JP2018098907A - 界磁巻線型回転機 - Google Patents

界磁巻線型回転機 Download PDF

Info

Publication number
JP2018098907A
JP2018098907A JP2016241523A JP2016241523A JP2018098907A JP 2018098907 A JP2018098907 A JP 2018098907A JP 2016241523 A JP2016241523 A JP 2016241523A JP 2016241523 A JP2016241523 A JP 2016241523A JP 2018098907 A JP2018098907 A JP 2018098907A
Authority
JP
Japan
Prior art keywords
phase
period
field
stator
temporary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016241523A
Other languages
English (en)
Other versions
JP6709508B2 (ja
Inventor
瀬口 正弘
Masahiro Seguchi
瀬口  正弘
純一 中園
Junichi Nakazono
純一 中園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016241523A priority Critical patent/JP6709508B2/ja
Priority to PCT/JP2017/044224 priority patent/WO2018110458A1/ja
Priority to EP17882039.5A priority patent/EP3557756B1/en
Priority to CN201780076697.2A priority patent/CN110063018B/zh
Publication of JP2018098907A publication Critical patent/JP2018098907A/ja
Priority to US16/440,263 priority patent/US10756661B2/en
Application granted granted Critical
Publication of JP6709508B2 publication Critical patent/JP6709508B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/32Arrangements for controlling wound field motors, e.g. motors with exciter coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/26Power factor control [PFC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/243Rotor cores with salient poles ; Variable reluctance rotors of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】矩形波通電または過変調通電のときでも界磁巻線を励磁できる界磁巻線型回転機を提供する。【解決手段】界磁巻線型回転機は、ステータと、界磁巻線を備えるロータと、整流素子と、駆動部と、制御部とを有して、力率がcosθである。制御部は、矩形波通電または過変調通電を行うとき、第1相のON期間またはOFF期間の中心を基準時とし、基準時から電気角でcos-1θを含む所定角度だけ遅れて、第2相のOFF期間中に一時的にONする一時ON期間を設け、かつ、第3相のON期間中に一時的にOFFする一時OFF期間を設けて、電流パルス対Iup,Ivp,Iwpを誘起する電圧パルス対を発生させる。この構成によれば、電流パルス対Iup,Ivp,Iwpによって固定子巻線に励磁磁束を生じさせ、第2相と第3相とで有意差を与えて界磁巻線を励磁することができ、さらに性能を高めることができる。【選択図】図8

Description

本発明は、ステータ,ロータ,整流素子,駆動部および制御部を含む界磁巻線型回転機に関する。
従来では、例えば下記の特許文献1において、相電圧の平均電圧がゼロとなるように制御を行って各相の相電流を安定させ、安定してロータの励磁を行えることを目的とする同期機に関する技術が開示されている。この同期機の制御部は、矩形波モードまたは過変調モードのうちでいずれか一のモードであるとき、ロータを励磁するためのパルス電圧を基本波電圧に重畳させる場合において、各相の相電圧の平均値がゼロになるように制御信号を出力する。なお、特許文献1に記載のモードは通電を意味する。
特許第5403338号公報
しかし、特許文献1の技術を用いて各相の相電圧の平均値がゼロになるように制御できても、矩形波通電または過変調通電のときは界磁巻線を励磁することができない。そのため、さらに界磁巻線の励磁による性能(例えばトルクや回転速度)を向上させることが困難であった。ロータコアに巻かれた界磁巻線は外部から独立しているので、固定子巻線に印加する電圧波形を制御して生じる磁界によって界磁巻線を励磁する必要がある。
発明者は、複数相の固定子巻線から界磁巻線を励磁する場合、励磁磁束として有意差を与えるため少なくとも2相の電流により励磁磁束を誘起することが有効と考えた。
本開示はこのような点に鑑みてなしたものであり、矩形波通電または過変調通電のときでも界磁巻線を励磁できる界磁巻線型回転機を提供することを目的とする。
上記課題を解決するためになされた第1の発明は、3相以上の固定子巻線(12)が巻かれたステータ(10)と、界磁巻線(21,21a,21b,21c)が巻かれたロータコア(22)を備え、前記ステータに対面して回転するロータ(20)と、前記界磁巻線と直列接続され、前記固定子巻線に固定子電流を流して生じる磁界(φ1,φ2,φp)によって前記界磁巻線を励磁して流れる界磁電流(If)を一方向に規制する整流素子(D1)と、スイッチング素子(Q)を備え、前記複数相の電力を前記固定子巻線に出力する駆動部(60)と、回転速度に応じて正弦波通電,矩形波通電,過変調通電のうちでいずれかの通電を行うための前記複数相の制御信号を前記駆動部に出力する制御部(70)とを有して、力率がcosθである界磁巻線型回転機(M)において、
前記制御部は、前記矩形波通電または前記過変調通電を行うとき、前記複数相のうちで第1相のON期間またはOFF期間の中心を基準時とし、前記基準時から電気角でcos-1θを含む所定角度(δ)だけ遅れて、前記複数相のうちで前記第1相とは異なる第2相のOFF期間中に一時的にONする一時ON期間(α1,γ2)を設け、かつ、前記複数相のうちで前記第1相および前記第2相とは異なる第3相のON期間中に一時的にOFFする一時OFF期間(α2,γ1)を設けて、電流パルス対を誘起する電圧パルス対を発生させる。
この構成によれば、基本波電流が流れる第1相の基準時から所定角度だけ遅れて、電流パルス対を誘起する電圧パルス対を第2相と第3相に発生させる。誘起された電流パルス対によって固定子巻線に励磁磁束を生じさせ、第2相と第3相とで有意差を与えて界磁巻線を励磁することができる。そのため、矩形波通電または過変調通電のときでも固定子巻線から界磁巻線を励磁して、さらに性能を高めることができる。
第2の発明は、前記一時ON期間の長さと前記一時OFF期間の長さは、それぞれ前記第1相の一周期に対して0.5〜10%である。この構成によれば、第1相の固定子巻線に流れる基本波電流に大きな影響を与えず、かつ、界磁巻線を確実に励磁することができる。
第3の発明は、前記所定角度(δ)は、cos-1θ−30°≦δ≦cos-1θ+30°を満たす。この範囲内の所定角度で電圧パルス対を設けると、矩形波通電または過変調通電のときでも確実に電流パルス対を発生させることができる。
第4の発明は、前記一時ON期間および前記一時OFF期間のうちで一方の期間の始期は、他方の期間の始期から遅延期間(β,β1,β2)だけ遅れる。この構成によれば、第1相の固定子巻線に流れる基本波電流に対し、有意差のある電流パルス対を作る事ができる。したがって、矩形波通電または過変調通電のときでも固定子巻線から界磁巻線を励磁して、さらに性能を高めることができる。
第5の発明は、前記制御部は、正電圧パルス(α1,γ2)と負電圧パルス(α2,γ1)の対が相当たり電気角の一周期中に1回または2回発生するように制御する。この構成によれば、1回または2回の回数を選択することで、回転速度に応じて界磁巻線を励磁する励磁量や電流量を調節することができる。
第6の発明は、一端を前記界磁巻線の途中に接続し、他端を前記整流素子の端子に接続する容量素子(C1,C1a,C1b)を有する。この構成によれば、界磁巻線に流れる電流で打ち消す電圧分を容量素子に蓄え、電位方向が変わった時に放電して有効利用することができる。
第7の発明は、前記ロータは、前記界磁巻線が一極毎に集中巻きされた凸極型ロータと、前記界磁巻線が巻かれるボス部と前記ボス部の端部から延びる複数の爪極部とを備えて前記爪極部をN極またはS極とするランデル型ロータとのいずれかである。この構成によれば、凸極型ロータまたはランデル型ロータのいずれかを有する界磁巻線型回転機は、矩形波通電または過変調通電のときでも固定子巻線から界磁巻線を励磁して、さらに性能を高めることができる。
第8の発明は、前記ロータは、前記ステータに対面する前記ロータコアの第1凸状部位である主磁極部と、前記第1凸状部位よりも周方向幅を狭くした第2凸状部位である補磁極部とを備え、前記補磁極部は、前記ステータの界磁を打消す方向に着磁された磁石を有する。ステータの回転界磁によって発生する磁束は概ね主磁極を通るが、漏れる磁束もありロータ界磁巻線の位置により通る磁束量や向きも異なってくる。この構成によれば、極間を跨いで漏れる磁束もあり、補磁極部を置くことで極間の境を設け、磁石で素通りする磁束を抑えられ、極内に磁束を効率良く通し、効果的に界磁電流を得ることができる。
なお、「複数相」の相数は、ステータに巻ける限り、第1相,第2相,第3相を含めて3相以上であれば任意の相数を設定してよい。「界磁巻線型回転機」は、ロータに界磁巻線を備え、シャフトとも呼ぶ回転軸を有すれば任意の機器を適用してよい。例えば、発電機,電動機,電動発電機等が該当する。発電機には電動発電機が発電機として作動する場合を含み、電動機には電動発電機が電動機として作動する場合を含む。「正弦波通電」,「矩形波通電」および「過変調通電」は、電圧パルス(すなわち固定子巻線に印加する電圧のパルス波)の変調率の違いによって分けられる。「ON」の表記はパルス電圧がハイレベルの状態を意味し、正論理に従って表記する「1」や「H(ハイ)」等と同義である。「OFF」の表記はパルス電圧がローレベルの状態を意味し、正論理に従って表記する「0」や「L(ロー)」等と同義である。負論理に従う場合には、正論理と逆になる。「ON期間やOFF期間の中心」は、各期間の始期から終期までにおける中間の時点でもよく、中間の時点を基準とする許容範囲内の時点でもよい。「磁石」は、永久磁石でもよく、電磁石でもよい。
界磁巻線型回転機の第1構成例を示す模式図である。 ステータとロータの第1構成例を部分的に示す径方向断面図である。 駆動部と励磁巻線回路を含む構成例を示す模式図である。 第1相のON期間の中心を基準時としたとき、ステータとロータに生じる磁界の例を示す模式図である。 界磁巻線が励磁されるステータ電流の例を示す模式図である。 制御部による各相のON/OFFの制御例を示す模式図である。 各相の制御についてシミュレーション例を示す模式図である。 図7のシミュレーションで固定子巻線に流れる電流を示す模式図である。 図7のシミュレーションで界磁巻線に流れる電流を示す模式図である。 図7のシミュレーションでトルクの変化を示す模式図である。 制御部による各相のON/OFFの第1制御例を示す模式図である。 制御部による各相のON/OFFの第2制御例を示す模式図である。 第1相のOFF期間の中心を基準時としたとき、ステータとロータに生じる磁界の例を示す模式図である。 界磁巻線が励磁されるステータ電流の例を示す模式図である。 制御部による各相のON/OFFの制御例を示す模式図である。 制御部による各相のON/OFFの第3制御例を示す模式図である。 制御部による各相のON/OFFの第4制御例を示す模式図である。 制御部による各相のON/OFFの第5制御例を示す模式図である。 制御部による各相のON/OFFの第6制御例を示す模式図である。 界磁巻線型回転機の第2構成例を示す模式図である。 ステータとロータの第2構成例を部分的に示す径方向断面図である。 ステータとロータの第3構成例を部分的に示す径方向断面図である。 ステータとロータの第4構成例を部分的に示す径方向断面図である。 ステータとロータの第5構成例を部分的に示す径方向断面図である。 界磁巻線と補磁極巻線を含む界磁回路を示す模式図である。 界磁巻線と補磁極巻線を含む界磁回路を示す模式図である。 界磁巻線と複数の容量素子を含む界磁回路を示す模式図である。 ステータとロータの第6構成例を部分的に示す径方向断面図である。 ステータとロータの第6構成例を部分的に示す径方向断面図である。
以下、本発明を実施するための形態について、図面に基づいて説明する。なお、特に明示しない限り、「接続する」という場合には電気的に接続することを意味する。各図は、本発明を説明するために必要な要素を図示し、実際の全要素を図示しているとは限らない。上下左右等の方向を言う場合には、図面の記載を基準とする。
〔実施の形態1〕
実施の形態1は、矩形波通電のときに界磁巻線を励磁する例であって、図1〜図19を参照しながら説明する。ここで、矩形波通電と過変調通電は、変調率mが一定値以上となるように変調する制御である。一定値は、通常の制御では「1.0」が該当し、特定の制御では「1.15」が該当する。特定の制御は、例えばパルス幅変調制御(いわゆるPWM制御)で3次高調波重畳方式や、2相変調方式を用いる場合の過変調通電が該当する。正弦波は、変調率mが一定値未満となるように変調する制御である。
図1に示す界磁巻線型回転機Mは、力率がcosθであり、ステータ10,ロータ20,ハウジング30,駆動部60,制御部70などを有する。この界磁巻線型回転機Mは、制御部70から伝達される制御信号に従って駆動部60から出力される固定子電流によって回転駆動が制御される。本形態の界磁巻線型回転機Mは、ステータ10を外径側に配置し、ロータ20を内径側に配置するインナーロータ型である。なお、駆動部60と制御部70は、ハウジング30の内部または外部に設けられ、構成例や機能などについては後述する。
固定子に相当するステータ10は、図2に示すように、ステータコア11や固定子巻線12などを有する。ステータコア11は、径方向に延びる複数のコアティースや、周方向に隣り合うコアティースの間に設けられる複数のスロットなどを有する。複数のスロットには、複数相の固定子巻線12が所要の巻線形態で収容されている。本形態では、複数相をU相,V相,W相の3相とし、所要の巻線形態を分布巻きとする。上述した固定子電流は、図1を例にすると、U相巻線に流れるU相電流Iu,V相巻線に流れるV相電流Iv,V相巻線に流れるV相電流Iwが該当する。3相のうちで1相を「第1相」とし、残りの2相を「第2相」および「第3相」とする。
回転子に相当するロータ20は、ステータ10に対面して回転し、界磁巻線21やロータコア22,整流素子D1などを有する。ロータコア22は、複数の主磁極部22aを有する。主磁極部22aは「突極」や「極」とも呼ばれ、ステータ10側に延びる第1凸状部位である。主磁極部22aの数は、2以上で任意の数を設定してよい。本形態のロータ20は主磁極部22aの数を「8」とする。すなわち、極数が「8」であり、極対数が「4」である。周方向に隣り合う主磁極部22aの極性が異なるように、それぞれの主磁極部22aには界磁巻線21が巻かれる。界磁巻線21の巻線形態は、主磁極部22aに対して集中的に巻く集中巻きである。界磁巻線21と整流素子D1は、図3に示すように直列接続された閉回路である界磁回路を構成する。整流素子D1は、界磁回路に流れる界磁電流Ifを一方向に規制する。
シャフト23は、ロータ20が固定され、界磁巻線型回転機Mの主軸や回転軸などとして用いられる。このシャフト23は、さらに一端側の外周面に被検出部24が設けられる。本形態の被検出部24は、外周面の周方向に一定間隔で設けられる磁気突極とする。
ハウジング30は、ステータ10を固定するとともに、ロータ20が回転可能となるようにベアリング等を介して支持する。ハウジング30の内部または外部のいずれかには、回転センサ40を備える。回転センサ40は、被検出部24の磁気突極を検出して回転情報(すなわち回転位置や回転速度)を検出して、制御部70に伝達する。
回転センサ40は、ロータ20の回転に関する情報(例えば回転速度や回転位置など)が検出できれば任意であり、本形態ではレゾルバを用いる。レゾルバは、被検出部24の磁気突極を検出して回転情報である信号(例えばアナログ信号やデジタル信号)を制御部70に伝達する。
図3に示す電流センサ80は、固定子電流(すなわち相電流Iu,Iv,Iw)が検出できれば任意である。本形態の電流センサ80は、被検出電流としての固定子電流によって発生した磁界をホール素子により検出する磁気比例型センサを用いる。
図3は、界磁巻線型回転機Mを駆動制御するための構成を示す。直流電源50は、並列接続される平滑用の容量素子C2を介して、駆動部60に電力を供給する。直流電源50はいわゆるバッテリであり、本形態では二次電池を用いる。二次電池は、例えばリチウムイオン電池,リチウムイオンポリマー電池,鉛蓄電池、ニッケル水素電池などのうちで一以上が該当する。
駆動部60はインバータとして機能し、スイッチング素子Qと整流素子D2とを一組とし、プラス電圧とマイナス電圧に対応するため1相で二組とする。本形態の駆動部60は、3相に対応するために全部で6組を有する。この駆動部60は、制御部70から伝達される制御信号に従ってスイッチングを行い、所要の電力および周波数で界磁巻線型回転機Mに出力する。スイッチング素子Qには、例えばIGBTを用いる。整流素子D2は、フリーホイールダイオードとしての役割を果たすため、スイッチング素子Qに流れる電流とは逆方向に電流が流れるようにスイッチング素子Qのコレクタ端子とエミッタ端子との間に接続する。
制御部70は、図示を省略した外部装置から受ける指令信号に基づいて、駆動部60(具体的には各スイッチング素子Qの制御端子)に制御信号を出力する。本形態の外部装置は、電子制御ユニットであるECUとする。制御信号は、ロータ20の回転速度に応じて正弦波通電,矩形波通電,過変調通電のうちでいずれかの通電を行う信号である。
制御部70は、矩形波通電において、固定子巻線12に通電する固定子電流の基本波に、界磁巻線21を励磁する電圧パルス対を付加した制御信号を駆動部60に出力する機能を有する。固定子電流の基本波は、ロータ20の回転数と一致する電気角回転数に従って回転する回転磁界を形成する同期電流(すなわち相電流Iu,Iv,Iwの基本波)に相当する。電圧パルス対は、第1相であるV相電流Ivが最大値または最小値のとき、第2相であるU相および第3相であるW相で互いに反対になるように付加され、U相電流IuおよびW相電流Iwにパルス状の電流が生じる。このパルス状の電流によって固定子巻線12に生じた磁界は、界磁巻線21を励磁して界磁電流を発生させる。
上述のように構成された界磁巻線型回転機Mにおいて、制御部70から駆動部60に伝達する制御信号の例について、図4〜図19を参照しながら説明する。
A.基準時を第1相のON期間の中心とする例
まず、図4〜図12を参照しながら、スイッチング素子Qを駆動する制御信号(具体的にはパルス信号)にかかるON期間の中心を基準時とする例について説明する。
図4には、第1相であるV相電流Ivが最大値のときに生じる磁界を示す。この図4には、「U」,「V」,「W」は固定子巻線12の各相を示し、「+」,「−」は固定子巻線12に流れる電流の方向を示す。例えば、「U+」はU相巻線に紙面の手前方向に電流が流れることを意味し、「V−」はV相巻線に紙面の奥行き方向に電流が流れることを意味する。
固定子巻線12から界磁巻線21を励磁するには、励磁磁束として有意差を与えるため、少なくとも2相の固定子巻線12に流す電流によって励磁磁束を誘起する事が有効である。例えば、第1相であるV相巻線を基準としたときには、第2相であるU相巻線および第3相であるW相巻線に流す電流によって励磁磁束を誘起する。
第1相であるV相巻線に流れるV相電流Ivが最大値のときは、図4に示すように、ステータ10とロータ20の間で磁界φ1が右回りに生じ、同じく磁界φ2が左回りに生じる。すなわち、周方向に隣り合う磁界φ1,φ2は互いに反対方向に磁束が流れる。図4に示す左側の主磁極部22aは矢印A1方向に磁化されてN極になり、同じく右側の主磁極部22aは矢印A2方向に磁化されてS極になる。
界磁巻線21の励磁は、磁界φ1,φ2が生じているときでも、さらに一点鎖線で示す磁界φpを生じさせることができる。図4に示す磁界φpは、磁界φ1と同様にステータ10とロータ20の間で磁束が右回りで流れるので、主磁極部22aに巻かれた界磁巻線21を励磁できる。磁界φpによって界磁巻線21が励磁されると、図3に示す界磁回路には磁界φ1,φ2とともに磁界φpを起因とする界磁電流Ifが流れる。
励磁磁束として有意差を与えるには、図5に示すように、U相電流IuおよびW相電流Iwにパルス状の電流が生じさせるとよい。図5に示す例によれば、V相電流Ivが最大値になる電気角ω1のとき、U相電流Iuにプラス方向のパルス電流Iupを流し、W相電流Iwにマイナス方向のパルス電流Iwpを流す。具体的には図4において、「U−」で示すU相巻線にパルス電流Iupが流れ、「W+」で示すW相巻線にパルス電流Iwpが流れる。パルス電流Iup,Iwpは「電流パルス対」に相当する。このように周方向に隣り合う固定子巻線12でU相電流IuとW相電流Iwで互いに反対方向にパルス電流Iup,Iwpを流すことで、励磁磁束として有意差を与えることができる。これらのパルス電流Iup,Iwpを生じさせるには、制御部70は図6に示す3相の電圧波形となる制御信号を駆動部60に出力すればよい。
図6において、第1相であるV相電圧Vvは、電気角ω11から電気角ω16までを一周期(つまり電気角で360°)とし、ON期間VonとOFF期間Voffを交互に繰り返す。ON期間Vonは、電気角ω11から電気角ω15までの期間である。OFF期間Voffは、電気角ω15から電気角ω16までの期間である。V相電流Ivが最大値になるのは、ON期間Vonの中心である。ON期間Vonの中心は、始期から終期までにおける中間の時点でもよく、中間の時点を基準とする許容範囲内の時点でもよい。図6では、ON期間Vonの中心が電気角ω12であり、基準時Svとする。当該基準時Svから電気角でcos-1θだけ遅らせたタイミングで、第2相と第3相の電圧を一時的にONまたはOFFする。当該電気角のcos-1θは「所定角度δ」に相当する。
具体的には電気角ω13から電気角ω14までの一時ON期間α1は、「正電圧パルス」に相当し、U相電圧Vuを一時的にONにする期間である。同じく電気角ω13から電気角ω14までの一時OFF期間α2は、「負電圧パルス」に相当し、W相電圧Vwを一時的にOFFにする期間である。正電圧パルスと負電圧パルスの対は、「電圧パルス対」に相当する。U相電圧Vuを一時的にONすると、図5に示すパルス電流Iupが発生する。同じくW相電圧Vwを一時的にOFFすると、図5に示すパルス電流Iwpが発生する。パルス状のパルス電流Iup,Iwpは「電流パルス対」に相当し、相電流の大小方向に関して互いに逆方向に生じる。
一時ON期間α1および一時OFF期間α2の始期を基準時Svから電気角でcos-1θだけ遅らせるのは、固定子巻線12に印加する相電圧に対して、固定子巻線12に流れる相電流が力率(すなわちcosθ)に対応する電気角のcos-1θだけ遅れるためである。一般的な回転機の力率は0.5≦cosθ≦0.9であるので、電気角では25°≦cos-1θ≦60°になる。
一時ON期間α1の長さと一時OFF期間α2の長さは、いずれも電圧パルスの基本波周期に対して0.5〜10%が好ましい。一時ON期間α1と一時OFF期間α2の長さが短くなるにつれて、パルス状の電流が得られ難くなる。一時ON期間α1と一時OFF期間α2の長さが長くなるにつれて、基本波に与える影響が大きくなる。
パルス電流Iupおよびパルス電流Iwpは、基本波のU相電流IuおよびW相電流Iwに対して周期が1/10程度に過ぎないので、相電圧と相電流の位相差は基本波の場合に対して無視しても影響は少ない。
上述した図4〜図6はV相電流Ivが最大値となる時点を基準時Svとした例である。固定子巻線12に流す電流は3相平衡が好ましいので、3相でそれぞれ行う事が好ましい。すなわち第1相をU相とするとき、U相電流Iuが最大値となる時点を基準時Suとし、当該基準時Suから電気角でcos-1θだけ遅らせたタイミングで第2相のW相電圧Vwを一時的にONするとともに、第3相のV相電圧Vvを一時的にOFFする。同様に第1相をW相とするとき、W相電流Iwが最大値となる時点を基準時Swとし、当該基準時Swから電気角でcos-1θだけ遅らせたタイミングで第2相のV相電圧Vvを一時的にONするとともに、第3相のU相電圧Vuを一時的にOFFする。
制御部70から3相の固定子巻線12に出力する制御信号と、当該制御信号によって固定子巻線12に流れる電流とについて、シミュレーションを行った結果を図7〜図9に示す。このシミュレーションでは、3相平衡のため、3相のうちで1相を第1相とし、残りの2相を第2相および第3相として電流パルス対を発生させる。
図7には、制御部70から駆動部60に出力する制御信号、すなわちU相電圧Vu,V相電圧Vv,W相電圧Vwの制御例を示す。第1相がU相の場合は、U相電圧VuにかかるON期間Vonの中心である電気角ω21が基準時Suになる。当該基準時Suから電気角でcos-1θ遅れると電気角ω22になる。電気角ω22からは、第2相のW相電圧Vwを一時ON期間α1だけONし、第3相のV相電圧Vvを一時OFF期間α2だけOFFする。
第1相がV相の場合は、V相電圧VvにかかるON期間Vonの中心である電気角ω23が基準時Svになる。当該基準時Svから電気角でcos-1θだけ遅れると電気角ω24になる。電気角ω24からは、第2相のU相電圧Vuを一時ON期間α1だけONし、第3相のW相電圧Vwを一時OFF期間α2だけOFFする。
第1相がW相の場合は、W相電圧VwにかかるON期間Vonの中心である電気角ω25が基準時Swになる。当該基準時Swから電気角でcos-1θだけ遅れると電気角ω26になる。電気角ω26からは、第2相のV相電圧Vvを一時ON期間α1だけONし、第3相のU相電圧Vuを一時OFF期間α2だけOFFする。
図8には、図7に示す制御信号によって固定子巻線12に流れる相電流の変化を示す。図7に示す電気角ω22から制御する一時ON期間α1および一時OFF期間α2に対応して、図8に示す電気角ω31からパルス電流Iwp,Ivpが生じる。また、図7に示す電気角ω24から制御する一時ON期間α1および一時OFF期間α2に対応して、図8に示す電気角ω32からパルス電流Iup,Iwpが生じる。さらに、図7に示す電気角ω26から制御する一時ON期間α1および一時OFF期間α2に対応して、図8に示す電気角ω33からパルス電流Ivp,Iupが生じる。
図9には、界磁巻線21に流れる界磁電流Ifの変化例を示す。この界磁電流Ifは、固定子巻線12に電流が流れて励磁磁束を誘起し、さらに界磁巻線21が励磁されることで生じる。固定子巻線12に流れる電流には、図8に一点鎖線で囲んで示すパルス電流Iup,Ivp,Iwpを含む。界磁電流Ifが大きく変化するタイミングは、図8に示すパルス電流Iup,Ivp,Iwpが生じるタイミングと一致する。すなわち、電気角ω31,ω32,ω33からそれぞれ一時的に界磁電流Ifが大きく変化する。
図10には、界磁巻線型回転機Mが出力するトルクτの変化例を示す。このトルクτは、固定子巻線12に電流が流れて励磁磁束を誘起し、図1に示すロータ20の回転に伴ってシャフト23から出力される。トルクτが他よりも大きく変化するタイミングは、図8に示すパルス電流Iup,Ivp,Iwpが生じるタイミングと一致する。すなわち、電気角ω31,ω32,ω33からそれぞれ一時的にトルクτが他よりも大きく変化する。したがって、基本波電流の相電流(すなわちU相電流Iu,V相電流Iv,W相電流Iw)に対してパルス電流Iup,Ivp,Iwpを生じさせると、界磁巻線型回転機Mのトルクτがさらに向上するのが明らかである。
図11,図12には、制御部70から駆動部60に伝達する制御信号の例を示す。この図11,図12に示す制御信号は、3相のうちで1相を第1相とし、残りの2相を第2相および第3相として電流パルス対を発生させる。
図11は、図7と同じ制御例であり、一時ON期間α1および一時OFF期間α2の始期を同一のタイミングにする例である。第1相がU相の場合は、U相電圧VuにかかるON期間Vonの中心である電気角ω55,ω5bがそれぞれ基準時Suになる。各基準時Suから電気角でcos-1θだけ遅れると電気角ω56,ω5cになる。電気角ω56,ω5cからは、それぞれ第2相のW相電圧Vwを一時ON期間α1だけONし、第3相のV相電圧Vvを一時OFF期間α2だけOFFする。
第1相がV相の場合は、V相電圧VvにかかるON期間Vonの中心である電気角ω57,ω5dがそれぞれ基準時Svになる。当該基準時Svから電気角でcos-1θだけ遅れると電気角ω58,ω5eになる。電気角ω58,ω5eからは、それぞれ第2相のU相電圧Vuを一時ON期間α1だけONし、第3相のW相電圧Vwを一時OFF期間α2だけOFFする。
第1相がW相の場合は、W相電圧VwにかかるON期間Vonの中心である電気角ω53,ω59,ω5fがそれぞれ基準時Swになる。当該基準時Swから電気角でcos-1θだけ遅れると電気角ω54,ω5a,ω5gになる。電気角ω54,ω5a,ω5gからは、それぞれ第2相のV相電圧Vvを一時ON期間α1だけONし、第3相のU相電圧Vuを一時OFF期間α2だけOFFする。
図12は、図7と異なる制御例であり、一時ON期間α1よりも一時OFF期間α2を遅延期間βだけ遅らせる例である。図12では、第1相をV相とする場合について説明する。第1相がV相の場合は、V相電圧VvにかかるON期間Vonの中心である電気角ω61,ω64,ω67がそれぞれ基準時Svになる。当該基準時Svから電気角でcos-1θだけ遅れると電気角ω62,ω65,ω68になる。電気角ω62,ω65,ω68からは、それぞれ第2相のU相電圧Vuを一時ON期間α1だけONする。さらに遅延期間βだけ遅れると電気角ω63,ω66,ω69になる。電気角ω63,ω66,ω69からは、それぞれ第3相のW相電圧Vwを一時OFF期間α2だけOFFする。すなわち、一時OFF期間α2の始期は、電気角で(cos-1θ+β)だけ遅れることになる。
なお、第1相がU相の場合は、U相電圧VuにかかるON期間Vonの中心から電気角でcos-1θだけ遅れて、第2相のW相電圧Vwを一時ON期間α1だけONし、さらに遅延期間βだけ遅れて第3相のV相電圧Vvを一時OFF期間α2だけOFFする。また、第1相がW相の場合は、W相電圧VwにかかるON期間Vonの中心から電気角でcos-1θだけ遅れて、第2相のV相電圧Vvを一時ON期間α1だけONし、さらに遅延期間βだけ遅れて第3相のU相電圧Vuを一時OFF期間α2だけOFFする。
尚、ここでは第3相の遅延期間βの場合を示したが、逆の場合も同様である。即ち、第1相がV相の場合は、V相電圧VvにかかるON期間Vonの中心から電気角でcos-1θだけ遅れて、第3相のW相電圧Vwを一時OFF期間α2だけOFFし、さらに遅延期間βだけ遅れて第2相のU相電圧Vuを一時ON期間α1だけONする。
また、第1相がU相の場合は、U相電圧VuにかかるON期間Vonの中心から電気角でcos-1θだけ遅れて、第3相のV相電圧Vvを一時OFF期間α2だけOFFし、さらに遅延期間βだけ遅れて第2相のW相電圧Vwを一時ON期間α1だけONする。
また、第1相がW相の場合は、W相電圧VwにかかるON期間Vonの中心から電気角でcos-1θだけ遅れて、第3相のU相電圧Vuを一時OFF期間α2だけOFFし、さらに遅延期間βだけ遅れて第2相のV相電圧Vvを一時ON期間α1だけONする。
B.基準時を第1相のOFF期間の中心とする例
次に、図13〜図19を参照しながら、第1相であるV相についてスイッチング素子Qを駆動する制御信号(具体的にはパルス信号)にかかるOFF期間の中心を基準時とする例について説明する。上述した例では、固定子巻線12の第1相に流れる電流が最大値になるタイミングとして、第1相のON期間の中心を基準時とした。これに対して、固定子巻線12の第1相に流れる電流が最小値になるタイミングとして、第1相のOFF期間の中心を基準時とする例である。
図13には、図4と同様にして、第1相であるV相電流Ivが最小値のときに生じる磁界を示す。第1相のON期間の中心を基準時とする場合と同様にして、固定子巻線12から界磁巻線21を励磁するには、励磁磁束として有意差を与えるため、少なくとも2相の固定子巻線12に流す電流によって励磁磁束を誘起する事が有効と考えられる。
第1相であるV相巻線に流れるV相電流Ivが最小値のときは、図13に示すように、ステータ10とロータ20の間で磁界φ1が左回りに生じ、同じく磁界φ2が右回りに生じる。すなわち、周方向に隣り合う磁界φ1,φ2は互いに反対方向に磁束が流れる。図13に示す左側の主磁極部22aは矢印A3方向に磁化されてS極になり、同じく右側の主磁極部22aは矢印A4方向に磁化されてN極になる。
界磁巻線21を励磁するには、磁界φ1,φ2が生じているときでも、一点鎖線で示す磁界φpを生じさせるとよい。図13に示す磁界φpは、ステータ10とロータ20の間で磁束が左回りで流れるので、主磁極部22aに巻かれた界磁巻線21を励磁する。こうして界磁巻線21が励磁されると、図3に示す界磁回路に界磁電流Ifが流れる。
励磁磁束として有意差を与えるには、図14に示すように、U相電流IuおよびW相電流Iwにパルス状の電流が生じさせるとよい。図14に示す例によれば、V相電流Ivが最小値になる電気角ω2のとき、W相電流Iwにプラス方向のパルス電流Iwpを流し、U相電流Iuにマイナス方向のパルス電流Iupを流す。具体的には図13において、「U−」で示すU相巻線にパルス電流Iupが流れ、「W+」で示すW相巻線にパルス電流Iwpが流れる。パルス電流Iup,Iwpは「電流パルス対」に相当する。このように周方向に隣り合う固定子巻線12でW相電流IwとU相電流Iuで互いに反対方向にパルス電流Iwp,Iupを流すことで、励磁磁束として有意差を与えることができる。これらのパルス電流Iwp,Iupを生じさせるには、制御部70は図15に示す3相の電圧波形となる制御信号を駆動部60に出力すればよい。
図15において、第1相であるV相電圧Vvは、電気角ω71から電気角ω76までを一周期(つまり電気角で360°)とし、OFF期間VoffとON期間Vonを交互に繰り返す。OFF期間Voffは、電気角ω71から電気角ω75までの期間である。ON期間Vonは、電気角ω75から電気角ω76までの期間である。OFF期間Voffの中心は電気角ω72である。この電気角ω72を基準時Svとし、当該基準時Svから電気角でcos-1θだけ遅らせたタイミングで第2相と第3相の電圧を一時的にONまたはOFFする。具体的には電気角ω73から電気角ω74までの一時OFF期間γ1は、「負電圧パルス」に相当し、U相電圧Vuを一時的にOFFにする期間である。同じく電気角ω73から電気角ω74までの一時ON期間γ2は、「正電圧パルス」に相当し、W相電圧Vwを一時的にONにする期間である。U相電圧Vuを一時的にOFFすると、図14に示すマイナス方向のパルス電流Iupが発生する。同じくW相電圧Vwを一時的にONすると、図14に示すプラス方向のパルス電流Iwpが発生する。パルス状のパルス電流Iup,Iwpは「電流パルス対」に相当し、相電流の大小方向に関して互いに逆方向に生じる。
図16,図17には、制御部70から駆動部60に伝達する制御信号の例を示す。この図16,図17に示す制御信号は、3相のうちで1相を第1相とし、残りの2相を第2相および第3相として電流パルス対を発生させる。
図16は、図15と同じ制御例であり、一時OFF期間γ1および一時ON期間γ2の始期を同一のタイミングにする例である。一時OFF期間γ1および一時ON期間γ2の長さは、一時ON期間α1および一時OFF期間α2の長さと同様に、基本波周期に対して0.5〜10%程度が好ましい。
第1相がU相の場合は、U相電圧VuにかかるOFF期間Voffの中心である電気角ω81,ω87,ω8dがそれぞれ基準時Suになる。各基準時Suから電気角でcos-1θだけ遅れると電気角ω82,ω88,ω8eになる。電気角ω82,ω88,ω8eからは、それぞれ第2相のW相電圧Vwを一時OFF期間γ1だけOFFし、第3相のV相電圧Vvを一時ON期間γ2だけONする。
第1相がV相の場合は、V相電圧VvにかかるOFF期間Voffの中心である電気角ω83,ω89がそれぞれ基準時Svになる。当該基準時Svから電気角でcos-1θだけ遅れると電気角ω84,ω8aになる。電気角ω84,ω8aからは、それぞれ第2相のU相電圧Vuを一時OFF期間γ1だけOFFし、第3相のW相電圧Vwを一時ON期間γ2だけONする。
第1相がW相の場合は、W相電圧VwにかかるOFF期間Voffの中心である電気角ω85,ω8bがそれぞれ基準時Swになる。当該基準時Swから電気角でcos-1θだけ遅れると電気角ω86,ω8cになる。電気角ω86,ω8cからは、それぞれ第2相のV相電圧Vvを一時OFF期間γ1だけOFFし、第3相のU相電圧Vuを一時ON期間γ2だけONする。
図17は、図15と異なる制御例であり、一時OFF期間γ1よりも一時ON期間γ2を遅延期間βだけ遅らせる例である。図17では、第1相をV相とする場合について説明する。第1相がV相の場合は、V相電圧VvにかかるOFF期間Voffの中心である電気角ω91,ω94,ω97がそれぞれ基準時Svになる。当該基準時Svから電気角でcos-1θだけ遅れると電気角ω92,ω95,ω98になる。電気角ω92,ω95,ω98からは、それぞれ第2相のU相電圧Vuを一時OFF期間γ1だけOFFする。さらに遅延期間βだけ遅れると電気角ω93,ω96,ω99になる。電気角ω93,ω96,ω99からは、それぞれ第3相のW相電圧Vwを一時ON期間γ2だけONする。すなわち、一時ON期間γ2の始期は、電気角で(cos-1θ+β)だけ遅れることになる。
なお、第1相がU相の場合は、U相電圧VuにかかるOFF期間Voffの中心から電気角でcos-1θだけ遅れて、第2相のW相電圧Vwを一時OFF期間γ1だけOFFし、さらに遅延期間βだけ遅れて第3相のV相電圧Vvを一時ON期間γ2だけONする。また、第1相がW相の場合は、W相電圧VwにかかるOFF期間Voffの中心から電気角でcos-1θだけ遅れて、第2相のV相電圧Vvを一時OFF期間γ1だけOFFし、さらに遅延期間βだけ遅れて第3相のU相電圧Vuを一時ON期間γ2だけONする。
尚、ここでは第3相の遅延期間βの場合を示したが、逆の場合も同様である。即ち、第1相がV相の場合は、V相電圧VvにかかるOFF期間Voffの中心から電気角でcos-1θだけ遅れて、第3相のW相電圧Vwを一時ON期間γ2だけONし、さらに遅延期間βだけ遅れて第2相のU相電圧Vuを一時OFF期間γ1だけOFFする。
また、第1相がU相の場合は、U相電圧VuにかかるOFF期間Voffの中心から電気角でcos-1θだけ遅れて、第3相のV相電圧Vvを一時ON期間γ2だけONし、さらに遅延期間βだけ遅れて第2相のW相電圧Vwを一時OFF期間γ1だけOFFする。 また、第1相がW相の場合は、W相電圧VwにかかるOFF期間Voffの中心から電気角でcos-1θだけ遅れて、第3相のU相電圧Vuを一時ON期間γ2だけONし、さらに遅延期間βだけ遅れて第2相のV相電圧Vvを一時OFF期間γ1だけOFFする。
C.基準時を第1相のON期間とOFF期間の各中心とする例
次に、図18,図19を参照しながら、第1相のスイッチング素子Qを駆動する制御信号(具体的にはパルス信号)にかかるON期間とOFF期間の各中心を基準時とする例について説明する。簡単に言えば、上述した「A.基準時を第1相のON期間の中心とする例」と「B.基準時を第1相のOFF期間の中心とする例」を組み合わせる。以下では第1相をV相とする場合について説明するが、3相平衡が好ましいので、第1相がU相やW相の場合でもV相と同様に行う。
図18において、V相電圧VvにかかるON期間Vonの中心である電気角ω103と、OFF期間Voffの中心である電気角ω101がそれぞれ基準時Svになる。一時ON期間α1,r2と一時OFF期間α2,γ1は、それぞれ基準時Svから電気角でcos-1θだけ遅れるものとする。
ON期間Vonの中心である基準時Svから電気角でcos-1θだけ遅れると、電気角ω104になる。電気角ω104からは、第2相のU相電圧Vuを一時ON期間α1だけONし、第3相のW相電圧Vwを一時OFF期間α2だけOFFする。
OFF期間Voffの中心である基準時Svから電気角でcos-1θだけ遅れると、電気角ω102になる。電気角ω102からは、第2相のU相電圧Vuを一時OFF期間γ1だけOFFし、第3相のW相電圧Vwを一時ON期間γ2だけOFFする。
図19は、図18と異なる制御例であり、第3相を第2相よりも遅らせる例である。具体的には、一時ON期間α1よりも一時OFF期間α2を遅延期間β1だけ遅らせ、一時OFF期間γ1よりも一時ON期間γ2を遅延期間β2だけ遅らせる。第2相は、第1相の基準時Svから電気角でcos-1θだけ遅れる点で、図18の制御例と同じである。
図19において、V相電圧VvにかかるON期間Vonの中心である電気角ω113と、OFF期間Voffの中心である電気角ω111がそれぞれ基準時Svになる。
ON期間Vonの中心である基準時Svから電気角でcos-1θだけ遅れると、電気角ω114になる。電気角ω114からは、第2相のU相電圧Vuを一時ON期間α1だけONする。さらに電気角ω114から遅延期間β1だけ遅れて、第3相のW相電圧Vwを一時OFF期間α2だけOFFする。
OFF期間Voffの中心である基準時Svから電気角でcos-1θだけ遅れると、電気角ω112になる。電気角ω112からは、第2相のU相電圧Vuを一時OFF期間γ1だけOFFする。さらに電気角ω112から遅延期間β2だけ遅れて、第3相のW相電圧Vwを一時ON期間γ2だけONする。
ここでは第3相の遅延期間β1、β2の場合を示したが、この場合も先述した様に逆の場合即ち、第2相が第3相に対して遅延する場合も同様である。
図18,図19に示す制御例は、3相の各相について、正電圧パルス(すなわち一時ON期間α1,γ2)および負電圧パルス(すなわち一時OFF期間α2,γ1)の対が、ON期間VonとOFF期間Voffを含む一周期中に2回発生させることができる。1回の電流パルス対の発生は図10に示すように、トルクτの向上に寄与する。よって、2回の電流パルス対の発生はトルクτの向上をさらに高めることができる。
上述した形態では、所定角度を電気角でcos-1θとした。この形態に代えて、所定角度を電気角でδとするとき、cos-1θ−30°≦δ≦cos-1θ+30°の範囲内としてもよい。この範囲内で第2相や第3相を遅らせても、図8に示す電流パルス対を発生させることができる。すなわち、基本波電流が流れる第1相の基準時から所定角度δだけ遅れて、電流パルス対を誘起する電圧パルス対を第2相と第3相に発生させることができる。
上述した実施の形態1によれば、以下に示す各作用効果を得ることができる。
(1)界磁巻線型回転機Mは、ステータ10と、界磁巻線21を備えるロータ20と、整流素子D1と、スイッチング素子Qを備え、駆動部60と、制御部70とを有する。制御部70は、矩形波通電を行うとき、第1相のON期間またはOFF期間の中心を基準時とし、基準時から電気角でcos-1θを含む所定角度δだけ遅れて、第2相および第3相のOFF期間中に一時的にONする一時ON期間α1,γ2を設け、かつ、第3相および第2相のON期間中に一時的にOFFする一時OFF期間α2,γ1を設けて、電流パルス対を誘起する電圧パルス対を発生させる。この構成によれば、基本波電流が流れる第1相の基準時から所定角度δだけ遅れて、電流パルス対を誘起する電圧パルス対を第2相と第3相に発生させる。誘起された電流パルス対によって固定子巻線12に励磁磁束を生じさせ、第2相と第3相とで有意差を与えて界磁巻線21を励磁することができる。そのため、矩形波通電のときでも固定子巻線12から界磁巻線21を励磁して、さらに性能を高めることができる。
(2)一時ON期間α1,γ2および一時OFF期間α2,γ1は、第1相の一周期に対して0.5〜10%である。この構成によれば、第1相の固定子巻線12に流れる基本波電流に大きな影響を与えず、かつ、界磁巻線21を確実に励磁することができる。
(3)所定角度δは、cos-1θ−30°≦δ≦cos-1θ+30°を満たす。この範囲内の所定角度δで電圧パルス対を設けると、矩形波通電または過変調通電のときでも確実に電流パルス対を発生させることができる。
(4)一時ON期間α1,γ2および一時OFF期間α2,γ1のうちで一方の期間の始期は、他方の期間の始期から遅延期間β1,β2だけ遅れる。この構成によれば、第1相の固定子巻線12に流れる基本波電流に対し、有意差のある電流パルス対を作る事ができる。したがって、矩形波通電のときでも固定子巻線12から界磁巻線21を励磁して、さらに性能を高めることができる。
(5)制御部70は、3相の各相について、正電圧パルス(すなわち一時ON期間α1,γ2)および負電圧パルス(すなわち一時OFF期間α2,γ1)の対が、ON期間VonとOFF期間Voffを含む一周期中に1回または2回発生するように制御する。この構成によれば、1回または2回の回数を選択することで、回転速度に応じて界磁巻線21を励磁する励磁量や電流量を調節することができる。
〔実施の形態2〕
実施の形態2は図20〜図22を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1と相違する点を説明する。
図20は、実施の形態1の図3に代わる構成であり、界磁巻線型回転機Mを駆動制御するための構成を示す。図3と相違するのは、界磁回路に容量素子C1を備える点と、界磁巻線21を界磁巻線21a,21bに分けた点である。制御部70から駆動部60に出力する制御信号は、実施の形態1と同じであるので、図示および説明を省略する。
容量素子C1は、一端を界磁巻線21の途中に接続し、他端を整流素子D1の端子(具体的にはアノード端子)に接続する。容量素子C1の一端を界磁巻線21の途中に接続するには、界磁巻線21を二つに分ける必要があるために界磁巻線21a,21bを備える。すなわち、容量素子C1の一端は界磁巻線21aと界磁巻線21bの間に接続する。
図21,図22には界磁巻線21a,21bの構成を示す。図21の構成は、ロータコア22の主磁極部22aに対して界磁巻線21bを集中巻きし、さらに界磁巻線21bの外側に界磁巻線21aを集中巻きする。図示を省略するが、主磁極部22aに対して界磁巻線21aを集中巻きし、さらに界磁巻線21aの外側に界磁巻線21bを集中巻きしてもよい。
図22の構成は、ロータコア22の主磁極部22aに対して径方向にずらして、界磁巻線21a,21bを集中巻きする。図22では、主磁極部22aに対して界磁巻線21aを径方向の外径側(すなわちステータ10に接近する側)に集中巻きし、界磁巻線21bを径方向の内径側(すなわちステータ10と離反する側)に集中巻きしている。図示を省略するが、主磁極部22aに対して界磁巻線21bを径方向の外径側に集中巻きし、界磁巻線21aを径方向の内径側に集中巻きしてもよい。
図示を省略するが、図21,図22の構成に代えて、ロータコア22の主磁極部22aに対して界磁巻線21a,21bを二線巻きによって集中巻きしてもよい。二線巻きは、界磁巻線21a,21bを束ねて主磁極部22aに巻く方法である。
上述した実施の形態2によれば、実施の形態1と同様の作用効果を得ることができるとともに、次の作用効果を得ることができる。
(6)界磁巻線21は、一極(すなわち主磁極部22a)ごとに集中巻きされる。一端を界磁巻線21の途中に接続し、他端を整流素子D1の端子に接続する容量素子C1を有する。この構成によれば、界磁巻線21に相当する界磁巻線21a,21bに流れる電流で打ち消す電圧分を容量素子C1に蓄え、電位方向が変わった時に放電して有効利用することができる。
〔実施の形態3〕
実施の形態3は図23〜図26を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1,2で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1,2と相違する点を説明する。
図23,図24は、実施の形態1の図2に代わるロータ20の構成である。図2と相違するのは、ロータコア22に第1凸状部位として設けられる主磁極部22aのほかに、第2凸状部位として設けられる補磁極部22bを有する点である。主磁極部22aが磁極として機能するので、主磁極部22aと補磁極部22bは周方向に交互に設けられる。補磁極部22bは「補極」や「補助極」とも呼ばれる。
補磁極部22bは、主磁極部22aよりも周方向に狭くして設けられ、磁石が設けられる。補磁極部22bに磁石を設けることによって、極間を跨いで漏れる磁束を抑制できる。磁石は、永久磁石でもよく、巻線による電磁石でもよい。
図23には、補磁極部22bに永久磁石22mを設けた例を示す。図23には、ロータ20が矢印A8方向に回転し、主磁極部22aが矢印A6方向に磁化されてN極になる場合を示す。補磁極部22bの一方側(すなわち図23の左側)に設けた永久磁石22mが矢印A5方向に磁化され、他方側(すなわち図23の右側)に設けた永久磁石22mが矢印A7方向に磁化されるとよい。図示を省略するが、主磁極部22aがS極になる場合には、図23とは逆方向に磁化する。要するに、主磁極部22aに隣り合う補磁極部22bの極性が反対になればよい。
図24には、補磁極部22bに巻き付けた補磁極巻線25を示す。ステータ10から流れる磁束によって補磁極巻線25に電流が流れると、補磁極巻線25の巻き方向に従って補磁極部22bが磁化される。補磁極巻線25の巻き方向は、主磁極部22aに隣り合う補磁極部22bで反対になるようにするとよい。このように巻けば、主磁極部22aに隣り合う補磁極部22bの極性が反対になる。
補磁極巻線25を有するロータ20は、界磁巻線21の形態に応じて図25,図26にそれぞれ示す界磁回路を構成する。図25に示す界磁回路は、界磁巻線21,補磁極巻線25および整流素子D1を直列接続する。図26に示す界磁回路は、界磁巻線21a,21bおよび整流素子D1を直列接続するとともに、容量素子C1を並列接続する。この容量素子C1は、一端を界磁巻線21の途中である界磁巻線21aと界磁巻線21bの間に接続し、他端を整流素子D1の端子(具体的にはアノード端子)に接続する。整流素子D1が界磁巻線21および補磁極巻線25に流れる電流を規制することによって、主磁極部22aおよび補磁極部22bの極性を規制できる。また、図26に示す容量素子C1を備えると、界磁巻線21a,21bに流れる電流で打ち消す時に電流をC1に蓄えることができ、電位方向が変わった時に放電して有効利用することができる。
上述した実施の形態3によれば、実施の形態1と同様の作用効果を得ることができるとともに、次の作用効果を得ることができる。
(7)ロータ20は、ステータ10に対面するロータコア22の第1凸状部位である主磁極部22aと、第1凸状部位よりも周方向幅を狭くした第2凸状部位である補磁極部22bとを備える。補磁極部22bは、ステータ10の界磁を打消す方向に磁化される磁石(すなわち永久磁石22mまたは補磁極巻線25)を有する。ステータ10の回転界磁によって発生する磁束は概ね主磁極部22aを通るが、漏れる磁束もあり界磁巻線21の位置によって通る磁束量や向きも異なってくる。この構成によれば、補磁極部22bによって極間の境を設け、磁石が極間を跨いで漏れる磁束を抑制する。したがって、極内に磁束を効率良く通し、効果的に界磁電流Ifを得ることができる。
〔実施の形態4〕
実施の形態4は図27〜図29を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1〜3で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1〜3と相違する点を説明する。
図27に示す界磁回路は、実施の形態1の図3に示す界磁回路に代わる構成例である。図3と相違するのは、界磁回路に容量素子C1a,C1bを備える点と、界磁巻線21を界磁巻線21a,21b,21cに分けた点である。制御部70から駆動部60に出力する制御信号は、実施の形態1と同じであるので、図示および説明を省略する。
容量素子C1a,C1bは、それぞれ一端を界磁巻線21の途中に接続し、他端を整流素子D1の端子(具体的にはアノード端子)に接続する。容量素子C1a,C1bの一端を界磁巻線21の途中に接続するには、界磁巻線21を三つに分ける必要があるために界磁巻線21a,21b,21cを備える。つまり、容量素子C1aの一端は界磁巻線21aと界磁巻線21bの間に接続し、容量素子C1bの一端は界磁巻線21bと界磁巻線21cの間に接続する。
図28,図29には界磁巻線21a,21b,21cの構成を示す。図28の構成は、ロータコア22の主磁極部22aに対して外側から内側に向かって順番に界磁巻線21a,21b,21cを集中巻きする。界磁巻線21a,21b,21cを外側から内側に向かって巻く順番は、図28に限らず他の順番で巻いてもよい。
図29の構成は、ロータコア22の主磁極部22aに対して径方向にずらして、界磁巻線21a,21b,21cを集中巻きする。図29では、主磁極部22aに対して界磁巻線21aを径方向の外径側(すなわちステータ10に接近する側)から内径側(すなわちステータ10と離反する側)に向かって順番に界磁巻線21a,21b,21cを集中巻きする。界磁巻線21a,21b,21cを内径側から外径側に向かって巻く順番は、図29に限らず他の順番で巻いてもよい。
図示を省略するが、図28,図29の構成に代えて、ロータコア22の主磁極部22aに対して界磁巻線21a,21b,21cを三線巻きによって集中巻きしてもよい。三線巻きは、界磁巻線21a,21b,21cを束ねて主磁極部22aに巻く方法である。
上述した実施の形態4によれば、実施の形態2と同様の作用効果が得られる。
〔他の実施の形態〕
以上では本発明を実施するための形態について実施の形態1〜4に従って説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
上述した実施の形態1〜4では、矩形波通電のときに電流パルス対を誘起する構成とした。この形態に代えて、過変調通電(すなわち1≦m<1.27または特定の制御における1.15≦m<1.27)のときに電流パルス対を誘起する構成としてもよい。変調率mおよび変調形態が相違するに過ぎず、過変調通電でも電流パルス対を誘起するので、実施の形態1〜4と同様の作用効果が得られる。
上述した実施の形態1〜4では、ロータ20に備える主磁極部22aの数を8とした。この形態に代えて、ロータ20に設けられる限り、2以上の主磁極部22aを設けてもよい。すなわち、主磁極部22aの数は界磁巻線型回転機Mの機能や定格等に応じて設定してよい。極数の相違に過ぎないので、実施の形態1〜4と同様の作用効果が得られる。
上述した実施の形態1〜4では、直流電源50は二次電池とした。この形態に代えて、要求される電力を供給できれば、一次電池でもよく、二次電池と一次電池を組み合わせてもよい。要求される電力に応じて二次電池と一次電池を切り替える構成としてもよい。一次電池は、例えば太陽電池,燃料電池,金属空気電池などが該当する。電力の供給源が相違するに過ぎないので、実施の形態1〜4と同様の作用効果が得られる。
上述した実施の形態1〜4では、外部装置はECUとした。この形態に代えて、外部装置は車両に搭載されるか否かを問わず、内部通信回線または外部通信回線を介して接続されるコンピュータや処理装置としてもよい。あるいは外部装置を不要とし、制御部70が指令信号に相当する情報を内部に記録しており、自立的に制御信号を出力する構成としてもよい。外部装置の構成や指令信号の有無が相違するに過ぎないので、実施の形態1〜4と同様の作用効果が得られる。
上述した実施の形態1〜4では、ステータ10を外径側に配置し、ロータ20を内径側に配置するインナーロータ型の界磁巻線型回転機Mとした。この形態に代えて、ステータ10を内径側に配置し、ロータ20を外径側に配置するアウターロータ型の界磁巻線型回転機Mとしてもよい。ステータ10とロータ20の配置が相違するに過ぎないので、実施の形態1〜4と同様の作用効果が得られる。
上述した実施の形態1〜4では、複数相の固定子巻線12をU相,V相,W相の3相とし、巻線形態を分布巻きとした。この形態に代えて、名称が異なる3相(例えばX相,Y相,Z相やA相,B相,C相など)としてもよく、ステータ10に設けられる限りにおいて4相以上としてもよい。4相以上の固定子巻線12では、基準となる1相(以下では「基準相」と呼ぶ)を「第1相」とし、残りの相のうちで2相を「第2相」および「第3相」としてもよく、基準相以外の全相を「第2相」,「第3相」,「第4相」,…としてもよい。すなわち、電流パルス対を2相以上で発生させてもよい。また、分布巻き以外の巻線形態、例えば全節巻き,集中巻き,短節巻きのいずれかとしてもよい。名称,相数,巻線形態が相違するに過ぎないので、実施の形態1〜4と同様の作用効果が得られる。
上述した実施の形態1の図12では、第1相の基準時から電気角でcos-1θだけ遅れて第2相を一時ON期間α1だけONし、さらに遅延期間βだけ遅れて第3相を一時OFF期間α2だけOFFする構成とした。同じく図17では、第1相の基準時から電気角でcos-1θだけ遅れて第2相を一時OFF期間γ1だけOFFし、さらに遅延期間βだけ遅れて第3相を一時ON期間γ2だけONする構成とした。これらの構成に代えて、電流パルス対が同時に現れるように、タイミングを調整してよい。また、第2相と第3相を入れ替えてもよい。固定子巻線12が4相以上であれば、第2相または第3相に代えて(あるいは加えて)、第4相を含む他の相で行ってもよい。こうすることで、電流パルス対が同時に発生して磁界φpが強くなり、トルクτも高まる。したがって、実施の形態1と同様の作用効果が得られる。
上述した実施の形態2の図20では界磁回路に一つの容量素子C1を備え、実施の形態4の図27では界磁回路に二つの容量素子C1a,C1bを備えた。この形態に代えて、ロータ20に設けられる限りにおいて、三つ以上の容量素子を備えてもよい。容量素子の数が相違するに過ぎないので、実施の形態2,4と同様の作用効果が得られる。
上述した実施の形態3に含まれる図24では、一つの界磁巻線21を備えた。この形態に代えて、実施の形態2に含まれる図21,図22に示すように二つの界磁巻線21a,21bを備えてもよい。また、実施の形態4の図28,図29に示すように三つの界磁巻線21a,21b,21cを備えてもよい。すなわち、主磁極部22aに巻ける限りにおいて、一以上の界磁巻線を設けてよい。界磁巻線の数が相違するに過ぎないので、実施の形態2,4と同様の作用効果が得られる。
上述した実施の形態1〜4では、ロータ20はロータコア22に複数の主磁極部22aを備えた凸極構造の凸極型ロータとした。この形態に代えて、ロータ20をランデル構造のランデル型ロータとしてもよい。図示を省略するランデル型ロータは、界磁巻線21と、円筒状のボス部と、複数の爪極部とを有する。ボス部は、界磁巻線21が巻かれる。複数の爪極部は、それぞれボス部の軸方向両端から周方向に向かって所定ピッチで突出するとともに、軸方向相手側へ向けて周方向に交互に延びる。ランデル型ロータであっても、固定子巻線12に励磁磁束を生じさせ、第2相と第3相とで有意差を与えて界磁巻線21を励磁することができる。そのため、矩形波通電または過変調通電のときでも固定子巻線12から界磁巻線21を励磁して、さらに性能を高めることができる。ロータ20の構造が相違するに過ぎないので、実施の形態1〜4と同様の作用効果が得られる。
M…界磁巻線型回転機、10…ステータ、11…ステータコア、12…固定子巻線、20…ロータ、21,21a,21b,21c…界磁巻線、22…ロータコア、22a…主磁極部、22b…補磁極部、22m…永久磁石、23…シャフト、24…被検出部、25…補磁極巻線、30…ハウジング、40…回転センサ、50…直流電源、60…駆動部、70…制御部、80…電流センサ、C1,C1a,C1b,C2…容量素子、D1,D2,D3…整流素子、Q…スイッチング素子、Iu…U相電流、Iv…V相電流、Iw…W相電流、Iup,Ivp,Iwp…パルス電流、Vu…U相電圧、Vv…V相電圧、Vw…W相電圧、If…界磁電流、α1,γ2…一時ON期間、α2,γ1…一時OFF期間、β,β1,β2…遅延期間、δ…所定角度、φ1,φ2,φp…磁界

Claims (8)

  1. 3相以上の固定子巻線(12)が巻かれたステータ(10)と、
    界磁巻線(21,21a,21b,21c)が巻かれたロータコア(22)を備え、前記ステータに対面して回転するロータ(20)と、
    前記界磁巻線と直列接続され、前記固定子巻線に固定子電流を流して生じる磁界(φ1,φ2,φp)によって前記界磁巻線を励磁して流れる界磁電流(If)を一方向に規制する整流素子(D1)と、
    スイッチング素子(Q)を備え、前記複数相の電力を前記固定子巻線に出力する駆動部(60)と、
    回転速度に応じて正弦波通電,矩形波通電,過変調通電のうちでいずれかの通電を行うための前記複数相の制御信号を前記駆動部に出力する制御部(70)と、
    を有して、力率がcosθである界磁巻線型回転機(M)において、
    前記制御部は、
    前記矩形波通電または前記過変調通電を行うとき、前記複数相のうちで第1相のON期間またはOFF期間の中心を基準時とし、
    前記基準時から電気角でcos-1θを含む所定角度(δ)だけ遅れて、前記複数相のうちで前記第1相とは異なる第2相のOFF期間中に一時的にONする一時ON期間(α1,γ2)を設け、かつ、前記複数相のうちで前記第1相および前記第2相とは異なる第3相のON期間中に一時的にOFFする一時OFF期間(α2,γ1)を設けて、電流パルス対を誘起する電圧パルス対を発生させる界磁巻線型回転機。
  2. 前記一時ON期間の長さと前記一時OFF期間の長さは、それぞれ前記第1相の一周期に対して0.5〜10%である請求項1に記載の界磁巻線型回転機。
  3. 前記所定角度(δ)は、cos-1θ−30°≦δ≦cos-1θ+30°を満たす請求項1または2に記載の界磁巻線型回転機。
  4. 前記一時ON期間および前記一時OFF期間のうちで一方の期間の始期は、他方の期間の始期から遅延期間(β,β1,β2)だけ遅れる請求項1から3のいずれか一項に記載の界磁巻線型回転機。
  5. 前記制御部は、正電圧パルス(α1,γ2)と負電圧パルス(α2,γ1)の対が相当たり電気角の一周期中に1回または2回発生するように制御する請求項1から4のいずれか一項に記載の界磁巻線型回転機。
  6. 一端を前記界磁巻線の途中に接続し、他端を前記整流素子の端子に接続する容量素子(C1,C1a,C1b)を有する請求項1から5のいずれか一項に記載の界磁巻線型回転機。
  7. 前記ロータは、
    前記界磁巻線が一極毎に集中巻きされた凸極型ロータと、
    前記界磁巻線が巻かれるボス部と、前記ボス部の端部から延びる複数の爪極部とを備えて、前記爪極部をN極またはS極とするランデル型ロータと、
    のいずれかである請求項1から6のいずれか一項に記載の界磁巻線型回転機。
  8. 前記ロータは、前記ステータに対面する前記ロータコアの第1凸状部位である主磁極部(22a)と、前記第1凸状部位よりも周方向幅を狭くした第2凸状部位である補磁極部(22b)とを備え、
    前記補磁極部は、前記ステータの界磁を打消す方向に磁化される磁石(22m,25)を有する請求項1から7のいずれか一項に記載の界磁巻線型回転機。
JP2016241523A 2016-12-13 2016-12-13 界磁巻線型回転機 Active JP6709508B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016241523A JP6709508B2 (ja) 2016-12-13 2016-12-13 界磁巻線型回転機
PCT/JP2017/044224 WO2018110458A1 (ja) 2016-12-13 2017-12-08 界磁巻線型回転電機
EP17882039.5A EP3557756B1 (en) 2016-12-13 2017-12-08 Field winding-type rotating electrical machine
CN201780076697.2A CN110063018B (zh) 2016-12-13 2017-12-08 励磁绕组型旋转电机
US16/440,263 US10756661B2 (en) 2016-12-13 2019-06-13 Field winding type rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016241523A JP6709508B2 (ja) 2016-12-13 2016-12-13 界磁巻線型回転機

Publications (2)

Publication Number Publication Date
JP2018098907A true JP2018098907A (ja) 2018-06-21
JP6709508B2 JP6709508B2 (ja) 2020-06-17

Family

ID=62558654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016241523A Active JP6709508B2 (ja) 2016-12-13 2016-12-13 界磁巻線型回転機

Country Status (5)

Country Link
US (1) US10756661B2 (ja)
EP (1) EP3557756B1 (ja)
JP (1) JP6709508B2 (ja)
CN (1) CN110063018B (ja)
WO (1) WO2018110458A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066481A1 (ja) * 2018-09-25 2020-04-02 株式会社デンソー 界磁巻線型回転電機

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112468056A (zh) * 2020-09-23 2021-03-09 深圳供电局有限公司 磁极线圈激励调节设备、系统和磁极线圈系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543338B2 (ja) 1971-12-24 1979-02-21
US6188204B1 (en) * 1999-08-05 2001-02-13 Joseph Vithayathil Brushless AC field system for stable frequency variable speed alternators
US20030042859A1 (en) * 2001-08-06 2003-03-06 Gorti Bhanuprasad V. Excitation circuit and control method for flux switching motor
JP5120586B2 (ja) * 2005-06-28 2013-01-16 株式会社デンソー 界磁巻線型同期機
US7795830B2 (en) * 2005-07-06 2010-09-14 Elckon Limited Electric motor
JP2007159353A (ja) * 2005-12-08 2007-06-21 Mitsubishi Electric Corp 界磁巻線式同期発電電動機
JP5062517B2 (ja) 2007-01-18 2012-10-31 株式会社デンソー 界磁巻線型同期機
JP5233497B2 (ja) * 2008-08-18 2013-07-10 株式会社デンソー 電動機
JP5104721B2 (ja) * 2008-10-29 2012-12-19 株式会社デンソー 界磁巻線型同期機の制御装置及び制御システム
JP5403338B2 (ja) * 2009-05-22 2014-01-29 株式会社デンソー 同期機
JP5510729B2 (ja) * 2009-07-09 2014-06-04 株式会社デンソー 回転機用電力変換装置
JP5363913B2 (ja) * 2009-08-18 2013-12-11 株式会社豊田中央研究所 回転電機駆動システム
JP5079055B2 (ja) * 2010-06-28 2012-11-21 三菱電機株式会社 電力変換装置
CN102075128B (zh) * 2011-01-21 2012-11-21 南京航空航天大学 转子磁分路混合励磁同步电机驱动系统及其电流控制方法
JP5781785B2 (ja) * 2011-02-15 2015-09-24 トヨタ自動車株式会社 回転電機駆動システム
EP2717465B1 (en) * 2011-04-21 2019-06-19 Nissan Motor Co., Ltd Control device for electric motor and control method for electric motor
US9221458B1 (en) * 2014-07-31 2015-12-29 GM Global Technology Operations LLC Engine start control from a high-power EV mode
JP6507721B2 (ja) * 2015-03-05 2019-05-08 スズキ株式会社 回転電機および回転電機の電流入力制御方法
JP6614825B2 (ja) * 2015-06-30 2019-12-04 日立ジョンソンコントロールズ空調株式会社 電力変換装置およびモータ駆動装置、冷凍装置
US9800183B1 (en) * 2016-05-18 2017-10-24 GM Global Technology Operations LLC Method and apparatus for controlling an electric machine
US10734935B2 (en) * 2017-09-22 2020-08-04 GM Global Technology Operations LLC Quasi six-step PWM control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066481A1 (ja) * 2018-09-25 2020-04-02 株式会社デンソー 界磁巻線型回転電機
CN112753156A (zh) * 2018-09-25 2021-05-04 株式会社电装 励磁绕组型旋转电机
CN112753156B (zh) * 2018-09-25 2023-12-05 株式会社电装 励磁绕组型旋转电机

Also Published As

Publication number Publication date
US10756661B2 (en) 2020-08-25
EP3557756A4 (en) 2019-12-18
US20190296672A1 (en) 2019-09-26
CN110063018A (zh) 2019-07-26
CN110063018B (zh) 2022-09-09
EP3557756B1 (en) 2020-09-09
EP3557756A1 (en) 2019-10-23
JP6709508B2 (ja) 2020-06-17
WO2018110458A1 (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
JP5120586B2 (ja) 界磁巻線型同期機
EP0895344B1 (en) A method of controlling a torque ripple of a motor having interior permanent magnets and a controller using the same method
JP4032516B2 (ja) 自動車用電動駆動装置
JP5543186B2 (ja) スイッチドリラクタンスモータ駆動システム
WO2008066061A1 (fr) Moteur sans balai
US6376955B1 (en) Motor/generator with multiple rotors
JP6693319B2 (ja) 回転電機の制御装置
JP5543185B2 (ja) スイッチドリラクタンスモータ駆動システム
WO2018110458A1 (ja) 界磁巻線型回転電機
JP2008092789A (ja) ブラシレス発電機
JP5771857B1 (ja) モータ及びモータ制御方法
JP6626973B2 (ja) 6線3相モータおよびモータシステム
JP5233262B2 (ja) 回転位置検出装置の位相調整方法
JP6075161B2 (ja) スイッチトリラクタンスモータの制御装置
JP2017225203A (ja) スイッチドリラクタンスモータ駆動システム
JPH11356015A (ja) 回転電機
JP5623346B2 (ja) 回転電機駆動システム
JP6839896B2 (ja) モータ制御装置および電動車両
JP2016103912A (ja) 電力変換装置
JP2002125394A (ja) 回転電機の制御装置
CN110463018B (zh) 旋转电机的控制装置及其控制方法
US20230155533A1 (en) Motor control device, electric vehicle, and motor control method
Gladyshev et al. Synchronous Motor with Silicon Steel Salient Poles Rotor and All Coils Placed on the Stator
WO2017082194A1 (ja) 2相回転電機制御装置及び2相回転電機用制御システム
JP2006158166A (ja) センサレス同期電動機とその駆動方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200506

R151 Written notification of patent or utility model registration

Ref document number: 6709508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250