WO2017187790A1 - 冷媒量不足検知装置および冷凍サイクル装置 - Google Patents

冷媒量不足検知装置および冷凍サイクル装置 Download PDF

Info

Publication number
WO2017187790A1
WO2017187790A1 PCT/JP2017/008700 JP2017008700W WO2017187790A1 WO 2017187790 A1 WO2017187790 A1 WO 2017187790A1 JP 2017008700 W JP2017008700 W JP 2017008700W WO 2017187790 A1 WO2017187790 A1 WO 2017187790A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
heating element
compressor
air
Prior art date
Application number
PCT/JP2017/008700
Other languages
English (en)
French (fr)
Inventor
紘明 河野
谷畑 拓也
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017187790A1 publication Critical patent/WO2017187790A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to a refrigerant amount shortage detection device that detects refrigerant shortage in a refrigeration cycle, and a refrigeration cycle device including the same.
  • Patent Documents 1 and 2 describe a refrigerant shortage detection device that detects a refrigerant shortage in a refrigeration cycle.
  • the accumulator is a gas-liquid separator that separates the gas-liquid of the refrigerant heat-exchanged by the evaporator of the refrigeration cycle apparatus.
  • the accumulator stores the separated liquid-phase refrigerant and causes the separated gas-phase refrigerant to flow out to the refrigerant suction port side of the compressor. Liquid compression in the compressor is suppressed by the accumulator.
  • Refrigerator oil is mixed in the liquid refrigerant stored in the accumulator.
  • the refrigerating machine oil is a lubricating oil that lubricates the compressor.
  • the accumulator returns the refrigeration oil mixed in the liquid phase refrigerant to the compressor together with the gas phase refrigerant. At this time, a small amount of liquid-phase refrigerant is also returned to the compressor together with the refrigeration oil.
  • the concentration of the refrigerating machine oil increases in the accumulator. For this reason, if the liquid refrigerant stored in the accumulator decreases in a low temperature environment where the viscosity of the refrigerating machine oil increases, the refrigerating machine oil cannot be returned to the compressor.
  • the refrigerant amount that can detect refrigerant shortage in the prior arts of Patent Documents 1 and 2 is smaller than the refrigerant amount that makes it impossible to return refrigeration oil from the accumulator to the compressor due to viscosity. Therefore, since there is a possibility that the refrigeration oil cannot be returned to the compressor before the refrigerant shortage is detected, the operational reliability of the compressor cannot be ensured.
  • the refrigerant quantity shortage detection device of an example of the present disclosure can be applied to detect refrigerant shortage in a refrigeration cycle apparatus.
  • the refrigeration cycle apparatus A compressor having a compression mechanism for sucking and compressing and discharging the refrigerant; A radiator that dissipates the refrigerant discharged from the compressor; A decompression section for decompressing the refrigerant radiated by the radiator; An evaporator that absorbs heat to the refrigerant decompressed by the decompression unit to evaporate the refrigerant; An accumulator that separates the gas-liquid of the refrigerant that has absorbed heat in the evaporator, stores the separated liquid-phase refrigerant inside, and causes the separated gas-phase refrigerant to flow out to the suction side of the compressor together with lubricating oil mixed in the liquid-phase refrigerant With.
  • the refrigerant amount shortage detection device includes a determination unit that determines whether or not the refrigerant amount in the refrigeration cycle device is insufficient based on the temperature of the heating element cooled by the refrigerant flowing out of the accumulator and flowing into the compression mechanism. Prepare.
  • the amount of the refrigerant is insufficient based on the temperature of the heating element, it is possible to appropriately determine whether the refrigerant is insufficient in the refrigeration cycle apparatus including the accumulator. Since the temperature of the heating element has a correlation with the amount of the liquid-phase refrigerant stored in the accumulator, it is possible to appropriately determine the refrigerant shortage in the refrigeration cycle apparatus.
  • a refrigeration cycle apparatus having a compression mechanism for sucking and compressing and discharging the refrigerant;
  • a radiator that dissipates the refrigerant discharged from the compressor;
  • a decompression section for decompressing the refrigerant radiated by the radiator;
  • An evaporator that absorbs heat to the refrigerant decompressed by the decompression unit to evaporate the refrigerant;
  • An accumulator that separates the gas-liquid of the refrigerant that has absorbed heat in the evaporator, stores the separated liquid-phase refrigerant inside, and causes the separated gas-phase refrigerant to flow out to the suction side of the compressor together with lubricating oil mixed in the liquid-phase refrigerant
  • a temperature detector for detecting the temperature of the heating element cooled by the refrigerant flowing out from the outlet of the gas-phase refrigerant in the accumulator and flowing into the compression mechanism;
  • a determination unit that determines whether or not the amount of the ref
  • a vehicle air conditioner 1 shown in FIG. 1 is an air conditioner that uses a vehicle interior as a space to be air conditioned.
  • the vehicle air conditioner 1 is mounted on a hybrid vehicle.
  • a hybrid vehicle is a vehicle that obtains driving force for vehicle travel from an engine and a travel electric motor.
  • the vehicle air conditioner 1 has a refrigeration cycle apparatus 10.
  • the refrigeration cycle apparatus 10 functions to cool or heat the air blown into the passenger compartment.
  • the refrigeration cycle apparatus 10 is configured to be capable of switching between a cooling mode refrigerant channel, a dehumidifying and heating mode refrigerant channel, and a heating mode refrigerant channel.
  • a cooling operation for cooling the passenger compartment is performed.
  • a dehumidifying heating operation is performed in which the vehicle interior is heated while dehumidifying.
  • a heating operation for heating the vehicle interior without dehumidifying is performed.
  • the refrigerant of the refrigeration cycle apparatus 10 is a fluorocarbon refrigerant.
  • the refrigeration cycle apparatus 10 constitutes a subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant does not exceed the critical pressure of the refrigerant.
  • Refrigerating machine oil is mixed in the refrigerant.
  • the refrigerating machine oil is a lubricating oil that lubricates the compressor 11. A part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 is arranged in the engine room of the vehicle.
  • the compressor 11 sucks the refrigerant in the refrigeration cycle apparatus 10, compresses it, and discharges it.
  • the compressor 11 is an electric compressor.
  • the compressor 11 has a compression mechanism 11a and a drive mechanism 11b.
  • the compression mechanism 11a is a fixed capacity type compression mechanism with a fixed discharge capacity.
  • the compression mechanism 11a is various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism.
  • the drive mechanism 11b is a drive unit that drives the compression mechanism 11a.
  • the drive mechanism 11b has an electric motor and an inverter.
  • the rotation speed of the electric motor is controlled by a control signal output from the control device 40.
  • the electric motor is an AC motor.
  • the refrigerant discharge capacity of the compression mechanism 11a is changed by controlling the rotational speed of the electric motor.
  • the electric motor is a discharge capacity changing unit of the compression mechanism 11a.
  • An inverter is a power converter that converts DC power supplied from a vehicle battery into AC power and outputs the AC power to an electric motor.
  • the electric motor and the inverter are heating elements that generate heat when operated.
  • the electric motor and the inverter are cooled by a low-temperature refrigerant sucked into the compressor 11.
  • the inlet side of the indoor condenser 12 is connected to the discharge port side of the compressor 11.
  • the indoor condenser 12 is disposed in the casing 31 of the indoor air conditioning unit 30.
  • the indoor condenser 12 is a heat radiating part that radiates heat from the high-pressure refrigerant discharged from the compressor 11.
  • the indoor condenser 12 is a heat exchanger for heating that heats the air that has passed through the indoor evaporator 20.
  • a first refrigerant passage 13 is connected to the outlet side of the indoor condenser 12.
  • the first refrigerant passage 13 is a passage that guides the refrigerant flowing out of the indoor condenser 12 to the outdoor heat exchanger 15.
  • a first expansion valve 14 is disposed in the first refrigerant passage 13.
  • the first expansion valve 14 is a first throttle portion that can change the passage area of the first refrigerant passage 13.
  • the first expansion valve 14 is a decompression unit that decompresses the refrigerant heat-exchanged by the indoor condenser 12.
  • the first expansion valve 14 is an electric variable throttle mechanism having a valve body and an electric actuator.
  • the valve body is configured to be able to change the throttle opening.
  • the electric actuator is a stepping motor that changes the throttle opening of the valve body.
  • the first expansion valve 14 is a variable throttle mechanism with a fully open function.
  • the first expansion valve 14 fully opens the first refrigerant passage 13 when the throttle opening is fully opened.
  • the first expansion valve 14 can prevent the refrigerant from depressurizing by fully opening the first refrigerant passage 13.
  • the operation of the first expansion valve 14 is controlled by a control signal output from the control device 40.
  • the inlet side of the outdoor heat exchanger 15 is connected to the outlet side of the first expansion valve 14.
  • the outdoor heat exchanger 15 is a refrigerant outdoor air heat exchanger that exchanges heat between the refrigerant and the outside air.
  • the refrigerant circulates inside the outdoor heat exchanger 15. Outside air is air outside the passenger compartment. Outside air is blown from the blower fan 23 to the outdoor heat exchanger 15.
  • the outdoor heat exchanger 15 functions as an evaporator that evaporates the refrigerant in the heating mode or the like.
  • the outdoor heat exchanger 15 functions as a heat absorption part that causes the refrigerant decompressed by the first expansion valve 14 to absorb heat from the outside air in the heating mode or the like.
  • the outdoor heat exchanger 15 functions as a condenser that condenses the refrigerant in the cooling mode or the like.
  • the outdoor heat exchanger 15 functions as a radiator that radiates the refrigerant in the cooling mode or the like.
  • the second refrigerant passage 16 and the third refrigerant passage 18 are connected to the outlet side of the outdoor heat exchanger 15.
  • the second refrigerant passage 16 guides the refrigerant flowing out of the outdoor heat exchanger 15 to the suction side of the compressor 11 via the accumulator 21.
  • the third refrigerant passage 18 guides the refrigerant flowing out of the outdoor heat exchanger 15 to the suction side of the compressor 11 via the second expansion valve 19, the indoor evaporator 20, and the accumulator 21.
  • the second refrigerant passage 16 is a parallel refrigerant passage through which refrigerant flows in parallel to the second expansion valve 19.
  • a first on-off valve 17 is disposed in the second refrigerant passage 16.
  • the first opening / closing valve 17 is an opening / closing part that opens and closes the second refrigerant passage 16.
  • the first on-off valve 17 is a solenoid valve. The operation of the first on-off valve 17 is controlled by a control signal output from the control device 40.
  • the pressure loss that occurs when the refrigerant passes through the second refrigerant passage 16 is smaller than the pressure loss that occurs when the refrigerant passes through the third refrigerant passage 18. This is because the second expansion valve 19 is disposed in the third refrigerant passage 18.
  • the first on-off valve 17 functions to switch the cycle configuration by opening and closing the second refrigerant passage 16.
  • the first on-off valve 17 functions to switch the flow path of the refrigerant circulating in the cycle by opening and closing the second refrigerant passage 16.
  • the first on-off valve 17 constitutes a refrigerant flow switching unit that switches a refrigerant flow.
  • a second expansion valve 19 is disposed in the third refrigerant passage 18.
  • the second expansion valve 19 is a decompression unit that decompresses the refrigerant.
  • the second expansion valve is a second throttle portion configured to be able to change the passage area of the third refrigerant passage 18.
  • the second expansion valve 19 is an electric variable throttle mechanism having a valve body and an electric actuator.
  • the valve body is configured to be able to change the throttle opening.
  • the electric actuator is a stepping motor that changes the throttle opening of the valve body.
  • the second expansion valve 19 is a variable throttle mechanism with a fully open function.
  • the second expansion valve 19 fully opens the third refrigerant passage 18 when the throttle opening is fully opened.
  • the second expansion valve 19 can prevent the refrigerant from depressurizing by fully opening the third refrigerant passage 18.
  • the operation of the second expansion valve 19 is controlled by a control signal output from the control device 40.
  • the inlet side of the indoor evaporator 20 is connected to the outlet side of the second expansion valve 19.
  • the indoor evaporator 20 is arranged in the casing 31 of the indoor air conditioning unit 30 on the upstream side of the air flow of the indoor condenser 12.
  • the indoor evaporator 20 is an evaporator that evaporates the refrigerant by exchanging heat with the air before passing through the indoor condenser 12.
  • the indoor evaporator 20 is an endothermic heat exchanger that cools air by exerting an endothermic action.
  • the inlet side of the accumulator 21 is connected to the refrigerant outlet side of the indoor evaporator 20.
  • the accumulator 21 is a gas-liquid separator that separates the gas-liquid refrigerant flowing out of the indoor evaporator 20 and stores excess refrigerant of the refrigeration cycle apparatus 10.
  • the suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 21.
  • the accumulator 21 functions to suppress the liquid phase refrigerant from being sucked into the compressor 11 and suppress the liquid compression in the compressor 11.
  • the refrigerant that has flowed out of the accumulator 21 is sucked into the compression mechanism 11a of the compressor 11 after cooling the drive mechanism 11b (that is, the electric motor and the inverter) of the compressor 11.
  • Refrigerator oil that lubricates the compression mechanism 11a is mixed in the liquid-phase refrigerant stored in the accumulator 21.
  • the accumulator 21 is formed with an oil return hole (not shown) for returning the refrigeration oil mixed in the liquid refrigerant to the compression mechanism 11a.
  • the refrigerating machine oil mixed in the liquid refrigerant is returned to the suction side of the compression mechanism 11a through the oil return hole.
  • the indoor air conditioning unit 30 is arranged inside the instrument panel at the forefront of the passenger compartment.
  • the casing 31 forms an outer shell of the indoor air conditioning unit 30.
  • a blower 32, the indoor condenser 12, and the indoor evaporator 20 are accommodated in the casing 31.
  • Casing 31 forms an air passage.
  • the casing 31 has a certain degree of elasticity and is formed of a resin that is excellent in strength.
  • the casing 31 is formed of polypropylene.
  • the inside / outside air switching device 33 is disposed on the most upstream side of the air flow in the casing 31.
  • the inside / outside air switching device 33 introduces switching between inside air and outside air.
  • the inside air is air in the passenger compartment.
  • the inside / outside air switching device 33 is formed with an inside air introduction port and an outside air introduction port.
  • the inside air introduction port introduces inside air into the casing 31.
  • the outside air introduction port introduces outside air into the casing 31.
  • An inside / outside air switching door is disposed inside the inside / outside air switching device 33. The inside / outside air switching door continuously adjusts the opening area of the inside air introduction port and the outside air introduction port to change the air volume ratio between the inside air volume and the outside air volume.
  • a blower 32 is arranged on the downstream side of the air flow of the inside / outside air switching device 33.
  • the blower 32 blows air introduced through the inside / outside air switching device 33 toward the vehicle interior.
  • the blower 32 is an electric blower having a centrifugal multiblade fan 32a and an electric motor 32b.
  • the centrifugal multiblade fan 32a is a blower that blows air into the passenger compartment.
  • the centrifugal multiblade fan 32a is a sirocco fan.
  • the electric motor 32b drives the centrifugal multiblade fan 32a.
  • the rotation speed of the electric motor 32 b is controlled by a control voltage output from the control device 40.
  • the air volume of the blower 32 is controlled by the control device 40.
  • the indoor evaporator 20 and the indoor condenser 12 are arranged in this order with respect to the air flow.
  • the indoor evaporator 20 is disposed upstream of the indoor condenser 12 in the air flow direction.
  • a cold air bypass passage 35 is formed in the casing 31.
  • the cold air bypass passage 35 is a passage through which the air that has passed through the indoor evaporator 20 flows through the indoor condenser 12.
  • An air mix door 36 is disposed downstream of the indoor evaporator 20 and upstream of the indoor condenser 12.
  • the air mix door 36 is an air volume ratio adjusting unit that adjusts the air volume ratio between the air that has passed through the indoor evaporator 20 and the air that passes through the indoor condenser 12 and the air that passes through the cold air bypass passage 35.
  • the air mix door 36 adjusts the ratio between the air volume heated by the indoor condenser 12 and the remaining air volume in the air volume of the blower 32.
  • a mixing space is provided on the air flow downstream side of the indoor condenser 12 and the air flow downstream side of the cold air bypass passage 35.
  • the mixing space is a space for mixing the air that has passed through the indoor condenser 12 and the air that has passed through the cold air bypass passage 35.
  • the blower outlet is arrange
  • FIG. The air outlet blows out the conditioned air mixed in the mixing space toward the passenger compartment.
  • a blower outlet is a face blower outlet, a foot blower outlet, and a defroster blower outlet.
  • the face air outlet blows conditioned air to the upper body of the passenger in the passenger compartment.
  • the foot outlet blows conditioned air toward the passenger's feet.
  • the defroster outlet blows conditioned air toward the inner surface of the front window glass of the vehicle.
  • the air mix door 36 adjusts the air volume ratio between the air that passes through the indoor condenser 12 and the air that passes through the cold air bypass passage 35, thereby adjusting the temperature of the conditioned air mixed in the mixing space. The temperature of the conditioned air blown out from the outlet is adjusted.
  • the air mix door 36 is driven by a servo motor 37.
  • the operation of the servo motor 37 is controlled by a control signal output from the control device 40.
  • the control device 40 controls the operation of the servo motor 37, the opening degree of the air mix door 36 is adjusted in the range of 0% to 100%.
  • the maximum cooling state is reached. That is, when the opening degree of the air mix door 36 is adjusted to 0%, the air mix door 36 fully opens the cold air bypass passage 35 and fully closes the air passage on the indoor condenser 12 side.
  • the maximum heating state is achieved. That is, when the opening degree of the air mix door 36 is adjusted to 100%, the air mix door 36 fully closes the cold air bypass passage 35 and fully opens the air passage on the indoor condenser 12 side.
  • the face door, foot door, and defroster door are arranged on the upstream side of the air flow of the face outlet, foot outlet, and defroster outlet.
  • the face door adjusts the opening area of the face outlet.
  • the foot door adjusts the opening area of the foot outlet.
  • the defroster door adjusts the opening area of the defroster outlet.
  • the face door, foot door, and defroster door are outlet mode switching units that switch the outlet mode.
  • the face door, foot door, and defroster door are driven by a servo motor via a link mechanism or the like.
  • the operation of the servo motor is controlled by a control signal output from the control device 40.
  • the control device 40 is composed of a known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits.
  • the control device 40 performs various calculations and processes based on the control program stored in the ROM, and controls the operation of various control devices connected to the output side.
  • the control device 40 constitutes a refrigerant shortage detection device that detects a shortage of refrigerant in the refrigeration cycle apparatus.
  • the control device 40 is a determination unit that determines whether or not the amount of refrigerant is insufficient.
  • Various air conditioning control sensor groups such as an inside air sensor, an outside air sensor 41, a solar radiation sensor, an evaporator temperature sensor, a discharge temperature sensor, a high pressure sensor, and an outlet refrigerant temperature sensor 42 are connected to the input side of the control device 40. ing.
  • the inside air sensor detects the passenger compartment temperature Tr.
  • the outside air sensor 41 detects the outside air temperature Tam.
  • the solar radiation sensor detects the solar radiation amount Ts in the passenger compartment.
  • the evaporator temperature sensor detects the temperature of the air blown from the indoor evaporator 20 (evaporator temperature) Te.
  • the discharge temperature sensor detects the temperature Td of the refrigerant discharged from the compressor 11.
  • the high pressure sensor detects the refrigerant pressure Ph of the indoor condenser 12.
  • the outlet refrigerant temperature sensor 42 detects the temperature of the refrigerant on the outlet side of the outdoor heat exchanger 15.
  • a heating element temperature sensor 43 is connected to the input side of the control device 40.
  • the heating element temperature sensor 43 is a heating element temperature detection unit that detects the temperature of the drive mechanism 11 b of the compressor 11. Specifically, the heating element temperature sensor 43 detects the temperature of the electric motor or inverter in the drive mechanism 11b.
  • the temperature detected by the heating element temperature sensor 43 is referred to as a heating element temperature.
  • the control device 40 receives operation signals from various operation switches. Various operation switches are provided on the operation panel.
  • the operation panel is arranged near the instrument panel in the front part of the vehicle interior.
  • the various operation switches are air conditioner switches, temperature setting switches, and the like.
  • the air conditioner switch is an operation switch for setting whether or not to cool the air in the indoor air conditioning unit 30.
  • the temperature setting switch is an operation switch for setting a set temperature in the passenger compartment.
  • the control device 40 is configured integrally with a control unit that controls the operation of various control devices connected to the output side.
  • Software and hardware for controlling the operation of each control device in the control device 40 constitutes a control unit for controlling the operation of each control device.
  • software and hardware for controlling the electric motor of the compressor 11 constitute a discharge capacity control unit.
  • Software and hardware for controlling the first expansion valve 14 constitute a first throttle control unit.
  • Software and hardware for controlling the second expansion valve 19 constitute a second throttle control unit.
  • Software and hardware for controlling the first on-off valve 17 constitute a flow path switching control unit.
  • Software and hardware for controlling the servo motor 37 for driving the air mix door 36 constitute an air mix door control unit.
  • the vehicle air conditioner 1 of the present embodiment can be switched to the cooling mode for cooling the passenger compartment, the heating mode for heating the passenger compartment, and the dehumidifying and heating mode for heating while dehumidifying the passenger compartment.
  • FIGS. 2 and 3 are flowcharts showing a flow of control processing executed by the control device 40 of the vehicle air conditioner 1 of the present embodiment.
  • FIG. 2 and 3 are executed as a subroutine for the main routine of air conditioning control.
  • Each control step in FIG. 2 and FIG. 3 constitutes various function realization units that the control device 40 has.
  • the control device 40 reads the detection signal of the sensor group and the operation signal of the operation panel.
  • the target blowing temperature TAO is calculated based on the following mathematical formula.
  • the target blowing temperature TAO is the target temperature of the blowing air blown into the vehicle interior.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts + C
  • Tset is the vehicle interior set temperature set by the temperature setting switch
  • Tr is the vehicle interior temperature (inside air temperature) detected by the inside air sensor
  • Tam is the outside air temperature detected by the outside air sensor 41
  • Ts is detected by the solar radiation sensor.
  • Kset, Kr, Kam, Ks are control gains
  • C is a correction constant.
  • step S20 the control device 40 determines a target blowing temperature TAVO of the indoor condenser 12 with reference to a previously stored control map based on the target blowing temperature TAO.
  • step S30 it is determined whether or not the air conditioner switch on the operation panel is turned on. As a result, when it is determined that the air conditioner switch is off, the process proceeds to step S40, and the operation mode is determined to be the heating mode. When it is determined that the air conditioner switch is on, the process proceeds to step S50.
  • step S50 it is determined whether or not the target condenser outlet temperature TAVO is lower than the cooling reference temperature ⁇ .
  • the cooling reference temperature ⁇ is determined in advance and stored in the control device 40.
  • the process proceeds to step S60, and the operation mode is determined to be the cooling mode.
  • the process proceeds to step S70, and the operation mode is determined to be the dehumidifying heating mode.
  • each operation mode can be appropriately switched between the heating mode, the cooling mode, and the dehumidifying heating mode according to the operating environment of the vehicle air conditioner 1.
  • (A) Heating Mode In the heating mode, the control device 40 opens the second refrigerant passage 16 with the first on-off valve 17. Thereby, in the refrigerating cycle apparatus 10, as shown by the black arrow in FIG.
  • control device 40 operates the various control devices connected to the control device 40 based on the target blowing temperature TAO, the target condenser blowing temperature TAVO, the detection signal of the sensor group, and the like (various types). Control signal to be output to the control device).
  • the rotational speed of the compressor 11, that is, the control signal output to the electric motor of the compressor 11, is determined as follows. First, based on the deviation between the target condenser blowout temperature TAVO and the condenser blowout air temperature TAV, the compressor 11 is used so that the blowout air temperature blown into the passenger compartment approaches the target blowout temperature TAO using a feedback control method. A control signal to be output to the electric motor is determined. Thereby, the rotation speed of the compressor 11, in other words, the refrigerant discharge capacity of the compressor 11 is determined.
  • the degree of supercooling of the refrigerant flowing into the first expansion valve 14 causes the coefficient of performance COP of the cycle to approach the maximum value. Is determined so as to approach a predetermined target supercooling degree.
  • the air mix door 36 closes the cold air bypass passage 35 and the total flow rate of air after passing through the indoor evaporator 20. Is determined to pass through the air passage of the indoor condenser 12. That is, in the heating mode, the opening degree of the air mix door 36 is determined to be 100%, and the air mix door 36 is operated to the maximum heating state position.
  • the air volume of the blower 32 that is, the control signal output to the electric motor 32b of the blower 32 is determined according to the condenser blown air temperature TAV.
  • control signals determined as described above are output to various control devices. Thereafter, until the operation stop of the vehicle air conditioner 1 is requested by the operation panel, a control routine such as operation mode determination processing ⁇ determination of operation states of various control devices ⁇ output of control signals and the like is repeated at predetermined intervals. . Such a control routine is repeated in the other operation modes.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12.
  • the refrigerant that has flowed into the indoor condenser 12 exchanges heat with the air that is blown from the blower 32 and passes through the indoor evaporator 20 to dissipate heat. Thereby, the air blown into the passenger compartment is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 via the first refrigerant passage 13, and is decompressed and expanded at the first expansion valve 14 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the first expansion valve 14 flows into the outdoor heat exchanger 15 and absorbs heat from the outside air blown by the blower fan.
  • the refrigerant that has flowed out of the outdoor heat exchanger 15 flows into the accumulator 21 through the second refrigerant passage 16 and is separated into gas and liquid.
  • the gas-phase refrigerant separated by the accumulator 21 is sucked from the suction side of the compressor 11 and compressed again by the compressor 11.
  • the liquid-phase refrigerant separated by the accumulator 21 is stored in the accumulator 21 as surplus refrigerant that is not necessary to exhibit the refrigeration capacity for which the cycle is required. Since the third refrigerant passage 18 is closed by the second expansion valve 19, the refrigerant does not flow into the indoor evaporator 20.
  • the heat of the high-pressure refrigerant discharged from the compressor 11 by the indoor condenser 12 can be radiated to the air, and the heated air can be blown into the vehicle interior. Thereby, heating of a vehicle interior is realizable.
  • (B) Cooling Mode In the cooling mode, the control device 40 closes the second refrigerant passage 16 with the first on-off valve 17. Further, the first refrigerant passage 13 is fully opened by the first expansion valve 14. Thereby, in the refrigerating cycle device 10, as shown by the white arrow in FIG.
  • the control device 40 controls the operation state of various control devices connected to the control device 40, that is, outputs to the various control devices, based on the target blowing temperature TAO, the detection signal of the sensor group, and the like. Determine the signal.
  • the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, based on the target blowing temperature TAO, a target evaporator blowing temperature TEO of air blown from the indoor evaporator 20 is determined with reference to a control map stored in the control device 40 in advance. Therefore, in the control routine executed by the control device 40, the control step for determining the target evaporator outlet temperature TEO constitutes the target evaporator outlet temperature determining unit.
  • the temperature of the air that has passed through the indoor evaporator 20 using the feedback control method approaches the target blowout temperature TAO.
  • a control signal output to the electric motor of the compressor 11 is determined.
  • the control signal output to the second expansion valve 19 is such that the degree of supercooling of the refrigerant flowing into the second expansion valve 19 approaches a target supercooling degree that is set in advance so that the COP approaches the maximum value. To be determined.
  • the air mix door 36 closes the air passage of the indoor condenser 12, and the total air flow after passing through the indoor evaporator 20 is the cold air bypass passage. 35 is determined to pass.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12.
  • the air mix door 36 closes the air passage of the indoor condenser 12
  • the refrigerant flowing into the indoor condenser 12 flows out of the indoor condenser 12 with almost no heat exchange with the air.
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 through the first refrigerant passage 13.
  • the refrigerant flowing out of the indoor condenser 12 is not decompressed by the first expansion valve 14, and is transferred to the outdoor heat exchanger 15. Inflow.
  • the refrigerant flowing into the outdoor heat exchanger 15 radiates heat to the outside air blown from the blower fan in the outdoor heat exchanger 15.
  • the refrigerant flowing out of the outdoor heat exchanger 15 flows into the second expansion valve 19 via the third refrigerant passage 18 and is decompressed and expanded at the second expansion valve 19 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the second expansion valve 19 flows into the indoor evaporator 20, absorbs heat from the air blown from the blower 32, and evaporates. Thereby, the air blown into the passenger compartment is cooled.
  • the refrigerant that has flowed out of the indoor evaporator 20 flows into the accumulator 21 and is separated into gas and liquid.
  • the gas-phase refrigerant separated by the accumulator 21 is sucked from the suction side of the compressor 11 and is compressed again by the compressor 11. Note that the liquid-phase refrigerant separated by the accumulator 21 is stored in the accumulator 21 as surplus refrigerant that is not necessary to exhibit the refrigeration capacity for which the cycle is required.
  • (C) Dehumidification heating mode In the dehumidification heating mode, the control device 40 closes the second refrigerant passage 16 by the first on-off valve 17. Then, the first and second expansion valves 14 and 19 are set to the throttle state or the fully open state. Thereby, the refrigeration cycle apparatus 10 is switched to the refrigerant flow path through which the refrigerant flows, as indicated by the white horizontal arrow in FIG. 1, as in the cooling mode. In the dehumidifying heating mode, the outdoor heat exchanger 15 and the indoor evaporator 20 are connected in series with respect to the refrigerant flow.
  • control device 40 operates based on the target outlet temperature TAO, the target condenser outlet temperature TAVO, the detection signal of the sensor group, etc., that is, the operating states of various control devices connected to the controller 40, that is, Control signals to be output to various control devices are determined.
  • control signal output to the electric motor of the compressor 11 is determined in the same manner as in the cooling mode.
  • the air mix door 36 closes the cold air bypass passage 35, and the total flow rate of air after passing through the indoor evaporator 20 is the air of the indoor condenser 12. It is determined to pass through the passage.
  • the first expansion valve 14 and the second expansion valve 19 have throttle openings corresponding to the target condenser blowout temperature TAVO calculated based on the target blowout temperature TAO that is the target temperature of the blowout air blown into the vehicle interior. Be changed. Specifically, the control device 40 reduces the passage area of the first refrigerant passage 13 by the first expansion valve 14 and increases the second expansion valve 19 by the first expansion valve 19 as the target condenser blowout temperature TAVO increases. 3 The passage area of the refrigerant passage 18 is increased. Thereby, in the dehumidifying heating mode, the four-stage mode from the first mode to the fourth mode is continuously executed.
  • the first expansion passage 14 causes the first refrigerant passage 13 to be fully opened and the second expansion valve 19 to be in the throttle state. That is, with respect to the cycle configuration, the refrigerant flow path is exactly the same as in the cooling mode, but the air mix door 36 fully opens the air passage on the indoor condenser 12 side.
  • the high-pressure refrigerant discharged from the compressor 11 exchanges heat with the air that has been cooled and dehumidified by the indoor evaporator 20 to dissipate heat. Thereby, the air blown into the passenger compartment is heated.
  • the air cooled and dehumidified by the indoor evaporator 20 can be heated by the indoor condenser 12 and blown out into the vehicle interior. Thereby, dehumidification heating of a vehicle interior is realizable.
  • the first expansion valve 14 is set to the throttle state, and the throttle opening degree of the second expansion valve 19 is set to the throttle state increased from that in the first mode. Therefore, in the second mode, the temperature of the refrigerant flowing into the outdoor heat exchanger 15 can be lowered compared to the first mode. Therefore, the temperature difference between the temperature of the refrigerant in the outdoor heat exchanger 15 and the outside air temperature can be reduced, and the heat radiation amount of the refrigerant in the outdoor heat exchanger 15 can be reduced.
  • the heat radiation amount of the refrigerant in the indoor condenser 12 can be increased with respect to the first mode, and the temperature of the air blown out from the indoor condenser 12 can be increased.
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 via the first refrigerant passage 13 and is depressurized until it becomes an intermediate pressure refrigerant having a temperature lower than the outside air temperature. . Then, the intermediate pressure refrigerant decompressed by the first expansion valve 14 flows into the outdoor heat exchanger 15 and absorbs heat from the outside air blown from the blower fan.
  • the outdoor heat exchanger 15 is caused to function as a heat absorber that absorbs heat from the refrigerant by reducing the throttle opening of the first expansion valve 14, so that the indoor condenser is more than in the second mode.
  • the temperature blown from 12 can be raised.
  • the heat radiation amount of the refrigerant in the indoor condenser 12 can be increased with respect to the second mode, and the temperature of the air blown out from the indoor condenser 12 can be increased.
  • the throttle opening of the first expansion valve 14 is set to a throttle state that is smaller than that in the third mode, and the third refrigerant passage 18 is fully opened by the second expansion valve 19.
  • the refrigerant evaporation temperature in the outdoor heat exchanger 15 can be lowered compared to the third mode, and the heat absorption amount of the refrigerant in the outdoor heat exchanger 15 can be increased.
  • the temperature of the blown air blown from the indoor condenser 12 can be increased more than in the third mode.
  • the throttle opening degree of the first expansion valve 14 and the second expansion valve 19 is changed according to the target condenser outlet temperature TAVO calculated based on the target outlet temperature TAO.
  • the temperature of the blown-out air blown into the room can be adjusted over a wide range from the low temperature range to the high temperature range.
  • the amount of heat released from the refrigerant in the outdoor heat exchanger 15 is changed while the outdoor heat exchanger 15 is switched from a state in which it functions as a radiator that radiates the refrigerant to a state in which it functions as an evaporator that absorbs heat from the refrigerant.
  • the endothermic amount can be adjusted.
  • the heat radiation amount of the refrigerant in the indoor condenser 12 can be adjusted in a wide range, and the temperature adjustment range of the blown air blown into the air-conditioning target space during the dehumidifying operation can be expanded.
  • step S100 in the flowchart of FIG. 3 the control device 40 reads the detection signal of the sensor group and the operation signal of the operation panel.
  • step S110 it is determined whether or not the refrigeration cycle is stable based on the value of the read detection signal. Specifically, it is determined whether or not the refrigeration cycle is stable based on the degree of fluctuation in refrigerant pressure or refrigerant temperature. For example, when the fluctuation amount of the refrigerant pressure or the refrigerant temperature is a predetermined value or less, it is determined that the refrigeration cycle is stable.
  • step S110 If it is determined that the refrigeration cycle is not stable, it is determined that the amount of refrigerant cannot be properly determined, and step S110 is repeated. If it is determined that the refrigeration cycle is stable, it is determined that the refrigerant amount can be appropriately determined, and the process proceeds to step S120.
  • a temperature threshold is calculated.
  • the temperature threshold is used as a determination threshold when determining whether or not the refrigerant is insufficient.
  • the temperature threshold value increases as the cooling capacity of the refrigerant with respect to the heating element 11b decreases. Further, the larger the amount of heat generated by the heating element 11b, the larger the value.
  • the temperature threshold is calculated based on the temperature of the refrigerant flowing out of the accumulator 21, the pressure of the high-pressure side refrigerant in the refrigeration cycle, and the rotation speed of the compressor 11.
  • the characteristic map shown in FIG. 4 is stored in the control device 40 in advance, and based on the temperature of the refrigerant flowing out of the accumulator 21, the pressure Ph of the high-pressure side refrigerant, and the rotation speed Nc of the compressor 11, FIG.
  • the temperature threshold value is calculated with reference to the characteristic map shown.
  • the compressor 11 works and the amount of heat generated by the electric motor or inverter that is the heating element 11b increases, so the temperature threshold value is increased.
  • the temperature of the refrigerant sucked into the compressor 11 or the temperature of the outside air may be used instead of the temperature of the refrigerant flowing out of the accumulator 21.
  • a calculation formula may be stored in the control device 40 in advance. That is, a calculation formula for calculating the temperature threshold based on the cooling capacity of the refrigerant with respect to the heating element 11b and the amount of heat generated by the heating element 11b may be stored in the control device 40 in advance.
  • step S130 it is determined whether or not the temperature of the heating element 11b detected by the heating element temperature sensor 43 is higher than the temperature threshold value calculated in step S120.
  • step S120 If it is determined that the temperature of the heating element 11b detected by the heating element temperature sensor 43 is not higher than the temperature threshold calculated in step S120, it is determined that the refrigerant is not insufficient, and the process returns to step S110.
  • step S120 When it is determined that the temperature of the heating element 11b detected by the heating element temperature sensor 43 is higher than the temperature threshold calculated in step S120, it is determined that the refrigerant is insufficient, and the process proceeds to step S140 to stop the system. Notify crew of system abnormality.
  • the temperature of the heating element 11 b has a correlation with the amount of the liquid-phase refrigerant stored in the accumulator 21. Therefore, it can be estimated based on the temperature of the heat generating body 11b whether the refrigerant is insufficient.
  • the liquid back amount is the amount of liquid phase refrigerant returned from the accumulator 21 to the suction side of the compressor 11. In other words, the amount of liquid back decreases as the liquid level of the liquid-phase refrigerant stored in the accumulator 21 decreases.
  • the temperature of the heating element 11b has a correlation with the amount of cycle refrigerant as shown in FIG. Therefore, it can be estimated whether the refrigerant
  • the heating element 11b is cooled by the refrigerant that flows out of the accumulator 21 and flows into the compression mechanism 11a of the compressor 11. And the control apparatus 40 determines whether the quantity of a refrigerant
  • coolant is insufficient based on the temperature of the heat generating body 11b.
  • control device 40 determines the amount of refrigerant based on the cooling capacity of the refrigerant with respect to the heating element 11b, the physical quantity related to at least one of the heating values of the heating element 11b, and the temperature of the heating element 11b. It is determined whether or not there is a shortage.
  • the amount of the refrigerant is insufficient in consideration of at least one of the cooling capacity of the refrigerant with respect to the heating element 11b and the amount of heat generated by the heating element 11b. it can.
  • the physical quantity related to at least one of the cooling capacity of the refrigerant with respect to the heating element 11b and the heating value of the heating element 11b is, for example, the temperature of the refrigerant flowing out of the accumulator 21, the pressure of the refrigerant flowing out of the accumulator 21, and the compressor 11 or the like.
  • the physical quantity related to at least one of the cooling capacity of the refrigerant with respect to the heating element 11b and the amount of heat generated by the heating element 11b may be, for example, the temperature of the refrigerant sucked into the compressor 11 or the temperature of the outside air.
  • control device 40 stores a characteristic map representing the relationship between the physical quantity and the threshold, calculates the threshold based on the physical quantity and the characteristic map, and the temperature of the heating element 11b is higher than the threshold. When it is low, it is determined that the amount of the refrigerant is insufficient.
  • the control device 40 may store a calculation formula for calculating a threshold value based on a physical quantity instead of the characteristic map. That is, the control device 40 may calculate a threshold value based on the physical quantity and the calculation formula, and may determine that the amount of the refrigerant is insufficient when the temperature of the heating element 11b is lower than the threshold value.
  • the heating element 11b is a motor or an inverter that constitutes the drive mechanism 11b of the compressor 11.
  • the refrigerant shortage can be determined using the existing drive mechanism 11 b and the heating element temperature sensor 43 in the refrigeration cycle apparatus 10.
  • the electric heater 50 is arranged in the refrigerant flow path between the gas-phase refrigerant outlet of the accumulator 21 and the refrigerant inlet of the compression mechanism 11 a of the compressor 11.
  • the electric heater 50 is a heating element that generates heat when electric power is supplied.
  • the electric heater 50 is cooled by the refrigerant that flows out from the gas-phase refrigerant outlet of the accumulator 21 and is sucked into the compressor 11.
  • the heating element temperature sensor 43 detects the temperature of the electric heater 50. And the control apparatus 40 estimates whether the refrigerant
  • the heating mode, the cooling mode, and the dehumidifying heating mode are switched by the operation signal of the air conditioner switch.
  • an operation mode setting switch for setting each operation mode may be provided on the operation panel, and the heating mode, the cooling mode, and the dehumidifying heating mode may be switched according to an operation signal of the operation mode setting switch.
  • a chlorofluorocarbon refrigerant is used as the refrigerant.
  • the type of the refrigerant is not limited to this, and natural refrigerants such as carbon dioxide, hydrocarbon refrigerants, and the like are used. It may be used.
  • the refrigeration cycle apparatus 10 of the above embodiment constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant
  • supercritical refrigeration in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant You may comprise the cycle.
  • the vehicle air conditioner 1 is mounted on a hybrid vehicle.
  • the present invention is not limited to this, and the vehicle air conditioner 1 may be mounted on various vehicles such as an electric vehicle.
  • the refrigeration cycle apparatus 10 is applied to the vehicle air conditioner 1, it is not limited to this,
  • the refrigeration cycle apparatus 10 is applicable to a stationary air conditioner.

Abstract

冷凍サイクル装置(10)は、冷媒を吸入して圧縮して吐出する圧縮機構(11a)を有する圧縮機(11)と、圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、放熱器で放熱された冷媒を減圧させる減圧部(14)と、減圧部(14)で減圧された冷媒に吸熱させて冷媒を蒸発させる蒸発器(15、20)と、蒸発器(15、20)で吸熱された冷媒の気液を分離し、分離された液相冷媒を内部に蓄え、分離された気相冷媒を液相冷媒に混在する潤滑油とともに圧縮機(11)の吸入側へ流出させるアキュムレータ(21)とを備える。冷凍サイクル装置において冷媒の不足を検出する冷媒検出装置は、アキュムレータ(21)から流出して圧縮機構(11a)に流入する冷媒によって冷却される発熱体(11b、50)の温度に基づいて、冷媒の量が不足しているか否かを判定する判定部(40)を備える。

Description

冷媒量不足検知装置および冷凍サイクル装置 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2016年4月26日に出願された日本特許出願2016-088128号を基にしている。
 本開示は、冷凍サイクルにおける冷媒不足を検知する冷媒量不足検知装置、およびそれを備える冷凍サイクル装置に関する。
 従来、特許文献1、2には、冷凍サイクルの冷媒不足を検知する冷媒量不足検知装置が記載されている。
 特許文献1の従来技術によると、蒸発圧力調整弁にて蒸発器の蒸発圧力が一定に制御されているときに、蒸発器を通過した直後の空気の温度が所定温度よりも高くなった場合、冷媒不足と判定する。
 特許文献2の従来技術によると、冷凍サイクルの高圧部の冷媒圧力が設定圧力以下の場合、冷媒不足と判定する。
特開平10-185372号公報 特開平8-313123号公報
 アキュムレータを備える冷凍サイクル装置において、冷媒不足を検知するために上記特許文献1、2の従来技術を適用した場合、冬期等の低温環境下では冷凍サイクル装置の圧縮機の作動信頼性を担保できないという問題がある。以下、その理由を説明する。
 アキュムレータは、冷凍サイクル装置の蒸発器で熱交換された冷媒の気液を分離する気液分離器である。アキュムレータは、分離された液相冷媒を蓄え、分離された気相冷媒を圧縮機の冷媒吸入口側へ流出させる。アキュムレータによって、圧縮機における液圧縮が抑制される。
 アキュムレータに蓄えられた液相冷媒には冷凍機油が混在している。冷凍機油は、圧縮機を潤滑する潤滑油である。アキュムレータは、液相冷媒中に混在する冷凍機油を気相冷媒とともに圧縮機に戻す。このとき、微量の液相冷媒も冷凍機油とともに圧縮機に戻される。
 アキュムレータに蓄えられた液相冷媒が少なくなるとアキュムレータ内において冷凍機油の濃度が高くなる。そのため、冷凍機油の粘性が高くなる低温環境下において、アキュムレータに蓄えられた液相冷媒が少なくなると圧縮機に冷凍機油を戻せなくなってしまう。
 一方、特許文献1、2の従来技術では、蒸発器を通過した直後の空気の温度や冷凍サイクルの高圧部の冷媒圧力に基づいて冷媒不足であるか否かを判定するが、蒸発器を通過した直後の空気の温度や冷凍サイクルの高圧部の冷媒圧力に顕著な変化が現れるのは冷凍サイクルの冷媒がかなり少なくなってからである。
 すなわち、特許文献1、2の従来技術において冷媒不足を検知できる冷媒量は、粘性により冷凍機油をアキュムレータから圧縮機に戻せなくなる冷媒量よりも少ない。そのため、冷媒不足を検知する前に圧縮機に冷凍機油を戻せなくなるおそれがあるので、圧縮機の作動信頼性を担保できない。
 本開示は上記点に鑑みて、アキュムレータを備える冷凍サイクル装置における冷媒不足を適切に判定することを目的とする。
 本開示の一例の冷媒量不足検知装置は、冷凍サイクル装置において冷媒不足を検出するのに適用できる。例えば、冷凍サイクル装置は、
 冷媒を吸入して圧縮して吐出する圧縮機構を有する圧縮機と、
 圧縮機から吐出された冷媒を放熱させる放熱器と、
 放熱器で放熱された冷媒を減圧させる減圧部と、
 減圧部で減圧された冷媒に吸熱させて冷媒を蒸発させる蒸発器と、
 蒸発器で吸熱された冷媒の気液を分離し、分離された液相冷媒を内部に蓄え、分離された気相冷媒を液相冷媒に混在する潤滑油とともに圧縮機の吸入側へ流出させるアキュムレータとを備える。
 冷媒量不足検知装置は、アキュムレータから流出して圧縮機構に流入する冷媒によって冷却される発熱体の温度に基づいて、冷凍サイクル装置内の冷媒量が不足しているか否かを判定する判定部を備える。
 これによると、発熱体の温度に基づいて冷媒の量が不足しているか否かを判定するので、アキュムレータを備える冷凍サイクル装置における冷媒不足を適切に判定できる。発熱体の温度は、アキュムレータ内に蓄えられた液相冷媒の量と相関関係があるので、冷凍サイクル装置における冷媒不足を適切に判定できる。
 本開示の別例による冷凍サイクル装置は、
 冷媒を吸入して圧縮して吐出する圧縮機構を有する圧縮機と、
 圧縮機から吐出された冷媒を放熱させる放熱器と、
 放熱器で放熱された冷媒を減圧させる減圧部と、
 減圧部で減圧された冷媒に吸熱させて冷媒を蒸発させる蒸発器と、
 蒸発器で吸熱された冷媒の気液を分離し、分離された液相冷媒を内部に蓄え、分離された気相冷媒を液相冷媒に混在する潤滑油とともに圧縮機の吸入側へ流出させるアキュムレータと、
 アキュムレータにおける気相冷媒の出口から流出して圧縮機構に流入する冷媒によって冷却される発熱体の温度を検出する温度検出部と、
 温度検出部が検出した発熱体の温度に基づいて、冷媒の量が不足しているか否かを判定する判定部とを備える。
 これにより、アキュムレータを備える冷凍サイクル装置における冷媒不足を適切に判定できる。
第1実施形態における冷凍サイクル装置の全体構成図である。 第1実施形態に係る冷凍サイクル装置の制御装置が実行する制御処理の流れを示すフローチャートである。 第1実施形態に係る冷凍サイクル装置の制御装置が実行する他の制御処理の流れを示すフローチャートである。 第1実施形態に係る冷凍サイクル装置の制御装置が温度閾値を算出する際に用いる制御特性図である。 第1実施形態に係る冷凍サイクル装置におけるアキュムレータ内冷媒量と液バック量との関係を示すグラフである。 第1実施形態に係る冷凍サイクル装置における液バック量と発熱体温度との関係を示すグラフである。 第1実施形態に係る冷凍サイクル装置におけるサイクル冷媒量と発熱体温度との関係を示すグラフである。 第2実施形態における冷凍サイクル装置の全体構成図である。
 以下、実施形態について図に基づいて説明する。以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 (第1実施形態)
 図1に示す車両用空調装置1は、車室内を空調対象空間とする空調装置である。車両用空調装置1は、ハイブリッド車両に搭載されている。ハイブリッド車両は、エンジンおよび走行用電動モータから車両走行用の駆動力を得る車両である。
 車両用空調装置1は、冷凍サイクル装置10を有している。冷凍サイクル装置10は、車室内へ送風される空気を冷却あるいは加熱する機能を果たす。
 冷凍サイクル装置10は、冷房モードの冷媒流路、除湿暖房モードの冷媒流路、および暖房モードの冷媒流路を切替可能に構成されている。
 冷房モードでは、車室内を冷房する冷房運転が行われる。除湿暖房モードでは、車室内を除湿しながら暖房する除湿暖房運転が行われる。暖房モードでは、車室内を除湿することなく暖房する暖房運転が行われる。
 冷凍サイクル装置10の冷媒はフロン系冷媒である。冷凍サイクル装置10は、高圧冷媒の圧力が冷媒の臨界圧力を越えない亜臨界冷凍サイクルを構成している。冷媒には冷凍機油が混入されている。冷凍機油は、圧縮機11を潤滑する潤滑油である。冷凍機油の一部は冷媒とともにサイクルを循環している。
 圧縮機11は、車両のエンジンルーム内に配置されている。圧縮機11は、冷凍サイクル装置10において冷媒を吸入し、圧縮して吐出する。圧縮機11は電動圧縮機である。圧縮機11は、圧縮機構11aと駆動機構11bとを有している。
 例えば、圧縮機構11aは、吐出容量が固定された固定容量型圧縮機構である。例えば、圧縮機構11aは、スクロール型圧縮機構やベーン型圧縮機構等の各種圧縮機構である。
 駆動機構11bは、圧縮機構11aを駆動する駆動部である。駆動機構11bは、電動モータとインバータとを有している。
 電動モータの回転数は、制御装置40から出力される制御信号によって制御される。電動モータは交流モータである。電動モータの回転数制御によって、圧縮機構11aの冷媒吐出能力が変更される。電動モータは、圧縮機構11aの吐出能力変更部である。
 インバータは、車両のバッテリから供給された直流電力を交流電力に変換して電動モータに出力する電力変換装置である。電動モータおよびインバータは、作動に伴って発熱する発熱体である。電動モータおよびインバータは、圧縮機11に吸入される低温の冷媒によって冷却されるようになっている。
 圧縮機11の吐出口側には、室内凝縮器12の入口側が接続されている。室内凝縮器12は、室内空調ユニット30のケーシング31内に配置されている。室内凝縮器12は、圧縮機11から吐出された高圧冷媒を放熱させる放熱部である。室内凝縮器12は、室内蒸発器20を通過した空気を加熱する加熱用熱交換器である。
 室内凝縮器12の出口側には第1冷媒通路13が接続されている。第1冷媒通路13は、室内凝縮器12から流出した冷媒を室外熱交換器15へ導く通路である。第1冷媒通路13には第1膨張弁14が配置されている。第1膨張弁14は、第1冷媒通路13の通路面積を変更可能な第1絞り部である。
 第1膨張弁14は、室内凝縮器12で熱交換された冷媒を減圧させる減圧部である。第1膨張弁14は、弁体と電動アクチュエータとを有する電気式可変絞り機構である。弁体は、絞り開度を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータである。
 第1膨張弁14は、全開機能付き可変絞り機構である。第1膨張弁14は、絞り開度を全開した際に第1冷媒通路13を全開する。第1膨張弁14は、第1冷媒通路13を全開にすることで冷媒の減圧作用を発揮させないようにすることができる。第1膨張弁14の作動は、制御装置40から出力される制御信号によって制御される。
 第1膨張弁14の出口側には、室外熱交換器15の入口側が接続されている。室外熱交換器15は、冷媒と外気とを熱交換させる冷媒外気熱交換器である。冷媒は、室外熱交換器15の内部を流通する。外気は、車室外の空気である。室外熱交換器15には、外気が送風ファン23から送風される。
 室外熱交換器15は、暖房モード時等には、冷媒を蒸発させる蒸発器として機能する。室外熱交換器15は、暖房モード時等には、第1膨張弁14で減圧された冷媒に外気から吸熱させる吸熱部として機能する。室外熱交換器15は、冷房モード時等には、冷媒を凝縮させる凝縮器として機能する。室外熱交換器15は、冷房モード時等には、冷媒を放熱させる放熱器として機能する。
 室外熱交換器15の出口側には、第2冷媒通路16および第3冷媒通路18が接続されている。第2冷媒通路16は、室外熱交換器15から流出した冷媒をアキュムレータ21を介して圧縮機11の吸入側へ導く。第3冷媒通路18は、室外熱交換器15から流出した冷媒を第2膨張弁19、室内蒸発器20およびアキュムレータ21を介して圧縮機11の吸入側へ導く。
 第2冷媒通路16は、第2膨張弁19に対して並列に冷媒が流れる並列冷媒通路である。第2冷媒通路16には、第1開閉弁17が配置されている。第1開閉弁17は、第2冷媒通路16を開閉する開閉部である。第1開閉弁17は電磁弁である。第1開閉弁17の作動は、制御装置40から出力される制御信号によって制御される。
 第1開閉弁17が開いている場合、冷媒が第2冷媒通路16を通過する際に生ずる圧力損失は、冷媒が第3冷媒通路18を通過する際に生ずる圧力損失に対して小さい。第3冷媒通路18には、第2膨張弁19が配置されているからである。
 したがって、第1開閉弁17が開いている場合、室外熱交換器15から流出した冷媒は第2冷媒通路16側に流れ、第1開閉弁17が閉じている場合、室外熱交換器15から流出した冷媒は第3冷媒通路18側に流れる。
 第1開閉弁17は、第2冷媒通路16を開閉することによってサイクル構成を切り替える機能を果たす。第1開閉弁17は、第2冷媒通路16を開閉することによって、サイクルを循環する冷媒の流路を切り替える機能を果たす。第1開閉弁17は、冷媒の流路を切り替える冷媒流路切替部を構成している。
 第3冷媒通路18には第2膨張弁19が配置されている。第2膨張弁19は、冷媒を減圧させる減圧部である。第2膨張弁は、第3冷媒通路18の通路面積を変更可能に構成された第2絞り部である。
 第2膨張弁19は、弁体と電動アクチュエータとを有する電気式可変絞り機構である。弁体は、絞り開度を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータである。
 第2膨張弁19は、全開機能付き可変絞り機構である。第2膨張弁19は、絞り開度を全開した際に第3冷媒通路18を全開する。第2膨張弁19は、第3冷媒通路18を全開にすることで冷媒の減圧作用を発揮させないようにすることができる。第2膨張弁19の作動は、制御装置40から出力される制御信号によって制御される。
 第2膨張弁19の出口側には、室内蒸発器20の入口側が接続されている。室内蒸発器20は、室内空調ユニット30のケーシング31内のうち、室内凝縮器12の空気流れ上流側に配置されている。
 室内蒸発器20は、冷媒を、室内凝縮器12通過前の空気と熱交換させて蒸発させる蒸発器である。室内蒸発器20は、吸熱作用を発揮させることにより空気を冷却する吸熱用熱交換器である。
 室内蒸発器20の冷媒出口側には、アキュムレータ21の入口側が接続されている。アキュムレータ21は、室内蒸発器20から流出した冷媒の気液を分離して、冷凍サイクル装置10の余剰冷媒を蓄える気液分離器である。
 アキュムレータ21の気相冷媒出口には、圧縮機11の吸入口側が接続されている。アキュムレータ21は、圧縮機11に液相冷媒が吸入されることを抑制し、圧縮機11における液圧縮を抑制する機能を果たす。
 アキュムレータ21から流出した冷媒は、圧縮機11の駆動機構11b(すなわち電動モータおよびインバータ)を冷却した後、圧縮機11の圧縮機構11aに吸入される。
 アキュムレータ21に蓄えられた液相冷媒には、圧縮機構11aを潤滑する冷凍機油が混在している。アキュムレータ21には、液相冷媒中に混在する冷凍機油を圧縮機構11aに戻す図示しない油戻し穴が形成されている。液相冷媒中に混在する冷凍機油は、油戻し穴を介して圧縮機構11aの吸入側へ戻されるようになっている。
 室内空調ユニット30は、車室内最前部の計器盤の内側に配置されている。ケーシング31は、室内空調ユニット30の外殻を形成している。ケーシング31内には、送風機32、室内凝縮器12および室内蒸発器20等が収容されている。
 ケーシング31は空気通路を形成している。ケーシング31は、ある程度の弾性を有し、強度的にも優れた樹脂にて成形されている。例えば、ケーシング31はポリプロピレンにて成形されている。
 ケーシング31内の空気流れ最上流側には内外気切替装置33が配置されている。内外気切替装置33は、内気と外気とを切替導入する。内気は、車室内の空気である。
 内外気切替装置33には内気導入口および外気導入口が形成されている。内気導入口は、ケーシング31内に内気を導入させる。外気導入口は、ケーシング31内に外気を導入させる。内外気切替装置33の内部には内外気切替ドアが配置されている。内外気切替ドアは、内気導入口および外気導入口の開口面積を連続的に調整して、内気の風量と外気の風量との風量割合を変化させる。
 内外気切替装置33の空気流れ下流側には送風機32が配置されている。送風機32は、内外気切替装置33を介して導入された空気を車室内に向けて送風する。送風機32は、遠心多翼ファン32aと電動モータ32bとを有する電動送風機である。
 遠心多翼ファン32aは、車室内へ空気を送風する送風部である。遠心多翼ファン32aはシロッコファンである。電動モータ32bは遠心多翼ファン32aを駆動する。電動モータ32bの回転数は、制御装置40から出力される制御電圧によって制御される。送風機32の送風量は、制御装置40によって制御される。
 送風機32の空気流れ下流側には、室内蒸発器20および室内凝縮器12が、空気の流れに対して、この順に配置されている。室内蒸発器20は、室内凝縮器12に対して、空気の流れ方向上流側に配置されている。
 ケーシング31内には冷風バイパス通路35が形成されている。冷風バイパス通路35は、室内蒸発器20を通過した空気を室内凝縮器12を迂回させて流す通路である。
 室内蒸発器20の空気流れ下流側であって、かつ室内凝縮器12の空気流れ上流側には、エアミックスドア36が配置されている。エアミックスドア36は、室内蒸発器20通過後の空気のうち、室内凝縮器12を通過させる空気と冷風バイパス通路35を通過させる空気との風量割合を調整する風量割合調整部である。エアミックスドア36は、送風機32の送風量のうち、室内凝縮器12で加熱される空気の風量と、残余の風量との割合を調整する。
 室内凝縮器12の空気流れ下流側および冷風バイパス通路35の空気流れ下流側には、混合空間が設けられている。混合空間は、室内凝縮器12を通過した空気と冷風バイパス通路35を通過した空気とを混合させる空間である。
 ケーシング31の空気流れ最下流側には、吹出口が配置されている。吹出口は、混合空間にて混合された空調風を車室内へ向けて吹き出す。吹出口は、フェイス吹出口、フット吹出口およびデフロスタ吹出口である。フェイス吹出口は、車室内の乗員の上半身へ空調風を吹き出す。フット吹出口は、乗員の足元へ空調風を吹き出す。デフロスタ吹出口は、車両前面窓ガラス内側面へ空調風を吹き出す。
 エアミックスドア36が、室内凝縮器12を通過させる空気と冷風バイパス通路35を通過させる空気との風量割合を調整することで、混合空間にて混合された空調風の温度が調整され、各吹出口から吹き出される空調風の温度が調整される。
 エアミックスドア36はサーボモータ37によって駆動される。サーボモータ37の作動は、制御装置40から出力される制御信号によって制御される。制御装置40がサーボモータ37の作動を制御することによって、エアミックスドア36の開度が0%から100%の範囲で調整される。
 エアミックスドア36の開度が0%に調整されると最大冷房状態になる。すなわち、エアミックスドア36の開度が0%に調整されると、エアミックスドア36は冷風バイパス通路35を全開し、室内凝縮器12側の空気通路を全閉する。エアミックスドア36の開度が100%に調整されると最大暖房状態になる。すなわち、エアミックスドア36の開度が100%に調整されると、エアミックスドア36は冷風バイパス通路35を全閉し、室内凝縮器12側の空気通路を全開する。
 フェイス吹出口、フット吹出口およびデフロスタ吹出口の空気流れ上流側には、フェイスドア、フットドアおよびデフロスタドアが配置されている。フェイスドアは、フェイス吹出口の開口面積を調整する。フットドアは、フット吹出口の開口面積を調整する。デフロスタドアは、デフロスタ吹出口の開口面積を調整する。
 フェイスドア、フットドアおよびデフロスタドアは、吹出口モードを切り替える吹出口モード切替部である。フェイスドア、フットドアおよびデフロスタドアは、リンク機構等を介してサーボモータによって駆動される。サーボモータの作動は、制御装置40から出力される制御信号によって制御される。
 制御装置40は、CPU、ROM、RAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置40は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御機器の作動を制御する。
 制御装置40は、冷凍サイクル装置において冷媒の不足を検出する冷媒量不足検知装置を構成している。制御装置40は、冷媒の量が不足しているか否かを判定する判定部である。
 制御装置40の入力側には、内気センサ、外気センサ41、日射センサ、蒸発器温度センサ、吐出温度センサ、高圧圧力センサおよび出口冷媒温度センサ42等の種々の空調制御用のセンサ群が接続されている。
 内気センサは、車室内温度Trを検出する。外気センサ41は、外気温Tamを検出する。日射センサは、車室内の日射量Tsを検出する。蒸発器温度センサは、室内蒸発器20からの吹出空気温度(蒸発器温度)Teを検出する。吐出温度センサは、圧縮機11から吐出された冷媒の温度Tdを検出する。高圧圧力センサは、室内凝縮器12の冷媒圧力Phを検出する。出口冷媒温度センサ42は、室外熱交換器15の出口側の冷媒の温度を検出する。
 さらに、制御装置40の入力側には、発熱体温度センサ43が接続されている。発熱体温度センサ43は、圧縮機11の駆動機構11bの温度を検出する発熱体温度検出部である。具体的には、発熱体温度センサ43は、駆動機構11bのうち電動モータまたはインバータの温度を検出する。以下では、発熱体温度センサ43が検出した温度を発熱体温度と言う。
 制御装置40には、各種操作スイッチからの操作信号が入力される。各種操作スイッチは、操作パネルに設けられている。操作パネルは、車室内前部の計器盤付近に配置されている。
 各種操作スイッチは、エアコンスイッチ、温度設定スイッチ等である。エアコンスイッチは、室内空調ユニット30にて空気の冷却を行うか否かを設定するための操作スイッチである。温度設定スイッチは、車室内の設定温度を設定するための操作スイッチである。
 制御装置40は、その出力側に接続された各種制御機器の作動を制御する制御部が一体に構成されたものである。制御装置40のうちそれぞれの制御機器の作動を制御するソフトウェアおよびハードウェアは、それぞれの制御機器の作動を制御する制御部を構成している。
 例えば、圧縮機11の電動モータを制御するソフトウェアおよびハードウェアは、吐出能力制御部を構成している。第1膨張弁14を制御するソフトウェアおよびハードウェアは、第1絞り制御部を構成している。第2膨張弁19を制御するソフトウェアおよびハードウェアは、第2絞り制御部を構成している。第1開閉弁17を制御するソフトウェアおよびハードウェアは、流路切替制御部を構成している。エアミックスドア36駆動用のサーボモータ37を制御するソフトウェアおよびハードウェアは、エアミックスドア制御部を構成している。
 次に、上記構成における本実施形態の車両用空調装置1の作動について説明する。本実施形態の車両用空調装置1では、前述の如く、車室内を冷房する冷房モード、車室内を暖房する暖房モード、車室内を除湿しながら暖房する除湿暖房モードに切り替えることができる。
 各運転モードの切替制御処理について図2および図3に基づいて説明する。図2および図3は、本実施形態の車両用空調装置1の制御装置40が実行する制御処理の流れを示すフローチャートである。
 図2のフローチャートでは、冷房モード、除湿暖房モードおよび暖房モードの切り替えを行う。図3のフローチャートでは、冷媒が不足しているか否かの判定を行う。
 なお、図2および図3のフローチャートは、空調制御のメインルーチンに対するサブルーチンとして実行される。図2および図3の各制御ステップは、制御装置40が有する各種の機能実現部を構成している。
 まず、図2のフローチャートにおけるステップS10では、制御装置40が上述のセンサ群の検出信号および操作パネルの操作信号を読み込む。ステップS20では、読み込んだ検出信号および操作信号の値に基づいて、目標吹出温度TAOを以下の数式に基づいて算出する。目標吹出温度TAOは、車室内へ吹き出す吹出空気の目標温度である。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C
 Tsetは温度設定スイッチによって設定された車室内設定温度、Trは内気センサによって検出された車室内温度(内気温)、Tamは外気センサ41によって検出された外気温、Tsは日射センサによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
 ステップS20では、制御装置40は、目標吹出温度TAOに基づいて、予め記憶された制御マップを参照して、室内凝縮器12の目標吹出温度TAVOを決定する。
 ステップS30では、操作パネルのエアコンスイッチがオンされているか否かを判定する。その結果、エアコンスイッチがオフと判定された場合、ステップS40へ進み、運転モードを暖房モードに決定する。エアコンスイッチがオンと判定された場合、ステップS50へ移行する。
 ステップS50では、目標凝縮器吹出温度TAVOが冷房基準温度αより小さいか否かを判定する。冷房基準温度αは、予め定められて制御装置40に記憶されている。目標凝縮器吹出温度TAVOが冷房基準温度αよりも低いと判定された場合、ステップS60へ進み、運転モードを冷房モードに決定する。目標凝縮器吹出温度TAVOが冷房基準温度α以上であると判定された場合、ステップS70へ進み、運転モードを除湿暖房モードに決定する。
 このようにして、各運転モードを、車両用空調装置1の運転環境に応じて、暖房モード、冷房モードおよび除湿暖房モードを適切に切り替えることができる。
 次に、暖房モード、冷房モードおよび除湿暖房モードにおける作動について説明する。
 (A)暖房モード
 暖房モードでは、制御装置40が、第1開閉弁17にて第2冷媒通路16を開く。これにより、冷凍サイクル装置10では、図1の黒塗矢印で示すように冷媒が流れる冷媒流路に切り替えられる。
 この冷媒流路の構成で、制御装置40が、目標吹出温度TAO、目標凝縮器吹出温度TAVO、センサ群の検出信号等に基づいて、制御装置40に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。
 例えば、圧縮機11の回転数、すなわち圧縮機11の電動モータに出力される制御信号については、以下のように決定される。まず、目標凝縮器吹出温度TAVOと凝縮器吹出空気温度TAVとの偏差に基づいて、フィードバック制御手法を用いて、車室内へ吹き出される吹出空気温度が目標吹出温度TAOに近づくように圧縮機11の電動モータに出力される制御信号が決定される。これにより、圧縮機11の回転数、換言すれば圧縮機11の冷媒吐出能力が決定される。
 第1膨張弁14の開度、すなわち第1膨張弁14へ出力される制御信号については、第1膨張弁14へ流入する冷媒の過冷却度が、サイクルの成績係数COPを最大値に近づけるように予め定められた目標過冷却度に近づくように決定される。
 エアミックスドア36の開度、すなわちエアミックスドア36のサーボモータへ出力される制御信号については、エアミックスドア36が冷風バイパス通路35を閉塞し、室内蒸発器20を通過後の空気の全流量が室内凝縮器12の空気通路を通過するように決定される。すなわち、暖房モードでは、エアミックスドア36の開度が100%に決定されて、エアミックスドア36が最大暖房状態の位置に操作される。
 送風機32の風量、すなわち送風機32の電動モータ32bへ出力される制御信号については、凝縮器吹出空気温度TAVに応じて決定される。
 そして、上記の如く決定された制御信号等を各種制御機器へ出力する。その後、操作パネルによって車両用空調装置1の作動停止が要求されるまで、所定の周期毎に運転モードの決定処理→各種制御機器の作動状態の決定→制御信号等の出力といった制御ルーチンが繰り返される。なお、このような制御ルーチンの繰り返しは、他の運転モード時にも同様に行われる。
 したがって、暖房モード時の冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が室内凝縮器12に流入する。室内凝縮器12に流入した冷媒は、送風機32から送風されて室内蒸発器20を通過した空気と熱交換して放熱する。これにより、車室内へ送風される空気が加熱される。
 室内凝縮器12から流出した冷媒は、第1冷媒通路13を介して第1膨張弁14に流入し、第1膨張弁14にて低圧冷媒となるまで減圧膨張される。そして、第1膨張弁14にて減圧された低圧冷媒は、室外熱交換器15に流入して、送風ファンによって送風された外気から吸熱する。室外熱交換器15から流出した冷媒は、第2冷媒通路16を介して、アキュムレータ21へ流入して気液分離される。
 そして、アキュムレータ21にて分離された気相冷媒が圧縮機11の吸入側から吸入されて再び圧縮機11にて圧縮される。なお、アキュムレータ21にて分離された液相冷媒は、サイクルが要求されている冷凍能力を発揮するために必要としていない余剰冷媒としてアキュムレータ21の内部に蓄えられる。なお、第3冷媒通路18は、第2膨張弁19にて閉鎖されているため、室内蒸発器20には冷媒が流入しない。
 以上の如く、暖房モードでは、室内凝縮器12にて圧縮機11から吐出された高圧冷媒の有する熱を空気に放熱させて、加熱された空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。
 (B)冷房モード
 冷房モードでは、制御装置40が、第1開閉弁17にて第2冷媒通路16を閉じる。さらに、第1膨張弁14にて第1冷媒通路13を全開状態とする。これにより、冷凍サイクル装置10では、図1の白抜矢印で示すように冷媒が流れる冷媒流路に切り替えられる。
 この冷媒流路の構成で、制御装置40が、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置40に接続された各種制御機器の作動状態、すなわち各種制御機器へ出力する制御信号を決定する。
 例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め制御装置40に記憶された制御マップを参照して、室内蒸発器20から吹き出される空気の目標蒸発器吹出温度TEOを決定する。したがって、制御装置40が実行する制御ルーチンのうち、この目標蒸発器吹出温度TEOを決定する制御ステップが目標蒸発器吹出温度決定部を構成する。
 そして、この目標蒸発器吹出温度TEOと蒸発器温度センサの検出値との偏差に基づいて、フィードバック制御手法を用いて室内蒸発器20を通過した空気の温度が、目標吹出温度TAOに近づくように圧縮機11の電動モータに出力される制御信号が決定される。
 また、第2膨張弁19へ出力される制御信号については、第2膨張弁19へ流入する冷媒の過冷却度が、COPを最大値に近づけるように予め定められた目標過冷却度に近づくように決定される。
 また、エアミックスドア36のサーボモータへ出力される制御信号については、エアミックスドア36が室内凝縮器12の空気通路を閉塞し、室内蒸発器20を通過後の空気の全流量が冷風バイパス通路35を通過するように決定される。
 したがって、冷房モード時の冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が室内凝縮器12に流入する。この際、エアミックスドア36が室内凝縮器12の空気通路を閉塞しているので、室内凝縮器12に流入した冷媒は、殆ど空気と熱交換することなく、室内凝縮器12から流出する。
 室内凝縮器12から流出した冷媒は、第1冷媒通路13を介して第1膨張弁14に流入する。この際、第1膨張弁14が第1冷媒通路13を全開状態としているので、室内凝縮器12から流出した冷媒は、第1膨張弁14にて減圧されることなく、室外熱交換器15に流入する。そして、室外熱交換器15に流入した冷媒は、室外熱交換器15にて送風ファンから送風された外気へ放熱する。
 室外熱交換器15から流出した冷媒は、第3冷媒通路18を介して、第2膨張弁19へ流入して、第2膨張弁19にて低圧冷媒となるまで減圧膨張される。第2膨張弁19にて減圧された低圧冷媒は、室内蒸発器20に流入し、送風機32から送風された空気から吸熱して蒸発する。これにより、車室内へ送風される空気が冷却される。
 室内蒸発器20から流出した冷媒は、アキュムレータ21へ流入して気液分離される。そして、アキュムレータ21にて分離された気相冷媒が圧縮機11の吸入側から吸入されて再び圧縮機11にて圧縮される。なお、アキュムレータ21にて分離された液相冷媒は、サイクルが要求されている冷凍能力を発揮するために必要としていない余剰冷媒としてアキュムレータ21の内部に蓄えられる。
 以上の如く、冷房モードでは、エアミックスドア36にて室内凝縮器12の空気通路を閉塞しているので、室内蒸発器20にて冷却された空気を車室内へ吹き出すことができる。これにより、車室内の冷房を実現することができる。
 (C)除湿暖房モード
 除湿暖房モードでは、制御装置40が第1開閉弁17にて第2冷媒通路16を閉じる。そして、第1、第2膨張弁14、19を絞り状態または全開状態とする。これにより、冷凍サイクル装置10は、冷房モードと同様に、図1の白抜横線矢印に示すように冷媒が流れる冷媒流路に切り替えられる。なお、除湿暖房モードでは、冷媒流れに対して室外熱交換器15と室内蒸発器20とが直列に接続されることとなる。
 この冷媒流路の構成で、制御装置40が、目標吹出温度TAO、目標凝縮器吹出温度TAVO、センサ群の検出信号等に基づいて、制御装置40に接続された各種制御機器の作動状態、すなわち各種制御機器へ出力する制御信号を決定する。
 例えば、圧縮機11の電動モータに出力される制御信号については、冷房モードと同様に決定される。また、エアミックスドア36のサーボモータへ出力される制御信号については、エアミックスドア36が冷風バイパス通路35を閉塞し、室内蒸発器20を通過後の空気の全流量が室内凝縮器12の空気通路を通過するように決定される。
 また、第1膨張弁14および第2膨張弁19については、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOに基づいて演算される目標凝縮器吹出温度TAVOに応じて絞り開度が変更される。具体的には、制御装置40は、目標凝縮器吹出温度TAVOの上昇に伴って、第1膨張弁14にて第1冷媒通路13の通路面積を減少させるとともに、第2膨張弁19にて第3冷媒通路18の通路面積を増大させる。これにより、除湿暖房モードでは、第1モードから第4モードの4段階のモードを連続的に実行する。
 第1モードでは、第1膨張弁14にて第1冷媒通路13を全開状態とし、第2膨張弁19を絞り状態とする。すなわち、サイクル構成については、冷房モードと全く同じ冷媒流路となるものの、エアミックスドア36は室内凝縮器12側の空気通路を全開状態とする。
 これにより、室内凝縮器12では、圧縮機11から吐出された高圧冷媒が、室内蒸発器20にて冷却されて除湿された空気と熱交換して放熱する。これにより、車室内へ送風される空気が加熱される。
 したがって、除湿暖房モードの第1モード時には、室内蒸発器20にて冷却除湿された空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。
 第2モードでは、第1膨張弁14を絞り状態とし、第2膨張弁19の絞り開度を第1モード時よりも増加させた絞り状態とする。したがって、第2モードでは、第1モードに対して、室外熱交換器15へ流入する冷媒の温度を低下させることができる。したがって、室外熱交換器15における冷媒の温度と外気温との温度差を縮小して、室外熱交換器15における冷媒の放熱量を減少させることができる。
 この結果、第1モード時に対して室内凝縮器12における冷媒の放熱量を増加させることができ、室内凝縮器12から吹き出される吹出空気の温度を上昇させることができる。
 第3モードでは、第1膨張弁14の絞り開度を第2モード時よりも減少させた絞り状態とし、第2膨張弁19の絞り開度を第2モード時よりも増加させた絞り状態とする。
 したがって、第3モードでは、室内凝縮器12から流出した冷媒は、第1冷媒通路13を介して第1膨張弁14に流入し、外気温よりも温度の低い中間圧冷媒となるまで減圧される。そして、第1膨張弁14にて減圧された中間圧冷媒は、室外熱交換器15に流入して、送風ファンから送風された外気から吸熱する。
 すなわち、第3モードでは、第1膨張弁14の絞り開度を減少させることによって、室外熱交換器15を、冷媒に吸熱させる吸熱器として機能させているので、第2モードよりも室内凝縮器12から吹き出される温度を上昇させることができる。
 この結果、第2モード時に対して室内凝縮器12における冷媒の放熱量を増加させることができ、室内凝縮器12から吹き出される吹出空気の温度を上昇させることができる。
 第4モードでは、第1膨張弁14の絞り開度を第3モード時よりも減少させた絞り状態とし、第2膨張弁19にて第3冷媒通路18を全開状態とする。
 したがって、第4モードでは、第3モードに対して室外熱交換器15における冷媒蒸発温度を低下させることができ、室外熱交換器15における冷媒の吸熱量を増加させることができる。
 この結果、第3モードよりも室内凝縮器12から吹き出される吹出空気の温度を上昇させることができる。
 このように、除湿暖房モードでは、目標吹出温度TAOに基づいて演算される目標凝縮器吹出温度TAVOに応じて第1膨張弁14、第2膨張弁19の絞り開度を変更することで、車室内へ吹き出す吹出空気の温度を低温域から高温域までの広範囲に亘って調整することができる。
 換言すると、除湿暖房モードでは、室外熱交換器15を、冷媒を放熱させる放熱器として機能させる状態から冷媒に吸熱させる蒸発器として機能させる状態へ切り替えながら、室外熱交換器15における冷媒の放熱量あるいは吸熱量を調整することができる。
 したがって、室内凝縮器12における冷媒の放熱量を幅広い範囲で調整することができ、除湿運転時に空調対象空間へ吹き出される吹出空気の温度調整範囲を拡大させることができる。
 次に、図3のフローチャートにおけるステップS100では、制御装置40が上述のセンサ群の検出信号および操作パネルの操作信号を読み込む。
 ステップS110では、読み込んだ検出信号の値に基づいて、冷凍サイクルが安定しているか否かを判定する。具体的には、冷媒圧力や冷媒温度の変動度合いに基づいて、冷凍サイクルが安定しているか否かを判定する。例えば、冷媒圧力や冷媒温度の変動量が所定値以下である場合、冷凍サイクルが安定していると判定する。
 冷凍サイクルが安定していないと判定した場合、冷媒量を適切に判定できないと判断してステップS110を繰り返す。冷凍サイクルが安定していると判定した場合、冷媒量を適切に判定できると判断してステップS120へ進む。
 ステップS120では、温度閾値を算出する。温度閾値は、冷媒不足であるか否かを判定する際の判定閾値として用いられる。温度閾値は、発熱体11bに対する冷媒の冷却能力が低いほど大きな値になる。また、発熱体11bの発熱量が多いほど大きな値になる。
 温度閾値は、アキュムレータ21から流出した冷媒の温度、冷凍サイクルの高圧側冷媒の圧力、および圧縮機11の回転数に基づいて、温度閾値を算出する。
 例えば、図4に示す特性マップが予め制御装置40に記憶されており、アキュムレータ21から流出した冷媒の温度、高圧側冷媒の圧力Ph、および圧縮機11の回転数Ncに基づいて、図4に示す特性マップを参照して温度閾値を算出する。
 アキュムレータ21から流出した冷媒の温度が高いほど、発熱体11bを冷却する冷媒の温度が高くなって発熱体11bに対する冷媒の冷却能力が低くなるので温度閾値を大きな値にする。高圧側冷媒の圧力Phが高いほど、圧縮機11が仕事をして発熱体11bである電動モータやインバータの発熱量が多くなるので温度閾値を大きな値にする。圧縮機11の回転数Ncが低いほど、発熱体11bを冷却する冷媒の流量が少なくなって発熱体11bに対する冷媒の冷却能力が低くなるので温度閾値を大きな値にする。
 図4に示す特性マップにおいて、アキュムレータ21から流出した冷媒の温度の代わりに、圧縮機11に吸入される冷媒の温度や外気の温度を用いてもよい。
 例えば、図4に示す特性マップの代わりに計算式が予め制御装置40に記憶されていてもよい。すなわち、発熱体11bに対する冷媒の冷却能力、および発熱体11bの発熱量に基づいて温度閾値を計算する計算式が予め制御装置40に記憶されていてもよい。
 続くステップS130では、発熱体温度センサ43が検出した発熱体11bの温度が、ステップS120で算出した温度閾値よりも高いか否かを判定する。
 発熱体温度センサ43が検出した発熱体11bの温度が、ステップS120で算出した温度閾値よりも高くないと判定した場合、冷媒が不足していないと判断してステップS110へ戻る。
 発熱体温度センサ43が検出した発熱体11bの温度が、ステップS120で算出した温度閾値よりも高いと判定した場合、冷媒が不足していると判断してステップS140へ進み、システムを停止させるとともに乗員にシステム異常を通知する。
 すなわち、図5、図6および図7に示すように、発熱体11bの温度は、アキュムレータ21内に蓄えられた液相冷媒の量と相関関係がある。そのため、冷媒が不足しているか否かを発熱体11bの温度に基づいて推定できる。
 具体的には、図5に示すように、アキュムレータ21内に蓄えられた液相冷媒の量が少ないほど液バック量が少なくなる。液バック量とは、アキュムレータ21から圧縮機11の吸入側に戻される液相冷媒の量のことである。換言すれば、アキュムレータ21内に蓄えられた液相冷媒の液面高さが低いほど液バック量が少なくなる。
 そして、図6に示すように、液バック量が少ないほど発熱体11bに対する冷媒の冷却能力が低くなり、発熱体の温度が高くなる。
 また、サイクル冷媒量が少ないほどアキュムレータ21内に蓄えられた液相冷媒の量が少なくなるので、図7に示すように、発熱体11bの温度はサイクル冷媒量と相関関係がある。したがって、発熱体11bの温度に基づいてサイクルの冷媒が不足しているか否かを推定できる。
 図5~図7では、説明を簡略化するために、冷媒の温度、冷媒の圧力や発熱体11bの発熱量が一定であると仮定とした場合の関係を示している。
 本実施形態では、発熱体11bは、アキュムレータ21から流出して圧縮機11の圧縮機構11aに流入する冷媒によって冷却される。そして、制御装置40は、発熱体11bの温度に基づいて、冷媒の量が不足しているか否かを判定する。
 これにより、冷媒不足を適切に判定できる。上述の図5、図6および図7で説明したように、発熱体11bの温度は、アキュムレータ21内に蓄えられた液相冷媒の量と相関関係があるからである。
 本実施形態では、制御装置40は、発熱体11bに対する冷媒の冷却能力、および発熱体11bの発熱量のうち少なくとも1つに関連する物理量と、発熱体11bの温度とに基づいて、冷媒の量が不足しているか否かを判定する。
 これによると、発熱体11bに対する冷媒の冷却能力および発熱体11bの発熱量のうち少なくとも1つを考慮して冷媒の量が不足しているか否かを判定するので、冷媒不足を一層適切に判定できる。
 発熱体11bに対する冷媒の冷却能力および発熱体11bの発熱量のうち少なくとも1つに関連する物理量とは、例えば、アキュムレータ21から流出した冷媒の温度、アキュムレータ21から流出した冷媒の圧力、および圧縮機11の回転数等である。
 発熱体11bに対する冷媒の冷却能力および発熱体11bの発熱量のうち少なくとも1つに関連する物理量とは、例えば、圧縮機11に吸入される冷媒の温度や外気の温度であってもよい。
 具体的には、制御装置40には、物理量と閾値との関係を表した特性マップが記憶されており、物理量と特性マップとに基づいて閾値を算出し、発熱体11bの温度が閾値よりも低い場合、冷媒の量が不足していると判定する。
 制御装置40には、特性マップの代わりに、物理量に基づいて閾値を算出する計算式が記憶されていてもよい。すなわち、制御装置40は、物理量と計算式とに基づいて閾値を算出し、発熱体11bの温度が閾値よりも低い場合、冷媒の量が不足していると判定してもよい。
 本実施形態では、発熱体11bは、圧縮機11の駆動機構11bを構成するモータまたはインバータである。これにより、冷凍サイクル装置10に既存の駆動機構11bおよび発熱体温度センサ43を利用して冷媒不足を判定できる。
 (第2実施形態)
 上記実施形態では、圧縮機11が有する発熱体11b(すなわち電動モータまたはインバータ)の温度に基づいて冷媒が不足しているか否かを推定するが、本実施形態では、電気ヒータ50の温度に基づいて冷媒が不足しているか否かを推定する。
 図8に示すように、電気ヒータ50は、アキュムレータ21の気相冷媒出口と圧縮機11の圧縮機構11aの冷媒吸入口との間の冷媒流路に配置されている。電気ヒータ50は、電力が供給されることによって発熱する発熱体である。電気ヒータ50は、アキュムレータ21の気相冷媒出口から流出して圧縮機11に吸入される冷媒によって冷却される。
 本実施形態では、発熱体温度センサ43は、電気ヒータ50の温度を検出する。そして、制御装置40は、発熱体温度センサ43が検出した電気ヒータ50の温度に基づいて冷媒が不足しているか否かを推定する。
 本実施形態においても、上記実施形態と同様の作用効果を奏することができる。
 (他の実施形態)
 上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
 (1)上記実施形態では、暖房モードと冷房モードおよび除湿暖房モードをエアコンスイッチの操作信号によって切り替える例について説明したが、これに限定されない。例えば、操作パネルに各運転モードを設定する運転モード設定スイッチを設け、当該運転モード設定スイッチの操作信号に応じて、暖房モードと冷房モードおよび除湿暖房モードを切り替えるようにしてもよい。
 (2)上記実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。
 (3)上記実施形態の冷凍サイクル装置10は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。
 (4)上記実施形態では、車両用空調装置1をハイブリッド車両に搭載しているが、これに限定されず、車両用空調装置1を電気自動車等の種々の車両に搭載してもよい。
 (5)上記実施形態では、冷凍サイクル装置10を車両用空調装置1に適用しているが、これに限定されず、例えば冷凍サイクル装置10を据置型の空調装置に適用可能である。

 

Claims (10)

  1.  冷媒を吸入して圧縮して吐出する圧縮機構(11a)を有する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を放熱させる放熱器(12)と、
     前記放熱器で放熱された前記冷媒を減圧させる減圧部(14)と、
     前記減圧部で減圧された前記冷媒に吸熱させて前記冷媒を蒸発させる蒸発器(15、20)と、
     前記蒸発器で吸熱された前記冷媒の気液を分離し、分離された液相冷媒を内部に蓄え、分離された気相冷媒を前記液相冷媒に混在する潤滑油とともに前記圧縮機の吸入側へ流出させるアキュムレータ(21)とを備える冷凍サイクル装置(10)において前記冷媒の不足を検出する冷媒量不足検知装置であって、
     前記アキュムレータから流出して前記圧縮機構に流入する前記冷媒によって冷却される発熱体(11b、50)の温度に基づいて、前記冷媒の量が不足しているか否かを判定する判定部(40)を備える冷媒量不足検知装置。
  2.  前記判定部は、前記発熱体に対する前記冷媒の冷却能力、および前記発熱体の発熱量のうち少なくとも1つに関連する物理量と、前記発熱体の温度とに基づいて、前記冷媒の量が不足しているか否かを判定する請求項1に記載の冷媒量不足検知装置。
  3.  前記判定部には、前記物理量と閾値との関係を表した特性マップが記憶されており、前記物理量と前記特性マップとに基づいて前記閾値を算出し、前記発熱体の温度が前記閾値よりも低い場合、前記冷媒の量が不足していると判定する請求項2に記載の冷媒量不足検知装置。
  4.  前記判定部には、前記物理量に基づいて閾値を算出する計算式が記憶されており、前記物理量と前記計算式とに基づいて前記閾値を算出し、前記発熱体の温度が前記閾値よりも低い場合、前記冷媒の量が不足していると判定する請求項2に記載の冷媒量不足検知装置。
  5.  前記発熱体の温度を検出する温度検出部(43)を備え、
     前記圧縮機は、直流電力を交流電力に変換するインバータを有しており、
     前記発熱体(11b)は前記インバータである請求項1ないし4のいずれか1つに記載の冷媒量不足検知装置。
  6.  前記発熱体の温度を検出する温度検出部(43)を備え、
     前記圧縮機は、前記圧縮機構を駆動するモータを有しており、
     前記発熱体(11b)は前記モータである請求項1ないし4のいずれか1つに記載の冷媒量不足検知装置。
  7.  前記発熱体の温度を検出する温度検出部を備え、
     前記発熱体(50)は、電力が供給されると発熱する電気ヒータであり、
     前記温度検出部は、前記電気ヒータの温度を検出する請求項1ないし4のいずれか1つに記載の冷媒量不足検知装置。
  8. 冷媒を吸入して圧縮して吐出する圧縮機構(11a)と、前記圧縮機構(11a)の冷媒吸入側に設けたアキュムレータ(21)を備えた冷凍サイクル装置(10)に適用される冷媒量不足検知装置であって、
     前記アキュムレータから流出して前記圧縮機構に流入する冷媒によって冷却される発熱体(11b、50)の温度を検出する温度検出部(43)、と
     前記温度検出部によって検出された温度に基づいて、前記冷媒の量が不足しているか否かを判定する判定部(40)を備える冷媒量不足検知装置。
  9.  前記判定部は、冷凍サイクル装置(10)の冷媒状態から温度閾値を計算する計算部を備え、前記温度検出部によって検出された温度が温度閾値を超えた場合、前記冷媒の量が不足していると判断する請求項8に記載の冷媒量不足検知装置。
  10.  冷媒を吸入して圧縮して吐出する圧縮機構(11a)を有する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を放熱させる放熱器(12)と、
     前記放熱器で放熱された前記冷媒を減圧させる減圧部(14)と、
     前記減圧部で減圧された前記冷媒に吸熱させて前記冷媒を蒸発させる蒸発器(15、20)と、
     前記蒸発器で吸熱された前記冷媒の気液を分離し、分離された液相冷媒を内部に蓄え、分離された気相冷媒を前記液相冷媒に混在する潤滑油とともに前記圧縮機の吸入側へ流出させるアキュムレータ(21)と、
     前記アキュムレータにおける前記気相冷媒の出口から流出して前記圧縮機構に流入する前記冷媒によって冷却される発熱体(11b、50)の温度を検出する温度検出部(43)と、
     前記温度検出部が検出した前記発熱体の温度に基づいて、前記冷媒の量が不足しているか否かを判定する判定部(40)とを備える冷凍サイクル装置。

     
PCT/JP2017/008700 2016-04-26 2017-03-06 冷媒量不足検知装置および冷凍サイクル装置 WO2017187790A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-088128 2016-04-26
JP2016088128A JP2017198375A (ja) 2016-04-26 2016-04-26 冷媒量不足検知装置および冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2017187790A1 true WO2017187790A1 (ja) 2017-11-02

Family

ID=60160267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008700 WO2017187790A1 (ja) 2016-04-26 2017-03-06 冷媒量不足検知装置および冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP2017198375A (ja)
WO (1) WO2017187790A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113983340A (zh) * 2021-11-06 2022-01-28 江苏江海润液设备有限公司 分布式调相机润滑油系统及其控制方法
CN114761743A (zh) * 2019-12-04 2022-07-15 三菱电机株式会社 室外机组以及制冷环路装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553427B (zh) * 2019-08-16 2021-07-20 盾安环境技术有限公司 空调系统及控制方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882644U (ja) * 1981-11-30 1983-06-04 カルソニックカンセイ株式会社 冷媒洩れ検出装置
JPS63290353A (ja) * 1987-05-21 1988-11-28 松下冷機株式会社 ヒ−トポンプ式空気調和機
JPH03172590A (ja) * 1989-11-29 1991-07-25 Atsugi Unisia Corp 自動車用空気調和装置
JPH03236571A (ja) * 1990-02-14 1991-10-22 Toshiba Corp 冷凍サイクル装置
JPH0674496A (ja) * 1992-08-25 1994-03-15 Toshiba Corp 空気調和機
JPH08128765A (ja) * 1994-10-31 1996-05-21 Matsushita Electric Ind Co Ltd 空気調和機の圧縮機保護制御装置
JP2005043008A (ja) * 2003-07-24 2005-02-17 Denso Corp 冷凍サイクル装置
JP2006177665A (ja) * 2006-03-27 2006-07-06 Denso Corp 冷凍サイクル
JP2008045792A (ja) * 2006-08-11 2008-02-28 Denso Corp 冷媒量検知方法、冷媒量検知装置、および冷媒量検知装置を備える空調装置。
JP2010106807A (ja) * 2008-10-31 2010-05-13 Denso Corp 電動圧縮機およびヒートポンプシステム並びにヒートポンプシステムの制御方法
JP2010121449A (ja) * 2008-11-17 2010-06-03 Panasonic Corp インバータ一体型電動圧縮機
JP2010210098A (ja) * 2009-03-06 2010-09-24 Mitsubishi Heavy Ind Ltd 冷凍装置及び冷凍装置の冷媒漏洩検知方法
JP2014055980A (ja) * 2013-12-09 2014-03-27 Mitsubishi Electric Corp 液面検知装置及びそれを備えた冷凍空調装置
JP2016180582A (ja) * 2015-03-23 2016-10-13 カルソニックカンセイ株式会社 冷凍サイクルの冷媒流量状態検出装置及び冷凍サイクル用電動コンプレッサの制御装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882644U (ja) * 1981-11-30 1983-06-04 カルソニックカンセイ株式会社 冷媒洩れ検出装置
JPS63290353A (ja) * 1987-05-21 1988-11-28 松下冷機株式会社 ヒ−トポンプ式空気調和機
JPH03172590A (ja) * 1989-11-29 1991-07-25 Atsugi Unisia Corp 自動車用空気調和装置
JPH03236571A (ja) * 1990-02-14 1991-10-22 Toshiba Corp 冷凍サイクル装置
JPH0674496A (ja) * 1992-08-25 1994-03-15 Toshiba Corp 空気調和機
JPH08128765A (ja) * 1994-10-31 1996-05-21 Matsushita Electric Ind Co Ltd 空気調和機の圧縮機保護制御装置
JP2005043008A (ja) * 2003-07-24 2005-02-17 Denso Corp 冷凍サイクル装置
JP2006177665A (ja) * 2006-03-27 2006-07-06 Denso Corp 冷凍サイクル
JP2008045792A (ja) * 2006-08-11 2008-02-28 Denso Corp 冷媒量検知方法、冷媒量検知装置、および冷媒量検知装置を備える空調装置。
JP2010106807A (ja) * 2008-10-31 2010-05-13 Denso Corp 電動圧縮機およびヒートポンプシステム並びにヒートポンプシステムの制御方法
JP2010121449A (ja) * 2008-11-17 2010-06-03 Panasonic Corp インバータ一体型電動圧縮機
JP2010210098A (ja) * 2009-03-06 2010-09-24 Mitsubishi Heavy Ind Ltd 冷凍装置及び冷凍装置の冷媒漏洩検知方法
JP2014055980A (ja) * 2013-12-09 2014-03-27 Mitsubishi Electric Corp 液面検知装置及びそれを備えた冷凍空調装置
JP2016180582A (ja) * 2015-03-23 2016-10-13 カルソニックカンセイ株式会社 冷凍サイクルの冷媒流量状態検出装置及び冷凍サイクル用電動コンプレッサの制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114761743A (zh) * 2019-12-04 2022-07-15 三菱电机株式会社 室外机组以及制冷环路装置
CN113983340A (zh) * 2021-11-06 2022-01-28 江苏江海润液设备有限公司 分布式调相机润滑油系统及其控制方法
CN113983340B (zh) * 2021-11-06 2022-10-28 江苏江海润液设备有限公司 分布式调相机润滑油系统及其控制方法

Also Published As

Publication number Publication date
JP2017198375A (ja) 2017-11-02

Similar Documents

Publication Publication Date Title
US20190111756A1 (en) Refrigeration cycle device
JP6332193B2 (ja) 車両用空調装置
US10166838B2 (en) Air conditioner for vehicle
WO2020203150A1 (ja) 冷凍サイクル装置
US10661631B2 (en) Heat pump cycle
CN109642756B (zh) 制冷循环装置
CN113423596B (zh) 制冷循环装置
CN109890636B (zh) 制冷循环装置
WO2015111379A1 (ja) 冷凍サイクル装置
CN110035915B (zh) 车辆用空调装置
WO2017187790A1 (ja) 冷媒量不足検知装置および冷凍サイクル装置
WO2021095338A1 (ja) 冷凍サイクル装置
JP5935714B2 (ja) 冷凍サイクル装置
JP6601307B2 (ja) 冷凍サイクル装置
JP6544287B2 (ja) 空調装置
JP6369237B2 (ja) 空調装置
JP5888126B2 (ja) 車両用空調装置
WO2022038951A1 (ja) 冷凍サイクル装置
WO2023047981A1 (ja) ヒートポンプサイクル装置
WO2022070614A1 (ja) 冷凍サイクル装置
WO2023008088A1 (ja) 冷凍サイクル装置
JP6672999B2 (ja) 空調装置
JP6897185B2 (ja) 空調装置
JP6387873B2 (ja) 冷凍サイクル装置
WO2018003352A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789079

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789079

Country of ref document: EP

Kind code of ref document: A1