WO2018110458A1 - 界磁巻線型回転電機 - Google Patents

界磁巻線型回転電機 Download PDF

Info

Publication number
WO2018110458A1
WO2018110458A1 PCT/JP2017/044224 JP2017044224W WO2018110458A1 WO 2018110458 A1 WO2018110458 A1 WO 2018110458A1 JP 2017044224 W JP2017044224 W JP 2017044224W WO 2018110458 A1 WO2018110458 A1 WO 2018110458A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
period
field winding
temporary
stator
Prior art date
Application number
PCT/JP2017/044224
Other languages
English (en)
French (fr)
Inventor
瀬口 正弘
純一 中園
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201780076697.2A priority Critical patent/CN110063018B/zh
Priority to EP17882039.5A priority patent/EP3557756B1/en
Publication of WO2018110458A1 publication Critical patent/WO2018110458A1/ja
Priority to US16/440,263 priority patent/US10756661B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/32Arrangements for controlling wound field motors, e.g. motors with exciter coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/26Power factor control [PFC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/243Rotor cores with salient poles ; Variable reluctance rotors of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention relates to a field winding type rotating electrical machine including a stator, a rotor, a rectifying element, a drive unit, and a control unit.
  • Patent Document 1 a synchronous machine whose purpose is to stabilize the phase current of each phase by controlling the average voltage of the phase voltage to be zero and to stably excite the rotor.
  • the controller of this synchronous machine has an average value of the phase voltage of each phase of zero when superimposing a pulse voltage for exciting the rotor on the fundamental voltage.
  • a control signal is output so that
  • the field winding is excited when the energization mode is rectangular wave energization or overmodulation energization only by controlling the average value of the phase voltage of each phase to zero using the technique of Patent Document 1.
  • the performance for example, torque and rotational speed
  • the field winding wound around the rotor core is separated from the outside of the rotor, it is necessary to excite the field winding by a magnetic field generated by controlling the voltage waveform applied to the stator winding.
  • the inventors of the present application considered that it is effective to induce the excitation magnetic flux by at least two phases of current in order to give a significant difference as the excitation magnetic flux when exciting the field winding from the stator windings of a plurality of phases.
  • the present disclosure has been made in view of the above circumstances, and an object thereof is to provide a field winding type rotating electrical machine that can excite a field winding even when the energization mode is rectangular wave energization or overmodulation energization.
  • a stator (10) wound with three or more phases of stator windings (12) and a rotor core (22) wound with field windings (21, 21a, 21b, 21c) are provided.
  • a rotor (20) rotatably arranged facing the stator and the field winding are connected in series with the magnetic field ( ⁇ 1, ⁇ 2, ⁇ p) generated by flowing a stator current through the stator winding.
  • a driver that includes a rectifying element (D1) that regulates a field current (If) that flows by exciting a magnetic winding in one direction, and a plurality of switching elements (Q), and outputs a plurality of phases of power to the stator winding.
  • the controller uses the center of the ON period or the OFF period of the first phase among the plurality of phases as a reference time, and cos ⁇ 1 ⁇ as an electrical angle from the reference time.
  • Temporary ON periods ( ⁇ 1, ⁇ 2) that are temporarily turned on during the OFF period of the second phase that is different from the first phase among the plurality of phases with a delay of a predetermined angle ( ⁇ ) within a predetermined range including And a temporary OFF period ( ⁇ 2, ⁇ 1) for temporarily turning off during a third phase ON period different from the first phase and the second phase among the plurality of phases, and providing a current pulse A voltage pulse pair is generated that induces the pair.
  • the voltage pulse pair for inducing the current pulse pair is generated in the second phase and the third phase after a predetermined angle from the reference time of the first phase in which the fundamental current flows.
  • An exciting magnetic flux is generated in the stator winding by the induced current pulse pair, and the field winding can be excited by giving a significant difference between the second phase and the third phase. Therefore, even when rectangular wave energization or overmodulation energization is performed, the field winding can be excited from the stator winding to further improve the performance.
  • the length of the temporary ON period and the length of the temporary OFF period are each 0.5 to 10% with respect to one cycle of the first phase. According to this configuration, it is possible to surely excite the field winding without significantly affecting the fundamental current flowing in the first-phase stator winding.
  • the predetermined range is cos ⁇ 1 ⁇ 30 ° ⁇ ⁇ ⁇ cos ⁇ 1 ⁇ + 30 °.
  • the start of one period of the temporary ON period and the temporary OFF period is delayed by a delay period ( ⁇ , ⁇ 1, ⁇ 2) from the start of the other period. According to this configuration, it is possible to make a current pulse pair having a significant difference with respect to the fundamental current flowing in the first-phase stator winding. Therefore, even when rectangular wave energization or overmodulation energization is performed, the field winding can be excited from the stator winding to further improve the performance.
  • the controller is configured such that a pair of positive voltage pulse ( ⁇ 1, ⁇ 2) and negative voltage pulse ( ⁇ 2, ⁇ 1) is generated once or twice in one cycle of electrical angle per phase. Control. According to this configuration, by selecting the number of times once or twice, it is possible to adjust the amount of exciting magnetic flux or the amount of field current that excites the field winding in accordance with the rotational speed of the rotor.
  • the capacitive element (C1, C1a, C1b) which connects one end between the both ends of the field winding, and connects the other end to the terminal of the rectifier.
  • C1, C1a, C1b a capacitive element which connects one end between the both ends of the field winding, and connects the other end to the terminal of the rectifier.
  • the rotor includes a convex pole rotor in which the field winding is concentrated and wound for each pole, a boss portion on which the field winding is wound, and an end portion of the boss portion.
  • a Landel rotor having a plurality of claw pole portions extending and having the claw pole portion as a north pole or a south pole.
  • the rotor includes a main magnetic pole portion that is a first convex portion of the rotor core that faces the stator, and a second convex shape that has a narrower circumferential width than the first convex portion.
  • a supplementary magnetic pole part as a part, and the supplementary magnetic pole part has a magnet magnetized in a direction to cancel the magnetic field of the stator.
  • the magnetic flux generated by the rotating magnetic field of the stator generally passes through the main magnetic pole, but there is also a magnetic flux that leaks, and the amount and direction of magnetic flux that passes vary depending on the position of the rotor field winding.
  • any number of phases may be set as long as there are three or more phases including the first phase, the second phase, and the third phase.
  • the “field winding type rotating electrical machine” may be any rotating electrical machine provided that the rotor has a field winding and has a rotating shaft.
  • a generator, a motor, and a motor generator that selectively operates as a motor or a generator are applicable.
  • “Sine wave energization”, “rectangular wave energization”, and “overmodulation energization” are classified according to the difference in the modulation rate of the voltage pulse (that is, the pulse wave of the voltage applied to the stator winding).
  • the notation “ON” means a state in which the pulse voltage is at a high level, and is synonymous with “1”, “H (high)”, and the like expressed according to positive logic.
  • the notation “OFF” means a state in which the pulse voltage is at a low level, and is synonymous with “0”, “L (low)”, etc. expressed according to positive logic. When negative logic is followed, it is the opposite of positive logic.
  • the “center of the ON period or OFF period” may be an intermediate time point from the start to the end of each period, or may be a time point within an allowable range based on the intermediate time point.
  • the “magnet” may be a permanent magnet or an electromagnet.
  • connect means to be electrically connected.
  • the first embodiment is an example in which the field winding is excited when the rectangular wave is energized, and will be described with reference to FIGS.
  • the rectangular wave energization and the overmodulation energization are controls for modulating the modulation factor m so as to become a certain value or more.
  • the constant value corresponds to “1.0” in normal control and “1.15” in specific control.
  • the specific control corresponds to overmodulation energization in the case of using a third harmonic superposition method or a two-phase modulation method in pulse width modulation control (so-called PWM control), for example.
  • the sine wave is a control for modulating the modulation factor m so that it is less than a certain value.
  • the field winding type rotary electric machine M is controlled in rotational drive by a stator current (armature current) output from the drive unit 60 in accordance with a control signal transmitted from the control unit 70.
  • the field winding type rotating electrical machine M of this embodiment is an inner rotor type in which the stator 10 is disposed on the outer side in the radial direction and the rotor 20 is disposed on the inner side in the radial direction.
  • the drive unit 60 and the control unit 70 are provided inside or outside the housing 30, and a configuration example, a function, and the like will be described later.
  • the stator 10 includes a stator core 11 and a stator winding (armature winding) 12 as shown in FIG.
  • the stator core 11 includes a plurality of core teeth extending in the radial direction and a plurality of slots provided between the core teeth adjacent in the circumferential direction.
  • a plurality of phases of the stator windings 12 are accommodated in a required winding form.
  • a plurality of phases are three phases of U phase, V phase, and W phase, and a required winding form is distributed winding.
  • the stator current described above corresponds to the U-phase current Iu that flows through the U-phase winding, the V-phase current Iv that flows through the V-phase winding, and the V-phase current Iw that flows through the V-phase winding, as shown in FIG.
  • One of the three phases is referred to as a “first phase”, and the remaining two phases are referred to as a “second phase” and a “third phase”.
  • the rotor 20 rotates facing the stator 10 and includes a field winding 21, a rotor core 22, a rectifying element D1, and the like.
  • the rotor core 22 has a plurality of main magnetic pole portions 22a.
  • the main magnetic pole portion 22a is also called a “saliency pole” or “pole”, and is a first convex portion extending toward the stator 10 side.
  • the number of main magnetic pole portions 22a may be set to an arbitrary number of 2 or more. In the rotor 20 of this embodiment, the number of main magnetic pole portions 22a is “8”. That is, the number of poles is “8” and the number of pole pairs is “4”.
  • Field windings 21 are wound around the main magnetic pole portions 22a so that the polarities of the main magnetic pole portions 22a adjacent in the circumferential direction are different.
  • the winding form of the field winding 21 is concentrated winding that is concentratedly wound around the main magnetic pole portion 22a.
  • the field winding 21 and the rectifying element D1 constitute a field circuit which is a closed circuit connected in series as shown in FIG.
  • the rectifying element D1 regulates (rectifies) the field current If flowing in the field circuit in one direction.
  • the shaft 23 has the rotor 20 fixed thereto, and is used as a main shaft or a rotating shaft of the field winding type rotating electrical machine M.
  • This shaft 23 is further provided with a detected portion 24 on the outer peripheral surface on one end side.
  • the detected part 24 of this embodiment is a magnetic salient pole provided at regular intervals in the circumferential direction of the outer peripheral surface.
  • the housing 30 supports the stator 10 via a bearing or the like so that the rotor 20 can be rotated.
  • a rotation sensor 40 is provided either inside or outside the housing 30. The rotation sensor 40 detects the magnetic salient pole of the detected part 24 to detect the rotation information (that is, the rotation position and the rotation speed) and transmits it to the control unit 70.
  • the rotation sensor 40 is arbitrary as long as information about the rotation of the rotor 20 (for example, rotation speed, rotation position, etc.) can be detected, and a resolver is used in this embodiment.
  • the resolver detects a magnetic salient pole of the detected part 24 and transmits a signal (for example, an analog signal or a digital signal) as rotation information to the control part 70.
  • the current sensor 80 shown in FIG. 3 is optional as long as the stator current (that is, phase currents Iu, Iv, Iw) can be detected.
  • the current sensor 80 of this embodiment uses a magnetic proportional sensor that detects a magnetic field generated by a stator current as a detected current by a Hall element.
  • FIG. 3 shows a configuration for driving and controlling the field winding type rotating electrical machine M.
  • the DC power supply 50 supplies power to the drive unit 60 via a smoothing capacitive element C2 connected in parallel.
  • the DC power supply 50 is a so-called battery, and a secondary battery is used in this embodiment.
  • the secondary battery corresponds to one or more of, for example, a lithium ion battery, a lithium ion polymer battery, a lead storage battery, and a nickel metal hydride battery.
  • the drive unit 60 functions as an inverter, and the switching element Q and the rectifying element D2 are set as one set, and two sets are set in one phase to correspond to the positive voltage and the negative voltage.
  • the drive part 60 of this form has 6 sets in total in order to respond
  • the drive unit 60 performs switching in accordance with a control signal transmitted from the control unit 70 and outputs it to the field winding type rotating electrical machine M with required power and frequency.
  • the switching element Q for example, an IGBT is used. Since the rectifying element D2 serves as a free wheel diode, the rectifying element D2 is connected between the collector terminal and the emitter terminal of the switching element Q so that the current flows in the direction opposite to the current flowing through the switching element Q.
  • the control unit 70 outputs a control signal to the drive unit 60 (specifically, the control terminal of each switching element Q) based on a command signal received from an external device (not shown).
  • the external device of this embodiment is an ECU that is an electronic control unit.
  • the control signal is a signal for energizing any one of sine wave energization, rectangular wave energization, and overmodulation energization according to the rotational speed of the rotor 20.
  • the control unit 70 has a function of outputting, to the drive unit 60, a control signal in which a voltage pulse pair for exciting the field winding 21 is added to the fundamental wave of the stator current energized to the stator winding 12 in the rectangular wave energization. .
  • the fundamental wave of the stator current corresponds to a synchronous current (that is, a fundamental wave of the phase currents Iu, Iv, and Iw) that forms a rotating magnetic field that rotates at an electrical angular velocity determined by the rotation speed of the rotor 20.
  • the V-phase current Iv that is the first phase is the maximum value or the minimum value
  • the voltage pulse pair is added to be opposite to each other in the U-phase that is the second phase and the W-phase that is the third phase.
  • a pulsed current is generated in the current Iu and the W-phase current Iw.
  • the magnetic field generated in the stator winding 12 by this pulsed current excites the field winding 21 to generate a field current.
  • control signals transmitted from the control unit 70 to the drive unit 60 in the field winding type rotating electrical machine M configured as described above will be described with reference to FIGS.
  • the reference time is the center of the ON period of the first phase
  • the center of the ON period related to the control signal (specifically, the pulse signal) for driving the switching element Q is used as a reference. An example of time will be described.
  • FIG. 4 shows a magnetic field generated when the V-phase current Iv that is the first phase is the maximum value.
  • U”, V”, and W indicate the phases of the stator winding 12
  • “+” and “ ⁇ ” indicate the directions of currents flowing through the stator winding 12.
  • U + means that a current flows through the U-phase winding in the front direction of the paper
  • V ⁇ means that a current flows through the V-phase winding in the depth direction of the paper.
  • the exciting magnetic flux is induced by the current that flows through the U-phase winding that is the second phase and the W-phase winding that is the third phase.
  • the magnetic field ⁇ 1 is generated in the clockwise direction between the stator 10 and the rotor 20, and the magnetic field ⁇ 2 is similarly generated. It occurs in the counterclockwise direction. That is, magnetic fluxes flow in directions opposite to each other in the magnetic fields ⁇ 1 and ⁇ 2 adjacent in the circumferential direction.
  • the left main magnetic pole portion 22a shown in FIG. 4 is magnetized in the direction of arrow A1 to become an N pole, and the right main magnetic pole portion 22a is similarly magnetized in the direction of arrow A2 to become an S pole.
  • Excitation of the field winding 21 can generate a magnetic field ⁇ p indicated by a one-dot chain line even when the magnetic fields ⁇ 1 and ⁇ 2 are generated. Since the magnetic flux ⁇ p shown in FIG. 4 flows in the clockwise direction between the stator 10 and the rotor 20 like the magnetic field ⁇ 1, the field winding 21 wound around the main magnetic pole portion 22a can be excited. When the field winding 21 is excited by the magnetic field ⁇ p, a field current If caused by the magnetic field ⁇ p flows through the field circuit shown in FIG. 3 together with the magnetic fields ⁇ 1 and ⁇ 2.
  • a pulsed current in the U-phase current Iu and the W-phase current Iw as shown in FIG.
  • a positive pulse current Iup is passed through the U-phase current Iu
  • a negative pulse current Iwp is passed through the W-phase current Iw.
  • a pulse current Iup flows through the U-phase winding indicated by “U ⁇ ”
  • a pulse current Iwp flows through the W-phase winding indicated by “W +”.
  • the pulse currents Iup and Iwp correspond to “current pulse pairs”.
  • the control unit 70 may output a control signal having a three-phase voltage waveform shown in FIG.
  • the V-phase voltage Vv which is the first phase, has an electrical angle ⁇ 11 to an electrical angle ⁇ 16 as one cycle (that is, an electrical angle of 360 °), and the ON period Von and the OFF period Voff are alternately repeated.
  • the ON period Von is a period from the electrical angle ⁇ 11 to the electrical angle ⁇ 15.
  • the OFF period Voff is a period from the electrical angle ⁇ 15 to the electrical angle ⁇ 16.
  • the V-phase current Iv has the maximum value at the center of the ON period Von.
  • the center of the ON period Von may be an intermediate time point from the start to the end, or may be a time point within an allowable range based on the intermediate time point.
  • the center of the ON period Von is the electrical angle ⁇ 12, which is the reference time Sv.
  • the voltages of the second phase and the third phase are temporarily turned on or off at a timing delayed by cos ⁇ 1 ⁇ in electrical angle from the reference time Sv.
  • the electrical angle cos ⁇ 1 ⁇ corresponds to a “predetermined angle ⁇ ”.
  • the temporary ON period ⁇ 1 from the electrical angle ⁇ 13 to the electrical angle ⁇ 14 corresponds to a “positive voltage pulse” and is a period in which the U-phase voltage Vu is temporarily turned on.
  • the temporary OFF period ⁇ 2 from the electrical angle ⁇ 13 to the electrical angle ⁇ 14 corresponds to a “negative voltage pulse”, and is a period for temporarily turning off the W-phase voltage Vw.
  • a pair of a positive voltage pulse and a negative voltage pulse corresponds to a “voltage pulse pair”.
  • a pulse current Iup shown in FIG. 5 is generated.
  • the W-phase voltage Vw is temporarily turned off
  • a pulse current Iwp shown in FIG. 5 is generated.
  • the pulsed pulse currents Iup and Iwp correspond to “current pulse pairs” and are generated in opposite directions with respect to the magnitude direction of the phase current.
  • the reason why the initial period of the temporary ON period ⁇ 1 and the temporary OFF period ⁇ 2 is delayed by cos ⁇ 1 ⁇ in electrical angle from the reference time Sv is that the phase current flowing in the stator winding 12 is relative to the phase voltage applied to the stator winding 12. This is because the electrical angle corresponding to the power factor (ie, cos ⁇ ) is delayed by cos ⁇ 1 ⁇ . Since the power factor of a general rotating electrical machine is 0.5 ⁇ cos ⁇ ⁇ 0.9, the electrical angle is 25 ° ⁇ cos ⁇ 1 ⁇ ⁇ 60 °.
  • the length of the temporary ON period ⁇ 1 and the length of the temporary OFF period ⁇ 2 are preferably 0.5 to 10% with respect to the fundamental wave period of the voltage pulse. As the length of the temporary ON period ⁇ 1 and the temporary OFF period ⁇ 2 becomes shorter, it becomes difficult to obtain a pulsed current. As the length of the temporary ON period ⁇ 1 and the temporary OFF period ⁇ 2 increases, the influence on the fundamental wave increases.
  • the pulse current Iup and the pulse current Iwp have a period of only about 1/10 of the fundamental wave U-phase current Iu and the W-phase current Iw, the phase difference between the phase voltage and the phase current is different from that of the fundamental wave Ignoring it has little effect.
  • the time point at which the V-phase current Iv reaches the maximum value is set as the reference time Sv. Since the current flowing through the stator windings 12 is preferably three-phase balanced, it is preferable to carry out the current in three phases. That is, when the first phase is the U phase, the time point at which the U phase current Iu reaches the maximum value is set as the reference time Su, and the second phase W phase is delayed by cos ⁇ 1 ⁇ in electrical angle from the reference time Su. The voltage Vw is temporarily turned on, and the third phase V-phase voltage Vv is temporarily turned off.
  • the time point at which the W phase current Iw reaches the maximum value is set as the reference time Sw, and the V phase of the second phase is delayed from the reference time Sw by an electrical angle of cos ⁇ 1 ⁇ .
  • the phase voltage Vv is temporarily turned ON, and the third phase U-phase voltage Vu is temporarily turned OFF.
  • FIGS. 7 to 9 show the simulation results of the control signal output from the control unit 70 to the drive unit 60 and the current flowing through the stator winding 12 by the control signal.
  • a current pulse pair is generated with one of the three phases as the first phase and the remaining two phases as the second and third phases.
  • FIG. 7 shows a control example of control signals output from the control unit 70 to the drive unit 60, that is, control of the U-phase voltage Vu, the V-phase voltage Vv, and the W-phase voltage Vw.
  • the electrical angle ⁇ 21 that is the center of the ON period Von applied to the U phase voltage Vu is the reference time Su.
  • the electrical angle ⁇ 22 is obtained. From the electrical angle ⁇ 22, the second-phase W-phase voltage Vw is turned on for the temporary ON period ⁇ 1, and the third-phase V-phase voltage Vv is turned off for the temporary OFF period ⁇ 2.
  • the electrical angle ⁇ 23 that is the center of the ON period Von applied to the V phase voltage Vv is the reference time Sv.
  • the electrical angle ⁇ 24 is obtained. From the electrical angle ⁇ 24, the second-phase U-phase voltage Vu is turned on for the temporary ON period ⁇ 1, and the third-phase W-phase voltage Vw is turned off for the temporary OFF period ⁇ 2.
  • the electrical angle ⁇ 25 that is the center of the ON period Von applied to the W phase voltage Vw is the reference time Sw.
  • the electrical angle ⁇ 26 is obtained. From the electrical angle ⁇ 26, the V-phase voltage Vv of the second phase is turned on for the temporary ON period ⁇ 1, and the U-phase voltage Vu of the third phase is turned off for the temporary OFF period ⁇ 2.
  • FIG. 8 shows a change in the phase current flowing in the stator winding 12 by the control signal shown in FIG.
  • Pulse currents Iwp and Ivp are generated from the electrical angle ⁇ 31 shown in FIG. 8 corresponding to the temporary ON period ⁇ 1 and the temporary OFF period ⁇ 2 controlled from the electrical angle ⁇ 22 shown in FIG.
  • pulse currents Iup and Iwp are generated from the electrical angle ⁇ 32 shown in FIG. 8 in correspondence with the temporary ON period ⁇ 1 and the temporary OFF period ⁇ 2 controlled from the electrical angle ⁇ 24 shown in FIG.
  • pulse currents Ivp and Iup are generated from the electrical angle ⁇ 33 shown in FIG. 8 corresponding to the temporary ON period ⁇ 1 and the temporary OFF period ⁇ 2 controlled from the electrical angle ⁇ 26 shown in FIG.
  • FIG. 9 shows a change example of the field current If flowing in the field winding 21.
  • the field current If is generated when a current flows through the stator winding 12 to induce an exciting magnetic flux, and the field winding 21 is excited by the exciting magnetic flux.
  • the current flowing through the stator winding 12 includes pulse currents Iup, Ivp, and Iwp that are surrounded by a one-dot chain line in FIG.
  • FIG. 10 shows a variation example of the torque ⁇ output from the field winding type rotating electrical machine M.
  • This torque ⁇ induces an exciting magnetic flux through the stator winding 12 and is output from the shaft 23 as the rotor 20 shown in FIG. 1 rotates.
  • the timing at which the torque ⁇ changes more than the others coincides with the timing at which the pulse currents Iup, Ivp, Iwp shown in FIG. 8 are generated. That is, the torque ⁇ temporarily changes from the electrical angles ⁇ 31, ⁇ 32, and ⁇ 33 to be larger than the others.
  • FIGS. 11 and 12 show examples of control signals transmitted from the control unit 70 to the drive unit 60.
  • FIG. The control signals shown in FIGS. 11 and 12 generate a current pulse pair with one of the three phases as the first phase and the remaining two phases as the second and third phases.
  • FIG. 11 is an example of the same control as that in FIG. 7, and is an example in which the start times of the temporary ON period ⁇ 1 and the temporary OFF period ⁇ 2 are set to the same timing.
  • the first phase is the U phase
  • the electrical angles ⁇ 55 and ⁇ 5b that are the centers of the ON period Von applied to the U phase voltage Vu become the reference time Su.
  • the electrical angle is delayed by cos ⁇ 1 ⁇ from each reference time Su, the electrical angles ⁇ 56 and ⁇ 5c are obtained. From the electrical angles ⁇ 56 and ⁇ 5c, the second-phase W-phase voltage Vw is turned on for the temporary ON period ⁇ 1, and the third-phase V-phase voltage Vv is turned off for the temporary OFF period ⁇ 2.
  • the electrical angles ⁇ 57 and ⁇ 5d that are the centers of the ON period Von applied to the V phase voltage Vv become the reference time Sv.
  • the electrical angle is delayed by cos ⁇ 1 ⁇ from the reference time Sv, the electrical angles ⁇ 58 and ⁇ 5e are obtained. From the electrical angles ⁇ 58 and ⁇ 5e, the second-phase U-phase voltage Vu is turned on for the temporary ON period ⁇ 1, and the third-phase W-phase voltage Vw is turned off for the temporary OFF period ⁇ 2.
  • the electrical angles ⁇ 53, ⁇ 59, and ⁇ 5f that are the centers of the ON period Von applied to the W phase voltage Vw become the reference time Sw.
  • the electrical angle is delayed by cos ⁇ 1 ⁇ from the reference time Sw, the electrical angles ⁇ 54, ⁇ 5a, and ⁇ 5g are obtained.
  • the second-phase V-phase voltage Vv is turned on for a temporary ON period ⁇ 1
  • the third-phase U-phase voltage Vu is turned off for a temporary OFF period ⁇ 2.
  • FIG. 12 is a control example different from that in FIG. 7 and is an example in which the temporary OFF period ⁇ 2 is delayed by the delay period ⁇ from the temporary ON period ⁇ 1.
  • the first phase is the V phase
  • the electrical angles ⁇ 61, ⁇ 64, and ⁇ 67 that are the centers of the ON period Von applied to the V phase voltage Vv become the reference time Sv.
  • the electrical angle is delayed by cos ⁇ 1 ⁇ from the reference time Sv
  • the electrical angles ⁇ 62, ⁇ 65, and ⁇ 68 are obtained. From the electrical angles ⁇ 62, ⁇ 65, and ⁇ 68, the second-phase U-phase voltage Vu is turned ON for the temporary ON period ⁇ 1.
  • the delay period ⁇ when the delay period ⁇ is delayed, the electrical angles ⁇ 63, ⁇ 66, and ⁇ 69 are obtained. From the electrical angles ⁇ 63, ⁇ 66, and ⁇ 69, the third-phase W-phase voltage Vw is turned off for a temporary OFF period ⁇ 2. That is, the beginning of the temporary OFF period ⁇ 2 is delayed by (cos ⁇ 1 ⁇ + ⁇ ) in electrical angle.
  • the second-phase W-phase voltage Vw is turned on for the temporary ON-period ⁇ 1 with an electrical angle delayed by cos ⁇ 1 ⁇ from the center of the ON period Von applied to the U-phase voltage Vu. Further, the third-phase V-phase voltage Vv is turned off for a temporary OFF period ⁇ 2 after a delay period ⁇ .
  • the first phase is the W phase
  • the second phase V phase voltage Vv is turned on for the temporary ON period ⁇ 1 with an electrical angle delayed by cos ⁇ 1 ⁇ from the center of the ON period Von applied to the W phase voltage Vw.
  • the third-phase U-phase voltage Vu is turned off for a temporary OFF period ⁇ 2 after a delay period ⁇ .
  • the delay period ⁇ of the third phase is shown, but the reverse case is also the same. That is, when the first phase is the V phase, the third phase W phase voltage Vw is turned off for the temporary OFF period ⁇ 2 by an electrical angle delayed by cos ⁇ 1 ⁇ from the center of the ON period Von applied to the V phase voltage Vv. Further, the second-phase U-phase voltage Vu is turned ON for the temporary ON period ⁇ 1 with a delay of the delay period ⁇ .
  • the third phase V phase voltage Vv is turned off for the temporary OFF period ⁇ 2 with an electrical angle delayed by cos ⁇ 1 ⁇ from the center of the ON period Von applied to the U phase voltage Vu.
  • the second-phase W-phase voltage Vw is turned ON for a temporary ON period ⁇ 1 with a delay of the delay period ⁇ .
  • the third phase U phase voltage Vu is turned off for the temporary OFF period ⁇ 2 with an electrical angle delayed by cos ⁇ 1 ⁇ from the center of the ON period Von applied to the W phase voltage Vw. Further, the second-phase V-phase voltage Vv is turned on for the temporary ON period ⁇ 1 with a delay of the delay period ⁇ .
  • the reference time is the center of the OFF period of the first phase
  • a control signal (specifically, a pulse signal) for driving the switching element Q for the V phase that is the first phase.
  • the center of the OFF period according to () is set as the reference time.
  • the center of the ON period of the first phase is set as the reference time as the timing at which the current flowing in the first phase of the stator winding 12 becomes the maximum value.
  • the center of the OFF period of the first phase is set as the reference time.
  • FIG. 13 shows the magnetic field generated when the V-phase current Iv, which is the first phase, is the minimum value, as in FIG.
  • a significant difference is given as an exciting magnetic flux. It is considered effective to induce the excitation magnetic flux by the current flowing through the wire 12.
  • a magnetic field ⁇ 1 is generated in the counterclockwise direction between the stator 10 and the rotor 20, and the magnetic field ⁇ 2 Occurs in the clockwise direction. That is, magnetic fluxes flow in directions opposite to each other in the magnetic fields ⁇ 1 and ⁇ 2 adjacent in the circumferential direction.
  • the left main magnetic pole portion 22a shown in FIG. 13 is magnetized in the direction of arrow A3 to become the S pole, and the right main magnetic pole portion 22a is similarly magnetized in the direction of arrow A4 to become the N pole.
  • the magnetic field ⁇ p indicated by the alternate long and short dash line it is preferable to generate the magnetic field ⁇ p indicated by the alternate long and short dash line even when the magnetic fields ⁇ 1 and ⁇ 2 are generated.
  • the magnetic field ⁇ p shown in FIG. 13 excites the field winding 21 wound around the main magnetic pole portion 22a because the magnetic flux flows counterclockwise between the stator 10 and the rotor 20.
  • a field current If flows in the field circuit shown in FIG.
  • a pulsed current in the U-phase current Iu and the W-phase current Iw as shown in FIG.
  • a positive pulse current Iwp is passed through the W-phase current Iw
  • a negative pulse current Iup is passed through the U-phase current Iu. Shed.
  • a pulse current Iup flows through the U-phase winding indicated by “U ⁇ ”
  • a pulse current Iwp flows through the W-phase winding indicated by “W +”.
  • the pulse currents Iup and Iwp correspond to “current pulse pairs”.
  • the control unit 70 may output a control signal having a three-phase voltage waveform shown in FIG.
  • the V-phase voltage Vv which is the first phase, has an electrical angle ⁇ 71 to an electrical angle ⁇ 76 as one cycle (that is, an electrical angle of 360 °), and the OFF period Voff and the ON period Von are alternately repeated.
  • the OFF period Voff is a period from the electrical angle ⁇ 71 to the electrical angle ⁇ 75.
  • the ON period Von is a period from the electrical angle ⁇ 75 to the electrical angle ⁇ 76.
  • the center of the OFF period Voff is the electrical angle ⁇ 72.
  • the electrical angle ⁇ 72 is set as the reference time Sv, and the voltages of the second phase and the third phase are temporarily turned on or off at a timing delayed by cos ⁇ 1 ⁇ in electrical angle from the reference time Sv.
  • the temporary OFF period ⁇ 1 from the electrical angle ⁇ 73 to the electrical angle ⁇ 74 corresponds to a “negative voltage pulse” and is a period in which the U-phase voltage Vu is temporarily turned off.
  • the temporary ON period ⁇ 2 from the electrical angle ⁇ 73 to the electrical angle ⁇ 74 corresponds to a “positive voltage pulse”, and is a period for temporarily turning on the W-phase voltage Vw.
  • a negative pulse current Iup shown in FIG. 14 is generated.
  • a positive pulse current Iwp shown in FIG. 14 is generated.
  • the pulsed pulse currents Iup and Iwp correspond to “current pulse pairs” and are generated in opposite directions with respect to the magnitude direction of the phase current.
  • FIGS. 16 and 17 show examples of control signals transmitted from the control unit 70 to the drive unit 60.
  • FIG. The control signals shown in FIGS. 16 and 17 generate current pulse pairs with one of the three phases as the first phase and the remaining two phases as the second and third phases.
  • FIG. 16 is an example of the same control as that of FIG. 15, and is an example in which the start timing of the temporary OFF period ⁇ 1 and the temporary ON period ⁇ 2 is set to the same timing.
  • the lengths of the temporary OFF period ⁇ 1 and the temporary ON period ⁇ 2 are preferably about 0.5 to 10% with respect to the fundamental wave period, similarly to the lengths of the temporary ON period ⁇ 1 and the temporary OFF period ⁇ 2.
  • the electrical angles ⁇ 81, ⁇ 87, and ⁇ 8d that are the centers of the OFF period Voff applied to the U phase voltage Vu are the reference times Su.
  • the electrical angle is delayed by cos ⁇ 1 ⁇ from each reference time Su, the electrical angles ⁇ 82, ⁇ 88, and ⁇ 8e are obtained.
  • the second-phase W-phase voltage Vw is turned off for a temporary OFF period ⁇ 1
  • the third-phase V-phase voltage Vv is turned on for a temporary ON period ⁇ 2.
  • the electrical angles ⁇ 85 and ⁇ 8b that are the centers of the OFF period Voff applied to the W phase voltage Vw become the reference time Sw.
  • the electrical angle is delayed by cos ⁇ 1 ⁇ from the reference time Sw, the electrical angles ⁇ 86 and ⁇ 8c are obtained. From the electrical angles ⁇ 86 and ⁇ 8c, the second-phase V-phase voltage Vv is turned off for the temporary OFF period ⁇ 1, and the third-phase U-phase voltage Vu is turned on for the temporary ON period ⁇ 2.
  • FIG. 17 is a control example different from FIG. 15 and is an example in which the temporary ON period ⁇ 2 is delayed by the delay period ⁇ from the temporary OFF period ⁇ 1.
  • FIG. 17 illustrates a case where the first phase is the V phase.
  • the electrical angles ⁇ 91, ⁇ 94, and ⁇ 97 that are the centers of the OFF period Voff applied to the V phase voltage Vv become the reference time Sv.
  • the electrical angle is delayed by cos ⁇ 1 ⁇ from the reference time Sv, the electrical angles ⁇ 92, ⁇ 95, and ⁇ 98 are obtained. From the electrical angles ⁇ 92, ⁇ 95, and ⁇ 98, the second-phase U-phase voltage Vu is turned off for a temporary OFF period ⁇ 1.
  • the delay period ⁇ is delayed, the electrical angles ⁇ 93, ⁇ 96, and ⁇ 99 are obtained. From the electrical angles ⁇ 93, ⁇ 96, and ⁇ 99, the third-phase W-phase voltage Vw is turned ON for a temporary ON period ⁇ 2. That is, the beginning of the temporary ON period ⁇ 2 is delayed by (cos ⁇ 1 ⁇ + ⁇ ) in electrical angle.
  • the second phase W phase voltage Vw is turned off by the temporary OFF period ⁇ 1 with an electrical angle delayed by cos ⁇ 1 ⁇ from the center of the OFF period Voff applied to the U phase voltage Vu. Further, the third-phase V-phase voltage Vv is turned ON for the temporary ON period ⁇ 2 with a delay of the delay period ⁇ . Further, when the first phase is the W phase, the second phase V phase voltage Vv is turned off by the temporary OFF period ⁇ 1 with an electrical angle delayed by cos ⁇ 1 ⁇ from the center of the OFF period Voff applied to the W phase voltage Vw. Further, the third-phase U-phase voltage Vu is turned on for the temporary ON period ⁇ 2 with a delay of the delay period ⁇ .
  • the delay period ⁇ of the third phase is shown, but the reverse case is also the same. That is, when the first phase is the V phase, the third phase W phase voltage Vw is turned on for the temporary ON period ⁇ 2 with an electrical angle delayed by cos ⁇ 1 ⁇ from the center of the OFF period Voff applied to the V phase voltage Vv. Further, the second-phase U-phase voltage Vu is turned off for the temporary OFF period ⁇ 1 with a delay of the delay period ⁇ .
  • the third phase V phase voltage Vv is turned on for the temporary ON period ⁇ 2 with an electrical angle delayed by cos ⁇ 1 ⁇ from the center of the OFF period Voff applied to the U phase voltage Vu. Further, the second-phase W-phase voltage Vw is turned off for a temporary OFF period ⁇ 1 after a delay period ⁇ .
  • the third phase U-phase voltage Vu is turned on for the temporary ON period ⁇ 2 with an electrical angle delayed by cos ⁇ 1 ⁇ from the center of the OFF period Voff applied to the W-phase voltage Vw. Further, the second-phase V-phase voltage Vv is turned off for the temporary OFF period ⁇ 1 with a delay of the delay period ⁇ .
  • Example in which the reference time is set to the center of the ON period and the OFF period of the first phase a control signal (specifically, a pulse signal) for driving the switching element Q of the first phase.
  • a control signal (specifically, a pulse signal) for driving the switching element Q of the first phase.
  • An example in which the center of each of the ON period and the OFF period is used as a reference time will be described. Simply put, the above-mentioned “A. Example in which the reference time is the center of the ON period of the first phase” and “B. Example in which the reference time is the center of the OFF period of the first phase” are combined.
  • the case where the first phase is the V phase will be described. However, since three-phase equilibrium is preferable, even when the first phase is the U phase or the W phase, the same process as that for the V phase is performed.
  • the electrical angle ⁇ 103 that is the center of the ON period Von applied to the V-phase voltage Vv and the electrical angle ⁇ 101 that is the center of the OFF period Voff are the reference times Sv, respectively.
  • the temporary ON periods ⁇ 1, r2 and the temporary OFF periods ⁇ 2, ⁇ 1 are assumed to be delayed by cos ⁇ 1 ⁇ in electrical angle from the reference time Sv, respectively.
  • the electrical angle ⁇ 104 is obtained. From the electrical angle ⁇ 104, the second-phase U-phase voltage Vu is turned on for the temporary ON period ⁇ 1, and the third-phase W-phase voltage Vw is turned off for the temporary OFF period ⁇ 2.
  • the electrical angle ⁇ 102 is obtained. From the electrical angle ⁇ 102, the second-phase U-phase voltage Vu is turned off for a temporary OFF period ⁇ 1, and the third-phase W-phase voltage Vw is turned off for a temporary ON period ⁇ 2.
  • FIG. 19 is a control example different from FIG. 18, in which the third phase is delayed from the second phase. Specifically, the temporary OFF period ⁇ 2 is delayed by the delay period ⁇ 1 from the temporary ON period ⁇ 1, and the temporary ON period ⁇ 2 is delayed by the delay period ⁇ 2 from the temporary OFF period ⁇ 1.
  • the second phase is the same as the control example of FIG. 18 in that the electrical angle is delayed by cos ⁇ 1 ⁇ from the reference time Sv of the first phase.
  • the electrical angle ⁇ 113 that is the center of the ON period Von applied to the V-phase voltage Vv and the electrical angle ⁇ 111 that is the center of the OFF period Voff are the reference times Sv, respectively.
  • the electrical angle ⁇ 114 is obtained. From the electrical angle ⁇ 114, the second-phase U-phase voltage Vu is turned on for a temporary ON period ⁇ 1. Further, the third phase W-phase voltage Vw is turned off for a temporary OFF period ⁇ 2 after a delay period ⁇ 1 from the electrical angle ⁇ 114.
  • the electrical angle ⁇ 112 is obtained. From the electrical angle ⁇ 112, the second-phase U-phase voltage Vu is turned off for a temporary OFF period ⁇ 1. Further, the third-phase W-phase voltage Vw is turned on for the temporary ON period ⁇ 2 after a delay period ⁇ 2 from the electrical angle ⁇ 112.
  • the case of the delay periods ⁇ 1 and ⁇ 2 of the third phase is shown, but in this case as well, the reverse case, that is, the case where the second phase is delayed with respect to the third phase is the same.
  • a pair of a positive voltage pulse (that is, temporary ON periods ⁇ 1, ⁇ 2) and a negative voltage pulse (that is, temporary OFF periods ⁇ 2, ⁇ 1) is an ON period Von. And can be generated twice in one cycle including the OFF period Voff. As shown in FIG. 10, the generation of one current pulse pair contributes to the improvement of the torque ⁇ . Therefore, the generation of the two current pulse pairs can further increase the torque ⁇ .
  • the predetermined angle is cos ⁇ 1 ⁇ as an electrical angle.
  • the predetermined angle when it is ⁇ as an electrical angle, it may be in the range of cos ⁇ 1 ⁇ 30 ° ⁇ ⁇ ⁇ cos ⁇ 1 ⁇ + 30 °. Even if the second phase and the third phase are delayed within this range, the current pulse pair shown in FIG. 8 can be generated. That is, a voltage pulse pair that induces a current pulse pair can be generated in the second phase and the third phase with a delay of a predetermined angle ⁇ from the reference time of the first phase in which the fundamental wave current flows.
  • the field winding type rotating electrical machine M includes the stator 10, the rotor 20 including the field winding 21, the rectifying element D1, the switching element Q, and the drive unit 60 and the control unit 70.
  • the control unit 70 sets the center of the ON period or OFF period of the first phase as the reference time, and delays by a predetermined angle ⁇ including cos ⁇ 1 ⁇ from the reference time in the second phase.
  • temporary ON periods ⁇ 1 and ⁇ 2 that are temporarily turned ON during the OFF period of the third phase, and temporary OFF periods ⁇ 2 and ⁇ 1 that are temporarily turned OFF during the ON period of the third phase and the second phase are provided.
  • a voltage pulse pair for inducing a current pulse pair is generated.
  • the voltage pulse pair for inducing the current pulse pair is generated in the second phase and the third phase with a delay of the predetermined angle ⁇ from the reference time of the first phase in which the fundamental current flows.
  • An exciting magnetic flux is generated in the stator winding 12 by the induced current pulse pair, and the field winding 21 can be excited by giving a significant difference between the second phase and the third phase. Therefore, even when the rectangular wave is energized, the field winding 21 can be excited from the stator winding 12 to further enhance the performance.
  • the temporary ON periods ⁇ 1, ⁇ 2 and the temporary OFF periods ⁇ 2, ⁇ 1 are 0.5 to 10% with respect to one cycle of the first phase. According to this configuration, it is possible to reliably excite the field winding 21 without significantly affecting the fundamental current flowing in the first-phase stator winding 12.
  • the predetermined angle ⁇ satisfies cos ⁇ 1 ⁇ 30 ° ⁇ ⁇ ⁇ cos ⁇ 1 ⁇ + 30 °.
  • the control unit 70 sets the positive voltage pulse (that is, the temporary ON periods ⁇ 1, ⁇ 2) and the negative voltage pulse (that is, the temporary OFF periods ⁇ 2, ⁇ 1) as the ON period Von and the OFF period. Control is performed so that it occurs once or twice in one cycle including Voff. According to this configuration, by selecting the number of times once or twice, it is possible to adjust the amount of exciting magnetic flux or the amount of field current that excites the field winding 21 according to the rotational speed of the rotor 20.
  • FIG. 20 shows a configuration for driving and controlling the field winding type rotary electric machine M, which is an alternative configuration to FIG. 3 of the first embodiment.
  • the difference from FIG. 3 is that the field circuit is provided with a capacitive element C1, and the field winding 21 is divided into field windings 21a and 21b. Since the control signal output from the control unit 70 to the drive unit 60 is the same as in the first embodiment, illustration and description thereof are omitted.
  • the capacitor element C1 has one end connected between both ends of the field winding 21, and the other end connected to a terminal (specifically an anode terminal) of the rectifying element D1.
  • a terminal specifically an anode terminal
  • the capacitive element C1 is connected between the field winding 21a and the field winding 21b.
  • the field winding 21 and 22 show the configuration of the field windings 21a and 21b.
  • the field winding 21b is concentratedly wound around the main magnetic pole portion 22a of the rotor core 22, and the field winding 21a is concentratedly wound outside the field winding 21b.
  • the field winding 21a may be concentrated around the main magnetic pole portion 22a, and the field winding 21b may be concentrated outside the field winding 21a.
  • the field winding 21a is concentratedly wound on the outer side in the radial direction (that is, the side approaching the stator 10) with respect to the main magnetic pole portion 22a
  • the field winding 21b is wound on the inner side in the radial direction (that is, with the stator 10). Concentrated winding on the far side).
  • the field winding 21b may be concentratedly wound on the outer side in the radial direction around the main magnetic pole portion 22a
  • the field winding 21a may be concentrated on the inner side in the radial direction.
  • the field windings 21a and 21b may be concentratedly wound around the main magnetic pole portion 22a of the rotor core 22 by two-wire winding instead of the configuration of FIGS.
  • the two-wire winding is a method in which the field windings 21a and 21b are bundled and wound around the main magnetic pole portion 22a.
  • the field winding 21 is concentratedly wound for each pole (that is, the main magnetic pole portion 22a). One end is connected between both ends of the field winding 21, and the other end has a capacitive element C1 connected to the terminal of the rectifying element D1. According to this configuration, the voltage component canceled by the current flowing in the field windings 21a and 21b corresponding to the field winding 21 is stored in the capacitive element C1, and discharged and effectively used when the current direction changes. it can.
  • Embodiment 3 will be described with reference to FIGS. 23 to 26.
  • FIG. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted. Therefore, differences from Embodiments 1 and 2 will be mainly described.
  • FIG. 23 and 24 show the configuration of the rotor 20 in place of FIG. 2 of the first embodiment. 2 is different from FIG. 2 in that, in addition to a plurality of main magnetic pole portions 22a provided as first convex portions on the rotor core 22, a plurality of auxiliary magnetic pole portions 22b provided as second convex portions are provided. Since the main magnetic pole portion 22a functions as a magnetic pole, the main magnetic pole portion 22a and the auxiliary magnetic pole portion 22b are alternately provided in the circumferential direction.
  • the auxiliary magnetic pole portion 22b is also referred to as “complementary pole” or “auxiliary pole”.
  • the auxiliary magnetic pole part 22b is provided narrower in the circumferential direction than the main magnetic pole part 22a, and a magnet is provided. By providing a magnet in the auxiliary magnetic pole portion 22b, it is possible to suppress the magnetic flux leaking across the poles.
  • the magnet may be a permanent magnet or a winding electromagnet.
  • FIG. 23 shows an example in which a permanent magnet 22m is provided on the auxiliary magnetic pole portion 22b.
  • FIG. 23 shows a case where the rotor 20 rotates in the direction of arrow A8 and the main magnetic pole portion 22a is magnetized in the direction of arrow A6 to become an N pole.
  • the permanent magnet 22m provided on the auxiliary magnetic pole portion 22b on one side namely, the left side in FIG. 23
  • the permanent magnet 22m provided on the auxiliary magnetic pole portion 22b on the other side namely, the right side in FIG. 23
  • It may be magnetized in the A7 direction.
  • the main magnetic pole portion 22a is an S pole, it is magnetized in the direction opposite to that in FIG. In short, it is only necessary that the polarities of the two auxiliary magnetic pole portions 22b adjacent to the main magnetic pole portion 22a are opposite to each other.
  • FIG. 24 shows the auxiliary magnetic pole winding 25 wound around the auxiliary magnetic pole portion 22b.
  • the auxiliary magnetic pole portion 22 b is magnetized according to the winding direction of the auxiliary magnetic pole winding 25.
  • the winding direction of the auxiliary magnetic pole winding 25 is preferably opposite to each other at the two auxiliary magnetic pole portions 22b adjacent to the main magnetic pole portion 22a.
  • the polarities of the two auxiliary magnetic pole portions 22b adjacent to the main magnetic pole portion 22a are opposite to each other.
  • the rotor 20 having the auxiliary magnetic pole winding 25 constitutes a field circuit shown in FIGS. 25 and 26 according to the form of the field winding 21.
  • the field winding 21, the auxiliary magnetic pole winding 25, and the rectifying element D1 are connected in series.
  • the field windings 21a and 21b and the rectifying element D1 are connected in series, and the capacitive element C1 is connected in parallel.
  • the capacitive element C1 has one end connected between both ends of the field winding 21, specifically between the field winding 21a and the field winding 21b, and the other end connected to a terminal (specifically, the rectifying element D1). To the anode terminal).
  • the polarities of the main magnetic pole portion 22a and the auxiliary magnetic pole portion 22b can be restricted.
  • the capacitive element C1 shown in FIG. 26 is provided, a voltage component canceled by the current flowing in the field windings 21a and 21b can be stored in C1, and when the current direction is changed, it can be discharged and effectively used. it can.
  • the rotor 20 includes a main magnetic pole portion 22a that is a first convex portion of the rotor core 22 that faces the stator 10, and a supplementary magnetic pole that is a second convex portion whose circumferential width is narrower than that of the first convex portion. Part 22b.
  • the auxiliary magnetic pole portion 22b has a magnet (that is, a permanent magnet 22m or an auxiliary magnetic pole winding 25) that is magnetized in a direction that cancels the magnetic field of the stator 10.
  • the magnetic flux generated by the rotating magnetic field of the stator 10 generally passes through the main magnetic pole portion 22a. However, there is a magnetic flux that leaks, and the amount and direction of the magnetic flux passing through the position of the field winding 21 are different. According to this configuration, the magnetic pole leakage between the poles can be suppressed by providing the boundary between the poles by the supplementary magnetic pole portion 22b. Therefore, the magnetic flux can be efficiently passed through the pole, and the field current If can be obtained effectively.
  • Embodiment 4 will be described with reference to FIGS. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in Embodiments 1 to 3 are denoted by the same reference numerals and description thereof is omitted. Therefore, differences from Embodiments 1 to 3 will be mainly described.
  • the field circuit shown in FIG. 27 is a configuration example instead of the field circuit shown in FIG. 3 of the first embodiment.
  • the difference from FIG. 3 is that the field circuit is provided with capacitive elements C1a and C1b, and the field winding 21 is divided into field windings 21a, 21b, and 21c. Since the control signal output from the control unit 70 to the drive unit 60 is the same as in the first embodiment, illustration and description thereof are omitted.
  • Capacitance elements C1a and C1b each have one end connected between both ends of the field winding 21, and the other end connected to a terminal (specifically an anode terminal) of the rectifying element D1.
  • a terminal specifically an anode terminal
  • the capacitive elements C1a and C1b are connected between both ends of the field winding 21, so that the field windings 21a, 21b and 21c are Prepare. That is, one end of the capacitive element C1a is connected between the field winding 21a and the field winding 21b, and one end of the capacitive element C1b is connected between the field winding 21b and the field winding 21c.
  • field windings 21a, 21b, and 21c show the configuration of the field windings 21a, 21b, and 21c.
  • field windings 21 a, 21 b, and 21 c are concentratedly wound on the main magnetic pole portion 22 a of the rotor core 22 in order from the outside toward the inside.
  • the order in which the field windings 21a, 21b, and 21c are wound from the outside to the inside is not limited to FIG. 28 and may be wound in another order.
  • the field windings 21a, 21b, and 21c are concentratedly wound while being shifted in the radial direction with respect to the main magnetic pole portion 22a of the rotor core 22.
  • field windings 21a and 21b are sequentially arranged from the radially outer side (that is, the side approaching the stator 10) toward the radially inner side (that is, the side away from the stator 10) with respect to the main magnetic pole portion 22a. , 21c.
  • the order of winding the field windings 21a, 21b, and 21c from the inner side to the outer side in the radial direction is not limited to FIG. 29, and may be wound in another order.
  • the field windings 21a, 21b, and 21c may be concentratedly wound around the main magnetic pole portion 22a of the rotor core 22 by three-wire winding instead of the configuration shown in FIGS.
  • the three-wire winding is a method in which the field windings 21a, 21b, and 21c are bundled and wound around the main magnetic pole portion 22a.
  • a current pulse pair is induced when a rectangular wave is energized.
  • a current pulse pair may be induced when overmodulation is applied (that is, 1 ⁇ m ⁇ 1.27 or 1.15 ⁇ m ⁇ 1.27 in specific control). Since only the modulation factor m and the modulation form are different and a current pulse pair is induced even by overmodulation energization, the same effect as in the first to fourth embodiments can be obtained.
  • the number of main magnetic pole portions 22a included in the rotor 20 is eight.
  • two or more main magnetic pole portions 22a may be provided as long as the rotor 20 is provided. That is, the number of main magnetic pole portions 22a may be set according to the function, rating, and the like of the field winding type rotating electrical machine M. Since only the difference in the number of poles is obtained, the same effect as in the first to fourth embodiments can be obtained.
  • the DC power supply 50 is a secondary battery.
  • a primary battery may be used, or a secondary battery and a primary battery may be combined. It is good also as a structure which switches a secondary battery and a primary battery according to the electric power requested
  • the primary battery corresponds to, for example, a solar battery, a fuel battery, a metal air battery, or the like. Since only the power supply source is different, the same effects as in the first to fourth embodiments can be obtained.
  • the external device is an ECU.
  • the external device may be a computer or a processing device connected via an internal communication line or an external communication line regardless of whether or not the external device is mounted on a vehicle.
  • an external device may not be required, and the control unit 70 may record information corresponding to the command signal therein and output the control signal independently. Since only the configuration of the external device and the presence / absence of a command signal are different, the same effects as those of the first to fourth embodiments can be obtained.
  • the inner rotor type field winding type rotating electrical machine M is provided in which the stator 10 is disposed on the radially outer side and the rotor 20 is disposed on the radially inner side.
  • an outer rotor type field winding type rotating electrical machine M in which the stator 10 is disposed inside in the radial direction and the rotor 20 is disposed outside in the radial direction may be used. Since only the arrangement of the stator 10 and the rotor 20 is different, the same operational effects as in the first to fourth embodiments can be obtained.
  • the stator winding 12 having a plurality of phases has three phases of U phase, V phase, and W phase, and the winding configuration is distributed winding.
  • three phases having different names for example, an X phase, a Y phase, a Z phase, an A phase, a B phase, a C phase, etc.
  • reference phase one reference phase
  • second phase two of the remaining phases
  • Three phases may be set, and all phases other than the reference phase may be set as “second phase”, “third phase”, “fourth phase”,. That is, current pulse pairs may be generated in two or more phases. Moreover, it is good also as winding forms other than a distributed winding, for example, any one of full-pitch winding, concentrated winding, and short-pitch winding. Since only the name, the number of phases, and the winding form are different, the same effects as in the first to fourth embodiments can be obtained.
  • the second phase is turned on for the temporary ON period ⁇ 1 with a delay of cos ⁇ 1 ⁇ in electrical angle from the reference time of the first phase, and further, the third phase is delayed with a delay period ⁇ . Is configured to be turned off only during the temporary OFF period ⁇ 2.
  • the second phase is turned off by a temporary OFF period ⁇ 1 with an electrical angle delayed by cos ⁇ 1 ⁇ from the reference time of the first phase, and further, the third phase is delayed by a delay period ⁇ by a temporary ON period ⁇ 2. It was configured to turn on. Instead of these configurations, the timing may be adjusted so that current pulse pairs appear simultaneously. Further, the second phase and the third phase may be interchanged.
  • stator winding 12 may be performed in other phases including the fourth phase instead of (or in addition to) the second phase or the third phase. By doing so, current pulse pairs are generated simultaneously, the magnetic field ⁇ p is increased, and the torque ⁇ is also increased. Therefore, the same effects as those of the first embodiment can be obtained.
  • the field circuit is provided with one capacitive element C1
  • the field circuit is provided with two capacitive elements C1a and C1b.
  • the rotor 20 is provided, three or more capacitive elements may be provided. Since only the number of capacitive elements is different, the same effect as in the second and fourth embodiments can be obtained.
  • one field winding 21 is provided.
  • two field windings 21a and 21b may be provided as shown in FIGS. 21 and 22 included in the second embodiment.
  • three field windings 21a, 21b, and 21c may be provided. That is, as long as it can be wound around the main magnetic pole portion 22a, one or more field windings may be provided. Since only the number of field windings is different, the same effect as in the second and fourth embodiments can be obtained.
  • the rotor 20 is a convex pole type rotor having a convex pole structure in which the rotor core 22 includes a plurality of main magnetic pole portions 22a.
  • the rotor 20 may be a Landell-type rotor having a Landell structure.
  • the Landel rotor not shown includes a field winding 21, a cylindrical boss portion, and a plurality of claw pole portions.
  • the field winding 21 is wound around the boss portion.
  • the plurality of claw pole portions respectively protrude from the both ends in the axial direction of the boss portion at a predetermined pitch in the circumferential direction, and alternately extend in the circumferential direction toward the other side in the axial direction.
  • M Field winding type rotating electrical machine, 10 ... Stator, 11 ... Stator core, 12 ... Stator winding, 20 ... Rotor, 21, 21a, 21b, 21c ... Field winding, 22 ... Rotor core, 22a ... Main magnetic pole part, 22b ... complementary magnetic pole part, 22m ... permanent magnet, 23 ... shaft, 24 ... detected part, 25 ... auxiliary magnetic pole winding, 30 ... housing, 40 ... rotation sensor, 50 ... direct current power supply, 60 ... drive part, 70 ... control 80, current sensor, C1, C1a, C1b, C2 ... capacitive element, D1, D2, D3 ... rectifier element, Q ... switching element, Iu ... U-phase current, Iv ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

界磁巻線型回転電機は、ステータと、界磁巻線を備えるロータと、整流素子と、駆動部と、制御部とを有して、力率がcosθである。制御部は、矩形波通電または過変調通電を行うとき、第1相のON期間またはOFF期間の中心を基準時とし、基準時から電気角でcos-1θを含む所定範囲内にある所定角度だけ遅れて、第2相のOFF期間中に一時的にONする一時ON期間を設け、かつ、第3相のON期間中に一時的にOFFする一時OFF期間を設けて、電流パルス対Iup,Ivp,Iwpを誘起する電圧パルス対を発生させる。この構成によれば、電流パルス対Iup,Ivp,Iwpによってステータ巻線に励磁磁束を生じさせ、第2相と第3相によって有意差を与えて界磁巻線を励磁することができ、さらに性能を高めることができる。

Description

界磁巻線型回転電機
 本発明は、ステータ、ロータ、整流素子、駆動部および制御部を含む界磁巻線型回転電機に関する。
 従来では、例えば下記の特許文献1において、相電圧の平均電圧がゼロとなるように制御を行って各相の相電流を安定させ、安定してロータの励磁を行えることを目的とする同期機に関する技術が開示されている。この同期機の制御部は、通電モードが矩形波通電または過変調通電であるとき、ロータを励磁するためのパルス電圧を基本波電圧に重畳させる場合において、各相の相電圧の平均値がゼロになるように制御信号を出力する。
特許第5403338号公報
 しかし、特許文献1の技術を用いて各相の相電圧の平均値がゼロになるように制御するだけでは、通電モードが矩形波通電または過変調通電のときは界磁巻線を励磁することができない恐れがある。その場合、界磁巻線の励磁による性能(例えばトルクや回転速度)を向上させることが困難となる。なお、ロータコアに巻かれた界磁巻線はロータ外部から分離されているので、ステータ巻線に印加する電圧波形を制御して生じる磁界によって界磁巻線を励磁する必要がある。
 本願の発明者は、複数相のステータ巻線から界磁巻線を励磁する場合、励磁磁束として有意差を与えるため少なくとも2相の電流により励磁磁束を誘起することが有効と考えた。
 本開示は上記事情に鑑みてなしたものであり、通電モードが矩形波通電または過変調通電のときでも界磁巻線を励磁できる界磁巻線型回転電機を提供することを目的とする。
 本開示によれば、3相以上のステータ巻線(12)が巻かれたステータ(10)と、界磁巻線(21,21a,21b,21c)が巻かれたロータコア(22)を備え、前記ステータに対面して回転可能に配置されたロータ(20)と、前記界磁巻線と直列接続され、前記ステータ巻線にステータ電流を流して生じる磁界(φ1,φ2,φp)によって前記界磁巻線を励磁して流れる界磁電流(If)を一方向に規制する整流素子(D1)と、複数のスイッチング素子(Q)を備え、複数相の電力を前記ステータ巻線に出力するドライバー(60)と、ロータの回転速度に応じて正弦波通電,矩形波通電,過変調通電のうちでいずれかの通電を行うための前記複数相の制御信号を前記ドライバーに出力するコントローラー(70)とを有して、力率がcosθである界磁巻線型回転電機(M)において、
 前記コントローラーは、前記矩形波通電または前記過変調通電を行うとき、前記複数相のうちで第1相のON期間またはOFF期間の中心を基準時とし、前記基準時から電気角でcos-1θを含む所定範囲内にある所定角度(δ)だけ遅れて、前記複数相のうちで前記第1相とは異なる第2相のOFF期間中に一時的にONする一時ON期間(α1,γ2)を設け、かつ、前記複数相のうちで前記第1相および前記第2相とは異なる第3相のON期間中に一時的にOFFする一時OFF期間(α2,γ1)を設けて、電流パルス対を誘起する電圧パルス対を発生させる。
 上記の構成によれば、基本波電流が流れる第1相の基準時から所定角度だけ遅れて、電流パルス対を誘起する電圧パルス対を第2相と第3相に発生させる。誘起された電流パルス対によってステータ巻線に励磁磁束を生じさせ、第2相と第3相によって有意差を与えて界磁巻線を励磁することができる。そのため、矩形波通電または過変調通電のときでもステータ巻線から界磁巻線を励磁して、さらに性能を高めることができる。
 更に、本開示によれば、前記一時ON期間の長さと前記一時OFF期間の長さは、それぞれ前記第1相の一周期に対して0.5~10%である。この構成によれば、第1相のステータ巻線に流れる基本波電流に大きな影響を与えず、かつ、界磁巻線を確実に励磁することができる。
 更に、本開示によれば、前記所定範囲は、cos-1θ-30°≦δ≦cos-1θ+30°である。この所定範囲内の所定角度で電圧パルス対を設けると、矩形波通電または過変調通電のときでも確実に電流パルス対を発生させることができる。
 更に、本開示によれば、前記一時ON期間および前記一時OFF期間のうちで一方の期間の始期は、他方の期間の始期から遅延期間(β,β1,β2)だけ遅れる。この構成によれば、第1相のステータ巻線に流れる基本波電流に対し、有意差のある電流パルス対を作る事ができる。したがって、矩形波通電または過変調通電のときでもステータ巻線から界磁巻線を励磁して、さらに性能を高めることができる。
 更に、本開示によれば、前記コントローラーは、正電圧パルス(α1,γ2)と負電圧パルス(α2,γ1)の対が相当たり電気角の一周期中に1回または2回発生するように制御する。この構成によれば、1回または2回の回数を選択することで、ロータの回転速度に応じて界磁巻線を励磁する励磁磁束量または界磁電流量を調節することができる。
 更に、本開示によれば、一端を前記界磁巻線の両端の間に接続し、他端を前記整流素子の端子に接続する容量素子(C1,C1a,C1b)を有する。この構成によれば、界磁巻線に流れる電流によって打ち消される電圧分を容量素子に蓄え、電流方向が変わった時に放電して有効利用することができる。
 更に、本開示によれば、前記ロータは、前記界磁巻線が一極毎に集中巻きされた凸極型ロータと、前記界磁巻線が巻かれるボス部と前記ボス部の端部から延びる複数の爪極部とを備えて前記爪極部をN極またはS極とするランデル型ロータとのいずれかである。この構成によれば、凸極型ロータまたはランデル型ロータのいずれかを有する界磁巻線型回転電機は、矩形波通電または過変調通電のときでもステータ巻線から界磁巻線を励磁して、さらに性能を高めることができる。
 更に、本開示によれば、前記ロータは、前記ステータに対面する前記ロータコアの第1凸状部位である主磁極部と、前記第1凸状部位よりも周方向幅を狭くした第2凸状部位である補磁極部とを備え、前記補磁極部は、前記ステータの磁界を打消す方向に着磁された磁石を有する。ステータの回転磁界によって発生する磁束は概ね主磁極を通るが、漏れる磁束もありロータ界磁巻線の位置により通る磁束量や向きも異なってくる。この構成によれば、補磁極部を置くことで極間の境を設け、極間を跨いで漏れる磁束を抑制できる。その結果、極内に磁束を効率良く通し、効果的に界磁電流を得ることができる。
 なお、「複数相」の相数は、ステータに巻ける限り、第1相,第2相,第3相を含めて3相以上であれば任意の相数を設定してよい。「界磁巻線型回転電機」は、ロータに界磁巻線を備え、回転軸を有すれば任意の回転電機を適用してよい。例えば、発電機,電動機,及び選択的に電動機または発電機として作動する電動発電機等が該当する。「正弦波通電」,「矩形波通電」および「過変調通電」は、電圧パルス(すなわちステータ巻線に印加する電圧のパルス波)の変調率の違いによって分けられる。「ON」の表記はパルス電圧がハイレベルの状態を意味し、正論理に従って表記する「1」や「H(ハイ)」等と同義である。「OFF」の表記はパルス電圧がローレベルの状態を意味し、正論理に従って表記する「0」や「L(ロー)」等と同義である。負論理に従う場合には、正論理と逆になる。「ON期間やOFF期間の中心」は、各期間の始期から終期までにおける中間の時点でもよく、中間の時点を基準とする許容範囲内の時点でもよい。「磁石」は、永久磁石でもよく、電磁石でもよい。
界磁巻線型回転電機の第1構成例を示す模式図である。 ステータとロータの第1構成例を部分的に示す径方向断面図である。 駆動部と励磁巻線回路を含む構成例を示す模式図である。 第1相のON期間の中心を基準時としたとき、ステータとロータに生じる磁界の例を示す模式図である。 界磁巻線が励磁されるステータ電流の例を示す模式図である。 制御部による各相のON/OFFの制御例を示す模式図である。 各相の制御についてシミュレーション例を示す模式図である。 図7のシミュレーションでステータ巻線に流れる電流を示す模式図である。 図7のシミュレーションで界磁巻線に流れる電流を示す模式図である。 図7のシミュレーションでトルクの変化を示す模式図である。 制御部による各相のON/OFFの第1制御例を示す模式図である。 制御部による各相のON/OFFの第2制御例を示す模式図である。 第1相のOFF期間の中心を基準時としたとき、ステータとロータに生じる磁界の例を示す模式図である。 界磁巻線が励磁されるステータ電流の例を示す模式図である。 制御部による各相のON/OFFの制御例を示す模式図である。 制御部による各相のON/OFFの第3制御例を示す模式図である。 制御部による各相のON/OFFの第4制御例を示す模式図である。 制御部による各相のON/OFFの第5制御例を示す模式図である。 制御部による各相のON/OFFの第6制御例を示す模式図である。 界磁巻線型回転電機の第2構成例を示す模式図である。 ステータとロータの第2構成例を部分的に示す径方向断面図である。 ステータとロータの第3構成例を部分的に示す径方向断面図である。 ステータとロータの第4構成例を部分的に示す径方向断面図である。 ステータとロータの第5構成例を部分的に示す径方向断面図である。 界磁巻線と補磁極巻線を含む界磁回路を示す模式図である。 界磁巻線と補磁極巻線を含む界磁回路を示す模式図である。 界磁巻線と複数の容量素子を含む界磁回路を示す模式図である。 ステータとロータの第6構成例を部分的に示す径方向断面図である。 ステータとロータの第6構成例を部分的に示す径方向断面図である。
 以下、本発明を実施するための形態について、図面に基づいて説明する。なお、特に明示しない限り、「接続する」は電気的に接続することを意味する。
 〔実施の形態1〕
 実施の形態1は、矩形波通電のときに界磁巻線を励磁する例であって、図1~図19を参照しながら説明する。ここで、矩形波通電と過変調通電は、変調率mが一定値以上となるように変調する制御である。一定値は、通常の制御では「1.0」が該当し、特定の制御では「1.15」が該当する。特定の制御は、例えばパルス幅変調制御(いわゆるPWM制御)で3次高調波重畳方式や、2相変調方式を用いる場合の過変調通電が該当する。正弦波は、変調率mが一定値未満となるように変調する制御である。
 図1に示す界磁巻線型回転電機Mは、力率がcosθであり、ステータ10,ロータ20,ハウジング30,駆動部(ドライバー)60,制御部(コントローラー)70などを有する。この界磁巻線型回転電機Mは、制御部70から伝達される制御信号に従って駆動部60から出力されるステータ電流(電機子電流)によって回転駆動が制御される。本形態の界磁巻線型回転電機Mは、ステータ10を径方向の外側に配置し、ロータ20を径方向の内側に配置するインナーロータ型である。なお、駆動部60と制御部70は、ハウジング30の内部または外部に設けられ、構成例や機能などについては後述する。
 ステータ10は、図2に示すように、ステータコア11とステータ巻線(電機子巻線)12などを有する。ステータコア11は、径方向に延びる複数のコアティースと、周方向に隣り合うコアティースの間に設けられる複数のスロットなどを有する。複数のスロットには、複数相のステータ巻線12が所要の巻線形態で収容されている。本形態では、複数相をU相,V相,W相の3相とし、所要の巻線形態を分布巻きとする。上述したステータ電流は、図1を例にすると、U相巻線に流れるU相電流Iu,V相巻線に流れるV相電流Iv,V相巻線に流れるV相電流Iwが該当する。3相のうちいずれかの1相を「第1相」とし、残りの2相を「第2相」および「第3相」とする。
 ロータ20は、ステータ10に対面して回転し、界磁巻線21とロータコア22,整流素子D1などを有する。ロータコア22は、複数の主磁極部22aを有する。主磁極部22aは「突極」や「極」とも呼ばれ、ステータ10側に延びる第1凸状部位である。主磁極部22aの数は、2以上で任意の数を設定してよい。本形態のロータ20は主磁極部22aの数を「8」とする。すなわち、極数が「8」であり、極対数が「4」である。周方向に隣り合う主磁極部22aの極性が異なるように、それぞれの主磁極部22aには界磁巻線21が巻かれる。界磁巻線21の巻線形態は、主磁極部22aに対して集中的に巻く集中巻きである。界磁巻線21と整流素子D1は、図3に示すように直列接続された閉回路である界磁回路を構成する。整流素子D1は、界磁回路に流れる界磁電流Ifを一方向に規制する(整流する)。
 シャフト23は、ロータ20が固定され、界磁巻線型回転電機Mの主軸や回転軸などとして用いられる。このシャフト23は、さらに一端側の外周面に被検出部24が設けられる。本形態の被検出部24は、外周面の周方向に一定間隔で設けられる磁気突極とする。
 ハウジング30は、ステータ10を固定するとともに、ロータ20が回転可能となるようにベアリング等を介して支持する。ハウジング30の内部または外部のいずれかには、回転センサ40を備える。回転センサ40は、被検出部24の磁気突極を検出して回転情報(すなわち回転位置や回転速度)を検出して、制御部70に伝達する。
 回転センサ40は、ロータ20の回転に関する情報(例えば回転速度や回転位置など)が検出できれば任意であり、本形態ではレゾルバを用いる。レゾルバは、被検出部24の磁気突極を検出して回転情報である信号(例えばアナログ信号やデジタル信号)を制御部70に伝達する。
 図3に示す電流センサ80は、ステータ電流(すなわち相電流Iu,Iv,Iw)が検出できれば任意である。本形態の電流センサ80は、被検出電流としてのステータ電流によって発生した磁界をホール素子により検出する磁気比例型センサを用いる。
 図3は、界磁巻線型回転電機Mを駆動制御するための構成を示す。直流電源50は、並列接続される平滑用の容量素子C2を介して、駆動部60に電力を供給する。直流電源50はいわゆるバッテリであり、本形態では二次電池を用いる。二次電池は、例えばリチウムイオン電池,リチウムイオンポリマー電池,鉛蓄電池、ニッケル水素電池などのうちで一以上が該当する。
 駆動部60はインバータとして機能し、スイッチング素子Qと整流素子D2とを一組とし、プラス電圧とマイナス電圧に対応するため1相で二組とする。本形態の駆動部60は、3相に対応するために全部で6組を有する。この駆動部60は、制御部70から伝達される制御信号に従ってスイッチングを行い、所要の電力および周波数で界磁巻線型回転電機Mに出力する。スイッチング素子Qには、例えばIGBTを用いる。整流素子D2は、フリーホイールダイオードとしての役割を果たすため、スイッチング素子Qに流れる電流とは逆方向に電流が流れるようにスイッチング素子Qのコレクタ端子とエミッタ端子との間に接続する。
 制御部70は、図示を省略した外部装置から受ける指令信号に基づいて、駆動部60(具体的には各スイッチング素子Qの制御端子)に制御信号を出力する。本形態の外部装置は、電子制御ユニットであるECUとする。制御信号は、ロータ20の回転速度に応じて正弦波通電,矩形波通電,過変調通電のうちでいずれかの通電を行う信号である。
 制御部70は、矩形波通電において、ステータ巻線12に通電するステータ電流の基本波に、界磁巻線21を励磁する電圧パルス対を付加した制御信号を駆動部60に出力する機能を有する。ステータ電流の基本波は、ロータ20の回転速度によって決まる電気角速度で回転する回転磁界を形成する同期電流(すなわち相電流Iu,Iv,Iwの基本波)に相当する。電圧パルス対は、第1相であるV相電流Ivが最大値または最小値のとき、第2相であるU相および第3相であるW相で互いに反対になるように付加され、U相電流IuおよびW相電流Iwにパルス状の電流が生じる。このパルス状の電流によってステータ巻線12に生じた磁界は、界磁巻線21を励磁して界磁電流を発生させる。
 上述のように構成された界磁巻線型回転電機Mにおいて、制御部70から駆動部60に伝達する制御信号の例について、図4~図19を参照しながら説明する。
 A.基準時を第1相のON期間の中心とする例
 まず、図4~図12を参照しながら、スイッチング素子Qを駆動する制御信号(具体的にはパルス信号)にかかるON期間の中心を基準時とする例について説明する。
 図4には、第1相であるV相電流Ivが最大値のときに生じる磁界を示す。この図4には、「U」,「V」,「W」はステータ巻線12の各相を示し、「+」,「-」はステータ巻線12に流れる電流の方向を示す。例えば、「U+」はU相巻線に紙面の手前方向に電流が流れることを意味し、「V-」はV相巻線に紙面の奥行き方向に電流が流れることを意味する。
 ステータ巻線12から界磁巻線21を励磁するには、励磁磁束として有意差を与えるため、少なくとも2相のステータ巻線12に流す電流によって励磁磁束を誘起する事が有効である。例えば、第1相であるV相巻線を基準としたときには、第2相であるU相巻線および第3相であるW相巻線に流す電流によって励磁磁束を誘起する。
 第1相であるV相巻線に流れるV相電流Ivが最大値のときは、図4に示すように、ステータ10とロータ20の間で磁界φ1が時計回り方向に生じ、同じく磁界φ2が反時計回り方向に生じる。すなわち、周方向に隣り合う磁界φ1,φ2は互いに反対方向に磁束が流れる。図4に示す左側の主磁極部22aは矢印A1方向に磁化されてN極になり、同じく右側の主磁極部22aは矢印A2方向に磁化されてS極になる。
 界磁巻線21の励磁は、磁界φ1,φ2が生じているときでも、さらに一点鎖線で示す磁界φpを生じさせることができる。図4に示す磁界φpは、磁界φ1と同様にステータ10とロータ20の間で磁束が時計回り方向に流れるので、主磁極部22aに巻かれた界磁巻線21を励磁できる。磁界φpによって界磁巻線21が励磁されると、図3に示す界磁回路には磁界φ1,φ2とともに磁界φpを起因とする界磁電流Ifが流れる。
 励磁磁束として有意差を与えるには、図5に示すように、U相電流IuおよびW相電流Iwにパルス状の電流が生じさせるとよい。図5に示す例によれば、V相電流Ivが最大値になる電気角ω1のとき、U相電流Iuにプラス方向のパルス電流Iupを流し、W相電流Iwにマイナス方向のパルス電流Iwpを流す。具体的には図4において、「U-」で示すU相巻線にパルス電流Iupが流れ、「W+」で示すW相巻線にパルス電流Iwpが流れる。パルス電流Iup,Iwpは「電流パルス対」に相当する。このように周方向に隣り合うステータ巻線12でU相電流IuとW相電流Iwで互いに反対方向にパルス電流Iup,Iwpを流すことで、励磁磁束として有意差を与えることができる。これらのパルス電流Iup,Iwpを生じさせるには、制御部70は図6に示す3相の電圧波形となる制御信号を駆動部60に出力すればよい。
 図6において、第1相であるV相電圧Vvは、電気角ω11から電気角ω16までを一周期(つまり電気角で360°)とし、ON期間VonとOFF期間Voffを交互に繰り返す。ON期間Vonは、電気角ω11から電気角ω15までの期間である。OFF期間Voffは、電気角ω15から電気角ω16までの期間である。V相電流Ivが最大値になるのは、ON期間Vonの中心である。ON期間Vonの中心は、始期から終期までにおける中間の時点でもよく、中間の時点を基準とする許容範囲内の時点でもよい。図6では、ON期間Vonの中心が電気角ω12であり、基準時Svとする。当該基準時Svから電気角でcos-1θだけ遅らせたタイミングで、第2相と第3相の電圧を一時的にONまたはOFFする。当該電気角のcos-1θは「所定角度δ」に相当する。
 具体的には電気角ω13から電気角ω14までの一時ON期間α1は、「正電圧パルス」に相当し、U相電圧Vuを一時的にONにする期間である。同じく電気角ω13から電気角ω14までの一時OFF期間α2は、「負電圧パルス」に相当し、W相電圧Vwを一時的にOFFにする期間である。正電圧パルスと負電圧パルスの対は、「電圧パルス対」に相当する。U相電圧Vuを一時的にONすると、図5に示すパルス電流Iupが発生する。同じくW相電圧Vwを一時的にOFFすると、図5に示すパルス電流Iwpが発生する。パルス状のパルス電流Iup,Iwpは「電流パルス対」に相当し、相電流の大小方向に関して互いに逆方向に生じる。
 一時ON期間α1および一時OFF期間α2の始期を基準時Svから電気角でcos-1θだけ遅らせるのは、ステータ巻線12に印加する相電圧に対して、ステータ巻線12に流れる相電流が力率(すなわちcosθ)に対応する電気角のcos-1θだけ遅れるためである。一般的な回転電機の力率は0.5≦cosθ≦0.9であるので、電気角では25°≦cos-1θ≦60°になる。
 一時ON期間α1の長さと一時OFF期間α2の長さは、いずれも電圧パルスの基本波周期に対して0.5~10%が好ましい。一時ON期間α1と一時OFF期間α2の長さが短くなるにつれて、パルス状の電流が得られ難くなる。一時ON期間α1と一時OFF期間α2の長さが長くなるにつれて、基本波に与える影響が大きくなる。
 パルス電流Iupおよびパルス電流Iwpは、基本波のU相電流IuおよびW相電流Iwに対して周期が1/10程度に過ぎないので、相電圧と相電流の位相差は基本波の場合に対して無視しても影響は少ない。
 上述した図4~図6はV相電流Ivが最大値となる時点を基準時Svとした例である。ステータ巻線12に流す電流は3相平衡が好ましいので、3相でそれぞれ行う事が好ましい。すなわち第1相をU相とするとき、U相電流Iuが最大値となる時点を基準時Suとし、当該基準時Suから電気角でcos-1θだけ遅らせたタイミングで第2相のW相電圧Vwを一時的にONするとともに、第3相のV相電圧Vvを一時的にOFFする。同様に第1相をW相とするとき、W相電流Iwが最大値となる時点を基準時Swとし、当該基準時Swから電気角でcos-1θだけ遅らせたタイミングで第2相のV相電圧Vvを一時的にONするとともに、第3相のU相電圧Vuを一時的にOFFする。
 制御部70から駆動部60に出力する制御信号と、当該制御信号によってステータ巻線12に流れる電流とについて、シミュレーションを行った結果を図7~図9に示す。このシミュレーションでは、3相平衡のため、3相のうちで1相を第1相とし、残りの2相を第2相および第3相として電流パルス対を発生させる。
 図7には、制御部70から駆動部60に出力する制御信号、すなわちU相電圧Vu,V相電圧Vv,W相電圧Vwの制御例を示す。第1相がU相の場合は、U相電圧VuにかかるON期間Vonの中心である電気角ω21が基準時Suになる。当該基準時Suから電気角でcos-1θ遅れると電気角ω22になる。電気角ω22からは、第2相のW相電圧Vwを一時ON期間α1だけONし、第3相のV相電圧Vvを一時OFF期間α2だけOFFする。
 第1相がV相の場合は、V相電圧VvにかかるON期間Vonの中心である電気角ω23が基準時Svになる。当該基準時Svから電気角でcos-1θだけ遅れると電気角ω24になる。電気角ω24からは、第2相のU相電圧Vuを一時ON期間α1だけONし、第3相のW相電圧Vwを一時OFF期間α2だけOFFする。
 第1相がW相の場合は、W相電圧VwにかかるON期間Vonの中心である電気角ω25が基準時Swになる。当該基準時Swから電気角でcos-1θだけ遅れると電気角ω26になる。電気角ω26からは、第2相のV相電圧Vvを一時ON期間α1だけONし、第3相のU相電圧Vuを一時OFF期間α2だけOFFする。
 図8には、図7に示す制御信号によってステータ巻線12に流れる相電流の変化を示す。図7に示す電気角ω22から制御する一時ON期間α1および一時OFF期間α2に対応して、図8に示す電気角ω31からパルス電流Iwp,Ivpが生じる。また、図7に示す電気角ω24から制御する一時ON期間α1および一時OFF期間α2に対応して、図8に示す電気角ω32からパルス電流Iup,Iwpが生じる。さらに、図7に示す電気角ω26から制御する一時ON期間α1および一時OFF期間α2に対応して、図8に示す電気角ω33からパルス電流Ivp,Iupが生じる。
 図9には、界磁巻線21に流れる界磁電流Ifの変化例を示す。この界磁電流Ifは、ステータ巻線12に電流が流れて励磁磁束を誘起し、さらに界磁巻線21が該励磁磁束により励磁されることで生じる。ステータ巻線12に流れる電流には、図8に一点鎖線で囲んで示すパルス電流Iup,Ivp,Iwpを含む。界磁電流Ifが大きく変化するタイミングは、図8に示すパルス電流Iup,Ivp,Iwpが生じるタイミングと一致する。すなわち、電気角ω31,ω32,ω33からそれぞれ一時的に界磁電流Ifが大きく変化する。
 図10には、界磁巻線型回転電機Mが出力するトルクτの変化例を示す。このトルクτは、ステータ巻線12に電流が流れて励磁磁束を誘起し、図1に示すロータ20の回転に伴ってシャフト23から出力される。トルクτが他よりも大きく変化するタイミングは、図8に示すパルス電流Iup,Ivp,Iwpが生じるタイミングと一致する。すなわち、電気角ω31,ω32,ω33からそれぞれ一時的にトルクτが他よりも大きく変化する。したがって、基本波電流の相電流(すなわちU相電流Iu,V相電流Iv,W相電流Iw)に対してパルス電流Iup,Ivp,Iwpを生じさせると、界磁巻線型回転電機Mのトルクτがさらに向上するのが明らかである。
 図11,図12には、制御部70から駆動部60に伝達する制御信号の例を示す。この図11,図12に示す制御信号は、3相のうちで1相を第1相とし、残りの2相を第2相および第3相として電流パルス対を発生させる。
 図11は、図7と同じ制御例であり、一時ON期間α1および一時OFF期間α2の始期を同一のタイミングにする例である。第1相がU相の場合は、U相電圧VuにかかるON期間Vonの中心である電気角ω55,ω5bがそれぞれ基準時Suになる。各基準時Suから電気角でcos-1θだけ遅れると電気角ω56,ω5cになる。電気角ω56,ω5cからは、それぞれ第2相のW相電圧Vwを一時ON期間α1だけONし、第3相のV相電圧Vvを一時OFF期間α2だけOFFする。
 第1相がV相の場合は、V相電圧VvにかかるON期間Vonの中心である電気角ω57,ω5dがそれぞれ基準時Svになる。当該基準時Svから電気角でcos-1θだけ遅れると電気角ω58,ω5eになる。電気角ω58,ω5eからは、それぞれ第2相のU相電圧Vuを一時ON期間α1だけONし、第3相のW相電圧Vwを一時OFF期間α2だけOFFする。
 第1相がW相の場合は、W相電圧VwにかかるON期間Vonの中心である電気角ω53,ω59,ω5fがそれぞれ基準時Swになる。当該基準時Swから電気角でcos-1θだけ遅れると電気角ω54,ω5a,ω5gになる。電気角ω54,ω5a,ω5gからは、それぞれ第2相のV相電圧Vvを一時ON期間α1だけONし、第3相のU相電圧Vuを一時OFF期間α2だけOFFする。
 図12は、図7と異なる制御例であり、一時ON期間α1よりも一時OFF期間α2を遅延期間βだけ遅らせる例である。図12では、第1相をV相とする場合について説明する。第1相がV相の場合は、V相電圧VvにかかるON期間Vonの中心である電気角ω61,ω64,ω67がそれぞれ基準時Svになる。当該基準時Svから電気角でcos-1θだけ遅れると電気角ω62,ω65,ω68になる。電気角ω62,ω65,ω68からは、それぞれ第2相のU相電圧Vuを一時ON期間α1だけONする。さらに遅延期間βだけ遅れると電気角ω63,ω66,ω69になる。電気角ω63,ω66,ω69からは、それぞれ第3相のW相電圧Vwを一時OFF期間α2だけOFFする。すなわち、一時OFF期間α2の始期は、電気角で(cos-1θ+β)だけ遅れることになる。
 なお、第1相がU相の場合は、U相電圧VuにかかるON期間Vonの中心から電気角でcos-1θだけ遅れて、第2相のW相電圧Vwを一時ON期間α1だけONし、さらに遅延期間βだけ遅れて第3相のV相電圧Vvを一時OFF期間α2だけOFFする。また、第1相がW相の場合は、W相電圧VwにかかるON期間Vonの中心から電気角でcos-1θだけ遅れて、第2相のV相電圧Vvを一時ON期間α1だけONし、さらに遅延期間βだけ遅れて第3相のU相電圧Vuを一時OFF期間α2だけOFFする。
 尚、ここでは第3相の遅延期間βの場合を示したが、逆の場合も同様である。即ち、第1相がV相の場合は、V相電圧VvにかかるON期間Vonの中心から電気角でcos-1θだけ遅れて、第3相のW相電圧Vwを一時OFF期間α2だけOFFし、さらに遅延期間βだけ遅れて第2相のU相電圧Vuを一時ON期間α1だけONする。
 また、第1相がU相の場合は、U相電圧VuにかかるON期間Vonの中心から電気角でcos-1θだけ遅れて、第3相のV相電圧Vvを一時OFF期間α2だけOFFし、さらに遅延期間βだけ遅れて第2相のW相電圧Vwを一時ON期間α1だけONする。
 また、第1相がW相の場合は、W相電圧VwにかかるON期間Vonの中心から電気角でcos-1θだけ遅れて、第3相のU相電圧Vuを一時OFF期間α2だけOFFし、さらに遅延期間βだけ遅れて第2相のV相電圧Vvを一時ON期間α1だけONする。
 B.基準時を第1相のOFF期間の中心とする例
 次に、図13~図19を参照しながら、第1相であるV相についてスイッチング素子Qを駆動する制御信号(具体的にはパルス信号)にかかるOFF期間の中心を基準時とする例について説明する。上述した例では、ステータ巻線12の第1相に流れる電流が最大値になるタイミングとして、第1相のON期間の中心を基準時とした。これに対して、ステータ巻線12の第1相に流れる電流が最小値になるタイミングとして、第1相のOFF期間の中心を基準時とする例である。
 図13には、図4と同様にして、第1相であるV相電流Ivが最小値のときに生じる磁界を示す。第1相のON期間の中心を基準時とする場合と同様にして、ステータ巻線12から界磁巻線21を励磁するには、励磁磁束として有意差を与えるため、少なくとも2相のステータ巻線12に流す電流によって励磁磁束を誘起する事が有効と考えられる。
 第1相であるV相巻線に流れるV相電流Ivが最小値のときは、図13に示すように、ステータ10とロータ20の間で磁界φ1が反時計回り方向に生じ、同じく磁界φ2が時計回り方向に生じる。すなわち、周方向に隣り合う磁界φ1,φ2は互いに反対方向に磁束が流れる。図13に示す左側の主磁極部22aは矢印A3方向に磁化されてS極になり、同じく右側の主磁極部22aは矢印A4方向に磁化されてN極になる。
 界磁巻線21を励磁するには、磁界φ1,φ2が生じているときでも、一点鎖線で示す磁界φpを生じさせるとよい。図13に示す磁界φpは、ステータ10とロータ20の間で磁束が反時計回り方向に流れるので、主磁極部22aに巻かれた界磁巻線21を励磁する。こうして界磁巻線21が励磁されると、図3に示す界磁回路に界磁電流Ifが流れる。
 励磁磁束として有意差を与えるには、図14に示すように、U相電流IuおよびW相電流Iwにパルス状の電流が生じさせるとよい。図14に示す例によれば、V相電流Ivが最小値になる電気角ω2のとき、W相電流Iwにプラス方向のパルス電流Iwpを流し、U相電流Iuにマイナス方向のパルス電流Iupを流す。具体的には図13において、「U-」で示すU相巻線にパルス電流Iupが流れ、「W+」で示すW相巻線にパルス電流Iwpが流れる。パルス電流Iup,Iwpは「電流パルス対」に相当する。このように周方向に隣り合うステータ巻線12でW相電流IwとU相電流Iuで互いに反対方向にパルス電流Iwp,Iupを流すことで、励磁磁束として有意差を与えることができる。これらのパルス電流Iwp,Iupを生じさせるには、制御部70は図15に示す3相の電圧波形となる制御信号を駆動部60に出力すればよい。
 図15において、第1相であるV相電圧Vvは、電気角ω71から電気角ω76までを一周期(つまり電気角で360°)とし、OFF期間VoffとON期間Vonを交互に繰り返す。OFF期間Voffは、電気角ω71から電気角ω75までの期間である。ON期間Vonは、電気角ω75から電気角ω76までの期間である。OFF期間Voffの中心は電気角ω72である。この電気角ω72を基準時Svとし、当該基準時Svから電気角でcos-1θだけ遅らせたタイミングで第2相と第3相の電圧を一時的にONまたはOFFする。具体的には電気角ω73から電気角ω74までの一時OFF期間γ1は、「負電圧パルス」に相当し、U相電圧Vuを一時的にOFFにする期間である。同じく電気角ω73から電気角ω74までの一時ON期間γ2は、「正電圧パルス」に相当し、W相電圧Vwを一時的にONにする期間である。U相電圧Vuを一時的にOFFすると、図14に示すマイナス方向のパルス電流Iupが発生する。同じくW相電圧Vwを一時的にONすると、図14に示すプラス方向のパルス電流Iwpが発生する。パルス状のパルス電流Iup,Iwpは「電流パルス対」に相当し、相電流の大小方向に関して互いに逆方向に生じる。
 図16,図17には、制御部70から駆動部60に伝達する制御信号の例を示す。この図16,図17に示す制御信号は、3相のうちで1相を第1相とし、残りの2相を第2相および第3相として電流パルス対を発生させる。
 図16は、図15と同じ制御例であり、一時OFF期間γ1および一時ON期間γ2の始期を同一のタイミングにする例である。一時OFF期間γ1および一時ON期間γ2の長さは、一時ON期間α1および一時OFF期間α2の長さと同様に、基本波周期に対して0.5~10%程度が好ましい。
 第1相がU相の場合は、U相電圧VuにかかるOFF期間Voffの中心である電気角ω81,ω87,ω8dがそれぞれ基準時Suになる。各基準時Suから電気角でcos-1θだけ遅れると電気角ω82,ω88,ω8eになる。電気角ω82,ω88,ω8eからは、それぞれ第2相のW相電圧Vwを一時OFF期間γ1だけOFFし、第3相のV相電圧Vvを一時ON期間γ2だけONする。
 第1相がV相の場合は、V相電圧VvにかかるOFF期間Voffの中心である電気角ω83,ω89がそれぞれ基準時Svになる。当該基準時Svから電気角でcos-1θだけ遅れると電気角ω84,ω8aになる。電気角ω84,ω8aからは、それぞれ第2相のU相電圧Vuを一時OFF期間γ1だけOFFし、第3相のW相電圧Vwを一時ON期間γ2だけONする。
 第1相がW相の場合は、W相電圧VwにかかるOFF期間Voffの中心である電気角ω85,ω8bがそれぞれ基準時Swになる。当該基準時Swから電気角でcos-1θだけ遅れると電気角ω86,ω8cになる。電気角ω86,ω8cからは、それぞれ第2相のV相電圧Vvを一時OFF期間γ1だけOFFし、第3相のU相電圧Vuを一時ON期間γ2だけONする。
 図17は、図15と異なる制御例であり、一時OFF期間γ1よりも一時ON期間γ2を遅延期間βだけ遅らせる例である。図17では、第1相をV相とする場合について説明する。第1相がV相の場合は、V相電圧VvにかかるOFF期間Voffの中心である電気角ω91,ω94,ω97がそれぞれ基準時Svになる。当該基準時Svから電気角でcos-1θだけ遅れると電気角ω92,ω95,ω98になる。電気角ω92,ω95,ω98からは、それぞれ第2相のU相電圧Vuを一時OFF期間γ1だけOFFする。さらに遅延期間βだけ遅れると電気角ω93,ω96,ω99になる。電気角ω93,ω96,ω99からは、それぞれ第3相のW相電圧Vwを一時ON期間γ2だけONする。すなわち、一時ON期間γ2の始期は、電気角で(cos-1θ+β)だけ遅れることになる。
 なお、第1相がU相の場合は、U相電圧VuにかかるOFF期間Voffの中心から電気角でcos-1θだけ遅れて、第2相のW相電圧Vwを一時OFF期間γ1だけOFFし、さらに遅延期間βだけ遅れて第3相のV相電圧Vvを一時ON期間γ2だけONする。また、第1相がW相の場合は、W相電圧VwにかかるOFF期間Voffの中心から電気角でcos-1θだけ遅れて、第2相のV相電圧Vvを一時OFF期間γ1だけOFFし、さらに遅延期間βだけ遅れて第3相のU相電圧Vuを一時ON期間γ2だけONする。
 尚、ここでは第3相の遅延期間βの場合を示したが、逆の場合も同様である。即ち、第1相がV相の場合は、V相電圧VvにかかるOFF期間Voffの中心から電気角でcos-1θだけ遅れて、第3相のW相電圧Vwを一時ON期間γ2だけONし、さらに遅延期間βだけ遅れて第2相のU相電圧Vuを一時OFF期間γ1だけOFFする。
 また、第1相がU相の場合は、U相電圧VuにかかるOFF期間Voffの中心から電気角でcos-1θだけ遅れて、第3相のV相電圧Vvを一時ON期間γ2だけONし、さらに遅延期間βだけ遅れて第2相のW相電圧Vwを一時OFF期間γ1だけOFFする。
 また、第1相がW相の場合は、W相電圧VwにかかるOFF期間Voffの中心から電気角でcos-1θだけ遅れて、第3相のU相電圧Vuを一時ON期間γ2だけONし、さらに遅延期間βだけ遅れて第2相のV相電圧Vvを一時OFF期間γ1だけOFFする。
 C.基準時を第1相のON期間とOFF期間の各中心とする例
 次に、図18,図19を参照しながら、第1相のスイッチング素子Qを駆動する制御信号(具体的にはパルス信号)にかかるON期間とOFF期間の各中心を基準時とする例について説明する。簡単に言えば、上述した「A.基準時を第1相のON期間の中心とする例」と「B.基準時を第1相のOFF期間の中心とする例」を組み合わせる。以下では第1相をV相とする場合について説明するが、3相平衡が好ましいので、第1相がU相やW相の場合でもV相と同様に行う。
 図18において、V相電圧VvにかかるON期間Vonの中心である電気角ω103と、OFF期間Voffの中心である電気角ω101がそれぞれ基準時Svになる。一時ON期間α1,r2と一時OFF期間α2,γ1は、それぞれ基準時Svから電気角でcos-1θだけ遅れるものとする。
 ON期間Vonの中心である基準時Svから電気角でcos-1θだけ遅れると、電気角ω104になる。電気角ω104からは、第2相のU相電圧Vuを一時ON期間α1だけONし、第3相のW相電圧Vwを一時OFF期間α2だけOFFする。
 OFF期間Voffの中心である基準時Svから電気角でcos-1θだけ遅れると、電気角ω102になる。電気角ω102からは、第2相のU相電圧Vuを一時OFF期間γ1だけOFFし、第3相のW相電圧Vwを一時ON期間γ2だけOFFする。
 図19は、図18と異なる制御例であり、第3相を第2相よりも遅らせる例である。具体的には、一時ON期間α1よりも一時OFF期間α2を遅延期間β1だけ遅らせ、一時OFF期間γ1よりも一時ON期間γ2を遅延期間β2だけ遅らせる。第2相は、第1相の基準時Svから電気角でcos-1θだけ遅れる点で、図18の制御例と同じである。
 図19において、V相電圧VvにかかるON期間Vonの中心である電気角ω113と、OFF期間Voffの中心である電気角ω111がそれぞれ基準時Svになる。
 ON期間Vonの中心である基準時Svから電気角でcos-1θだけ遅れると、電気角ω114になる。電気角ω114からは、第2相のU相電圧Vuを一時ON期間α1だけONする。さらに電気角ω114から遅延期間β1だけ遅れて、第3相のW相電圧Vwを一時OFF期間α2だけOFFする。
 OFF期間Voffの中心である基準時Svから電気角でcos-1θだけ遅れると、電気角ω112になる。電気角ω112からは、第2相のU相電圧Vuを一時OFF期間γ1だけOFFする。さらに電気角ω112から遅延期間β2だけ遅れて、第3相のW相電圧Vwを一時ON期間γ2だけONする。
 ここでは第3相の遅延期間β1、β2の場合を示したが、この場合も先述した様に逆の場合即ち、第2相が第3相に対して遅延する場合も同様である。
 図18,図19に示す制御例は、3相の各相について、正電圧パルス(すなわち一時ON期間α1,γ2)および負電圧パルス(すなわち一時OFF期間α2,γ1)の対が、ON期間VonとOFF期間Voffを含む一周期中に2回発生させることができる。1回の電流パルス対の発生は図10に示すように、トルクτの向上に寄与する。よって、2回の電流パルス対の発生はトルクτの向上をさらに高めることができる。
 上述した形態では、所定角度を電気角でcos-1θとした。この形態に代えて、所定角度を電気角でδとするとき、cos-1θ-30°≦δ≦cos-1θ+30°の範囲内としてもよい。この範囲内で第2相や第3相を遅らせても、図8に示す電流パルス対を発生させることができる。すなわち、基本波電流が流れる第1相の基準時から所定角度δだけ遅れて、電流パルス対を誘起する電圧パルス対を第2相と第3相に発生させることができる。
 上述した実施の形態1によれば、以下に示す各作用効果を得ることができる。
 (1)界磁巻線型回転電機Mは、ステータ10と、界磁巻線21を備えるロータ20と、整流素子D1と、スイッチング素子Qを備え、駆動部60と、制御部70とを有する。制御部70は、矩形波通電を行うとき、第1相のON期間またはOFF期間の中心を基準時とし、基準時から電気角でcos-1θを含む所定角度δだけ遅れて、第2相および第3相のOFF期間中に一時的にONする一時ON期間α1,γ2を設け、かつ、第3相および第2相のON期間中に一時的にOFFする一時OFF期間α2,γ1を設けて、電流パルス対を誘起する電圧パルス対を発生させる。この構成によれば、基本波電流が流れる第1相の基準時から所定角度δだけ遅れて、電流パルス対を誘起する電圧パルス対を第2相と第3相に発生させる。誘起された電流パルス対によってステータ巻線12に励磁磁束を生じさせ、第2相と第3相によって有意差を与えて界磁巻線21を励磁することができる。そのため、矩形波通電のときでもステータ巻線12から界磁巻線21を励磁して、さらに性能を高めることができる。
 (2)一時ON期間α1,γ2および一時OFF期間α2,γ1は、第1相の一周期に対して0.5~10%である。この構成によれば、第1相のステータ巻線12に流れる基本波電流に大きな影響を与えず、かつ、界磁巻線21を確実に励磁することができる。
 (3)所定角度δは、cos-1θ-30°≦δ≦cos-1θ+30°を満たす。この範囲内の所定角度δで電圧パルス対を設けると、矩形波通電または過変調通電のときでも確実に電流パルス対を発生させることができる。
 (4)一時ON期間α1,γ2および一時OFF期間α2,γ1のうちで一方の期間の始期は、他方の期間の始期から遅延期間β1,β2だけ遅れる。この構成によれば、第1相のステータ巻線12に流れる基本波電流に対し、有意差のある電流パルス対を作る事ができる。したがって、矩形波通電のときでもステータ巻線12から界磁巻線21を励磁して、さらに性能を高めることができる。
 (5)制御部70は、3相の各相について、正電圧パルス(すなわち一時ON期間α1,γ2)および負電圧パルス(すなわち一時OFF期間α2,γ1)の対が、ON期間VonとOFF期間Voffを含む一周期中に1回または2回発生するように制御する。この構成によれば、1回または2回の回数を選択することで、ロータ20の回転速度に応じて界磁巻線21を励磁する励磁磁束量または界磁電流量を調節することができる。
 〔実施の形態2〕
 実施の形態2は図20~図22を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1と相違する点を説明する。
 図20は、実施の形態1の図3に代わる構成であり、界磁巻線型回転電機Mを駆動制御するための構成を示す。図3と相違するのは、界磁回路に容量素子C1を備える点と、界磁巻線21を界磁巻線21a,21bに分けた点である。制御部70から駆動部60に出力する制御信号は、実施の形態1と同じであるので、図示および説明を省略する。
 容量素子C1は、一端を界磁巻線21の両端の間に接続し、他端を整流素子D1の端子(具体的にはアノード端子)に接続する。容量素子C1の一端を界磁巻線21の両端の間に接続するには、界磁巻線21を二つに分ける必要があるために界磁巻線21a,21bを備える。すなわち、容量素子C1の一端は界磁巻線21aと界磁巻線21bの間に接続する。
 図21,図22には界磁巻線21a,21bの構成を示す。図21の構成は、ロータコア22の主磁極部22aに対して界磁巻線21bを集中巻きし、さらに界磁巻線21bの外側に界磁巻線21aを集中巻きする。図示を省略するが、主磁極部22aに対して界磁巻線21aを集中巻きし、さらに界磁巻線21aの外側に界磁巻線21bを集中巻きしてもよい。
 図22の構成は、ロータコア22の主磁極部22aに対して径方向にずらして、界磁巻線21a,21bを集中巻きする。図22では、主磁極部22aに対して界磁巻線21aを径方向の外側(すなわちステータ10に接近する側)に集中巻きし、界磁巻線21bを径方向の内側(すなわちステータ10と離反する側)に集中巻きしている。図示を省略するが、主磁極部22aに対して界磁巻線21bを径方向の外側に集中巻きし、界磁巻線21aを径方向の内側に集中巻きしてもよい。
 図示を省略するが、図21,図22の構成に代えて、ロータコア22の主磁極部22aに対して界磁巻線21a,21bを二線巻きによって集中巻きしてもよい。二線巻きは、界磁巻線21a,21bを束ねて主磁極部22aに巻く方法である。
 上述した実施の形態2によれば、実施の形態1と同様の作用効果を得ることができるとともに、次の作用効果を得ることができる。
 (6)界磁巻線21は、一極(すなわち主磁極部22a)ごとに集中巻きされる。一端を界磁巻線21の両端の間に接続し、他端を整流素子D1の端子に接続する容量素子C1を有する。この構成によれば、界磁巻線21に相当する界磁巻線21a,21bに流れる電流によって打ち消される電圧分を容量素子C1に蓄え、電流方向が変わった時に放電して有効利用することができる。
 〔実施の形態3〕
 実施の形態3は図23~図26を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1,2で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1,2と相違する点を説明する。
 図23,図24は、実施の形態1の図2に代わるロータ20の構成である。図2と相違するのは、ロータコア22に第1凸状部位として設けられる複数の主磁極部22aのほかに、第2凸状部位として設けられる複数の補磁極部22bを有する点である。主磁極部22aが磁極として機能するので、主磁極部22aと補磁極部22bは周方向に交互に設けられる。補磁極部22bは「補極」や「補助極」とも呼ばれる。
 補磁極部22bは、主磁極部22aよりも周方向に狭くして設けられ、磁石が設けられる。補磁極部22bに磁石を設けることによって、極間を跨いで漏れる磁束を抑制できる。磁石は、永久磁石でもよく、巻線による電磁石でもよい。
 図23には、補磁極部22bに永久磁石22mを設けた例を示す。図23には、ロータ20が矢印A8方向に回転し、主磁極部22aが矢印A6方向に磁化されてN極になる場合を示す。一方側(すなわち図23の左側)の補磁極部22bに設けた永久磁石22mが矢印A5方向に磁化され、他方側(すなわち図23の右側)の補磁極部22bに設けた永久磁石22mが矢印A7方向に磁化されるとよい。図示を省略するが、主磁極部22aがS極になる場合には、図23とは逆方向に磁化する。要するに、主磁極部22aに隣り合う二つの補磁極部22bの極性が互いに反対になればよい。
 図24には、補磁極部22bに巻き付けた補磁極巻線25を示す。ステータ10から流れる磁束によって補磁極巻線25に電流が流れると、補磁極巻線25の巻き方向に従って補磁極部22bが磁化される。補磁極巻線25の巻き方向は、主磁極部22aに隣り合う二つの補磁極部22bで互いに反対になるようにするとよい。このように巻けば、主磁極部22aに隣り合う二つの補磁極部22bの極性が互いに反対になる。
 補磁極巻線25を有するロータ20は、界磁巻線21の形態に応じて図25,図26にそれぞれ示す界磁回路を構成する。図25に示す界磁回路は、界磁巻線21,補磁極巻線25および整流素子D1を直列接続する。図26に示す界磁回路は、界磁巻線21a,21bおよび整流素子D1を直列接続するとともに、容量素子C1を並列接続する。この容量素子C1は、一端を界磁巻線21の両端の間、具体的には界磁巻線21aと界磁巻線21bの間に接続し、他端を整流素子D1の端子(具体的にはアノード端子)に接続する。整流素子D1が界磁巻線21および補磁極巻線25に流れる電流を規制することによって、主磁極部22aおよび補磁極部22bの極性を規制できる。また、図26に示す容量素子C1を備えると、界磁巻線21a,21bに流れる電流によって打ち消される電圧分をC1に蓄えることができ、電流方向が変わった時に放電して有効利用することができる。
 上述した実施の形態3によれば、実施の形態1と同様の作用効果を得ることができるとともに、次の作用効果を得ることができる。
 (7)ロータ20は、ステータ10に対面するロータコア22の第1凸状部位である主磁極部22aと、第1凸状部位よりも周方向幅を狭くした第2凸状部位である補磁極部22bとを備える。補磁極部22bは、ステータ10の磁界を打消す方向に磁化される磁石(すなわち永久磁石22mまたは補磁極巻線25)を有する。ステータ10の回転磁界によって発生する磁束は概ね主磁極部22aを通るが、漏れる磁束もあり界磁巻線21の位置によって通る磁束量や向きも異なってくる。この構成によれば、補磁極部22bによって極間の境を設け、磁石が極間を跨いで漏れる磁束を抑制できる。したがって、極内に磁束を効率良く通し、効果的に界磁電流Ifを得ることができる。
 〔実施の形態4〕
 実施の形態4は図27~図29を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1~3で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1~3と相違する点を説明する。
 図27に示す界磁回路は、実施の形態1の図3に示す界磁回路に代わる構成例である。図3と相違するのは、界磁回路に容量素子C1a,C1bを備える点と、界磁巻線21を界磁巻線21a,21b,21cに分けた点である。制御部70から駆動部60に出力する制御信号は、実施の形態1と同じであるので、図示および説明を省略する。
 容量素子C1a,C1bは、それぞれ一端を界磁巻線21の両端の間に接続し、他端を整流素子D1の端子(具体的にはアノード端子)に接続する。容量素子C1a,C1bのそれぞれの一端を界磁巻線21の両端の間に接続するには、界磁巻線21を三つに分ける必要があるために界磁巻線21a,21b,21cを備える。つまり、容量素子C1aの一端は界磁巻線21aと界磁巻線21bの間に接続し、容量素子C1bの一端は界磁巻線21bと界磁巻線21cの間に接続する。
 図28,図29には界磁巻線21a,21b,21cの構成を示す。図28の構成は、ロータコア22の主磁極部22aに対して外側から内側に向かって順番に界磁巻線21a,21b,21cを集中巻きする。界磁巻線21a,21b,21cを外側から内側に向かって巻く順番は、図28に限らず他の順番で巻いてもよい。
 図29の構成は、ロータコア22の主磁極部22aに対して径方向にずらして、界磁巻線21a,21b,21cを集中巻きする。図29では、主磁極部22aに対して径方向の外側(すなわちステータ10に接近する側)から径方向の内側(すなわちステータ10と離反する側)に向かって順番に界磁巻線21a,21b,21cを集中巻きする。界磁巻線21a,21b,21cを径方向の内側から外側に向かって巻く順番は、図29に限らず他の順番で巻いてもよい。
 図示を省略するが、図28,図29の構成に代えて、ロータコア22の主磁極部22aに対して界磁巻線21a,21b,21cを三線巻きによって集中巻きしてもよい。三線巻きは、界磁巻線21a,21b,21cを束ねて主磁極部22aに巻く方法である。
 上述した実施の形態4によれば、実施の形態2と同様の作用効果が得られる。
 〔他の実施の形態〕
 以上では本発明を実施するための形態について実施の形態1~4に従って説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
 上述した実施の形態1~4では、矩形波通電のときに電流パルス対を誘起する構成とした。この形態に代えて、過変調通電(すなわち1≦m<1.27または特定の制御における1.15≦m<1.27)のときに電流パルス対を誘起する構成としてもよい。変調率mおよび変調形態が相違するに過ぎず、過変調通電でも電流パルス対を誘起するので、実施の形態1~4と同様の作用効果が得られる。
 上述した実施の形態1~4では、ロータ20に備える主磁極部22aの数を8とした。この形態に代えて、ロータ20に設けられる限り、2以上の主磁極部22aを設けてもよい。すなわち、主磁極部22aの数は界磁巻線型回転電機Mの機能や定格等に応じて設定してよい。極数の相違に過ぎないので、実施の形態1~4と同様の作用効果が得られる。
 上述した実施の形態1~4では、直流電源50は二次電池とした。この形態に代えて、要求される電力を供給できれば、一次電池でもよく、二次電池と一次電池を組み合わせてもよい。要求される電力に応じて二次電池と一次電池を切り替える構成としてもよい。一次電池は、例えば太陽電池,燃料電池,金属空気電池などが該当する。電力の供給源が相違するに過ぎないので、実施の形態1~4と同様の作用効果が得られる。
 上述した実施の形態1~4では、外部装置はECUとした。この形態に代えて、外部装置は車両に搭載されるか否かを問わず、内部通信回線または外部通信回線を介して接続されるコンピュータや処理装置としてもよい。あるいは外部装置を不要とし、制御部70が指令信号に相当する情報を内部に記録しており、自立的に制御信号を出力する構成としてもよい。外部装置の構成や指令信号の有無が相違するに過ぎないので、実施の形態1~4と同様の作用効果が得られる。
 上述した実施の形態1~4では、ステータ10を径方向の外側に配置し、ロータ20を径方向の内側に配置するインナーロータ型の界磁巻線型回転電機Mとした。この形態に代えて、ステータ10を径方向の内側に配置し、ロータ20を径方向の外側に配置するアウターロータ型の界磁巻線型回転電機Mとしてもよい。ステータ10とロータ20の配置が相違するに過ぎないので、実施の形態1~4と同様の作用効果が得られる。
 上述した実施の形態1~4では、複数相のステータ巻線12をU相,V相,W相の3相とし、巻線形態を分布巻きとした。この形態に代えて、名称が異なる3相(例えばX相,Y相,Z相やA相,B相,C相など)としてもよく、ステータ10に設けられる限りにおいて4相以上としてもよい。4相以上のステータ巻線12では、基準となる1相(以下では「基準相」と呼ぶ)を「第1相」とし、残りの相のうちで2相を「第2相」および「第3相」としてもよく、基準相以外の全相を「第2相」,「第3相」,「第4相」,…としてもよい。すなわち、電流パルス対を2相以上で発生させてもよい。また、分布巻き以外の巻線形態、例えば全節巻き,集中巻き,短節巻きのいずれかとしてもよい。名称,相数,巻線形態が相違するに過ぎないので、実施の形態1~4と同様の作用効果が得られる。
 上述した実施の形態1の図12では、第1相の基準時から電気角でcos-1θだけ遅れて第2相を一時ON期間α1だけONし、さらに遅延期間βだけ遅れて第3相を一時OFF期間α2だけOFFする構成とした。同じく図17では、第1相の基準時から電気角でcos-1θだけ遅れて第2相を一時OFF期間γ1だけOFFし、さらに遅延期間βだけ遅れて第3相を一時ON期間γ2だけONする構成とした。これらの構成に代えて、電流パルス対が同時に現れるように、タイミングを調整してよい。また、第2相と第3相を入れ替えてもよい。ステータ巻線12が4相以上であれば、第2相または第3相に代えて(あるいは加えて)、第4相を含む他の相で行ってもよい。こうすることで、電流パルス対が同時に発生して磁界φpが強くなり、トルクτも高まる。したがって、実施の形態1と同様の作用効果が得られる。
 上述した実施の形態2の図20では界磁回路に一つの容量素子C1を備え、実施の形態4の図27では界磁回路に二つの容量素子C1a,C1bを備えた。この形態に代えて、ロータ20に設けられる限りにおいて、三つ以上の容量素子を備えてもよい。容量素子の数が相違するに過ぎないので、実施の形態2,4と同様の作用効果が得られる。
 上述した実施の形態3に含まれる図24では、一つの界磁巻線21を備えた。この形態に代えて、実施の形態2に含まれる図21,図22に示すように二つの界磁巻線21a,21bを備えてもよい。また、実施の形態4の図28,図29に示すように三つの界磁巻線21a,21b,21cを備えてもよい。すなわち、主磁極部22aに巻ける限りにおいて、一以上の界磁巻線を設けてよい。界磁巻線の数が相違するに過ぎないので、実施の形態2,4と同様の作用効果が得られる。
 上述した実施の形態1~4では、ロータ20はロータコア22に複数の主磁極部22aを備えた凸極構造の凸極型ロータとした。この形態に代えて、ロータ20をランデル構造のランデル型ロータとしてもよい。図示を省略するランデル型ロータは、界磁巻線21と、円筒状のボス部と、複数の爪極部とを有する。ボス部は、界磁巻線21が巻かれる。複数の爪極部は、それぞれボス部の軸方向両端から周方向に向かって所定ピッチで突出するとともに、軸方向相手側へ向けて周方向に交互に延びる。ランデル型ロータであっても、ステータ巻線12に励磁磁束を生じさせ、第2相と第3相によって有意差を与えて界磁巻線21を励磁することができる。そのため、矩形波通電または過変調通電のときでもステータ巻線12から界磁巻線21を励磁して、さらに性能を高めることができる。ロータ20の構造が相違するに過ぎないので、実施の形態1~4と同様の作用効果が得られる。
 M…界磁巻線型回転電機、10…ステータ、11…ステータコア、12…ステータ巻線、20…ロータ、21,21a,21b,21c…界磁巻線、22…ロータコア、22a…主磁極部、22b…補磁極部、22m…永久磁石、23…シャフト、24…被検出部、25…補磁極巻線、30…ハウジング、40…回転センサ、50…直流電源、60…駆動部、70…制御部、80…電流センサ、C1,C1a,C1b,C2…容量素子、D1,D2,D3…整流素子、Q…スイッチング素子、Iu…U相電流、Iv…V相電流、Iw…W相電流、Iup,Ivp,Iwp…パルス電流、Vu…U相電圧、Vv…V相電圧、Vw…W相電圧、If…界磁電流、α1,γ2…一時ON期間、α2,γ1…一時OFF期間、β,β1,β2…遅延期間、δ…所定角度、φ1,φ2,φp…磁界

Claims (8)

  1.  3相以上のステータ巻線(12)が巻かれたステータ(10)と、
     界磁巻線(21,21a,21b,21c)が巻かれたロータコア(22)を備え、前記ステータに対面して回転可能に配置されたロータ(20)と、
     前記界磁巻線と直列接続され、前記ステータ巻線にステータ電流を流して生じる磁界(φ1,φ2,φp)によって前記界磁巻線を励磁して流れる界磁電流(If)を一方向に規制する整流素子(D1)と、
     複数のスイッチング素子(Q)を備え、複数相の電力を前記ステータ巻線に出力するドライバー(60)と、
     ロータの回転速度に応じて正弦波通電,矩形波通電,過変調通電のうちでいずれかの通電を行うための前記複数相の制御信号を前記ドライバーに出力するコントローラー(70)と、
     を有して、力率がcosθである界磁巻線型回転電機(M)において、
     前記コントローラーは、
     前記矩形波通電または前記過変調通電を行うとき、前記複数相のうちで第1相のON期間またはOFF期間の中心を基準時とし、
     前記基準時から電気角でcos-1θを含む所定範囲内にある所定角度(δ)だけ遅れて、前記複数相のうちで前記第1相とは異なる第2相のOFF期間中に一時的にONする一時ON期間(α1,γ2)を設け、かつ、前記複数相のうちで前記第1相および前記第2相とは異なる第3相のON期間中に一時的にOFFする一時OFF期間(α2,γ1)を設けて、電流パルス対を誘起する電圧パルス対を発生させる界磁巻線型回転電機。
  2.  前記一時ON期間の長さと前記一時OFF期間の長さは、それぞれ前記第1相の一周期に対して0.5~10%である請求項1に記載の界磁巻線型回転電機。
  3.  前記所定範囲は、cos-1θ-30°≦δ≦cos-1θ+30°である請求項1または2に記載の界磁巻線型回転電機。
  4.  前記一時ON期間および前記一時OFF期間のうちで一方の期間の始期は、他方の期間の始期から遅延期間(β,β1,β2)だけ遅れる請求項1から3のいずれか一項に記載の界磁巻線型回転電機。
  5.  前記コントローラーは、正電圧パルス(α1,γ2)と負電圧パルス(α2,γ1)の対が相当たり電気角の一周期中に1回または2回発生するように制御する請求項1から4のいずれか一項に記載の界磁巻線型回転電機。
  6.  一端を前記界磁巻線の両端の間に接続し、他端を前記整流素子の端子に接続する容量素子(C1,C1a,C1b)を有する請求項1から5のいずれか一項に記載の界磁巻線型回転電機。
  7.  前記ロータは、
     前記界磁巻線が一極毎に集中巻きされた凸極型ロータと、
     前記界磁巻線が巻かれるボス部と、前記ボス部の端部から延びる複数の爪極部とを備えて、前記爪極部をN極またはS極とするランデル型ロータと、
    のいずれかである請求項1から6のいずれか一項に記載の界磁巻線型回転電機。
  8.  前記ロータは、前記ステータに対面する前記ロータコアの第1凸状部位である主磁極部(22a)と、前記第1凸状部位よりも周方向幅を狭くした第2凸状部位である補磁極部(22b)とを備え、
     前記補磁極部は、前記ステータの磁界を打消す方向に磁化される磁石(22m,25)を有する請求項1から7のいずれか一項に記載の界磁巻線型回転電機。
PCT/JP2017/044224 2016-12-13 2017-12-08 界磁巻線型回転電機 WO2018110458A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780076697.2A CN110063018B (zh) 2016-12-13 2017-12-08 励磁绕组型旋转电机
EP17882039.5A EP3557756B1 (en) 2016-12-13 2017-12-08 Field winding-type rotating electrical machine
US16/440,263 US10756661B2 (en) 2016-12-13 2019-06-13 Field winding type rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016241523A JP6709508B2 (ja) 2016-12-13 2016-12-13 界磁巻線型回転機
JP2016-241523 2016-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/440,263 Continuation US10756661B2 (en) 2016-12-13 2019-06-13 Field winding type rotating electric machine

Publications (1)

Publication Number Publication Date
WO2018110458A1 true WO2018110458A1 (ja) 2018-06-21

Family

ID=62558654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044224 WO2018110458A1 (ja) 2016-12-13 2017-12-08 界磁巻線型回転電機

Country Status (5)

Country Link
US (1) US10756661B2 (ja)
EP (1) EP3557756B1 (ja)
JP (1) JP6709508B2 (ja)
CN (1) CN110063018B (ja)
WO (1) WO2018110458A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6969529B2 (ja) * 2018-09-25 2021-11-24 株式会社デンソー 界磁巻線型回転電機
CN112468056A (zh) * 2020-09-23 2021-03-09 深圳供电局有限公司 磁极线圈激励调节设备、系统和磁极线圈系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543338B2 (ja) 1971-12-24 1979-02-21
JP2007185082A (ja) * 2005-06-28 2007-07-19 Denso Corp 界磁巻線型同期機
JP2010045956A (ja) * 2008-08-18 2010-02-25 Denso Corp 電動機
JP2011041433A (ja) * 2009-08-18 2011-02-24 Toyota Central R&D Labs Inc 回転電機駆動システム
JP5403338B2 (ja) * 2009-05-22 2014-01-29 株式会社デンソー 同期機

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188204B1 (en) * 1999-08-05 2001-02-13 Joseph Vithayathil Brushless AC field system for stable frequency variable speed alternators
EP1421669A4 (en) * 2001-08-06 2016-08-24 Black & Decker Inc EXCITATION CIRCUIT AND METHOD FOR CONTROLLING FLOW SWITCHING MOTOR
ATE452462T1 (de) * 2005-07-06 2010-01-15 Elckon Ltd Elektromotor
JP2007159353A (ja) * 2005-12-08 2007-06-21 Mitsubishi Electric Corp 界磁巻線式同期発電電動機
JP5062517B2 (ja) 2007-01-18 2012-10-31 株式会社デンソー 界磁巻線型同期機
JP5104721B2 (ja) * 2008-10-29 2012-12-19 株式会社デンソー 界磁巻線型同期機の制御装置及び制御システム
JP5510729B2 (ja) * 2009-07-09 2014-06-04 株式会社デンソー 回転機用電力変換装置
JP5079055B2 (ja) * 2010-06-28 2012-11-21 三菱電機株式会社 電力変換装置
CN102075128B (zh) * 2011-01-21 2012-11-21 南京航空航天大学 转子磁分路混合励磁同步电机驱动系统及其电流控制方法
JP5781785B2 (ja) * 2011-02-15 2015-09-24 トヨタ自動車株式会社 回転電機駆動システム
EP2717465B1 (en) * 2011-04-21 2019-06-19 Nissan Motor Co., Ltd Control device for electric motor and control method for electric motor
US9221458B1 (en) * 2014-07-31 2015-12-29 GM Global Technology Operations LLC Engine start control from a high-power EV mode
JP6507721B2 (ja) * 2015-03-05 2019-05-08 スズキ株式会社 回転電機および回転電機の電流入力制御方法
JP6614825B2 (ja) * 2015-06-30 2019-12-04 日立ジョンソンコントロールズ空調株式会社 電力変換装置およびモータ駆動装置、冷凍装置
US9800183B1 (en) * 2016-05-18 2017-10-24 GM Global Technology Operations LLC Method and apparatus for controlling an electric machine
US10734935B2 (en) * 2017-09-22 2020-08-04 GM Global Technology Operations LLC Quasi six-step PWM control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543338B2 (ja) 1971-12-24 1979-02-21
JP2007185082A (ja) * 2005-06-28 2007-07-19 Denso Corp 界磁巻線型同期機
JP2010045956A (ja) * 2008-08-18 2010-02-25 Denso Corp 電動機
JP5403338B2 (ja) * 2009-05-22 2014-01-29 株式会社デンソー 同期機
JP2011041433A (ja) * 2009-08-18 2011-02-24 Toyota Central R&D Labs Inc 回転電機駆動システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3557756A4

Also Published As

Publication number Publication date
EP3557756B1 (en) 2020-09-09
US20190296672A1 (en) 2019-09-26
EP3557756A1 (en) 2019-10-23
JP2018098907A (ja) 2018-06-21
US10756661B2 (en) 2020-08-25
EP3557756A4 (en) 2019-12-18
JP6709508B2 (ja) 2020-06-17
CN110063018A (zh) 2019-07-26
CN110063018B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
JP5120586B2 (ja) 界磁巻線型同期機
EP0895344B1 (en) A method of controlling a torque ripple of a motor having interior permanent magnets and a controller using the same method
JP5827026B2 (ja) 回転電機及び回転電機駆動システム
JP5233497B2 (ja) 電動機
JP6579379B2 (ja) 界磁巻線型同期機駆動システム
JP2000209891A (ja) 内燃機関用スタ―タジェネレ―タ
JP4032516B2 (ja) 自動車用電動駆動装置
JP6693319B2 (ja) 回転電機の制御装置
WO2008066061A1 (fr) Moteur sans balai
JP5543186B2 (ja) スイッチドリラクタンスモータ駆動システム
US6376955B1 (en) Motor/generator with multiple rotors
JP2019022299A (ja) 回転電機の駆動システム
WO2018110458A1 (ja) 界磁巻線型回転電機
WO2014188757A1 (ja) 回転電機の回転子、回転電機、電動駆動システム、及び電動車両
JP6626973B2 (ja) 6線3相モータおよびモータシステム
JP2016082791A (ja) モータ及びモータ制御方法
JP5233262B2 (ja) 回転位置検出装置の位相調整方法
JP6075161B2 (ja) スイッチトリラクタンスモータの制御装置
JP2006187131A (ja) 永久磁石回転電機及びそれを用いた車載電動アクチュエータ装置用電機システム並びに電動パワーステアリング装置用電機システム
JP5623346B2 (ja) 回転電機駆動システム
JP6723334B2 (ja) 交流回転機の制御装置、車両用交流回転機装置、及び電動パワーステアリング装置
JP6839896B2 (ja) モータ制御装置および電動車両
US20140210305A1 (en) Single phase switched reluctance machine with axially extending stator laminations
JP2002125394A (ja) 回転電機の制御装置
JP6149663B2 (ja) 機電一体型モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017882039

Country of ref document: EP

Effective date: 20190715