WO2018113565A1 - 一种基于机器视觉的激光加工系统及方法 - Google Patents

一种基于机器视觉的激光加工系统及方法 Download PDF

Info

Publication number
WO2018113565A1
WO2018113565A1 PCT/CN2017/115873 CN2017115873W WO2018113565A1 WO 2018113565 A1 WO2018113565 A1 WO 2018113565A1 CN 2017115873 W CN2017115873 W CN 2017115873W WO 2018113565 A1 WO2018113565 A1 WO 2018113565A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
processed
module
machine vision
laser processing
Prior art date
Application number
PCT/CN2017/115873
Other languages
English (en)
French (fr)
Inventor
肖海兵
Original Assignee
深圳信息职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳信息职业技术学院 filed Critical 深圳信息职业技术学院
Publication of WO2018113565A1 publication Critical patent/WO2018113565A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Definitions

  • the embodiment of the solution belongs to the technical field of laser processing, and in particular relates to a laser processing system and method based on machine vision.
  • the existing laser processing systems usually position the workpiece by manual vision, and the positioning accuracy is low and the speed is slow, which seriously reduces the processing quality and processing efficiency of the laser processing product.
  • the program provides a laser processing system and method based on machine vision, and the workpiece is processed by machine vision, and the positioning precision and speed are high, which can effectively improve the processing quality and processing efficiency of the laser processing product.
  • Embodiments of the present invention provide a machine vision-based laser processing system including a sensor module, a machine vision module, a lighting module, a control module, and a laser galvanometer module;
  • the sensor module is connected to the machine vision module for detecting a workpiece to be processed, and sending a first trigger signal to the machine vision module when detecting the workpiece to be processed;
  • the machine vision module is connected to the lighting module, configured to start when the first trigger signal is received, and send a second trigger signal to the lighting module after a preset delay time;
  • the illumination module is configured to illuminate the workpiece to be processed when the second trigger signal is received;
  • the machine vision module is further configured to acquire image data of the workpiece to be processed while the illumination module emits light And obtaining image data of the processed workpiece that completes the laser processing;
  • the control module is respectively connected to the machine vision module and the laser galvanometer module, and is configured to process and analyze image data of the workpiece to be processed to obtain position information of the workpiece to be processed, and is further used for Processing and analyzing image data of the processed workpiece to obtain size data, contour features or color data of the processed workpiece to perform quality inspection on the processed workpiece;
  • the laser galvanometer module is configured to perform laser processing on a preset position on the workpiece to be processed according to position information of the workpiece to be processed;
  • the control module is further connected to the sensor module and the illumination module, respectively, for comprehensively controlling the working states of the sensor module, the machine vision module, the illumination module and the laser galvanometer module.
  • the machine vision module includes a first camera unit and an image acquisition unit;
  • the image acquisition unit is connected to the sensor module, the illumination module, the first camera unit, and the control module, respectively, for starting when the first trigger signal is received, and at the preset Sending the second trigger signal to the illumination module and the first camera unit respectively after the delay time;
  • the first imaging unit is configured to expose the workpiece to be processed to receive an optical signal reflected or transmitted by the workpiece to be processed into an electrical signal when the second trigger signal is received, the first The exposure time of the imaging unit matches the illumination time of the illumination module;
  • the image acquisition unit is further configured to digitally process the electrical signal into image data and send the image data to the control module.
  • the laser processing system further includes a console, and a relative positional relationship between a laser output end of the laser galvanometer module and an object-side field center point of the first camera unit is fixed;
  • the control module is further configured to establish a Cartesian coordinate system with the upper surface of the console as a coordinate plane, and obtain an analysis process according to the position information of the workpiece to be processed and the positioning hole on the workpiece to be processed. Coordinates of any point on the workpiece in the Cartesian coordinate system;
  • the control module is further configured to acquire coordinates of an object-side field center point of the first camera unit in the Cartesian coordinate system, and according to coordinates and a center point of an object-side field of view of the first camera unit
  • the relative position relationship analysis process obtains coordinates of the laser output end to control the laser output end to move to a preset position on the workpiece to be processed for laser processing.
  • the machine vision module further includes a second camera unit and a mechanical motion unit;
  • the mechanical motion unit is respectively connected to the first imaging unit, the second imaging unit, and the control module, and is configured to drive the first imaging unit and the second imaging unit to move to a designated initial position, To calibrate initial positions of the first camera unit and the second camera unit;
  • the first camera unit is further configured to acquire image data of the first marker point on the workpiece to be processed
  • the second image capturing unit is connected to the image capturing unit, and is configured to acquire image data of a second marking point on the workpiece to be processed, where the first marking point and the second marking point are respectively located in the image Machining two diagonal points on the workpiece;
  • the control module is further configured to: according to an initial position and a current position of the first imaging unit, an initial position and a current position of the second imaging unit, the first marker image data, and the second marker point The image data and the position information of the workpiece to be processed are analyzed to obtain the positions of the first marker point and the second marker point.
  • the first camera unit is configured to acquire image data of the workpiece to be processed, so that the control module determines a preset position on the workpiece to be processed according to image data of the workpiece to be processed. Positioning;
  • the second imaging unit is configured to acquire image data of the processed workpiece, so that the control module further performs quality detection on the processed workpiece according to image data of the processed workpiece.
  • the laser processing system further includes a culling module coupled to the control module for rejecting the processed workpiece that is detected by the control module from being unqualified.
  • the laser processing system further includes a motion control module coupled to the control module for controlling up, down, left, and right movement or rotation of the workpiece to be processed.
  • the laser processing system further includes a display module, and the display module is coupled to the control module for displaying an analysis processing result of the control module.
  • Another aspect of the present embodiment further provides a machine vision-based laser processing method, which is implemented based on the above-described laser processing system, the method comprising:
  • the machined workpiece that does not meet the preset machining requirements is rejected.
  • the embodiment of the solution obtains the image data of the workpiece to be processed and the image data of the processed workpiece by machine vision, and sends the image data to the control module for analysis and processing, and can complete the presence detection and positioning of the workpiece to be processed online, so that the laser
  • the galvanometer module can be quickly moved to a specified position for laser processing. Through machine vision, information technology and automatic control fusion, it can also detect the processing quality parameters such as the size, contour or color data of the processed workpiece. Fast speed can effectively improve the processing quality and processing efficiency of laser processing products.
  • FIG. 1 is a block diagram showing the basic structure of a machine vision-based laser processing system provided by an embodiment of the present solution
  • FIG. 2 is a block diagram showing a specific structure of a machine vision-based laser processing system provided by another embodiment of the present solution
  • FIG. 3 is a block diagram showing a specific structure of a machine vision-based laser processing system provided by another embodiment of the present solution.
  • FIG. 4 is a schematic view showing the mechanical structure of a machine vision-based laser processing system provided by an embodiment of the present solution.
  • an embodiment of the present solution provides a machine vision based laser processing system 100 that includes a sensor module 10 , a machine vision module 20 , a lighting module 30 , a control module 40 , and a laser galvanometer module 50 .
  • the sensor module 10 is connected to the machine vision module 20 for detecting the workpiece 200 to be processed and issuing a first trigger signal to the machine vision module 20 when the workpiece 200 to be processed is detected.
  • the sensor module is mainly used to detect whether the workpiece to be processed is already present in the laser processing system and is waiting to be processed.
  • the sensor module may specifically be a fiber sensor, a proximity sensor or a weight sensor.
  • the machine vision module 20 is coupled to the illumination module 30 for activation upon receipt of the first trigger signal and to issue a second trigger signal to the illumination module 30 after a predetermined delay time.
  • the machine vision module includes at least one camera unit for acquiring image data of the workpiece to be processed and image data of the processed workpiece.
  • the preset delay time can be set according to actual needs.
  • the machine vision module can periodically acquire the image data of the workpiece to be processed and control the image data acquisition speed.
  • the first trigger signal and the second trigger signal may specifically be pulse signals.
  • the workpiece to be processed is detected by the sensor module, and the first trigger signal is sent to trigger the startup of the machine vision module when the workpiece to be processed is detected, the manual startup operation can be greatly reduced, and the machine vision module can be detected only. It is only started when the workpiece is machined, avoiding the long-term working state of the machine vision module, reducing the service life and consuming electric energy.
  • the machine vision module may be turned off or in a standby state after acquiring the image data once, and then restarted to enter the working state after receiving the first trigger signal.
  • the illumination module 30 is configured to illuminate the workpiece to be processed 200 when the second trigger signal is received.
  • the machine vision module 20 is further configured to acquire image data of the workpiece 200 to be processed and obtain laser processing while the illumination module 30 is emitting light. Image data of the processed workpiece;
  • the lighting module may be a point light source, a surface light source or an array light source, which can illuminate the workpiece to be processed from the upper side of the workpiece to be processed, and the lighting module can also be used when the workpiece to be processed is a transparent or translucent workpiece.
  • the lower part of the workpiece to be processed is transmissively irradiated to the workpiece to be processed.
  • the image data may specifically include image data and video data, and the video is actually obtained by playing the image according to a preset frame rate. Therefore, the image data and the video data are collectively referred to as image data in this embodiment.
  • the time for the illumination module to emit light and the time for the machine vision module to acquire the image data can be synchronized, and the illumination module can be enabled only when the second trigger signal is received. To avoid long-term opening of the lighting module to reduce the service life and consume energy.
  • the control module 40 is respectively connected to the machine vision module 20 and the laser galvanometer module 50 for processing and analyzing the image data of the workpiece to be processed to obtain position information of the workpiece to be processed 200, and also for the processed workpiece.
  • the image data is processed and analyzed to obtain size data, contour features or color data of the processed workpiece to perform quality inspection on the processed workpiece.
  • control module may be a PC, or a general-purpose integrated circuit, such as a CPU (Central Processing Unit), or an ASIC.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the laser galvanometer module 50 is configured to perform laser processing on the preset position on the workpiece 200 to be processed according to the position information of the workpiece 200 to be processed.
  • the preset position specifically refers to a position on the workpiece to be processed that requires laser processing.
  • the laser galvanometer module may be a commonly used laser galvanometer system, and generally includes a laser, a galvanometer, a beam expander, an X-Y optical scan head, an optical reflection lens, a laser light path system, and the like.
  • the specific structure of the laser galvanometer module is not particularly limited in this embodiment.
  • the control module 40 is also coupled to the sensor module 10 and the illumination module 30 for comprehensive control of the operational states of the sensor module 10, the machine vision module 20, the illumination module 30, and the laser galvanometer module 40.
  • the laser processing system may also include a data line for transmitting data between the modules and a data interface corresponding to each module, or may transmit data by using a wireless transmission method.
  • the data is not The transmission method is specifically limited.
  • the workpiece to be processed is detected by the sensor module, and when the workpiece to be processed is detected, the machine vision module is automatically triggered to obtain image data of the workpiece to be processed, and then the image data is analyzed and processed by the control module to obtain the workpiece to be processed.
  • the position information realizes the precise positioning of any position on the workpiece to be processed, so that the laser galvanometer module can accurately position the laser processing on the preset position on the workpiece to be processed, and realize the fusion through machine vision, information technology and automatic control.
  • the detection of processing quality parameters such as the size, contour or color data of the processed workpiece, high positioning accuracy and high speed can effectively improve the processing quality and processing efficiency of the laser processing products, high processing precision and high speed, and improve the laser processing products. Processing quality and processing efficiency.
  • the machine vision module 20 specifically includes a first camera unit 21 and an image acquisition unit 22.
  • the image capturing unit 22 is connected to the sensor module 10, the lighting module 30, the first camera unit 21 and the control module 40, respectively, for starting when receiving the first trigger signal, and respectively to the lighting module 30 and after the preset delay time.
  • the first imaging unit 21 transmits a second trigger signal.
  • the first imaging unit 21 is configured to perform exposure on the workpiece 200 to be processed to process the optical signal reflected or transmitted by the workpiece 200 to be processed into an electrical signal when the second trigger signal is received, and the exposure time of the first imaging unit 21 and the illumination module The illuminating time of 30 matches.
  • the relative positional relationship between the laser output end of the laser galvanometer module and the center of the object field of view of the first camera unit is fixed, and the control module can analyze and analyze the image acquired by the first camera unit.
  • the data determines the position of the object-side field center point of the first camera unit on the workpiece to be processed, thereby determining the position of the laser output end of the laser galvanometer module.
  • the image acquisition unit 22 is also used to digitally process the electrical signals into image data and send them to the control module 40.
  • the first camera unit may be a commonly used industrial camera, which usually includes an optical lens, an image sensor, and the like.
  • the image capturing unit may be an image capturing card for processing the electrical signal output by the first camera unit as Image data.
  • the machine vision module 20 specifically includes a second imaging unit 23 and a mechanical motion unit 24.
  • the mechanical motion unit 24 is connected to the first imaging unit 21, the second imaging unit 23, and the control module 40, respectively, for driving the first imaging unit 21 and the second imaging unit 23 to move to a designated initial position to calibrate the first imaging unit. 21 and the initial position of the second camera unit 23.
  • the first camera unit 21 is further configured to acquire image data of a first marker point on the workpiece 200 to be processed.
  • the second image capturing unit 23 is connected to the image capturing unit 22 for acquiring image data of the second marking point on the workpiece 200 to be processed.
  • the first marking point and the second marking point are respectively located on the two opposite corners of the workpiece 200 to be processed. point.
  • the first camera unit and the second camera unit have the same structure and operation principle.
  • the control module 50 is further configured to: according to an initial position and a current position of the first imaging unit 21, an initial position and a current position of the second imaging unit 22, first marker point image data, image data of the second marker point, and the workpiece to be processed 200
  • the location information is analyzed and processed to obtain the locations of the first marker point and the second marker point.
  • the position of the first mark point and the second mark point of the two diagonal points on the workpiece to be processed is obtained by the analysis process, and the workpiece to be processed can be precisely aligned, when the workpiece to be processed is a product requiring filming (for example, when the LCD module is used, the workpiece can be accurately aligned and the quality of the alignment film can be improved.
  • the first imaging unit is configured to acquire image data of the workpiece to be processed, so that the control module locates the preset position on the workpiece to be processed according to the image data of the workpiece to be processed;
  • the second imaging unit is configured to acquire image data of the processed workpiece, so that the control module further performs quality detection on the processed workpiece according to the image data of the processed workpiece.
  • the image data of the workpiece to be processed is acquired by the first imaging unit to realize the workpiece positioning function
  • the image data of the processed workpiece is acquired by the second imaging unit to implement the workpiece detection function, so that the two imaging units can work simultaneously to complete different The function of improving the efficiency of laser processing.
  • the laser processing system 100 further includes a culling module 60, a motion control module 70, a display module 80, a transfer module 90, and a speed adjustment module 00 connected to the control module 40.
  • the culling module 60 is configured to reject the processed workpiece 300 that is unqualified by the control module 40.
  • the culling module may be a mechanical component such as a mechanical jaw or a mechanical arm that facilitates clamping of the workpiece.
  • the culling module includes a plurality of suction cups for simultaneously absorbing and rejecting a plurality of unqualified processed workpieces by adsorption.
  • the plurality of suction cups may be arranged in an array for batch rejecting a plurality of unqualified processed workpieces.
  • the motion control module 70 is configured to control the workpiece to be processed 200 to move up or down, left and right, or to perform laser processing on either side of the workpiece to be processed.
  • the motion control module can be a mechanical jaw.
  • the display module 80 is configured to display the analysis processing result of the control module 40.
  • the display module may be a display screen having only a display function or a touch display screen, so that the user can input corresponding control commands through the touch display screen for working state of the laser processing system. Take control.
  • the transfer module 90 is configured to transfer the workpiece to be processed into the laser processing system at a preset speed.
  • the transmission module may specifically be a conveyor belt, a robot arm, etc.
  • the preset speed may be set according to actual needs, specifically determined by the laser processing speed or the quality detection speed of the laser processing system.
  • the speed adjustment module 00 is connected to the control module 40 and the transmission module 90, respectively, for adjusting the operating speed of the transmission module 90.
  • the speed adjustment module may specifically be a speed controller.
  • the laser processing system may further include a corresponding storage medium, which may be a disk, an optical disk, a read-only memory (ROM), or a random access memory (Random Access).
  • a corresponding storage medium which may be a disk, an optical disk, a read-only memory (ROM), or a random access memory (Random Access).
  • Memory RAM, etc., for storing image data, analyzing processing programs, and analyzing processing results.
  • the laser processing system 100 further includes a main casing 101, a console 102 disposed in the main casing 101, and a drive module 103 disposed on one side of the console 102.
  • the driving module may specifically be a driving motor for performing uniform mechanical motion control of mechanical moving members in each module of the laser processing system.
  • the console 102 is used to carry the workpiece 200 to be processed.
  • the drive module 103 can control the console 102 to rotate 360° about a central axis that is perpendicular to the plane of the upper surface of the console 102.
  • the machine vision module 20 and the laser galvanometer module 30 are disposed on the inner top of the main casing 101, facing the upper surface of the console 102, and the first camera unit 21 and the second camera unit 23 are respectively disposed at the laser output of the laser galvanometer module 30.
  • the two sides of the end 31 and the relative positional relationship between the first imaging unit 21 and the laser output end 31 are fixed.
  • the control module 40 is disposed at the inner bottom end of the main casing 101, and the laser 32 of the laser galvanometer module 30 and the control module 40 are arranged side by side at the inner bottom end of the main casing 101.
  • the display module 80 is embedded on the main casing 101, specifically above the driving module 103.
  • control module is further configured to establish a Cartesian coordinate system with the console as a coordinate plane, and according to the position information of the workpiece to be processed and the workpiece to be processed.
  • the positioning hole is obtained by analyzing and processing the coordinates of the arbitrary point on the workpiece to be processed in the Cartesian coordinate system; the control module is further configured to acquire the coordinates of the center point of the object side field of the first camera unit in the Cartesian coordinate system, and according to the The coordinates of the center point of the object field of the camera unit, the coordinates of the arbitrary position on the workpiece to be processed, and the relative positional relationship are analyzed to obtain the coordinates of the laser output end, to control the laser output end to perform laser processing on the preset position on the workpiece to be processed.
  • the coordinates of the laser output end are (-70, -30), and the coordinates of the center point of the object field of view are (-50, -45), due to the relationship between the laser output end and the center point of the object field of view. If the relative position is fixed, the coordinate difference between the two points is always (-20, 15) regardless of the position of the center of the object field in any position in the Cartesian coordinate system. Therefore, according to the coordinate difference between the two
  • the coordinates of the laser output end can be calculated from the coordinates of the center point of the square field of view.
  • the coordinates of any point on the workpiece to be processed can be analyzed and processed, so that the processing can be processed.
  • the workpiece is accurately positioned, and at the same time, by acquiring the coordinates of the center point of the object field of the first camera unit, combined with the relative positional relationship between the center point of the object field of the first camera unit and the laser output end of the laser galvanometer module, Accurately manipulate the laser output of the laser galvanometer module to any specified position to control the laser output at the laser output to the preset position on the workpiece to be machined.
  • An embodiment of the present solution further provides a machine vision-based laser processing method, which is implemented based on the above-described laser processing system including a first imaging unit and a second imaging unit, the laser processing method comprising:
  • the laser processing method further includes:
  • the machine vision-based laser processing system and method provided by the embodiments of the present invention can be applied to various laser processing fields such as laser marking, laser welding, laser drilling, etc., and can also obtain image data of processed workpieces, The processing quality of the processed workpiece is analyzed, and the workpiece with unqualified quality is removed, the structure is simple, the machine is multi-purpose, the cost is low, and it is suitable for widespread use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种基于机器视觉的激光加工系统(100)及方法,激光加工系统(100)包括传感器模块(10)、机器视觉模块(20)、照明模块(30)、控制模块(40)和激光振镜模块(50)。通过机器视觉分别获取待加工工件的图像数据和已加工工件的图像数据,并将图像数据发送给控制模块(40)进行分析处理,能够在线完成对待加工工件的存在性检测和定位,使激光振镜模块(50)能够快速的移动到指定位置进行激光加工,通过机器视觉、信息技术和自动控制融合,同时可以实现对已加工工件的尺寸、轮廓或颜色数据等加工质量参数的检测,定位精度高、速度快可以有效提高激光加工产品的加工质量和加工效率。

Description

一种基于机器视觉的激光加工系统及方法 技术领域
本方案实施例属于激光加工技术领域,尤其涉及一种基于机器视觉的激光加工系统及方法。
背景技术
随着科学技术的不断发展,各种工业产品层出不穷,激光加工系统在工业产品的打标、钻孔、切割、焊接等方便面应用广泛。
技术问题
现有的激光加工系统通常都是通过人工视觉对待加工工件进行定位,定位精度低、速度慢,严重降低了激光加工产品的加工质量及加工效率。
技术解决方案
本方案提供一种基于机器视觉的激光加工系统及方法,通过机器视觉对待加工工件进行定位,定位精度高、速度快可以有效提高激光加工产品的加工质量和加工效率。
本方案实施例一方面提供一种基于机器视觉的激光加工系统,其包括传感器模块、机器视觉模块、照明模块、控制模块和激光振镜模块;
所述传感器模块与所述机器视觉模块连接,用于探测待加工工件,并在探测到待加工工件时向所述机器视觉模块发出第一触发信号;
所述机器视觉模块与所述照明模块连接,用于在接收到所述第一触发信号时启动,并在预设延时时间之后向所述照明模块发出第二触发信号;
所述照明模块用于在接收到所述第二触发信号时发光照射所述待加工工件;所述机器视觉模块还用于在所述照明模块发光的同时,获取所述待加工工件的图像数据并获取完成激光加工的已加工工件的图像数据;
所述控制模块分别与所述机器视觉模块和所述激光振镜模块连接,用于对所述待加工工件的图像数据进行处理分析得到所述待加工工件的位置信息,还用于对所述已加工工件的图像数据进行处理分析得到所述已加工工件的尺寸数据、轮廓特征或颜色数据,以对所述已加工工件进行质量检测;
所述激光振镜模块用于根据所述待加工工件的位置信息对所述待加工工件上的预设位置进行激光加工;
所述控制模块还分别与所述传感器模块和所述照明模块连接,用于对所述传感器模块、所述机器视觉模块、所述照明模块和所述激光振镜模块的工作状态进行综合控制。
在一个实施例中,所述机器视觉模块包括第一摄像单元和图像采集单元;
所述图像采集单元分别与所述传感器模块、所述照明模块、所述第一摄像单元和所述控制模块连接,用于在接收到所述第一触发信号时启动,并在所述预设延时时间之后分别向所述照明模块和所述第一摄像单元发送所述第二触发信号;
所述第一摄像单元用于在接收到所述第二触发信号时,对所述待加工工件进行曝光,以将所述待加工工件反射或透射的光信号处理为电信号,所述第一摄像单元的曝光时间与所述照明模块的发光时间相匹配;
所述图像采集单元还用于将所述电信号数字化处理为图像数据并发送给所述控制模块。
在一个实施例中,所述激光加工系统还包括操作台,所述激光振镜模块的激光输出端与所述第一摄像单元的物方视场中心点的相对位置关系固定不变;
所述控制模块还用于以所述操作台的上表面为坐标平面建立直角坐标系,并根据所述待加工工件的位置信息和所述待加工工件上的定位孔,分析处理得到所述待加工工件上的任意点在所述直角坐标系中的坐标;
所述控制模块还用于获取所述第一摄像单元的物方视场中心点在所述直角坐标系中的坐标,并根据所述第一摄像单元的物方视场中心点的坐标和所述相对位置关系分析处理得到所述激光输出端的坐标,以控制所述激光输出端运动至所述待加工工件上的预设位置进行激光加工。
在一个实施例中,所述机器视觉模块还包括第二摄像单元和机械运动单元;
所述机械运动单元分别与所述第一摄像单元、所述第二摄像单元和所述控制模块连接,用于驱动所述第一摄像单元和所述第二摄像单元运动至指定的初始位置,以标定所述第一摄像单元和所述第二摄像单元的初始位置;
所述第一摄像单元还用于获取所述待加工工件上的第一标记点的图像数据;
所述第二摄像单元与所述图像采集单元连接,用于获取所述待加工工件上的第二标记点的图像数据,所述第一标记点和所述第二标记点分别位于所述待加工工件上的两个对角点;
所述控制模块还用于根据所述第一摄像单元的初始位置和当前位置、所述第二摄像单元的初始位置和当前位置、所述第一标记点图像数据、所述第二标记点的图像数据以及所述待加工工件的位置信息,分析处理得到所述第一标记点和第二标记点的位置。
在一个实施例中,所述第一摄像单元用于获取所述待加工工件的图像数据,以使所述控制模块根据所述待加工工件的图像数据对所述待加工工件上的预设位置进行定位;
所述第二摄像单元用于获取所述已加工工件的图像数据,以使所述控制模块还根据所述已加工工件的图像数据对所述已加工工件进行质量检测。
在一个实施例中,所述激光加工系统还包括与所述控制模块连接的剔除模块,用于剔除所述控制模块检测到的加工质量不合格的已加工工件。
在一个实施例中,所述激光加工系统还包括运动控制模块,所述运动控制模块与所述控制模块连接,用于控制所述待加工工件上下左右运动或旋转。
在一个实施例中,所述激光加工系统还包括显示模块,所述显示模块与所述控制模块连接,用于对所述控制模块的分析处理结果进行显示。
本方案实施例另一方面还提供一种基于机器视觉的激光加工方法,其基于权上述的激光加工系统实现,所述方法包括:
获取待加工工件的图像数据并进行分析处理等得到所述待加工工件的位置信息,以对所述待加工工件进行定位;
获取已加工工件的图像数据并进行分析处理得到所述已加工工件的尺寸数据、轮廓特征或颜色数据,以对所述已加工工件的进行质量检测;
根据所述质量检测结果判断所述已加工工件是否符合预设加工要求。
在一个实施例中,若检测到不符合所述预设加工要求的已加工工件,则剔除不符合所述预设加工要求的已加工工件。
有益效果
本方案实施例通过机器视觉分别获取待加工工件的图像数据和已加工工件的图像数据,并将图像数据发送给控制模块进行分析处理,能够在线完成对待加工工件的存在性检测和定位,使激光振镜模块能够快速的移动到指定位置进行激光加工,通过机器视觉、信息技术和自动控制融合,同时可以实现对已加工工件的尺寸、轮廓或颜色数据等加工质量参数的检测,定位精度高、速度快可以有效提高激光加工产品的加工质量和加工效率。
附图说明
为了更清楚地说明本方案实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本方案的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
为了更清楚地说明本方案实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本方案的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本方案的一个实施例提供的基于机器视觉的激光加工系统的基本结构框图;
图2是本方案的另一个实施例提供的基于机器视觉的激光加工系统的具体结构框图;
图3是本方案的另一个实施例提供的基于机器视觉的激光加工系统的具体结构框图;
图4是本方案的一个实施例提供的基于机器视觉的激光加工系统的机械结构示意图。
本发明的实施方式
为了使本技术领域的人员更好地理解本方案方案,下面将结合本方案实施例中的附图,对本方案实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本方案一部分的实施例,而不是全部的实施例。基于本方案中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本方案保护的范围。
本方案的说明书和权利要求书及上述附图中的术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。例如包含一系列步骤或单元的过程、方法或系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,术语“第一”、“第二”和“第三”等是用于区别不同工件,而非用于描述特定顺序。
本方案所有如图中的实体箭头均表示电连接,虚线箭头均表示光路或无线信号,实线均表示机械接触或连接。
如图1所示,本方案的一个实施例提供的基于机器视觉的激光加工系统100,其包括传感器模块10、机器视觉模块20、照明模块30、控制模块40和激光振镜模块50。
传感器模块10与机器视觉模块20连接,用于探测待加工工件200,并在探测到待加工工件200时向机器视觉模块20发出第一触发信号。
在具体应用中,传感器模块主要用于探测待加工工件是否已经存在于激光加工系统中等待被加工。
在具体应用中,传感器模块具体可以是光纤传感器、接近传感器或重量传感器等。
机器视觉模块20与照明模块30连接,用于在接收到第一触发信号时启动,并在预设延时时间之后向照明模块30发出第二触发信号。
在具体应用中,机器视觉模块包括至少一个摄像单元用于获取待加工工件的图像数据和已加工工件的图像数据。
在具体应用中,预设延时时间可以根据实际需要进行设定,通过设定延时时间可以使机器视觉模块周期性的获取待加工工件的图像数据,控制图像数据获取速度。
在具体应用中,第一触发信号和第二触发信号具体可以是脉冲信号。
本实施例中,通过传感器模块检测待加工工件,并在检测到待加工工件时发送第一触发信号触发机器视觉模块启动,可以大大减少人工启动操作,并且可以使机器视觉模块仅在检测到待加工工件时才启动,避免机器视觉模块长期处于工作状态降低了使用寿命且耗费电能。在具体应用中,机器视觉模块每获取一次图像数据之后即可关闭或处于待机状态,在接收到第一触发信号之后再重新启动进入工作状态。
照明模块30,用于在接收到第二触发信号时发光照射待加工工件200;机器视觉模块20还用于在照明模块30发光的同时,获取待加工工件200的图像数据并获取完成激光加工的已加工工件的图像数据;
在具体应用中,照明模块可以是点光源、面光源或阵列式光源,其可以从待加工工件的上方正面照射待加工工件,当待加工工件为透明或半透明工件时,照明模块也可以从待加工工件的下方透射式的照射待加工工件。
在具体应用中,图像数据具体可以包括图片数据和视频数据,视频实际上也是按照预设帧率播放图像得到的,因此,本实施例中将图片数据和视频数据统称为图像数据。
本实施例中,通过向照明模块发送第二触发信号,可以使照明模块发光的时间和机器视觉模块获取图像数据的时间保持同步,还可以使照明模块仅在接收到第二触发信号时才开启,避免照明模块长时间开启降低使用寿命、耗费电能。
控制模块40分别与机器视觉模块20和激光振镜模块50连接,用于对所述待加工工件的图像数据进行处理分析得到待加工工件200的位置信息,还用于对所述已加工工件的图像数据进行处理分析得到所述已加工工件的尺寸数据、轮廓特征或颜色数据,以对所述已加工工件进行质量检测。
在具体应用中,控制模块具体可以是PC机,也可以通过通用集成电路,例如CPU(Central Processing Unit,中央处理器),或通过ASIC (Application Specific Integrated Circuit,专用集成电路)来实现,其内部写入相应的算法程序,可以对图像数据分析、处理和识别得到待加工工件的位置信息,从而实现对待加工工件的定位。
激光振镜模块50,用于根据待加工工件200的位置信息对待加工工件200上的预设位置进行激光加工。
在具体应用中,预设位置具体是指待加工工件上需要进行激光加工的位置。
在具体应用中,激光振镜模块具体可为常用的激光振镜系统,通常包括激光器、振镜、扩束镜、X-Y光学扫描头、光学反射镜片、激光光路系统等。本实施例中不对激光振镜模块的具体结构作特别限定。
控制模块40还分别与传感器模块10和照明模块30连接,用于对传感器模块10、机器视觉模块20、照明模块30和激光振镜模块40的工作状态进行综合控制。
在具体应用中,激光加工系统必然还可以包括用于在各模块之间传输数据的数据线以及对应设置在各模块上的数据接口,也可以采用无线传输方式传输数据,本实施例中不对数据传输方式作特别限定。
本实施例通过传感器模块检测待加工工件,并在检测到待加工工件时自动触发机器视觉模块启动,以获取待加工工件的图像数据,然后通过控制模块对图像数据进行分析处理得到待加工工件的位置信息,实现对待加工工件上任意位置的精确定位,从而使激光振镜模块可以对待加工工件上的预设位置进行精确的定位激光加工,通过机器视觉、信息技术和自动控制融合,同时可以实现对已加工工件的尺寸、轮廓或颜色数据等加工质量参数的检测,定位精度高、速度快可以有效提高激光加工产品的加工质量和加工效率,加工精度高、速度快,提高了激光加工产品的加工质量和加工效率。
如图2所示,在本方案的一个实施例中,机器视觉模块20具体包括第一摄像单元21和图像采集单元22。
图像采集单元22分别与传感器模块10、照明模块30、第一摄像单元21和控制模块40连接,用于在接收第一触发信号时启动,并在预设延时时间之后分别向照明模块30和第一摄像单元21发送第二触发信号。
第一摄像单元21用于在接收到第二触发信号时,对待加工工件200进行曝光以将待加工工件200反射或透射的光信号处理为电信号,第一摄像单元21的曝光时间与照明模块30的发光时间相匹配。
在本方案的一个实施例中,激光振镜模块的激光输出端与第一摄像单元的物方视场中心点的相对位置关系固定不变,控制模块可以通过处理分析第一摄像单元获取的图像数据,确定第一摄像单元的物方视场中心点在待加工工件上的位置,从而确定激光振镜模块的激光输出端的位置。
图像采集单元22还用于将电信号数字化处理为图像数据并发送给控制模块40。
在具体应用中,第一摄像单元具体可以为常用的工业摄像机,其通常包括光学镜头、图像传感器等;图像采集单元具体可以为图像采集卡,用于将第一摄像单元输出的电信号处理为图像数据。
如图2所示,在本实施例中,机器视觉模块20具体还包括第二摄像单元23和机械运动单元24。
机械运动单元24分别与第一摄像单元21、第二摄像单元23和控制模块40连接,用于驱动第一摄像单元21和第二摄像单元23运动至指定的初始位置,以标定第一摄像单元21和第二摄像单元23的初始位置。
第一摄像单元21还用于获取待加工工件200上的第一标记点的图像数据。
第二摄像单元23与图像采集单元22连接,用于获取待加工工件200上的第二标记点的图像数据,第一标记点和第二标记点分别位于待加工工件200上的两个对角点。
在具体应用中,第一摄像单元和第二摄像单元结构和工作原理相同。
控制模块50还用于根据第一摄像单元21的初始位置和当前位置、第二摄像单元22的初始位置和当前位置、第一标记点图像数据、第二标记点的图像数据以及待加工工件200的位置信息,分析处理得到第一标记点和第二标记点的位置。
本实施例通过分析处理得到位于待加工工件上的两个对角点的第一标记点和第二标记点的位置,可以对待加工工件进行精确对位,当待加工工件为需要贴膜的产品(例如LCD模组)时,可以对待加工工件进行精确对位贴膜,提高对位贴膜的质量。
在本方案的一个实施例中,第一摄像单元用于获取待加工工件的图像数据,以使控制模块根据待加工工件的图像数据对待加工工件上的预设位置进行定位;
第二摄像单元用于获取已加工工件的图像数据,以使控制模块还根据已加工工件的图像数据对已加工工件进行质量检测。
在具体应用中,可通过对已加工工件进行颜色分析、轮廓特征分析、尺寸和形状分析等来判断已加工工件的加工质量是否合格。
本实施通过第一摄像单元获取待加工工件的图像数据以实现工件定位功能,通过第二摄像单元获取已加工工件的图像数据以实现工件检测功能,从而可以使两个摄像单元同时工作,完成不同的功能,提高激光加工的效率。
如图3所示,在本实施例中,激光加工系统100还包括与控制模块40连接的剔除模块60、运动控制模块70、显示模块80、传送模块90和速度调节模块00。
剔除模块60,用于剔除控制模块40检测到的质量不合格的已加工工件300。
在具体应用中,剔除模块具体可以为便于夹持已加工工件的机械夹爪、机械臂等机械部件。
在本方案的一个实施例中,剔除模块包括多个吸盘,用于通过吸附的方式同时吸附剔除多个不合格的已加工工件。具体的,多个吸盘可以阵列形式排列,用于对多个不合格的已加工工件进行批量剔除。
运动控制模块70,用于控制待加工工件200上下左右运动或旋转,实现对待加工工件任一面的激光加工。
在具体应用中,运动控制模块可以为机械夹爪。
显示模块80,用于对控制模块40的分析处理结果进行显示。
在具体应用中,显示模块具体可以为仅具有显示功能的显示屏,也可以为触控显示屏,使得用户能够通过该触控显示屏输入相应的控制指令,用于对激光加工系统的工作状态进行控制。
传送模块90,用于以预设速度传送待加工工件至激光加工系统中。
在具体应用中,传送模块具体可以为传送带、机械手臂等,预设速度可以根据实际需要进行设置,具体由激光加工系统的激光加工速度或质量检测速度决定。
速度调节模块00分别与控制模块40和传送模块90连接,用于调节传送模块90的运行速度。
在具体应用中,速度调节模块具体可以为转速控制器。
在具体应用中,激光加工系统还可包括相应的存储介质,具体可以为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等,用于存储图像数据、分析处理程序和分析处理结果。
如图4所示,在本方案的一个实施例中,激光加工系统100还包括主壳体101、设置在主壳体101内的操作台102和设置在操作台102一侧的驱动模块103。
在具体应用中,驱动模块具体可以为驱动电机,用于对激光加工系统的各模块中的机械运动构件进行统一的机械运动控制。
操作台102用于承载待加工工件200。
驱动模块103可以控制操作台102绕垂直于操作台102的上表面所在平面的中轴线360°旋转。
机器视觉模块20和激光振镜模块30设置于主壳体101的内侧顶部,正对操作台102的上表面,第一摄像单元21和第二摄像单元23分设在激光振镜模块30的激光输出端31的两侧且第一摄像单元21与激光输出端31的相对位置关系固定不变。
控制模块40设置在主壳体101的内侧底端,激光振镜模块30的激光器32与控制模块40并排设在主壳体101的内侧底端。
显示模块80嵌入式设置在主壳体101上,具体位于驱动模块103的上方。
在本方案的一个实施例中,基于图3所示的激光加工系统的结构,控制模块还用于以操作台为坐标平面建立直角坐标系,并根据待加工工件的位置信息和待加工工件上的定位孔,分析处理得到待加工工件上的任意点在直角坐标系中的坐标;控制模块还用于获取第一摄像单元的物方视场中心点在直角坐标系中的坐标,并根据第一摄像单元的物方视场中心点的坐标、待加工工件上任意位置的坐标和相对位置关系分析处理得到激光输出端的坐标,以控制激光输出端对待加工工件上的预设位置进行激光加工。
在具体应用中,假设激光输出端的坐标为(-70,-30),物方视场中心点的坐标为(-50,-45),由于激光输出端和物方视场中心点之间的相对位置固定不变,则不论物方视场中心点落在直角坐标系中的任何位置,二者的坐标差始终为(-20,15),因此,根据二者之间的坐标差和物方视场中心点的坐标即可以计算出激光输出端的坐标。
上述实施例通过以操作台的上表面为坐标平面建立直角坐标系,结合第一摄像单元获取的待加工工件的图像数据,可以分析处理得到对待加工工件上的任意点的坐标,从而可以对待加工工件进行精确定位,同时通过获取第一摄像单元的物方视场中心点坐标,结合第一摄像单元的物方视场中心点和激光振镜模块的激光输出端之间的相对位置关系,可以准确的操纵激光振镜模块的激光输出端运动到任意指定位置,以控制激光输出端对待加工工件上的预设位置进行激光加工。
本方案的一个实施例还提供一种基于机器视觉的激光加工方法,其基于上述的包括第一摄像单元和第二摄像单元的激光加工系统实现,所述激光加工方法包括:
获取待加工工件的图像数据并进行分析处理等得到所述待加工工件的位置信息,以对所述待加工工件进行定位;
获取已加工工件的图像数据并进行分析处理得到所述已加工工件的尺寸数据、轮廓特征或颜色数据,以对所述已加工工件的进行质量检测;
根据所述质量检测结果判断所述已加工工件是否符合预设加工要求。
在本方案的一个实施例中,上述激光加工方法还包括:
若检测到不符合所述预设加工要求的已加工工件,则剔除不符合所述预设加工要求的已加工工件。
本方案实施例所提供的基于机器视觉的激光加工系统及方法,可以应用于激光打标、激光焊接、激光钻孔等多种激光加工领域,并且还可以通过获取已加工工件的图像数据,对已加工工件的加工质量进行分析,并剔除质量不合格的工件,结构简单、一机多用,成本低廉,适于广泛推广使用。
以上所述仅为本方案的较佳实施例而已,并不用以限制本方案,凡在本方案的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本方案的保护范围之内。

Claims (10)

  1. 一种基于机器视觉的激光加工系统,其特征在于,所述激光加工系统包括传感器模块、机器视觉模块、照明模块、控制模块和激光振镜模块;
    所述传感器模块与所述机器视觉模块连接,用于探测待加工工件,并在探测到待加工工件时向所述机器视觉模块发出第一触发信号;
    所述机器视觉模块与所述照明模块连接,用于在接收到所述第一触发信号时启动,并在预设延时时间之后向所述照明模块发出第二触发信号;
    所述照明模块用于在接收到所述第二触发信号时发光照射所述待加工工件;所述机器视觉模块还用于在所述照明模块发光的同时,获取所述待加工工件的图像数据并获取完成激光加工的已加工工件的图像数据;
    所述控制模块分别与所述机器视觉模块和所述激光振镜模块连接,用于对所述待加工工件的图像数据进行处理分析得到所述待加工工件的位置信息,还用于对所述已加工工件的图像数据进行处理分析得到所述已加工工件的尺寸数据、轮廓特征或颜色数据,以对所述已加工工件进行质量检测;
    所述激光振镜模块用于根据所述待加工工件的位置信息对所述待加工工件上的预设位置进行激光加工;
    所述控制模块还分别与所述传感器模块和所述照明模块连接,用于对所述传感器模块、所述机器视觉模块、所述照明模块和所述激光振镜模块的工作状态进行综合控制。
  2. 如权利要求1所述的基于机器视觉的激光加工系统,其特征在于,其特征在于,所述机器视觉模块包括第一摄像单元和图像采集单元;
    所述图像采集单元分别与所述传感器模块、所述照明模块、所述第一摄像单元和所述控制模块连接,用于在接收到所述第一触发信号时启动,并在所述预设延时时间之后分别向所述照明模块和所述第一摄像单元发送所述第二触发信号;
    所述第一摄像单元用于在接收到所述第二触发信号时,对所述待加工工件进行曝光,以将所述待加工工件反射或透射的光信号处理为电信号,所述第一摄像单元的曝光时间与所述照明模块的发光时间相匹配;
    所述图像采集单元还用于将所述电信号数字化处理为图像数据并发送给所述控制模块。
  3. 如权利要求2所述的基于机器视觉的激光加工系统,其特征在于,其特征在于,所述激光加工系统还包括操作台,所述激光振镜模块的激光输出端与所述第一摄像单元的物方视场中心点的相对位置关系固定不变;
    所述控制模块还用于以所述操作台的上表面为坐标平面建立直角坐标系,并根据所述待加工工件的位置信息和所述待加工工件上的定位孔,分析处理得到所述待加工工件上的任意点在所述直角坐标系中的坐标;
    所述控制模块还用于获取所述第一摄像单元的物方视场中心点在所述直角坐标系中的坐标,并根据所述第一摄像单元的物方视场中心点的坐标和所述相对位置关系分析处理得到所述激光输出端的坐标,以控制所述激光输出端运动至所述待加工工件上的预设位置进行激光加工。
  4. 如权利要求2所述的基于机器视觉的激光加工系统,其特征在于,所述机器视觉模块还包括第二摄像单元和机械运动单元;
    所述机械运动单元分别与所述第一摄像单元、所述第二摄像单元和所述控制模块连接,用于驱动所述第一摄像单元和所述第二摄像单元运动至指定的初始位置,以标定所述第一摄像单元和所述第二摄像单元的初始位置;
    所述第一摄像单元还用于获取所述待加工工件上的第一标记点的图像数据;
    所述第二摄像单元与所述图像采集单元连接,用于获取所述待加工工件上的第二标记点的图像数据,所述第一标记点和所述第二标记点分别位于所述待加工工件上的两个对角点;
    所述控制模块还用于根据所述第一摄像单元的初始位置和当前位置、所述第二摄像单元的初始位置和当前位置、所述第一标记点图像数据、所述第二标记点的图像数据以及所述待加工工件的位置信息,分析处理得到所述第一标记点和第二标记点的位置。
  5. 如权利要求4所述的基于机器视觉的激光加工系统,其特征在于,所述第一摄像单元用于获取所述待加工工件的图像数据,以使所述控制模块根据所述待加工工件的图像数据对所述待加工工件上的预设位置进行定位;
    所述第二摄像单元用于获取所述已加工工件的图像数据,以使所述控制模块还根据所述已加工工件的图像数据对所述已加工工件进行质量检测。
  6. 如权利要求5所述的基于机器视觉的激光加工系统,其特征在于,所述激光加工系统还包括与所述控制模块连接的剔除模块,用于剔除所述控制模块检测到的加工质量不合格的已加工工件。
  7. 如权利要求1所述的基于机器视觉的激光加工系统,其特征在于,所述激光加工系统还包括运动控制模块,所述运动控制模块与所述控制模块连接,用于控制所述待加工工件上下左右运动或旋转。
  8. 如权利要求1所述的基于机器视觉的激光加工系统,其特征在于,所述激光加工系统还包括显示模块,所述显示模块与所述控制模块连接,用于对所述控制模块的分析处理结果进行显示。
  9. 一种基于机器视觉的激光加工方法,其特征在于,所述方法基于权利要求1~8任一项所述的激光加工系统实现,所述激光加工方法包括:
    获取待加工工件的图像数据并进行分析处理等得到所述待加工工件的位置信息,以对所述待加工工件进行定位;
    获取已加工工件的图像数据并进行分析处理得到所述已加工工件的尺寸数据、轮廓特征或颜色数据,以对所述已加工工件的进行质量检测;
    根据所述质量检测结果判断所述已加工工件是否符合预设加工要求。
  10. 如权利要求9所述的基于机器视觉的激光加工方法,其特征在于,所述激光加工方法还包括:
    若检测到不符合所述预设加工要求的已加工工件,则剔除不符合所述预设加工要求的已加工工件。
PCT/CN2017/115873 2016-12-20 2017-12-13 一种基于机器视觉的激光加工系统及方法 WO2018113565A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611185869.3A CN106680286B (zh) 2016-12-20 2016-12-20 一种基于机器视觉的激光加工系统及方法
CN201611185869.3 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018113565A1 true WO2018113565A1 (zh) 2018-06-28

Family

ID=58869891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115873 WO2018113565A1 (zh) 2016-12-20 2017-12-13 一种基于机器视觉的激光加工系统及方法

Country Status (2)

Country Link
CN (1) CN106680286B (zh)
WO (1) WO2018113565A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109296653A (zh) * 2018-10-11 2019-02-01 嘉善苏尼电子科技有限公司 一种基于视觉识别的自润轴承石墨粒自动装配机
CN109521025A (zh) * 2018-12-30 2019-03-26 深圳市杰普特光电股份有限公司 激光调阻在线检测机构和检测方法
CN112033967A (zh) * 2020-10-10 2020-12-04 深圳市裕同包装科技股份有限公司 烫金检测设备的控制装置及控制方法
CN112044874A (zh) * 2020-09-27 2020-12-08 厦门理工学院 一种激光清洗的实时监测系统及其监测方法
CN112098137A (zh) * 2020-08-05 2020-12-18 湖南华菱涟源钢铁有限公司 钢板自动取样方法及钢板自动取样系统
CN113359453A (zh) * 2021-06-11 2021-09-07 刘颖妮 一种基于人工智能的零件加工装置及其智能车间系统
CN113739646A (zh) * 2021-09-01 2021-12-03 中电凯杰科技有限公司 一种用于检测内筒型组合烟花黑火药剂量的视觉软体
CN113838127A (zh) * 2021-09-28 2021-12-24 天津朗硕机器人科技有限公司 一种基于机器视觉的装配孔定位方法
CN113927217A (zh) * 2021-09-30 2022-01-14 广州佳帆计算机有限公司 一种智能焊接系统
CN114406507A (zh) * 2022-01-04 2022-04-29 华工法利莱切焊系统工程有限公司 一种用于激光切割机首件检测的装置、方法及电子设备
CN114453733A (zh) * 2022-01-29 2022-05-10 苏州富润泽激光科技有限公司 一种振镜焊接控制方法及系统
CN114538088A (zh) * 2022-02-11 2022-05-27 珠海市运泰利自动化设备有限公司 基于飞拍的高速高精度取放料方法
CN114734150A (zh) * 2022-04-27 2022-07-12 南京德朗克电子科技有限公司 一种自动进行激光打码的方法
CN114798873A (zh) * 2022-04-26 2022-07-29 广州蓝方自动化设备有限公司 一种用于管接头高速冲压成型工艺及其一体化设备
CN115302085A (zh) * 2022-10-09 2022-11-08 苏州创鑫激光科技有限公司 一种总线型激光焊接系统
CN114453733B (zh) * 2022-01-29 2024-05-31 苏州富润泽激光科技有限公司 一种振镜焊接控制方法及系统

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680286B (zh) * 2016-12-20 2019-08-30 深圳信息职业技术学院 一种基于机器视觉的激光加工系统及方法
CN107609473A (zh) * 2017-08-04 2018-01-19 宁夏巨能机器人股份有限公司 一种3d视觉识别系统及其识别方法
US20210197312A1 (en) * 2017-10-25 2021-07-01 Nikon Corporation Processing apparatus, processing system, and manufacturing method of movable body
CN107824968A (zh) * 2017-11-08 2018-03-23 深圳泰德激光科技有限公司 Ccd视觉定位的激光焊接装置
CN108263830A (zh) * 2017-12-01 2018-07-10 苏州腾茂电子科技有限公司 一种具有自我监测功能的摆件设备及其工作方法
CN108279652A (zh) * 2018-01-23 2018-07-13 北京华航唯实机器人科技股份有限公司 一种智能制造单元系统及其控制方法
CN108444458B (zh) * 2018-03-09 2024-05-03 莎丽科技股份有限公司 一种贴砖视觉定位控制系统
CN111185675B (zh) * 2018-11-15 2022-01-04 上海中国弹簧制造有限公司 螺旋弹簧的激光打标方法
CN111515522B (zh) * 2019-01-17 2022-02-01 深圳市创客工场科技有限公司 激光加工方法及装置、激光加工设备、存储介质
CN111515523B (zh) * 2019-01-17 2022-01-28 深圳市创客工场科技有限公司 激光加工方法及装置、激光加工设备、存储介质
CN110421353A (zh) * 2019-09-11 2019-11-08 哈尔滨理工大学 基于机器视觉激光加热辅助车铣复合机床及监控方法
CN113290313B (zh) * 2020-02-19 2023-10-31 深圳市创客工场科技有限公司 激光加工控制方法、装置及激光加工设备
CN114083122B (zh) * 2020-08-24 2023-08-15 大族激光科技产业集团股份有限公司 一种基于视觉定位的激光加工方法、装置及可读存储介质
CN112355530B (zh) * 2020-10-13 2021-10-12 重庆鑫垲骏工贸有限公司 焊接机器人模式转换系统及方法
WO2022133807A1 (zh) * 2020-12-23 2022-06-30 深圳市创客工场科技有限公司 加工方法、加工装置、计算机可读存储介质及电子设备
CN114310056A (zh) * 2022-01-17 2022-04-12 浙江汇丰汽车零部件股份有限公司 具有自动调节功能的智能焊接方法及系统
CN114693678B (zh) * 2022-05-31 2022-10-14 武汉东方骏驰精密制造有限公司 工件质量智能检测方法、装置
CN115922065B (zh) * 2023-03-10 2023-06-13 苏州菲镭泰克激光技术有限公司 基于数字伺服控制器的激光加工设备同步控制系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030001117A1 (en) * 2001-05-15 2003-01-02 Kwangik Hyun Dimensional measurement apparatus for object features
CN104655649A (zh) * 2015-02-27 2015-05-27 河南科技大学 冲压加工在线视觉检测装置和检测方法
CN104655024A (zh) * 2015-02-11 2015-05-27 苏州天准科技股份有限公司 一种影像测量设备及其快速准确测高装置与方法
CN204849444U (zh) * 2015-07-21 2015-12-09 上海咔咻智能科技有限公司 高速激光振镜切割机
CN105424008A (zh) * 2015-12-01 2016-03-23 广东顺德华焯机械科技有限公司 机器视觉的激光打标振镜扫描系统
CN106680286A (zh) * 2016-12-20 2017-05-17 深圳信息职业技术学院 一种基于机器视觉的激光加工系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033266A (zh) * 2012-12-10 2013-04-10 屈建华 平面图形色差自动检测装置及方法
CN103632602B (zh) * 2013-04-26 2016-12-28 江苏汇博机器人技术股份有限公司 一种光机电气液一体化柔性制造系统
CN103203630B (zh) * 2013-04-28 2015-12-23 苏州博实机器人技术有限公司 模块化柔性制造物流系统
CN203380508U (zh) * 2013-06-24 2014-01-08 深圳市大族激光科技股份有限公司 一种带有机器视觉的激光加工系统
CN105414747B (zh) * 2015-12-01 2017-06-23 武汉凌云光电科技有限责任公司 一种高效的机器视觉辅助激光加工方法
CN105598579B (zh) * 2016-03-29 2017-08-01 英诺激光科技股份有限公司 基于两个同轴ccd进行视觉定位的激光加工装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030001117A1 (en) * 2001-05-15 2003-01-02 Kwangik Hyun Dimensional measurement apparatus for object features
CN104655024A (zh) * 2015-02-11 2015-05-27 苏州天准科技股份有限公司 一种影像测量设备及其快速准确测高装置与方法
CN104655649A (zh) * 2015-02-27 2015-05-27 河南科技大学 冲压加工在线视觉检测装置和检测方法
CN204849444U (zh) * 2015-07-21 2015-12-09 上海咔咻智能科技有限公司 高速激光振镜切割机
CN105424008A (zh) * 2015-12-01 2016-03-23 广东顺德华焯机械科技有限公司 机器视觉的激光打标振镜扫描系统
CN106680286A (zh) * 2016-12-20 2017-05-17 深圳信息职业技术学院 一种基于机器视觉的激光加工系统及方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109296653B (zh) * 2018-10-11 2023-07-14 浙江图元智能装备科技有限公司 一种基于视觉识别的自润轴承石墨粒自动装配机
CN109296653A (zh) * 2018-10-11 2019-02-01 嘉善苏尼电子科技有限公司 一种基于视觉识别的自润轴承石墨粒自动装配机
CN109521025A (zh) * 2018-12-30 2019-03-26 深圳市杰普特光电股份有限公司 激光调阻在线检测机构和检测方法
CN112098137A (zh) * 2020-08-05 2020-12-18 湖南华菱涟源钢铁有限公司 钢板自动取样方法及钢板自动取样系统
CN112044874A (zh) * 2020-09-27 2020-12-08 厦门理工学院 一种激光清洗的实时监测系统及其监测方法
CN112033967A (zh) * 2020-10-10 2020-12-04 深圳市裕同包装科技股份有限公司 烫金检测设备的控制装置及控制方法
CN113359453A (zh) * 2021-06-11 2021-09-07 刘颖妮 一种基于人工智能的零件加工装置及其智能车间系统
CN113739646A (zh) * 2021-09-01 2021-12-03 中电凯杰科技有限公司 一种用于检测内筒型组合烟花黑火药剂量的视觉软体
CN113838127A (zh) * 2021-09-28 2021-12-24 天津朗硕机器人科技有限公司 一种基于机器视觉的装配孔定位方法
CN113927217A (zh) * 2021-09-30 2022-01-14 广州佳帆计算机有限公司 一种智能焊接系统
CN114406507A (zh) * 2022-01-04 2022-04-29 华工法利莱切焊系统工程有限公司 一种用于激光切割机首件检测的装置、方法及电子设备
CN114453733A (zh) * 2022-01-29 2022-05-10 苏州富润泽激光科技有限公司 一种振镜焊接控制方法及系统
CN114453733B (zh) * 2022-01-29 2024-05-31 苏州富润泽激光科技有限公司 一种振镜焊接控制方法及系统
CN114538088A (zh) * 2022-02-11 2022-05-27 珠海市运泰利自动化设备有限公司 基于飞拍的高速高精度取放料方法
CN114538088B (zh) * 2022-02-11 2024-02-13 珠海市运泰利自动化设备有限公司 基于飞拍的高速高精度取放料方法
CN114798873A (zh) * 2022-04-26 2022-07-29 广州蓝方自动化设备有限公司 一种用于管接头高速冲压成型工艺及其一体化设备
CN114734150A (zh) * 2022-04-27 2022-07-12 南京德朗克电子科技有限公司 一种自动进行激光打码的方法
CN115302085A (zh) * 2022-10-09 2022-11-08 苏州创鑫激光科技有限公司 一种总线型激光焊接系统
CN115302085B (zh) * 2022-10-09 2023-02-21 苏州创鑫激光科技有限公司 一种总线型激光焊接系统

Also Published As

Publication number Publication date
CN106680286A (zh) 2017-05-17
CN106680286B (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2018113565A1 (zh) 一种基于机器视觉的激光加工系统及方法
CN201787926U (zh) 一种在线锡膏印刷检测设备
CN104439729B (zh) 一种激光加工视觉定位系统
US11192204B2 (en) Laser machining system including laser machining head and imaging device
JP5519047B1 (ja) 切削工具検査装置
US20150273694A1 (en) Industrial robot system having sensor assembly
JP2016095297A (ja) タッチプローブに対してビジョンシステムを校正するためのシステム及び方法
CN205996384U (zh) 一种半导体晶圆正反定位的激光划片装置
TWI571627B (zh) 運用多軸機臂的光學檢查設備
CN109342457A (zh) 一种双面视觉检测识别设备
US11623300B2 (en) Method of determining whether or not result of processing process of laser processing apparatus is acceptable
CN101769718A (zh) 一种激光焦点与微孔同轴共面性检测调整装置及检测方法
CN209969856U (zh) 一种新型激光开封机
CN209117605U (zh) 一种双面视觉检测识别设备
CN101752462B (zh) 激光加工状态检查方法及装置以及太阳能电池板制造方法
JP2000074644A (ja) 棒状切削工具の測定装置並びに該測定装置を使用したドリルの測定方法
CN210847221U (zh) 一种玻璃缺陷在线检测设备
CN210720179U (zh) 复检相机对焦测距装置和玻璃复检设备
TW201447289A (zh) 光電透鏡檢測裝置及檢測方法
JP2017087221A (ja) リアルタイムモニタリング可能な電極チップ検査装置及びこれを備えた溶接システム
KR101829025B1 (ko) 편심 모니터링이 가능한 렌즈 가공기
JP2020535025A (ja) 可搬型工作機械
JP2016038204A (ja) 内面形状検査用のセンサユニット及び内面形状検査装置
CN201184788Y (zh) 一种用于目标物体对位、检测的图像采集和照明装置
JP2002350283A (ja) 検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884380

Country of ref document: EP

Kind code of ref document: A1