WO2018109886A1 - 培養機器 - Google Patents
培養機器 Download PDFInfo
- Publication number
- WO2018109886A1 WO2018109886A1 PCT/JP2016/087301 JP2016087301W WO2018109886A1 WO 2018109886 A1 WO2018109886 A1 WO 2018109886A1 JP 2016087301 W JP2016087301 W JP 2016087301W WO 2018109886 A1 WO2018109886 A1 WO 2018109886A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- culture
- microplate
- lid
- container
- containers
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/12—Well or multiwell plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5085—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
- B01L3/50853—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates with covers or lids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/34—Measuring or testing with condition measuring or sensing means, e.g. colony counters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/22—Transparent or translucent parts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/34—Internal compartments or partitions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/38—Caps; Covers; Plugs; Pouring means
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M37/00—Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/30—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
- C12M41/36—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/251—Colorimeters; Construction thereof
- G01N21/253—Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/82—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/04—Closures and closing means
- B01L2300/041—Connecting closures to device or container
- B01L2300/042—Caps; Plugs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0848—Specific forms of parts of containers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
- G01N21/80—Indicating pH value
Definitions
- This disclosure relates to a culture device used for testing bacteria or fungi.
- a culture solution and cells are introduced into a culture vessel and the cells are cultured.
- a lid is placed on the culture vessel for the purpose of preventing the cells from infecting bacteria and suppressing the increase in pH of the culture solution. Observation of morphological changes, motility, invasive ability, etc. of cultured cells over time is often performed with the lid placed on the culture vessel.
- Patent Document 1 discloses a culture dish and a lid provided with a concave portion in the central part in order to completely prevent condensation in the microscope observation part inside the culture lid and to suppress the amount of culture medium used and pH fluctuation.
- a microscopic cell culture device is disclosed.
- the present disclosure has been made in view of the above points, and provides a culture apparatus that can accurately observe the inside of a culture vessel and reduce the risk of contamination.
- the present disclosure includes a plurality of means for solving the above problems.
- the present disclosure provides a microplate including a plurality of containers having a light-transmitting bottom surface and an open top, and a light-transmitting property.
- a cover that covers the top surface of the microplate, and is sandwiched between the cover and the microplate, and has a plurality of protrusions on a surface facing the microplate, and a plurality of protrusions corresponding to the protrusions
- a translucent intermediate plate provided with a through-hole, and the plurality of convex portions and the plurality of through-holes are formed when the intermediate plate and the microplate are overlaid.
- a convex portion is inserted into each of the plurality of containers, and the plurality of through holes are disposed so as to overlap the openings of the plurality of containers, and the lid is provided in the plurality of through holes provided in the intermediate plate. Close mouth Contact with sea urchin said intermediate plate, provides a culture device.
- the present disclosure provides a microplate including a plurality of containers having light-transmitting bottom surfaces and attached with light-transmitting components extending from the upper end to the inside so as to have openings. And a lid that has translucency and covers the upper surface of the microplate, and the component has two surfaces substantially parallel to the bottom surface of the container, and one of the two surfaces is the micro surface.
- a culture device is provided which is located at the same height as the top surface of the plate or higher.
- FIG. 3 is a diagram for explaining a configuration of a culture device according to Example 1. It is a figure for demonstrating the optical system for measuring turbidity. It is the figure which compared the measurement result of turbidity. It is a figure which shows the 1st plate provided with a total of 24 containers.
- 6 is a diagram for explaining a configuration of a culture device according to Example 2.
- FIG. FIG. 6 is a diagram for explaining a configuration of a culture device according to Example 3. It is a figure which shows another example of the components press-fit in a container. It is a figure for demonstrating a mode that components prevent dew condensation of a lid
- a lid is usually installed so as to close the opening of each container in order to prevent invasion of bacteria. Since the cells are cultured at a temperature of about 30 to 35 ° C., the culture solution is often evaporated and the lid is cloudy. When the lid is cloudy, the observation inside the container is hindered, and for example, it becomes difficult to accurately measure the turbidity of the culture solution.
- the lid is not clouded at a position above the convex portion or component included in the intermediate plate. Therefore, in the culture device of the present disclosure, the inside of the container can be observed through a part of the lid.
- the intermediate plate or component has a structure that does not cover the entire opening of the container. Therefore, in the culture device of the present disclosure, the reagent can be injected into the container without removing the intermediate plate or parts. Therefore, in the culture device according to the present disclosure, unlike the case of injecting the reagent after removing the lid to which a large amount of culture solution is attached, the risk of contamination can be reduced. Moreover, the culture apparatus of this indication makes it possible to observe the inside of a container favorably through a lid
- FIG. 1 is a diagram for explaining the configuration of the culture apparatus 1 according to the first embodiment.
- the culture device 1 includes a lid 11, a microplate 12, and an intermediate plate 13.
- FIG. 1A is a perspective view showing a lid 11, a microplate 12, a part of the intermediate plate 13 that is enlarged in contact with the microplate 12, and a container 14 provided in the microplate 12.
- the shape of the lid 11 is substantially planar, and one surface of the lid 11 is in contact with one surface of the intermediate plate 13.
- the lid 11 has translucency and covers the upper surface of the microplate 12.
- the microplate 12 includes a plurality of containers 14 whose tops are open.
- the container 14 stores a culture solution or the like.
- the microplate 12 includes a total of 96 containers 14 arranged in 12 columns ⁇ 8 rows.
- the intermediate plate 13 is used by being sandwiched between the lid 11 and the microplate 12.
- the intermediate plate 13 has a plurality of convex portions 15 on the surface facing the microplate 12, and a plurality of through holes 16 are provided around each of the plurality of convex portions 15.
- FIG. 1A only two of the plurality of convex portions 15 are illustrated, but the plurality of convex portions 15 are provided on the intermediate plate 13 by the same number as the number of containers 14 included in the microplate 12, for example. Provided.
- the plurality of convex portions 15 and the plurality of through-holes 16 included in the intermediate plate 13 are such that when the intermediate plate 13 and the microplate 12 are overlapped, each of the plurality of convex portions 15 corresponds to each of the plurality of containers 14.
- the plurality of through holes 16 are inserted and arranged so as to overlap the respective openings 17 of the plurality of containers 14.
- the lid 11 is in contact with the intermediate plate 13 so as to close the plurality of through holes 16 provided in the intermediate plate 13.
- FIG. 1B is a view showing the state of the upper surface of the container 14 when the microplate 12 and the intermediate plate 13 are overlapped.
- the convex portion 15 of the intermediate plate 13 is disposed so as to be located at the center of the container 14.
- the opening 17 of the container 14 provided in the microplate 12 is not completely covered in a situation where the lid 11 is not stacked on the intermediate plate 13 due to the presence of the through-hole 16 provided in the intermediate plate 13. Therefore, each container 14 can access the inside of the container 14 through the through-hole 16.
- the culture apparatus 1 can add and suck a liquid from the through-hole 16 of the intermediate plate 13 by removing the lid 11.
- a reagent for identifying bacteria can be injected into each container 14 from the through-hole 16.
- the culture solution changes color after the reagent is injected, it can be confirmed that bacteria are growing in the culture solution.
- a Kovac reagent for confirming that indole was produced sodium hydroxide and ⁇ -naphthol for confirming the VP (Voges-Proskauer) reaction, and a silver nitrate reducing ability are confirmed.
- sulfanilic acid and ⁇ -naphthylamine solutions pH indicators such as phenol red, bromcresol purple, and bromthymol blue.
- FIG. 1C is a side sectional view showing a state in which each of the plurality of containers 14 contains the culture solution 18 and the lid 11, the microplate 12, and the intermediate plate 13 are overlapped.
- each of the plurality of convex portions 15 has a surface 15 ⁇ / b> A that is substantially parallel to the bottom surfaces 14 ⁇ / b> A of the plurality of containers 14 when the intermediate plate 13 is overlaid on the microplate 12.
- the length of the convex portion 15 is adjusted so that the surface 15A is immersed in the culture solution 18.
- the surface of the intermediate plate 13 that is in contact with the lid 11 is positioned higher than the upper edge of the opening 17 of the container 14.
- the lid 11 and the intermediate plate 13 are substantially in contact with each other without sandwiching an air layer.
- the lid 11 and the portion having the convex portion 15 of the intermediate plate 13 are in contact without interposing an air layer. Therefore, when the culture apparatus 1 is used, the inside of the container 14 can be favorably observed while suppressing light refraction.
- the lid 11, the intermediate plate 13, and at least the bottom surface 14A portion of the container 14 of the microplate 12 are formed of a light-transmitting material.
- the translucent material used in the culture device 1 of the present disclosure include polypropylene, polystyrene, and polycarbonate.
- the lid 11 and the intermediate plate 13 each have translucency. Further, when the position of the surface of the culture medium 18 is set to the position where the surface 15A of the convex portion 15 is immersed, the surface 15A of the convex portion 15 is not fogged due to condensation of the evaporated culture medium 18. Further, the lid 11 is not clouded at a location located in the upper part of the convex portion 15 of the intermediate plate 13. Therefore, when the culture apparatus 1 according to Example 1 is used, the inside of the container 14 can be satisfactorily observed through the surface 15A even when the lid 11 and the intermediate plate 13 are overlaid on the microplate 12. it can.
- the culture apparatus 1 since the microplate 12 is formed of a material in which at least the bottom surface 14A of the container 14 is transparent, the culture apparatus 1 according to the present disclosure uses the dichroic mirror and the photodiode to store the culture solution 18 contained in the container 14. Turbidity measurements can also be performed.
- the through-hole 16 overlaps the opening 17 in a state where the intermediate plate 13 is stacked on the microplate 12. Therefore, in the culture apparatus 1, the reagent can be injected and the culture solution can be collected from the through-hole 16 by removing the lid 11 without removing the intermediate plate 13 to which a large amount of the culture solution 18 is attached. Therefore, in the culture apparatus 1, it can suppress that the culture solutions 18 from which a component differs are mixed.
- FIG. 2 is a diagram for explaining an optical system S for measuring turbidity.
- the optical system S includes a light source 19, a dichroic mirror 20, a first photodiode (PD) 21, a second photodiode (PD) 22, and the culture apparatus 1.
- PD photodiode
- PD photodiode
- a part of the light emitted from the light source 19 is transmitted through the dichroic mirror 20 and another part is reflected by the dichroic mirror 20.
- the light transmitted through the dichroic mirror 20 is detected by the first photodiode 21.
- the light reflected by the dichroic mirror 20 passes through the lid 11 of the culture apparatus 1, the intermediate plate 13, the culture solution 18, and the bottom surface 14 ⁇ / b> A of the container 14 and is detected by the second photodiode 22.
- the turbidity of the culture solution 18 can be measured by comparing the amount of light detected by the first photodiode 21 with the amount of light detected by the second photodiode 22.
- the dichroic mirror 20 may be a half mirror.
- FIG. 3 is a diagram comparing turbidity measurement results.
- series 1 is a result of turbidity measurement using the culture apparatus 1 according to Example 1
- series 2 is a result of turbidity measurement using a culture apparatus without the conventional intermediate plate 13.
- the measurement result does not vary because no condensation occurs on the lid 11.
- the microplate 12 includes 96 containers 14, but the number of containers 14 included in the microplate 12 is not limited to the above value.
- the microplate 12 can include any number of containers 14.
- FIG. 4 is a diagram showing the microplate 12 including a total of 24 containers 14.
- 24 containers 14 are arranged in 6 columns ⁇ 4 rows.
- the intermediate plate 13 has 24 convex portions 15.
- the microplate 12 includes a plurality of containers 14 as described above, cells can be cultured under different conditions at the same time.
- the lid 11, the bottom surface 14 ⁇ / b> A of the plurality of containers 14, and the intermediate plate 13 have substantially the same optical characteristics.
- the lid 11, the bottom surfaces 14A of the plurality of containers 14, and the intermediate plate 13 may be formed of the same refractive index. In this way, it is possible to prevent light from being refracted between the constituent elements and distorting the observation target and reducing the accuracy of turbidity measurement.
- the surface of the intermediate plate 13 is substantially in contact with the lid 11, but the entire surface of the intermediate plate 13 is not necessarily in contact with the lid 11.
- the shape of the lid 11 and the intermediate plate 13 may be any shape that prevents the evaporated culture fluid 18 from adhering to the lid 11 from condensing.
- Example 2 The culture apparatus 1 of Example 1 was configured to sandwich the intermediate plate 13 having the convex portion 15 and the through-hole 16 between the lid 11 and the microplate 12.
- the culture device of Example 2 differs from the culture device 1 of Example 1 in that a translucent part is attached to the container 14 instead of sandwiching the intermediate plate 13.
- FIG. 5 is a diagram for explaining the configuration of the culture apparatus 2 according to the second embodiment.
- the culture apparatus 2 according to the second embodiment includes a microplate in which a translucent component 23 is attached in each container 14 included in the microplate 12 described in the first embodiment, instead of the normal microplate 12.
- the material of the component 23 can be selected from the same materials as those for forming the lid 11, the microplate 12, and the intermediate plate 13 described in the first embodiment.
- FIG. 5 (a) is a perspective view for explaining the container 14 provided in the microplate.
- a component 23 shown in FIG. 5A is bonded to the container 14.
- the component 23 has a substantially rectangular parallelepiped shape and has a curved surface in contact with the surface inside the container 14.
- FIG. 5B is a view showing the upper surface of the container 14 to which the component 23 is attached.
- the component 23 is designed to have a size that does not block the upper open end of the container 14, and the surface opposite to the curved surface that contacts the container 14 is near the center of the container 14.
- the container 14 included in the microplate has an opening 17.
- the culture container 2 according to Example 2 can also inject and suck liquid from the opening 17.
- FIG. 5C is a side sectional view of the culture apparatus 2 in which the lid 11 and the microplate are combined.
- the component 23 has a surface 23 ⁇ / b> A and a surface 23 ⁇ / b> B substantially parallel to the bottom surface 14 ⁇ / b> A of the container 14, and the component 23 is attached at a position where the surface 23 ⁇ / b> A substantially contacts the lid 11. That is, the surface 23A of the component 23 is located at the same height as or slightly higher than the upper surface of the microplate.
- the lid 11 contacts the surface 23A of the microplate and the component 23 so as to close the opening 17 of the container 14. In this case, the portion of the lid 11 that contacts the surface 23A does not cloud due to condensation.
- the lid 11 contacts the surface 23A of the component 23 and covers the opening 17 of the container 14 without closing. Also in this case, the portion in contact with the surface 23A of the lid 11 is not fogged due to condensation. In this case, the opening 17 of the container 14 is not completely closed, but the upper part of the opening 17 is still covered with the lid 11, so that foreign matter can be prevented from being mixed. it can. Moreover, since the clearance gap between the opening part 17 and the lid
- the size of the part 23 is adjusted so that the surface 23B of the part 23 is immersed in the culture solution 18, for example. By doing so, the surface 23B of the component 23 can be prevented from condensing and becoming cloudy, the inside of the container 14 can be observed well, and the turbidity measurement accuracy can be improved.
- the lid 11, the bottom surface 14 ⁇ / b> A of the container 14 and the component 23 have substantially the same optical characteristics.
- the microplate can include any number of containers 14.
- Example 3 In the culture device 2 of Example 2, the translucent component 23 was adhered inside the container 14.
- the culture device 3 of Example 3 is different from the culture device 2 of Example 2 in that a translucent component 24 is press-fitted or fitted into the container 14.
- FIG. 6 is a diagram for explaining the configuration of the culture apparatus 3 according to the third embodiment.
- the culture apparatus 3 includes a microplate to which a translucent component 24 is attached in each container 14 included in the microplate 12 described in the first embodiment.
- the part 24 has a substantially rectangular parallelepiped shape, and has curved surfaces that can contact the inner surface of the container 14 at both ends.
- the diameter of the part 24 is designed to be slightly larger than the inner diameter of the container 14. For this reason, when the component 24 is press-fitted into the container 14, the position of the component 24 can be fixed.
- the material of the component 24 can be selected from the same materials as those for forming the lid 11, the microplate 12, and the intermediate plate 13 described in the first embodiment.
- FIG. 6A is a perspective view for explaining the container 14 included in the microplate.
- a component 24 shown in FIG. 6A is press-fitted into the container 14.
- FIG. 6B is a view showing the upper surface of the container 14 to which the component 24 is attached.
- the component 24 is designed in a size and shape that can fix the position of the component 24 when the upper open end of the container 14 is not blocked and press-fitted. Therefore, like the microplate 12, the container 14 included in the microplate has an opening 17.
- the culture container 2 according to Example 2 can also inject and suck liquid from the opening 17.
- FIG. 6C is a view showing a state in which the antibacterial agent 25 is applied to the bottom surface inside the container 14 in a freeze-dried state.
- the antibacterial agent 25 is preferably applied to the bottom surface before the component 24 is pressed into the container 14.
- the culture solution 18 is injected into the container 14 from the opening 17, the antibacterial agent 25 is dissolved, and the culture solution 18 and the antibacterial agent 25 necessary for conducting the drug sensitivity test are prepared at appropriate concentrations.
- cell culture can be easily started by adding a necessary liquid by storing the freeze-dried antibacterial agent 25 or the culture solution 18 in the container 14 in advance.
- FIG. 6D is a cross-sectional view of the culture apparatus 3 in which the lid 11 and the microplate are combined.
- the component 24 has a surface 24 ⁇ / b> A and a surface 24 ⁇ / b> B substantially parallel to the bottom surface 14 ⁇ / b> A of the container 14, and the component 24 is attached at a position where the surface 24 ⁇ / b> A substantially contacts the lid 11. That is, like the component 23, the surface 24A of the component 24 is located at the same height as or slightly higher than the upper surface of the microplate.
- the length of the component 24 is adjusted so that the surface 24B of the component 24 is immersed in the culture solution 18, for example. By doing so, the surface 24B of the component 24 can be prevented from condensing and becoming cloudy, and the inside of the container 14 can be observed well. As a result, turbidity measurement accuracy can be improved.
- the lid 11, the bottom surface 14 ⁇ / b> A of the container 14 and the parts 24 have substantially the same optical characteristics.
- the microplate can include any number of containers 14.
- the attachment position of the component 24 is preferably a position suitable for observation inside the container 14.
- FIG. 7 is a view showing another example of the component 24 press-fitted into the container 14.
- projecting portions 26 b extend in four directions from a cylindrical central portion 26 a. That is, unlike the component 24, the component 26 has a structure that stretches in two directions, and the opening 17 of the container 14 is divided into four.
- the container 14 into which the component 26 is press-fitted can inject and suck liquid from the opening 17.
- the part 26 is designed to have a diameter slightly larger than the inside diameter of the container 14 like the part 24 and can be press-fitted or fitted into the container 14.
- the component 26 has an upper surface and a lower surface substantially parallel to the bottom surface 14 ⁇ / b> A of the container 14, and the component 26 is attached at a position where the upper surface substantially contacts the lid 11. That is, the upper surface of the component 26 is located at the same height as or higher than the upper surface of the microplate, as with the component 24.
- the material of the part 26 can be selected from the same material as that of the part 24.
- the part 26 has a columnar central part 26a, and the observation area when performing the optical measurement is wider than the part 24. Moreover, since the opening part 17 of the part 26 is narrower than the part 24, when conveying the culture apparatus 3, it is hard to spill a liquid.
- FIG. 8 is a diagram for explaining how the component 26 prevents condensation on the lid 11.
- the upper container 14 is the container 14 into which the culture solution 18 is not injected
- the middle container 14 is the container 14 to which the component 26 is attached
- the other containers 14 are injected with the culture solution 18.
- It is the conventional container 14 made.
- the lid 11 is not clouded at a location located above the component 26.
- the lid 11 is not clouded at a position located above the parts 23 and 24.
- the lid 11 is not fogged at a position located above the convex portion 15 included in the intermediate plate 13.
- the culture device may be provided in a state where the frozen antibacterial agent 27 is accommodated in the container 14.
- a medium suitable for the drug susceptibility test can be prepared by dissolving the antibacterial agent 27 at room temperature in a culture device that has been stored in a frozen state and adding the necessary culture solution 18 and specimen. Not only the antibacterial agent 27 but also the culture solution 18 and other drugs may be stored in a frozen state.
- FIG. 9 is a diagram showing the microplate 12 containing the frozen antibacterial agent 27 and the culture solution 18.
- the antibacterial agent 27 and the culture solution 18 are stored in the microplate 12 in a frozen state in advance, for example, after thawing at room temperature, the intermediate plate 13 and the lid 11 are attached to the microplate 12 as shown in FIG. Cell culture can be easily started by overlapping.
- the present disclosure is not limited to the above-described embodiment, and includes various modifications.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Clinical Laboratory Science (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Hematology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
培養容器は、底面が透光性を有し、上部が開口した複数の容器を備えるマイクロプレートと、透光性を有し、マイクロプレートの上面を覆う蓋と、蓋と前記マイクロプレートとの間に挟まれ、マイクロプレートと対向する面に複数の凸部を有し、凸部に対応する複数の貫通口が設けられた透光性を有する中間プレートと、を備え、複数の凸部と複数の貫通口とは、中間プレートとマイクロプレートとを重ね合わせた際に、複数の凸部が複数の容器のそれぞれに挿入され且つ複数の貫通口が複数の容器のそれぞれの開口と重なるように配置され、蓋は、中間プレートに設けられた複数の貫通口を塞ぐように中間プレートと接する。
Description
本開示は、細菌又は真菌等の検査に用いる培養機器に関する。
従来、培養容器に培養液と細胞とを導入し、当該細胞を培養することが行われている。細胞を培養する際は、細胞が細菌と感染するのを防ぐ、培養液のpHの上昇を抑制する等の目的のため培養容器には蓋が設置される。培養細胞の経時的形態変化、運動能、浸潤能等の観察は、培養容器に蓋を設置したまま行われることが多い。
特許文献1には、培養蓋内部の顕微鏡観察部の結露を完全に防止し、かつ培養液の使用量とpH変動を抑制するために、培養皿と、中央部分に凹型部を設けた蓋からなる顕微鏡用細胞培養器が開示されている。
特許文献1に記載された顕微鏡用細胞培養容器を使用する場合、培養液に試薬を添加する又は培養液の一部を採取する作業をする際は、上記蓋を取り外す必要がある。ここで、蓋の凹部は培養液に浸漬するため、培養容器から取り外した蓋には培養液が付着している。
したがって、特許文献1に係る顕微鏡細胞培養容器をマイクロプレートのウェルとして適用した場合、当該蓋を取り外す作業をする際に培養条件が異なる隣接するウェルからの培養液が混入する可能性があった。一方で、単純に蓋に開口部を設け、蓋を取り外す作業を不要にしただけでは細菌による感染を防げない。
本開示は、上記の点に鑑みてなされたものであり、培養容器内を精度よく観察でき且つコンタミネーションのリスクを低減できる培養機器を提供する。
本開示は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、底面が透光性を有し、上部が開口した複数の容器を備えるマイクロプレートと、透光性を有し、前記マイクロプレートの上面を覆う蓋と、前記蓋と前記マイクロプレートとの間に挟まれ、前記マイクロプレートと対向する面に複数の凸部を有し、前記凸部に対応する複数の貫通口が設けられた透光性を有する中間プレートと、を備え、前記複数の凸部と前記複数の貫通口とは、前記中間プレートと前記マイクロプレートとを重ね合わせた際に、前記複数の凸部が前記複数の容器のそれぞれに挿入され且つ前記複数の貫通口が前記複数の容器のそれぞれの前記開口と重なるように配置され、前記蓋は、前記中間プレートに設けられた前記複数の貫通口を塞ぐように前記中間プレートと接する、培養機器を提供する。
本開示は、上記課題を解決する別の例として、底面が透光性を有し、開口部を有するように上端から内部に伸びる透光性の部品が取り付けられた複数の容器を備えるマイクロプレートと、透光性を有し、前記マイクロプレートの上面を覆う蓋と、を備え、前記部品は前記容器の底面と略平行な二面を有し、前記二面のうち一方の面は前記マイクロプレートの上面と同じ高さ又はそれよりも高い位置に位置する、培養機器を提供する。
本開示によれば、培養容器内の観察を良好に実施でき且つコンタミネーションのリスクを低減できる。上記以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
[概要]
培養機器を用いて細胞の培養を行う際は、通常、細菌の侵入等を防ぐために各容器の開口部を閉じるように蓋が設置される。細胞は、30~35℃程度の温度で培養されるため、培養液が蒸発して上記蓋が曇ることが多い。蓋が曇っていると、容器内部の観察に支障をきたし、例えば、培養液の濁度測定を正確に行うことが困難となる。
培養機器を用いて細胞の培養を行う際は、通常、細菌の侵入等を防ぐために各容器の開口部を閉じるように蓋が設置される。細胞は、30~35℃程度の温度で培養されるため、培養液が蒸発して上記蓋が曇ることが多い。蓋が曇っていると、容器内部の観察に支障をきたし、例えば、培養液の濁度測定を正確に行うことが困難となる。
本開示の培養機器は、蓋と培養液の間に透光性を有する中間プレート又は部品が挟まれるため、中間プレートが備える凸部又は部品の上方の位置は蓋が曇らない。そのため、本開示の培養機器では、蓋の一部を介して容器内部を観察できる。
上記中間プレート又は部品は、容器の開口部全体を覆わない構造となっている。そのため、本開示の培養機器では、中間プレート又は部品を取り外さなくても容器内部に試薬を注入することができる。それ故、本開示の培養機器では、培養液が多く付着した蓋を取り除いて試薬を注入する場合と異なり、コンタミネーションのリスクを低減できる。また、本開示の培養機器は、上記部材の一部を培養液に浸漬させることにより、蓋と部材とを介して容器内部を良好に観察することを可能とする。
以下、添付図面を参照して本開示の種々の実施例について説明する。ただし、これらの実施例は本発明を実現するための一例に過ぎず、本開示の技術的範囲を限定するものではない。また、各図において共通の構成については同一の参照番号が付されている。
<実施例1>
[培養機器の構成]
図1は、実施例1に係る培養機器1の構成を説明するための図である。培養機器1は、蓋11とマイクロプレート12と中間プレート13とを備える。図1(a)は、蓋11、マイクロプレート12、中間プレート13のマイクロプレート12と接する面を拡大した一部及びマイクロプレート12が備える容器14を示す斜視図である。
[培養機器の構成]
図1は、実施例1に係る培養機器1の構成を説明するための図である。培養機器1は、蓋11とマイクロプレート12と中間プレート13とを備える。図1(a)は、蓋11、マイクロプレート12、中間プレート13のマイクロプレート12と接する面を拡大した一部及びマイクロプレート12が備える容器14を示す斜視図である。
蓋11の形状は略平面状であり、蓋11の一方の面は中間プレート13の一方の面と接する。蓋11は透光性を有し、マイクロプレート12の上面を覆う。
マイクロプレート12は、上部が開口した複数の容器14を備える。容器14は培養液等を収容する。図1(a)に示した例では、マイクロプレート12は、12列×8行に配列された合計96個の容器14を備える。
マイクロプレート12は、上部が開口した複数の容器14を備える。容器14は培養液等を収容する。図1(a)に示した例では、マイクロプレート12は、12列×8行に配列された合計96個の容器14を備える。
中間プレート13は、蓋11とマイクロプレート12との間に挟まれて使用される。中間プレート13は、マイクロプレート12と対向する面に複数の凸部15を有し、上記複数の凸部15のそれぞれの周辺には複数の貫通口16が設けられている。図1(a)では、複数の凸部15のうち二つだけが図示されているが、複数の凸部15は、例えば、マイクロプレート12が備える容器14の数と同じ数だけ中間プレート13に設けられる。
中間プレート13が備える複数の凸部15と複数の貫通口16とは、中間プレート13とマイクロプレート12とを重ね合わせた際に、上記複数の凸部15のそれぞれが複数の容器14のそれぞれに挿入され且つ複数の貫通口16が複数の容器14のそれぞれの開口部17と重なるように配置される。蓋11は、中間プレート13に設けられた複数の貫通口16を塞ぐように中間プレート13と接する。
図1(b)は、マイクロプレート12と中間プレート13とを重ねた際の、容器14上面の様子を示した図である。図1(b)に示した例では、中間プレート13の凸部15は容器14の中央に位置するように配置される。また、マイクロプレート12が備える容器14の開口部17は、中間プレート13が備える貫通口16の存在のため、蓋11を中間プレート13に重ねていない状況では完全には覆われていない。したがって、各容器14は貫通口16を介して容器14内部にアクセス可能である。
培養機器1は、蓋11を取り外すことによって中間プレート13の貫通口16から液体を添加及び吸引することができる。各容器14には、例えば、貫通口16から細菌を同定するための試薬を注入することができる。試薬注入後に培養液が変色した場合、培養液内にて細菌が増殖していることを確認できる。
容器14に添加する試薬としては、インドールが生成されたことを確認するためのコバック試薬、VP(Voges-Proskauer)反応を確認するための水酸化ナトリウム及びα-ナフトール、硝酸銀還元能を確認するためのサルファニル酸及びα-ナフチルアミン溶液、pH指示薬であるフェノールレッド及びブロムクレゾールパープル及びブロムチモールブルー等が挙げられる。
図1(c)は、複数の容器14のそれぞれが培養液18を収容し、蓋11とマイクロプレート12と中間プレート13とが重ね合わさった状態を示す側断面図である。図1(c)に示すように、複数の凸部15のそれぞれは、中間プレート13をマイクロプレート12に重ねた際に複数の容器14の底面14Aと略平行になる面15Aを有する。
図1(c)に示すように、例えば、凸部15の長さは上記面15Aが培養液18に浸漬するように調節される。また、中間プレート13が有する面のうち蓋11と接する面は、容器14の開口部17の上縁よりも高い位置に位置する。蓋11と中間プレート13とは、空気層を挟まず略接している。或いは、蓋11と中間プレート13の凸部15を有する部分とは空気層を挟まずに接している。したがって、培養機器1を使用した場合、光の屈折を抑制して容器14の内部を良好に観察することができる。
本開示の培養機器1において、所望の光学測定を実現するため、蓋11と中間プレート13とマイクロプレート12の少なくとも容器14の底面14A部分とは、透光性を有する材料で形成される。本開示の培養機器1に用いられる透光性を有する材料としては、例えば、ポリプロピレン、ポリスチレン及びポリカーボネートがある。
[実施例1に係る培養機器1が奏する効果]
実施例1に係る培養機器1では、蓋11と中間プレート13とが、それぞれ透光性を有する。また、培養液18の液面の位置を凸部15の面15Aが浸漬する位置にした場合、凸部15の面15Aが蒸発した培養液18の結露により曇ることがない。さらには、蓋11は、中間プレート13の凸部15の上方部分に位置する箇所が曇らない。そのため、実施例1に係る培養機器1を使用した場合、蓋11及び中間プレート13をマイクロプレート12に重ねた状態であっても上記面15Aを介して容器14の内部を良好に観察することができる。
実施例1に係る培養機器1では、蓋11と中間プレート13とが、それぞれ透光性を有する。また、培養液18の液面の位置を凸部15の面15Aが浸漬する位置にした場合、凸部15の面15Aが蒸発した培養液18の結露により曇ることがない。さらには、蓋11は、中間プレート13の凸部15の上方部分に位置する箇所が曇らない。そのため、実施例1に係る培養機器1を使用した場合、蓋11及び中間プレート13をマイクロプレート12に重ねた状態であっても上記面15Aを介して容器14の内部を良好に観察することができる。
また、マイクロプレート12は、少なくとも容器14の底面14Aが透明性を有する材料で形成されているため、本開示の培養機器1はダイクロイックミラーとホトダイオードとを用いて容器14に収容した培養液18の濁度測定を実施することもできる。
また、複数の容器14のそれぞれは、マイクロプレート12に中間プレート13を重ねた状態で、開口部17に貫通口16が重なっている。そのため、培養機器1では、培養液18が多く付着した中間プレート13を取り外さなくても、蓋11を取り外すことにより上記貫通口16から試薬の注入及び培養液の採取ができる。したがって、培養機器1では、成分が異なる培養液18どうしが混入することを抑制できる。
[濁度測定のための光学系の構成]
図2は、濁度を測定するための光学系Sを説明するための図である。光学系Sは、光源(Light Source)19とダイクロイックミラー20と第1ホトダイオード(PD)21と第2ホトダイオード(PD)22と培養機器1とを備える。
図2は、濁度を測定するための光学系Sを説明するための図である。光学系Sは、光源(Light Source)19とダイクロイックミラー20と第1ホトダイオード(PD)21と第2ホトダイオード(PD)22と培養機器1とを備える。
光源19から出射された光は、一部がダイクロイックミラー20を透過し、別の一部がダイクロイックミラー20で反射される。ダイクロイックミラー20を透過した光は、第1ホトダイオード21によって検出される。ダイクロイックミラー20で反射された光は、培養機器1の蓋11、中間プレート13、培養液18及び容器14の底面14Aを透過して、第2ホトダイオード22で検出される。培養液18の濁度は、第1ホトダイオード21で検出された光量と第2ホトダイオード22で検出された光量とを比較することによって測定することができる。なお、上記光学系Sにおいてダイクロイックミラー20は、ハーフミラーであってもよい。
図3は、濁度の測定結果を比較した図である。図3において系列1は、実施例1に係る培養機器1を用いた濁度測定の結果であり、系列2は、従来の中間プレート13がない培養機器を用いた濁度測定の結果である。図3に示されているとおり、本開示の培養機器1では、蓋11に結露が生じていないため測定結果がばらついていないことがわかる。
<変形例1>
上記の説明において、マイクロプレート12は96個の容器14を備えるとしたが、マイクロプレート12が備える容器14の数は上記値に限定されない。マイクロプレート12は任意の数の容器14を備えることができる。
上記の説明において、マイクロプレート12は96個の容器14を備えるとしたが、マイクロプレート12が備える容器14の数は上記値に限定されない。マイクロプレート12は任意の数の容器14を備えることができる。
図4は、合計24個の容器14を備えるマイクロプレート12を示す図である。図4に示した例では、24個の容器14が6列×4行に配列されている。なお、この場合中間プレート13は24個の凸部15を有する。上記のようにマイクロプレート12が容器14を複数備える場合、同時に異なる条件で細胞を培養できる。
<変形例2>
蓋11と複数の容器14の底面14Aと中間プレート13とは、光学特性が略同じであることが望ましい。具体的には、蓋11と複数の容器14の底面14Aと中間プレート13とは、屈折率が同じ材料で形成されてもよい。このようにすると、光が構成要素間で屈折して観察対象が歪むこと及び濁度測定の精度が低くなることを防げる。
蓋11と複数の容器14の底面14Aと中間プレート13とは、光学特性が略同じであることが望ましい。具体的には、蓋11と複数の容器14の底面14Aと中間プレート13とは、屈折率が同じ材料で形成されてもよい。このようにすると、光が構成要素間で屈折して観察対象が歪むこと及び濁度測定の精度が低くなることを防げる。
<変形例3>
上記の説明では中間プレート13の面は蓋11と略接するとしたが、中間プレート13の面は必ずしも全面が蓋11と接する必要はない。蓋11及び中間プレート13の形状は、蒸発した培養液18が付着して蓋11が結露するのを防げる形状であればよい。
上記の説明では中間プレート13の面は蓋11と略接するとしたが、中間プレート13の面は必ずしも全面が蓋11と接する必要はない。蓋11及び中間プレート13の形状は、蒸発した培養液18が付着して蓋11が結露するのを防げる形状であればよい。
<実施例2>
実施例1の培養機器1は、凸部15及び貫通口16を有する中間プレート13を蓋11とマイクロプレート12との間に挟む構成であった。これに対し、実施例2の培養機器は、中間プレート13を挟む代わりに容器14に透光性を有する部品を取り付ける点で実施例1の培養機器1と異なる。
実施例1の培養機器1は、凸部15及び貫通口16を有する中間プレート13を蓋11とマイクロプレート12との間に挟む構成であった。これに対し、実施例2の培養機器は、中間プレート13を挟む代わりに容器14に透光性を有する部品を取り付ける点で実施例1の培養機器1と異なる。
図5は、実施例2に係る培養機器2の構成を説明するための図である。実施例2に係る培養機器2は、通常のマイクロプレート12の代わりに、実施例1に記載したマイクロプレート12が備える各容器14において透光性の部品23が取り付けられたマイクロプレートを備える。部品23の材料は、実施例1に記載した蓋11、マイクロプレート12及び中間プレート13を形成する材料と同じ材料から選択することができる。
図5(a)は、マイクロプレートが備える容器14を説明するための斜視図である。容器14には、図5(a)に示す部品23が接着される。部品23は、図5(a)に示すとおり、略直方体形状であり、容器14内部の面と接する曲面を有している。
図5(b)は、部品23が取り付けられた容器14の上面を示す図である。図5(b)に示すように、部品23は、容器14の上部開放端が塞がれない大きさで設計され、容器14と接する上記曲面とは反対側の面は、容器14の中央付近に位置する。したがって、マイクロプレート12と同様に、マイクロプレートが備える容器14は開口部17を有する。実施例2に係る培養容器2も上記開口部17から液体の注入及び吸引が可能である。
図5(c)は、蓋11とマイクロプレートとを合わせた培養機器2の側断面図である。図5(c)に示すように、部品23は、容器14の底面14Aと略平行な面23A及び面23Bを有し、部品23は面23Aが蓋11と略接する位置で取り付けられている。即ち、部品23の面23Aは、マイクロプレートの上面と同じ高さ又はそれよりもわずかに高い位置に位置する。
部品23の面23Aがマイクロプレートの上面と同じ高さとなるように部品23が取り付けられている場合、蓋11は容器14の開口部17を閉じるようにマイクロプレート及び部品23の面23Aと接する。この場合、蓋11の面23Aと接する箇所は結露が生じて曇ることはない。
また、部品23の面23Aがマイクロプレートの上面よりも高くなるように部品23が取り付けられている場合、蓋11は部品23の面23Aと接し且つ容器14の開口部17を閉じずに覆う。この場合も、蓋11の面23Aと接する箇所は結露が生じて曇ることはない。なお、この場合、容器14の開口部17が完全には塞がれないことになるが開口部17の上方が蓋11で覆われていることには変わりがないため異物の混入を防ぐことができる。また、開口部17と蓋11との間の隙間は十分に小さいため容器14内部の培養液18はほとんど蒸発しない。
部品23の大きさは、例えば、部品23の面23Bが培養液18に浸漬するように調節される。こうすることにより、部品23の面23Bが結露して曇ることを防ぐことができ、容器14の内部を良好に観察することができると共に濁度の測定精度を向上させることができる。
なお、実施例1の場合と同様に、蓋11と容器14の底面14Aと部品と23は光学特性が略同じであることが好ましい。また、マイクロプレートは任意の数の容器14を備えることができる。
<実施例3>
実施例2の培養機器2では、透光性の部品23が容器14内部に接着されていた。実施例3の培養機器3は、容器14内部に透光性の部品24が圧入される又は嵌め込まれる点が実施例2の培養機器2と異なる。
実施例2の培養機器2では、透光性の部品23が容器14内部に接着されていた。実施例3の培養機器3は、容器14内部に透光性の部品24が圧入される又は嵌め込まれる点が実施例2の培養機器2と異なる。
図6は、実施例3に係る培養機器3の構成を説明するための図である。培養機器3は、実施例1に記載したマイクロプレート12が備える各容器14において、透光性の部品24が取り付けられたマイクロプレートを備える。
部品24は略直方体の形状であり、容器14の内面と接することができる曲面を両端に有する。部品24の径は容器14の内径よりもわずかに大きく設計される。このため、部品24を容器14に圧入した際に部品24の位置を固定することができる。部品24の材料は、実施例1に記載した蓋11、マイクロプレート12及び中間プレート13を形成する材料と同じ材料から選択することができる。
図6(a)は、マイクロプレートが備える容器14を説明するための斜視図である。容器14には、図6(a)に示す部品24が圧入される。図6(b)は、部品24が取り付けられた容器14の上面を示す図である。
図6(b)に示すように、部品24は、容器14の上部開放端が塞がれず且つ圧入した際に部品24の位置を固定できる大きさ及び形状で設計される。したがって、マイクロプレート12と同様に、マイクロプレートが備える容器14は開口部17を有する。実施例2に係る培養容器2も上記開口部17から液体の注入及び吸引が可能である。
図6(c)は、容器14内部の底面に凍結乾燥状態で抗菌剤25が塗布された状態を示す図である。抗菌剤25は、部品24を容器14に圧入する前に底面に塗布するのが望ましい。培養液18を開口部17から容器14へ注入すると、抗菌剤25が溶解して薬剤感受性試験を実施するのに必要な培養液18及び抗菌剤25が適切な濃度で調製される。上記のように、凍結乾燥状態の抗菌剤25又は培養液18を予め容器14内部に収納することによって、必要な液体を添加することにより、細胞の培養を簡単に開始することができる。
図6(d)は、蓋11とマイクロプレートとを合わせた培養機器3の断面図である。図6(d)に示すように、部品24は、容器14の底面14Aと略平行な面24A及び面24Bを有し、部品24は面24Aが蓋11と略接する位置で取り付けられている。即ち、部品24の面24Aは、部品23と同様に、マイクロプレートの上面と同じ高さ又はそれよりもわずかに高い位置に位置する。
部品24の長さは、例えば、部品24の面24Bが培養液18に浸漬するように調節される。こうすることにより、部品24の面24Bが結露して曇ることを防ぐことができ、容器14の内部を良好に観察することができる。その結果、濁度の測定精度を向上させることができる。
なお、実施例2と同様に、蓋11と容器14の底面14Aと部品と24は光学特性が略同じであることが好ましい。また、マイクロプレートは任意の数の容器14を備えることができる。部品24の取り付け位置は、容器14内部の観察に適した位置であることが好ましい。
<変形例4>
図7は、容器14に圧入する部品24の別の例を示す図である。図7に示した部品26は、円柱状の中央部26aから四方に突出部26bが伸びている。つまり、部品26は部品24とは異なり2方向に突っ張る構造となっており、容器14が有する開口部17は四つに区分されている。部品26が圧入された容器14は、上記開口部17から液体の注入及び吸引が可能である。
図7は、容器14に圧入する部品24の別の例を示す図である。図7に示した部品26は、円柱状の中央部26aから四方に突出部26bが伸びている。つまり、部品26は部品24とは異なり2方向に突っ張る構造となっており、容器14が有する開口部17は四つに区分されている。部品26が圧入された容器14は、上記開口部17から液体の注入及び吸引が可能である。
また、部品26は、部品24と同様に径が容器14内部の径よりもわずかに大きく設計されており、容器14に圧入する又は嵌め込むことができる。部品26は、容器14の底面14Aと略平行な上面及び下面を有し、部品26は上面が蓋11と略接する位置で取り付けられている。即ち、部品26の上面は、部品24と同様に、マイクロプレートの上面と同じ高さ又はそれよりも高い位置に位置する。部品26の材料は、部品24の材料と同じ材料を選択することができる。
部品26は、中央部26aが円柱状であり、光学測定を実施する際の観察領域が部品24よりも広い。また、部品26は、部品24よりも開口部17が狭いため、培養機器3を搬送する際に液体がこぼれにくい。
図8は、部品26が蓋11の結露を防止する様子を説明するための図である。図8中、上段の容器14は培養液18が注入されてない容器14であり、中段中央の容器14は部品26が取り付けられた容器14であり、その他の容器14は、培養液18が注入された従来の容器14である。図8に示すように、部品26が取り付けられた容器14は、部品26の上方に位置する箇所は蓋11が曇っていないことがわかる。図には示さないが、部品23及び24が取り付けられた容器14の場合も、同様に、部品23及び24の上方に位置する箇所は蓋11が曇らない。また、実施例1においても同様に中間プレート13が備える凸部15の上方に位置する箇所は蓋11が曇らない。
<変形例5>
培養機器は、容器14に凍結した抗菌剤27が収容された状態で提供されてもよい。その場合、冷凍保管していた培養機器を室温にて抗菌剤27を溶解し、必要な培養液18及び検体を添加することによって、薬剤感受性試験に適した媒体を調製することができる。なお、抗菌剤27のみならず培養液18及びその他の薬剤も凍結した状態で収容されてもよい。
培養機器は、容器14に凍結した抗菌剤27が収容された状態で提供されてもよい。その場合、冷凍保管していた培養機器を室温にて抗菌剤27を溶解し、必要な培養液18及び検体を添加することによって、薬剤感受性試験に適した媒体を調製することができる。なお、抗菌剤27のみならず培養液18及びその他の薬剤も凍結した状態で収容されてもよい。
図9は、凍結状態の抗菌剤27及び培養液18が収容されたマイクロプレート12を示す図である。抗菌剤27及び培養液18が凍結状態で予めマイクロプレート12に収容されている場合、例えば室温にて解凍した後、図1(c)に示すようにマイクロプレート12に中間プレート13及び蓋11を重ねることによって簡易に細胞の培養を開始できる。
なお、本開示は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1、2、3…培養機器
11…蓋
12A、B、C…マイクロプレート
13…中間プレート
14…容器
15…凸部
16…貫通口
17…開口部
18…培養液
20…ダイクロイックミラー
23、24、26…部品
25…抗菌剤
26a…中央部
26b…突出部
27…凍結状態の抗菌剤
本明細書で引用した全ての刊行物、特許文献はそのまま引用により本明細書に組み入れられるものとする。
11…蓋
12A、B、C…マイクロプレート
13…中間プレート
14…容器
15…凸部
16…貫通口
17…開口部
18…培養液
20…ダイクロイックミラー
23、24、26…部品
25…抗菌剤
26a…中央部
26b…突出部
27…凍結状態の抗菌剤
本明細書で引用した全ての刊行物、特許文献はそのまま引用により本明細書に組み入れられるものとする。
Claims (13)
- 底面が透光性を有し、上部が開口した複数の容器を備えるマイクロプレートと、
透光性を有し、前記マイクロプレートの上面を覆う蓋と、
前記蓋と前記マイクロプレートとの間に挟まれ、前記マイクロプレートと対向する面に複数の凸部を有し、前記凸部に対応する複数の貫通口が設けられた透光性を有する中間プレートと、
を備え、
前記複数の凸部と前記複数の貫通口とは、前記中間プレートと前記マイクロプレートとを重ね合わせた際に、前記複数の凸部が前記複数の容器のそれぞれに挿入され且つ前記複数の貫通口が前記複数の容器のそれぞれの前記開口と重なるように配置され、
前記蓋は、前記中間プレートに設けられた前記複数の貫通口を塞ぐように前記中間プレートと接する、
培養機器。 - 請求項1に記載の培養機器において、
前記複数の凸部のそれぞれは、前記中間プレートを前記マイクロプレートに重ねた際に前記複数の容器の底面と略平行になる面を有する、
培養機器。 - 請求項1に記載の培養機器において、
前記蓋と前記複数の容器の底面と前記中間プレートとは光学特性が略同じである、
培養機器。 - 請求項1に記載の培養機器において、
前記複数の容器のそれぞれの内部には、凍結乾燥状態の抗菌剤が収容されている、
培養機器。 - 請求項1に記載の培養機器において、
前記複数の容器のそれぞれの内部には、凍結状態の抗菌剤又は培養液成分が収容されている、
培養機器。 - 請求項1に記載の培養機器において、
前記マイクロプレートは前記容器を24個以上備える、
培養機器。 - 底面が透光性を有し、開口部を有するように上端から内部に伸びる透光性の部品が取り付けられた複数の容器を備えるマイクロプレートと、
透光性を有し、前記マイクロプレートの上面を覆う蓋と、
を備え、
前記部品は前記容器の底面と略平行な二面を有し、前記二面のうち一方の面は前記マイクロプレートの上面と同じ高さ又はそれよりも高い位置に位置する、
培養機器。 - 請求項7に記載の培養機器において、
前記蓋と前記容器の底面と前記部品とは光学特性が略同じである、
培養機器。 - 請求項7に記載の培養機器において、
前記容器のそれぞれの内部には、凍結乾燥状態の抗菌剤が収容されている、
培養機器。 - 請求項7に記載の培養機器において、
前記容器のそれぞれの内部には、凍結状態の抗菌剤又は培養液成分が収容されている、
培養機器。 - 請求項7に記載の培養機器において、
前記マイクロプレートは前記容器を24個以上備える、
培養機器。 - 請求項7に記載の培養機器において、
前記部品は前記容器に接着されて取り付けられる、
培養機器。 - 請求項7に記載の培養機器において、
前記部品は前記容器に圧入されて取り付けられる、
培養機器。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018556108A JP6832954B2 (ja) | 2016-12-14 | 2016-12-14 | 培養機器 |
US16/464,830 US11618873B2 (en) | 2016-12-14 | 2016-12-14 | Culture instrument |
PCT/JP2016/087301 WO2018109886A1 (ja) | 2016-12-14 | 2016-12-14 | 培養機器 |
EP16924151.0A EP3556844B1 (en) | 2016-12-14 | 2016-12-14 | Culture instrument |
CN201680091212.2A CN110023480B (zh) | 2016-12-14 | 2016-12-14 | 培养仪器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/087301 WO2018109886A1 (ja) | 2016-12-14 | 2016-12-14 | 培養機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018109886A1 true WO2018109886A1 (ja) | 2018-06-21 |
Family
ID=62558185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/087301 WO2018109886A1 (ja) | 2016-12-14 | 2016-12-14 | 培養機器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11618873B2 (ja) |
EP (1) | EP3556844B1 (ja) |
JP (1) | JP6832954B2 (ja) |
CN (1) | CN110023480B (ja) |
WO (1) | WO2018109886A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3901242A4 (en) * | 2018-12-17 | 2022-10-19 | MBD Co., Ltd. | COLUMN STRUCTURE FOR BIOCHIP |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110992784B (zh) * | 2019-11-20 | 2021-11-09 | 万有造诣(深圳)教育科技有限公司 | 一种教育科技用科学试验装置 |
US20240310274A1 (en) * | 2021-08-08 | 2024-09-19 | Cytena Bioprocess Solutions Co., Ltd | Image acquisition system for acquiring an image of a liquid sample |
TWI834527B (zh) * | 2023-02-02 | 2024-03-01 | 新原生細胞製備股份有限公司 | 三維培養裝置及生物培養器具 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61247373A (ja) * | 1985-03-01 | 1986-11-04 | シヤ−ウツド・メデイカル・カンパニ− | 自動微生物テスト装置 |
JPH03104790A (ja) | 1989-09-16 | 1991-05-01 | Honda Motor Co Ltd | 自動2輪車のエンジンカバー装置 |
JP2005516596A (ja) * | 2002-02-01 | 2005-06-09 | オーツー−スキャン ゲーエムベーハー | 蓋要素 |
JP2016026474A (ja) * | 2014-06-24 | 2016-02-18 | 日本写真印刷株式会社 | 培養容器 |
JP2016054655A (ja) * | 2014-09-05 | 2016-04-21 | 日本写真印刷株式会社 | 培養容器 |
US20160250632A1 (en) * | 2015-02-27 | 2016-09-01 | Corning Incorporated | Fitted lid for multi-well plate |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5141718A (en) * | 1990-10-30 | 1992-08-25 | Millipore Corporation | Test plate apparatus |
CA2142868C (en) * | 1992-08-21 | 2001-07-24 | Yuichi Kinoshita | Chemical and microbiological test kit |
US5366893A (en) * | 1993-01-13 | 1994-11-22 | Becton, Dickinson And Company | Culture vessel |
US6153400A (en) | 1999-03-12 | 2000-11-28 | Akzo Nobel N.V. | Device and method for microbial antibiotic susceptibility testing |
JP3104790U (ja) | 2004-04-22 | 2004-10-14 | 有限会社金沢大学ティ・エル・オー | 顕微鏡用細胞培養器 |
ES2704039T3 (es) * | 2005-06-10 | 2019-03-13 | Nunc As | Soporte de elemento de inserción de cultivo, elemento de inserción de cultivo y sistema de elemento de inserción de cultivo |
JP2007300853A (ja) | 2006-05-11 | 2007-11-22 | Nikon Corp | 培養容器および自動培養装置 |
US20090082600A1 (en) * | 2007-06-06 | 2009-03-26 | Shengde Zhou | Native homoethanol Pathway for ethanol production in E. coli |
CN102719352B (zh) | 2012-06-06 | 2014-01-29 | 西安交通大学 | 一种用于制备微阵列细胞芯片的细胞芯片片基及制备方法 |
CN103013829B (zh) * | 2012-12-28 | 2015-04-22 | 江南大学 | 深孔细胞培养板板盖的结构 |
US9790465B2 (en) * | 2013-04-30 | 2017-10-17 | Corning Incorporated | Spheroid cell culture well article and methods thereof |
CN203960224U (zh) * | 2014-08-06 | 2014-11-26 | 青岛易邦生物工程有限公司 | 新型细胞培养板 |
JP6479368B2 (ja) | 2014-08-18 | 2019-03-06 | オリンパス株式会社 | 培養容器、多光子励起顕微鏡、及び観察方法 |
EP3262183B1 (en) | 2015-02-27 | 2023-06-07 | Mastaplex Limited | Bacteria identification and antimicrobial susceptibility test |
CN204874491U (zh) * | 2015-07-17 | 2015-12-16 | 杭州秀川科技有限公司 | 一种细菌培养板 |
-
2016
- 2016-12-14 EP EP16924151.0A patent/EP3556844B1/en active Active
- 2016-12-14 CN CN201680091212.2A patent/CN110023480B/zh active Active
- 2016-12-14 WO PCT/JP2016/087301 patent/WO2018109886A1/ja unknown
- 2016-12-14 US US16/464,830 patent/US11618873B2/en active Active
- 2016-12-14 JP JP2018556108A patent/JP6832954B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61247373A (ja) * | 1985-03-01 | 1986-11-04 | シヤ−ウツド・メデイカル・カンパニ− | 自動微生物テスト装置 |
JPH03104790A (ja) | 1989-09-16 | 1991-05-01 | Honda Motor Co Ltd | 自動2輪車のエンジンカバー装置 |
JP2005516596A (ja) * | 2002-02-01 | 2005-06-09 | オーツー−スキャン ゲーエムベーハー | 蓋要素 |
JP2016026474A (ja) * | 2014-06-24 | 2016-02-18 | 日本写真印刷株式会社 | 培養容器 |
JP2016054655A (ja) * | 2014-09-05 | 2016-04-21 | 日本写真印刷株式会社 | 培養容器 |
US20160250632A1 (en) * | 2015-02-27 | 2016-09-01 | Corning Incorporated | Fitted lid for multi-well plate |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3901242A4 (en) * | 2018-12-17 | 2022-10-19 | MBD Co., Ltd. | COLUMN STRUCTURE FOR BIOCHIP |
Also Published As
Publication number | Publication date |
---|---|
CN110023480B (zh) | 2022-11-11 |
JP6832954B2 (ja) | 2021-02-24 |
CN110023480A (zh) | 2019-07-16 |
EP3556844B1 (en) | 2023-11-01 |
US11618873B2 (en) | 2023-04-04 |
EP3556844A1 (en) | 2019-10-23 |
US20190292505A1 (en) | 2019-09-26 |
JPWO2018109886A1 (ja) | 2019-10-24 |
EP3556844A4 (en) | 2020-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018109886A1 (ja) | 培養機器 | |
US10118177B2 (en) | Single column microplate system and carrier for analysis of biological samples | |
US9804378B2 (en) | Arrangement for light sheet microscopy | |
US20240058810A1 (en) | Cuvette assembly having chambers for containing samples to be evaluated through optical measurement | |
CN102224260B (zh) | 用于检测分析物的试剂盒和装置 | |
US9256008B2 (en) | Imaging system comprising microlenses and associated device for detecting a sample | |
EP2270573B1 (en) | Cover for a counting, viability assessment, analysis and manipulation chamber | |
US4441793A (en) | Microscopic evaluation slide | |
FR3061203A1 (fr) | Chambre de culture et d'imagerie d'echantillons biologiques | |
US11325130B2 (en) | Multiwell instrument | |
US20140243243A1 (en) | Device and method for cell-exclusion patterning | |
CN207895144U (zh) | 用于显微镜的载样装置 | |
WO2013027611A1 (ja) | 白血球測定デバイス及び試薬キット | |
US20170211032A1 (en) | Temperature regulating container | |
CN207472893U (zh) | 酶标板辅助操作装置 | |
AT510898B1 (de) | Meniskus äquilibrationssystem für eine mikrotiterplatte | |
CN220207618U (zh) | 一种封闭式尿沉渣计数板 | |
JP6351042B2 (ja) | 生体組織固定用組成物及び生体組織固定用組成物入り容器 | |
US20240060026A1 (en) | Manufacturable co-culture module | |
US20050026135A1 (en) | Method for rapid detection of microorganisms by changing the shape of micro colonies | |
KR102132630B1 (ko) | 섬 구조물을 포함하는 신속한 세포배양검사 장치 | |
JP6839599B2 (ja) | 観察装置 | |
WO2019116775A1 (ja) | 細菌検査用抗菌剤導入プレート、および透明プレート | |
US20220023860A1 (en) | Sample holder device for biological samples, comprising a sample holder made of a carbon-based material | |
CN113655059A (zh) | 一种样品液相成像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16924151 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018556108 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2016924151 Country of ref document: EP Effective date: 20190715 |