および吹出モードを示す制御信号を圧縮機11の電動モータ、送風機32、サーボモータ34a、33dのうち対応する電動アクチュエータに出力する。
 次のステップS11で、上記タイマにより測定される時間(以下、タイマの測定時間という)が一定時間τに到達したか否かを判定する。一定時間τは、ステップS2、S3、S4、S5、S6、S7、S8、S9、S10の処理を実施する制御周期を示す時間である。そして、タイマの測定時間が一定時間τよりも短いときには、上記ステップS11でNOと判定して、ステップS11の判定を実施する。
 このため、タイマの測定時間が一定時間τに到達するまで、ステップS10の判定を繰り返すことになる。その後、タイマの測定時間が一定時間τに到達すると、ステップS11でYESと判定してステップS1に戻り、タイマを初期化して、タイマによる計時を開始させる。
 これにより、電子制御装置40は、フィードバック制御により推定吹出温度TAVが必要吹出し温度TAOに近づくように、圧縮機11の電動モータの回転数Naを制御する。すなわち、電子制御装置40は、圧縮機11の電動モータの回転数Naを制御して圧縮機11から吐出される高圧冷媒の温度を上昇させて目標温度に到達させるウォームアップを実施する。高圧冷媒の温度の目標温度は、必要吹出し温度TAOによって定まる。
 電子制御装置40は、送風機32を制御して送風機32から送風される送風量を目標送風量に近づける。電子制御装置40は、上記ステップS6に決定された内外気モードを実施させるようにサーボモータ33dを介して内外気切替ドア33cを制御する。電子制御装置40は、エアミックスドア34の実際の開度を目標開度SWに近づけるようにサーボモータ34aを制御する。
 次に、本実施形態における送風機32の送風量の目標値の算出処理(すなわちステップS5)の詳細について図4を参照して説明する。
 まず、ステップS20(すなわち第1温度算出部)において、蒸発器温度センサ41dの検出値および冷媒温度センサ41gの検出温度、および現在の送風機32の送風量(すなわち、ブロワ電圧Ve)に基づいて推定吹出温度TAVを求める。
 ここで、蒸発器温度センサ41dの検出温度は、室内蒸発器23を通過した車室内送風空気の温度を示すものであり、冷媒温度センサ41gの検出温度は、室内凝縮器12を通過した車室内送風空気の温度を示すものである。
 次に、ステップS21(すなわち、第1決定部)において、風量マップHaと推定吹出温度TAVとに基づいて送風機32の送風量の目標値(以下、目標送風量という)の候補値f(TAV)を求める。
 風量マップHaは、横軸を推定吹出温度TAVとし、縦軸を候補値f(TAV)とし、推定吹出温度TAVと候補値f(TAV)とが1対1で特定されるグラフである。風量マップHaは、第3風量マップに対応する。
 風量マップHaでは、推定吹出温度TAVが下側基準値(すなわち29、40)よりも小さいときには、候補値f(TAV)が最小値である零となる。これら下側基準値は、第3下側基準値に対応する。推定吹出温度TAVが上側基準値(すなわち56、60)よりも大きいときには、候補値f(TAV)が最大値である31になる。これら上側基準値は、第3上側基準値に対応する。推定吹出温度TAVが下側基準値(すなわち29、40)および上側基準値(すなわち56、60)の間であるときには、推定吹出温度TAVが下側基準値(すなわち29、40)から上側基準値(すなわち56、60)に向かうほど候補値f(TAV)が徐々に大きくなる。
 風量マップHaでは、推定吹出温度TAVが小さくなる際に、推定吹出温度TAVが36~29の範囲内に入っているときには、候補値f(TAV)が1になり、推定吹出温度TAVが下側基準値29以下になると候補値f(TAV)が最小値(すなわち零)になる。一方、推定吹出温度TAVが大きくなる際に、推定吹出温度TAVが下側基準値40以上になると候補値f(TAV)が最小値(すなわち零)よりも大きくなるヒステリシス特性が設定されている。
 風量マップHaでは、推定吹出温度TAVが小さくなる際に、推定吹出温度TAVが上側基準値60以下になると候補値f(TAV)が最大値(すなわち31)よりも小さくなる。また、風量マップHaでは、推定吹出温度TAVが大きくなる際に、推定吹出温度TAVが上側基準値56以上になると候補値f(TAV)が最大値(すなわち31)になる。つまり、ヒステリシス特性が設定されている。
 このように構成される風量マップHaにおいて、推定吹出温度TAVに対して1対1で特定される候補値f(TAV)が決められる。
 次に、ステップS22(すなわち判定部、第2決定部、第3決定部)において、風量マップHbと偏差(TAO-TAV)とに基づいて送風機32の目標送風量の候補値f(TAO-TAV)を求める。
 風量マップHbは、横軸を偏差(TAO-TAV)とし、縦軸を候補値f(TAO-TAV)とし、偏差(TAO-TAV)と候補値f(TAO-TAV)とが1対1で特定されるグラフである。風量マップHbは第2風量マップに対応する。
 風量マップHbでは、偏差(TAO-TAV)が上側基準値(すなわち5、100)よりも大きいときには、候補値f(TAO-TAV)が最小値である零となる。これらの上側基準値は第2上側基準値に対応する。偏差(TAO-TAV)が、零以上で、かつ下側基準値1よりも小さいときには、候補値f(TAO-TAV)が最大値である4(すなわち所定値)になる。この下側基準値は第2下側基準値に対応する。
 偏差(TAO-TAV)が下側基準値(すなわち1)および上側基準値(すなわち5、100)の間であるときには、偏差(TAO-TAV)が下側基準値(すなわち1)から上側基準値(すなわち5、100)に向かうほど候補値f(TAO-TAV)が徐々に小さくなる。
 風量マップHbでは、偏差(TAO-TAV)が大きくなる際に、偏差(TAO-TAV)が5~100の範囲内に入っているとき、候補値f(TAO-TAV)が1になる。偏差(TAO-TAV)が上側基準値100以上になると候補値f(TAO-TAV)が最小値(すなわち零)になる。かつ偏差(TAO-TAV)が小さくなる際に、推定吹出温度TAVが上側基準値5以上になると候補値f(TAV)が最小値(すなわち零)よりも大きくなる。つまり、ヒステリシス特性が設定されている。
 このように構成される風量マップHbにおいて、偏差(TAO-TAV)に対して1対1で特定される候補値f(TAO-TAV)が決められる。
 ここで、電子制御装置40が圧縮機11を制御して冷媒温度を上昇させて目標温度に到達させるウォームアップが中途状態であるか否かについて、推定吹出温度TAVと必要吹出し空気温度TAOとの偏差(TAO-TAV)に基づいて判定する。
 偏差(TAO-TAV)が零よりも大きいときには、電子制御装置40がウォームアップが中途状態であると判定して、風量マップHbにおいて偏差(TAO-TAV)に対して1対1で特定される候補値f(TAO-TAV)が決められる。
 一方、偏差(TAO-TAV)が零になると、電子制御装置40がウォームアップが完了したと判定される。この場合、電子制御装置40は、候補値f(TAO-TAV)としては最大値(すなわち4)である所定値が決める。
 ここで、風量マップHbの候補値f(TAO-TAV)の最大値(すなわち4)は、風量マップHaの候補値f(TAV)の最大値(すなわち31)よりも小さいレベルの値が設定されている。
 次に、ステップS23において、上記ステップS21で決められる候補値f(TAV)、および上記ステップS22で決められる候補値f(TAO-TAV)のうち大きい候補値(=Max(f(TAV)、f(TAO-TAV)))を送風量の上限値Vaとする。
 次に、ステップS24において、上記ステップS23で決められた送風量の上限値Vaと、風量マップHa、Hb以外の他の要件により決められた送風量の上限値とを調停して目標送風量を求める。
 このように送風機32の目標送風量は、候補値f(TAO-TAV)、f(TAV)を用いて決められる。
 なお、図4中の風量マップHaの候補値f(TAV)と風量マップHbの候補値f(TAO-TAV)の単位はレベルである。レベルは、送風機32への印加電圧(すなわち、送風機32の送風量)と対応関係にあるもので、レベルが大きくなるほど、送風機32の送風量が大きくなる関係にある。
 以上説明した本実施形態の電子制御装置40は、冷媒を加熱する圧縮機11と、車室内に向けて空気流を流通させるケーシング31と、ケーシング31内の空気流を発生させる送風機32とを備える車両用空調装置1に適用される。車両用空調装置1は、ケーシング31に配置されて圧縮機11により加熱された冷媒と空気流との間で熱交換により空気流を加熱する室内凝縮器12も備える。
 電子制御装置40は、室内凝縮器12により加熱された空気流の温度の推定値である推定吹出温度TAVを求めるステップS20を備える。更に電子制御装置40は、推定吹出温度TAVに基づいて、送風機32の目標送風量の候補値を決めるステップS21備える。更に電子制御装置40は、車室内の空気温度を設定温度Tsetに維持するためにケーシング31から室内に吹き出すことが必要となる空気温度である必要吹出し空気温度TAOを求めるステップS4を備える。
 電子制御装置40は、圧縮機11を制御して冷媒の温度を上昇させて目標温度に到達させるウォームアップを実施するステップS7、S10を備える。更に電子制御装置40は、ウォームアップが中途状態であるか否かについて、必要吹出し空気温度TAOと推定吹出温度TAVとの偏差とに基づいて判定するステップS22を備える。更に電子制御装置40は、ウォームアップが中途状態であると判定したとき、必要吹出し空気温度TAOと推定吹出温度TAVとの偏差(TAO-TAV)に基づいて、送風機32の目標送風量の候補値f(TAO-TAV)を決めるステップS22を備える。更に電子制御装置40は、ウォームアップが完了したと判定したとき所定値(すなわち4)を送風機32の目標送風量の候補値f(TAO-TAV)として決めるステップS22を備える。
 電子制御装置40は、ステップS22により決定される候補値f(TAO-TAV)とステップS21により決定される候補値f(TAV)のうち大きい方の候補値とを用いて送風機32の目標送風量を決めるステップS23、S24を備える。
 以上により、送風機32の目標送風量を適切に決めることができる。
 例えば、車室内の空調負荷が小さい場合において、ウォームアップが完了したときには、偏差(TAO-TAV)が零となるため、風量マップHbに基づいて候補値f(TAO-TAV)としては最大値(すなわち4)が決められる。
 このため、候補値f(TAV)、および候補値f(TAO-TAV)のうち大きい候補値として、候補値f(TAO-TAV)が選択される。
 したがって、候補値f(TAO-TAV)と、他の要件により決められる候補値とを調停して、送風機32の目標送風量として候補値f(TAO-TAV)が決められる。すると、ウォームアップが完了したときには、車室内の空調負荷が小さいときでも、送風機32の送風量として必要最低限の送風量を確保することができる。
 また、車室内の空調負荷が大きい場合において、ウォームアップが中途状態であれば、偏差(TAO-TAV)が、大きくなる(例えば、25℃)。その結果、候補値f(TAO-TAV)としては、0レベルが選択される。
 この場合、推定吹出温度TAVが、例えば、45℃迄上昇した場合、候補値f(TAV)は、8.5レベルの値となる。
 このため、候補値f(TAV)および候補値f(TAO-TAV)のうち大きい候補値MAXfとして、候補値f(TAV)が選択される。
 したがって、候補値f(TAV)と他の要件により決められた候補値とを調停して、送風機32の目標送風量として候補値f(TAV)が決められる。すると、車室内の空調負荷が大きいときでも、送風機32の送風量を低めに抑えることができ、冷風をフット開口部37cから車室内に吹き出すことを抑えることができる。
 (第2実施形態)
 本第2実施形態では、上記第1実施形態の車両用空調装置1において、エンジン冷却水を熱源とするヒータユニット72を追加した例について説明する。
 図5に本実施形態の車両用空調装置1の全体構成を示す。図5において、図1と同一の符号は同一のものを示し、その説明を省略する。
 ヒータユニット72は、ケーシング31のうち室内蒸発器23と室内凝縮器12との間に配置されて、室内蒸発器23を通過した空気流とエンジン冷却水との間の熱交換により空気流を加熱する第2熱交換器である。ヒータユニット72と走行用エンジン71との間にはエンジン冷却水が循環されている。
 本実施形態では、ヒータユニット72と走行用エンジン71との間に流れるエンジン冷却水の温度を検出する水温センサ73が設けられている。
 バイパス通路35は、室内蒸発器23を通過した空気流を室内凝縮器12およびヒータユニット72を迂回して流すが通路である。
 エアミックスドア34は、その回転により、室内蒸発器23通過後の送風空気のうち、室内凝縮器12およびヒータユニット72を通過させる風量とバイパス通路35を通過させる風量との風量割合を調整して、室内凝縮器12の熱交換能力を調整する。
 次に、本実施形態における送風機32の送風量の目標値の算出処理の詳細について図6を参照して説明する。
 図6は、図4のステップS20、S21、S22に対してステップS25、S26、S23Aを追加したフローチャートである。図6は、図4のフローチャートと同一符号は、同一ステップを示し、その説明を省略する。
 まず、ステップS20において、蒸発器温度センサ41dの検出値および冷媒温度センサ41gの検出温度、および現在の送風機32の送風量(すなわち、ブロワ電圧Ve)に基づいて推定吹出温度TAVを求める。
 次に、ステップS25(すなわち第5決定部)において、必要吹出し温度TAOに基づいて送風機32の送風量の目標値の候補値f(TAO)を求める。
 風量マップHcは、横軸を必要吹出し温度TAOとし、縦軸を候補値f(TAO)とし、必要吹出し温度TAOと候補値f(TAO)が1対1で特定されるグラフである。
 風量マップHcでは、必要吹出し温度TAOが下側基準値(すなわち-20)よりも小さいときには、候補値f(TAO)が最大値である31となる。必要吹出し温度TAOが上側基準値(すなわち80)よりも大きいときには、候補値f(TAO)が最大値である31になる。必要吹出し温度TAOが10以上で40以下の中間範囲(すなわち10~40)内に入っているときには、候補値f(TAO)が最小値である1になる。
 必要吹出し温度TAOが中間範囲の上限値40以上で、かつ上側基準値(すなわち80)未満であるときには、必要吹出し温度TAOが大きくなるにつれて候補値f(TAO)が大きくなる。
 必要吹出し温度TAOが中間範囲の下限値10以下で、かつ下側基準値(すなわち-20)以上であるときには、必要吹出し温度TAOが小さくなるにつれて候補値f(TAO)が大きくなる。
 このように構成される風量マップHcにおいて、必要吹出し温度TAOに対して1対1で特定される候補値f(TAO)が決められる。
 次に、ステップS26(すなわち第4決定部)において、風量マップHdと水温センサ73の検出値であるエンジン冷却水温度(以下、冷却水温度TWという)とに基づいて送風機32の送風量の候補値f(TW)を求める。
 風量マップHdは、横軸を冷却水温度TWとし、縦軸を候補値f(TW)とし、冷却水温度TWと候補値f(TW)とが1対1で特定されるグラフである。風量マップHdは第1風量マップに対応する。
 風量マップHdでは、冷却水温度TWが下側基準値(すなわち29、40)よりも小さいときには、候補値f(TW)が最小値である零となる。これら下側基準値は、第1下側基準値に対応する。冷却水温度TWが上側基準値(すなわち58、62)よりも大きいときには、候補値f(TW)が最大値である31になる。これら上側基準値は、第1上側基準値に対応する。冷却水温度TWが下側基準値(すなわち29、40)および上側基準値(58、62)の間であるときには、冷却水温度TWが下側基準値(すなわち29、40)から上側基準値(すなわち58、62)に向かうほど候補値f(TW)が徐々に大きくなる。
 風量マップHdでは、冷却水温度TWが小さくなる際に、冷却水温度TWが下側基準値29以下になると候補値f(TW)が最小値(すなわち零)になる。そして、冷却水温度TWが大きくなる際に、冷却水温度TWが下側基準値40以上になると候補値f(TW)が最小値(すなわち零)よりも大きくなるヒステリシス特性が設定されている。
 風量マップHdでは、冷却水温度TWが小さくなる際に、冷却水温度TWが上側基準値58以下になると候補値f(TW)が最大値(すなわち31)よりも小さくなる。そして、冷却水温度TWが大きくなる際に、冷却水温度TWが上側基準値62以上になると候補値f(TW)が最大値(すなわち31)になるヒステリシス特性が設定されている。
 このように構成される風量マップHdにおいて、冷却水温度TWに対して1対1で特定される候補値f(TW)が決められる。
 次に、ステップS21において、上記第1実施形態と同様に、風量マップHaと推定吹出温度TAVとに基づいて送風機32の目標送風量の候補値f(TAV)を求める。
 次に、ステップS22において、上記第1実施形態と同様に、風量マップHbと偏差(TAO-TAV)とに基づいて送風機32の目標送風量の候補値f(TAO-TAV)を求める。
 ここで、風量マップHbの候補値f(TAO-TAV)の最大値(すなわち4)は、風量マップHcの候補値f(TAO)の最大値(すなわち31)よりも小さく、かつ風量マップHdの候補値f(TW)の最大値(すなわち31)よりも小さい。さらに当該最大値は、風量マップHaの候補値f(TAV)の最大値(すなわち31)よりも小さい。
 風量マップHbの候補値f(TAO-TAV)の最大値(すなわち4)は、風量マップHcの候補値f(TAO)の最小値(すなわち零)よりも大きく、かつ風量マップHdの候補値f(TW)の最小値(すなわち零)よりも大きい。さらに最大値は、風量マップHaの候補値f(TAV)の最小値(すなわち零)よりも大きい。
 次に、ステップS23Aにおいて、上記ステップS26で決められる候補値f(TW)、上記ステップS21で決められる候補値f(TAV)、および上記ステップS22で決められる候補値f(TAO-TAV)のうち最も大きい候補値Maxfを選択する。候補値Maxfは、Max(f(TW)、f(TAV)、f(TAO-TAV))である。
 この選択された候補値Maxfと、上記ステップS25で決められる候補値f(TAO)とのうち、小さい方の候補値を送風量の上限値Va〈=Min{f(TAO)、Max(f(TW)、f(TAV)、f(TAO-TAV))}〉とする。
 次に、ステップS24において、このように決められる送風量の上限値Vaと、風量マップHa、Hb、Hc、Hd以外の他の要件により決まる候補と、を調停して目標送風量を求める。
 以上説明した本実施形態の電子制御装置40は、冷却水温度TWと風量マップHdとに基づいて送風機32の目標送風量の候補値f(TW)を決めるステップS25を備える。ステップS23Aは、ステップS26により決定される候補値f(TW)、ステップS21により決定される候補値f(TAV)、およびステップS22により決定された候補値f(TAO-TAV)のうち最も大きい候補値MAXfを選択する。この選択された候補値、およびステップS25により決定される候補値f(TAO)のうち小さい候補値を送風量の上限値Vaとする。これにより、送風量の上限値Vaと他の要件との調停により送風量の上限値Vaを目標送風量としてを決めることができる。
 以上により、上記第1実施形態と同様に、送風機32の目標送風量を適切に決めることができる。
 例えば、ウォームアップが完了した場合において、車室内の空調負荷が小さいときには、推定吹出温度TAVが下側基準値以下になるため、風量マップHaに基づいて候補値f(TAV)としては1以下の値が決められる。
 一方、ウォームアップが完了したときに、偏差(TAO-TAV)が零となるため、風量マップHbに基づいて候補値f(TAO-TAV)としては最大値(すなわち4)が決められる。
 ここで、風量マップHdと冷却水温度Twとによって候補値f(TW)として4よりも大きい値が決められると、候補値MAXfとして候補値f(TW)が決められる。風量マップHdと冷却水温度Twとによって候補値f(TW)として4レベル以下の値が決められると、候補値MAXfとしてTAO-TAVの最大値(すなわち4)が決められる。
 さらに、暖房時には必要吹出し温度TAOとしては、40以上の値が算出される。このため、風量マップHcと必要吹出し温度TAOとに基づいて候補値f(TAO)として、最低値(すなわち1)よりも大きな値が選択される。これにより、上限値Va(=Min(f(TAO)、Max(f(TW)、f(TAV)、f(TAO-TAV))))としては、少なくとも1よりも大きな値が決められる。
 したがって、上限値Vaと他の要件との調停により、送風機32の目標送風量として上限値Vaが決められると、ウォームアップが完了したときに、車室内の空調負荷が小さいときでも、送風機32の送風量として必要最低限の送風量を確保することができる。
 また、車室内の空調負荷が大きい場合において、ウォームアップが中途状態であれば、偏差(TAO-TAV)が大きくなり(例えば、25℃)、候補値f(TAO-TAV)は、0レベルの値になる。
 この場合、推定吹出温度TAVが一例として45℃まで上昇した場合、候補値f(TAV)は、8.5レベルの値になる。このため、候補値f(TAV)および候補値f(TAO-TAV)のうち大きい候補値MAXfとして、候補値f(TAV)が選択される。
 このため、Max{f(TW)、f(TAV)、f(TAO-TAV)}としては、候補値f(TW)或いは候補値f(TAV)が選択される。
 ここで、冷却水温度Twが一例として50℃まで上昇した場合、候補値f(TW)は、14レベルの値になる。このとき、必要吹出し温度TAOは、60になると、候補値f(TAO)は、16レベルの値になる。
 このため、上限値Va〈=Min{f(TAO)、Max(f(TW)、f(TAV)、f(TAO-TAV))}〉としては、14レベル(=候補値f(TW))の値が選択される。
 したがって、候補値f(TW)と他の要件により決まる候補値との調停により、送風機32の目標送風量として候補値f(TW)が決められる。すると車室内の空調負荷が大きいときでも、送風機32の送風量を低めに抑えることができ、フット開口部37cから冷風を車室内に吹き出すことを抑えることができる。
 (他の実施形態)
 (1)上記第1、第2実施形態では、本開示に係る空調装置を車両用空調装置1とした例について説明したが、これに代えて、本開示に係る空調装置を車両用空調装置1以外の各種の空調装置としてもよい。
 (2)上記第1実施形態では、上記ステップS23で決められる送風量の上限値Va(=Max(f(TAV)、f(TAO-TAV)))と他の要件により決められた送風量の上限値とを調停して目標送風量を求める例について説明した。しかし、これに限らず、当該調停を廃止して、上限値Va(=Max(f(TAV)、f(TAO-TAV)))を目標送風量としてもよい。
 さらに、上記第1実施形態と上記第2実施形態とを組み合わせてもよい。すなわち、上記ステップS23で決められる送風量の上限値Va(=Max(f(TAV)、f(TAO-TAV)))と、風量マップHcで選択される候補値f(TAO)とのうち小さい候補値を選択してもよい。更に、この候補値と他の要件で決められる候補値とを調停して目標送風量を決めてもよい。
 或いは、上記ステップS23で決められる送風量の上限値Vaと風量マップHcで選択される候補値f(TAO)とのうち小さい候補値を選択し、この候補値を目標送風量としてもよい。
 (3)上記第2実施形態では、上記ステップS23Aで決められる送風量の上限値Vaと他の要件により決められた送風量の上限値とを調停して目標送風量を求める例について説明したが、これに限らず、当該調停を廃止して、上限値Vaを目標送風量としてもよい。
 (4)上記第1、第2実施形態では、推定吹出温度TAVは、蒸発器温度センサ41dの検出値である蒸発器温度Teと、送風機32の送風量と、冷媒温度センサ41gの検出温度とによって求めた例について説明した。しかし、これに代えて、室内凝縮器12から吹き出される空気温度を検出する温度センサを採用し、この温度センサの検出値を推定吹出温度TAVとしてもよい。
 或いは、冷媒圧力センサ41fの検出圧力に基づいて推定吹出温度TAVを求めてもよい。具体的には、推定吹出温度TAVは、蒸発器温度センサ41dの検出値である蒸発器温度Teと、送風機32の送風量と、冷媒圧力センサ41fの検出圧力とに基づいて算出してもよい。
 (5)本開示の実施にあたり、上記第1、第2実施形態において、ケーシング31内の空気通路を外気通路と内気通路とに分ける構成にした室内空調ユニット30を採用しもよい。
 (6)なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。

Claims (9)

  1.  熱媒体を加熱する加熱部(11)と、室内に向けて空気流を流通させるケーシング(31)と、前記ケーシング内の前記空気流を発生させる送風機(32)と、前記ケーシングに配置されて前記加熱部により加熱された熱媒体と前記空気流との間の熱交換により前記空気流を加熱する熱交換器(12)とを備える空調装置に適用される電子制御装置であって、
     前記熱交換器により加熱された空気流の温度の推定値である推定吹出温度(TAV)を求める第1温度算出部(S20)と、
     前記推定吹出温度に基づいて、前記送風機の目標送風量の候補値を決める第1決定部(S21)と、
     前記室内の空気温度を設定温度に近づけるために前記ケーシングから前記室内に吹き出すことが必要となる空気温度である必要吹出し空気温度(TAO)を求める第2温度算出部(S4)と、
     前記加熱部を制御して前記熱媒体の温度を上昇させて目標温度に到達させるウォームアップを実施する制御部(S7、S10)と、
     前記ウォームアップが中途状態であるか否かについて、前記推定吹出温度と前記必要吹出し空気温度とに基づいて判定する判定部(S22)と、
     前記ウォームアップが中途状態であると前記判定部が判定したとき、前記必要吹出し空気温度と前記推定吹出温度とに基づいて前記送風機の目標送風量の候補値を決め、前記ウォームアップが完了したと前記判定部が判定したとき前記送風機の目標送風量の候補値を所定値とする第2決定部(S22)と、
     前記第1決定部により決定される候補値と前記第2決定部により決定される候補値とを用いて前記送風機の目標送風量を決める第3決定部(S23、S23A)と、
     を備える電子制御装置。
  2.  前記第3決定部は、前記第1決定部により決定される候補値、および前記第2決定部により決定される候補値のうち最も大きい候補値を用いて前記送風機の目標送風量を決める請求項1に記載の電子制御装置。
  3.  前記空調装置は、走行用エンジンを備える車両に適用されており、
     前記熱交換器は、第1熱交換器であり、
     前記ケーシング内には、前記走行用エンジンの冷却水と前記空気流との間の熱交換により前記空気流を加熱する第2熱交換器(72)が配置されており、
     前記冷却水の温度に基づいて前記送風機の目標送風量の候補値を決める第4決定部(S26)を備え、
     前記第3決定部は、前記第1決定部により決定される候補値、前記第2決定部により決定される候補値、および前記第4決定部により決定された前記候補値のうち最も大きい候補値を用いて前記送風機の目標送風量を決める請求項1に記載の電子制御装置。
  4.  前記必要吹出し空気温度に基づいて前記目標送風量の候補値を決める第5決定部(S25)を備え、
     前記第3決定部は、前記第1決定部により決定される候補値、前記第2決定部により決定される候補値、および前記第4決定部により決定された前記候補値のうち最も大きい候補値を選択し、この選択された候補値と前記第5決定部により決定される候補値とのうち小さい候補値を用いて前記送風機の目標送風量を決める請求項3に記載の電子制御装置。
  5.  前記冷却水の温度が上側基準値よりも大きいとき、前記目標送風量の候補値が最大値となり、かつ前記冷却水の温度が前記上側基準値未満である下側基準値未満であるとき、前記目標送風量の候補値が最小値となり、さらに前記冷却水の温度が前記下側基準値と前記上側基準値との間の値であるとき、前記冷却水の温度が大きくなるほど前記目標送風量の候補値が大きくなるように設定されて前記冷却水の温度と候補値とが1対1で対応づけられている風量マップ(Hd)を記憶する記憶部(40)を備え、
     前記第4決定部は、前記冷却水の温度と前記風量マップとに基づいて前記送風機の目標送風量の候補値を決める請求項4に記載の電子制御装置。
  6.  前記風量マップは、第1風量マップであり、
     前記記憶部は、第1記憶部であり、
     前記上側基準値は、第1上側基準値であり、
     前記下側基準値は、第1下側基準値であり、
     前記推定吹出温度と前記必要吹出し空気温度との偏差が第2上側基準値よりも大きいとき、前記送風機の目標送風量の候補値が最小値となり、かつ前記偏差が前記第2上側基準値よりも小さい第2下側基準値より小さいとき、前記目標送風量の候補値が最大値となり、さらに前記偏差が前記第2下側基準値と前記第2上側基準値との間の値であるとき、前記偏差が大きくなるほど前記目標送風量の候補値が小さくなるように設定されて前記候補値と前記偏差とが1対1で対応づけられている第2風量マップ(Hb)を記憶する第2記憶部(40)を備え、
     前記ウォームアップの中途である前記判定部が判定したとき、前記第2決定部は、前記偏差と前記第2風量マップとに基づいて前記目標送風量の候補値を決める請求項5に記載の電子制御装置。
  7.  前記推定吹出温度が第3上側基準値よりも大きいとき、前記目標送風量の候補値が最大値となり、かつ前記推定吹出温度が前記第3上側基準値未満である第3下側基準値未満であるとき、前記目標送風量の候補値が最小値となり、さらに前記推定吹出温度が前記第3下側基準値と前記第3上側基準値との間の値であるとき、前記推定吹出温度が大きくなるほど前記目標送風量の候補値が大きくなるように設定されて前記候補値と前記推定吹出温度とが1対1で対応づけられている第3風量マップ(Ha)を記憶する第3記憶部(40)を備え、
     前記第1決定部は、前記推定吹出温度と前記第3風量マップとに基づいて前記目標送風量の候補値を決める請求項6に記載の電子制御装置。
  8.  前記所定値は、前記第3風量マップにおける前記目標送風量の候補値の前記最小値よりも、大きい請求項7に記載の電子制御装置。
  9.  前記判定部は、前記推定吹出温度と前記必要吹出し空気温度との偏差に基づいて、前記ウォームアップが中途状態であるか否かを判定する請求項1ないし8のいずれか1つに記載の電子制御装置。
PCT/JP2017/040495 2016-12-20 2017-11-09 電子制御装置 WO2018116687A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/431,863 US11446983B2 (en) 2016-12-20 2019-06-05 Electronic control unit for air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016246982A JP6583246B2 (ja) 2016-12-20 2016-12-20 電子制御装置
JP2016-246982 2016-12-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/431,863 Continuation US11446983B2 (en) 2016-12-20 2019-06-05 Electronic control unit for air conditioner

Publications (1)

Publication Number Publication Date
WO2018116687A1 true WO2018116687A1 (ja) 2018-06-28

Family

ID=62626276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040495 WO2018116687A1 (ja) 2016-12-20 2017-11-09 電子制御装置

Country Status (3)

Country Link
US (1) US11446983B2 (ja)
JP (1) JP6583246B2 (ja)
WO (1) WO2018116687A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11584193B2 (en) * 2020-08-18 2023-02-21 Ford Global Technologies, Llc Enhanced vehicle operation
KR20230147870A (ko) * 2022-04-15 2023-10-24 현대자동차주식회사 가스인젝션 타입의 차량용 열관리 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07285318A (ja) * 1994-04-20 1995-10-31 Nissan Motor Co Ltd 車両用ヒートポンプ式冷暖房装置
JP2004196266A (ja) * 2002-12-20 2004-07-15 Denso Corp 車両用空調装置
JP2014104901A (ja) * 2012-11-28 2014-06-09 Toyota Motor Corp 車両用空調装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2849275A1 (de) * 1978-11-14 1980-06-04 Bosch Gmbh Robert Regeleinrichtung zum klimatisieren des innenraums von fahrzeugen, insbesondere kraftfahrzeugen
JPH0558142A (ja) 1991-08-30 1993-03-09 Nippondenso Co Ltd 車両用空調装置
JPH075824U (ja) 1993-06-30 1995-01-27 株式会社ゼクセル 車両用空調装置
FR2746711B1 (fr) * 1996-03-28 1998-05-22 Valeo Climatisation Installation de chauffage, ventilation et/ou climatisation, a regulation de temperature, notamment pour vehicule automobile
JP3776218B2 (ja) 1997-10-07 2006-05-17 カルソニックカンセイ株式会社 自動車用空気調和装置
JP4515017B2 (ja) * 2002-08-20 2010-07-28 株式会社デンソー 車両用空調装置
JP4559238B2 (ja) 2005-01-07 2010-10-06 カルソニックカンセイ株式会社 車両用空調装置
JP6105225B2 (ja) * 2012-08-09 2017-03-29 株式会社日本クライメイトシステムズ 車両用空調装置
JP6390278B2 (ja) 2013-11-01 2018-09-19 株式会社デンソー 車両用空調装置
JP2016043752A (ja) 2014-08-21 2016-04-04 株式会社デンソー 車両用空調装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07285318A (ja) * 1994-04-20 1995-10-31 Nissan Motor Co Ltd 車両用ヒートポンプ式冷暖房装置
JP2004196266A (ja) * 2002-12-20 2004-07-15 Denso Corp 車両用空調装置
JP2014104901A (ja) * 2012-11-28 2014-06-09 Toyota Motor Corp 車両用空調装置

Also Published As

Publication number Publication date
JP6583246B2 (ja) 2019-10-02
JP2018099989A (ja) 2018-06-28
US11446983B2 (en) 2022-09-20
US20190283537A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6201434B2 (ja) 冷凍サイクル装置
CN107531128B (zh) 车辆用空调装置
JP6683076B2 (ja) 冷凍サイクル装置
JP2020165604A (ja) 冷凍サイクル装置
JP2018091536A (ja) 冷凍サイクル装置
WO2013145537A1 (ja) 車両用の空調装置
JP2016132271A (ja) 車両用空調装置
WO2015111379A1 (ja) 冷凍サイクル装置
WO2018096869A1 (ja) 車両用空調装置
JP6428937B2 (ja) 空調制御装置
WO2018116687A1 (ja) 電子制御装置
JP6390431B2 (ja) 冷凍サイクル装置
JP5935714B2 (ja) 冷凍サイクル装置
JP5853918B2 (ja) 車両用空調装置
WO2017187790A1 (ja) 冷媒量不足検知装置および冷凍サイクル装置
JP6375796B2 (ja) 冷凍サイクル装置
JP6167891B2 (ja) ヒートポンプサイクル装置。
JP6544287B2 (ja) 空調装置
JP6601307B2 (ja) 冷凍サイクル装置
JP6699460B2 (ja) 冷凍サイクル装置
JP2016008792A (ja) ヒートポンプサイクル装置
JP2016053435A (ja) 空調装置
JP5888126B2 (ja) 車両用空調装置
WO2022038951A1 (ja) 冷凍サイクル装置
JP6897185B2 (ja) 空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882496

Country of ref document: EP

Kind code of ref document: A1