WO2018100603A1 - 計測装置 - Google Patents

計測装置 Download PDF

Info

Publication number
WO2018100603A1
WO2018100603A1 PCT/JP2016/085299 JP2016085299W WO2018100603A1 WO 2018100603 A1 WO2018100603 A1 WO 2018100603A1 JP 2016085299 W JP2016085299 W JP 2016085299W WO 2018100603 A1 WO2018100603 A1 WO 2018100603A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
light
unit
flow rate
irradiation
Prior art date
Application number
PCT/JP2016/085299
Other languages
English (en)
French (fr)
Inventor
佐藤 充
立石 潔
渉 小野寺
敦也 伊藤
村上 智也
麻華里 縣
玄紀 安達
Original Assignee
パイオニア株式会社
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 日機装株式会社 filed Critical パイオニア株式会社
Priority to JP2018553518A priority Critical patent/JP6588172B2/ja
Priority to EP16922802.0A priority patent/EP3550270B1/en
Priority to US16/464,836 priority patent/US10578553B2/en
Priority to PCT/JP2016/085299 priority patent/WO2018100603A1/ja
Priority to CN201680091227.9A priority patent/CN110140032B/zh
Publication of WO2018100603A1 publication Critical patent/WO2018100603A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/663Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by measuring Doppler frequency shift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/7086Measuring the time taken to traverse a fixed distance using optical detecting arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells

Definitions

  • the present invention relates to a measuring apparatus and method for performing measurement based on a signal obtained by receiving light applied to a fluid flowing inside a measurement object, a computer program, and a recording medium for recording the computer program. About.
  • a device for example, a device has been proposed in which an LED (Light Emitting Diode) and a light receiving element are arranged around a medical tube, and hematocrit of blood flowing in the medical tube is measured from the received light signal ( Patent Document 1).
  • a device is proposed that irradiates a tube in which blood flows inside with a laser beam and corrects the blood flow calculated from the Doppler shift of the laser beam based on the blood concentration calculated from the amount of light received by the light receiving element. (See Patent Document 2).
  • the present invention has been made in view of the above-mentioned problems, for example, and a measuring apparatus and method, a computer program, and a recording medium that can appropriately perform measurement even when the flow velocity of a fluid changes during measurement. It is an issue to provide.
  • the measuring device of the present invention receives a first irradiation unit that irradiates light to a fluid, and light scattered by the fluid of light irradiated by the first irradiation unit.
  • a first light receiving unit that outputs one output signal
  • an acquisition unit that acquires fluid information indicating a flow rate or a flow velocity of the fluid based on the first output signal of the first light receiving unit, and based on the fluid information
  • a control unit for controlling the first irradiation unit.
  • the measurement method of the present invention receives a light scattered by the fluid of the first irradiation unit that irradiates light to the fluid and the light irradiated by the first irradiation unit. And a first light receiving unit that outputs one output signal, and obtains fluid information indicating a flow rate or a flow velocity of the fluid based on the first output signal of the first light receiving unit. And a control step of controlling the first irradiation unit based on the fluid information.
  • a computer program receives a first irradiating unit that irradiates a fluid with light and light scattered by the fluid of the light irradiated by the first irradiating unit.
  • a computer mounted on a measuring device including a first light receiving unit that outputs one output signal acquires fluid information indicating the flow rate or flow velocity of the fluid based on the first output signal of the first light receiving unit.
  • a control unit that controls the first irradiation unit based on the fluid information.
  • the computer program of the present invention is recorded on the recording medium of the present invention in order to solve the above problems.
  • the measuring apparatus receives a light scattered by a fluid of light irradiated by the first irradiation unit and outputs a first output signal by irradiating the fluid with light.
  • An acquisition unit that acquires fluid information indicating the flow rate or flow velocity of the fluid based on the first output signal of the first light receiving unit, and a control unit that controls the first irradiation unit based on the fluid information.
  • the first irradiation unit is controlled based on the fluid information indicating the flow rate or flow velocity of the fluid. Therefore, even when the fluid flow velocity changes during measurement, the measurement is appropriately performed. It can be performed.
  • control unit reduces the intensity of light applied to the fluid or the light applied to the fluid when the flow rate or flow velocity indicated by the fluid information is equal to or less than the first predetermined value.
  • the irradiation unit is controlled to stop the irradiation. According to this aspect, it is possible to determine a decrease in light intensity or stop of light irradiation relatively easily.
  • the “reduction in light intensity” may include making the light intensity zero.
  • the “first predetermined value” is a value that determines whether or not to reduce the intensity of light applied to the fluid, or whether or not to stop the light irradiation on the fluid, and is a fixed value or some physical quantity in advance. Alternatively, it is set in advance as a variable value corresponding to the parameter. Such a first predetermined value is obtained, for example, by obtaining the relationship between the energy given per unit time to the portion irradiated with the light of the fluid and the flow rate or flow velocity, and based on the obtained relationship, the unit What is necessary is just to set as the flow volume or flow velocity from which the energy provided per time becomes the upper limit of an allowable range. Note that the first predetermined value is typically set for each type of fluid.
  • the first irradiation unit may include a dimming unit capable of reducing light applied to the fluid, and the control unit may have a flow rate or flow velocity indicated by the fluid information that is equal to or less than a first predetermined value.
  • the first irradiation unit may be controlled so as to reduce the intensity of light irradiated to the fluid by the dimming means. If comprised in this way, it will become comparatively easy and can reduce the intensity
  • Specific examples of the dimming means include a liquid crystal element and a mechanical shutter.
  • the measurement apparatus receives the light scattered by the fluid of the light irradiated by the second irradiation unit and the second irradiation unit that irradiates the fluid with light, and outputs a second output signal. And a light receiving unit.
  • the control unit decreases the intensity of light applied to the fluid from the first irradiation unit or stops the light irradiation to the fluid. While controlling a 1st irradiation part, you may control a 2nd irradiation part so that the intensity
  • strength of the light irradiated to a fluid from a 2nd irradiation part is weaker than the intensity
  • the first output signal includes a beat signal resulting from the Doppler shift of light
  • the acquisition unit is based on the average frequency information and the first moment information based on the beat signal.
  • the fluid information is acquired based on the average frequency information, and the flow rate or flow velocity indicated by the fluid information is the second predetermined value. If it is less, fluid information is acquired based on the first moment information. According to this aspect, the accuracy of the flow rate or flow velocity indicated by the fluid information can be improved.
  • the measurement method includes a first irradiation unit that irradiates a fluid with light, and a first light reception unit that receives light scattered by the fluid of the light irradiated by the first irradiation unit and outputs a first output signal. And a measurement method in a measurement device comprising the unit.
  • the measurement method includes an acquisition step of acquiring fluid information indicating the flow rate or flow velocity of the fluid based on the first output signal of the first light receiving unit, a control step of controlling the first irradiation unit based on the fluid information, including.
  • the measurement method according to the embodiment similarly to the measurement device according to the above-described embodiment, even when the flow velocity of the fluid changes during the measurement, the measurement can be appropriately performed.
  • the various aspects similar to the various aspects of the measuring device which concern on embodiment mentioned above can be taken.
  • a computer program receives a light irradiated by a fluid of a first irradiation unit that irradiates light to the fluid, and outputs a first output signal by receiving light scattered by the fluid of the light irradiated by the first irradiation unit.
  • a first computer based on the fluid information, an acquisition unit for acquiring fluid information indicating a flow rate or a flow velocity of the fluid based on the first output signal of the first light receiving unit, and a computer mounted on the measurement device including the unit. It functions as a control unit that controls the irradiation unit.
  • the measurement apparatus According to the computer program according to the embodiment, if the computer program is executed by a computer mounted on the measurement apparatus, the measurement apparatus according to the above-described embodiment can be realized relatively easily. As a result, according to the computer program which concerns on embodiment, even if it is a case where the flow velocity of the fluid changes during measurement similarly to the measuring device which concerns on embodiment mentioned above, it can measure appropriately.
  • the recording medium according to the embodiment records the computer program according to the above-described embodiment.
  • a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (DVD Read Only Memory), and the like on which a computer program is recorded are read by a computer mounted on a measurement device. If the recorded computer program is executed, the measurement apparatus according to the above-described embodiment can be realized relatively easily. As a result, according to the recording medium according to the embodiment, similarly to the fluid evaluation apparatus according to the above-described embodiment, even when the flow velocity of the fluid changes during measurement, it is possible to appropriately measure.
  • a laser Doppler blood flow meter is given as an example of the measurement apparatus of the present invention.
  • An example of the fluid of the present invention is blood.
  • FIG. 1 is a block diagram showing the configuration of the laser Doppler blood flow meter according to the first embodiment.
  • the laser Doppler blood flow meter 100 includes an irradiation unit 10, a photocurrent conversion unit 21, a current-voltage conversion unit 22, a flow rate detection unit 23, and a control unit 30.
  • the irradiation unit 10 as a specific example of the “first irradiation unit” according to the present invention includes a laser driving device 11 and a light source 12 such as a laser diode.
  • the control unit 30 includes a flow rate determination unit 31 and a laser power target value setting unit 32 that sets a target value related to the laser driving device 11.
  • the laser light emitted from the light source 12 of the irradiating unit 10 is irradiated to a subject that is a living body such as a human.
  • the laser light applied to the subject is scattered by the biological tissue of the subject.
  • the photocurrent detection unit 21 such as a photodiode receives reflected light including backscattered light from the scattered laser light, and outputs a current signal corresponding to the amount of the received reflected light.
  • the current-voltage converter 22 converts the current signal output from the photocurrent detector 21 into a voltage signal, and outputs it as a photodetection signal.
  • the flow rate detection unit 23 outputs a flow rate detection signal related to fluid information indicating the blood flow rate of the subject based on the light detection signal.
  • a flow rate detection signal related to fluid information indicating the blood flow rate of the subject based on the light detection signal.
  • the comparator 311 of the flow rate determination unit 31 compares the flow rate indicated by the fluid information with a threshold value as a specific example of the “first predetermined value” according to the present invention, and outputs a comparison result.
  • the threshold value may be a fixed value or a variable value.
  • the laser power target value setting unit 32 sets a target value related to the laser driving device 11 according to the comparison result from the comparator 311.
  • the laser power target value setting unit 32 can appropriately measure the flow rate when the flow rate is relatively large (in other words, the flow velocity is relatively fast) when the comparison result indicates that the flow rate is greater than the threshold value.
  • a value indicating power is set as a target value.
  • the laser power target value setting unit 32 sets a value indicating a power lower than the current power of the laser light as the target value.
  • the “value indicating power lower than the current power” may include zero (that is, the light source 12 is turned off).
  • Control processing The control process of the irradiation unit 10 by the control unit 30 will be described with reference to the flowchart of FIG.
  • control unit 30 acquires the flow rate based on the flow rate detection signal output from the flow rate detection unit 23 (step S101). Next, the control unit 30 determines whether or not the flow rate is equal to or lower than the threshold value (corresponding to the comparison between the flow rate and the threshold value in the comparator 311 described above) (step S102).
  • step S102 If it is determined in step S102 that the flow rate is greater than the threshold value (step S102: No), the processing shown in FIG. 2 is terminated (in this case, irradiation with laser light at the current power is continued). . Then, the control part 30 performs the process of step S101 again after progress for a predetermined time. Therefore, the process shown in FIG. 2 is repeatedly executed at a cycle corresponding to a predetermined time.
  • step S102 when it is determined in step S102 that the flow rate is equal to or less than the threshold (step S102: Yes), the laser power target value setting unit 32 of the control unit 30 sets a new target value, and the laser beam Or the laser beam irradiation is stopped (step S103).
  • the control unit 30 notifies the user that the flow rate has decreased, for example, by giving a warning to an image display unit (not shown). Desirably configured to inform. If comprised in this way, when a measurement object is the blood which flows through the tube which comprises the extracorporeal circulation blood circuit of an artificial dialysis apparatus, for example, a flow volume recovery measure, a system restart, etc. can be promoted.
  • the laser Doppler blood flow meter 100 when the blood flow rate of the subject falls below the threshold value, the power of the laser light is reduced or the irradiation of the laser light is stopped. For this reason, when the blood flow rate is reduced for some reason, it is possible to prevent the laser light from giving more energy than expected to the blood of the subject.
  • the blood flow rate of the subject is larger than the threshold value, a relatively strong power laser beam is irradiated, so that even when the blood flow rate is relatively large, the flow rate can be appropriately measured. it can.
  • the blood flow rate is obtained based on the light detection signal, but the blood flow velocity may be obtained instead of or in addition to the flow rate.
  • the laser power target value setting unit 32 may set the target value according to the comparison result between the blood flow rate and the threshold value by the comparator 311.
  • the “photocurrent detection unit 21” according to the embodiment is an example of the “first light receiving unit” according to the present invention.
  • the “flow rate detection unit 23” according to the embodiment is an example of the “acquisition unit” according to the present invention.
  • the “control unit 30” according to the embodiment is an example of the “control unit” according to the present invention.
  • the flow rate determination unit 31 may be configured by a multistage comparator. In this case, if the threshold values input to the multistage comparators are different from each other, the power of the laser light can be set relatively flexibly according to the blood flow rate.
  • the laser power target value setting unit 32 may be configured to also function as the flow rate determination unit 31.
  • the laser power target value setting unit 32 may be configured to also function as the flow rate determination unit 31.
  • the power of the laser light is changed to the blood flow rate. It can be set relatively flexibly according to.
  • the flow rate detector 23 may be configured to obtain the blood flow rate from each of the average frequency and the first moment based on the light detection signal.
  • the flow rate detection unit 23 calculates the flow rate obtained from the primary moment.
  • a flow rate detection signal related to the fluid information is output.
  • the flow rate detector 23 outputs a flow rate detection signal related to fluid information indicating the flow rate obtained from the average frequency.
  • step S102 when it is determined that the flow rate is equal to or less than the threshold (step S102: Yes), the laser power target value setting unit 32 of the control unit 30 sets a new target value, The power of the laser beam is reduced or the laser beam irradiation is stopped (step S103).
  • the control unit may control to emit laser light intermittently when it is determined that the flow rate is equal to or less than the threshold value.
  • FIG. 4 is a block diagram showing a configuration of a laser Doppler blood flow meter according to the second embodiment.
  • the irradiation unit 10 a of the laser Doppler blood flow meter 200 includes a dimming element 13 that can reduce the laser light emitted from the light source 12, and a dimming element driving device 14 that drives the dimming element 13.
  • “reduction of laser light” is a concept that also includes blocking of laser light.
  • a liquid crystal element (liquid crystal shutter) or a mechanical shutter can be applied to the dimming element 13.
  • the control unit 30a includes a dimming element target value setting unit 33 that sets a target value indicating the degree of laser light reduction by the dimming element 13.
  • the dimming element target value setting unit 33 sets a target value related to the dimming element 13 according to the comparison result from the comparator 311. Specifically, the dimming element target value setting unit 33 sets a value at which the current transmission amount (passage amount) of the laser light is maintained as the target value when the comparison result indicates that the flow rate is larger than the threshold value. On the other hand, the dimming element target value setting unit 33 targets a value indicating a transmission amount (passage amount) lower than the current transmission amount (passage amount) of the laser light when the comparison result indicates that the flow rate is equal to or less than the threshold value. Set as a value.
  • the target value set by the laser power target value setting unit 32 is typically constant (that is, the power of the laser light emitted from the light source 12 is typically Constant).
  • the laser light emitted from the irradiation unit 10a is reduced or blocked by the dimming element 13 when the blood flow rate of the subject is equal to or less than the threshold value. .
  • the blood flow rate of the subject is larger than the threshold value, a relatively strong power laser beam is irradiated, so that even when the blood flow rate is relatively large, the flow rate can be appropriately measured. it can.
  • FIG. 5 is a block diagram showing a configuration of a laser Doppler blood flow meter according to the third embodiment.
  • the laser light scattered by the subject means, for example, transmitted light including forward scattered light or reflected light including back scattered light.
  • the laser Doppler blood flow meter 300 includes an irradiation unit 10b, photocurrent conversion units 21 and 24, current-voltage conversion units 22 and 25, a flow rate detection unit 23, a scattered light amount detection unit 26, and a control unit 30. Has been.
  • the irradiation unit 10b mainly emits a light source 12 that emits a laser beam for measuring a blood flow rate, a laser driving device 11 that drives the light source 12, and a laser beam that mainly measures a blood transmittance.
  • a light source 16 that emits light and a laser driving device 15 that drives the light source 16 are provided.
  • the photocurrent detector 24 receives light including scattered light scattered by the subject from the laser light emitted from the light source 16 and outputs a current signal corresponding to the amount of the received light.
  • the current-voltage conversion unit 25 converts the current signal output from the photocurrent detection unit 24 into a voltage signal and outputs the voltage signal as a photodetection signal (see “photodetection signal 2” in FIG. 5).
  • the scattered light amount detection unit 26 outputs a scattered light amount detection signal indicating the scattered light amount (in other words, the intensity of the scattered light) due to blood, based on the light detection signal output from the current-voltage conversion unit 25.
  • the description about the detail is abbreviate
  • the scattered light detection signal is input to, for example, a concentration detection unit (not shown).
  • the concentration detector detects (estimates) the blood concentration (such as a hematocrit value) from the scattered light detection signal.
  • the laser power target value setting unit 32 sets a value indicating power that can appropriately measure the flow rate when the flow rate is relatively large (in other words, the flow rate is relatively fast).
  • the target value for the laser driving device 11 is set.
  • the laser power target value setting unit 32 sets a value indicating a power lower than the current power of the laser light as the target value related to the laser driving device 11. .
  • the laser power target value setting unit 32 maintains the target value related to the laser driving device 15 regardless of the comparison result in the comparator 311.
  • the power of the laser light emitted from the light source 16 is compared with the power of the laser light emitted from the light source 12 in order to measure the flow rate or flow velocity. Even if it is extremely weak (for example, 1/10), it is possible to accurately measure the blood concentration. Therefore, in the laser Doppler blood flow meter 300, the power of the laser light emitted from the light source 16 is set to be significantly lower than the power of the laser light emitted from the light source 12 when the flow rate is larger than the threshold value. . Therefore, it is considered that there is no problem even if irradiation of the subject with the laser beam emitted from the light source 16 is continued when the flow rate is equal to or less than the threshold value.
  • the laser Doppler blood flow meter 300 when the blood flow rate of the subject is equal to or less than the threshold value, the power of the laser light emitted from the light source 12 is reduced or the laser light irradiation is performed. Stopped. For this reason, when the blood flow rate is reduced for some reason, it is possible to prevent the laser light from giving more energy than expected to the blood of the subject. On the other hand, when the blood flow rate of the subject is larger than the threshold value, relatively strong power laser light is emitted from the light source 12 and applied to the subject, so even if the blood flow rate is relatively high, The flow rate can be measured appropriately.
  • irradiation of the subject with the laser beam emitted from the light source 16 is maintained regardless of the blood flow rate.
  • the power of the laser beam emitted from the light source 12 can be changed according to the blood flow rate while maintaining the measurement of the blood transmittance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Fluid Mechanics (AREA)
  • Signal Processing (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring Volume Flow (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)

Abstract

計測装置(100、200、300)は、流体に光を照射する照射部(10、10a、10b)と、流体によって散乱された光を受光する受光部(21)と、流体の流量又は流速を示す流体情報を取得する取得部(23)と、流体情報に基づいて、照射部を制御する制御部(30)と、備える。

Description

計測装置
 本発明は、測定対象物の内部に流れる流体に照射された光を受光して得られる信号に基づいて計測を行う計測装置及び方法、コンピュータプログラム並びに、該コンピュータプログラムを記録する記録媒体の技術分野に関する。
 この種の装置として、例えば、医療用チューブの周囲にLED(Light Emitting Diode)と受光素子とを配置し、受光信号から医療用チューブ内を流れる血液のヘマトクリットを計測する装置が提案されている(特許文献1参照)。或いは、内部に血液が流れているチューブにレーザ光を照射し、受光素子の受光量から算出された血液濃度に基づいて、レーザ光のドップラーシフトから算出された血液流量を補正する装置が提案されている(特許文献2参照)。
国際公開第2004/057313号 国際公開第2013/153664号
 流体の流速が比較的早い場合、SN比(Signal to Noise Ratio)の向上を図るために、レーザ光のパワーを増加させることがある。計測中に、何らかの原因によって流体の流速が低下した場合にレーザ光のパワーが比較的強いままであると、レーザ光の照射によって流体の一部に付与されるエネルギーが比較的多くなってしまうという技術的問題点がある。特許文献1及び2では、この問題点について考慮されていない。
 本発明は、例えば上記問題点に鑑みてなされたものであり、計測中に流体の流速が変化した場合であっても、適切に計測を行うことができる計測装置及び方法、コンピュータプログラム並びに記録媒体を提供することを課題とする。
 本発明の計測装置は、上記課題を解決するために、流体に光を照射する第1照射部と、前記第1照射部によって照射された光の前記流体によって散乱された光を受光して第1出力信号を出力する第1受光部と、前記第1受光部の前記第1出力信号に基づいて、前記流体の流量又は流速を示す流体情報を取得する取得部と、前記流体情報に基づいて、前記第1照射部を制御する制御部と、を備える。
 本発明の計測方法は、上記課題を解決するために、流体に光を照射する第1照射部と、前記第1照射部によって照射された光の前記流体によって散乱された光を受光して第1出力信号を出力する第1受光部と、を備える計測装置における計測方法であって、前記第1受光部の前記第1出力信号に基づいて、前記流体の流量又は流速を示す流体情報を取得する取得工程と、前記流体情報に基づいて、前記第1照射部を制御する制御工程と、を含む。
 本発明のコンピュータプログラムは、上記課題を解決するために、流体に光を照射する第1照射部と、前記第1照射部によって照射された光の前記流体によって散乱された光を受光して第1出力信号を出力する第1受光部と、を備える計測装置に搭載されたコンピュータを、前記第1受光部の前記第1出力信号に基づいて、前記流体の流量又は流速を示す流体情報を取得する取得部と、前記流体情報に基づいて、前記第1照射部を制御する制御部と、として機能させる。
 本発明の記録媒体は、上記課題を解決するために、本発明のコンピュータプログラムが記録されている。
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。
第1実施例に係るレーザドップラー血流計の構成を示すブロック図である。 第1実施例に係る照射部の制御処理を示すフローチャートである。 流量とレーザ光のパワーとの関係の一例を示す図である。 第2実施例に係るレーザドップラー血流計の構成を示すブロック図である。 第3実施例に係るレーザドップラー血流計の構成を示すブロック図である。
 本発明の計測装置及び方法、コンピュータプログラム並びに記録媒体各々の実施形態について説明する。
 (計測装置)
 実施形態に係る計測装置は、流体に光を照射する第1照射部と、第1照射部によって照射された光の流体によって散乱された光を受光して第1出力信号を出力する第1受光部と、第1受光部の第1出力信号に基づいて、流体の流量又は流速を示す流体情報を取得する取得部と、流体情報に基づいて、第1照射部を制御する制御部と、を備える。
 実施形態に係る計測装置によれば、流体の流量又は流速を示す流体情報に基づいて第1照射部が制御されるので、計測中に流体の流速が変化した場合であっても、適切に計測を行うことができる。
 実施形態に係る計測装置の一態様では、制御部は、流体情報により示される流量又は流速が第1所定値以下である場合、流体に照射される光の強度を低下する又は流体への光の照射を停止するように照射部を制御する。この態様によれば、比較的容易に、光の強度の低下又は光の照射の停止を判定することができる。尚、「光の強度の低下」には、光の強度をゼロにすることが含まれてよい。
 「第1所定値」は、流体に照射される光の強度を低下するか否か、又は流体への光の照射を停止するか否かを決定する値であり、予め固定値として又は何らかの物理量若しくはパラメータに応じた可変値として、予め設定されている。このような第1所定値は、例えば、流体の光が照射された部分に、単位時間当たりに付与されるエネルギーと、流量又は流速との関係を求め、該求められた関係に基づいて、単位時間当たりに付与されるエネルギーが許容範囲の上限となる流量又は流速として設定すればよい。尚、第1所定値は、典型的には、流体の種類毎に設定される。
 この態様では、第1照射部は、流体に照射される光を低減可能な減光手段を有してよく、制御部は、流体情報により示される流量又は流速が第1所定値以下である場合、減光手段により流体に照射される光の強度を低下するように第1照射部を制御してよい。このように構成すれば、比較的容易にして、流体に照射される光の強度を低下することができる。尚、減光手段の具体例としては、例えば液晶素子や、機械的なシャッタ等が挙げられる。
 この態様では、当該計測装置は、流体に光を照射する第2照射部と、第2照射部によって照射された光の流体によって散乱された光を受光して第2出力信号を出力する第2受光部と、を更に備える。制御部は、流体情報により示される流量又は流速が第1所定値以下である場合、第1照射部から流体に照射される光の強度を低下する又は流体への光の照射を停止するように第1照射部を制御する一方で、第2照射部から流体に照射される光の強度を維持するように第2照射部を制御してよい。尚、第2照射部から流体に照射される光の強度は、第1照射具から流体に照射される光の強度よりも弱い。
 実施形態に係る計測装置の他の態様では、第1出力信号は、光のドップラーシフトに起因するビート信号を含んでおり、取得部は、ビート信号に基づく平均周波数情報及び一次モーメント情報に基づいて流体情報を取得し、流体情報により示される流量又は流速が第2所定値以上である場合は、平均周波数情報に基づいて流体情報を取得し、流体情報により示される流量又は流速が第2所定値未満である場合は、一次モーメント情報に基づいて流体情報を取得する。この態様によれば、流体情報により示される流量又は流速の精度を向上することができる。
 (計測方法)
 実施形態に係る計測方法は、流体に光を照射する第1照射部と、第1照射部によって照射された光の流体によって散乱された光を受光して第1出力信号を出力する第1受光部と、を備える計測装置における計測方法である。当該計測方法は、第1受光部の第1出力信号に基づいて流体の流量又は流速を示す流体情報を取得する取得工程と、流体情報に基づいて、第1照射部を制御する制御工程と、を含む。
 実施形態に係る計測方法によれば、上述した実施形態に係る計測装置と同様に、計測中に流体の流速が変化した場合であっても、適切に計測を行うことができる。尚、実施形態に係る計測方法においても、上述した実施形態に係る計測装置の各種態様と同様の各種態様を採ることができる。
 (コンピュータプログラム)
 実施形態に係るコンピュータプログラムは、流体に光を照射する第1照射部と、第1照射部によって照射された光の流体によって散乱された光を受光して第1出力信号を出力する第1受光部と、を備える計測装置に搭載されたコンピュータを、第1受光部の第1出力信号に基づいて流体の流量又は流速を示す流体情報を取得する取得部と、流体情報に基づいて、第1照射部を制御する制御部と、として機能させる。
 実施形態に係るコンピュータプログラムによれば、当該コンピュータプログラムを計測装置に搭載されたコンピュータに実行させれば、上述した実施形態に係る計測装置を比較的容易に実現することができる。この結果、実施形態に係るコンピュータプログラムによれば、上述した実施形態に係る計測装置と同様に、計測中に流体の流速が変化した場合であっても、適切に計測を行うことができる。
 (記録媒体)
 実施形態に係る記録媒体は、上述した実施形態に係るコンピュータプログラムが記録されている。実施形態に係る記録媒体の一例としての、コンピュータプログラムが記録されたCD-ROM(Compact Disc Read Only Memory)、DVD-ROM(DVD Read Only Memory)等を、計測装置に搭載されたコンピュータに読み込ませて、記録されたコンピュータプログラムを実行させれば、上述した実施形態に係る計測装置を比較的容易に実現することができる。この結果、実施形態に係る記録媒体によれば、上述した実施形態に係る流体評価装置と同様に、計測中に流体の流速が変化した場合であっても、適切に計測を行うことができる。
 本発明の計測装置に係る実施例を図面に基づいて説明する。以下の実施例では、本発明の計測装置の一例として、レーザドップラー血流計を挙げる。本発明の流体の一例として、血液を挙げる。
 <第1実施例>
 第1実施例に係るレーザドップラー血流計について、図1及び図2を参照して説明する。
 (構成)
 第1実施例に係るレーザドップラー血流計の構成について、図1を参照して説明する。図1は、第1実施例に係るレーザドップラー血流計の構成を示すブロック図である。
 図1において、レーザドップラー血流計100は、照射部10、光電流変換部21、電流電圧変換部22、流量検出部23及び制御部30を備えて構成されている。本発明に係る「第1照射部」の一具体例としての、照射部10は、レーザ駆動装置11と、例えばレーザダイオード等の光源12とを有する。制御部30は、流量判定部31と、レーザ駆動装置11に係る目標値を設定するレーザパワー目標値設定部32とを有する。
 照射部10の光源12から出射されたレーザ光は、例えば人等の生体である被検体に照射される。被検体に照射されたレーザ光は、被検体の生体組織により散乱される。例えばフォトダイオード等である光電流検出部21は、散乱されたレーザ光のうち後方散乱光を含む反射光を受光して、受光した反射光の光量に応じた電流信号を出力する。電流電圧変換部22は、光電流検出部21から出力された電流信号を電圧信号に変換し、光検出信号として出力する。
 流量検出部23は、光検出信号に基づいて、被検体の血液の流量を示す流体情報に係る流量検出信号を出力する。尚、光検出信号に基づく流量の求め方については、例えば光検出信号に対して高速フーリエ変換等の周波数解析を行うことにより得られる平均周波数や1次モーメントから流量を求める方法等、既存の各種方法を適用可能であるので、その詳細についての説明は省略する。
 流量判定部31の比較機311は、流体情報により示される流量と、本発明に係る「第1所定値」の一具体例としての、閾値とを比較して比較結果を出力する。ここで、閾値は、固定値であってもよいし、可変値であってもよい。レーザパワー目標値設定部32は、比較機311からの比較結果に応じて、レーザ駆動装置11に係る目標値を設定する。
 具体的には、レーザパワー目標値設定部32は、流量が閾値より大きいという比較結果である場合、流量が比較的多い(言い換えれば、流速が比較的早い)ときに適切に流量を計測可能なパワーを示す値を、目標値として設定する。他方、レーザパワー目標値設定部32は、流量が閾値以下であるという比較結果である場合、レーザ光の現在のパワーよりも低いパワーを示す値を目標値として設定する。ここで、「現在のパワーよりも低いパワーを示す値」には、ゼロ(即ち、光源12の消灯)が含まれてよい。
 (制御処理)
 制御部30による照射部10の制御処理について、図2のフローチャートを参照して説明を加える。
 図2において、先ず、制御部30は、流量検出部23から出力された流量検出信号に基づいて、流量を取得する(ステップS101)。次に、制御部30は、流量が閾値以下であるか否かを判定する(上述した比較機311における流量と閾値との比較に相当)(ステップS102)。
 ステップS102の判定において、流量が閾値より大きいと判定された場合(ステップS102:No)、図2に示す処理は終了される(この場合、現在のパワーでのレーザ光の照射が継続される)。その後、制御部30は、所定時間経過後に再びステップS101の処理を行う。従って、図2に示す処理は、所定時間に応じた周期で繰り返し実行される。
 他方、ステップS102の判定において、流量が閾値以下であると判定された場合(ステップS102:Yes)、制御部30のレーザパワー目標値設定部32は、新たな目標値を設定して、レーザ光のパワーを低減する又はレーザ光の照射を停止させる(ステップS103)。尚、レーザ光のパワーが低減された又はレーザ光の照射が停止された場合、制御部30は、例えば画像表示部(図示せず)に警告を出す等して流量が低下したことをユーザーに知らせるように構成されることが望ましい。このように構成すれば、測定対象が、例えば人工透析機器の体外循環血液回路を構成するチューブ内を流れる血液である場合、流量回復措置やシステムのリスタート等を促すことができる。
 本実施例に係るレーザドップラー血流計100によれば、被検体の血液の流量が閾値以下となった場合に、レーザ光のパワーが低減される又はレーザ光の照射が停止される。このため、何らかの原因により血液の流量が低下した場合に、被検体の血液に想定以上のエネルギーがレーザ光により付与されることを防止することができる。他方で、被検体の血液の流量が閾値より大きい場合は、比較的強いパワーのレーザ光が照射されるので、血液の流量が比較的大きい場合であっても、適切に流量を計測することができる。
 尚、本実施例では、光検出信号に基づいて血液の流量が求められるが、流量に代えて又は加えて血液の流速が求められてよい。この場合、レーザパワー目標値設定部32は、比較機311による血液の流速と閾値との比較結果に応じて目標値を設定してよい。
 実施例に係る「光電流検出部21」は、本発明に係る「第1受光部」の一例である。実施例に係る「流量検出部23」は、本発明に係る「取得部」の一例である。実施例に係る「制御部30」は、本発明に係る「制御部」の一例である。
 (第1変形例)
 流量判定部31は、多段の比較機により構成されてよい。この場合、多段の比較機に入力される閾値を互いに異ならせれば、レーザ光のパワーを血液の流量に応じて比較的柔軟に設定することができる。
 或いは、レーザパワー目標値設定部32が、流量判定部31の機能を兼ねるように構成されてよい。この場合、レーザパワー目標値設定部32のメモリ(図示せず)に、例えば図3に示すような流量とパワーとの関係を規定するマップを予め格納すれば、レーザ光のパワーを血液の流量に応じて比較的柔軟に設定することができる。
 (第2変形例)
 流量検出部23は、光検出信号に基づく平均周波数及び1次モーメント各々から血液の流量を求めるように構成されてよい。この場合、流量検出部23は、1次モーメントから求めた流量が、本発明に係る「第2所定値」の一具体例としての、所定値より小さいときには、該1次モーメントから求めた流量を示す流体情報に係る流量検出信号を出力する。他方、流量検出部23は、1次モーメントから求めた流量が、所定値より大きいときには、平均周波数から求めた流量を示す流体情報に係る流量検出信号を出力する。
 これは、流体の流量が比較的大きい(流速が速い)場合には、一次モーメントを利用するよりも、平均周波数を利用して流量又は流速を求めた方が精度が高く、流体の流量が比較的小さい(流速が遅い)場合には、平均周波数を利用して流量又は流速を求めるよりも、一次モーメントを利用して流量又は流速を求めた方が精度が高いという実験結果が得られているためである。
 (第3変形例)
 上述の第1実施例では、流量が閾値以下であると判定された場合(ステップS102:Yes)には、制御部30のレーザパワー目標値設定部32は、新たな目標値を設定して、レーザ光のパワーを低減する又はレーザ光の照射を停止させる(ステップS103)こととした。これに代えて、制御部は、流量が閾値以下であると判定された場合には、間歇的にレーザ光を発光させるように制御するようにしてもよい。
 <第2実施例>
 レーザドップラー血流計に係る第2実施例について図4を参照して説明する。第2実施例では、照射部及び制御部の構成の一部が異なる以外は、上述した第1実施例と同様である。よって、第2実施例について、第1実施例と重複する説明を適宜省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ図4を参照して説明する。図4は、第2実施例に係るレーザドップラー血流計の構成を示すブロック図である。
 (構成)
 図4において、レーザドップラー血流計200の照射部10aは、光源12から出射されたレーザ光を低減可能な減光素子13と、該減光素子13を駆動する減光素子駆動装置14とを有する。ここで、「レーザ光の低減」は、レーザ光の遮断も含む概念である。減光素子13には、例えば、液晶素子(液晶シャッタ)や機械的なシャッタを適用可能である。制御部30aは、減光素子13によるレーザ光の低減の程度を示す目標値を設定する減光素子目標値設定部33を有する。
 減光素子目標値設定部33は、比較機311からの比較結果に応じて、減光素子13に係る目標値を設定する。具体的には、減光素子目標値設定部33は、流量が閾値より大きいという比較結果である場合、レーザ光の現在の透過量(通過量)が維持される値を目標値として設定する。他方、減光素子目標値設定部33は、流量が閾値以下であるという比較結果である場合、レーザ光の現在の透過量(通過量)よりも低い透過量(通過量)を示す値を目標値として設定する。
 尚、本実施例では、レーザパワー目標値設定部32により設定される目標値は、典型的には、一定である(即ち、光源12から出射されるレーザ光のパワーは、典型的には、一定である)。
 本実施例に係るレーザドップラー血流計200によれば、被検体の血液の流量が閾値以下となった場合に、減光素子13により照射部10aから出射されるレーザ光が低減又は遮断される。このため、何らかの原因により血液の流量が低下した場合に、被検体の血液に想定以上のエネルギーがレーザ光により付与されることを防止することができる。他方で、被検体の血液の流量が閾値より大きい場合は、比較的強いパワーのレーザ光が照射されるので、血液の流量が比較的大きい場合であっても、適切に流量を計測することができる。
 尚、本実施例においても、上述した第1実施例に係る第1及び第2変形例と同様の構成を採ることができる。
 <第3実施例>
 レーザドップラー血流計に係る第3実施例について図5を参照して説明する。第3実施例では、照射部の構成の一部が異なること、被検体により散乱されたレーザ光の光量を計測する構成が追加されたこと以外は、上述した第1実施例と同様である。よって、第3実施例について、第1実施例と重複する説明を適宜省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ図5を参照して説明する。図5は、第3実施例に係るレーザドップラー血流計の構成を示すブロック図である。
 尚、被検体により散乱されたレーザ光は、例えば、前方散乱光を含む透過光又は後方散乱光を含む反射光等を意味する。
 (構成)
 図5において、レーザドップラー血流計300は、照射部10b、光電流変換部21及び24、電流電圧変換部22及び25、流量検出部23、散乱光量検出部26並びに制御部30を備えて構成されている。
 照射部10bは、主に血液の流量を計測するためのレーザ光を出射する光源12と、該光源12を駆動するレーザ駆動装置11と、主に血液の透過率を計測するためのレーザ光を出射する光源16と、該光源16を駆動するレーザ駆動装置15とを有する。
 光電流検出部24は、光源16から出射されたレーザ光のうち被検体において散乱された散乱光を含む光を受光して、受光した光の光量に応じた電流信号を出力する。電流電圧変換部25は、光電流検出部24から出力された電流信号を電圧信号に変換し、光検出信号(図5の“光検出信号2”参照)として出力する。散乱光量検出部26は、電流電圧変換部25から出力された光検出信号に基づいて、血液による散乱光量(言い換えれば、散乱光の強度)を示す散乱光量検出信号を出力する。尚、光検出信号に基づく散乱光量の求め方については、既存の各種方法を適用可能であるので、その詳細についての説明は省略する。
 散乱光検出信号は、例えば、図示しない濃度検出部に入力される。当該濃度検出部は、散乱光検出信号から、血液の濃度(ヘマトクリット値等)を検出(推定)する。
 レーザパワー目標値設定部32は、流量が閾値より大きいという比較結果である場合、流量が比較的多い(言い換えれば、流速が比較的早い)ときに適切に流量を計測可能なパワーを示す値を、レーザ駆動装置11に係る目標値として設定する。他方、レーザパワー目標値設定部32は、流量が閾値以下であるという比較結果である場合、レーザ光の現在のパワーよりも低いパワーを示す値を、レーザ駆動装置11に係る目標値として設定する。
 レーザパワー目標値設定部32は、比較機311における比較結果にかかわらず、レーザ駆動装置15に係る目標値は維持する。ここで、散乱光量検出信号を用いて血液の濃度を計測する場合、光源16から出射されるレーザ光のパワーが、流量又は流速を計測するために光源12から出射されるレーザ光のパワーに比べて著しく弱くても(例えば10分の1)、血液の濃度を精度良く計測することが可能である。このため、当該レーザドップラー血流計300では、光源16から出射されるレーザ光のパワーは、流量が閾値より大きい場合に光源12から出射されるレーザ光のパワーに比べて著しく低く設定されている。従って、流量が閾値以下である場合に、光源16から出射されるレーザ光の被検体への照射が継続されたとしても、問題はないと考えられる。
 本実施例に係るレーザドップラー血流計300によれば、被検体の血液の流量が閾値以下となった場合に、光源12から出射されるレーザ光のパワーが低減される又はレーザ光の照射が停止される。このため、何らかの原因により血液の流量が低下した場合に、被検体の血液に想定以上のエネルギーがレーザ光により付与されることを防止することができる。他方で、被検体の血液の流量が閾値より大きい場合は、比較的強いパワーのレーザ光が光源12から出射され被検体に照射されるので、血液の流量が比較的大きい場合であっても、適切に流量を計測することができる。
 本実施例では特に、光源16から出射されるレーザ光の被検体への照射は、血液の流量にかかわらず維持される。このため、レーザドップラー血流計300によれば、血液の透過率の計測を維持しつつ、血液の流量に応じて光源12から出射されるレーザ光のパワーを変更することができる。
 尚、本実施例においても、上述した第1実施例に係る第1及び第2変形例と同様の構成を採ることができる。
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う計測装置及び方法、コンピュータプログラム並びに方法もまた本発明の技術的範囲に含まれるものである。
 10、10a、10b…照射部、11、15…レーザ駆動装置、12、16…光源、13…減光素子、14…減光素子駆動装置、21、24…光電流検出部、22、25…電流電圧変換部、23…流量検出部、26…散乱光量検出部、30、30a…制御部、31…流量判定部、32…レーザパワー目標値設定部、33…減光素子目標値設定部、100、200、300…レーザドップラー血流計

Claims (8)

  1.  流体に光を照射する第1照射部と、
     前記第1照射部によって照射された光の前記流体によって散乱された光を受光して第1出力信号を出力する第1受光部と、
     前記第1受光部の前記第1出力信号に基づいて、前記流体の流量又は流速を示す流体情報を取得する取得部と、
     前記流体情報に基づいて、前記第1照射部を制御する制御部と、
     を備えることを特徴とする計測装置。
  2.  前記制御部は、前記流体情報により示される流量又は流速が第1所定値以下である場合、前記流体に照射される光の強度を低下する又は前記流体への光の照射を停止するように前記第1照射部を制御することを特徴とする請求項1に記載の計測装置。
  3.  前記第1照射部は、前記流体に照射される光を低減可能な減光手段を有し、
     前記制御部は、前記流体情報により示される流量又は流速が前記第1所定値以下である場合、前記減光手段により前記流体に照射される光の強度を低下するように前記第1照射部を制御する
     ことを特徴とする請求項2に記載の計測装置。
  4.  前記流体に光を照射する第2照射部と、
     前記第2照射部によって照射された光の前記流体によって散乱された光を受光して第2出力信号を出力する第2受光部と、
     を更に備え、
     前記制御部は、前記流体情報により示される流量又は流速が前記第1所定値以下である場合、前記第1照射部から前記流体に照射される光の強度を低下する又は前記流体への光の照射を停止するように前記第1照射部を制御する一方で、前記第2照射部から前記流体に照射される光の強度を維持するように前記第2照射部を制御する
     ことを特徴とする請求項2又は3に記載の計測装置。
  5.  前記第1出力信号は、光のドップラーシフトに起因するビート信号を含んでおり、
     前記取得部は、
     前記ビート信号に基づく平均周波数情報及び一次モーメント情報に基づいて前記流体情報を取得し、
     前記流体情報により示される流量又は流速が第2所定値以上である場合は、前記平均周波数情報に基づいて前記流体情報を取得し、
     前記流体情報により示される流量又は流速が前記第2所定値未満である場合は、前記一次モーメント情報に基づいて前記流体情報を取得する
     ことを特徴とする請求項1に記載の計測装置。
  6.  流体に光を照射する第1照射部と、前記第1照射部によって照射された光の前記流体によって散乱された光を受光して第1出力信号を出力する第1受光部と、を備える計測装置における計測方法であって、
     前記第1受光部の前記第1出力信号に基づいて、前記流体の流量又は流速を示す流体情報を取得する取得工程と、
     前記流体情報に基づいて、前記第1照射部を制御する制御工程と、
     を含むことを特徴とする計測方法。
  7.  流体に光を照射する第1照射部と、前記第1照射部によって照射された光の前記流体によって散乱された光を受光して第1出力信号を出力する第1受光部と、を備える計測装置に搭載されたコンピュータを、
     前記第1受光部の前記第1出力信号に基づいて、前記流体の流量又は流速を示す流体情報を取得する取得部と、
     前記流体情報に基づいて、前記照射部を制御する制御部と、
     として機能させることを特徴とするコンピュータプログラム。
  8.  請求項7に記載のコンピュータプログラムが記録されていることを特徴とする記録媒体。
PCT/JP2016/085299 2016-11-29 2016-11-29 計測装置 WO2018100603A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018553518A JP6588172B2 (ja) 2016-11-29 2016-11-29 計測装置
EP16922802.0A EP3550270B1 (en) 2016-11-29 2016-11-29 Measurement device
US16/464,836 US10578553B2 (en) 2016-11-29 2016-11-29 Measuring apparatus
PCT/JP2016/085299 WO2018100603A1 (ja) 2016-11-29 2016-11-29 計測装置
CN201680091227.9A CN110140032B (zh) 2016-11-29 2016-11-29 测量设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085299 WO2018100603A1 (ja) 2016-11-29 2016-11-29 計測装置

Publications (1)

Publication Number Publication Date
WO2018100603A1 true WO2018100603A1 (ja) 2018-06-07

Family

ID=62241398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085299 WO2018100603A1 (ja) 2016-11-29 2016-11-29 計測装置

Country Status (5)

Country Link
US (1) US10578553B2 (ja)
EP (1) EP3550270B1 (ja)
JP (1) JP6588172B2 (ja)
CN (1) CN110140032B (ja)
WO (1) WO2018100603A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11771335B2 (en) * 2017-08-23 2023-10-03 Sony Corporation Bio-optical measuring apparatus
US10863600B2 (en) 2018-06-19 2020-12-08 Power Integrations, Inc. Power converter with current matching
CN111856065B (zh) * 2020-06-16 2021-09-03 清华大学 流体测量方法、装置和存储介质
CN112014278B (zh) * 2020-08-14 2024-01-02 光力科技股份有限公司 一种便携式气体参数测量模块及便携式气体参数测量仪

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206430A (ja) * 1989-02-03 1990-08-16 Canon Inc 血流計
WO2004057313A1 (en) 2002-12-20 2004-07-08 Optoq Ab Method and device for measurements in blood
WO2013153664A1 (ja) 2012-04-13 2013-10-17 パイオニア株式会社 流体評価装置及び方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1359151A (en) * 1970-07-06 1974-07-10 Coulthard J Measurement of fluid flow rates
US4596254A (en) * 1984-12-18 1986-06-24 Tsi Research Associates Limited Partnership Laser Doppler flow monitor
US4988190A (en) * 1990-01-05 1991-01-29 Trustees Of Princeton University Absorption line filter window and method for velocity measurements by light scattering
US5737439A (en) * 1996-10-29 1998-04-07 Smarttouch, Llc. Anti-fraud biometric scanner that accurately detects blood flow
US6731967B1 (en) * 2001-07-16 2004-05-04 Pacesetter, Inc. Methods and devices for vascular plethysmography via modulation of source intensity
WO2005080923A1 (en) * 2004-02-13 2005-09-01 Combustion Dynamics Corp. Flow meter
US20100056887A1 (en) * 2006-11-27 2010-03-04 Pioneer Corporation Emission sensor device and bioinformation detecting method
US20110190641A1 (en) * 2008-08-28 2011-08-04 Kiyoshi Tateishi Biological information measurement apparatus
JP4600554B2 (ja) * 2008-09-18 2010-12-15 富士ゼロックス株式会社 計測装置
JP4600555B2 (ja) * 2008-09-18 2010-12-15 富士ゼロックス株式会社 計測装置
US8069719B2 (en) * 2009-02-11 2011-12-06 Ecolab Usa Inc. Gear flow meter with optical sensor
US9151646B2 (en) * 2011-12-21 2015-10-06 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
JP5523908B2 (ja) * 2010-04-13 2014-06-18 三菱重工業株式会社 流量測定装置及び流速測定装置
JP5244973B2 (ja) * 2010-06-24 2013-07-24 パイオニア株式会社 光検出装置及び流体計測装置
US8767214B2 (en) * 2011-10-06 2014-07-01 Nordson Corporation Powder flow detection
WO2013157142A1 (ja) * 2012-04-20 2013-10-24 パイオニア株式会社 血圧推定装置及び方法
US10070797B2 (en) * 2012-12-05 2018-09-11 Pioneer Corporation Measuring apparatus, probe portion, and connecting cable
US9527240B2 (en) * 2013-03-15 2016-12-27 Stratasys, Inc. Additive manufacturing system and method for printing three-dimensional parts using velocimetry
WO2015033469A1 (ja) * 2013-09-09 2015-03-12 パイオニア株式会社 流速検出装置及び流速検出方法
GB2520518A (en) * 2013-11-22 2015-05-27 Fluke Electronics Corp Optical flow measuring device and method of operation
US10178959B1 (en) * 2014-07-10 2019-01-15 Verily Life Sciences Llc Non-invasive flow monitoring
JP2016096848A (ja) * 2014-11-18 2016-05-30 京セラ株式会社 測定装置及び測定方法
US9839365B1 (en) * 2014-11-24 2017-12-12 Verily Life Sciences Llc Applications of vasculature mapping using laser speckle imaging
US9931040B2 (en) * 2015-01-14 2018-04-03 Verily Life Sciences Llc Applications of hyperspectral laser speckle imaging
CN104656896B (zh) * 2015-02-10 2018-09-18 北京智谷睿拓技术服务有限公司 确定输入信息的方法和设备
JP2016217860A (ja) * 2015-05-20 2016-12-22 キヤノン株式会社 制御装置、測定装置、制御方法、プログラム、記憶媒体
CN105258745B (zh) * 2015-11-09 2018-03-27 山东省科学院激光研究所 井下光纤分布式流量监测系统
JP6927046B2 (ja) * 2015-12-04 2021-08-25 ソニーグループ株式会社 情報処理装置、スペックルイメージングシステム、及び情報処理方法
CN105698900B (zh) * 2016-02-25 2019-02-19 佛山市南海区广工大数控装备协同创新研究院 激光高温液体高度测控系统及方法
JP6988061B2 (ja) * 2016-07-15 2022-01-05 富士フイルムビジネスイノベーション株式会社 生体情報測定装置、及び生体情報測定プログラム
JP6907475B2 (ja) * 2016-07-15 2021-07-21 富士フイルムビジネスイノベーション株式会社 生体情報測定装置、及び生体情報測定プログラム
JP7024261B2 (ja) * 2017-08-31 2022-02-24 富士フイルムビジネスイノベーション株式会社 光学測定装置及び光学測定プログラム
US11131627B2 (en) * 2018-02-07 2021-09-28 Artium Technologies, Inc. Fuel contamination monitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206430A (ja) * 1989-02-03 1990-08-16 Canon Inc 血流計
WO2004057313A1 (en) 2002-12-20 2004-07-08 Optoq Ab Method and device for measurements in blood
WO2013153664A1 (ja) 2012-04-13 2013-10-17 パイオニア株式会社 流体評価装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550270A4

Also Published As

Publication number Publication date
JPWO2018100603A1 (ja) 2019-10-17
CN110140032B (zh) 2021-07-20
EP3550270A4 (en) 2020-08-05
EP3550270A1 (en) 2019-10-09
JP6588172B2 (ja) 2019-10-09
US20190293557A1 (en) 2019-09-26
US10578553B2 (en) 2020-03-03
CN110140032A (zh) 2019-08-16
EP3550270B1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP6588172B2 (ja) 計測装置
JP5806390B2 (ja) 流体評価装置及び方法
US8772739B2 (en) Fluorescence detection device and fluorescence detection method
JP6039088B2 (ja) 流速検出装置及び流速検出方法
US8642976B2 (en) Fluorescence detecting device and fluorescence detecting method
JP2013520646A (ja) 蛍光測定
JP2012179212A (ja) 成分濃度測定方法および装置
JP2014501541A (ja) 血管壁のアーティファクトの検出
JP2018007894A (ja) 測定装置、測定方法及び測定プログラム
JP6291557B2 (ja) 流体評価装置及び方法
JP2017113320A (ja) 流体評価装置及び方法、コンピュータプログラム並びに記録媒体
JP2016027337A (ja) 流体評価装置及び方法
JPWO2015129025A1 (ja) 計測装置、パルスオキシメータ、計測方法、コンピュータプログラム及び記録媒体
JP2018163163A (ja) 気泡検出器
JP6797671B2 (ja) 計測装置、計測方法、コンピュータプログラム及び記録媒体
JP2021067696A (ja) 流体評価装置及び方法
JP2019168465A (ja) 流体評価装置及び方法
JP2018105879A (ja) 流体評価装置及び方法
WO2013161007A1 (ja) 濃度算出装置及び方法
US11486892B2 (en) Fluid measuring device
JP2015021932A (ja) 気泡検出器及び気泡検出方法
JP2020025733A (ja) 血行検出装置及び血行検出方法
JP2021137606A (ja) 計測装置
JP2020091299A (ja) 気泡検出器
JP5351848B2 (ja) 成分濃度測定方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553518

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016922802

Country of ref document: EP

Effective date: 20190701