WO2018105489A1 - 帯状ガラスフィルムの品質検査方法、及び、ガラスロール - Google Patents

帯状ガラスフィルムの品質検査方法、及び、ガラスロール Download PDF

Info

Publication number
WO2018105489A1
WO2018105489A1 PCT/JP2017/043070 JP2017043070W WO2018105489A1 WO 2018105489 A1 WO2018105489 A1 WO 2018105489A1 JP 2017043070 W JP2017043070 W JP 2017043070W WO 2018105489 A1 WO2018105489 A1 WO 2018105489A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass film
strip
shaped glass
edge
imaging
Prior art date
Application number
PCT/JP2017/043070
Other languages
English (en)
French (fr)
Inventor
薫 鑑継
和也 野口
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US16/347,220 priority Critical patent/US11346652B2/en
Priority to CN201780062685.4A priority patent/CN109804222B/zh
Priority to KR1020197007158A priority patent/KR102400342B1/ko
Priority to JP2018554963A priority patent/JP7238405B2/ja
Publication of WO2018105489A1 publication Critical patent/WO2018105489A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/52Combining or merging partially overlapping images to an overall image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Definitions

  • the present invention is a method for inspecting the quality of a strip-shaped glass film after cutting, by cutting the strip-shaped glass film along the longitudinal direction and evaluating the linearity of the edge formed along with the cutting, and , Relating to glass rolls.
  • the glass film can be produced by cutting out from, for example, a strip-shaped glass film formed by the downdraw method.
  • the band-shaped glass film that is the base of the glass film has flexibility, and the band-shaped glass film can be processed using this flexibility.
  • a so-called roll-to-roll form is used to cut a strip-shaped glass film along the longitudinal direction, and from the strip-shaped glass film, an ineffective portion (unnecessary portion in the same document). Is disclosed (see FIG. 15 of the same document).
  • the quality of the strip-shaped glass film after cutting is greatly influenced by the straightness of the edge formed along with the cutting. More specifically, when the edge is meandering and the linearity is low, a large stress is likely to be generated on the edge, and there is a risk of damage starting from the edge in the downstream process. Get higher. Therefore, in order to inspect the quality of the strip-shaped glass film after cutting, it is required to evaluate the straightness of the edge.
  • a method for this evaluation for example, (A) a method of observing and evaluating the edge side with a microscope, and (B) a method of evaluating by touching the edge side manually.
  • the method (A) described above since it is required to observe the entire area of the edge where the straightness is to be evaluated with a microscope, the longer the section to be evaluated, the more complicated the evaluation work becomes. It will be something. Thereby, in the method (A), it is possible to evaluate the linearity for the entire length of the end side even though it is possible to evaluate the linearity for a part of the long end side. There was a problem that was impossible. On the other hand, the method (B) described above has a problem that the accuracy of evaluation is inevitably lowered because the linearity cannot be quantitatively evaluated.
  • This invention made
  • the present invention which was created to solve the above-mentioned problems, cuts a strip-shaped glass film along the longitudinal direction, and evaluates the linearity of the edge formed along with the cutting, thereby cutting the strip-shaped glass.
  • a method for inspecting film quality in which an edge is divided into a plurality of sections and each section is imaged, and each of a plurality of images obtained in the imaging process is different from each other on the edges.
  • a straight line approximation step of calculating an approximate straight line of an edge from the point a variation calculating step of calculating a variation value of a plurality of points based on the approximate straight line for each of the plurality of images
  • an evaluation step of evaluating the linearity of the edge based on a plurality of variation values a straight line approximation step of calculating an approximate straight line of an edge from the point, a variation calculating step of calculating a variation value of a plurality of points based on the approximate straight line for each of the plurality of images.
  • the edge side is divided into a plurality of sections, and each section is imaged. Then, the straight line approximation process and the variation indexing process are performed, thereby obtaining a plurality of images obtained in the imaging process. For each, the straightness of the edge in the section shown in the image is quantitatively determined as a variation value. Then, by executing the evaluation process, the straightness of the edge is evaluated based on a plurality of variation values corresponding to each of the plurality of images. That is, in the evaluation step, the linearity is evaluated for the entire length of the edge based on the straightness of the edge in each section determined quantitatively. From the above, according to this method, the linearity can be evaluated for the entire length of the end side. Furthermore, since the linearity in each section that is the basis for the evaluation of the total length is quantitatively determined, it is possible to obtain a highly accurate evaluation as the evaluation of the total length.
  • the imaging step it is preferable to take an image while transporting the cut glass film in the longitudinal direction in a state where an imaging means for performing imaging is fixed at a fixed point.
  • the imaging means is moved along the longitudinal direction of the strip-shaped glass film after cutting, or the direction in which the imaging means is directed is changed. There is no need to Therefore, it is possible to efficiently evaluate the straightness of the edge.
  • the imaging step it is preferable to take an image from a direction in which the cut glass ribbon film is viewed in plan.
  • the imaging step it is preferable to perform imaging in a state where each section to be imaged is illuminated with light.
  • the form of the light irradiation is transmitted illumination (when the camera and the light source face each other with the strip glass film in between) and epi-illumination (the camera and the light source are on the same surface side of the strip glass film). Either when the reflected light is captured by a camera).
  • the number of images captured in the imaging process is inevitably compared to the case where one section and the other section are not overlapped between adjacent sections. Will increase. Further, since the straightness of the edge side is evaluated based on the variation value in which the number increases in the same way as the number of images increases, it is further advantageous in obtaining a highly accurate evaluation. . In addition, by partially overlapping the one section and the other section, it is possible to reliably avoid the occurrence of an image leakage section at the end side.
  • the approximate straight line determined in the straight line approximating process may not be sufficiently approximated to the edge.
  • the above-described fear can be accurately eliminated.
  • the belt-like glass film is cut along the longitudinal direction, and the linearity of the edge formed along with the cutting can be evaluated. Therefore, it is possible to evaluate the straightness of the edge side extremely efficiently.
  • the above-described quality inspection method it is possible to select and obtain a glass roll composed of a strip-shaped glass film having a high degree of linearity at the edges.
  • the selected glass roll is a glass roll formed by winding a belt-shaped glass film into a roll shape.
  • the quality of the strip glass film after cutting is inspected. It is possible to evaluate the entire length of the side and obtain a highly accurate evaluation.
  • FIG. 1 is a side view illustrating an outline of a quality inspection method for a strip-shaped glass film according to the present embodiment.
  • the belt-like glass film 2 unwound from the first glass roll 1 is conveyed in a flat position along the longitudinal direction. It cut
  • disconnection is test
  • the strip-shaped glass film 4 after cutting is again wound into a roll shape to obtain a second glass roll 5.
  • the strip-shaped glass film 2 to be cut is a strip-shaped thin glass formed by a down-draw method typified by an overflow down-draw method, a slot down-draw method, a re-draw method, or a float method.
  • the band-shaped glass film 2 has a thickness that can impart flexibility (for example, a thickness of 300 ⁇ m or less).
  • belt-shaped glass film 2 has the effective part 2a which exists in the width direction center, and a pair of non-effective part 2b, 2b which exists in the width direction outer side with respect to the effective part 2a.
  • the effective part 2a is a part which is subjected to a predetermined process later and becomes a product glass film.
  • the two ineffective portions 2b and 2b are portions that are not formed into the product glass film and are discarded later.
  • the effective portion 2a and the ineffective portions 2b and 2b are separated along with the cutting of the band-shaped glass film 2.
  • disconnection consists only of the effective part 2a isolate
  • the first glass roll 1 is obtained by winding a belt-like glass film 2 and a belt-like protective sheet 6 for protecting the same, and winding the two and 6 around the core 7 in a roll shape. is there.
  • the belt-like protective sheet 6 is provided with a thickness that can provide flexibility in the same manner as the belt-like glass film 2.
  • the strip-shaped protective sheet 6 is separated from the strip-shaped glass film 2 after being unwound together with the strip-shaped glass film 2 unwound from the first glass roll 1 for cutting.
  • the strip-shaped protective sheet 6 after separation is wound around the core 8 in a roll shape to form a first sheet roll 9.
  • the strip-shaped glass film 2 unwound from the first glass roll 1 is cut by a laser cleaving method.
  • a laser irradiator 10 and a refrigerant injector 11 installed in a fixed state at a fixed point above the transport path of the belt-shaped glass film 2 are used.
  • Two laser irradiators 10 and two refrigerant injectors 11 are installed (only one laser irradiator 10 and one refrigerant injector 11 are shown in FIG. 1).
  • One of the two devices is a device for separating the effective portion 2a and one of the two ineffective portions 2b, 2b, and the other of the two devices is the effective portion 2a and the other of the two ineffective portions 2b, 2b. Is a device for separating
  • the laser irradiator 10 continuously irradiates the laser 12 along the boundary between the effective portion 2a and the non-effective portion 2b of the strip-shaped glass film 2 that passes under the laser irradiator 10.
  • the refrigerant injector 11 continuously injects a refrigerant 13 (for example, mist-like water) to a portion of the belt-shaped glass film 2 irradiated with the laser 12.
  • a refrigerant 13 for example, mist-like water
  • the band-shaped glass film 2 may be cut using a cutting method as described below. That is, while irradiating a laser along the boundary between the effective portion 2a and the non-effective portion 2b to melt the band-shaped glass film 2, the cutting end portion formed in the effective portion 2a after the fusing is used as the filamentous glass as the effective portion 2a.
  • a cutting method in which the material is peeled off and removed may be used. In this case, both ends in the width direction of the effective portion 2a after the fusing end portion is peeled become the end side 3 that is a target for which the linearity is evaluated.
  • an imaging process is performed in which the edge 3 is divided into a plurality of sections and each section is imaged.
  • a camera 14 as imaging means and a light source 16 (for example, flat LED illumination) capable of irradiating with light 15 are used.
  • the camera 14 and the light source 16 become an illumination system which faces each other across the strip glass film 4, the camera 14 and the light source 16 are on the same surface side with respect to the strip glass film 4, It is good also as an illumination system using the reflected light in the strip
  • FIG. Two cameras 14 and one light source 16 are installed (only one camera 14 and one light source 16 are shown in FIG. 1).
  • One of the two devices is a device for performing an imaging process on the edge 3 located on one side in the width direction of the effective portion 2a, and the other of the two devices is on the other side in the width direction of the effective portion 2a.
  • This is a device for executing an imaging process on the positioned edge 3.
  • the camera 14 can take an image of each section of the edge 3 from the direction in which the band-shaped glass film 4 is viewed in plan.
  • This camera 14 is installed in a state fixed to a fixed point above the conveyance path of the belt-shaped glass film 4, and passes along the edge 3 across the visual field 14 a of the camera 14 as the belt-shaped glass film 4 is transported.
  • the strip glass film 4 is conveyed at a fixed conveyance speed.
  • the camera 14 is controlled so as to continuously capture images with a certain time interval. Because of the relationship between the transport speed of the strip-shaped glass film 4 and the time interval at which the camera 14 captures images, the camera 14 captures an image whenever the strip-shaped glass film 4 is transported a certain distance downstream along the transport direction.
  • belt-shaped glass film 4 is conveyed between imaging is the length (henceforth, viewing field length) along the conveyance direction of the visual field 14a of the camera 14. (Notation) is adjusted to be shorter.
  • the light source 16 is installed in a state of being fixed to a fixed point below the transport path of the strip glass film 4 so as to face the camera 14 with the strip glass film 4 sandwiched in the thickness direction (vertical direction).
  • the light source 16 can irradiate the light 15 toward the section of the edge 3 that falls within the field of view 14 a of the camera 14. Thereby, it is possible to perform imaging in a state where each section of the edge 3 to be imaged is illuminated with the light 15.
  • FIGS. 2a to 2c are plan views showing an imaging process in the present embodiment.
  • specific modes of the imaging process will be described with reference to FIG.
  • FIGS. 2a to 2c a range surrounded by a square drawn by a thick line indicates the field of view 14a of the camera 14.
  • FIG. This visual field 14a is always present at the same position on the transport path of the belt-shaped glass film 4.
  • the section 3a within the field of view 14a is imaged among the edges 3.
  • the band-shaped glass film 4 is transported to the downstream side by the transport distance between the images with reference to the time of image capturing in the section 3a.
  • the section 3b that falls within the visual field 14a is imaged.
  • the conveyance distance between imaging is shorter than the visual field length, the sections 3a and 3b partially overlap each other. That is, the imaging is performed again before the section 3a passes through the visual field 14a, and the section 3b is captured.
  • the band-shaped glass film 4 is transported downstream by the transport distance between the captures based on the time of capturing in the section 3b.
  • the section 3c within the visual field 14a is imaged. Note that, in the same manner that the sections 3a and 3b partially overlap each other, the sections 3b and 3c also partially overlap.
  • the camera 14 continuously captures images with a time interval, so that the entire length of the edge 3 is divided into a plurality of sections. Thereby, each section of the edge 3 is projected on each captured image. Thus, the imaging process is completed.
  • FIG. 3 is a diagram showing a straight line approximation step and a variation indexing step in the present embodiment.
  • an approximate straight line 18 of the end side 3 is determined from a plurality of mutually different points 17 on the end side 3 for each image obtained in the imaging step.
  • determining the approximate straight line 18 first, on the image 19, a plurality of straight lines 20 extending along the width direction of the band-shaped glass film 4 are drawn at equal intervals (in FIG. 3, illustration of some straight lines 20 is omitted).
  • the points 17 are plotted at all the intersections of the plurality of straight lines 20 and the end side 3.
  • the coordinates of the plotted points 17 on the image 19 are determined by the X coordinate axis and the Y coordinate axis that are orthogonal to each other.
  • the X coordinate axis extends in the longitudinal direction (conveying direction) of the strip-shaped glass film 4, and the Y coordinate axis extends in the width direction of the strip-shaped glass film 4.
  • the some point 17 is located in the longitudinal direction of the strip
  • the distance between the adjacent straight lines 20 is 0.4 mm along the longitudinal direction of the strip glass film 4 (not the length on the image 19 but the actual length). It is preferable to make it shorter than
  • an approximate line 18 is determined by the least square method based on the coordinates of the plurality of points 17. Thus, the straight line approximation process is completed.
  • the variation indexing step for each image obtained in the imaging step, the variation values of a plurality of points 17 from the approximate line 18 are determined based on the approximate line 18.
  • the value of the standard deviation ⁇ (value based on the pixel) is calculated as the variation value.
  • a variance value may be calculated as a variation value.
  • the variation indexing process is thus completed.
  • the values of the standard deviation ⁇ corresponding to each of the plurality of images obtained in the imaging process are determined. That is, the number of images captured in the imaging process is equal to the number of values of the standard deviation ⁇ calculated in the variation indexing process.
  • Each of the determined values of the standard deviation ⁇ is a value that quantitatively indicates the linearity of the edge 3 in the section shown in the image 19.
  • the value of 6 ⁇ obtained by multiplying the value of the standard deviation ⁇ by 6 is a portion of the edge 3 that is projected most outward in the width direction and a portion that is most depressed in the width direction in the section projected on each image. It becomes a value substantially equal to the mutual distance (the mutual distance along the width direction).
  • the evaluation process is executed.
  • the linearity of the edge 3 is evaluated based on the value of the standard deviation ⁇ corresponding to each of the plurality of images.
  • a range of 30 mm along the longitudinal direction of the strip glass film 4 (the direction in which the X coordinate axis extends on the image 19) and the width direction of the strip glass film 4 (on the image 19) It is assumed that a range of 22.5 mm is imaged along the direction in which the Y coordinate axis extends. These two lengths are not the lengths on the image 19 but the actual lengths.
  • the visual field length is 30 mm
  • the conveyance distance between imaging is 25 mm. That is, in this example, one section and the other section overlap each other by a length of 5 mm between the sections that are imaged adjacent to each other.
  • the size of 1600 pixels along the longitudinal direction, 1200 pixels along the width direction, and 1 pixel (pixel) is 18.75 ⁇ m.
  • the value of Z is calculated as an integer value and handled by a PLC (programmable logic controller). For example, if the value of Z is 0 to 3, “A rank”, 4 to 10 is “B rank”, 11 to 20 is “C rank”, and 21 or more is “D rank”. And Thereafter, all the Z values (each Z value corresponding to each standard deviation ⁇ value) obtained from the above equation are classified into “A rank” to “D rank”.
  • the edge 3 The degree of straightness is evaluated as acceptable. That is, as a result of inspecting the quality of the band-shaped glass film 4, it is determined that the product has quality that can be a product. Thus, the evaluation process is completed.
  • the evaluation process is executed in the above-described manner, but the present invention is not limited to this.
  • the evaluation step can be executed in any manner as long as the evaluation is performed based on the variation value quantitatively obtained in the variation indexing step.
  • the strip-shaped glass film 4 after being cut is wound around the core 22 in a roll shape in a state where the strip-shaped glass film 4 is overlapped with a strip-shaped protective sheet 21 for protecting the strip-shaped glass film 4.
  • the second glass roll 5 is used.
  • the band-shaped protective sheet 21 has a thickness that can provide flexibility in the same manner as the band-shaped glass film 4.
  • the belt-shaped protective sheet 21 is supplied by being unwound from a second sheet roll 24 in which the belt-shaped protective sheet 21 is wound around the core 23 in a roll shape.
  • the edge 3 is divided into a plurality of sections and each section is imaged, and then the linear approximation process and the variation indexing process are performed.
  • the linearity of the edge 3 in the section shown in the image 19 is quantitatively determined as the value of the standard deviation ⁇ .
  • the linearity of the edge 3 is evaluated based on the values of the plurality of standard deviations ⁇ corresponding to the plurality of images 19. That is, in the evaluation step, the linearity is evaluated for the entire length of the edge 3 based on the linearity of the edge 3 in each section determined quantitatively. From the above, the linearity can be evaluated for the entire length of the edge 3. Furthermore, since the linearity in each section that is the basis for the evaluation of the total length is quantitatively determined, it is possible to obtain a highly accurate evaluation as the evaluation of the total length.
  • the above-described quality inspection method it is possible to select the glass roll 5 composed of the strip-shaped glass film 4 having a high linearity of the edge 3. That is, when a plurality of glass rolls 5 are manufactured by winding the strip-shaped glass film 4 after being cut along the longitudinal direction into a roll shape, the linearity of the edge 3 is from among the plurality. Only high quality products can be collected.
  • the collected glass roll 5 satisfies the following condition (5) when the following (1) to (4) are executed.
  • the edge 3 of the strip-shaped glass film 4 is divided into a plurality of sections, each having a length of 30 mm (length along the longitudinal direction of the strip-shaped glass film 4), and each section is imaged. At this time, one and the other of both sections imaged adjacent to each other are imaged by overlapping each other by 5 mm, and the band-shaped glass film 4 is imaged from the direction of plan view. In addition, about the number of a some area, it increases / decreases depending on the length of the strip
  • An example of p is 18.75, but the value may vary depending on the imaging conditions.
  • All of the plurality of images 19 satisfy Z ⁇ 105, and 99.5% or more of the plurality of images 19 satisfy 0 ⁇ Z ⁇ 50.
  • N the number of the plurality of images
  • the decimal part is rounded down.
  • the quality inspection method for the strip-shaped glass film according to the present invention is not limited to the aspect described in the above embodiment.
  • the strip glass film is cut along the longitudinal direction using the roll-to-roll form, and the linearity of the edge formed along with the cutting is evaluated. This is not the case.
  • stripping ineffective parts parts including ears
  • the present invention can be applied.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

帯状ガラスフィルム2を長手方向に沿って切断し、切断に伴って形成された端辺3の直線度を評価することで、切断後の帯状ガラスフィルム4の品質を検査するに際し、端辺3を複数の区間に分けて撮像する撮像工程と、撮像工程で得た複数の画像19の各々について、端辺3上の相互に異なる複数の点17から端辺3の近似直線18を割り出す直線近似工程、及び、近似直線18を基準として複数の点17のバラつきの値を割り出すバラつき割出工程と、複数の画像19のそれぞれに対応する複数のバラつきの値に基づいて、端辺3の直線度を評価する評価工程とを実行するようにした。

Description

帯状ガラスフィルムの品質検査方法、及び、ガラスロール
 本発明は、帯状ガラスフィルムを長手方向に沿って切断し、切断に伴って形成された端辺の直線度を評価することで、切断後の帯状ガラスフィルムの品質を検査するための方法、及び、ガラスロールに関する。
 近年、急速に普及しているスマートフォンやタブレット型PC等のモバイル端末は、薄型、軽量であることが求められるため、これらの端末に組み込まれるガラス基板においても、薄板化に対する要請が高まっているのが現状である。このような現状の下、フィルム状にまで薄板化(例えば、厚みが300μm以下)されたガラス基板であるガラスフィルムが開発、製造されるに至っている。
 ガラスフィルムは、例えば、ダウンドロー法により成形した帯状ガラスフィルムから切り出して製造することが可能である。ガラスフィルムの元となる帯状ガラスフィルムは可撓性を有しており、この可撓性を利用して帯状ガラスフィルムに処理を施すことができる。一例を挙げると、特許文献1には、所謂ロール・トゥ・ロールの形態を利用して、帯状ガラスフィルムを長手方向に沿って切断し、帯状ガラスフィルムから非有効部(同文献では不要部)を除去する処理が開示されている(同文献の図15を参照)。
 ところで、切断後の帯状ガラスフィルムにおける品質の良否は、切断に伴って形成された端辺の直線度に大きな影響を受ける。詳述すると、端辺が蛇行しており、その直線度が低い場合には、この分だけ端辺に大きな応力が発生しやすくなり、下流側の工程で端辺を起点に破損が生じる虞が高くなる。そのため、切断後の帯状ガラスフィルムにおける品質を検査するべく、端辺の直線度を評価することが要求される。この評価のための手法としては、例えば、(A)顕微鏡により端辺を観察して評価する手法や、(B)人手により端辺に触れて評価する手法が考えられる。
特開2015-63450号公報
 しかしながら、上記の手法により端辺の直線度を評価した場合には、下記のような解決すべき問題があった。
 すなわち、上記の(A)の手法では、端辺のうち、直線度を評価したい区間の全域を顕微鏡により観察することが求められるため、評価したい区間が長くなるほど、評価のための作業が極めて煩雑なものとなる。これにより、上記の(A)の手法では、長尺な端辺の一部の区間について直線度を評価することは可能であっても、端辺の全長について直線度を評価することは実質的に不可能であるという問題があった。一方、上記の(B)の手法では、直線度について定量的な評価が行えないため、評価の精度が必然的に低くなってしまう問題があった。
 なお、これらの問題は、上述のようなロール・トゥ・ロールの形態を利用する場合のみでなく、帯状ガラスフィルムを長手方向に沿って切断し、切断に伴って形成された端辺の直線度を上記の(A)、(B)の手法で評価することで、切断後の帯状ガラスフィルムの品質を検査する場合には、同様に発生し得る問題である。
 このような事情に鑑みなされた本発明は、帯状ガラスフィルムを長手方向に沿って切断し、切断に伴って形成された端辺の直線度を評価することで、切断後の帯状ガラスフィルムの品質を検査するに際し、端辺の全長について評価を実施でき、且つ、高精度な評価を得られる方法を確立することを技術的な課題とする。
 上記の課題を解決するために創案された本発明は、帯状ガラスフィルムを長手方向に沿って切断し、切断に伴って形成された端辺の直線度を評価することで、切断後の帯状ガラスフィルムの品質を検査する方法であって、端辺を複数の区間に分けて各区間をそれぞれ撮像する撮像工程と、撮像工程で得た複数の画像の各々について、端辺上の相互に異なる複数の点から端辺の近似直線を割り出す直線近似工程と、複数の画像の各々について、近似直線を基準として複数の点のバラつきの値を割り出すバラつき割出工程と、複数の画像のそれぞれに対応する複数のバラつきの値に基づいて、端辺の直線度を評価する評価工程とを含むことに特徴付けられる。
 本方法では、撮像工程の実行により、端辺を複数の区間に分けて各区間をそれぞれ撮像した後、直線近似工程およびバラつき割出工程を実行することで、撮像工程で得た複数の画像の各々について、画像に写った区間における端辺の直線度がバラつきの値として定量的に割り出される。そして、評価工程の実行により、複数の画像のそれぞれに対応する複数のバラつきの値に基づいて、端辺の直線度が評価される。つまり、評価工程では、定量的に割り出された各区間における端辺の直線度に基づいて、端辺の全長について直線度の評価が行われることになる。以上のことから、本方法によれば、端辺の全長について直線度の評価を実施することができる。さらに、全長についての評価の元となる各区間における直線度が定量的に割り出されているため、全長についての評価として、高精度な評価を得ることが可能である。
 上記の方法において、撮像工程では、撮像を行うための撮像手段を定点に固定した状態で、切断後の帯状ガラスフィルムを長手方向に搬送しつつ撮像することが好ましい。
 このようにすれば、長尺な端辺の各区間を撮像することを目的として、切断後の帯状ガラスフィルムの長手方向に沿って撮像手段を移動させたり、撮像手段が指向する向きを変更したりする必要が無くなる。そのため、効率よく端辺の直線度を評価することが可能となる。
 上記の方法において、撮像工程では、切断後の帯状ガラスフィルムを平面視する方向から撮像することが好ましい。
 端辺の各区間について、切断後の帯状ガラスフィルムを平面視する方向とは異なる方向から撮像すると、切断後の帯状ガラスフィルムに皺やうねりが発生している場合に、下記のような不具合が発生する虞がある。すなわち、切断後の帯状ガラスフィルムに皺やうねりが発生していると、これに応じて端辺が不可避的に湾曲してしまう場合がある。このような場合には、直線近似工程において端辺の近似直線を正確に割り出すことが困難となり、実際には端辺の直線度が十分に高かったとしても、皺やうねりの発生に伴う端辺の湾曲の影響により、端辺の直線度が低いものと評価されてしまう虞がある。しかしながら、端辺の各区間について、切断後の帯状ガラスフィルムを平面視する方向から撮像するようにすれば、上述のような虞を的確に排除することができる。これは、平面視する方向から撮像を行うことで、端辺が湾曲している場合であっても、撮像された各画像上には湾曲の影響が出難くなるためである。
 上記の方法において、撮像工程では、撮像の対象となる各区間を光で照らした状態で撮像することが好ましい。なお、光の照射の形態は、透過照明(帯状ガラスフィルムを挟んでカメラと光源とが向かい合う場合)と、落射照明(カメラと光源とが帯状ガラスフィルムの同じ面側にあり、帯状ガラスフィルムで反射する光をカメラで捉える場合)とのどちらでも可能である。
 このようにすれば、撮像工程で得られる複数の画像の各々において、光で照らした分だけ端辺の各区間を鮮明に写し出すことが可能となる。そのため、高精度な評価を得る上でより有利となる。
 上記の方法において、撮像工程では、隣接して撮像される両区間の間で、一方の区間と他方の区間とを一部重複させることが好ましい。
 このようにすれば、隣接して撮像される両区間の間で、一方の区間と他方の区間とを重複させなかった場合と比較して、撮像工程で撮像される画像の数が必然的に増加することになる。そして、画像の数が増加した分だけ、同様に数が増加したバラつきの値に基づいて、端辺の直線度が評価されることになるため、高精度な評価を得る上で更に有利となる。また、一方の区間と他方の区間とを一部重複させることで、端辺において撮像もれの区間が発生することを確実に回避できる。
 上記の方法において、撮像工程で得た複数の画像の各々について、直線近似工程の前にエッジ検出処理を実行することが好ましい。
 このようにすれば、撮像された各画像において、端辺の輪郭が鮮明となるため、高精度な評価を得る上でより有利となる。
 上記の方法において、直線近似工程では、切断後の帯状ガラスフィルムの長手方向に沿って複数の点を等間隔で位置させることが好ましい。
 撮像工程で得た画像上において、複数の点の所在に偏りがある場合には、直線近似工程で割り出される近似直線が、端辺に対して十分に近似したものでは無くなる虞がある。しかしながら、切断後の帯状ガラスフィルムの長手方向に沿って複数の点を等間隔で位置させれば、上述のような虞を的確に排除することが可能となる。
 上記の方法において、帯状ガラスフィルムを、第一ガラスロールから巻き外して長手方向に沿って切断した後、切断後の帯状ガラスフィルムを第二ガラスロールとして巻き取ることが好ましい。
 このようにすれば、ロール・トゥ・ロールの形態により、帯状ガラスフィルムを長手方向に沿って切断し、切断に伴って形成された端辺の直線度を評価できる。従って、極めて効率よく端辺の直線度を評価することが可能である。
 また、上記の品質の検査方法を利用すれば、端辺の直線度が高い帯状ガラスフィルムで構成されるガラスロールを当該方法により選別して取得することが可能となる。この選別されたガラスロールは、帯状ガラスフィルムがロール状に巻き取られてなるガラスロールであって、以下に列挙する(1)~(4)を実行した場合に、以下の(5)の条件を満たすことに特徴付けられる。
 すなわち、(1)帯状ガラスフィルムの長手方向に沿って延びた端辺を、長さ30mmを一区間として複数の区間に分けて各区間をそれぞれ撮像するにあたり、隣接して撮像される両区間の一方と他方とを相互に5mm重複させて撮像すると共に、帯状ガラスフィルムを平面視する方向から撮像する。(2)撮像により得た複数の画像の各々について、長手方向に沿って等間隔に位置した端辺上の相互に異なる80個の点から最小二乗法により端辺の近似直線を割り出す。(3)複数の画像の各々について、近似直線を基準として80個の点のバラつきの値を標準偏差σとして割り出す。(4)複数の画像の各々について、画像における1画素の大きさをp[μm]として、Z=σ×pの値を求める。(5)複数の画像の全てでZ<105であると共に、複数の画像のうちの99.5%以上で0≦Z≦50である。
 本発明によれば、帯状ガラスフィルムを長手方向に沿って切断し、切断に伴って形成された端辺の直線度を評価することで、切断後の帯状ガラスフィルムの品質を検査するに際し、端辺の全長について評価を実施でき、且つ、高精度な評価を得ることが可能である。
本発明の実施形態に係る帯状ガラスフィルムの品質検査方法の概略を示す側面図である。 本発明の実施形態に係る帯状ガラスフィルムの品質検査方法における撮像工程を示す平面図である。 本発明の実施形態に係る帯状ガラスフィルムの品質検査方法における撮像工程を示す平面図である。 本発明の実施形態に係る帯状ガラスフィルムの品質検査方法における撮像工程を示す平面図である。 本発明の実施形態に係る帯状ガラスフィルムの品質検査方法における直線近似工程およびバラつき割出工程を示す図である。
 以下、本発明の実施形態に係る帯状ガラスフィルムの品質検査方法、及び、ガラスロールについて、添付の図面を参照して説明する。
 図1は、本実施形態に係る帯状ガラスフィルムの品質検査方法の概略を示す側面図である。同図に示すように、本実施形態では、ロール・トゥ・ロールの形態を利用して、第一ガラスロール1から巻き外した帯状ガラスフィルム2を平置き姿勢で搬送しつつ長手方向に沿って切断し、切断に伴って形成された端辺3の直線度を評価することで、切断後の帯状ガラスフィルム4の品質を検査する。また、切断後の帯状ガラスフィルム4を再びロール状に巻き取って第二ガラスロール5とする。
 切断の対象となる帯状ガラスフィルム2は、オーバーフローダウンドロー法、スロットダウンドロー法、リドロー法等に代表されるダウンドロー法や、フロート法により成形した帯状の薄板ガラスである。この帯状ガラスフィルム2は、可撓性を付与できる程度の厚み(例えば、厚みが300μm以下)を備えている。また、帯状ガラスフィルム2は、その幅方向中央に存する有効部2aと、有効部2aに対して幅方向外側に存する一対の非有効部2b,2bとを有する。
 有効部2aは、後に所定の処理が施されて製品ガラスフィルムとなる部位である。これに対し、両非有効部2b,2bは、製品ガラスフィルムとはならずに後に廃棄される部位である。有効部2aと両非有効部2b,2bとは、帯状ガラスフィルム2の切断に伴って分離させる。これにより、切断後の帯状ガラスフィルム4は、両非有効部2b,2bと分離した有効部2aのみでなる。この有効部2aの幅方向両端が直線度を評価される対象である端辺3となる。
 第一ガラスロール1は、帯状ガラスフィルム2と、これを保護するための帯状保護シート6とを重ね合わせた状態で、両者2,6を巻芯7の周りにロール状に巻き取ったものである。帯状保護シート6は、帯状ガラスフィルム2と同様にして、可撓性を付与できる程度の厚みを備えている。この帯状保護シート6は、切断のために第一ガラスロール1から巻き外されていく帯状ガラスフィルム2と一緒に巻き外した後、帯状ガラスフィルム2から分離させる。分離後の帯状保護シート6は、巻芯8の周りにロール状に巻き取って第一シートロール9とする。
 第一ガラスロール1から巻き外された帯状ガラスフィルム2は、レーザー割断法により切断する。レーザー割断法の実行には、帯状ガラスフィルム2の搬送経路の上方で定点に固定した状態で設置されたレーザー照射器10および冷媒噴射器11を用いる。レーザー照射器10および冷媒噴射器11は、それぞれ二器ずつが設置されている(図1では、レーザー照射器10および冷媒噴射器11をそれぞれ一器のみ図示)。二器の一方は、有効部2aと両非有効部2b,2bの一方とを分離させるための機器であって、二器の他方は、有効部2aと両非有効部2b,2bの他方とを分離させるための機器である。
 レーザー照射器10は、自身の下方を通過する帯状ガラスフィルム2の有効部2aと非有効部2bとの境界に沿ってレーザー12を連続的に照射する。冷媒噴射器11は、帯状ガラスフィルム2におけるレーザー12が照射された部位に対して冷媒13(例えば、ミスト状の水)を連続的に噴射する。これにより、レーザー12で加熱された部位と、冷媒13で冷却された部位との間の温度差に起因して発生した熱応力により、有効部2aと非有効部2bとの境界に沿って帯状ガラスフィルム2を連続的に切断(割断)し、有効部2aと非有効部2bとを分離させていく。有効部2aと分離させた非有効部2bは、切断後の帯状ガラスフィルム4(有効部2aのみでなる帯状ガラスフィルム4)の搬送経路から下方に離脱させた後、適当な長さに分断して廃棄する。
 ここで、本実施形態の変形例として、例えば、下記のような切断手法を用いて帯状ガラスフィルム2を切断してもよい。すなわち、有効部2aと非有効部2bとの境界に沿ってレーザーを照射して帯状ガラスフィルム2を溶断しつつ、溶断後の有効部2aに形成された溶断端部を糸状ガラスとして有効部2aから剥離させて除去する切断手法を用いてもよい。この場合では、溶断端部を剥離させた後における有効部2aの幅方向両端が、直線度を評価される対象である端辺3となる。
 端辺3の直線度を評価するに際しては、まず、端辺3を複数の区間に分けて各区間をそれぞれ撮像する撮像工程を実行する。撮像工程の実行には、撮像手段としてのカメラ14と、光15の照射が可能な光源16(例えば、平板状のLED照明)とを用いる。なお、図1においては、カメラ14と光源16とが帯状ガラスフィルム4を挟んで向かい合う照明方式となっているが、カメラ14と光源16とが帯状ガラスフィルム4に対して同じ面側にあり、帯状ガラスフィルム4での反射光を利用する照明方式としてもよい。カメラ14および光源16は、それぞれ二器ずつが設置されている(図1では、カメラ14および光源16をそれぞれ一器のみ図示)。二器の一方は、有効部2aの幅方向一方側に位置した端辺3に対して撮像工程を実行するための機器であって、二器の他方は、有効部2aの幅方向他方側に位置した端辺3に対して撮像工程を実行するための機器である。
 カメラ14は、帯状ガラスフィルム4を平面視する方向から端辺3の各区間の撮像を行うことが可能となっている。このカメラ14は、帯状ガラスフィルム4の搬送経路の上方で定点に固定した状態で設置されており、帯状ガラスフィルム4の搬送に伴って端辺3がカメラ14の視野14aを横切るように通過していく。ここで、本実施形態では、帯状ガラスフィルム4を一定の搬送速度で搬送している。そして、カメラ14は、一定の時間間隔を空けて連続的に撮像を行うように制御されている。この帯状ガラスフィルム4の搬送速度と、カメラ14が撮像を行う時間間隔との関係から、カメラ14は、帯状ガラスフィルム4が搬送方向に沿って一定距離を下流側に搬送される度に撮像を行う構成となっている。なお、撮像と撮像との間に帯状ガラスフィルム4が搬送される一定距離(以下、撮像間搬送距離と表記)は、カメラ14の視野14aの搬送方向に沿った長さ(以下、視野長さと表記)と比べて短くなるように調節している。
 光源16は、帯状ガラスフィルム4を厚み方向(上下方向)に挟んでカメラ14と対向するように、帯状ガラスフィルム4の搬送経路の下方で定点に固定した状態で設置されている。この光源16は、端辺3のうち、カメラ14の視野14aに収まる区間に向けて光15を照射することが可能である。これにより、撮像の対象となる端辺3の各区間を光15で照らした状態で撮像を行うことが可能となっている。
 図2a~図2cは、本実施形態における撮像工程を示す平面図である。以下、同図を参照して撮像工程の具体的な態様について説明する。ここで、図2a~図2cにおいて、太線で描いた四角に囲まれる範囲は、カメラ14の視野14aを示している。この視野14aは、帯状ガラスフィルム4の搬送経路上において常に同じ位置に存在する。
 カメラ14が撮像を行うと、図2aに示すように、端辺3のうち、視野14aに収まった区間3aが撮像される。その後、時間間隔を空けて再びカメラ14が撮像を行うと、図2bに示すように、区間3aの撮像時を基準として、帯状ガラスフィルム4が撮像間搬送距離の分だけ下流側に搬送された時点で、視野14aに収まった区間3bが撮像される。ここで、撮像間搬送距離が視野長さに比べて短いことから、区間3aと区間3bとの両者は一部が重複している。つまり、区間3aが視野14aを通過し終える前に再び撮像が行われて、区間3bが撮像される。更にその後、時間間隔を空けて再びカメラ14が撮像を行うと、図2cに示すように、区間3bの撮像時を基準として、帯状ガラスフィルム4が撮像間搬送距離の分だけ下流側に搬送された時点で、視野14aに収まった区間3cが撮像される。なお、区間3aと区間3bとの一部が重複しているのと同様に、区間3bと区間3cとの両者間においても一部が重複している。このようにカメラ14で時間間隔を空けて連続的に撮像を行うことで、端辺3の全長を複数の区間に分けて撮像する。これにより、撮像した各画像に端辺3の各区間を写し出していく。以上により撮像工程が完了する。
 撮像工程が完了すると、次に、撮像工程で得た複数の画像の各々について、エッジ検出処理を実行する。これにより、各画像上において端辺3の輪郭を鮮明にする。エッジ検出処理が完了すると、直線近似工程およびバラつき割出工程を実行する。図3は、本実施形態における直線近似工程およびバラつき割出工程を示す図である。以下、同図を参照して両工程について説明する。
 直線近似工程では、撮像工程で得た各画像について、端辺3上の相互に異なる複数の点17から端辺3の近似直線18を割り出す。近似直線18を割り出すにあたっては、まず、画像19上において、帯状ガラスフィルム4の幅方向に沿って延びる複数の直線20を等間隔で引く(図3では一部の直線20の図示を省略している)。次に、複数の直線20と端辺3との全ての交点に点17をプロットする。プロットした複数の点17の画像19上における各々の座標は、相互に直交するX座標軸およびY座標軸によって決定される。X座標軸は、帯状ガラスフィルム4の長手方向(搬送方向)に延び、Y座標軸は、帯状ガラスフィルム4の幅方向に延びている。なお、複数の点17は、帯状ガラスフィルム4の長手方向に沿って等間隔で位置することになる。ここで、精度よく近似直線18を割り出すために、隣り合う直線20同士の間隔は、帯状ガラスフィルム4の長手方向に沿った長さ0.4mm(画像19上における長さではなく、実際の長さ)と比較して短くすることが好ましい。最後に、複数の点17のそれぞれの座標に基づいて最小二乗法により近似直線18を割り出す。以上により直線近似工程が完了する。
 バラつき割出工程では、撮像工程で得た各画像について、近似直線18を基準に、当該近似直線18からの複数の点17のバラつきの値を割り出す。本実施形態では、バラつきの値として標準偏差σの値(画素を基準とした値)を割り出している。ここで、本実施形態の変形例として、例えば、バラつきの値として分散の値を割り出すようにしてもよい。以上によりバラつき割出工程が完了する。バラつき割出工程が完了すると、撮像工程で得た複数の画像の一枚一枚に対応する標準偏差σの値がそれぞれ割り出された状態となる。つまり、撮像工程で撮像した画像の枚数と、バラつき割出工程で割り出される標準偏差σの値との数は同数となる。割り出された複数の標準偏差σの値の各々は、画像19に写った区間における端辺3の直線度を定量的に示す値となる。なお、標準偏差σの値に6を掛けた6σの値は、端辺3のうち、各画像に写し出した区間において、幅方向外側に最も突き出た箇所と、幅方向内側に最も窪んだ箇所との相互間距離(幅方向に沿った相互間距離)と略等しい値となる。
 直線近似工程およびバラつき割出工程が完了すると、評価工程を実行する。この評価工程では、複数の画像のそれぞれに対応する標準偏差σの値に基づいて、端辺3の直線度を評価する。以下、具体例を挙げて評価工程について説明する。
 例えば、撮像工程で撮像した各画像について、帯状ガラスフィルム4の長手方向(画像19上ではX座標軸が延びる方向)に沿って30mmの範囲、及び、帯状ガラスフィルム4の幅方向(画像19上ではY座標軸が延びる方向)に沿って22.5mmの範囲が撮像されているものとする。これら両長さは、画像19上での長さではなく、実際の長さである。なお、この例では上記の視野長さは30mmとなり、上記の撮像間搬送距離は25mmとしている。つまり、この例では隣接して撮像される両区間の間で一方の区間と他方の区間とが5mmの長さだけ重複している。また、この例では、長手方向に沿って1600画素、幅方向に沿って1200画素、1画素(ピクセル)の大きさが18.75μmである。標準偏差σを求める際には、長手方向に80分割して、かつ、1/2ピッチずらして複数の直線20を引き、端辺3との交点を複数の点17として、近似直線18を作成している。
 上記の条件の下、複数の画像のそれぞれに対応する標準偏差σに基づいて、式:Z=(標準偏差σ×18.75)/5からZの値を算出する。Zの値は整数値で算出されると共に、PLC(プログラマブルロジックコントローラー)によって取り扱う。そして、例えば、Zの値が0~3であれば「Aランク」、4~10であれば「Bランク」、11~20であれば「Cランク」、21以上であれば「Dランク」と区分する。その後、上記の式から得た全てのZの値(各標準偏差σの値に対応する各Zの値)を「Aランク」~「Dランク」に区分する。その結果、例えば、「Bランク」以上が99.5%以上で、且つ、「Cランク」が0.5%未満で、且つ、「Dランク」が0%である場合に、端辺3の直線度について合格と評価する。すなわち、帯状ガラスフィルム4の品質を検査した結果として、製品となり得る品質を有するものと判定する。以上により評価工程が完了する。
 ここで、本実施形態では、上記の態様で評価工程を実行しているが、これに限定されるものではない。評価工程は、バラつき割出工程で定量的に得られたバラつきの値に基づいて評価を行う限りで、任意の態様で実行することが可能である。例えば、上記のZの値について、PLCで取り扱うという制限がない場合においては、Z=標準偏差σ×18.75として算出してもよい。
 図1に示すように、切断後の帯状ガラスフィルム4は、これを保護するための帯状保護シート21と重ね合わせた状態で、両者4,21を巻芯22の周りにロール状に巻き取って第二ガラスロール5とする。帯状保護シート21は、帯状ガラスフィルム4と同様にして、可撓性を付与できる程度の厚みを備えている。この帯状保護シート21は、当該帯状保護シート21が巻芯23の周りにロール状に巻き取られてなる第二シートロール24から巻き外して供給する。以上により、本実施形態に係る帯状ガラスフィルムの品質検査方法が完了する。
 以下、本発明の実施形態に係る帯状ガラスフィルムの品質検査方法の主たる作用・効果について説明する。
 本実施形態に係る帯状ガラスフィルムの品質検査方法では、撮像工程の実行により、端辺3を複数の区間に分けて各区間をそれぞれ撮像した後、直線近似工程およびバラつき割出工程を実行することで、撮像工程で得た複数の画像19の各々について、画像19に写った区間における端辺3の直線度が標準偏差σの値として定量的に割り出される。そして、評価工程の実行により、複数の画像19のそれぞれに対応する複数の標準偏差σの値に基づいて、端辺3の直線度が評価される。つまり、評価工程では、定量的に割り出された各区間における端辺3の直線度に基づいて、端辺3の全長について直線度の評価が実施されることになる。以上のことから、端辺3の全長について直線度の評価を実施することができる。さらに、全長についての評価の元となる各区間における直線度が定量的に割り出されているため、全長についての評価として、高精度な評価を得ることが可能である。
 以下、上記の帯状ガラスフィルムの品質検査方法を利用したガラスロールの製造方法について説明する。なお、本製造方法の説明では、上記の品質検査方法で説明済みの要素と実質的に同一の要素については、同一の符号を付すことで重複する説明を省略している。
 上記の品質検査方法を利用すれば、端辺3の直線度が高い帯状ガラスフィルム4で構成されるガラスロール5を選別することが可能となる。つまり、長手方向に沿った切断が実行された後の帯状ガラスフィルム4をロール状に巻き取ることで作製されるガラスロール5を複数作製した際に、複数の中から端辺3の直線度が高い良品だけを採取できる。
 採取されたガラスロール5は、以下に列挙する(1)~(4)を実行した場合に、以下の(5)の条件を満たす。
 (1)帯状ガラスフィルム4の端辺3を、長さ30mm(帯状ガラスフィルム4の長手方向に沿った長さ)を一区間として複数の区間に分けて各区間をそれぞれ撮像する。このとき、隣接して撮像される両区間の一方と他方とを相互に5mm重複させて撮像すると共に、帯状ガラスフィルム4を平面視する方向から撮像する。なお、複数の区間の数については、帯状ガラスフィルム4の長短(端辺3の長短)に依存して増減する。
 (2)撮像により得た複数の画像19(画像19の数は複数の区間の数に等しい)の各々について、帯状ガラスフィルム4の長手方向に沿って等間隔に位置した端辺3上の相互に異なる80個の点17から最小二乗法により端辺3の近似直線18を割り出す。
 (3)複数の画像19の各々について、近似直線18を基準として80個の点のバラつきの値を標準偏差σとして割り出す。
 (4)複数の画像19の各々について、画像19における1画素の大きさをp[μm]として、Z=σ×pの値を求める。pの一例としては、18.75であるが、撮像の条件に依存して値が変わり得る。
 (5)複数の画像19の全てでZ<105であると共に、複数の画像19のうちの99.5%以上で0≦Z≦50である。なお、複数の画像の数をNとしたとき、N×0.995で算出される数が整数でない場合は、小数点以下を切り捨てる。
 ここで、本発明に係る帯状ガラスフィルムの品質検査方法は、上記の実施形態で説明した態様に限定されるものではない。例えば、上記の実施形態では、ロール・トゥ・ロールの形態を利用して、帯状ガラスフィルムを長手方向に沿って切断し、切断に伴って形成された端辺の直線度を評価しているが、この限りではない。ダウンドロー法やフロート法で成形した帯状ガラスフィルムについて、その幅方向両端に存する非有効部(耳部を含む部位)を切断し、切断に伴って形成された端辺の直線度を評価する場合に、本発明を適用することも可能である。
 1      第一ガラスロール
 2      帯状ガラスフィルム
 3      端辺
 3a~3c  区間
 4      切断後の帯状ガラスフィルム
 5      第二ガラスロール
 14     カメラ
 15     光
 17     点
 18     近似直線
 19     画像

Claims (9)

  1.  帯状ガラスフィルムを長手方向に沿って切断し、切断に伴って形成された端辺の直線度を評価することで、切断後の帯状ガラスフィルムの品質を検査する方法であって、
     前記端辺を複数の区間に分けて各区間をそれぞれ撮像する撮像工程と、
     前記撮像工程で得た複数の画像の各々について、前記端辺上の相互に異なる複数の点から該端辺の近似直線を割り出す直線近似工程と、
     前記複数の画像の各々について、前記近似直線を基準として前記複数の点のバラつきの値を割り出すバラつき割出工程と、
     前記複数の画像のそれぞれに対応する複数のバラつきの値に基づいて、前記端辺の直線度を評価する評価工程とを含むことを特徴とする帯状ガラスフィルムの品質検査方法。
  2.  前記撮像工程では、撮像を行うための撮像手段を定点に固定した状態で、前記切断後の帯状ガラスフィルムを長手方向に搬送しつつ撮像することを特徴とする請求項1に記載の帯状ガラスフィルムの品質検査方法。
  3.  前記撮像工程では、前記切断後の帯状ガラスフィルムを平面視する方向から撮像することを特徴とする請求項1又は2に記載の帯状ガラスフィルムの品質検査方法。
  4.  前記撮像工程では、撮像の対象となる各区間を光で照らした状態で撮像することを特徴とする請求項1~3のいずれかに記載の帯状ガラスフィルムの品質検査方法。
  5.  前記撮像工程では、隣接して撮像される両区間の間で、一方の区間と他方の区間とを一部重複させることを特徴とする請求項1~4のいずれかに記載の帯状ガラスフィルムの品質検査方法。
  6.  前記撮像工程で得た複数の画像の各々について、前記直線近似工程の前にエッジ検出処理を実行することを特徴とする請求項1~5のいずれかに記載の帯状ガラスフィルムの品質検査方法。
  7.  前記直線近似工程では、前記切断後の帯状ガラスフィルムの長手方向に沿って前記複数の点を等間隔で位置させることを特徴とする請求項1~6のいずれかに記載の帯状ガラスフィルムの品質検査方法。
  8.  前記帯状ガラスフィルムを、第一ガラスロールから巻き外して長手方向に沿って切断した後、切断後の帯状ガラスフィルムを第二ガラスロールとして巻き取ることを特徴とする請求項1~7のいずれかに記載の帯状ガラスフィルムの品質検査方法。
  9.  帯状ガラスフィルムがロール状に巻き取られてなるガラスロールであって、以下に列挙する(1)~(4)を実行した場合に、以下の(5)の条件を満たすことを特徴とするガラスロール。
     (1)前記帯状ガラスフィルムの長手方向に沿って延びた端辺を、長さ30mmを一区間として複数の区間に分けて各区間をそれぞれ撮像するにあたり、隣接して撮像される両区間の一方と他方とを相互に5mm重複させて撮像すると共に、前記帯状ガラスフィルムを平面視する方向から撮像する。
     (2)撮像により得た複数の画像の各々について、前記長手方向に沿って等間隔に位置した前記端辺上の相互に異なる80個の点から最小二乗法により該端辺の近似直線を割り出す。
     (3)前記複数の画像の各々について、前記近似直線を基準として前記80個の点のバラつきの値を標準偏差σとして割り出す。
     (4)前記複数の画像の各々について、画像における1画素の大きさをp[μm]として、Z=σ×pの値を求める。
     (5)前記複数の画像の全てでZ<105である共に、前記複数の画像のうちの99.5%以上で0≦Z≦50である。
PCT/JP2017/043070 2016-12-06 2017-11-30 帯状ガラスフィルムの品質検査方法、及び、ガラスロール WO2018105489A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/347,220 US11346652B2 (en) 2016-12-06 2017-11-30 Belt-like glass film quality inspection method and glass roll
CN201780062685.4A CN109804222B (zh) 2016-12-06 2017-11-30 带状玻璃膜的品质检查方法
KR1020197007158A KR102400342B1 (ko) 2016-12-06 2017-11-30 띠 형상 유리 필름의 품질 검사 방법, 및 유리 롤
JP2018554963A JP7238405B2 (ja) 2016-12-06 2017-11-30 帯状ガラスフィルムの品質検査方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016236730 2016-12-06
JP2016-236730 2016-12-06

Publications (1)

Publication Number Publication Date
WO2018105489A1 true WO2018105489A1 (ja) 2018-06-14

Family

ID=62491687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043070 WO2018105489A1 (ja) 2016-12-06 2017-11-30 帯状ガラスフィルムの品質検査方法、及び、ガラスロール

Country Status (6)

Country Link
US (1) US11346652B2 (ja)
JP (1) JP7238405B2 (ja)
KR (1) KR102400342B1 (ja)
CN (1) CN109804222B (ja)
TW (1) TWI759369B (ja)
WO (1) WO2018105489A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7324424B2 (ja) * 2018-01-31 2023-08-10 日本電気硝子株式会社 ガラスロール、ガラスロールの製造方法および品質評価方法
KR20220064528A (ko) 2020-11-12 2022-05-19 동우 화인켐 주식회사 형상 관리 장치 및 이를 이용한 형상 관리 방법
CN113399784B (zh) * 2021-07-09 2022-08-12 武汉武重机床有限公司 工件加工控制方法、装置、设备及存储介质
CN114742749B (zh) * 2022-02-27 2023-04-18 扬州盛强薄膜材料有限公司 基于图像处理的pvc薄膜质量检测方法
CN115382797B (zh) * 2022-07-28 2024-05-03 中国电子科技集团公司第二十九研究所 一种利用光学原理的沉头铆钉筛选工具及使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541734A (en) * 1992-09-24 1996-07-30 Lawson-Hemphill, Inc. System for electronically grading yarn
JP2007205724A (ja) * 2006-01-30 2007-08-16 Central Glass Co Ltd ガラス基板の形状測定装置および測定方法
JP2012236675A (ja) * 2011-05-11 2012-12-06 Nippon Electric Glass Co Ltd ガラスフィルムの巻きズレ修正装置およびその巻きズレ修正方法
WO2014054528A1 (ja) * 2012-10-04 2014-04-10 東レ株式会社 糸条の検査方法、糸条の検査装置、糸条の製造方法、糸条パッケージおよび糸条モジュール

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2716918B2 (ja) * 1992-10-30 1998-02-18 三菱重工業株式会社 製鉄熱延ラインの鋼板キャンバ検出方法
JP2731335B2 (ja) * 1993-07-08 1998-03-25 株式会社横河ブリッジ 構造物の長尺部材の計測装置
DE19918936A1 (de) * 1999-04-27 2000-11-02 Schott Glas Verfahren und Vorrichtung zur Herstellung von Einzelglasscheiben
KR100626983B1 (ko) * 1999-06-18 2006-09-22 미쓰보시 다이야몬도 고교 가부시키가이샤 레이저를 이용한 스크라이브 방법
JP2003315278A (ja) * 2002-04-22 2003-11-06 Sekisui Chem Co Ltd フィルム欠陥検査装置
US7110910B1 (en) * 2005-06-13 2006-09-19 The Timken Company Method and apparatus for determining the straightness of tubes and bars
JP4646035B2 (ja) * 2006-04-07 2011-03-09 株式会社 日立ディスプレイズ ラビング角度測定装置、及び液晶表示装置並びに光学フィルムの製造方法
DE102007059185B4 (de) * 2007-01-15 2011-04-07 Sms Meer Gmbh Verfahren und Vorrichtung zur Messung der Geradheit von Langprodukten
WO2009054404A1 (ja) * 2007-10-23 2009-04-30 Shibaura Mechatronics Corporation 撮影画像に基づいた検査方法及び検査装置
CN102667400B (zh) * 2009-10-19 2014-11-05 新日铁住金株式会社 板材的平坦度测量方法以及使用该方法的钢板的制造方法
JP5696393B2 (ja) * 2010-08-02 2015-04-08 日本電気硝子株式会社 ガラスフィルムの割断方法
JP5617556B2 (ja) * 2010-11-22 2014-11-05 日本電気硝子株式会社 帯状ガラスフィルム割断装置及び帯状ガラスフィルム割断方法
JP2012173277A (ja) * 2011-02-24 2012-09-10 Jfe Steel Corp 形状測定装置およびこれに用いる光学フィルタ
US11179295B2 (en) * 2012-02-29 2021-11-23 Corning Incorporated Glass packaging ensuring container integrity
WO2013146023A1 (ja) * 2012-03-30 2013-10-03 東京特殊電線株式会社 積層体の検査方法、積層体検査装置および積層体製造装置
JP2013216513A (ja) * 2012-04-05 2013-10-24 Nippon Electric Glass Co Ltd ガラスフィルムの切断方法及びガラスフィルム積層体
KR101434637B1 (ko) * 2012-07-19 2014-08-26 (주) 인텍플러스 자동광학 검사장치
CN104619658B (zh) * 2012-11-13 2017-10-20 日本电气硝子株式会社 平板玻璃的制造方法以及制造装置
JP2014227298A (ja) * 2013-05-27 2014-12-08 日東電工株式会社 光学フィルムロールの製造システムおよび光学フィルムロールの製造方法
JP6129651B2 (ja) * 2013-06-11 2017-05-17 株式会社日立ハイテクノロジーズ ラインパターンの形状評価方法及びその装置
JP6331087B2 (ja) 2013-08-28 2018-05-30 日本電気硝子株式会社 ガラスフィルムリボン製造方法及びガラスフィルムリボン製造装置
US9932259B2 (en) * 2013-08-28 2018-04-03 Nippon Electric Glass Co., Ltd. Glass film ribbon manufacturing method and glass film ribbon manufacturing device
EP3088840B1 (en) * 2013-12-27 2020-05-06 AGC Inc. Shape measuring device, shape measuring method, and glass plate manufacturing method
US9588056B2 (en) * 2014-05-29 2017-03-07 Corning Incorporated Method for particle detection on flexible substrates
JP2016070836A (ja) * 2014-09-30 2016-05-09 大日本印刷株式会社 検査装置、検査方法、検査装置用のプログラム、および、検査システム
US10494289B2 (en) * 2015-01-29 2019-12-03 Corning Incorporated Methods and apparatus for fabricating respective sections from a glass web
US10088339B2 (en) * 2015-02-13 2018-10-02 Azbil Corporation Automated system and method for detecting defective edges of printed circuit boards and other objects using multiple sensors
PL3287532T3 (pl) * 2015-04-20 2023-05-22 Nippon Steel Corporation Blacha cienka ze stali elektrotechnicznej o ziarnach zorientowanych
EP3419921A1 (en) * 2016-02-25 2019-01-02 Corning Incorporated Methods and apparatus for edge surface inspection of a moving glass web

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541734A (en) * 1992-09-24 1996-07-30 Lawson-Hemphill, Inc. System for electronically grading yarn
JP2007205724A (ja) * 2006-01-30 2007-08-16 Central Glass Co Ltd ガラス基板の形状測定装置および測定方法
JP2012236675A (ja) * 2011-05-11 2012-12-06 Nippon Electric Glass Co Ltd ガラスフィルムの巻きズレ修正装置およびその巻きズレ修正方法
WO2014054528A1 (ja) * 2012-10-04 2014-04-10 東レ株式会社 糸条の検査方法、糸条の検査装置、糸条の製造方法、糸条パッケージおよび糸条モジュール

Also Published As

Publication number Publication date
US20190277623A1 (en) 2019-09-12
CN109804222B (zh) 2021-12-10
TWI759369B (zh) 2022-04-01
TW201827153A (zh) 2018-08-01
KR20190092368A (ko) 2019-08-07
US11346652B2 (en) 2022-05-31
CN109804222A (zh) 2019-05-24
JPWO2018105489A1 (ja) 2019-10-24
KR102400342B1 (ko) 2022-05-20
JP7238405B2 (ja) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2018105489A1 (ja) 帯状ガラスフィルムの品質検査方法、及び、ガラスロール
CN109778114B (zh) 用于制造蒸镀掩模的金属板和金属板的制造方法以及蒸镀掩模和蒸镀掩模的制造方法
TWI767990B (zh) 線上檢測玻璃板上或內之小瑕疵的系統及相關聯方法
TWI776852B (zh) 線上測量玻璃板光學特性的系統及相關聯方法
JP5582515B2 (ja) ガラス板の製造方法及びガラス板の歪測定装置
JP5923172B2 (ja) 板ガラスの検査ユニット及び製造設備
JP2015132611A (ja) 基板のエッジ部検査装置
KR20190104324A (ko) 유리판의 검사 방법 및 그 제조 방법 및 유리판의 검사 장치
JP2017219343A (ja) 欠陥検査装置、欠陥検査方法、フィルム製造装置及びフィルム製造方法
TW201518227A (zh) 玻璃基板生產管理系統以及玻璃基板生產管理方法
JP2001305070A (ja) シート状製品の欠陥マーキング方法および装置
JP5347661B2 (ja) 帯状体の表面検査装置、表面検査方法及びプログラム
WO2021192543A1 (ja) ガラス板製造方法及びその製造装置
TW201418799A (zh) 光學膜之製造裝置及貼合系統
JP5796430B2 (ja) 板ガラス検査装置、板ガラス検査方法、板ガラス製造装置、及び板ガラス製造方法
CN108139336B (zh) 玻璃板的制造方法
JP2016095179A (ja) 検査装置
CN106181056B (zh) 图案化基板的断开方法及断开装置
JP7415265B2 (ja) ガラスロールの製造方法
JP6289919B2 (ja) ホットメルト検査装置及び方法
JP2021519251A (ja) ガラスシートを検査する方法、ガラスシートを製造する方法、およびガラス製造装置
JP6251056B2 (ja) ホットメルト検査装置及び方法
KR102006380B1 (ko) 재단 제품의 생산 시스템
KR20200121972A (ko) 재단 제품의 생산방법 및 재단 시스템
WO2016067357A1 (ja) 計測方法および計測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554963

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197007158

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877695

Country of ref document: EP

Kind code of ref document: A1