WO2018105624A1 - 黒色液晶ポリマーフィルムおよび多層基板 - Google Patents

黒色液晶ポリマーフィルムおよび多層基板 Download PDF

Info

Publication number
WO2018105624A1
WO2018105624A1 PCT/JP2017/043698 JP2017043698W WO2018105624A1 WO 2018105624 A1 WO2018105624 A1 WO 2018105624A1 JP 2017043698 W JP2017043698 W JP 2017043698W WO 2018105624 A1 WO2018105624 A1 WO 2018105624A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polymer
polymer film
black
less
Prior art date
Application number
PCT/JP2017/043698
Other languages
English (en)
French (fr)
Inventor
芳正 西
素直 福武
昭 守屋
汗人 飯田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780075147.9A priority Critical patent/CN110062786B/zh
Priority to JP2018555023A priority patent/JP6729718B2/ja
Publication of WO2018105624A1 publication Critical patent/WO2018105624A1/ja
Priority to US16/431,908 priority patent/US11365353B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K2019/521Inorganic solid particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0179Thin film deposited insulating layer, e.g. inorganic layer for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0191Dielectric layers wherein the thickness of the dielectric plays an important role
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important

Definitions

  • the present invention relates to a black liquid crystal polymer film in which high-density spots of black pigment are remarkably suppressed while being black, and a laminate, an electronic circuit board, and a multilayer board including the black liquid crystal polymer film.
  • a liquid crystal polymer film has attracted attention as an insulating base material capable of high-speed transmission because of its low dielectric constant, low dielectric loss tangent, and flexibility.
  • the liquid crystal polymer film has a problem that it is difficult to perform an AOI inspection (Automated Optical Inspection) for inspecting the pattern shape of the electronic circuit board because the color tone is light yellowish white.
  • AOI inspection Automated Optical Inspection
  • the circuit surface is imaged with a camera, image processing is performed, the reflected light is measured by irradiating a laser, and the transmitted dose is inspected using X-rays. Since the metal to be reflected reflects light, it is easier to recognize the circuit pattern when the insulating base portion where no circuit is present has a lower reflectance.
  • Patent Document 1 a printed circuit board in which a colored thermoplastic resin film is laminated and arranged on a land forming surface so as to increase a difference in light reflectance from a land that is an electrode, and a colored thermoplastic resin.
  • a printed circuit board is disclosed in which an opening is provided so that at least a part of the land is exposed on the film, and a liquid crystal polymer film is cited as a thermoplastic resin film, and carbon black is used as a pigment for coloring the thermoplastic resin film. Is listed.
  • Patent Document 1 does not describe any method of mixing a liquid crystal polymer and carbon black.
  • Patent Document 2 discloses a thermoplastic resin composition containing 0.1 to 20 parts by weight of carbon black with respect to 100 parts by weight of a thermoplastic resin, wherein carbon black is dispersed with a maximum particle size of 50 ⁇ m or less. Yes.
  • inorganic pigments such as carbon black tend to agglomerate in the liquid crystal polymer film due to low affinity, and in order to clarify the difference in reflectance between the liquid crystal polymer film and the metal circuit pattern, the blending amount of the pigment should be set. There was a need to increase. As a result, there is a problem that the dielectric properties of the liquid crystal polymer film are deteriorated.
  • Patent Document 2 discloses a composition in which carbon black is dispersed in a thermoplastic resin.
  • the liquid crystal viscosity is probably extremely dependent on the shear rate. Due to the flow characteristics peculiar to the polymer, spots containing carbon black at a high concentration are formed in the liquid crystal polymer film (see FIG. 5). Such high-concentration spots are likely to increase in viscosity when the carbon black is mixed with the liquid crystal polymer in the first stage, where the portion containing carbon black at a high concentration has a lower shear rate than the surrounding portion. It is thought that it is formed by becoming difficult to disperse.
  • this spot is a mixture of a liquid crystal polymer containing carbon black particles at a high concentration and carbon black particles.
  • the spot in FIG. 5 penetrates in the thickness direction of the liquid crystal polymer film, but when its resistance value is measured, it is 2 k ⁇ , which is higher than the resistance value of carbon black itself. Obviously different.
  • the present inventors have found that such a spot is a cause of increasing the dielectric loss tangent of the liquid crystal polymer film without contributing to a decrease in brightness due to mixing of carbon black, and in the case of a thin film liquid crystal polymer film, insulation It was found that the breaking strength was reduced.
  • the present invention is black by containing a sufficient amount of black pigment, and the difference in light reflectance from the metal foil is clear, while the high-density spot of the black pigment is remarkably suppressed, and the dielectric properties and
  • An object is to provide a black liquid crystal polymer film having excellent insulating properties, and a laminated board, an electronic circuit board, and a multilayer board that include the black liquid crystal polymer film and have similar characteristics.
  • the inventors of the present invention have made extensive studies to solve the above problems. As a result, when a mixture of a melted liquid crystal polymer and a black pigment is extruded to form a film, the mixture is passed through a filter having a predetermined pore diameter, thereby significantly producing a high concentration spot of black pigment in the film.
  • the present invention was completed by finding that a liquid crystal polymer film that can be suppressed, contains a relatively large amount of black pigment, has low brightness, has low dielectric loss tangent, and high dielectric breakdown strength can be obtained.
  • the present invention will be described.
  • Black pigment and liquid crystal polymer are included, the brightness is 45 or less, the dielectric loss tangent is 0.0035 or less, the minimum dielectric breakdown strength is 60 kV / mm or more, and the thermal linear expansion in the plane direction A black liquid crystal polymer film, wherein the ratio of the maximum value to the minimum value of the coefficient is 1.0 or more and 2.5 or less.
  • the number density of high density spots of a black pigment containing a black pigment and a liquid crystal polymer and having a size of 3/10 to 9/10 of the film thickness is 15/342 mm 2 or less. Black liquid crystal polymer film.
  • a laminate comprising a metal foil laminated on one or both sides of the black liquid crystal polymer film according to any one of [1] to [7].
  • the electronic circuit board has a metal foil on which a circuit is formed on one side or both sides of a black liquid crystal polymer film
  • the black liquid crystal polymer film contains a black pigment and a liquid crystal polymer, the lightness of the black liquid crystal polymer film is 45 or less, the dielectric loss tangent of the black liquid crystal polymer film is 0.0035 or less, and the black liquid crystal polymer film
  • a multilayer substrate having a minimum value of dielectric breakdown strength of 60 kV / mm or more.
  • the electronic circuit board has a metal foil on which a circuit is formed on one side or both sides of a black liquid crystal polymer film
  • the black liquid crystal polymer film contains a black pigment and a liquid crystal polymer, High concentration of the black pigment having a size of not less than 3/10 and not more than 9/10 of the shortest distance between the circuits existing on both sides of the black liquid crystal polymer film in the black liquid crystal polymer film when viewed from the side direction.
  • a multilayer substrate having a spot number density of 15/342 mm 2 or less.
  • the size of the high concentration spot of the black pigment existing between the two circuits on both sides of the black liquid crystal polymer film is the circuit.
  • the size of the high concentration spot of the black pigment existing between the two circuits existing on one side of the black liquid crystal polymer film is 9 as the shortest distance between the circuits.
  • the multilayer substrate according to any one of [10] to [12], which is / 10 or less.
  • the size of the high-density spot of the black pigment immediately above and / or immediately below the circuit is 1 ⁇ 2 or less of the minimum width of the circuit.
  • the multilayer substrate according to any one of [13].
  • An electronic component comprising the multilayer substrate according to any one of [10] to [18] and a mother substrate, wherein the multilayer substrate is mounted on the mother substrate.
  • the liquid crystal polymer film according to the present invention has low brightness, when used as an insulating base material for an electronic circuit board, there is a large difference in light reflectance from the metal foil forming the circuit, and an automatic circuit pattern shape inspection method is used. A certain AOI inspection can also perform an accurate inspection. In general, however, a relatively large amount of black pigment must be blended in the low-brightness insulating base material, and a high density spot of black pigment is generated, so that the dielectric loss tangent is particularly increased. An insulating base material having a large dielectric loss tangent cannot be used as a material for a high-frequency electronic circuit board because the ratio of the absorbed current to the passing current is high.
  • the liquid crystal polymer film according to the present invention has low lightness, but the formation of high density spots of black pigment is remarkably suppressed, the dielectric loss tangent is low, the dielectric properties are excellent, and the insulating properties are also excellent. It is. Therefore, the present invention is extremely useful industrially as it satisfies the high demands for electronic circuit boards in recent years.
  • FIG. 1 is a schematic view of an embodiment in which pellets containing at least a liquid crystal polymer and a black pigment are prepared using a twin screw extruder.
  • FIG. 2 is a schematic view of an embodiment for producing a black liquid crystal polymer film according to the present invention using a twin screw extruder equipped with a filter and a die.
  • FIG. 3 is an enlarged photograph of the film produced in Example 1 described later.
  • FIG. 4 is an enlarged photograph of the film produced in Comparative Example 5 described later.
  • FIG. 5 is an enlarged cross-sectional photograph of a high-density spot of black pigment found in a film produced in Comparative Example 5 described later.
  • FIG. 6 is a schematic view of a multilayer substrate according to the present invention viewed from the top surface direction.
  • FIG. 1 is a schematic view of an embodiment in which pellets containing at least a liquid crystal polymer and a black pigment are prepared using a twin screw extruder.
  • FIG. 3 is an enlarged photograph of the film
  • FIG. 7 is a schematic view of the multilayer substrate according to the present invention viewed from the side surface direction.
  • FIG. 8 (1) is a schematic view of the multilayer substrate according to the present invention viewed from the side surface direction
  • FIG. 8 (2) is a partially enlarged view thereof.
  • the first black liquid crystal polymer film according to the present invention contains a black pigment and a liquid crystal polymer, has a brightness of 45 or less, a dielectric loss tangent of 0.0035 or less, and a minimum value of dielectric breakdown strength of 60 kV / mm or more.
  • the ratio of the maximum value to the minimum value of the thermal linear expansion coefficient in the plane direction is 1.0 or more and 2.5 or less.
  • the second black liquid crystal polymer film according to the present invention includes a black pigment and a liquid crystal polymer, and the number density of high-density spots of black pigment having a size of 3/10 or more and 9/10 or less of the film thickness is 15 pieces / 342 mm 2 or less.
  • the present invention relates to a black liquid crystal polymer film.
  • the liquid crystal polymer includes a thermotropic liquid crystal polymer exhibiting liquid crystallinity in a molten state and a rheotropic liquid crystal polymer exhibiting liquid crystallinity in a solution state.
  • any liquid crystal polymer can be used, but a thermotropic liquid crystal polymer is preferably used because of its thermoplasticity and better high frequency characteristics.
  • thermotropic liquid crystal polyester (hereinafter simply referred to as “liquid crystal polyester”) is, for example, an aromatic hydroxycarboxylic acid as an essential monomer and reacted with a monomer such as an aromatic dicarboxylic acid or aromatic diol. It is an aromatic polyester obtained by this, and exhibits liquid crystallinity when melted.
  • Typical examples thereof include Type I [Formula (1)] synthesized from parahydroxybenzoic acid (PHB), phthalic acid, and 4,4′-biphenol, PHB and 2,6-hydroxynaphthoic acid.
  • I-type liquid crystal polyester and II-type liquid crystal polyester are preferable among them, and II-type liquid crystal polyester is more preferable because of excellent heat resistance and hydrolysis resistance.
  • isophthalic acid is preferable as phthalic acid.
  • the black liquid crystal polymer film according to the present invention contains a black pigment.
  • the type of black pigment is not particularly limited and may be appropriately selected.
  • carbon black pigments such as carbon black and graphite; triiron tetroxide, Cu—Cr composite oxide, Cu—Cr—Zn composite oxide, etc.
  • metal oxide black pigments inorganic black pigments such as metal black pigments such as black interference aluminum pigments.
  • carbon black pigments such as carbon black and graphite; triiron tetroxide, Cu—Cr composite oxide, Cu—Cr—Zn composite oxide, etc.
  • metal oxide black pigments inorganic black pigments such as metal black pigments such as black interference aluminum pigments.
  • other black pigments can be used as long as they have dielectric properties equivalent to
  • the shape of the black pigment or other filler is not particularly limited, and examples thereof include a spherical shape, a plate shape, a rod shape, a needle shape, and an indefinite shape.
  • the size of the black pigment and other fillers used in the present invention may be adjusted as appropriate, and for example, the average primary particle diameter may be about 15 nm to 75 nm.
  • the average primary particle diameter may be referred to if there is a catalog value of the product to be used. When there is no catalog value, for example, an enlarged photograph of 1,000 times or more and 100,000 times or less of the black pigment and other fillers used with a scanning electron microscope is taken, and image analysis software is used. The equivalent circle diameter of at least 100 particles may be obtained and the average value calculated.
  • the specific surface area of the black pigment can be about 25 m 2 / g or more and 300 m 2 / g or less.
  • the specific surface area if there is a catalog value of a product to be used, it may be referred to.
  • nitrogen gas molecules are physically adsorbed on the surface of the black pigment by a low temperature nitrogen adsorption method or the like, and the specific surface area may be calculated from the adsorption amount according to the BET equation.
  • the compounding quantity of the black pigment with respect to a liquid crystal polymer can be 0.1 mass% or more and 5.0 mass% or less.
  • the black liquid crystal polymer film according to the present invention has a low brightness because it contains a relatively large amount of black pigment.
  • the brightness (CIE1976 L * ) measured in accordance with JIS Z8722 is 45 or less.
  • the brightness of the liquid crystal polymer film can be measured using, for example, a spectrocolorimeter (“CM-600d” manufactured by Konica Minolta).
  • CM-600d manufactured by Konica Minolta
  • the lightness is measured by a reflection method, the optical system is an integrating sphere method (8 °: di), the light source is cloudy, and the field of view is 2 °.
  • surface or both surfaces of the liquid crystal polymer film it measures on the surface of the film exposed by removing metal foil.
  • the metal foil is removed by etching with a ferric chloride solution, the obtained film is washed with water, and dried in a circulating oven at 80 ° C. for 1 hour.
  • the brightness of the black liquid crystal polymer film in the multilayer substrate can be measured by exposing the surface of the black liquid crystal polymer film whose brightness is to be measured by polishing or etching.
  • a spectrocolorimeter when measuring the brightness of a black liquid crystal polymer directly from a multilayer substrate, it is necessary to measure at a portion where there is no circuit or interlayer connection conductor formed on the substrate, so use a spectrocolorimeter with a small measurement diameter. Is preferred. As such a spectrocolorimeter, for example, CM-700d manufactured by Konica Minolta with a measurement diameter of 3 mm can be used. When the brightness is 45 or less, the contrast between the circuit pattern portion and the peripheral liquid crystal polymer film portion becomes clear, and the pattern recognition accuracy in the AOI inspection can be improved.
  • the image recognition failure rate cannot be 0% unless the brightness difference between the circuit pattern portion and the insulating base portion is 30 or more. Since the brightness of the circuit pattern (copper foil S surface) is generally about 75, it is preferable that the brightness of the insulating substrate is 45 or less.
  • the formation of high-density spots of black pigment is suppressed, and the black pigment is uniformly dispersed. Excellent. Of course, the formation of black pigment aggregates is also suppressed.
  • the dielectric loss tangent is 0.0035 or less, preferably 0.003 or less, and the relative dielectric constant is 3.5 or less.
  • liquid crystal polymer molecules are rigid and hardly move even under alternating voltage, it can be said that the liquid crystal polymer molecules are originally low dielectric loss tangent and low dielectric constant, but when black pigment is added, the dielectric properties are reduced accordingly.
  • black pigment when a black pigment is added to the liquid crystal polymer, a high concentration spot containing the black pigment in a high concentration is generated in the liquid crystal polymer, and in particular, the dielectric loss tangent increases.
  • the liquid crystal polymer film of the present invention even when a relatively large amount of black pigment is blended, the occurrence of such high-density spots is suppressed, and the black pigment is uniformly dispersed, so that the deterioration of dielectric properties is suppressed.
  • the relative dielectric constant and dielectric loss tangent for example, a network analyzer such as “ENA E5071C” manufactured by Agilent Technologies and a resonator such as a split post dielectric resonator manufactured by QWED having a measurement frequency of 3.18 GHz are used. Can be measured.
  • the relative dielectric constant can be calculated from the difference between the resonance frequency when the resonator and the test piece are inserted, and the dielectric loss tangent is the difference between the Q value and the resonance frequency when the resonator and the test piece are inserted. It can be calculated from the difference.
  • the relative dielectric constant and dielectric loss tangent of the black liquid crystal polymer film contained in the laminate, electronic circuit board and multilayer board can also be measured.
  • the relative permittivity and the dielectric loss tangent may be measured under a high frequency such as 60 GHz. Under a high frequency of 60 GHz, it is possible to measure relative permittivity and dielectric loss tangent even in a 5 mm diameter measurement region where there is no circuit or interlayer connection conductor.
  • the black liquid crystal polymer film according to the present invention is remarkably suppressed from generating high-density spots of black pigment as described above, it exhibits good insulation even in the case of a thin film.
  • a maximum number of 10 cm ⁇ 10 cm test pieces are cut out from the center in the width direction of the raw film before the black liquid crystal polymer film is cut into a desired size, and the test pieces are also maximized in the width direction in the continuous length direction. Cut out the limit, produce 100 or more test pieces, measure the dielectric breakdown voltage, and obtain the dielectric breakdown strength obtained by dividing the dielectric breakdown voltage by the thickness of the film.
  • the minimum value of the dielectric breakdown strength is preferably 60 kV / mm or more, and more preferably 100 kV / mm or more.
  • the dielectric breakdown voltage can be measured using, for example, a withstand voltage tester.
  • measurement may be performed using, for example, a 1 mm diameter terminal.
  • a 1 mm diameter terminal for example, a 1 mm diameter copper wire obtained by cutting a cross section into a flat surface can be used.
  • the dielectric breakdown strength can be measured as long as the area is 3 mm diameter or more without any circuit or interlayer connection conductor.
  • liquid crystal polymer molecules Since liquid crystal polymer molecules have a rigid and long chemical structure, they are extremely easy to align. Anisotropic films in which liquid crystal polymer molecules are oriented in a specific direction are easy to tear in the orientation direction and difficult to handle, and have poor dimensional accuracy and large variations in thermal stress, mechanical strength, relative dielectric constant, etc. . Furthermore, when a laminated sheet is produced by laminating a metal foil on an anisotropic film, warpage caused by the anisotropy of the film occurs in the laminated sheet, and therefore cannot be used as an insulating base material for an electronic circuit board. In contrast, the black liquid crystal polymer film according to the present invention is isotropic because the molecular orientation is controlled. Specifically, the ratio of the maximum value to the minimum value of the thermal linear expansion coefficient in the plane direction is 1.0 or more and 2.5 or less. The ratio is preferably 2.0 or less, more preferably 1.8 or less, and even more preferably 1.5 or less.
  • the minimum value and the maximum value of the thermal linear expansion coefficient are determined by measuring the thermal linear expansion coefficient at six points at intervals of 30 ° in the circumferential direction on the plane of the liquid crystal polymer film, and taking the minimum and maximum values among the measured values.
  • the film extruded from the extruder is strongly oriented in the extrusion direction (MD).
  • MD extrusion direction
  • the thermal linear expansion coefficient is inconsistent in the direction (TD) perpendicular to the extrusion direction and MD. In such a direction, the warpage of the laminated plate increases, and even in a multilayer substrate using such a laminated plate, the warp increases, making it difficult to use as a circuit board.
  • the film extruded from the extruder is uniaxially stretched only by TD, or biaxially stretched by MD and TD and the stretching ratio at TD is increased, thereby increasing the anisotropy of the liquid crystal polymer molecules.
  • Reduce to make the film isotropic It is possible to make the thermal linear expansion coefficient at TD equal to the thermal linear expansion coefficient of MD by adjusting the draw ratio. In this case, the liquid crystal polymer film is completely isotropic, and the ratio of the maximum value to the minimum value of the thermal expansion coefficient is 1.0.
  • the thermal linear expansion coefficient in the plane direction of the black liquid crystal polymer film according to the present invention is preferably 3 ppm / ° C. or more and 30 ppm / ° C. or less.
  • the ratio of the maximum value to the minimum value of the thermal linear expansion coefficient in the planar direction of the liquid crystal polymer film is preferably 1.0 or more and 2.5 or less.
  • the thermal linear expansion coefficient can be measured by a thermomechanical analysis method (TMA method). For example, using a thermo-mechanical measuring device such as Q400 manufactured by TA Instruments Inc., in accordance with JIS C6481, the sample shape is 4 mm wide, the distance between chucks is 15 mm, and a load of 0.1 N is applied.
  • the thermal expansion coefficient By adjusting the thermal expansion coefficient within the above range, the thermal stress, mechanical strength and relative dielectric anisotropy can be more reliably reduced in the plane direction, and the occurrence of warpage of the laminate can be more reliably performed. It can be made excellent as a material for an electronic circuit board, such as being excellent in dimensional stability. For example, it is possible to suppress the warpage rate of a laminated plate in which a metal foil is laminated on one side of a liquid crystal polymer film to 10% or less.
  • the “warp rate” can be determined in accordance with JIS C6481, and specifically, the film is placed on a horizontal table, the center of the film is in contact with the table, and the four corners are lifted from the table.
  • the maximum value is obtained by measuring the distance between the four corners and the base, and the percentage value is obtained by dividing this value by the length of the side of the film. Note that if the difference between the thermal linear expansion coefficient of the liquid crystal polymer film and the thermal expansion coefficient of the metal foil is large, the laminated plate tends to warp, so the thermal linear expansion coefficients of the liquid crystal polymer film and the metal foil are almost the same. It is preferable to adjust so that.
  • the thermal linear expansion coefficient of the liquid crystal polymer film can be adjusted by the film extrusion conditions and the stretching operation.
  • the black liquid crystal polymer film according to the present invention is preferably excellent in dimensional stability.
  • Dimensional stability can be expressed as a dimensional change rate. Specifically, in accordance with JIS C6471, after a metal foil is bonded to a liquid crystal polymer film, the metal foil is completely etched using a ferric chloride aqueous solution, washed with water, and then in a circulating oven at 80 ° C. It is dried for 30 minutes, and the change between the dimension before etching and the dimension after drying is obtained as a percentage.
  • the dimensional change rate of the liquid crystal polymer film used in the present invention is preferably from ⁇ 0.1% to 0.1%.
  • the thickness of the black liquid crystal polymer film in the present invention may be appropriately adjusted, but is preferably 10 ⁇ m or more and 75 ⁇ m or less. If the said thickness is 10 micrometers or more, sufficient intensity
  • the thickness is more preferably 13 ⁇ m or more, still more preferably 20 ⁇ m or more, more preferably 50 ⁇ m or less, and even more preferably 25 ⁇ m or less.
  • the black pigment particles tend to aggregate due to van der Waals force to form aggregates. That is, the aggregate of black pigments is secondary particles in which primary particles of the black pigment are bonded together.
  • a spot having a relatively larger black pigment concentration than the secondary particles is locally present. May be formed.
  • Such a high-concentration spot is a mixture of a black pigment and a liquid crystal polymer, but the concentration of the black pigment is high and exhibits a certain degree of conductivity. In some cases, it may cause a short circuit.
  • the present invention not only the secondary particles of the black pigment but also the formation of high concentration spots is suppressed.
  • the number of high concentration spots of black pigment can be measured by the following method. First, a 10cm x 10cm test piece was prepared by cutting the liquid crystal polymer film, and was placed in close contact with the glass stage of a digital microscope (Keyence Corporation "VHX-5000"). Observe a range of 342 mm 2 on the surface of the film with a maximum gain of 6.0 dB. As a light source, only a transmissive light source irradiated from the lower part of the stage is used. The shutter speed varies depending on the film thickness, and the shutter speed is increased so that even if the brightness gradation of the entire film is lost, the spot sufficiently shields the light so that a spot of 10 ⁇ m or less can be clearly observed.
  • the cross section of the film was processed by ion milling or a microtome using a diamond knife, and the cross section of the portion observed in black in the observation of the above film surface was subjected to Olympus' “Laser Microscope OLS-3000” or the like.
  • the image is magnified and observed at 50 times to 100 times, and binarized using image analysis software with the central value of the luminance distribution as a threshold value.
  • the “high density spot of black pigment” is a portion where the ratio of the area of the black portion to the whole is 60% or more and less than 90%.
  • the aggregate of a black pigment consists only of a black pigment, the said ratio is 90% or more.
  • the ratio is less than 60%. Furthermore, the size of the high density spot of the specified black pigment is measured, High-density spot having a thickness of 3/10 or more and 9/10 or less of the shortest distance between circuits existing on both sides of the film thickness and a thickness of more than 9/10 of the film thickness Measure the number of The size of the high density spot is the maximum diameter in the thickness direction of the film. Further, the maximum value and the minimum value of the diameter of the high-density spot are measured, and those having a ratio between the maximum value and the minimum value of 10 or more are excluded because they are highly likely to be fibrous foreign matters.
  • the high concentration spot is obtained by shaving the multilayer substrate from the surface opposite to the surface layer portion using a grinder, leaving only the surface layer portion having a thickness of 50 ⁇ m. Can be detected by the same method.
  • the size of the high-density spot is the maximum diameter in the direction parallel to the shortest distance between the two circuits formed on both sides of the black liquid crystal polymer film, and the surface of the multilayer substrate is a digital microscope. It can measure by observing by the said method used.
  • the method similar to the said method of observing the cross section of a liquid crystal polymer film can be used for the high concentration spot when a multilayer substrate is seen from the side.
  • the cross section of the multilayer substrate is processed with a microtome or the like using ion milling or a diamond knife, and the cross section of the liquid crystal polymer film portion is magnified and observed at 50 times to 100 times using a laser microscope or the like.
  • binarization is performed with the central value of the luminance distribution as the threshold using analysis software, and the white part is distinguished as a liquid crystal polymer matrix part and the black part is an aggregate of black pigments
  • the ratio of the area of the black part to the whole is A portion that is 60% or more and less than 90% is defined as a high concentration spot, and the number of the high concentration spots and the maximum diameter in the thickness direction of the black liquid crystal polymer film are measured.
  • the black pigment high-concentration spot contains liquid crystal polymer, so it has lower conductivity than the black pigment aggregate, but it exhibits a certain level of conductivity and causes short circuits. Smaller is preferable.
  • the surface of the film is enlarged and observed, and the size of the high-density spot of the black pigment is preferably 9/10 or less, more preferably 2/3 or less of the film thickness. Further, it is preferably, 10/342 mm 2 or less size is the number density of the high density spots of the black pigment is 3/10 or more 9/10 or less of the film thickness is 15/342 mm 2 or less Is more preferable.
  • a spot having a ratio between the maximum value and the minimum value of the diameter of the high density spot specified by magnifying and observing the film of 10 or more is not a high density spot because there is a high possibility of fibrous foreign matter. To do.
  • “long” means 5 m or more.
  • the length is preferably 10 m or more, more preferably 25 m or more, and further preferably 50 m or more.
  • the upper limit is not particularly limited, but if it is excessively long, the weight of the roll when wound in a roll shape becomes heavy and handling may be difficult, so that it is preferably 2,000 m or less, more preferably 1,000 m or less.
  • the width is preferably 100 mm or more, and more preferably 250 mm or more. If the width of the film is less than 100 mm, it may be difficult to produce an electronic circuit board.
  • the upper limit is not particularly limited, but is preferably 1100 mm or less, and more preferably 500 mm or less.
  • the black liquid crystal polymer film according to the present invention can be produced by a melt extrusion molding method. Specifically, a step of melt-kneading at least a liquid crystal polymer and a black pigment, and a filter having a pore diameter of not more than 80% of the thickness of the black liquid crystal polymer film and not more than 40 ⁇ m of the melt-kneaded product of the liquid crystal polymer and the black pigment
  • the film may be manufactured by a method including a step of forming a film by a T-die method or an inflation method. Aggregates of black pigment are easily generated in the liquid crystal polymer, and according to the knowledge of the present inventors, a high concentration spot of the black pigment is formed. By this manufacturing method, the black pigment in the black liquid crystal polymer film is formed. In addition to the agglomerates, the occurrence of high concentration spots of black pigment can be suppressed.
  • the melt kneading of the liquid crystal polymer and the black pigment may be performed by supplying at least the liquid crystal polymer and the black pigment to a melt extrusion molding apparatus.
  • a melt extrusion molding apparatus For example, by supplying at least a liquid crystal polymer and a black pigment to the twin screw extruder schematically shown in FIG. 1 and sufficiently kneading at a temperature equal to or higher than the melting point of the liquid crystal polymer, a pellet containing at least the liquid crystal polymer and the black pigment is prepared. To do.
  • a melt-kneaded product of the liquid crystal polymer and the black pigment is passed through a filter having a pore diameter of 40 ⁇ m or less and 80% or less of the target black liquid crystal polymer film thickness.
  • a filter having a pore diameter of 40 ⁇ m or less and 80% or less of the target black liquid crystal polymer film thickness.
  • a liquid crystal polymer melt in which a filter and a die having a specific pore size are attached to a twin screw extruder, pellets containing a liquid crystal polymer and a black pigment are supplied, and the black pigment is dispersed. Is passed through the filter and melt-extruded into a film.
  • a melt of a liquid crystal polymer containing a black pigment is directly formed into a film by a T-die method or an inflation method.
  • a liquid crystal polymer when a liquid crystal polymer is formed into a film by the T-die method, rigid liquid crystal polymer molecules are oriented in MD, and the film exhibits anisotropy.
  • the anisotropic liquid crystal polymer film is subjected to equal orientation treatment, for example, as in the invention described in JP-A-9-131789.
  • an anisotropic liquid crystal polymer film is sandwiched between two support films such as a porous PTFE (polytetrafluoroethylene) resin film to form a laminate, and uniaxially stretched to TD at a temperature equal to or higher than the melting point of the liquid crystal polymer.
  • it may be biaxially stretched in both the MD and TD directions and TD to reduce the anisotropy and then cooled, and the laminated support film is peeled off.
  • the pore size of the filter is 80% or less of the thickness of the target black liquid crystal polymer film and 40 ⁇ m or less, the production of high concentration spots of black pigment can be sufficiently suppressed, and the liquid crystal polymer film containing the black pigment
  • the minimum value of the dielectric breakdown strength can be 60 kV / mm or more.
  • 70% or less is preferable and 60% or less is more preferable.
  • the pore size of the filter is preferably 20 ⁇ m or less, and more preferably 15 ⁇ m or less.
  • the pore size of the filter is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more. When the pore diameter of the filter is less than 5 ⁇ m, the filter is likely to be clogged and the productivity may be lowered.
  • the pore size of the filter is preferably a particle size at which the nominal filtration accuracy of the filter or the filter collection efficiency is 98%.
  • the type and shape of the filter are not particularly limited as long as they can be attached to the melt extrusion molding apparatus, and examples thereof include a leaf disk filter, a pleat filter, and a candle filter.
  • the material of the filter is not particularly limited, but a material made of a material obtained by sintering a metal fiber nonwoven fabric is preferable because it has excellent mechanical strength and heat resistance.
  • the black liquid crystal polymer film according to the present invention can be made into a laminate by laminating metal foil on one or both sides thereof.
  • the material of the metal foil which comprises a laminated board will not be restrict
  • copper, aluminum, nickel, tin, and alloys thereof can be mentioned, and copper foil is preferable from the viewpoint of conductivity, chemical stability, cost, and the like.
  • the copper foil either a rolled copper foil or an electrolytic copper foil can be used.
  • the surface of the copper foil is preferably subjected to rust prevention treatment with Zn, Ni, Co, Cr or the like.
  • Ni / Au plating may be applied to a circuit mounting portion pattern formed by etching a copper foil for the wire bonding method or the flip chip bonding method.
  • the thickness of the metal foil may be appropriately adjusted.
  • the thickness may be about 2 ⁇ m or more and 70 ⁇ m or less, and more preferably about 5 ⁇ m or more and 35 ⁇ m or less.
  • the surface roughness of the metal foil is preferably low.
  • the surface roughness Rz of the surface (M surface) on the side of the metal foil in contact with the liquid crystal polymer film is preferably 3 ⁇ m or less, and the surface roughness Rz of the opposite surface (S surface) is 2 ⁇ m or less.
  • the lower limit of the surface roughness Rz is not particularly limited, but is preferably 0.2 ⁇ m or more and more preferably 0.4 ⁇ m or more from the viewpoint of adhesion to the liquid crystal polymer film.
  • the surface roughness of the metal foil can be measured with a stylus having a tip curvature radius of 2 ⁇ m and a stylus type surface roughness measuring instrument in accordance with JIS B0601.
  • the laminate according to the present invention can be easily manufactured by laminating a metal foil on one or both sides of a black liquid crystal polymer film and then hot pressing.
  • the hot press can be performed by a conventionally known method using a vacuum press device, a roll press device, a double belt press device, or the like.
  • the conditions for hot pressing may be adjusted as appropriate.
  • the temperature is about 100 ° C. or more and 350 ° C. or less
  • the pressure is about 1 MPa or more and 10 MPa or less for about 1 minute or more and about 2 hours or less. it can.
  • the adhesion between the metal foil and the liquid crystal polymer film is high.
  • the metal foil was etched to form a 5 mm metal foil pattern, and the metal foil pattern was peeled off in the 180 ° direction at a speed of 50 mm / min using a tensile tester. It is preferable that the peel strength expressed as the strength (unit: N / mm) is 0.7 N / mm or more.
  • a desired circuit pattern can be formed by chemically etching a part of the metal foil of the laminated plate by a conventional method to obtain an electronic circuit board.
  • electronic circuit components can be mounted on the circuit pattern.
  • the electronic circuit component is not particularly limited as long as it is mounted on the electronic circuit board. Examples of the electronic circuit component include a chip resistor, a chip capacitor, and a semiconductor package in addition to a single semiconductor element.
  • the first multilayer substrate according to the present invention includes two or more electronic circuit boards, and the electronic circuit board has a metal foil on which a circuit is formed on one side or both sides of a black liquid crystal polymer film.
  • the liquid crystal polymer film contains a black pigment and a liquid crystal polymer, the lightness of the black liquid crystal polymer film is 45 or less, the dielectric loss tangent of the black liquid crystal polymer film is 0.0035 or less, and the insulation of the black liquid crystal polymer film The minimum value of the breaking strength is 60 kV / mm or more.
  • the second multilayer substrate according to the present invention includes two or more electronic circuit boards, and the electronic circuit board has a metal foil on which a circuit is formed on one side or both sides of a black liquid crystal polymer film.
  • the shortest distance between 3/10 and 9 / between the circuits existing on both sides of the black liquid crystal polymer film in the black liquid crystal polymer film is 15/342 mm 2 or less.
  • the multilayer substrate according to the present invention is configured by laminating two or more electronic circuit boards, and the electronic circuit board has a metal foil on which a circuit is formed on one side or both sides of a black liquid crystal polymer film. .
  • the above-described aspects, explanations and definitions of the black liquid crystal polymer film, laminate and electronic circuit board according to the present invention also apply to the black liquid crystal polymer film and electronic circuit board included in the multilayer substrate according to the present invention.
  • the excellent characteristics of the black liquid crystal polymer film, the laminate and the electronic circuit substrate according to the present invention are such that the multilayer substrate according to the present invention has two or more electronic circuit substrates according to the present invention. Since it can be manufactured only by laminating, it is substantially maintained.
  • the electronic circuit boards according to the present invention can be thermocompression bonded at a temperature below the melting point of the liquid crystal polymer, the orientation of the black liquid crystal polymer film does not change greatly, and the black liquid crystal polymer film before and after thermocompression bonding. Properties such as brightness, dielectric properties, and insulation are substantially maintained. For example, the rate of change of dielectric loss tangent before and after thermocompression bonding is 5% or less at 60 GHz.
  • the insulating layer of the multilayer substrate according to the present invention is a black liquid crystal polymer film, so that the inner layer circuit pattern is difficult to see from the outside, and the circuit pattern is difficult to analyze. is there. From the viewpoint of strength and the like, the ratio of the maximum value to the minimum value of the thermal linear expansion coefficient in the plane direction of the black liquid crystal polymer film constituting the multilayer substrate according to the present invention is preferably 1.0 or more and 2.5 or less.
  • the multilayer substrate according to the present invention can be manufactured by a conventional method except that the black liquid crystal polymer film according to the present invention is used as an insulating layer. Specifically, a circuit is formed on one or both sides of a black liquid crystal polymer film by etching a metal foil of a laminated board corresponding to the size of the target multilayer substrate, and each layer of the target multilayer substrate is configured. An electronic circuit board is produced. At this stage, each electronic circuit board is preferably subjected to AOI inspection for inspecting the circuit pattern shape. As described above, in the electronic circuit board according to the present invention, since the difference in light reflectance between the circuit portion and the liquid crystal polymer film portion is large, an accurate inspection can be performed even by the AOI inspection.
  • a through hole for connecting circuits between layers is formed by a laser or the like, and a conductive paste is poured into the through hole.
  • the conductive paste is not particularly limited, and for example, a conductive paste containing Sn such as a Cu—Sn based paste can be used.
  • the order in which the circuit is formed, the through holes are formed, and the conductive paste is filled in the through holes is not particularly limited.
  • the circuit is formed after the through holes are formed in the laminate and the through holes are filled with the conductive paste.
  • the through holes may be formed and the conductive paste may be filled after the circuit is formed.
  • An electronic element may be mounted on the circuit of each electronic circuit board.
  • the electronic element is not particularly limited, and examples thereof include a semiconductor element, a chip resistor, a chip capacitor, and a semiconductor package (PKG).
  • a multilayer substrate can be obtained by laminating two or more electronic circuit substrates and then heat-pressing them.
  • the liquid crystal polymer is thermoplastic, the black liquid crystal polymer films or the black liquid crystal polymer film and the circuit surface can be directly thermocompression bonded.
  • the hot press at this time can be performed under the same conditions as in the case of producing a laminated plate by thermocompression bonding of a black liquid crystal polymer film and a metal foil, that is, the hot press is a vacuum press apparatus, a roll press apparatus, It can be performed by a conventionally known method using a double belt press device or the like.
  • the conditions for hot pressing may be adjusted as appropriate. For example, in the case of a vacuum press apparatus, the temperature is about 100 ° C.
  • the pressure is about 1 MPa or more and 10 MPa or less for about 1 minute or more and about 2 hours or less. it can. It is also preferable that the temperature of the hot press is less than the melting point of the liquid crystal polymer. If the temperature of the hot press is lower than the melting point of the liquid crystal polymer, the characteristics of the black liquid crystal polymer film before thermocompression bonding are more reliably maintained with the black liquid crystal polymer film constituting the multilayer substrate. When the temperature of the hot press is lower than the melting point, the surface of the black liquid crystal polymer film is modified by a conventionally known method in order to increase the adhesive strength between the black liquid crystal polymer films or between the black liquid crystal polymer film and the circuit surface. The adhesiveness can be improved.
  • the multilayer substrate according to the present invention can be further mounted on a mother substrate to be an electronic component.
  • the excellent characteristics of the black liquid crystal polymer film alone according to the present invention are substantially maintained.
  • the black liquid crystal polymer film constituting the multilayer substrate according to the present invention not only aggregates of black pigments but also spots containing a high concentration of black pigments in addition to liquid crystal polymers are suppressed.
  • FIG. 6 in the black liquid crystal polymer film constituting the multilayer substrate according to the present invention, when viewed from the upper surface direction of the multilayer substrate, it exists between two circuits formed on one side of the black liquid crystal polymer film.
  • the size of the high density spot of the black pigment to be processed is 9/10 of the shortest distance a1 between the circuits.
  • the following is preferable.
  • the size of the high concentration spot within the above range, a short circuit between circuits on one side of the same black liquid crystal polymer film can be effectively suppressed.
  • the width of the circuit may not be constant even on one black liquid crystal polymer film. In such a case, for example, in FIG. 6, the shortest distance between the two circuits is a1, not a2. Further, as shown in FIG. 6, when one high concentration spot exists from a region facing the circuit to a region not facing the circuit, the size of the high concentration spot is that the circuit is facing. The maximum diameter in the region shall be said.
  • the size of the high density spot of the black pigment existing is 9 / of the shortest distance c1 between the circuits. It is preferable that it is 10 or less.
  • the shortest distance between the two circuits is not c2 but c1.
  • the size of the high concentration spot is not facing the circuit. It is not the maximum diameter d2 in the region, but the maximum diameter d1 in the region facing the circuit.
  • the circuit when the multilayer substrate is viewed from the side, the circuit is formed immediately above the circuit formed in contact with the black liquid crystal polymer film and / or Alternatively, it is preferable that the size of the high concentration spot of the black pigment existing directly below, more specifically, the maximum diameter in the plane direction of the film is 1 ⁇ 2 or less of the minimum width of the circuit.
  • the high concentration spot of the black pigment is a mixture of a liquid crystal polymer and a black pigment, and since it is a gel, it has low adhesion to the metal forming the circuit. There is a possibility that the circuit peels from the liquid crystal polymer film.
  • the size of the high density spot may be just above the circuit and / or The maximum diameter in the planar direction in the region existing directly below shall be said.
  • Test Example 1 Measurement of lightness A liquid crystal polymer film was cut to produce a 10 cm ⁇ 10 cm test piece. The prepared test piece is superimposed on the opening of a spectrocolorimeter (Konica Minolta “CM-600d”) so that the total thickness is 100 ⁇ m or more. It was made to adhere so that.
  • the measurement method is based on JIS Z8722, the reflection method, the optical system is an integrating sphere method (8 °: di), the light source is cloudy, and the field of view is 2 °.
  • the light was collected with an integrating sphere, the amount of light was measured with a light receiver, and the lightness L * of CIE1976 was measured.
  • Ten test pieces prepared from the same liquid crystal polymer film were measured, and an average value was obtained.
  • Test Example 2 Measurement of relative dielectric constant and dielectric loss tangent A liquid crystal polymer film was cut to prepare a test piece of 10 cm ⁇ 10 cm, dried in a circulation oven at 50 ° C. for 24 hours, and under a standard environment described in JIS C6481 Cooled to room temperature. Using a network analyzer ("ENA E5071C” manufactured by Agilent Technologies) and a QWED split post dielectric resonator manufactured by QWED with a measurement frequency of 3.18 GHz, the resonant frequency of the resonator alone with no test piece inserted first The Q value of the peak was measured.
  • ENA E5071C manufactured by Agilent Technologies
  • test pieces were overlapped and inserted into the resonator so that the total thickness was 100 ⁇ m or more, and then the resonance frequency and Q value were measured with the test pieces inserted.
  • the relative dielectric constant is calculated from the difference between the resonance frequencies when the resonator and the test piece are inserted, and the dielectric loss tangent is calculated from the difference between the Q value and the resonance frequency when the resonator and the test piece are inserted. did.
  • Ten test pieces prepared from the same liquid crystal polymer film were measured, and an average value was obtained.
  • Test Example 3 Measurement of dielectric breakdown strength A liquid crystal polymer film was cut to prepare a 10 cm ⁇ 10 cm test piece, dried in a circulation oven at 50 ° C. for 24 hours, and allowed to reach room temperature in a standard environment described in JIS C6481 It was subjected to measurement after cooling. Using a withstand voltage tester (“TW-5110 ADMPS” manufactured by Tama Denso Co., Ltd.), the test piece is sandwiched between a lower electrode with a diameter of 75 mm and an upper electrode with a diameter of 25 mm, and an AC voltage is applied to the thickness direction of the test piece.
  • TW-5110 ADMPS manufactured by Tama Denso Co., Ltd.
  • the voltage value was gradually increased to 8 kV
  • the dielectric breakdown voltage when a current of 5 mA flowed between the upper and lower electrodes was measured, and the dielectric breakdown strength was calculated by dividing by the thickness of the test piece.
  • the dielectric breakdown strength was measured on 100 test pieces cut from the same liquid crystal polymer film at intervals of 10 cm, and an average value and a minimum value were obtained.
  • the dielectric breakdown strength was set to a value calculated by dividing the voltage 8 kV by the thickness of the test piece.
  • Test Example 4 Measurement of thermal linear expansion coefficient A thermal mechanical measurement device ("Q400" manufactured by TA Instruments Inc.) was used in a tensile mode, and the thermal linear expansion coefficient was measured in accordance with JIS C6481. Specifically, the liquid crystal polymer film was cut to prepare a 4 mm ⁇ 20 mm test piece, and the test piece was attached to the apparatus so that the distance between chucks was 15 mm, and a load of 0.1 N was applied while starting from room temperature. Between chucks between 100 ° C. and 50 ° C. when the temperature is raised to 170 ° C. at a rate of 40 ° C./min, held at 170 ° C. for 1 minute, and lowered from 170 ° C.
  • Q400 manufactured by TA Instruments Inc.
  • Thermal expansion coefficient (ppm / ° C.) ⁇ L / (L ⁇ ⁇ T) [In the formula, ⁇ L is a change in distance between chucks (mm), L is a distance between chucks (15 mm), and ⁇ T is a temperature difference (50 ° C.)]
  • the ratio of the maximum value to the minimum value of the thermal linear expansion coefficient was calculated from the minimum value and the maximum value among the measured values by measuring the thermal linear expansion coefficient at six points at 30 ° intervals in the circumferential direction on the plane of the film.
  • Test Example 5 Number of high-concentration spots of black pigment A liquid crystal polymer film was cut to produce a 10 cm ⁇ 10 cm test piece, which was adhered to the glass stage of a digital microscope (“VHX-5000” manufactured by Keyence Corporation). It was installed, and a 342 mm 2 range on the film surface was observed at a lens magnification of 200 times, a maximum transmitted light amount, and a gain of 6.0 dB. As the light source, only a transmission light source that was irradiated from the lower part of the stage was used.
  • the shutter speed varies depending on the film thickness, and the shutter speed is increased so that even if the brightness gradation of the entire film is lost, the spot sufficiently shields the light so that a spot of 10 ⁇ m or less can be clearly observed. Adjustment was made between 10 and 1,000 ms. Next, for the observed black mass, a 1 mm ⁇ 5 mm test piece containing the black mass was cut out and embedded in an epoxy resin, and then a diamond knife was used using an ultramicrotome (“UCT” manufactured by Leica). Thus, an observation surface in which the cross section of the black lump was exposed was produced.
  • UCT ultramicrotome
  • the cross section of the exposed black lump was observed with a laser microscope (“OLS-3000” manufactured by Olympus Corporation) at a magnification of 50 to 100 times using a laser beam having a wavelength of 408 nm as a light source.
  • OLS-3000 manufactured by Olympus Corporation
  • the observed image was binarized with the central value of the luminance distribution as a threshold, and the white part was distinguished from the liquid crystal polymer matrix part and the black part as the black pigment part. Since the black pigment had a black pigment content of 75 to 85%, it was confirmed that all black masses observed by transmitted light observation were high-density spots.
  • Test Example 6 Measurement of peel strength
  • AGS-H tensile tester
  • JIS C6471 tensile tester
  • the copper foil was peeled off in the 180 ° direction at a speed of 50 mm / min.
  • the strength (unit: N / mm) was measured.
  • the laminate is cut to produce a 3 cm ⁇ 10 cm test piece, and a masking tape of 5 mm width ⁇ 10 cm including the center on the copper foil side of the test piece is pasted in the length direction. It was immersed in a ferric solution to remove unnecessary portions of the copper foil by etching.
  • Double-sided pressure-sensitive adhesive tape (Nitto Denko Corporation) is used to reinforce the test piece to a 2 mm thick bakelite plate so that the peel angle does not change when the copper foil is peeled off from the test piece. It was pasted using "No. 5015" made by the manufacturer. One end of the circuit pattern formed on the test piece is peeled off, sandwiched between the tensile test machines, and the copper foil is peeled off at a rate of 50 mm / min. The value was calculated as the peel strength. Measurement was performed on three test pieces prepared from the same liquid crystal polymer film, and an average value was obtained.
  • Test Example 7 Measurement of thickness The thickness of the central part of a 10 cm ⁇ 10 cm test piece prepared for measurement of relative permittivity, dielectric loss tangent and dielectric breakdown strength was measured using a digital thickness gauge (“SMD-565” manufactured by Teclock Corporation). ”, A probe tip diameter: 2 mm). Specifically, the thickness of a total of 5 points, that is, the vertex of a regular square with a side of 4 cm around the center of the test piece and the center of the test piece, was measured, and the average value was taken as the thickness of the test piece. .
  • SMD-565 digital thickness gauge
  • Example 1 Production of black liquid crystal polymer single-sided copper clad laminate according to the present invention
  • Production of black liquid crystal polymer film Liquid crystal polymer ("C950" manufactured by Polyplastics Co., Ltd.) and carbon black in a twin-screw extruder with a vacuum vent (Particle diameter: 75 nm, specific surface area: 30 m 2 / g) is supplied at a ratio of 0.5% by weight of carbon black and melt kneaded at 340 ° C. to obtain black liquid crystal polymer pellets in which carbon black is dispersed. It was.
  • the pellets are supplied to a twin screw extruder with a vacuum vent and melt extruded at 340 ° C., and a black liquid crystal polymer uniaxially oriented film having a thickness of 42 ⁇ m is passed through a gear pump, a filter (pore diameter: 10 ⁇ m), and a T die connected to the pellet.
  • stretched porous PTFE resin films were laminated on both surfaces of the film at 270 ° C. (peel strength: 5 g / cm).
  • the black liquid crystal polymer uniaxially oriented film was stretched to TD at a stretching temperature of 345 ° C., a stretching ratio of 3.2 times, and a stretching speed of 20% / second, and then the stretched porous PTFE resin film was peeled off to obtain an equal orientation of 13 ⁇ m in thickness.
  • a black liquid crystal polymer film was prepared.
  • a copper foil (“SEED-B-12 ⁇ m” manufactured by Nippon Electrolytic Co., Ltd.) is black on one side of the black liquid crystal polymer film obtained in (1) above.
  • a polyimide film (“UPILEX 20S” manufactured by Ube Industries Co., Ltd.) is laminated on the other surface, sandwiched between two stainless steel plates with a thickness of 2 mm, and thick as a cushioning material
  • Black liquid crystal with a “copper foil / black liquid crystal polymer film” configuration by placing stainless steel woven fabric with a thickness of 1 mm above and below the stainless steel plate and holding it at 300 ° C. under a pressure of 3 MPa for 5 minutes using a vacuum press.
  • a polymer single-sided copper-clad laminate was obtained.
  • Example 2 An 18 ⁇ m-thick, uniformly oriented black liquid crystal polymer film and a black liquid crystal polymer single-sided copper-clad laminate were produced under the same conditions as in Example 1 except that the thickness of the uniaxially oriented film was 58 ⁇ m.
  • Example 3 Under the same conditions as in Example 1 except that the pore size of the filter was 15 ⁇ m and the thickness of the uniaxially oriented film was 80 ⁇ m, an equally oriented black liquid crystal polymer film having a thickness of 25 ⁇ m and a black liquid crystal polymer single-sided copper-clad laminate were prepared.
  • Example 4 An equi-aligned black liquid crystal polymer film having a thickness of 25 ⁇ m and a black liquid crystal polymer single-sided copper-clad laminate were prepared under the same conditions as in Example 1 except that the pore size of the filter was 20 ⁇ m and the thickness of the uniaxially oriented film was 80 ⁇ m.
  • Example 5 Under the same conditions as in Example 1 except that the pore size of the filter was 40 ⁇ m and the thickness of the uniaxially oriented film was 160 ⁇ m, an equally oriented black liquid crystal polymer film having a thickness of 50 ⁇ m and a black liquid crystal polymer single-sided copper-clad laminate were prepared.
  • Comparative Example 1 A 13 ⁇ m-thick, uniformly oriented black liquid crystal polymer film and a black liquid crystal polymer single-sided copper-clad laminate were produced under the same conditions as in Example 1 except that the pore size of the filter was 15 ⁇ m.
  • Comparative Example 2 An 18 ⁇ m-thick, uniformly oriented black liquid crystal polymer film was prepared under the same conditions as in Example 2 except that the filter pore size was 15 ⁇ m, and a black liquid crystal polymer single-sided copper-clad laminate was prepared under the same conditions as in Example 1. did.
  • Comparative Example 3 An equal-aligned black liquid crystal polymer film having a thickness of 25 ⁇ m was produced under the same conditions as in Example 3 except that the pore size of the filter was 40 ⁇ m, and a black liquid crystal polymer single-sided copper-clad laminate was produced under the same conditions as in Example 1. did.
  • Comparative Example 4 An equally oriented black liquid crystal polymer film having a thickness of 50 ⁇ m was produced under the same conditions as in Example 5 except that the pore diameter of the filter was changed to 60 ⁇ m, and a black liquid crystal polymer single-sided copper clad laminate was produced under the same conditions as in Example 1. did.
  • Comparative Example 5 Except not using a filter, an equal-aligned black liquid crystal polymer film having a thickness of 25 ⁇ m was produced under the same conditions as in Example 3, and a black liquid crystal polymer single-sided copper-clad laminate was produced under the same conditions as in Example 1.
  • the black liquid crystal polymer film according to the present invention has a lightness (L value) of 36 to 39 and a black insulating base material, and has a relative dielectric constant of 3.5 or less and a dielectric loss tangent of 0. Excellent dielectric characteristics of 0.003 or less.
  • Comparative Example 4 using a 60 ⁇ m filter and Comparative Example 5 not using a filter, the number of carbon black high-concentration spots is larger than in Examples 1 to 5 and Comparative Examples 1 to 3, and this is a dielectric. This is the cause of increasing the tangent. Further, in the black liquid crystal polymer films of Comparative Examples 1 to 5, the dielectric breakdown strength greatly varies depending on the measurement position, and shows a very low value depending on the measurement position. On the other hand, the dielectric breakdown strength of the black liquid crystal polymer films of Examples 1 to 5 according to the present invention are both 100 kV / mm or more in both the minimum value and the average value, and are very excellent as an insulating base material for electronic circuit boards. It was confirmed that. The uncolored liquid crystal polymer film of Comparative Example 6 also showed the same characteristics, but naturally had a high brightness (L * value) of 76 because it did not contain a black pigment, and was a whited insulating substrate.
  • L * value high brightness
  • Example 6 and Comparative Example 7 Production and Evaluation of Electronic Circuit Board A resist film was laminated on the copper surface of the single-sided copper-clad laminate of Example 5 and Comparative Example 6, and a mask on which a predetermined circuit was drawn was placed thereon. And UV exposure. Next, after removing unnecessary portions of the resist film by alkali, the exposed portions of copper are removed by etching using an aqueous ferric chloride solution, washed with water to remove the resist film, and dried in a circulating oven at 80 ° C. for 1 hour. An electronic circuit board was produced. The circuit pattern and dimensional position of this electronic circuit board were confirmed using an AOI apparatus.
  • the image recognition failure rate cannot be reduced to 0% unless the difference in brightness between the copper circuit pattern and the insulating base material is 30 or more. Since the brightness of the copper circuit pattern (copper foil S surface) is generally about 75, the insulating base material used for the electronic circuit board needs to have a brightness of 45 or less, but the black liquid crystal polymer film of Example 5 is 0. The lightness was 36 because it contained 5% by mass of carbon black, and there was a difference of 39 from the lightness of the copper circuit pattern, so the image recognition failure rate could be reduced to 0%.
  • the unrecognized liquid crystal polymer film of Comparative Example 6 containing no carbon black and having a brightness of 76 had an image recognition failure rate of 10% by AOI inspection, and the image recognition failure rate did not become 0%.
  • the film portion exposed by etching suppresses the reflection of light of the AOI device, so that the contrast with the copper circuit pattern portion is increased, and the good Pattern recognition was possible.
  • the insulating base material is the uncolored liquid crystal polymer film of Comparative Example 6, since the film portion exposed by etching reflects the light of the AOI device, the contrast with the copper circuit pattern portion is low. The copper circuit pattern could not be recognized.
  • an optical electronic component was mounted on the manufactured electronic circuit board, and the operation performance of the optical component was confirmed.
  • the electronic circuit board in which the insulating base material is the black liquid crystal polymer film of Example 5 since light reflection at the base material portion made of the black liquid crystal polymer film is suppressed, it occurs at the base material portion. The effect of reflected light was not observed, and good operating performance was confirmed.
  • the optical electronic component was mounted on the electronic circuit board containing the uncolored liquid crystal polymer of Comparative Example 6 and the operation performance of the optical component was confirmed, the light reflection at the substrate portion made of the uncolored liquid crystal polymer film was intense, Since the optical component is strongly influenced by the reflected light generated in the material portion, good results could not be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、十分量の黒色顔料を含むことにより黒色であり金属箔との光反射率の違いが明確である一方で、黒色顔料の高濃度スポットが顕著に抑制されており、誘電特性や絶縁性に優れた黒色液晶ポリマーフィルムと、当該黒色液晶ポリマーフィルムを含み、同様の特性を有する積層板、電子回路基板および多層基板を提供することを目的とする。本発明に係る黒色液晶ポリマーフィルムは、黒色顔料と液晶ポリマーを含み、明度が45以下であり、誘電正接が0.0035以下であり、絶縁破壊強さの最低値が60kV/mm以上であり、且つ、平面方向の熱線膨張係数の最小値に対する最大値の比が1.0以上2.5以下であることを特徴とする。

Description

黒色液晶ポリマーフィルムおよび多層基板
 本発明は、黒色でありながら黒色顔料の高濃度スポットが顕著に抑制されている黒色液晶ポリマーフィルムと、当該黒色液晶ポリマーフィルムを含む積層板、電子回路基板および多層基板に関するものである。
 近年、電子機器などにはより一層の小型化や軽量化が求められており、それに伴って電子回路基板にもより一層の高密度化が要求されている。また、情報通信量の増加に伴い、高周波帯域での使用も求められている。具体的には、これまでGHz帯域やミリ波帯域の高周波信号は主にレーダーや衛星通信などの用途に用いられてきたが、最近ではスマートフォンやタブレット型コンピューターなどの携帯端末などで用いられるようになってきている。ところが、電子回路基板に電気的な信号が流れると、電圧により電子回路基板を構成する絶縁基材の分子などが分極して信号エネルギーの一部が吸収されて信号が減衰するという現象が認められ、かかる現象は高速伝送においてより顕著である。ここで、絶縁基材の比誘電率が高いほど誘電体に蓄えられるエネルギーが大きく、また、絶縁基材の誘電正接が大きいほど吸収される電流は大きくなり、誘電損失は信号の周波数と比誘電率の平方根と誘電正接との積に比例する。よって、比誘電率と誘電正接の両方が低い材料が求められている。液晶ポリマーフィルムは、比誘電率が低く且つ低誘電正接である上にフレキシブルであることから、高速伝送が可能な絶縁基材として注目を集めている。
 しかし液晶ポリマーフィルムには、色調が薄い黄白色のため、電子回路基板のパターン形状を検査するためのAOI検査(Automated Optical Inspection)に付し難いという問題があった。詳しくは、AOI検査では、回路面をカメラで撮像して画像処理を行ったり、レーザーを照射して反射光を測定したり、X線を用いて透過線量で検査したりするが、回路を形成する金属は光を反射するので、回路が存在しない絶縁基材部分は低反射率である方が回路パターンを認識し易い。ところが、液晶ポリマーフィルムの光反射率は他の樹脂フィルムに比べて高いため、金属回路パターンと液晶ポリマー基材との境界線が不明瞭になり、液晶ポリマーフィルムを用いた電子回路基板の回路パターン認識精度は低いといわざるを得ない。また、液晶ポリマーフィルムを使用した電子回路基板に光学素子を実装した場合、液晶ポリマーフィルムからの迷光のため光学素子の機能が低下したり、さらには動作不良を起こしたりするという問題もあった。
 そこで、反射率を下げることを目的として、液晶ポリマーに例えばカーボンブラック等の着色剤を分散したフィルムが検討されていた。
 例えば特許文献1には、電極であるランドとの光反射率の差が大きくなるように、ランド形成面に着色された熱可塑性樹脂フィルムが積層配置されたプリント基板と、着色された熱可塑性樹脂フィルムにランドの少なくとも一部が露出するように開孔部が設けられたプリント基板が開示され、熱可塑性樹脂フィルムとして液晶ポリマーフィルムが挙げられており、熱可塑性樹脂フィルムを着色する顔料としてカーボンブラックが挙げられている。
 しかし、有機高分子である液晶ポリマーと無機顔料であるカーボンブラックとの親和性は低く、液晶ポリマーフィルム中にカーボンブラック粒子を分散させることは非常に難しい。ところが特許文献1には、液晶ポリマーとカーボンブラックを混合する方法は全く記載されていない。
 特許文献2には、熱可塑性樹脂100重量部に対してカーボンブラックを0.1~20重量部を含み、カーボンブラックが最大粒子径50μm以下で分散している熱可塑性樹脂組成物が開示されている。
特開2006-93438号公報 国際公開第2012/131829号パンフレット
 上述したように、絶縁基材として液晶ポリマーフィルムを含む電子回路基板のパターン形状検査においてパターン認識精度を上げるために、液晶ポリマーフィルムを着色することが検討されていた。
 しかし、カーボンブラックなどの無機顔料は低親和性により液晶ポリマーフィルム中で凝集する傾向があり、液晶ポリマーフィルムと金属回路パターンとで反射率の差を明確にするためには、顔料の配合量を高める必要があった。その結果、液晶ポリマーフィルムの誘電特性が低下してしまうという問題があった。
 それに対して特許文献2には、熱可塑性樹脂中にカーボンブラックが分散している組成物が開示されている。ところが、本発明者らの実験的知見によれば、液晶ポリマーとカーボンブラックを混合した場合、たとえカーボンブラックの凝集体が形成されなくても、おそらく溶融粘度の剪断速度依存性が極めて大きいという液晶ポリマーに特有の流動特性に起因して、液晶ポリマーフィルム中にカーボンブラックが高濃度に含まれるスポットが形成されてしまう(図5参照)。かかる高濃度スポットは、おそらく液晶ポリマーにカーボンブラックを混合する際に、最初の段階でカーボンブラックを高濃度に含んでしまった部分は、周辺部分に比べてその剪断速度が低下して増粘し、分散し難くなることにより形成されると考えられる。このスポットは、従来公知のカーボンブラックの凝集体とは異なり、カーボンブラック粒子を高濃度に含む液晶ポリマーとカーボンブラック粒子との混合体である。図5のスポットは、液晶ポリマーフィルムの厚さ方向に貫通しているが、その抵抗値を測定したところ2kΩであり、カーボンブラック自体の抵抗値よりも高いことから、カーボンブラックの凝集体とは明らかに異なる。本発明者らは、このようなスポットがカーボンブラックを混合することによる明度低下に寄与することなく液晶ポリマーフィルムの誘電正接を増大させる原因となっていること、薄膜液晶ポリマーフィルムの場合には絶縁破壊強さが低下する原因となることを突き止めた。
 そこで本発明は、十分量の黒色顔料を含むことにより黒色であり金属箔との光反射率の違いが明確である一方で、黒色顔料の高濃度スポットが顕著に抑制されており、誘電特性や絶縁性に優れた黒色液晶ポリマーフィルムと、当該黒色液晶ポリマーフィルムを含み、同様の特性を有する積層板、電子回路基板および多層基板を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、溶融した液晶ポリマーと黒色顔料との混合物を押出成形してフィルム化するに当たり、当該混合物を所定の孔径を有するフィルターに通すことによりフィルム中における黒色顔料の高濃度スポットの生成を顕著に抑制することができ、比較的多量の黒色顔料を含み低明度でありながら誘電正接が低く且つ絶縁破壊強さの高い液晶ポリマーフィルムが得られることを見出して、本発明を完成した。
 以下、本発明を示す。
 [1] 黒色顔料と液晶ポリマーを含み、明度が45以下であり、誘電正接が0.0035以下であり、絶縁破壊強さの最低値が60kV/mm以上であり、且つ、平面方向の熱線膨張係数の最小値に対する最大値の比が1.0以上2.5以下であることを特徴とする黒色液晶ポリマーフィルム。
 [2] 黒色顔料と液晶ポリマーを含み、大きさがフィルム厚さの3/10以上9/10以下である黒色顔料の高濃度スポットの個数密度が15個/342mm2以下であることを特徴とする黒色液晶ポリマーフィルム。
 [3] 比誘電率が3.5以下である上記[1]または[2]に記載の黒色液晶ポリマーフィルム。
 [4] 厚さが10μm以上75μm以下である上記[1]~[3]のいずれかに記載の黒色液晶ポリマーフィルム。
 [5] 上記黒色顔料の高濃度スポットの大きさがフィルム厚さの9/10以下である上記[1]~[4]のいずれかに記載の黒色液晶ポリマーフィルム。
 [6] 熱線膨張係数が3ppm/℃以上30ppm/℃以下である上記[1]~[5]のいずれかに記載の黒色液晶ポリマーフィルム。
 [7] 長尺のものである上記[1]~[6]のいずれかに記載の黒色液晶ポリマーフィルム。
 [8] 上記[1]~[7]のいずれかに記載の黒色液晶ポリマーフィルムの片面または両面に金属箔が積層されていることを特徴とする積層板。
 [9] 上記[8]に記載の積層板の金属箔に回路が形成されていることを特徴とする電子回路基板。
 [10] 2以上の電子回路基板を含み、
 上記電子回路基板が、回路が形成された金属箔を黒色液晶ポリマーフィルムの片面または両面に有するものであり、
 上記黒色液晶ポリマーフィルムが黒色顔料と液晶ポリマーを含み、上記黒色液晶ポリマーフィルムの明度が45以下であり、上記黒色液晶ポリマーフィルムの誘電正接が0.0035以下であり、且つ、上記黒色液晶ポリマーフィルムの絶縁破壊強さの最低値が60kV/mm以上であることを特徴とする多層基板。
 [11] 2以上の電子回路基板を含み、
 上記電子回路基板が、回路が形成された金属箔を黒色液晶ポリマーフィルムの片面または両面に有するものであり、
 上記黒色液晶ポリマーフィルムが黒色顔料と液晶ポリマーを含み、
 側面方向から見た場合、上記黒色液晶ポリマーフィルム中、当該黒色液晶ポリマーフィルムの両面に存在する上記回路の間の最短距離の3/10以上9/10以下の大きさの上記黒色顔料の高濃度スポットの個数密度が15個/342mm2以下であることを特徴とする多層基板。
 [12] 側面方向から見た場合、上記黒色液晶ポリマーフィルム中、当該黒色液晶ポリマーフィルムの両面に存在する2つの上記回路の間に存在する上記黒色顔料の高濃度スポットの大きさが、当該回路の間の最短距離の9/10以下である上記[10]に記載の多層基板。
 [13] 上面方向から見た場合、上記黒色液晶ポリマーフィルムの片面に存在する2つの上記回路の間に存在する上記黒色顔料の高濃度スポットの大きさが、当該回路の間の最短距離の9/10以下である上記[10]~[12]のいずれかに記載の多層基板。
 [14] 側面方向から見た場合、上記回路の直上および/または直下に存在する上記黒色顔料の高濃度スポットの大きさが、当該回路の最小幅の1/2以下である上記[10]~[13]のいずれかに記載の多層基板。
 [15] 上記黒色液晶ポリマーフィルムの比誘電率が3.5以下である上記[10]~[14]のいずれかに記載の多層基板。
 [16] 上記黒色液晶ポリマーフィルムの厚さが10μm以上75μm以下である上記[10]~[15]のいずれかに記載の多層基板。
 [17] 上記黒色液晶ポリマーフィルムの熱線膨張係数が3ppm/℃以上30ppm/℃以下である上記[10]~[16]のいずれかに記載の多層基板。
 [18] 更に電子素子を含み、当該電子素子が上記回路上に実装されている上記[10]~[17]のいずれかに記載の多層基板。
 [19] 上記[10]~[18]のいずれかに記載の多層基板とマザー基板とを含み、上記多層基板がマザー基板に実装されていることを特徴とする電子部品。
 本発明に係る液晶ポリマーフィルムは低明度であることから、電子回路基板の絶縁基材として用いる場合、回路を形成する金属箔との光反射率の差が大きく、自動の回路パターン形状検査方法であるAOI検査によっても正確な検査が可能である。しかし一般的には、低明度の絶縁基材には比較的多量の黒色顔料を配合しなければならず、黒色顔料の高濃度スポットが生成することにより、特に誘電正接が大きくなってしまう。誘電正接の大きな絶縁基材は、通過する電流に対する吸収される電流の比率が高いため、特に高周波電子回路基板の材料としては使えない。それに対して本発明に係る液晶ポリマーフィルムは、低明度でありながら黒色顔料の高濃度スポットの生成が顕著に抑制されており、誘電正接が低く誘電特性に優れ、また、絶縁性にも優れるものである。よって本発明は、近年、電子回路基板に求められる高い要求を満たすものとして、産業上極めて有用である。
図1は、少なくとも液晶ポリマーと黒色顔料を含むペレットを二軸押出機を使って調製する態様の模式図である。 図2は、フィルターとダイを装着した二軸押出機を使って本発明に係る黒色液晶ポリマーフィルムを製造する態様の模式図である。 図3は、後記の実施例1で作製したフィルムの拡大写真である。 図4は、後記の比較例5で作製したフィルムの拡大写真である。 図5は、後記の比較例5で作製したフィルムに認められた黒色顔料の高濃度スポットの断面拡大写真である。 図6は、上面方向から見た本発明に係る多層基板の模式図である。 図7は、側面方向から見た本発明に係る多層基板の模式図である。 図8(1)は側面方向から見た本発明に係る多層基板の模式図であり、図8(2)はその一部の拡大図である。
 本発明に係る第一の黒色液晶ポリマーフィルムは、黒色顔料と液晶ポリマーを含み、明度が45以下であり、誘電正接が0.0035以下であり、絶縁破壊強さの最低値が60kV/mm以上であり、且つ、平面方向の熱線膨張係数の最小値に対する最大値の比が1.0以上2.5以下であることを特徴とする。また、本発明に係る第二の黒色液晶ポリマーフィルムは、黒色顔料と液晶ポリマーを含み、大きさがフィルム厚さの3/10以上9/10以下である黒色顔料の高濃度スポットの個数密度が15個/342mm2以下であることを特徴とする。
 本発明は黒色液晶ポリマーフィルムに関する。液晶ポリマーには、溶融状態で液晶性を示すサーモトロピック液晶ポリマーと、溶液状態で液晶性を示すレオトロピック液晶ポリマーとがある。本発明では何れの液晶ポリマーも用い得るが、熱可塑性であることと高周波特性がより優れることから、サーモトロピック液晶ポリマーが好適に用いられる。
 サーモトロピック液晶ポリマーのうちサーモトロピック液晶ポリエステル(以下、単に「液晶ポリエステル」という)とは、例えば、芳香族ヒドロキシカルボン酸を必須のモノマーとし、芳香族ジカルボン酸や芳香族ジオールなどのモノマーと反応させることにより得られる芳香族ポリエステルであって、溶融時に液晶性を示すものである。その代表的なものとしては、パラヒドロキシ安息香酸(PHB)と、フタル酸と、4,4’-ビフェノールから合成されるI型[下式(1)]、PHBと2,6-ヒドロキシナフトエ酸から合成されるII型[下式(2)]、PHBと、テレフタル酸と、エチレングリコールから合成されるIII型[下式(3)]が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 本発明においては、耐熱性や耐加水分解性により優れることから、上記のうちI型液晶ポリエステルとII型液晶ポリエステルが好ましく、II型液晶ポリエステルがより好ましい。また、上記式(1)において、フタル酸としてはイソフタル酸が好ましい。
 本発明に係る黒色液晶ポリマーフィルムは、黒色顔料を含む。黒色顔料の種類は特に制限されず適宜選択すればよいが、例えば、カーボンブラックやグラファイトなどの炭素系黒色顔料;四酸化三鉄、Cu-Cr複合酸化物、Cu-Cr-Zn複合酸化物などの金属酸化物系黒色顔料;黒色干渉アルミニウム顔料などの金属系黒色顔料などの無機黒色顔料を挙げることができる。液晶ポリマーの誘電特性を過剰に損なわないことや、光の吸収率や入手のし易さ、基板加工の際の穴あけ時に残渣が少なくなることなどの観点から、炭素系黒色顔料を用いることが好ましく、カーボンブラックを用いることがより好ましい。但し、カーボンブラックと同等の誘電特性を満たすものであれば、他の黒色顔料も使用できる。また、誘電特性を損なわない範囲で、他のフィラーを併用してもよい。他のフィラーとしては、例えば、シリカ、窒化ホウ素、窒化アルミニウムなどを挙げることができる。また、黒色顔料やその他のフィラーの形状は特に制限されず、例えば、球状、板状、棒状、針状、不定形状などを挙げることができる。
 本発明で用いる黒色顔料およびその他のフィラーの大きさは適宜調整すればよいが、例えば平均一次粒子径で15nm以上75nm以下程度とすることができる。本発明において平均一次粒子径としては、用いる製品のカタログ値があればそれを参照すればよい。カタログ値が無い場合には、例えば、走査型電子顕微鏡を用いて使用する黒色顔料およびその他のフィラーの1,000倍以上100,000倍以下程度の拡大写真を撮影し、画像解析ソフトを用いて少なくとも100個の粒子の円相当径を求め、その平均値を算出すればよい。また、黒色顔料の比表面積は25m2/g以上300m2/g以下程度とすることができる。本発明において比表面積としては、用いる製品のカタログ値があればそれを参照すればよい。カタログ値が無い場合には、例えば、低温窒素吸着法などにより黒色顔料の表面に窒素気体分子を物理吸着させて、その吸着量からBETの式に従って比表面積を算出すればよい。
 本発明によれば黒色顔料の高濃度スポットを顕著に抑制できるので、本発明に係る黒色液晶ポリマーフィルムには、誘電正接を大きくすることなく比較的多量の黒色顔料を配合することができる。例えば、液晶ポリマーに対する黒色顔料の配合量は、0.1質量%以上5.0質量%以下とすることができる。
 本発明に係る黒色液晶ポリマーフィルムは比較的多量の黒色顔料を含むことから低明度であり、具体的には、JIS Z8722に準拠して測定した明度(CIE1976 L*)で45以下である。本発明において液晶ポリマーフィルムの明度は、例えば、分光測色計(コニカミノルタ社製「CM-600d」)などを用いて測定することができる。明度は反射法により測定され、光学系は積分球方式(8°:di)、光源は曇天、視野は2°で測定される。また、液晶ポリマーフィルムの片面または両面に金属箔が積層された積層板の場合は、金属箔を除去して露出させたフィルムの表面で測定される。金属箔の除去は、例えば、塩化第二鉄溶液などでエッチングにより金属箔を除去し、得られたフィルムを水洗し、80℃の循環式オーブンで1時間乾燥すればよい。多層基板中の黒色液晶ポリマーフィルムの明度は、研磨やエッチングなどによって、明度を測定すべき黒色液晶ポリマーフィルムの表面を露出させて測定できる。或いは、多層基板から黒色液晶ポリマーの明度を直接測定する場合には、基板に形成されている回路や層間接続導体が無い部分で測定する必要があるので、測定径が小さい分光測色計を用いるのが好ましい。かかる分光測色計としては、例えば、測定径が3mmであるコニカミノルタ社製のCM-700dを用いることができる。上記明度が45以下になることで、回路パターン部分と周辺液晶ポリマーフィルム部分とのコントラストが明確になり、AOI検査におけるパターン認識精度を向上することができる。一般にAOI検査は、回路パターン部分と絶縁基材部分の明度差が30以上ないと画像認識不良率を0%にすることはできない。回路パターン(銅箔S面)の明度は一般に75程度であるため、絶縁基材は明度を45以下にするのが好ましい。
 本発明の黒色液晶ポリマーフィルムにおいては、黒色顔料の高濃度スポットの生成が抑制されており、黒色顔料が均一に分散していることから、黒色顔料を比較的多量に含むものでありながら誘電特性に優れる。勿論、黒色顔料の凝集体の生成も抑制されている。具体的には、誘電正接が0.0035以下であり、好ましくは0.003以下であり、また、比誘電率が3.5以下である。なお、誘電体である絶縁基材上に形成した回路に交流電気信号が伝播する際には、その信号の電力の一部が誘電体に吸収されてしまい、信号が減衰・損失する。この時に吸収された電力と通過(伝播)した電力の比が誘電正接であり、誘電正接の小さい誘電体を用いた回路では、伝送損失を小さくすることができる。
 液晶ポリマー分子は剛直であり交流電圧下でも動きがたいため、もともと低誘電正接で且つ低誘電率であるといえるが、黒色顔料を添加する場合には、その分、誘電特性は低下する。しかも本発明者らが明らかにしたところによれば、液晶ポリマーに黒色顔料を添加すると、液晶ポリマーに黒色顔料が高濃度に含まれる高濃度スポットが発生し、特に誘電正接が増大する。しかし本発明の液晶ポリマーフィルムでは、比較的多量の黒色顔料を配合しても、かかる高濃度スポットの発生が抑制され、黒色顔料が均一分散しているため、誘電特性の低下は抑制されており、特に低誘電正接である。なお、比誘電率と誘電正接は、例えば、Agilent Technologies社製の「ENA E5071C」などのネットワーク・アナライザと、測定周波数3.18GHzのQWED社製のスプリットポスト誘電体共振器などの共振器を用いて測定することができる。比誘電率は、共振器単体と試験片を挿入した際の共振周波数の差から算出することができ、誘電正接は、共振器単体と試験片を挿入した際のQ値の差と共振周波数の差から算出することができる。なお、積層板、電子回路基板および多層基板に含まれる黒色液晶ポリマーフィルムの比誘電率と誘電正接も、測定可能である。但し、十分に大きな測定試料が取得できない場合には、例えば60GHzといった高周波下で比誘電率と誘電正接を測定してもよい。60GHzの高周波下であれば、回路や層間接続導体が無い5mm径の測定領域でも比誘電率と誘電正接の測定が可能である。
 本発明に係る黒色液晶ポリマーフィルムは、上述した通り黒色顔料の高濃度スポットの生成が顕著に抑制されているため、たとえ薄膜の場合であっても良好な絶縁性を示す。例えば、黒色液晶ポリマーフィルムを所望の大きさに切り出す前の原反フィルムの幅方向の中心から10cm×10cmの試験片を最大数切り出し、連続する長さ方向でも同様に幅方向で試験片を最大限切り出し、100点以上の試験片を作製して絶縁破壊電圧を測定し、絶縁破壊電圧をフィルムの厚さで除した絶縁破壊強さを求める。例えば、幅が110cmの原反フィルムの場合には幅方向に11点の試験片を得ることができるので、さらに隣接する長さ方向でも同様の幅方向で11点ずつ試験片を切り出していき、最終的に100点以上の試験片を得る。本発明では、当該絶縁破壊強さの最低値が60kV/mm以上であることが好ましく、100kV/mm以上がより好ましい。また、層間での絶縁不良を防ぐために、20V程度の低電圧でも導通してしまう短絡箇所がないことが好ましい。絶縁破壊電圧は、例えば耐電圧試験機を用いて測定することができる。なお、積層板、電子回路基板や多層基板から十分に大きな測定試料が取得できない場合には、例えば1mm径の端子を用い、測定を行ってもよい。1mm径の端子としては、例えば、1mm径の銅線の断面を平らに切断したものを用いることができる。1mm径の端子を用いる場合、回路や層間接続導体が無い3mm径以上の領域であれば、絶縁破壊強さを測定することができる。
 液晶ポリマー分子は剛直で長い化学構造を有するために、極めて配向し易い。液晶ポリマー分子が特定方向に配向している異方性フィルムは、配向方向に裂け易く取り扱いが困難であり、また、寸法精度が悪く、熱応力、機械的強度、比誘電率などのばらつきも大きい。さらに、異方性フィルムに金属箔を積層して積層板を製造する場合、フィルムの異方性に起因した反りが積層板に生じるため、電子回路基板の絶縁基材として用いることができない。それに対して本発明に係る黒色液晶ポリマーフィルムは、分子配向が制御されており、等方性である。具体的には、平面方向の熱線膨張係数の最小値に対する最大値の比が1.0以上2.5以下である。当該比としては、2.0以下が好ましく、1.8以下がより好ましく、1.5以下がよりさらに好ましい。
 本発明において熱線膨張係数の最小値と最大値は、液晶ポリマーフィルムの平面で円周方向に30°間隔で熱線膨張係数を6点測定し、測定値の中の最小値と最大値とする。
 液晶ポリマーフィルムを溶融押出成形した場合、押出機から押し出されたフィルムは、押出方向(MD)に強く配向している。本発明においては、液晶ポリマーフィルムを回路基板に用いる場合、フィルムが一方向に強く配向していると、押出方向と垂直な方向(TD)とMDで熱線膨張係数が不整合となり、どちらか一方の方向で積層板の反りが大きくなり、またこのような積層板を使用した多層基板においても反りが大きくなってしまい、回路基板としての使用が難しくなる。このため、好ましくは押出機から押し出されたフィルムをTDのみで一軸延伸するか、或いはMDとTDで二軸延伸し且つTDでの延伸倍率を高くすることにより、液晶ポリマー分子の異方性を低減してフィルムを等方性のものとする。なお、上記延伸倍率を調整することにより、TDでの熱線膨張係数とMDの熱線膨張係数を等しくすることも可能である。この場合、液晶ポリマーフィルムは完全な等方性となり、熱線膨張係数の最小値に対する最大値の比は1.0となる。
 本発明に係る黒色液晶ポリマーフィルムの平面方向の熱線膨張係数としては3ppm/℃以上、30ppm/℃以下が好ましい。上述したように、液晶ポリマーフィルムの平面方向の熱線膨張係数の最小値に対する最大値の比としては1.0以上2.5以下が好ましい。熱線膨張係数は、熱機械分析法(TMA法)により測定することができる。例えば、ティー・エイ・インスツルメント社のQ400などの熱機械測定装置を使用し、JIS C6481に準拠して、サンプル形状を幅4mm、チャック間距離15mmとし、0.1Nの荷重を付与しつつ、常温から170℃まで昇温速度40℃/分で昇温し、170℃で1分間保持し、降温速度10℃/分で170℃から常温まで降温する際、100℃から50℃までの間のチャック間距離の変化ΔLを測定して、チャック間距離L=15mm、温度差ΔT=50℃を用いて、熱線膨張係数を算出する。
 熱線膨張係数を上記範囲内に調整すれば、平面方向で熱応力、機械的強度、比誘電率の異方性をより確実に低減することができ、また、積層板の反りの発生をより確実に抑制でき、さらに寸法安定性にも優れるなど、電子回路基板の材料として優れたものにすることができる。例えば、液晶ポリマーフィルムの片面に金属箔を積層した積層板の反り率を10%以下に抑制することが可能である。なお、かかる「反り率」は、JIS C6481に準拠して求めることができ、具体的には、フィルムを水平台上、フィルムの中心が台に接し且つ四隅が台から浮いた状態になるように置き、四隅と台との隔たりを測定して最大値を求め、この値をフィルムの辺の長さで除した百分率値をいう。なお、液晶ポリマーフィルムの熱線膨張係数と、金属箔の熱線膨張係数との差が大きいと積層板に反りが発生する傾向があることから、液晶ポリマーフィルムと金属箔の熱線膨張係数が概ね一致するように調整することが好ましい。液晶ポリマーフィルムの熱線膨張係数は、フィルムの押出し条件や延伸操作により調整可能である。
 本発明に係る黒色液晶ポリマーフィルムは、寸法安定性に優れることが好ましい。寸法安定性は、寸法変化率で表すことができる。具体的には、JIS C6471に準拠して、液晶ポリマーフィルムに金属箔を貼り合わせた後、塩化第二鉄水溶液を用いて金属箔を完全にエッチングし、水洗後に80℃の循環式オーブン中で30分間乾燥し、エッチング前の寸法と、乾燥後の寸法の変化を百分率で求める。本発明で用いる液晶ポリマーフィルムの寸法変化率は、-0.1%以上、0.1%以下が好ましい。
 本発明における黒色液晶ポリマーフィルムの厚さは適宜調整すればよいが、10μm以上、75μm以下が好ましい。当該厚さが10μm以上であれば、電子回路基板の絶縁フィルムとして十分な強度や絶縁性を確保することができる。一方、当該厚さが75μm以下であれば、嵩張らず電子機器などの小型化にも対応することができる。当該厚さとしては13μm以上がより好ましく、20μm以上がよりさらに好ましく、また、50μm以下がより好ましく、25μm以下がよりさらに好ましい。フィルムの厚さが薄くなることで、フレキシブル性が増すことや、多層電子回路基板を小型化することができるため、電子回路基板を小型の電子機器内でも使用することが可能になる。
 本発明に係る黒色液晶ポリマーフィルムにおいては、黒色顔料の高濃度スポットが抑制されている。液晶ポリマー中では、黒色顔料粒子がファンデルワールス力により凝集し、凝集体を形成する傾向がある。即ち、黒色顔料の凝集体は、黒色顔料の一次粒子同士が結合した二次粒子である。しかし、本発明者らの知見によれば、たとえ液晶ポリマー中での黒色顔料の二次粒子の生成が抑制されていても、二次粒子よりも比較的大きく黒色顔料の濃度の高いスポットが局所的に形成される場合がある。かかる高濃度スポットは、黒色顔料と液晶ポリマーとの混合体でありながら黒色顔料の濃度が高く、ある程度の導電性を示すことから、液晶ポリマーフィルムの誘電特性の低下や、薄膜の液晶ポリマーフィルムの場合には短絡などの原因となり得る。本発明においては、黒色顔料の二次粒子のみならず、高濃度スポットの形成が抑制されている。
 黒色顔料の高濃度スポットの個数は、下記方法により計測できる。まず、液晶ポリマーフィルムを切断して10cm×10cmの試験片を作製し、デジタルマイクロスコープ(キーエンス社製「VHX-5000」)のガラスステージ上に密着させて設置し、レンズ倍率200倍、透過光量最大、ゲイン6.0dBでフィルムの表面の342mm2の範囲を観察する。光源としてはステージ下部から照射する透過光源のみを使用する。シャッタースピードはフィルム厚さによって異なり、シャッタースピードを長くしていき、フィルム全体の明度階調が失われた状態でもスポットが光を十分に遮蔽して、10μm以下のスポットも明確に観察できるように10~1,000msの間で調整する。次に、フィルムの断面をイオンミリングやダイヤモンドナイフを用いたミクロトームなどで加工し、上記のフィルム表面の観察で黒く観察された部分の断面を、オリンパス社製の「レーザー顕微鏡 OLS-3000」などを用いて50倍以上100倍以下で拡大観察し、画像解析ソフトを用いて輝度分布の中心値をしきい値にして二値化する。本発明において「黒色顔料の高濃度スポット」とは、全体に対する黒部分の面積の割合が60%以上90%未満である部分とする。なお、黒色顔料の凝集体は、ほぼ黒色顔料のみからなるため、上記割合は90%以上である。また、液晶ポリマー中に黒色顔料が十分に分散している部分では、上記割合は60%未満である。更に、特定された黒色顔料の高濃度スポットの大きさを測定し、
フィルム厚さ、またはフィルムの両面に存在する回路の間の最短距離の3/10以上9/10以下の大きさの高濃度スポットと、フィルム厚さの9/10を超える大きさの高濃度スポットの個数を計測する。なお、高濃度スポットの大きさは、フィルムの厚さ方向の最大径とする。また、高濃度スポットの直径の最大値と最小値を測定し、最大値と最小値の比が10以上のものは繊維状異物の可能性が高いため除外する。
 多層基板を上面方向から見た場合の高濃度スポットは、多層基板を表層部の反対側の面から、グラインダーを用いて50μmの厚さの表層部のみを残して削ることで、上記液晶ポリマーフィルムと同じ方法により検出できる。なお、この場合の高濃度スポットの大きさは、黒色液晶ポリマーフィルムの両面に形成された2つの回路の間の最短距離と平行な方向の最大径とし、多層基板の表面を、デジタルマイクロスコープを用いた上記方法で観察することにより測定できる。また、多層基板を側面から見た場合の高濃度スポットは、液晶ポリマーフィルムの断面を観察する上記方法と同様の方法を用いることができる。具体的には、多層基板の断面をイオンミリングやダイヤモンドナイフを用いたミクロトームなどで加工し、液晶ポリマーフィルム部分の断面を、レーザー顕微鏡などを用いて50倍以上100倍以下で拡大観察し、画像解析ソフトを用いて輝度分布の中心値をしきい値にして二値化し、白部分を液晶ポリマーマトリックス部分、黒部分を黒色顔料の凝集体として区別した場合、全体に対する黒部分の面積の割合が60%以上90%未満である部分を高濃度スポットとし、この高濃度スポットの個数と黒色液晶ポリマーフィルムの厚さ方向の最大径を測定する。
 黒色顔料の高濃度スポットは、液晶ポリマーを含むことから黒色顔料の凝集体よりは導電性が低いものの、ある程度の導電性を示し、短絡などの原因となるため、存在するとしてもその大きさは小さいほど好ましい。具体的には、フィルムの表面を拡大観察し、黒色顔料の高濃度スポットの大きさが、フィルム厚さの9/10以下であることが好ましく、2/3以下であることがより好ましい。また、大きさがフィルム厚さの3/10以上9/10以下である黒色顔料の高濃度スポットの個数密度が15個/342mm2以下であることが好ましく、10個/342mm2以下であることがより好ましい。なお、上記の通りフィルムを拡大観察して特定された高濃度スポットの直径の最大値と最小値の比が10以上のスポットは繊維状異物の可能性が高いため、高濃度スポットではないと判断する。
 本発明において「長尺」とは、5m以上をいう。また、製造されるフィルムが長いほど生産性は高まるので、当該長さとしては10m以上が好ましく、25m以上がより好ましく、50m以上がさらに好ましい。一方、上限は特に制限されないが、過剰に長いとロール状に巻き取った際のロールの重量が重くなり、取扱いが困難となり得るので、2,000m以下が好ましく、1,000m以下がより好ましい。
 なお、製造されるフィルムの幅は、広いほど生産性は高まるので、当該幅としては100mm以上が好ましく、250mm以上がさらに好ましい。フィルムの幅が100mm未満では、電子回路基板の製造が困難となり得る。一方、上限は特に制限されないが、1100mm以下が好ましく、500mm以下がよりさらに好ましい。
 本発明に係る黒色液晶ポリマーフィルムは、溶融押出成形法により製造することができる。具体的には、少なくとも液晶ポリマーと黒色顔料を溶融混練する工程、および液晶ポリマーと黒色顔料の溶融混練物を上記黒色液晶ポリマーフィルムの厚さの80%以下であり且つ40μm以下の孔径を有するフィルターに通す工程を経た後、Tダイ法またはインフレーション法によりフィルムに成形する工程を含む方法で製造すればよい。液晶ポリマー中には黒色顔料の凝集体が発生し易く、また本発明者らの知見によれば黒色顔料の高濃度スポットが形成されるが、かかる製造方法により、黒色液晶ポリマーフィルム中における黒色顔料の凝集体のみならず、黒色顔料の高濃度スポットの発生を抑制することができる。
 液晶ポリマーと黒色顔料の溶融混練は、溶融押出成形装置に少なくとも液晶ポリマーと黒色顔料を供給して行えばよい。例えば、図1に模式的に示す二軸押出機に少なくとも液晶ポリマーと黒色顔料を供給し、液晶ポリマーの融点以上の温度で十分に混練することにより、少なくとも液晶ポリマーと黒色顔料を含むペレットを調製する。
 次に、目的の黒色液晶ポリマーフィルムの厚さの80%以下であり且つ40μm以下の孔径を有するフィルターに、液晶ポリマーと黒色顔料の溶融混練物を通す。例えば、図2に模式的に示す通り二軸押出機に特定の孔径を有するフィルターとダイを装着し、液晶ポリマーと黒色顔料を含むペレットを供給して、黒色顔料が分散された液晶ポリマー溶融物を上記フィルターに通した上でフィルム状に溶融押出成形する。本発明では、黒色顔料を含む液晶ポリマーの溶融物を、Tダイ法またはインフレーション法によりフィルムへ直接成形する。但し、Tダイ法で液晶ポリマーをフィルム成形した場合には、剛直な液晶ポリマー分子がMDに配向し、フィルムが異方性を示す。そのような場合には、例えば特開平9-131789号公報に記載の発明のように、異方性液晶ポリマーフィルムを等配向処理する。具体的には、異方性液晶ポリマーフィルムを多孔質PTFE(ポリテトラフルオロエチレン)樹脂フィルムなどの2枚の支持フィルムで挟んで積層体とし、液晶ポリマーの融点以上の温度でTDに一軸延伸するか、或いは、MDとTDの両方向で且つTDの方に大きく二軸延伸して異方性を低減した後に冷却し、積層した支持フィルムを剥離すればよい。
 黒色液晶ポリマーフィルムを製造する際に、液晶ポリマーと黒色顔料を単に溶融混練するのみでは、黒色顔料の凝集体や高濃度スポットが生成する。そこで本発明では、当該溶融混練物を特定の孔径を有するフィルターに通すことで、黒色顔料粒子を液晶ポリマーの溶融物中に有効に分散させ、高濃度スポットの生成を抑制し、誘電正接を0.0035以下にすることができる。フィルターの孔径が目的の黒色液晶ポリマーフィルムの厚さの80%以下であり且つ40μm以下であれば、黒色顔料の高濃度スポットの生成を十分に抑制することができ、黒色顔料を含む液晶ポリマーフィルムの絶縁破壊強さの最低値を60kV/mm以上とすることができる。フィルターの孔径に関する上記割合としては、70%以下が好ましく、60%以下がより好ましい。フィルターの孔径としては20μm以下が好ましく、15μm以下がより好ましい。また、フィルターの孔径としては5μm以上が好ましく、10μm以上がより好ましい。フィルターの孔径が5μm未満の場合は、フィルターが目詰まりを起こしやすく生産性が低下するおそれがある。
 フィルターの孔径は、フィルターの公称ろ過精度もしくはフィルターの捕集効率が98%になる粒子径とすることが好ましい。フィルターの種類や形状は、溶融押出成形装置に取り付けることができるものであれば特に限定されないが、例えばリーフディスクフィルター、プリーツフィルター、キャンドルフィルターなどが挙げられる。フィルターの材料も特に限定されないが、金属繊維不織布を焼結した材料からなるものが機械的強度や耐熱性に優れているため好ましい。
 本発明に係る黒色液晶ポリマーフィルムは、その片面または両面に金属箔を積層することにより積層板とすることができる。積層板を構成する金属箔の材料は、導電性を示すものであれば特に制限されない。例えば、銅、アルミニウム、ニッケル、スズ、およびこれらの合金を挙げることができるが、導電性、化学的安定性、コストなどの観点から銅箔が好ましい。銅箔は、圧延銅箔、電解銅箔のいずれでも用いることができる。また、銅箔の表面は、Zn、Ni、Co、Crなどによる防錆処理が施されていることが好ましい。また、ワイヤーボンディング法やフリップチップボンディング法のために、銅箔のエッチングにより形成された回路の実装部パターンには、Ni/Auめっきを施してもよい。金属箔の厚さは適宜調整すればよいが、例えば、2μm以上、70μm以下程度とすることができ、5μm以上、35μm以下程度がより好ましい。
 本発明に係る電子回路基板が良好な高周波特性を示すためには、金属箔の表面粗度は低い方がよい。かかる観点より、金属箔の液晶ポリマーフィルムに接する側の面(M面)の表面粗度Rzとしては3μm以下が好ましく、その反対側の面(S面)の表面粗度Rzとしては2μm以下が好ましい。一方、当該表面粗度Rzの下限は特に制限されないが、液晶ポリマーフィルムとの密着性の観点から0.2μm以上が好ましく、0.4μm以上がより好ましい。なお、金属箔の表面粗度は、JIS B0601に準拠して、先端曲率半径が2μmの触針と触針式表面粗さ測定器により測定することができる。
 本発明に係る積層板は、液晶ポリマーが熱可塑性であることから、黒色液晶ポリマーフィルムの片面または両面に金属箔を積層した上で熱プレスすることで、容易に作製することができる。熱プレスは、真空プレス装置、ロールプレス装置、ダブルベルトプレス装置などを用い、従来公知の方法で行うことができる。熱プレスの条件は適宜調整すればよく、例えば、真空プレス装置の場合、温度を100℃以上、350℃以下程度、圧力1MPa以上、10MPa以下程度で1分間以上、2時間以下程度とすることができる。
 本発明に係る積層板では、特に金属箔と液晶ポリマーフィルムとの密着性が高いことが好ましい。具体的には、JIS C6471に準拠して、金属箔をエッチングして5mmの金属箔パターンを形成し、引張試験機を用いて金属箔パターンを50mm/分の速度で180°方向に引き剥がした際の強度(単位:N/mm)として表されるピール強度が0.7N/mm以上であることが好ましい。
 上記積層板の金属箔の一部を常法により化学的にエッチングすることにより所望の回路パターンを形成し、電子回路基板とすることができる。また、回路パターン上には、勿論、電子回路部品を実装することができる。電子回路部品は、電子回路基板に実装されるものであれば特に制限されず、半導体素子単体以外にも、例えば、チップ抵抗、チップコンデンサー、半導体パッケージなどを挙げることができる。
 本発明に係る第一の多層基板は、2以上の電子回路基板を含み、上記電子回路基板が、回路が形成された金属箔を黒色液晶ポリマーフィルムの片面または両面に有するものであり、上記黒色液晶ポリマーフィルムが黒色顔料と液晶ポリマーを含み、上記黒色液晶ポリマーフィルムの明度が45以下であり、上記黒色液晶ポリマーフィルムの誘電正接が0.0035以下であり、且つ、上記黒色液晶ポリマーフィルムの絶縁破壊強さの最低値が60kV/mm以上であることを特徴とする。本発明に係る第二の多層基板は、2以上の電子回路基板を含み、上記電子回路基板が、回路が形成された金属箔を黒色液晶ポリマーフィルムの片面または両面に有するものであり、上記黒色液晶ポリマーフィルムが黒色顔料と液晶ポリマーを含み、側面方向から見た場合、上記黒色液晶ポリマーフィルム中、当該黒色液晶ポリマーフィルムの両面に存在する上記回路の間の最短距離の3/10以上9/10以下の大きさの上記黒色顔料の高濃度スポットの個数密度が15個/342mm2以下であることを特徴とする。
 本発明に係る多層基板は、2以上の電子回路基板が積層されて構成されており、当該電子回路基板は、回路が形成された金属箔を黒色液晶ポリマーフィルムの片面または両面に有するものである。上述した本発明に係る黒色液晶ポリマーフィルム、積層板および電子回路基板の態様、説明、定義などは、本発明に係る多層基板に含まれる黒色液晶ポリマーフィルムおよび電子回路基板にも適用される。また、本発明に係る多層基板においても、本発明に係る黒色液晶ポリマーフィルム、積層板および電子回路基板の優れた特性は、本発明に係る多層基板は2以上の本発明に係る電子回路基板を積層するのみで製造できるため、実質的に維持されている。より詳しくは、本発明に係る電子回路基板同士は液晶ポリマーの融点未満の温度で熱圧着させることができるため、黒色液晶ポリマーフィルムの配向は大きく変化せず、熱圧着前後での黒色液晶ポリマーフィルムの明度、誘電特性、絶縁性などの特性は実質的に維持される。例えば、熱圧着前後での誘電正接の変化率は、60GHz下で5%以下である。更に、回路のパターン自体に秘密がある場合、本発明に係る多層基板の絶縁層は黒色液晶ポリマーフィルムであることから内層の回路パターンが外部から見え難く、回路パターンの解析が難しくなるという効果もある。また、強度などの観点から、本発明に係る多層基板を構成する黒色液晶ポリマーフィルムの平面方向の熱線膨張係数の最小値に対する最大値の比としても1.0以上2.5以下が好ましい。
 本発明に係る多層基板は、本発明に係る黒色液晶ポリマーフィルムを絶縁層として用いる以外、常法により製造することができる。具体的には、目的の多層基板の大きさに応じた積層板の金属箔をエッチングすることなどにより、黒色液晶ポリマーフィルムの片面または両面に回路を形成し、目的の多層基板の各層を構成する電子回路基板を作製する。この段階で、各電子回路基板を、回路パターン形状を検査するためのAOI検査に付すことが好ましい。上述した通り、本発明に係る電子回路基板においては、回路部分と液晶ポリマーフィルム部分との光反射率の差が大きいので、AOI検査によっても正確な検査が可能である。
 また、必要に応じて、レーザーなどにより、層間の回路を接続するための貫通孔を形成し、貫通孔内に導電ペーストを流し込む。導電ペーストは特に制限されず、例えばCu-Sn系ペーストなどSnを含む導電ペーストを用いることができる。なお、回路の形成、貫通孔の形成、および貫通孔への導電ペーストの充填の実施順序は特に制限されず、積層板に貫通孔を形成し更に貫通孔へ導電ペーストを充填してから回路を形成してもよいし、回路を形成してから貫通孔の形成と導電ペーストの充填を行ってもよい。また、各電子回路基板の回路上には、電子素子が実装されていてもよい。電子素子は特に制限されないが、例えば、半導体素子、チップ抵抗、チップコンデンサー、半導体パッケージ(PKG)などを挙げることができる。
 次に、2以上の電子回路基板を積層した上で熱プレスすることにより、多層基板とすることができる。この際、液晶ポリマーが熱可塑性であることから、黒色液晶ポリマーフィルム同士または黒色液晶ポリマーフィルムと回路面とを直接熱圧着することが可能である。この際の熱プレスは、黒色液晶ポリマーフィルムと金属箔とを熱圧着して積層板を製造する場合と同様の条件で行うことができる、即ち、熱プレスは、真空プレス装置、ロールプレス装置、ダブルベルトプレス装置などを用い、従来公知の方法で行うことができる。熱プレスの条件は適宜調整すればよく、例えば、真空プレス装置の場合、温度を100℃以上、350℃以下程度、圧力1MPa以上、10MPa以下程度で1分間以上、2時間以下程度とすることができる。熱プレスの温度は、液晶ポリマーの融点未満であることも好ましい。熱プレスの温度が液晶ポリマーの融点未満であれば、熱圧着前の黒色液晶ポリマーフィルムの特性が、多層基板を構成する黒色液晶ポリマーフィルムでより確実に維持される。熱プレスの温度を融点未満とする場合、黒色液晶ポリマーフィルム同士または黒色液晶ポリマーフィルムと回路面との接着強度を高めるために、黒色液晶ポリマーフィルムの表面を、従来公知の方法で表面改質して接着性を向上させることができる。また、本発明に係る多層基板は、更にマザー基板に実装し、電子部品とすることもできる。
 本発明に係る多層基板を構成する黒色液晶ポリマーフィルムでは、本発明に係る黒色液晶ポリマーフィルム単独の優れた特性が実質的に維持されている。例えば本発明に係る多層基板を構成する黒色液晶ポリマーフィルムでは、黒色顔料の凝集体のみならず、液晶ポリマーに加えて黒色顔料を高濃度で含むスポットが抑制されている。例えば、図6に示す通り、本発明に係る多層基板を構成する黒色液晶ポリマーフィルムでは、多層基板の上面方向から見た場合、黒色液晶ポリマーフィルムの片面に形成された2つの回路の間に存在する黒色顔料の高濃度スポットの大きさ、より具体的には2つの当該回路の間の最短距離a1の方向と平行な方向の最大径b1が、当該回路の間の最短距離a1の9/10以下であることが好ましい。高濃度スポットの大きさを上記範囲に制御することにより、同一黒色液晶ポリマーフィルムの片面上における回路間の短絡を有効に抑制することができる。なお、多層基板において、1つの黒色液晶ポリマーフィルム上においても回路の幅が一定でない場合がある。その様な場合、例えば図6中、2つの回路の間の最短距離はa2ではなくa1とする。また、図6に示すように回路が対向している領域から対向していない領域にかけて1つの高濃度スポットが存在している場合には、高濃度スポットの大きさは、回路が対向している領域における最大径をいうものとする。
 また、図7に示す通り、本発明に係る多層基板を構成する黒色液晶ポリマーフィルムでは、多層基板の側面方向から見た場合、1つの黒色液晶ポリマーフィルムの両面に存在する2つの回路の間に存在する黒色顔料の高濃度スポットの大きさ、より具体的には2つの当該回路の間の最短距離c1の方向と平行な方向の最大径d1が、当該回路の間の最短距離c1の9/10以下であることが好ましい。高濃度スポットの大きさを上記範囲に制御することにより、多層基板の厚み方向における回路間の短絡を有効に抑制することができる。なお、多層基板において、1つの回路の幅が一定でない場合がある。その様な場合、例えば図7中、2つの回路の間の最短距離はc2ではなくc1とする。また、図7に示すように回路が対向している領域から対向していない領域にかけて1つの高濃度スポットが存在している場合には、高濃度スポットの大きさは、回路が対向していない領域における最大径d2ではなく、回路が対向している領域における最大径d1をいうものとする。
 更に、図8に示す通り、本発明に係る多層基板を構成する黒色液晶ポリマーフィルム中、多層基板を側面方向から見た場合、当該黒色液晶ポリマーフィルムに接して形成されている回路の直上および/または直下に存在する黒色顔料の高濃度スポットの大きさ、より具体的にはフィルムの平面方向の最大径が、当該回路の最小幅の1/2以下であることが好ましい。黒色顔料の高濃度スポットは、液晶ポリマーと黒色顔料との混合体であり、ゲル状であるために回路を形成している金属との密着性が低く、上記割合が1/2を超えると黒色液晶ポリマーフィルムから回路が剥離するおそれがあり得る。なお、黒色顔料の高濃度スポットが回路の直上および/または直下から回路間の直上および/または直下にかけて存在している場合には、上記の高濃度スポットの大きさは、回路の直上および/または直下に存在する領域における平面方向の最大径をいうものとする。
 本願は、2016年12月5日に出願された日本国特許出願第2016-236266号に基づく優先権の利益を主張するものである。2016年12月5日に出願された日本国特許出願第2016-236266号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 先ず、製造した液晶ポリマーフィルムおよび銅張積層板の試験条件につき記載する。
 試験例1: 明度の測定
 液晶ポリマーフィルムを切断して10cm×10cmの試験片を作製した。分光測色計(コニカミノルタ社製「CM-600d」)の開口部に、作製した試験片を総厚さが100μm以上になるように重ね合わせ、測定面となるフィルム表面に測定光が照射されるように密着させた。測定方法はJIS Z8722に準拠して、反射法で、光学系は積分球方式(8°:di)、光源は曇天、視野は2°の条件で、フィルム表面に測定光を照射し、反射した光を積分球で集めて受光器で光量を計測し、CIE1976の明度L*を測定した。同一の液晶ポリマーフィルムから作製した10枚の試験片について測定し、平均値を求めた。
 試験例2: 比誘電率と誘電正接の測定
 液晶ポリマーフィルムを切断して10cm×10cmの試験片を作製し、50℃の循環式オーブン中で24時間乾燥し、JIS C6481記載の標準環境下で室温まで冷却した。ネットワーク・アナライザ(Agilent Technologies製「ENA E5071C」)と測定周波数3.18GHzのQWED社製のスプリットポスト誘電体共振器を用い、最初に試験片を挿入していない状態での共振器単体の共振周波数とそのピークのQ値を測定した。次に、総厚さが100μm以上になるように複数枚の試験片を重ね合わせて共振器内に挿入した後、試験片が挿入された状態での共振周波数とQ値を測定した。比誘電率は、共振器単体と試験片を挿入した際の共振周波数の差から算出し、誘電正接は、共振器単体と試験片を挿入した際のQ値の差と共振周波数の差から算出した。同一の液晶ポリマーフィルムから作製した10枚の試験片について測定し、平均値を求めた。
 試験例3: 絶縁破壊強さの測定
 液晶ポリマーフィルムを切断して10cm×10cmの試験片を作製し、50℃の循環式オーブン中で24時間乾燥し、JIS C6481記載の標準環境下で室温まで冷却した上で測定に付した。耐電圧試験器(多摩電測社製「TW-5110 ADMPS」)を用いて、試験片を直径75mmの下電極と直径25mmの上電極で挟み込み、試験片の厚さ方向に対して交流電圧を印可し、電圧値を8kVまで徐々に大きくしていき、上下電極間に5mAの電流が流れた際の絶縁破壊電圧を測定し、試験片の厚さで除して絶縁破壊強さを算出した。同一の液晶ポリマーフィルムから10cm間隔でカットした100枚の試験片に対して上記絶縁破壊強さを測定し、平均値と最低値を求めた。なお、電圧値を8kVにしても上下電極間に5mAの電流が流れなかった場合は、絶縁破壊強さを、電圧8kVを試験片の厚さで除して算出した値以上とした。
 試験例4: 熱線膨張係数の測定
 熱機械測定装置(ティー・エイ・インスツルメント社製「Q400」)を引張モードで使用し、JIS C6481に準拠して熱線膨張係数を測定した。具体的には、液晶ポリマーフィルムを切断して4mm×20mmの試験片を作製し、チャック間距離が15mmとなるように試験片を装置に取り付け、0.1Nの荷重を付与しつつ、常温から170℃まで昇温速度40℃/分で昇温し、170℃で1分間保持し、降温速度10℃/分で170℃から常温まで降温した際の100℃から50℃までの間のチャック間距離の変化ΔLを測定して、下記式により熱線膨張係数を算出した。
  熱線膨張係数(ppm/℃)=ΔL/(L×ΔT)
[式中、ΔLはチャック間距離の変化(mm)であり、Lはチャック間距離(15mm)であり、ΔTは温度差(50℃)である]
 熱線膨張係数の最小値に対する最大値の比は、フィルムの平面で円周方向に30°間隔で熱線膨張係数を6点測定し、測定値中の最小値と最大値から算出した。
 試験例5: 黒色顔料の高濃度スポットの個数
 液晶ポリマーフィルムを切断して10cm×10cmの試験片を作製し、デジタルマイクロスコープ(キーエンス社製「VHX-5000」)のガラスステージ上に密着させて設置し、レンズ倍率200倍、透過光量最大、ゲイン6.0dBでフィルム表面の342mm2の範囲を観察した。光源としてはステージ下部から照射する透過光源のみを使用した。シャッタースピードはフィルム厚さによって異なり、シャッタースピードを長くしていき、フィルム全体の明度階調が失われた状態でもスポットが光を十分に遮蔽して、10μm以下のスポットも明確に観察できるように10~1,000msの間で調整した。
 次に、観察した黒色の塊について、黒色の塊を含む1mm×5mmの試験片を切出し、エポキシ樹脂内に包埋した後、ウルトラミクロトーム(ライカ社製「UCT」)を用いてダイヤモンドナイフを利用して、黒色の塊の断面が露出した観察面を作製した。露出させた黒色の塊の断面を、レーザー顕微鏡(オリンパス社製「OLS-3000」)を用いて、波長408nmのレーザー光を光源として50倍以上100倍以下の倍率で観察した。観察した画像を、画像解析ソフトを用いて輝度分布の中心値をしきい値にして二値化し、白部分を液晶ポリマーマトリックス部分と、黒部分を黒色顔料部分として区別したところ、観察した全ての黒色の塊について、黒色顔料分が75~85%であったため、透過光観察で観察された黒色の塊は全て高濃度スポットであることが確かめられた。次に、各高濃度スポットのフィルム厚さ方向の最大径を測定し、最大径がフィルム厚さの3/10以上9/10以下の大きさの高濃度スポットと、フィルム厚さの9/10を超える大きさの高濃度スポットの個数を計測した。なお、最大径と最小径との比が10以上のものは繊維状異物の可能性が高いため除外した。実施例1と比較例5のフィルムの拡大写真をそれぞれ図3と図4に、比較例5の黒色液晶ポリマーフィルムにおけるフィルム厚さの9/10を超える大きさの黒色顔料高濃度スポットの拡大写真を図5に示す。
 試験例6: ピール強度の測定
 引張試験機(島津製作所社製「AGS-H」)を用いてJIS C6471に準拠して、銅箔を50mm/分の速度で180°方向に引き剥がした際の強度(単位:N/mm)を測定した。具体的には、積層板を切断して3cm×10cmの試験片を作製し、当該試験片の銅箔側の中心を含み且つ長さ方向に5mm幅×10cmのマスキングテープを張り付けて、塩化第二鉄溶液に浸漬して銅箔の不要部分をエッチング除去した。その後、積層板を水洗してマスキングテープを剥離し、80℃の循環式オーブンで1時間乾燥して5mm幅の直線状の回路パターンを有する試験片を作製した。当該試験片から銅箔を引き剥がす際に、試験片が屈曲して剥離角度が変化してしまわないように、補強のため、試験片を厚さ2mmのベークライト板に両面粘着テープ(日東電工社製「No.5015」)を使って張り付けた。当該試験片に形成した回路パターンの一端を引き剥がし、上記引張試験機に挟み、銅箔を試験片に対して180°方向に50mm/分の速度で10mm以上引き剥がし、その間の強度の全平均値を算出してピール強度とした。同一の液晶ポリマーフィルムから作製した3枚の試験片について測定し、平均値を求めた。
 試験例7:厚さの測定
 比誘電率、誘電正接と絶縁破壊強さの測定のため作製した10cm×10cmの試験片の中央部の厚さを、デジタルシックネスゲージ(テクロック社製「SMD-565」,測定子先端直径:2mm)を用いて測定した。具体的には、試験片の中心および試験片の中心を中心とする辺4cmの正四角形の頂点となる4点の計5点の厚さを測定し、その平均値を試験片の厚さとした。
 実施例1: 本発明に係る黒色液晶ポリマー片面銅張積層板の作製
 (1)黒色液晶ポリマーフィルムの作製
 真空ベント付二軸押出機に液晶ポリマー(ポリプラスチックス社製「C950」)とカーボンブラック(粒子径:75nm,比表面積:30m2/g)をカーボンブラックが0.5重量%となる割合で供給し、340℃で溶融混練して、カーボンブラックが分散した黒色の液晶ポリマーペレットを得た。次に、当該ペレットを真空ベント付二軸押出機に供給して340℃で溶融押出し、その先に接続したギアポンプ、フィルター(孔径:10μm)、Tダイを通して厚さ42μmの黒色液晶ポリマー一軸配向フィルムを得た。次にそのフィルムの両面に延伸多孔質PTFE樹脂フィルム(厚さ:30μm,目付量:30g/m2)を270℃でラミネート(剥離強度:5g/cm)した。次に延伸温度345℃、延伸倍率3.2倍、延伸速度20%/秒で黒色液晶ポリマー一軸配向フィルムをTDに延伸した後、延伸多孔質PTFE樹脂フィルムを剥離して厚さ13μmの等配向黒色液晶ポリマーフィルムを作製した。
 (2)黒色液晶ポリマー2層片面銅張積層板の作製
 上記(1)で得た黒色液晶ポリマーフィルムの片面に銅箔(日本電解社製「SEED-B-12μm」)をそのM面が黒色液晶ポリマーフィルムに接するように積層し、他方の面に離形材としてポリイミドフィルム(宇部興産社製「ユーピレックス20S」)を積層、さらに厚さ2mmの2枚のステンレス板に挟み込み、クッション材として厚さ1mmのステンレス繊維織布をステンレス板の上下に配置して、真空プレス機を用いて、300℃、圧力3MPaで5分間保持することで、「銅箔/黒色液晶ポリマーフィルム」構成の黒色液晶ポリマー片面銅張積層板を得た。
 実施例2
 一軸配向フィルムの厚さを58μmとした以外は実施例1と同様の条件で、厚さ18μmの等配向黒色液晶ポリマーフィルムと黒色液晶ポリマー片面銅張積層板を作製した。
 実施例3
 フィルターの孔径を15μmとし一軸配向フィルムの厚さを80μmとした以外は実施例1と同様の条件で、厚さ25μmの等配向黒色液晶ポリマーフィルムと黒色液晶ポリマー片面銅張積層板を作製した。
 実施例4
 フィルターの孔径を20μmとし一軸配向フィルムの厚さを80μmとした以外は実施例1と同様の条件で、厚さ25μmの等配向黒色液晶ポリマーフィルムと黒色液晶ポリマー片面銅張積層板を作製した。
 実施例5
 フィルターの孔径を40μmとし一軸配向フィルムの厚さを160μmとした以外は実施例1と同様の条件で、厚さ50μmの等配向黒色液晶ポリマーフィルムと黒色液晶ポリマー片面銅張積層板を作製した。
 比較例1
 フィルターの孔径を15μmとした以外は実施例1と同様の条件で、厚さ13μmの等配向黒色液晶ポリマーフィルムと黒色液晶ポリマー片面銅張積層板を作製した
 比較例2
 フィルターの孔径を15μmとした以外は実施例2と同様の条件で、厚さ18μmの等配向黒色液晶ポリマーフィルムを作製し、実施例1と同様の条件で黒色液晶ポリマー片面銅張積層板を作製した。
 比較例3
 フィルターの孔径を40μmとした以外は実施例3と同様の条件で、厚さ25μmの等配向黒色液晶ポリマーフィルムを作製し、実施例1と同様の条件で黒色液晶ポリマー片面銅張積層板を作製した。
 比較例4
 フィルターの孔径を60μmとした以外は実施例5と同様の条件で、厚さ50μmの等配向黒色液晶ポリマーフィルムを作製し、実施例1と同様の条件で黒色液晶ポリマー片面銅張積層板を作製した。
 比較例5
 フィルター使用しない以外は実施例3と同様の条件で、厚さ25μmの等配向黒色液晶ポリマーフィルムを作製し、実施例1と同様の条件で黒色液晶ポリマー片面銅張積層板を作製した。
 比較例6
 液晶ポリマー(ポリプラスチックス社製「C950」)のみを真空ベント付二軸押出機に供給して340℃で溶融押出し、その先に接続したギアポンプ、ポリマーフィルター(孔径15μm)、およびTダイを通して厚さ80μmの液晶ポリマー一軸配向フィルムを得た。次にそのフィルムの両面に延伸多孔質PTFE樹脂フィルム(厚さ:30μm,目付量:30g/m2)を270℃でラミネート(剥離強度:5g/cm)した。次に延伸温度345℃、延伸倍率3.2倍、延伸速度20%/秒で延伸したのち、延伸多孔質PTFE樹脂フィルムを剥離して厚さ25μmの等配向未着色液晶ポリマーフィルムを作製し、実施例1と同様の条件で未着色液晶ポリマー片面銅張積層板を作製した。
 実施例1~5と比較例1~5で作製した黒色液晶ポリマーフィルムと黒色液晶ポリマー片面銅張積層板、および比較例6で作製した未着色液晶ポリマーフィルムと未着色液晶ポリマー片面銅張積層板の特性を表1に示す。
 
Figure JPOXMLDOC01-appb-T000002
 
 表1に示すデータの通り、本発明に係る黒色液晶ポリマーフィルムは、明度(L値)が36~39と黒色の絶縁基材でありながら、比誘電率が3.5以下で且つ誘電正接0.003以下と優れた誘電特性を示している。フィルターを使用していない比較例5と実施例1~5を比較すると、実施例1~5では、同じ明度を維持しながら誘電正接が0.0039から0.0030以下に低減できており、これは、誘電体に吸収される信号の損失が約28%低減することに相当する。60μmフィルターを用いた比較例4とフィルターを使用していない比較例5では、カーボンブラックの高濃度スポット数が実施例1~5および比較例1~3と比較して多くなっており、これが誘電正接を高める原因となっている。また、比較例1~5の黒色液晶ポリマーフィルムでは絶縁破壊強さが測定位置により大きくばらついており、測定位置によっては非常に低い値を示す。それに対して本発明に係る実施例1~5の黒色液晶ポリマーフィルムの絶縁破壊強さは最低値と平均値が共に100kV/mm以上であり、電子回路基板の絶縁基材として非常に優れたものであることが確認された。比較例6の未着色液晶ポリマーフィルムも同様の特性を示したが、黒色顔料を含んでいないことから当然に明度(L*値)が76と高く、白みがかった絶縁基材であった。
 実施例6,比較例7: 電子回路基板の作製と評価
 実施例5と比較例6の片面銅張積層板の銅表面にレジストフィルムをラミネートし、これに所定の回路を描画したマスクを載せて、紫外線露光した。次いで、レジストフィルムの不要部をアルカリ除去後、塩化第二鉄水溶液を用いて銅の露出部をエッチング除去し、水洗してレジストフィルムを取り除き、80℃の循環式オーブンで1時間乾燥することにより、電子回路基板を作製した。この電子回路基板の回路パターンと寸法位置を、AOI装置を用いて確認した。
 一般にAOI検査は、銅回路パターンと絶縁基材との明度差が30以上ないと画像認識不良率を0%にすることはできない。銅回路パターン(銅箔S面)の明度は一般に75程度であるため、電子回路基板に使用する絶縁基材は明度を45以下にする必要があるが、実施例5の黒色液晶ポリマーフィルムは0.5質量%のカーボンブラックを含んでいることから明度は36であり、銅回路パターンの明度との差が39あることから、画像認識不良率を0%にすることができた。一方、カーボンブラックを含んでおらず明度が76である比較例6の未着色液晶ポリマーフィルムのAOI検査による画像認識不良率は10%であり、画像認識不良率は0%にならなかった。
 絶縁基材が黒色液晶ポリマーフィルムである本発明の電子回路基板の場合、エッチングにより露出したフィルム部分がAOI装置の光の反射を抑えることから、銅回路パターン部分とのコントラストが大きくなり、良好なパターン認識を行うことができた。
 一方、絶縁基材が比較例6の未着色液晶ポリマーフィルムである電子回路基板の場合、エッチングにより露出したフィルム部分がAOI装置の光を反射してしまうことから、銅回路パターン部分とのコントラストが得られず、銅回路パターンを認識することができなかった。
 次に、作製した電子回路基板に光学電子部品を実装して、光学部品の動作性能を確認した。その結果、絶縁基材が実施例5の黒色液晶ポリマーフィルムである電子回路基板の場合、黒色液晶ポリマーフィルムより成る基材部分での光反射が抑えられていることから、基材部分で発生する反射光の影響は認められず、良好な動作性能が確認された。
 比較例6の未着色液晶ポリマーを含む電子回路基板に光学電子部品を実装して、光学部品の動作性能を確認したところ、未着色液晶ポリマーフィルムより成る基材部分での光反射が激しく、基材部分で発生する反射光の影響を光学部品が強く受けるため、良好な結果が得られなかった。
 1: 黒色液晶ポリマーフィルム
 2: 黒色顔料の高濃度スポット
 3: 回路
 4: 層間接続導体
 5: 多層基板

Claims (19)

  1.  黒色顔料と液晶ポリマーを含み、明度が45以下であり、誘電正接が0.0035以下であり、絶縁破壊強さの最低値が60kV/mm以上であり、且つ、平面方向の熱線膨張係数の最小値に対する最大値の比が1.0以上2.5以下であることを特徴とする黒色液晶ポリマーフィルム。
  2.  黒色顔料と液晶ポリマーを含み、大きさがフィルム厚さの3/10以上9/10以下である黒色顔料の高濃度スポットの個数密度が15個/342mm2以下であることを特徴とする黒色液晶ポリマーフィルム。
  3.  比誘電率が3.5以下である請求項1または2に記載の黒色液晶ポリマーフィルム。
  4.  厚さが10μm以上75μm以下である請求項1~3のいずれかに記載の黒色液晶ポリマーフィルム。
  5.  上記黒色顔料の高濃度スポットの大きさがフィルム厚さの9/10以下である請求項1~4のいずれかに記載の黒色液晶ポリマーフィルム。
  6.  熱線膨張係数が3ppm/℃以上30ppm/℃以下である請求項1~5のいずれかに記載の黒色液晶ポリマーフィルム。
  7.  長尺のものである請求項1~6のいずれかに記載の黒色液晶ポリマーフィルム。
  8.  請求項1~7のいずれかに記載の黒色液晶ポリマーフィルムの片面または両面に金属箔が積層されていることを特徴とする積層板。
  9.  請求項8に記載の積層板の金属箔に回路が形成されていることを特徴とする電子回路基板。
  10.  2以上の電子回路基板を含み、
     上記電子回路基板が、回路が形成された金属箔を黒色液晶ポリマーフィルムの片面または両面に有するものであり、
     上記黒色液晶ポリマーフィルムが黒色顔料と液晶ポリマーを含み、上記黒色液晶ポリマーフィルムの明度が45以下であり、上記黒色液晶ポリマーフィルムの誘電正接が0.0035以下であり、且つ、上記黒色液晶ポリマーフィルムの絶縁破壊強さの最低値が60kV/mm以上であることを特徴とする多層基板。
  11.  2以上の電子回路基板を含み、
     上記電子回路基板が、回路が形成された金属箔を黒色液晶ポリマーフィルムの片面または両面に有するものであり、
     上記黒色液晶ポリマーフィルムが黒色顔料と液晶ポリマーを含み、
     側面方向から見た場合、上記黒色液晶ポリマーフィルム中、当該黒色液晶ポリマーフィルムの両面に存在する上記回路の間の最短距離の3/10以上9/10以下の大きさの上記黒色顔料の高濃度スポットの個数密度が15個/342mm2以下であることを特徴とする多層基板。
  12.  側面方向から見た場合、上記黒色液晶ポリマーフィルム中、当該黒色液晶ポリマーフィルムの両面に存在する2つの上記回路の間に存在する上記黒色顔料の高濃度スポットの大きさが、当該回路の間の最短距離の9/10以下である請求項10に記載の多層基板。
  13.  上面方向から見た場合、上記黒色液晶ポリマーフィルムの片面に存在する2つの上記回路の間に存在する上記黒色顔料の高濃度スポットの大きさが、当該回路の間の最短距離の9/10以下である請求項10~12のいずれかに記載の多層基板。
  14.  側面方向から見た場合、上記回路の直上および/または直下に存在する上記黒色顔料の高濃度スポットの大きさが、当該回路の最小幅の1/2以下である請求項10~13のいずれかに記載の多層基板。
  15.  上記黒色液晶ポリマーフィルムの比誘電率が3.5以下である請求項10~14のいずれかに記載の多層基板。
  16.  上記黒色液晶ポリマーフィルムの厚さが10μm以上75μm以下である請求項10~15のいずれかに記載の多層基板。
  17.  上記黒色液晶ポリマーフィルムの熱線膨張係数が3ppm/℃以上30ppm/℃以下である請求項10~16のいずれかに記載の多層基板。
  18.  更に電子素子を含み、当該電子素子が上記回路上に実装されている請求項10~17のいずれかに記載の多層基板。
  19.  請求項10~18のいずれかに記載の多層基板とマザー基板とを含み、上記多層基板がマザー基板に実装されていることを特徴とする電子部品。
PCT/JP2017/043698 2016-12-05 2017-12-05 黒色液晶ポリマーフィルムおよび多層基板 WO2018105624A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780075147.9A CN110062786B (zh) 2016-12-05 2017-12-05 黑色液晶聚合物膜和多层基板
JP2018555023A JP6729718B2 (ja) 2016-12-05 2017-12-05 黒色液晶ポリマーフィルムおよび多層基板
US16/431,908 US11365353B2 (en) 2016-12-05 2019-06-05 Black liquid-crystal polymer film and multilayer board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016236266 2016-12-05
JP2016-236266 2016-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/431,908 Continuation US11365353B2 (en) 2016-12-05 2019-06-05 Black liquid-crystal polymer film and multilayer board

Publications (1)

Publication Number Publication Date
WO2018105624A1 true WO2018105624A1 (ja) 2018-06-14

Family

ID=62492203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043698 WO2018105624A1 (ja) 2016-12-05 2017-12-05 黒色液晶ポリマーフィルムおよび多層基板

Country Status (4)

Country Link
US (1) US11365353B2 (ja)
JP (1) JP6729718B2 (ja)
CN (1) CN110062786B (ja)
WO (1) WO2018105624A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI701478B (zh) * 2018-09-03 2020-08-11 亞洲電材股份有限公司 複合式疊構液晶高分子基板及其製備方法
KR20230125199A (ko) 2020-12-25 2023-08-29 주식회사 쿠라레 착색층을 갖는 열가소성 액정 폴리머 필름 성형체와 그 제조 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111497173B (zh) * 2020-04-29 2022-03-29 江苏裕兴薄膜科技股份有限公司 液晶聚合物薄膜的制备方法
JP2022156865A (ja) * 2021-03-31 2022-10-14 日東電工株式会社 多孔質液晶ポリマーシートおよび配線回路基板
JP2023013060A (ja) * 2021-07-15 2023-01-26 富士フイルム株式会社 液晶ポリマーフィルム、積層体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093438A (ja) * 2004-09-24 2006-04-06 Denso Corp プリント基板及びその製造方法
JP2006299254A (ja) * 2005-03-24 2006-11-02 Toray Ind Inc 液晶性樹脂組成物からなるフィルムおよびその製造方法
JP2007147880A (ja) * 2005-11-25 2007-06-14 Canon Electronics Inc 遮光羽根およびこれを用いた光路開閉装置
JP2009179763A (ja) * 2008-01-31 2009-08-13 Toray Ind Inc 液晶性樹脂組成物、その製造方法および成形品
JP2013194225A (ja) * 2012-03-22 2013-09-30 Sumitomo Chemical Co Ltd 液晶ポリエステルフィルムの製造方法及び液晶ポリエステルフィルム
JP2013199599A (ja) * 2012-03-26 2013-10-03 Sumitomo Chemical Co Ltd 射出成形用液晶ポリエステル組成物の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4303333B2 (ja) * 1998-08-21 2009-07-29 新日本石油株式会社 光学素子用フィルム
US6761834B2 (en) * 2000-09-20 2004-07-13 World Properties, Inc. Electrostatic deposition of high temperature, high performance liquid crystalline polymers
JP5206903B2 (ja) 2011-03-25 2013-06-12 東レ株式会社 熱可塑性樹脂組成物およびそれを用いた成形品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093438A (ja) * 2004-09-24 2006-04-06 Denso Corp プリント基板及びその製造方法
JP2006299254A (ja) * 2005-03-24 2006-11-02 Toray Ind Inc 液晶性樹脂組成物からなるフィルムおよびその製造方法
JP2007147880A (ja) * 2005-11-25 2007-06-14 Canon Electronics Inc 遮光羽根およびこれを用いた光路開閉装置
JP2009179763A (ja) * 2008-01-31 2009-08-13 Toray Ind Inc 液晶性樹脂組成物、その製造方法および成形品
JP2013194225A (ja) * 2012-03-22 2013-09-30 Sumitomo Chemical Co Ltd 液晶ポリエステルフィルムの製造方法及び液晶ポリエステルフィルム
JP2013199599A (ja) * 2012-03-26 2013-10-03 Sumitomo Chemical Co Ltd 射出成形用液晶ポリエステル組成物の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI701478B (zh) * 2018-09-03 2020-08-11 亞洲電材股份有限公司 複合式疊構液晶高分子基板及其製備方法
KR20230125199A (ko) 2020-12-25 2023-08-29 주식회사 쿠라레 착색층을 갖는 열가소성 액정 폴리머 필름 성형체와 그 제조 방법

Also Published As

Publication number Publication date
US11365353B2 (en) 2022-06-21
US20190352565A1 (en) 2019-11-21
JPWO2018105624A1 (ja) 2019-10-24
CN110062786B (zh) 2022-03-08
JP6729718B2 (ja) 2020-07-22
CN110062786A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
WO2018105624A1 (ja) 黒色液晶ポリマーフィルムおよび多層基板
JP6854124B2 (ja) 熱可塑性液晶ポリマーフィルムおよびそれを用いた回路基板
JP6405817B2 (ja) 電子回路基板用積層体および電子回路基板
KR101366906B1 (ko) 열가소성 액정 폴리머 필름으로 피복한 배선판의 제조 방법
TWI308369B (en) Electronic parts for high frequency
JP5306226B2 (ja) 金属積層体、led搭載基板、および、白色フィルム
JP5970377B2 (ja) 回路基板およびその製造方法
JP6624331B1 (ja) 電磁波シールドシート、および電磁波シールド性配線回路基板
JP2016062955A (ja) 電子回路基板用フィルムおよび電子回路基板
JPWO2021039181A1 (ja) 液晶ポリエステル樹脂組成物、積層体、液晶ポリエステル樹脂フィルムおよびその製造方法
JP2008291168A (ja) 液晶ポリマーフィルムの製造方法、及びプリント配線板用基板
JP2009018521A (ja) 銅張り板
KR20220005454A (ko) 판형 복합 재료
TW202124544A (zh) 液晶高分子膜及包含其之積層板
JP2020044840A (ja) 熱可塑性樹脂フィルム及びそれを用いた電気・電子部品
WO2022196402A1 (ja) 電磁波シールドシートおよびその製造方法、シールド性配線基板、並びに電子機器
JP4120894B2 (ja) フレキシブルフラットケーブル
JP4598408B2 (ja) 接着シート
WO2022065285A1 (ja) 回路基板用絶縁材料及びその製造方法、並びに金属箔張積層板
WO2022065270A1 (ja) 回路基板用絶縁材料、及び金属箔張積層板
TW202307129A (zh) 液晶聚酯系樹脂組成物、使用該組成物之液晶聚酯系薄膜、使用該薄膜之金屬層合薄膜、電路基板
US20240182655A1 (en) Liquid crystal polymer film and method for producing liquid crystal polymer film
WO2023140261A1 (ja) アンテナシステムおよびその製造方法並びに設計方法
JP7363485B2 (ja) ポリアリーレンスルフィドフィルム
WO2023189794A1 (ja) 金属張積層板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018555023

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879122

Country of ref document: EP

Kind code of ref document: A1