WO2018097165A1 - ダイカスト金型の製造方法およびダイカスト金型 - Google Patents

ダイカスト金型の製造方法およびダイカスト金型 Download PDF

Info

Publication number
WO2018097165A1
WO2018097165A1 PCT/JP2017/041951 JP2017041951W WO2018097165A1 WO 2018097165 A1 WO2018097165 A1 WO 2018097165A1 JP 2017041951 W JP2017041951 W JP 2017041951W WO 2018097165 A1 WO2018097165 A1 WO 2018097165A1
Authority
WO
WIPO (PCT)
Prior art keywords
hardness
water cooling
die
cooling hole
hole
Prior art date
Application number
PCT/JP2017/041951
Other languages
English (en)
French (fr)
Inventor
秀治 稲垣
雅稔 鳴海
春幸 森
Original Assignee
小山鋼材株式会社
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小山鋼材株式会社, 日立金属株式会社 filed Critical 小山鋼材株式会社
Priority to JP2018552609A priority Critical patent/JP6754844B2/ja
Priority to CN201780072262.0A priority patent/CN110072650A/zh
Publication of WO2018097165A1 publication Critical patent/WO2018097165A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies

Definitions

  • the present invention relates to a die casting mold manufacturing method and a die casting mold.
  • Patent Document 1 discloses a mold heat treatment method.
  • the mold is provided with water cooling holes inside the mold in order to reduce the temperature of the molding surface.
  • thermal stress is generated in the water cooling holes.
  • the steel material rusts on the surface forming the water-cooled holes, hydrogen tends to enter, and hydrogen embrittlement tends to occur.
  • Patent Document 1 proposes to perform annealing treatment locally on the water cooling holes provided in the mold. Thereby, while maintaining the hardness of the mold itself, the hardness is lowered only around the water-cooled holes to make it difficult for cracks to occur around the water-cooled holes.
  • the bottom of the water-cooled hole when drilled with a drill has a center position corresponding to the tip of the drill (that is, the deepest position of the water-cooled hole) and a position around the center corresponding to the outer peripheral corner of the drill.
  • a corner resulting from the shape of the drill tip is formed. And it is easy to produce a crack from this corner. Therefore, in order to eliminate this corner and make it difficult for cracks to occur, it is rounded so that the bottom surface is hemispherical.
  • the shape of the bottom surface of the water-cooled hole after the rounding process is generally set so that the position of the height of the sphere is approximately D / 2 from the center of the bottom surface, where D is the inner diameter of the water-cooled hole. Hemisphere. And in order to make it harder to produce a crack from the bottom face of a water cooling hole, I want to perform softening heat processing to the bottom face of the water cooling hole which consists of said hemispherical surface. Therefore, the present invention provides a die casting mold manufacturing method and a die casting mold capable of reliably performing a softening heat treatment on a region including the bottom surface of a water cooling hole.
  • a method for producing a die-casting die provided with a bottomed water cooling hole having an inner diameter D The hole surface forming the water cooling hole has a bottom surface forming the bottom of the water cooling hole and a side surface extending from the bottom surface toward the inlet,
  • a method for manufacturing a die casting mold which includes a heat treatment step in which superheated steam is fed from the tip of a pipe having an outer diameter d inserted into the water cooling hole toward the bottom surface, and the bottom surface is heated and softened.
  • the separation distance between the tip of the tube and the deepest position of the bottom surface is defined as h, 0.5 ⁇ (Dd) /2 ⁇ h ⁇ 1.5 ⁇ (Dd) / 2
  • the heat treatment step may be performed while holding the tip of the tube at a position.
  • the tube tip may be frustoconical.
  • the water cooling holes may be formed by processing the bottom surface into a substantially hemispherical shape.
  • a die-casting die provided with a bottomed water-cooled hole with an inner diameter D
  • the hole surface forming the water cooling hole has a bottom surface forming the bottom of the water cooling hole and a side surface extending from the bottom surface toward the inlet
  • a die casting mold is provided in which the hardness H1 at the deepest position of the bottom surface is lower than the entrance hardness H2 of the inlet of the water cooling hole.
  • the hardness H3 of the region from the deepest position of the bottom surface to the position of the height D may be lower than the entrance hardness H2.
  • the hardness H12 inside the mold 1 mm in the direction perpendicular to the radial direction of the water cooling hole from the deepest position of the bottom surface to the inside of the mold is compared with the C-scale Rockwell hardness HRC. When it does, you may be lower than 95% of the said entrance hardness H2.
  • the hardness H15 inside the mold at a position 5 mm in the direction perpendicular to the radial direction of the water cooling hole from the deepest position of the bottom surface toward the inside of the mold is compared with the C-scale Rockwell hardness HRC. In this case, it may be higher than 95% of the entrance hardness H2.
  • the hardness H33 in the mold at a position 3 mm in the radial direction of the water cooling hole from the side surface at the height D / 2 from the deepest position of the bottom surface toward the mold interior is C-scale Rockwell. When compared with the hardness HRC, it may be lower than 95% of the hardness H2 of the inlet.
  • the hardness H37 inside the mold at a position 7 mm in the radial direction of the water cooling hole from the side surface at the height D / 2 from the deepest position of the bottom surface to the inside of the mold is C-scale Rockwell. It may be higher than 95% of the hardness H2 of the inlet when compared with the hardness HRC.
  • a region that is 95% or less of the entrance hardness H2 is called a softening region
  • the thickness of the softened region in the direction perpendicular to the radial direction of the water cooling hole from the deepest position of the bottom surface is referred to as D1
  • D2 the thickness of the softened region in the radial direction of the water cooling holes from the side surface at a height D / 2 from the deepest position of the bottom surface
  • D1 may be smaller than the thickness D2.
  • the bottom surface may be substantially hemispherical.
  • a die casting mold manufacturing method and a die casting mold capable of reliably performing a softening heat treatment on a region including the bottom surface of the water cooling hole.
  • (A) is the top view (figure seen from the entrance side of a water-cooling hole) of the die-casting die of this embodiment
  • (b) is the side view.
  • It is a mimetic diagram at the time of performing the heat treatment process of the die-casting die concerning the embodiment of the present invention.
  • It is sectional drawing which shows a mode that the pipe
  • It is a figure which shows the dimension of each part of a test piece provided with the water cooling hole of (phi) 15, and a temperature measurement point.
  • (A) is sectional drawing of the test piece along the central axis of a water cooling hole
  • (b) is sectional drawing of the test piece of the surface orthogonal to the central axis of a water cooling hole.
  • It is a radar chart which shows the hardness in the cross section B located in 7.5 mm upwards from the deepest position of the bottom face of a water cooling hole.
  • It is a radar chart which shows the hardness in the cross section C located 15 mm upwards from the deepest position of the bottom face of a water cooling hole.
  • FIG. 1 shows a substantially rectangular parallelepiped test piece of a die casting mold 1 of the present embodiment.
  • FIG. 1A is a view of the die casting mold 1 as viewed from the inlet side (upper surface 1b) of the water cooling hole
  • FIG. 1B is a side view thereof.
  • the actual die casting mold 1 has a complicated shape, in the following description, this rectangular parallelepiped test piece is referred to as the die casting mold 1.
  • the die casting mold 1 is made of steel.
  • the lower surface of the die casting mold 1 forms the molding surface 1a.
  • the molding surface 1a constitutes a cavity.
  • the shape of the molding surface 1a is transferred to the surface of the product manufactured by die casting.
  • the die-casting die 1 is provided with water cooling holes 2.
  • the water cooling hole 2 is opened on the upper surface 1 b of the die casting mold 1.
  • the water cooling hole 2 is a bottomed hole that extends downward from the upper surface 1b (that is, the molding surface 1a).
  • the surface of the die casting mold 1 constituting the water cooling hole 2 is referred to as a hole surface 3.
  • a hole surface 3 a part forming the bottom of the water cooling hole 2 is called a bottom surface 4, and a part extending from the bottom surface 4 toward the inlet is called a side surface 5.
  • the water cooling hole 2 is composed of a hemispherical region (hemispherical region) including the bottom surface 4 and a substantially cylindrical region (cylindrical region) positioned above the hemispherical region.
  • the diameter (inner diameter) of the water cooling hole 2 is referred to as D.
  • a cooling pipe is inserted into the water cooling hole 2 from the inlet 6, and a cooling medium such as water is poured into the water cooling hole 2 to cool the die casting mold 1.
  • FIG. 2 is a schematic view when performing a heat treatment step of the die casting mold 1 according to the embodiment of the present invention.
  • the tube 10 is inserted into the water cooling hole 2 of the die casting mold 1.
  • the end of the tube 10 is connected to the superheated steam generator 11.
  • Superheated steam is fed from the tip of the tube 10 toward the bottom surface 4 of the water cooling hole 2.
  • at least the bottom surface 4 is warmed by the superheated steam, and the hole surface 3 of the die casting mold 1 including the bottom surface 4 is softened.
  • the hardness H1 at the deepest position A is set lower than the hardness H2 of the inlet 6 of the water cooling hole 2.
  • the superheated steam is, for example, steam having a high temperature that reaches about 1200 ° C.
  • Superheated steam has a larger heat capacity per unit volume than air, and is excellent in thermal conductivity. For this reason, when the superheated steam ejected from the pipe 10 contacts the bottom surface 4, the amount of heat of the superheated steam is immediately transmitted to the bottom surface 4 and can quickly heat the bottom surface 4 to the softening temperature.
  • the tip of the tube 10 toward the bottom surface 4 it is easy to raise the temperature of the bottom surface 4, and the heat treatment of the bottom surface 4 can be performed reliably.
  • the superheated steam of this embodiment has very high thermal conductivity.
  • the superheated steam having such high thermal conductivity contacts the hole surface 3 while moving, and quickly heats to the target temperature with the extreme surface layer of the hole surface 3 aimed. It is possible to increase the temperature by aiming at the surface layer without increasing the temperature to a deep region inside the mold. For this reason, the heat treatment process of the present embodiment is very convenient for the requirement to reduce only the hardness near the hole surface 3 of the water-cooled hole 2 without reducing the hardness of the entire mold.
  • the heat treatment process of this embodiment is excellent in that only the surface layer can be heated to the target temperature in a short time and softened because the deep region inside the mold is not heated.
  • the bottom surface 4 cannot be efficiently heated. Therefore, it is difficult to reduce the hardness of the bottom surface 4 by all means.
  • the hardness H1 of the bottom surface 4 can be reduced easily and preferentially.
  • FIG. 3 is a cross-sectional view showing a state in which the pipe 10 is inserted into the water cooling hole 2.
  • the tube 10 is inserted into the water cooling hole 2 so that the distance from the tip of the tube 10 to the deepest position A of the bottom surface 4 of the water cooling hole 2 is h.
  • This distance h uses the diameter (inner diameter) D of the water-cooled hole 2 and the diameter (outer diameter) d of the pipe 10 to hold the tip of the pipe 10 at a position satisfying the following formula (1) and perform the heat treatment process.
  • 0.5 ⁇ (Dd) /2 ⁇ h ⁇ 1.5 ⁇ (Dd) / 2 Formula (1)
  • the superheated steam blown from the pipe 10 toward the bottom surface 4 flows toward the side surface 5 after hitting the bottom surface 4, and flows toward the inlet 6 along the side surface 5.
  • the distance h between the tube 10 and the bottom surface 4 is preferably close to the distance (Dd) / 2 between the outer surface of the tube 10 and the side surface 5 of the water cooling hole 2. Therefore, if the above formula (1) is satisfied, the cross-sectional area of the flow path of the superheated steam flowing from the tube 10 toward the bottom surface 4 becomes close to the cross-sectional area of the flow path of the superheated steam flowing along the side surface 5. For this reason, the flow of the superheated steam is not easily disturbed, and the superheated steam directed toward the bottom surface 4 easily flows along the side surface 5.
  • h is preferably “0.7 ⁇ (Dd) / 2 or more”, and more preferably “0.8 ⁇ (Dd) / 2 or more”. Further, h is preferably “1.3 ⁇ (Dd) / 2 or less”, and more preferably “1.2 ⁇ (Dd) / 2 or less”.
  • the above-described adjustment of the distance h can be performed by the adjustment mechanism 20 attached to the upper part of the die casting mold 1 shown in FIG.
  • the adjustment mechanism 20 includes a support portion 21 that supports the pipe 10 through which superheated steam flows, a first adjustment bolt 22 that extends in the direction of the central axis Ax of the water cooling hole 2, and a second adjustment bolt 23 that extends in the radial direction of the water cooling hole 2. And have.
  • the distance between the support portion 21 and the upper surface 1 b of the die casting mold 1 can be adjusted.
  • the support part 21 and the pipe 10 supported by the support part 21 can be displaced in the central axis Ax direction of the water cooling hole 2. That is, the distance h can be adjusted by the first adjustment bolt 22.
  • tube 10 can be adjusted with the 2nd adjustment bolt 23.
  • the tip of the tube 10 has a truncated cone shape.
  • the corner which is a trace of the shape of the tip of the drill remains on the bottom surface 4. Therefore, in this embodiment, in order to eliminate the corner and make it difficult to generate a crack, the water-cooled hole 2 is formed by rounding so that the bottom surface 4 is hemispherical. If the tip of the tube 10 has a truncated cone shape, the shape easily corresponds to the hemispherical bottom surface 4 processed in this way, and the distance between the tip of the tube 10 and the bottom surface 4 is kept uniform over a wide range. Cheap.
  • the shape of the bottom surface 4 of the water-cooled hole 2 after the rounding is such that the position of the height of the sphere is approximately D / 2 from the center of the bottom surface 4 when the inner diameter of the water-cooled hole 2 is D. Hemisphere. For this reason, on the side surface 5 near the height position of D / 2 from the deepest position of the bottom surface 4, there are a surface formed by a drill when forming the side surface 5 and a surface formed when rounding is performed. A boundary 7 is located. Due to the shape accuracy of the cutting edge of the drill, the shape size of the cutting edge of the cutting tool during rounding, a step may occur at the boundary 7. Such a step may also cause the die casting mold 1 to crack. However, according to the present embodiment, since the hardness can be lowered by efficiently heat-treating a wide range from the bottom surface 4 to the side surface 5, the die-casting die 1 that is hard to break even when there is a step is provided. it can.
  • the present invention is not limited thereto.
  • the water cooling hole may be opened on the side surface or the lower surface of the die casting mold.
  • FIG. 4 shows the dimensions of each part of a test piece of a die-casting die that is processed by the manufacturing method according to the embodiment.
  • the test piece of this embodiment is a rectangular parallelepiped steel material having a length of 100 mm, a width of 100 mm, and a height of 150 mm.
  • a water cooling hole having a diameter D of 15 mm and a depth of 120 mm is opened.
  • the region from the inlet to the depth of 112.5 mm has a cylindrical shape, and the region from the depth of 112.5 mm to 120 mm is hemispherical.
  • the test piece is made of a steel material of standard steel type SKD61 of JIS-G-4404. Then, by a quenching process from 1020 ° C. and a subsequent tempering process at 600 ° C., the target hardness is adjusted to 45 HRC with a C-scale Rockwell hardness.
  • Superheated steam at 1200 ° C. was generated by a superheated steam generator and supplied to the inside of the water cooling hole through a pipe. Superheated steam was sent from the tip of the tube toward the bottom of the water cooling hole, and the bottom was heated and softened. The superheated steam supply was continued for 1 hour 30 minutes.
  • TOKUDEN UPSS-D20 registered trademark
  • the first temperature measurement point a1 to the fifth temperature measurement point a5 are set on the test piece, a thermocouple is installed at each measurement point, and superheated steam is fed into the water cooling hole through the pipe. The temperature change from was measured.
  • the first temperature measurement point a1 is the height position of the boundary between the cylindrical region and the hemispherical region 7.5 mm (ie, D / 2) from the deepest position A of the water cooling hole, and the central axis Ax of the water cooling hole It is provided in the position which entered the inside of a 10-mm metal mold
  • the second temperature measurement point a2 is provided inside the mold 5 mm below the deepest position A of the water cooling hole on the central axis Ax of the water cooling hole.
  • the third temperature measurement point a3 is provided inside the mold 25 mm below the deepest position A of the water cooling hole on the central axis Ax of the water cooling hole.
  • the fourth temperature measurement point a4 is provided on the surface of the hole surface at the deepest position A of the water cooling hole.
  • the fifth temperature measurement point a5 is a height position of the boundary between the cylindrical region and the hemispherical region 7.5 mm above the deepest position A of the water cooling hole, and is in a direction orthogonal to the central axis Ax of the water cooling hole. It is provided at a position entering the inside of the 5 mm mold from the hole surface.
  • FIG. 5 shows the temperature history measured at each temperature measurement point when superheated steam is supplied.
  • the surface temperature of the bottom surface of the water cooling hole rises to nearly 900 ° C. immediately after the spraying of superheated steam is started. Furthermore, it reaches about 1000 ° C. 30 minutes after the start of spraying, and then 1000 ° C. is maintained until 1 hour 30 minutes.
  • the second temperature measurement point a2 and the fifth temperature measurement point a5 showed the same temperature history. Both the second temperature measurement point a2 and the fifth temperature measurement point a5 rise to about 550 ° C. 30 minutes after the start of spraying, and reach about 600 ° C. after 1 hour. Thereafter, the temperature is maintained at 600 ° C.
  • the temperature rises to about 500 ° C. 30 minutes after the start of spraying, and reaches about 570 ° C. after 1 hour. Thereafter, 570 ° C. is maintained until 1 hour 30 minutes.
  • the temperature rises to about 470 ° C. 30 minutes after the start of spraying, and reaches about 525 ° C. after 1 hour. Thereafter, 525 ° C. is maintained until 1 hour 30 minutes.
  • the current tempering temperature of the test piece made of SKD61 is about 600 ° C. It is presumed that the fourth temperature measurement point a4 heated greatly exceeding the tempering temperature is softened. Further, it is presumed that the first temperature measurement point a1 and the third temperature measurement point a3 that did not reach the tempering temperature were not softened.
  • FIG. 6A is a cross-sectional view taken along the central axis Ax of the water-cooled hole
  • FIG. 6B is a cross-sectional view taken along a plane orthogonal to the central axis Ax of the water-cooled hole. As shown in FIG.
  • the hardness of the cross-section C located 15 mm upward from the deepest position A and the hardness of the surface E (upper surface 1 b of the test piece) located 120 mm upward from the deepest position A of the bottom surface of the water cooling hole were measured. Thereby, the change of the hardness in the height direction from the bottom face of the water cooling hole is confirmed. As shown in FIG.
  • the surfaces B, C, and E at the respective height positions are 2 mm from the surface of the hole surface of the water cooling hole along eight axes that are spaced apart from each other in the circumferential direction.
  • the hardness at positions 4 mm, 6 mm and 10 mm apart was measured. Thereby, the change of the hardness of the circumferential direction of a water cooling hole and the change of the hardness according to the separation distance from the hole surface of a water cooling hole are confirmed.
  • the measurement results of the hardness at the position of a total of 96 (3 ⁇ 8 ⁇ 4) points set as described above are shown in FIGS.
  • FIG. 7 is a radar chart showing the hardness in the cross section B located 7.5 mm upward (ie, D / 2) from the deepest position A of the bottom surface of the water cooling hole.
  • FIG. 8 is a radar chart showing the hardness in the cross section C located 15 mm upward from the deepest position A of the bottom surface of the water cooling hole.
  • FIG. 9 is a radar chart showing the hardness on the upper surface E of the test piece. This is indicated by a line connecting points indicating the hardness of measurement points having the same distance from the hole surface of the water-cooled holes.
  • the hardness of the vertical axis in FIGS. 7 to 9 is indicated by A scale Rockwell hardness HRA.
  • the region near the water cooling hole was softened by supplying superheated steam to the water cooling hole.
  • the hardness of the region less than 6 mm from the hole surface of the water-cooled hole decreased with respect to 45 HRC (about 73 HRA in terms of HRA) which is the target hardness of the test piece.
  • HRC about 73 HRA in terms of HRA
  • separates from the hole surface of a water cooling hole can be read. That is, the hardness at the position of 2 mm with the shortest separation distance is about 69 HRA, which is about 37 HRC when converted to HRC.
  • the hardness at the position where the separation distance is 4 mm is about 71 HRA (about 41 HRC)
  • the hardness at the position where the separation distance is 6 mm is about 72 HRA (about 43 HRC)
  • the hardness at the position where the separation distance is 10 mm is about 73 HRA. (About 45 HRC).
  • the cross section B of FIG. 7 is smaller in hardness than the cross section C of FIG.
  • Cross section B is closer to cross section C from the bottom surface of the water cooling hole to which superheated steam is sprayed.
  • section B is hotter than section C.
  • the cross-section B is softer than the cross-section C and becomes softer.
  • FIG. 9 it can be read that in the vicinity of the inlet of the water cooling hole far from the bottom surface of the water cooling hole, the temperature no longer rose to the vicinity of the tempering temperature even by the supply of superheated steam, and it was not softened.
  • the change in hardness according to the separation distance from the bottom surface of the water cooling hole was evaluated.
  • the hardness according to the separation distance from the bottom surface of the water cooling hole was measured in directions s to u.
  • Direction s Hardness was measured at a plurality of points in the direction from the deepest position A on the bottom surface of the water cooling hole to the lower side.
  • Direction t Hardness was measured at a plurality of points in a direction forming 45 ° with respect to the central axis Ax of the water cooling hole from the center O of the sphere in the hemispherical region.
  • Direction u Hardness was measured at a plurality of points in a direction forming 45 ° with respect to the central axis Ax of the water cooling hole from the center O of the sphere in the hemispherical region.
  • the direction u is at a position 180 degrees away from the direction t around the central axis Ax of the water cooling hole.
  • FIG. 11 shows the change in hardness according to the separation distance from the bottom surface of the water cooling hole.
  • shaft of FIG. 11 is shown by HRC.
  • HRC the hardness at the deepest position A on the bottom surface of the water cooling hole.
  • the hardness at the deepest position A on the bottom surface of the water cooling hole is about 30 HRC, which is greatly softened with respect to 45 HRC which is the target hardness of the test piece.
  • the points in any of the directions s to u tend to become harder as they move away from the bottom surface.
  • the hardness is greatly reduced when the separation distance is in the range of 0 to 2 mm.
  • the directions s to u show almost the same hardness. Therefore, in the hemispherical region of the water-cooled hole, heat due to the superheated steam spreads evenly, and the hemispherical region of the water-cooled hole is uniformly softened. However, it can be seen that the region corresponding to the hemispherical apex where the superheated steam ejected from the tube first hits tends to become high temperature and is most softened.
  • FIG. 12 shows a region (hereinafter referred to as 42.75 HRC or less with respect to 45 HRC) having a hardness of 95% or less of the entrance hardness in the region inside the mold based on the measurement of hardness as described above (hereinafter referred to as “45HRC”).
  • region SF The thickness of the softened region SF in the direction perpendicular to the radial direction of the water cooling holes from the deepest position A on the bottom surface is referred to as D1.
  • the thickness of the softened region SF in the radial direction of the water-cooled hole from the side surface at the height D / 2 from the deepest position A on the bottom surface is referred to as D2. Then, as shown in FIG.
  • the thickness D1 is smaller than the thickness D2. Since the molding surface is provided in the direction from the bottom surface to the bottom of the water cooling hole, it is not desired to form a large softened portion in this direction. If the thickness D1 is smaller than the thickness D2 as in this embodiment, the softened region SF is formed larger around the water-cooled hole, and the hardness near the molding surface can be easily maintained. In addition, said "thickness” regarding D1 and D2 says the dimension extended in the direction perpendicular
  • FIG. 13 is a diagram showing the hardness of each part of the die casting mold.
  • the hardness H3 average hardness of the region
  • D the diameter of the water cooling hole
  • the entrance hardness is lower than H2.
  • the cross section C is a cross section from the deepest position A to the height D of the bottom surface. From FIG. 8 showing the hardness of the cross section C, it can be seen that the hardness of the hole surface (separation distance 0 mm) from the deepest position A to the height D of the bottom surface is less than 67 HRA (about 33 HRC). Further, referring to FIG. 7 and FIG.
  • FIG. 9 shows the entrance hardness H2. From FIG. 9, the inlet hardness H2 can be read as 73HRA, which is about 45HRC (target hardness of the test piece). Therefore, in this embodiment, the hardness H3 is lower than the hardness H2. Since the hardness of each of the bottom surface and the side surface of the water-cooled hole is lowered from the entrance hardness H2, it is possible to provide a die casting mold in which cracking is unlikely to occur from the periphery of the water-cooled hole.
  • the hardness H12 inside the mold at a position of 1 mm toward the inside of the mold in the direction of the center axis Ax of the water cooling hole from the center O of the sphere in the hemispherical region is the C-scale Rockwell hardness.
  • HRC Rockwell hardness
  • the hardness H12 can be read from FIG. 11 showing the change in hardness along the direction s in FIG. In the line s in FIG. 11, the hardness at the position of the separation distance of 1 mm is about 40 HRC.
  • 73HRA that is the entrance hardness H2 corresponds to about 45HRC. 95% of the entrance hardness H2 is 42.75 HRC.
  • H12 ⁇ 0.95 ⁇ H2 is established.
  • said hardness H12 is lower than the hardness (40.5HRC) of 90% of the hardness H2 of an inlet_port
  • the hardness inside the mold at a position of 1 mm from the center O of the sphere in the hemispherical region toward the inside of the mold in a direction of 45 ° with respect to the central axis Ax of the water cooling hole is 95 of the entrance hardness H2. % Is lower.
  • it is lower than 90%.
  • the superheated steam blown toward the bottom surface of the water-cooled hole softens not only the portion directly below the pipe but also the hole surface at the position D / 2 from the deepest position A on the bottom surface.
  • the hardness H15 inside the mold at a position 5 mm in the axial direction of the water cooling hole from the deepest position A on the bottom surface toward the inside of the mold was compared with the C-scale Rockwell hardness HRC. Sometimes it is higher than 95% of the entrance hardness H2. In the line s in FIG. 11, the hardness H15 is approximately 45 HRC from a point with a separation distance of 5 mm. On the other hand, 95% of the entrance hardness H2 which is 73HRA is approximately 42.75HRC. Therefore, in this embodiment, H15> 0.95 ⁇ H2.
  • the said hardness H15 is higher than the hardness (43.65HRC) of 97% of the hardness H2 of an inlet_port
  • a predetermined hardness is required for the molding surface.
  • the area that is softened by the heat treatment is large, and if the area softens from the deepest position of the bottom surface to more than 5 mm, the softening may reach the molding surface of the mold. As a result, it becomes difficult to provide the water cooling holes close to the molding surface.
  • the softening heat treatment using superheated steam according to the present invention can reduce the thickness of the softening region SF because the heat-affected zone where the inside of the mold is softened can be made shallow especially at the bottom surface of the water cooling hole. Is possible. Conversely, if the region softened by the heat treatment is small and the sufficiently soft region is shallower than 1 mm, cracks are likely to occur in the region that is not soft in the region close to the water-cooled hole.
  • the radial direction of the water cooling hole from the side surface of the water cooling hole at the height D / 2 (the boundary between the hemispherical region and the cylindrical region of the water cooling hole) from the deepest position A of the bottom surface toward the inside of the mold.
  • the hardness H33 inside the mold at a position 3 mm in the diameter is lower than 95% of the inlet hardness H2 when compared with the C-scale Rockwell hardness HRC.
  • the hardness H33 can be read from FIG. 7 showing the hardness of the cross section B in FIG. From FIG. 7, the hardness H33 is approximately 70 HRA between the lines of 2 mm and 4 mm, and is approximately 39 HRC when converted.
  • the hardness H2 of the inlet is about 45 HRC, and 95% of H2 is about 42.75 HRC.
  • H33 ⁇ 0.95 ⁇ H2 is established. And about this, said hardness H33 is lower than the hardness (40.5HRC) of 90% of the hardness H2 of an inlet, and it is further effective in suppression of the crack of a water cooling hole.
  • the radial direction of the water cooling hole from the side surface of the water cooling hole at the height D / 2 (the boundary between the hemispherical region and the cylindrical region of the water cooling hole) from the deepest position A of the bottom surface toward the inside of the mold.
  • the hardness H37 inside the mold at a position of 7 mm is higher than 95% of the inlet hardness H2 when compared with the C-scale Rockwell hardness HRC.
  • the hardness H37 can be read from FIG. 7 showing the hardness of the cross section B in FIG. From FIG. 7, the hardness H37 is approximately 72.5 HRA between the lines of 6 mm and 10 mm, and is approximately 44 HRC when converted.
  • 95% of the entrance hardness H2 is about 42.75 HRC.
  • H37> 0.95 ⁇ H2 is established.
  • the said hardness H37 is higher than the hardness (43.65HRC) of 97% of the hardness H2 of an inlet_port
  • the first temperature measurement point b1 to the fifth temperature measurement point b5 are set on the test piece, a thermocouple is installed at each measurement point, and superheated steam is fed into the water cooling hole through the pipe. The temperature change from was measured.
  • the first temperature measurement point b1 is the height position of the boundary between the cylindrical region and the hemispherical region 10 mm above the deepest position A of the water cooling hole (that is, D / 2), and with respect to the central axis Ax of the water cooling hole In a direction orthogonal to the hole surface, it is provided at a position entering the inside of the 10 mm mold from the hole surface.
  • the second temperature measurement point b2 is provided inside the mold 5 mm below the deepest position A of the water cooling hole on the central axis Ax of the water cooling hole.
  • the third temperature measurement point b3 is provided in the mold 25 mm below the deepest position A of the water cooling hole on the central axis Ax of the water cooling hole.
  • the fourth temperature measurement point b4 is provided on the surface of the hole surface at the deepest position A of the water cooling hole.
  • the fifth temperature measurement point b5 is the height position of the boundary between the cylindrical region and the hemispherical region 10 mm above the deepest position A of the water cooling hole, and the hole surface in a direction orthogonal to the central axis Ax of the water cooling hole To 5 mm from the inside of the mold.
  • FIG. 15 is a graph showing a temperature history similar to FIG. As shown in FIG. 15, the temperature history was the same as the temperature history of the ⁇ 15 test piece in FIG. The first temperature measurement point b1, the second temperature measurement point b2, and the fifth temperature measurement point b5 had substantially the same temperature history. This is because the diameter of the water cooling hole is larger than that of the ⁇ 15 water cooling hole, which makes it easier for superheated steam to flow from the bottom surface of the water cooling hole to the side surface, thereby increasing the temperature of the side surface and increasing the temperature of the first temperature measurement point. It seems to be.
  • FIG. 16 is a radar chart showing the hardness variation similar to FIG.
  • FIG. 17 is a radar chart showing hardness variations similar to FIG.
  • FIG. 18 is a radar chart showing the hardness variation similar to FIG.
  • FIG. 16 shows the variation in hardness in a cross section located 10 mm upward (boundary between the cylindrical region and the hemispherical region) from the deepest position A of the bottom surface of the water cooling hole.
  • FIG. 17 shows the hardness variation in the cross section located 20 mm upward from the deepest position A of the bottom surface of the water cooling hole.
  • FIG. 18 shows the variation in the hardness of the upper surface of the test piece.
  • FIG. 19 is a graph showing the relationship between the distance from the hole surface of the water-cooled hole similar to FIG. 11 and the hardness. Comparison of FIGS. 16 to 19 with FIGS. 7 to 9 and 11 confirms that the test piece having the ⁇ 20 water-cooled hole is softened similarly to the test piece having the ⁇ 15 water-cooled hole. did it.
  • a die casting mold manufacturing method and a die casting mold capable of reliably performing a softening heat treatment on a region including the bottom surface of the water cooling hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

水冷孔(2)の底面(4)を含む領域に確実に軟化熱処理を施すことができるダイカスト金型(1)の製造方法と、ダイカスト金型(1)を提供する。内径Dの有底の水冷孔(2)が設けられたダイカスト金型(1)の製造方法であって、水冷孔(2)をなす孔面(3)は、水冷孔(2)の底をなす底面(4)と、底面(4)から入口(6)に向かって延びる側面(5)を有し、水冷孔(2)に挿入した外径dの管(10)の先端から底面(4)に向けて過熱蒸気を送り込み、底面(4)を加熱して軟化させる熱処理工程を有する。この製造方法によって、本発明のダイカスト金型(1)を製造することができる。

Description

ダイカスト金型の製造方法およびダイカスト金型
 本発明は、ダイカスト金型の製造方法およびダイカスト金型に関するものである。
 特許文献1に金型の熱処理方法が知られている。金型には、成形面の温度を低減させるために金型の内部に水冷孔が設けられている。使用中の金型において、この水冷孔には熱応力が生じる。また、水冷孔をなす面には鋼材が錆び、水素が侵入しやすく、水素脆化を起こしやすい。これらのことによって、水冷孔周囲には割れが生じる懸念がある。そこで、特許文献1は、金型に設ける水冷孔に局部的に焼鈍処理を行うことを提案している。これにより、金型自体の硬さを保ちつつ、水冷孔の周囲のみ硬さを下げて水冷孔周囲に割れが生じにくくしている。
日本国特開平8-31557号公報
 特許文献1に記載の方法では、高周波熱処理装置を用いて水冷孔の孔面における表層部の軟化熱処理をしている。ところが、特許文献1の方法においては、高周波熱処理装置の加熱部は水冷孔の側面は加熱しやすいが、底面は加熱しにくい。しかしながら、水冷孔は成形面に向かって形成され、成形面の冷却を目的としている。このため、特に水冷孔の底面にこそ軟化熱処理を行いたい。この点で、特許文献1の方法に改善の余地があった。
 また、一般的に、水冷孔はドリルで側面を形成したときに、その底面にドリル先端部の形状跡である隅(コーナー)が残る。つまり、ドリルで穿孔加工したときの水冷孔の底面には、そのドリルの先端に対応した中央の位置(つまり、水冷孔の最深の位置)と、ドリルの外周コーナーに対応した中央周りの位置とに、ドリル先端部の形状に起因する隅が形成される。そして、この隅を起点に割れが生じやすい。そこで、この隅をなくして、割れを生じ難くするために、底面が半球状となるようにアール加工している。そして、このアール加工をした後の水冷孔の底面の形状は、一般的に、水冷孔の内径をDとしたときに、底面の中央からおおよそD/2の高さの位置を球の中心とした半球状となる。そして、水冷孔の底面から割れがさらに生じにくくするために、上記の半球状の面でなる水冷孔の底面に軟化熱処理を行いたい。
 そこで本発明は、水冷孔の底面を含む領域に確実に軟化熱処理を施すことができるダイカスト金型の製造方法およびダイカスト金型を提供する。
 本開示の一形態によれば、
 内径Dの有底の水冷孔が設けられたダイカスト金型の製造方法であって、
 前記水冷孔をなす孔面は、前記水冷孔の底をなす底面と、前記底面から入口に向かって延びる側面を有し、
 前記水冷孔に挿入した外径dの管の先端から前記底面に向けて過熱蒸気を送り込み、前記底面を加熱して軟化させる熱処理工程を有する、ダイカスト金型の製造方法が提供される。
 本開示の一形態によれば、
 前記管の先端と前記底面の最深の位置との離間距離をhと定義したとき、
 0.5×(D-d)/2 ≦ h ≦ 1.5×(D-d)/2
となる位置に前記管の先端を保持して前記熱処理工程を行ってもよい。
 本開示の一形態によれば、
 前記管の先端が円錐台形状であってもよい。
 本開示の一形態によれば、
 前記底面が略半球状となるように加工して前記水冷孔を形成してもよい。
 本開示の一形態によれば、
 内径Dの有底の水冷孔が設けられたダイカスト金型であって、
 前記水冷孔をなす孔面は、前記水冷孔の底をなす底面と、前記底面から入口に向かって延びる側面を有し、
 前記底面の最深の位置の硬さH1が、前記水冷孔の入口の入口硬さH2よりも低い、ダイカスト金型が提供される。
 本開示の一形態によれば、
 前記孔面のうち、前記底面の最深の位置から高さDの位置までの領域の硬さH3が、前記入口硬さH2より低くてもよい。
 本開示の一形態によれば、
 前記底面の最深の位置から前記金型内部に向かって、前記水冷孔の径方向と直角の方向に1mm入った位置の金型内部の硬さH12が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口硬さH2の95%より低くてもよい。
 本開示の一形態によれば、
 前記底面の最深の位置から前記金型内部に向かって、前記水冷孔の径方向と直角の方向に5mm入った位置の金型内部の硬さH15が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口硬さH2の95%より高くてもよい。
 本開示の一形態によれば、
 前記底面の最深の位置から高さD/2の位置の前記側面から金型内部に向かって前記水冷孔の径方向に3mm入った位置の金型内部の硬さH33が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口の硬さH2の95%より低くてもよい。
 本開示の一形態によれば、
 前記底面の最深の位置から高さD/2の位置の前記側面から金型内部に向かって前記水冷孔の径方向に7mm入った位置の金型内部の硬さH37が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口の硬さH2の95%より高くてもよい。
 本開示の一形態によれば、
 前記金型内部の領域において、Cスケールのロックウェル硬さHRCで比較したときに、前記入口硬さH2の95%以下となっている領域を軟化領域と呼び、
 前記底面の最深の位置から前記水冷孔の径方向と直角する方向における前記軟化領域の厚みをD1と呼び、
 前記底面の最深の位置から高さD/2の位置の前記側面から前記水冷孔の径方向における前記軟化領域の厚みをD2と呼ぶとき、
 前記厚みD1が前記厚みD2より小さくてもよい。
 本開示の一形態によれば、
 前記底面が略半球状であってもよい。
 本発明によれば、水冷孔の底面を含む領域に確実に軟化熱処理を施すことができるダイカスト金型の製造方法およびダイカスト金型が提供される。
(a)は本実施形態のダイカスト金型の上面図(水冷孔の入口側から見た図)であり、(b)はその側面図である。 本発明の実施形態に係るダイカスト金型の熱処理工程を行う際の模式図である。 水冷孔の内部に管を挿入した様子を示す断面図である。 φ15の水冷孔が設けられたテストピースの各部の寸法と、温度測定点を示す図である。 過熱水蒸気を供給した際の温度履歴を示す図である。 (a)は水冷孔の中心軸線に沿ったテストピースの断面図であり、(b)は水冷孔の中心軸線に直交する面のテストピースの断面図である。 水冷孔の底面の最深の位置から上方へ7.5mmに位置する断面Bにおける硬さを示すレーダーチャートである。 水冷孔の底面の最深の位置から上方へ15mmに位置する断面Cにおける硬さを示すレーダーチャートである。 テストピースの上面Eにおける硬さを示すレーダーチャートである。 図11に示す硬さを測定した測定点を示す図である。 水冷孔の孔面からの離間距離と硬度との関係を示すグラフである。 金型内部の領域における軟化領域を示した模式図である。 ダイカスト金型の各部の硬さを示す図である。 φ20の水冷孔が設けられたテストピースの各部の寸法と、温度測定点を示す図である。 過熱水蒸気を供給した際の温度履歴を示す図である。 水冷孔の底面の最深の位置から上方へ10mmに位置する断面における硬さを示すレーダーチャートである。 水冷孔の底面の最深の位置から上方へ20mmに位置する断面における硬さを示すレーダーチャートである。 テストピースの上面における硬さを示すレーダーチャートである。 水冷孔の孔面からの離間距離と硬さの関係を示すグラフである。
 以下、本発明の実施形態について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
 図1は、本実施形態のダイカスト金型1の略直方体状のテストピースを示している。図1の(a)は、ダイカスト金型1を、その水冷孔の入口側(上面1b)から見た図、(b)は、その側面図である。実際のダイカスト金型1は複雑な形状をしているが、以降の説明では、この直方体状のテストピースをダイカスト金型1と呼ぶことにする。
 ダイカスト金型1は鋼材で形成されている。ダイカスト金型1の下面が成形面1aをなす。ダイカスト金型1の使用時には、この成形面1aがキャビティを構成する。成形面1aの形状がダイカストで製造される製品の表面に転写される。ダイカスト金型1の使用時には、成形面1aは高温の溶湯に曝され、成形面1aを含むダイカスト金型1全体が高温になる。そこで、この成形面1aが高温になることを防止するために、ダイカスト金型1には水冷孔2が設けられている。
 水冷孔2は、ダイカスト金型1の上面1bに開口している。水冷孔2は、上面1bから下方(つまり、成形面1a)に向かって延びる有底の穴である。水冷孔2を構成するダイカスト金型1の面を孔面3と呼ぶ。この孔面3として、水冷孔2の底をなす部位を底面4と呼び、底面4から入口に向かって延びる部位を側面5と呼ぶ。水冷孔2は底面4を含む半球状の領域(半球状領域)と、それより上方に位置する略円柱状の領域(円柱状領域)で構成されている。以降の説明において、水冷孔2の直径(内径)をDと呼ぶ。ダイカスト金型1の使用時には、水冷孔2の入口6から内部に冷却管が差し込まれ、水冷孔2の内部に水等の冷却媒体を流し込むことによりダイカスト金型1を冷却する。
 ところで、ダイカスト金型1の使用時には、水冷孔2に応力が生じる。そして、このように水冷孔2は水に曝されるので、鋼材が錆びたり水素脆化を起こしたりしやすい。これらのことによって、水冷孔2の孔面3には割れが生じることが懸念される。そこで水冷孔2に焼鈍処理を施して、硬さを下げ、割れが生じにくくすることが行われている。また、焼入れ処理後に施される焼戻し処理を利用して、水冷孔2の周囲の硬さを下げることも可能である。ダイカスト金型1の使用時には、水冷孔2の底面4側の領域は入口6側に比べて高温に曝される。このため、水冷孔2の底面4側の硬さは下げたいが、入口6側はそれほど硬さを下げなくてもよい。そこで、この硬さ分布を達成するための、上記の焼鈍工程や焼戻し工程に適用することが可能な熱処理工程について次に説明する。
 図2は、本発明の実施形態に係るダイカスト金型1の熱処理工程を行う際の模式図である。図2に示すように、ダイカスト金型1の水冷孔2に管10を挿入する。この管10の末端は、過熱蒸気発生装置11に接続されている。この管10の先端から水冷孔2の底面4に向けて過熱蒸気を送り込む。すると、過熱蒸気により少なくとも底面4が温められ、底面4を含むダイカスト金型1の孔面3が軟化される。最深の位置Aの硬さH1が、水冷孔2の入口6の硬さH2よりも低くされている。
 過熱蒸気は、例えば、およそ1200℃にも達する程の高温の水蒸気である。過熱蒸気は、空気に比べて単位体積当たりの熱容量が大きく、また、熱伝導性に優れている。このため、管10から噴き出された過熱蒸気が底面4に接触すると、過熱蒸気の持つ熱量はすぐに底面4に伝わり底面4を素早く軟化温度にまで加熱することができる。このように、管10の先端から底面4に向けて過熱蒸気を送り込むことにより、底面4の温度を上げやすく、底面4の熱処理を確実に行うことができる。
 ところで、上述した特許文献1に記載の高周波熱処理装置は、加熱源が周囲の空気を加熱し、加熱された空気を介して金型が加熱される。特許文献1の空気に比べて、本実施形態の過熱蒸気は非常に高い熱伝導性を有する。
 本実施形態によれば、このように高い熱伝導性を有する過熱蒸気が移動しながら孔面3に接し、孔面3の極表層を狙って目標温度まで速やかに加熱する。金型内部の深い領域まで高温にせず、表層を狙って高温にすることができる。このため、本実施形態の熱処理工程は、金型全体の硬度は下げずに水冷孔2の孔面3付近の硬度のみを下げたいという要求に極めて好都合である。また本実施形態の熱処理工程は、金型内部の深い領域まで加熱しないので、表層のみを短時間で目標温度に加熱して軟化することができる点でも優れている。
 また、上述した特許文献1に記載の高周波熱処理装置では、底面4を効率的に加熱することができない。したがって、どうしても底面4の硬さを下げることが難しい。しかし本実施形態によれば、まず過熱蒸気が底面4に吹き付けられるため、底面4の硬さH1を簡単にかつ優先的に下げることができる。
 次に、熱処理の好ましい態様について詳しく説明する。図3は、水冷孔2の内部に管10を挿入した様子を示す断面図である。図3に示すように、管10の先端から水冷孔2の底面4の最深の位置Aとの距離がhとなるように、水冷孔2に管10を挿入する。この距離hは、水冷孔2の直径(内径)Dと管10の直径(外径)dを使って、下記式(1)を満たす位置に管10の先端を保持して熱処理工程を行う。
 0.5×(D-d)/2 ≦ h ≦ 1.5×(D-d)/2  式(1)
 底面4に向かって管10から吹き出された過熱蒸気は、底面4にぶつかった後に側面5に向かって流れ、側面5に沿って入口6に向かって流れる。ここで、管10と底面4との離間距離hが、管10の外面と水冷孔2の側面5との間の距離(D-d)/2と近い大きさであることが好ましい。そこで上記式(1)を満たせば、管10から底面4に向かって流れる過熱蒸気の流路の断面積が、側面5に沿って流れる過熱蒸気の流路の断面積に近くなる。このため、過熱蒸気の流れが妨げられにくく、底面4に向かった過熱蒸気が側面5に沿って流れやすくなる。これにより、側面5も効率的に過熱蒸気によって温められ、側面5の広い範囲を熱処理しやすくなる。このため、水冷孔2の底面4から側面5に至る領域を均一に加熱しやすく、この領域を確実に熱処理することができる。
 式(1)において、hは、好ましくは「0.7×(D-d)/2以上」であり、より好ましくは「0.8×(D-d)/2以上」である。また、hは、好ましくは「1.3×(D-d)/2以下」であり、より好ましくは「1.2×(D-d)/2以下」である。
 なお、上述した距離hの調整は、図2に示したダイカスト金型1の上部に取り付けた調整機構20により行うことができる。調整機構20は、過熱蒸気を流す管10を支持する支持部21と、水冷孔2の中心軸線Axの方向に延びる第一調整ボルト22と、水冷孔2の径方向に延びる第二調整ボルト23とを有している。第一調整ボルト22をねじ込むことにより、支持部21とダイカスト金型1の上面1bとの距離を調整可能とされている。これにより、支持部21と、支持部21により支持された管10を水冷孔2の中心軸線Ax方向に変位させることができる。つまり、第一調整ボルト22により距離hを調整することができる。
 なお、第二調整ボルト23により、管10の水冷孔2内部の径方向の位置を調整することができる。
 図3に戻り、管10の先端は円錐台形状であることが好ましい。
 水冷孔2はドリルで側面5を形成したときに、その底面4にドリル先端部の形状跡である隅(コーナー)が残る。そこで本実施形態において、この隅をなくして割れを生じ難くするために、底面4が半球状となるようにアール加工して水冷孔2を形成している。
 管10の先端が円錐台形状であると、このようにして加工された半球状の底面4に対応した形状となりやすく、管10の先端と底面4との距離を広い範囲に亘って均一に保ちやすい。このため、過熱蒸気の流路の断面積を一定にしやすく、過熱蒸気の流れを妨げにくい。これにより、過熱蒸気を底面4から側面5に亘って円滑に流すことができ、底面4から側面5に亘る広い範囲を効率的に熱処理できる。
 また、このアール加工をした後の水冷孔2の底面4の形状は、水冷孔2の内径をDとしたときに、底面4の中央からおおよそD/2の高さの位置を球の中心とした半球状となる。このため、底面4の最深の位置からD/2の高さ位置付近の側面5には、側面5を形成するときのドリルで形成された面と、アール加工する際に形成された面との境界7が位置する。ドリルの刃先の形状精度、アール加工する際の刃物の刃先の形状寸法などに起因して、この境界7に段差が生じることがある。このような段差も、ダイカスト金型1の割れの原因となる場合がある。
 しかし本実施形態によれば、底面4から側面5に亘る広い範囲を効率的に熱処理して硬度を下げることができるため、段差が生じている場合であっても割れにくいダイカスト金型1を提供できる。
 なお、上述の説明では、水冷孔がダイカスト金型の上面に開口する例を説明したが、これに限られない。水冷孔はダイカスト金型の側面や下面に開口していてもよい。
<φ15の実施例>
 次に、本発明の実施例について説明する。図4は、実施例に係る製造方法で加工するダイカスト金型のテストピースの各部の寸法を示している。図4に示すように、本実施形態のテストピースは、縦100mm、横100mm、高さ150mmの直方体の鋼材である。テストピースの上面の中央に、直径Dが15mm、深さが120mmの水冷孔が開口している。水冷孔は、入口から深さ112.5mmまでの領域が円柱形状であり、深さ112.5mmから120mmまでの領域が半球状である。テストピースは、JIS-G-4404の規格鋼種SKD61の鋼材からなる。そして、1020℃からの焼入れ処理と、これに続く600℃での焼戻し処理とによって、Cスケールのロックウェル硬さで、45HRCの狙い硬さに調整されている。
 水冷孔の最深の位置Aから高さ2mmの位置(距離h=2mm)に、管の先端が位置するように、外径dが12mmの管を水冷孔に挿入した。過熱水蒸気発生装置にて1200℃の過熱水蒸気を発生させ、管を介して水冷孔の内部に供給した。管の先端から水冷孔の底面に向けて過熱水蒸気を送り込み、底面を加熱して軟化させた。過熱水蒸気の供給を1時間30分続けた。過熱水蒸気発生装置として、TOKUDEN UPSS-D20(登録商標)を用いた。
 図4に示すように、テストピースに第一温度測定点a1~第五温度測定点a5を設定し、各測定点に熱電対を設置して、水冷孔に管を介して過熱水蒸気を送り込んでからの温度変化を測定した。
 第一温度測定点a1は、水冷孔の最深の位置Aから7.5mm(つまり、D/2)上方の円柱状領域と半球状領域との境界の高さ位置で、水冷孔の中心軸線Axに対して直交する方向に孔面から10mm金型の内部に入った位置に設けられている。
 第二温度測定点a2は、水冷孔の中心軸線Ax上で、水冷孔の最深の位置Aから5mm下方の金型内部に設けられている。
 第三温度測定点a3は、水冷孔の中心軸線Ax上で、水冷孔の最深の位置Aから25mm下方の金型内部に設けられている。
 第四温度測定点a4は、水冷孔の最深の位置Aの孔面の表面上に設けられている。
 第五温度測定点a5は、水冷孔の最深の位置Aから7.5mm上方の円柱状領域と半球状領域との境界の高さ位置で、水冷孔の中心軸線Axに対して直交する方向に孔面から5mm金型の内部に入った位置に設けられている。
 過熱水蒸気を供給した際の、各温度測定点で測定された温度履歴を図5に示す。
 第四温度測定点a4の温度履歴から分かるように、過熱水蒸気の吹き付けを開始してすぐに、水冷孔の底面の表面温度が900℃近くに上昇する。さらに吹き付け開始から30分後に1000℃程度に達し、その後は1時間30分まで1000℃が維持されている。
 第二温度測定点a2および第五温度測定点a5は同様の温度履歴を示した。第二温度測定点a2および第五温度測定点a5のいずれも、吹き付け開始から30分後に550℃程度まで上昇し、1時間後に600℃程度に達する。その後は1時間30分まで600℃が維持されている。
 第一温度測定点a1においては、吹き付け開始から30分後に500℃程度まで上昇し、1時間後に570℃程度に達する。その後は1時間30分まで570℃が維持されている。
 第三温度測定点a3においては、吹き付け開始から30分後に470℃程度まで上昇し、1時間後に525℃程度に達する。その後は1時間30分まで525℃が維持されている。
 SKD61製のテストピースの今回の焼戻し温度は約600℃である。この焼戻し温度を大きく超えて加熱された第四温度測定点a4は軟化されたと推測される。また、焼き戻し温度に達しなかった第一温度測定点a1、第三温度測定点a3は軟化しなかったものと推測される。
 そこで、過熱水蒸気の吹き付けをして得られたテストピースに図6に黒点で示した複数の位置を設定し、これらの位置について硬さを測定した。図6の(a)は水冷孔の中心軸線Axに沿った断面図であり、図6の(b)は水冷孔の中心軸線Axに直交する面の断面図である。
 図6の(a)に示すように、水冷孔の底面の最深の位置Aから上方へ7.5mm(円柱状領域と半球状領域の境界)に位置する断面Bの硬さ、水冷孔の底面の最深の位置Aから上方へ15mmに位置する断面Cの硬さ、水冷孔の底面の最深の位置Aから上方へ120mmに位置する面E(テストピースの上面1b)の硬さを測定した。これにより、水冷孔の底面からの高さ方向における硬さの変化を確認する。
 それぞれの高さ位置における面B,C,Eにおいて、図6の(b)に示すように、周方向に互いの離間距離が等しい8つの軸線に沿って、それぞれ水冷孔の孔面表面から2mm、4mm、6mm、10mm離間した位置の硬さを測定した。これにより、水冷孔の周方向の硬さの変化、および、水冷孔の孔面からの離間距離に応じた硬さの変化を確認する。
 以上のように設定した合計96(3×8×4)点の位置の硬さの測定結果を図7~図9に示す。
 図7は、水冷孔の底面の最深の位置Aから上方へ7.5mm(つまり、D/2)に位置する断面Bにおける硬さを示すレーダーチャートである。図8は、水冷孔の底面の最深の位置Aから上方へ15mmに位置する断面Cにおける硬さを示すレーダーチャートである。図9は、テストピースの上面Eにおける硬さを示すレーダーチャートである。水冷孔の孔面からの離間距離が等しい測定点の硬さを示す点を結ぶ線で示している。なお、図7~9の縦軸の硬さは、Aスケールのロックウェル硬さHRAで示している。
 図7と図8に示すように、水冷孔に過熱水蒸気を供給することにより、水冷孔の近傍の領域が軟化することが確認できた。テストピースの狙い硬さである45HRC(HRAに換算して、約73HRA)に対して、水冷孔の孔面から6mm未満の領域の硬さが低下した。
 また図7と図8より、水冷孔の孔面から離れるほど硬くなっていく傾向が読み取れる。つまり、離間距離が最も短い2mmの位置の硬さはおよそ69HRAであり、これをHRCに換算すると約37HRCである。これに対し、離間距離が4mmの位置の硬さはおよそ71HRA(約41HRC)、離間距離が6mmの位置の硬さはおよそ72HRA(約43HRC)、離間距離が10mmの位置の硬さはおよそ73HRA(約45HRC)であった。
 図7と図8とを比較すると、水冷孔の孔面からの距離が等しくても、図7の断面Bは図8の断面Cよりも硬さが小さいことが読み取れる。断面Bは断面Cより、過熱水蒸気が吹き付けられる水冷孔の底面からの距離が近い。過熱水蒸気の供給中に断面Bは断面Cよりも高温となっている。このため、断面Bは断面Cよりも軟化が進み、軟らかくなったものと考えられる。
 さらに、図9に示すように、水冷孔の底面から遠く離れた水冷孔の入口付近では、もはや過熱水蒸気の供給によっても温度が焼戻し温度付近まで上昇せず、軟化しなかったことが読み取れる。
 図7と図8からは、孔面の表面から10mm離れると軟化していないことが読み取れる。断面B,Cは、過熱水蒸気が吹き付けられる底面から比較的近い位置にある。しかし、孔面の表面から10mm離れた領域は焼戻し温度に達することなく、軟化しなかった。また、図7と図8より、水冷孔の孔面の表面から4mm程度離れると、軟化はするものの、軟化しにくくなることが確認できる。
 次に、水冷孔の底面からの離間距離に応じた硬度の変化を評価した。図10に示すように、方向s~方向uについて、水冷孔の底面からの離間距離に応じた硬度を測定した。
方向s:水冷孔の底面の最深の位置Aから下方に向かう方向について複数の点で硬さを測定した。
方向t:半球状領域の球の中心Oから水冷孔の中心軸線Axに対して45°をなす方向について複数の点で硬さを測定した。
方向u:半球状領域の球の中心Oから水冷孔の中心軸線Axに対して45°をなす方向について複数の点で硬さを測定した。方向uは、方向tに対して、水冷孔の中心軸線Ax回りに180°離れた位置にある。
 図11に、水冷孔の底面からの離間距離に応じた硬度の変化を示す。なお、図11の縦軸の硬さはHRCで示している。図11に示すように、水冷孔の底面の最深の位置Aの硬さは約30HRCであり、テストピースの狙い硬さである45HRCに対して大きく軟化していた。そして、方向s~uのいずれの方向の点についても底面から離れるにしたがって硬くなる傾向を有する。特に底面から4mmも離れると軟化しにくくなることが読み取れ、離間距離が5mmの位置では、もはやテストピースの狙い硬さである45HRCと同等である。一方で、離間距離が0~2mmの範囲では硬さが大きく低化していることが読み取れる。
 また、図11に示すように、方向s~uはほぼ同様の硬さを示している。したがって、水冷孔の半球状領域においては、過熱水蒸気による熱が均等に広がり、水冷孔の半球状領域は均等に軟化が進んでいる。もっとも、管から噴き出される過熱水蒸気が最初にぶつかる半球状頂点に相当する領域は、高温になりやすく最も軟化が進むことがわかる。
 図12は、以上のような硬さの測定に基づき、金型内部の領域において入口硬さの95%以下の硬さ(つまり、45HRCに対して、42.75HRC以下)となる領域(以降、軟化領域SFと呼ぶ)を示した模式図である。
 底面の最深の位置Aから水冷孔の径方向と直角する方向における軟化領域SFの厚みをD1と呼ぶ。底面の最深の位置Aから高さD/2の位置の側面から水冷孔の径方向における軟化領域SFの厚みをD2と呼ぶ。すると、図12に示すように、厚みD1は厚みD2より小さい。
 水冷孔の底面から底に向かう方向には成形面が設けられているため、この方向には軟化部を大きく形成したくない。本実施例のように、厚みD1が厚みD2より小さいと、軟化領域SFを水冷孔の周囲に大きく形成しつつ、成形面の近傍の硬さを維持しやすい。
 なお、D1、D2に関する上記の「厚み」とは、水冷孔の孔面に対して垂直な方向に延びる寸法を言う。図12の水冷孔の場合、D1の厚みが定義される方向とD2の厚みが定義される方向とは直交している。
 図13は、ダイカスト金型の各部の硬さを示す図である。
 本実施例において、水冷孔の孔面のうち、底面の最深の位置Aから高さD(D=水冷孔の直径)の位置までの領域の硬さH3(該領域の平均の硬さ)が、入口硬さH2よりも低い。
 図6に示したように、断面Cは底面の最深の位置Aから高さDの位置の断面である。断面Cの硬さを示す図8より、底面の最深の位置Aから高さDの位置の孔面(離間距離0mm)の硬さは67HRA(約33HRC)未満となることが読み取れる。また、図7と図8とを合わせて参照すると、高さDよりも位置Aに近い領域の硬さは、高さDにおける硬さよりも低くなることが読み取れる。したがって、底面の最深の位置Aから高さDの位置までの領域の硬さH3は、67HRA(約33HRC)未満となることが読み取れる。
 一方で、図9は入口硬さH2を示している。図9より、入口硬さH2は73HRAと読み取れ、これは約45HRC(テストピースの狙い硬さ)である。
 したがって本実施例において、硬さH3は硬さH2よりも低くなっている。水冷孔の底面と側面のそれぞれの硬さが入口硬さH2より下げられているため、水冷孔の周囲から割れが生じにくいダイカスト金型を提供できる。
 本実施例において、半球状領域の球の中心Oから水冷孔の中心軸線Axの方向に金型内部に向かって1mm入った位置の金型内部の硬さH12が、Cスケールのロックウェル硬さHRCで比較したときに、入口硬さH2の95%より低い。
 硬さH12は、図10の方向sに沿った硬さの変化を示す図11から読み取ることができる。図11のsの線において、離間距離1mmの位置の硬さはおよそ40HRCである。入口硬さH2である73HRAはおよそ45HRCに相当する。入口硬さH2の95%は42.75HRCである。したがって本実施例において、H12<0.95×H2が成立している。そして、これについては、上記の硬さH12が、入口の硬さH2の90%の硬さ(40.5HRC)よりも低くなっており、水冷孔の割れの抑制に更に効果的である。なお、半球状領域の球の中心Oから水冷孔の中心軸線Axに対して45°をなす方向に金型内部に向かって1mm入った位置の金型内部の硬さも、入口硬さH2の95%より低くなっている。そして更には、90%より低くなっている。水冷孔の底面に向かって吹き付けられた過熱蒸気により、管の直下のみならず底面の最深の位置Aから高さD/2の位置の孔面についても軟化される。
 本実施例において、底面の最深の位置Aから金型内部に向かって、水冷孔の軸方向に5mm入った位置の金型内部の硬さH15が、Cスケールのロックウェル硬さHRCで比較したときに、入口硬さH2の95%より高い。
 図11のsの線において、離間距離5mmの点より、硬さH15はおよそ45HRCである。一方で、73HRAである入口硬さH2の95%は約42.75HRCである。したがって、本実施例においてH15>0.95×H2が成立している。そして、これについては、上記の硬さH15が、入口の硬さH2の97%の硬さ(43.65HRC)よりも高くなっており、成形面の硬さの維持に更に効果的である。
 成形面には所定の硬さが求められる。本実施例とは異なり、熱処理により軟化する領域が大きく、底面の最深の位置から5mmより離れた領域まで軟らかくなってしまうと、軟化が金型の成形面にまで及んでしまうことがある。すると、水冷孔を成形面の近くまで設けることが難しくなってしまう。この点において、本発明に関する過熱蒸気を利用した軟化熱処理であれば、特に水冷孔の底面において金型内部が軟化する熱影響部を浅くできるので、上記の軟化領域SFの厚みを小さくすることが可能である。また、逆に熱処理により軟化する領域が小さく、十分に軟らかくなっている領域が1mmより浅いと、水冷孔に近い領域で軟らかくなっていない領域に割れが生じやすくなってしまう。
 本実施例において、底面の最深の位置Aから高さD/2(水冷孔の半球状領域と円柱状領域の境界)の位置の水冷孔の側面から金型内部に向かって水冷孔の径方向に3mm入った位置の金型内部の硬さH33が、Cスケールのロックウェル硬さHRCで比較したときに、入口の硬さH2の95%より低い。
 硬さH33は、図6における断面Bの硬さを示す図7から読み取れる。図7より、硬さH33は、2mmと4mmの線の間のおよそ70HRAであり、換算すると約39HRCである。一方で、入口の硬さH2は約45HRCであり、H2の95%は約42.75HRCである。本実施例において、H33<0.95×H2が成立している。そして、これについては、上記の硬さH33が、入口の硬さH2の90%の硬さ(40.5HRC)よりも低くなっており、水冷孔の割れの抑制に更に効果的である。
 本実施例において、底面の最深の位置Aから高さD/2(水冷孔の半球状領域と円柱状領域の境界)の位置の水冷孔の側面から金型内部に向かって水冷孔の径方向に7mm入った位置の金型内部の硬さH37が、Cスケールのロックウェル硬さHRCで比較したときに、入口の硬さH2の95%より高い。
 硬さH37は、図6における断面Bの硬さを示す図7から読み取れる。図7より、硬さH37は、6mmと10mmの線の間のおよそ72.5HRAであり、換算すると約44HRCである。一方で、入口の硬さH2の95%は約42.75HRCである。本実施例において、H37>0.95×H2が成立している。そして、これについては、上記の硬さH37が、入口の硬さH2の97%の硬さ(43.65HRC)よりも高くなっており、金型自体の硬さの維持に更に効果的である。
 水冷孔から7mmより離れた領域まで軟化させてしまうと金型自体の硬さを低下させてしまうおそれがある。また、軟らかくなっている領域が3mmより浅いと、水冷孔に近い領域で軟らかくなっていない領域に割れが生じやすくなってしまう。
<φ20の実施例>
 次に、上述したφ15を設けたテストピースと同じ大きさのテストピースに、直径Dが20mm、深さが120mmの水冷孔を形成し、同様に過熱水蒸気を水冷孔の底面に吹き付けた。φ20のテストピースについても、上述したφ15のテストピースと同様に温度履歴、硬さを測定した。水冷孔の最深の位置Aから高さ3mmの位置(距離h=3mm)に、管の先端が位置するように、外径dが15mmの管を水冷孔に挿入した。
 図14に示すように、テストピースに第一温度測定点b1~第五温度測定点b5を設定し、各測定点に熱電対を設置して、水冷孔に管を介して過熱水蒸気を送り込んでからの温度変化を測定した。
 第一温度測定点b1は、水冷孔の最深の位置Aから10mm(つまり、D/2)上方の円柱状領域と半球状領域との境界の高さ位置で、水冷孔の中心軸線Axに対して直交する方向に孔面から10mm金型の内部に入った位置に設けられている。
 第二温度測定点b2は、水冷孔の中心軸線Ax上で、水冷孔の最深の位置Aから5mm下方の金型内部に設けられている。
 第三温度測定点b3は、水冷孔の中心軸線Ax上で、水冷孔の最深の位置Aから25mm下方の金型内部に設けられている。
 第四温度測定点b4は、水冷孔の最深の位置Aの孔面の表面上に設けられている。
 第五温度測定点b5は、水冷孔の最深の位置Aから10mm上方の円柱状領域と半球状領域との境界の高さ位置で、水冷孔の中心軸線Axに対して直交する方向に孔面から5mm金型の内部に入った位置に設けられている。
 図15は、図5と同様の温度履歴を示すグラフである。図15に示すように、図5のφ15のテストピースの温度履歴と同様の温度履歴となった。第一温度測定点b1、第二温度測定点b2、第五温度測定点b5でほぼ同じ温度履歴となった。これは、φ15の水冷孔に比べて水冷孔の直径が大きくなったため、水冷孔の底面から側面に過熱水蒸気が流れ込みやすくなり、側面の温度が上がりやすくなり第一温度測定点の温度が高まったものと思われる。
 図16は、図7と同様の硬さのばらつきを示すレーダーチャートである。図17は、図8と同様の硬さのばらつきを示すレーダーチャートである。図18は、図9と同様の硬さのばらつきを示すレーダーチャートである。図16は、水冷孔の底面の最深の位置Aから上方へ10mm(円柱状領域と半球状領域の境界)に位置する断面における硬さのばらつきを示す。図17は、水冷孔の底面の最深の位置Aから上方へ20mmに位置する断面における硬さのばらつきを示す。図18は、テストピースの上面の硬さのばらつきを示す。
 図19は、図11と同様の水冷孔の孔面からの離間距離と硬さの関係を示すグラフである。
 図16~図19を図7~図9、図11と比較すると、φ20の水冷孔が形成されたテストピースにおいてもφ15の水冷孔が形成されたテストピースと同様に軟化されていることが確認できた。
 本出願は、2016年11月22日出願の日本特許出願(特願2016-226449)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、水冷孔の底面を含む領域に確実に軟化熱処理を施すことができるダイカスト金型の製造方法およびダイカスト金型が提供される。
 1 ダイカスト金型
 2 水冷孔
 3 孔面
 4 底面
 5 側面
 6 入口
 7 (半球状領域と円柱状領域の)境界
 10 管
 

Claims (12)

  1.  内径Dの有底の水冷孔が設けられたダイカスト金型の製造方法であって、
     前記水冷孔をなす孔面は、前記水冷孔の底をなす底面と、前記底面から入口に向かって延びる側面を有し、
     前記水冷孔に挿入した外径dの管の先端から前記底面に向けて過熱蒸気を送り込み、前記底面を加熱して軟化させる熱処理工程を有する、ダイカスト金型の製造方法。
  2.  前記管の先端と前記底面の最深の位置との離間距離をhと定義したとき、
     0.5×(D-d)/2 ≦ h ≦ 1.5×(D-d)/2
    となる位置に前記管の先端を保持して前記熱処理工程を行う、請求項1に記載のダイカスト金型の製造方法。
  3.  前記管の先端が円錐台形状である、請求項1に記載のダイカスト金型の製造方法。
  4.  前記底面が略半球状となるように加工して前記水冷孔を形成する、請求項1に記載のダイカスト金型の製造方法。
  5.  内径Dの有底の水冷孔が設けられたダイカスト金型であって、
     前記水冷孔をなす孔面は、前記水冷孔の底をなす底面と、前記底面から入口に向かって延びる側面を有し、
     前記底面の最深の位置の硬さH1が、前記水冷孔の入口の入口硬さH2よりも低い、ダイカスト金型。
  6.  前記孔面のうち、前記底面の最深の位置から高さDの位置までの領域の硬さH3が、前記入口硬さH2より低い、請求項5に記載のダイカスト金型。
  7.  前記底面の最深の位置から金型内部に向かって、前記水冷孔の径方向と直角の方向に1mm入った位置の金型内部の硬さH12が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口硬さH2の95%より低い、請求項5に記載のダイカスト金型。
  8.  前記底面の最深の位置から金型内部に向かって、前記水冷孔の径方向と直角の方向に5mm入った位置の金型内部の硬さH15が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口硬さH2の95%より高い、請求項5に記載のダイカスト金型。
  9.  前記底面の最深の位置から高さD/2の位置の前記側面から金型内部に向かって前記水冷孔の径方向に3mm入った位置の金型内部の硬さH33が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口の硬さH2の95%より低い、請求項5に記載のダイカスト金型。
  10.  前記底面の最深の位置から高さD/2の位置の前記側面から金型内部に向かって前記水冷孔の径方向に7mm入った位置の金型内部の硬さH37が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口の硬さH2の95%より高い、請求項5に記載のダイカスト金型。
  11.  金型内部の領域において、Cスケールのロックウェル硬さHRCで比較したときに、前記入口硬さH2の95%以下となっている領域を軟化領域と呼び、
     前記底面の最深の位置から前記水冷孔の径方向と直角する方向における前記軟化領域の厚みをD1と呼び、
     前記底面の最深の位置から高さD/2の位置の前記側面から前記水冷孔の径方向における前記軟化領域の厚みをD2と呼ぶとき、
     前記厚みD1が前記厚みD2より小さい、請求項5に記載のダイカスト金型。
  12.  前記底面が略半球状である、請求項5に記載のダイカスト金型。
     
PCT/JP2017/041951 2016-11-22 2017-11-22 ダイカスト金型の製造方法およびダイカスト金型 WO2018097165A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018552609A JP6754844B2 (ja) 2016-11-22 2017-11-22 ダイカスト金型の製造方法およびダイカスト金型
CN201780072262.0A CN110072650A (zh) 2016-11-22 2017-11-22 压铸模具的制造方法及压铸模具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-226449 2016-11-22
JP2016226449 2016-11-22

Publications (1)

Publication Number Publication Date
WO2018097165A1 true WO2018097165A1 (ja) 2018-05-31

Family

ID=62196230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041951 WO2018097165A1 (ja) 2016-11-22 2017-11-22 ダイカスト金型の製造方法およびダイカスト金型

Country Status (3)

Country Link
JP (1) JP6754844B2 (ja)
CN (1) CN110072650A (ja)
WO (1) WO2018097165A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198316B1 (ja) * 2021-07-27 2022-12-28 パンチ工業株式会社 ダイカスト金型部品およびダイカスト金型部品の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322444A (ja) * 1993-05-10 1994-11-22 Hitachi Metals Ltd 水冷孔を有するダイカスト金型の熱処理方法
JPH09182948A (ja) * 1995-12-27 1997-07-15 Hitachi Metals Ltd 金型およびその焼入れ方法
JPH10286647A (ja) * 1997-04-15 1998-10-27 Hitachi Metals Ltd 硬度差を有する成形工具

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3017889B2 (ja) * 1992-09-11 2000-03-13 日立金属株式会社 水冷穴を有するダイカスト金型の製造方法
JP2948047B2 (ja) * 1993-03-29 1999-09-13 日立金属株式会社 水冷穴を有するダイカスト金型の製造方法
JPH06285608A (ja) * 1993-04-08 1994-10-11 Hitachi Metals Ltd 水冷穴を有するダイカスト金型およびその製造方法
JP3164259B2 (ja) * 1993-05-10 2001-05-08 日立金属株式会社 水冷穴を有するダイカスト金型およびその製造方法
JPH06315754A (ja) * 1993-05-11 1994-11-15 Hitachi Metals Ltd 水冷穴を有する金型の製造方法
JPH0831557A (ja) * 1994-07-20 1996-02-02 Daido Steel Co Ltd 金型およびそれに用いる高周波熱処理方法並びに熱処理装置
JP2006136921A (ja) * 2004-11-12 2006-06-01 Daido Steel Co Ltd ダイカスト金型およびその熱処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322444A (ja) * 1993-05-10 1994-11-22 Hitachi Metals Ltd 水冷孔を有するダイカスト金型の熱処理方法
JPH09182948A (ja) * 1995-12-27 1997-07-15 Hitachi Metals Ltd 金型およびその焼入れ方法
JPH10286647A (ja) * 1997-04-15 1998-10-27 Hitachi Metals Ltd 硬度差を有する成形工具

Also Published As

Publication number Publication date
JPWO2018097165A1 (ja) 2019-07-25
CN110072650A (zh) 2019-07-30
JP6754844B2 (ja) 2020-09-16

Similar Documents

Publication Publication Date Title
US9770750B2 (en) Method and forming tool for hot forming and press hardening workpieces of sheet steel, in particular galvanized workpieces of sheet steel
US20200061686A1 (en) Method of cooling main roll for ring rolling and method of manufacturing ring rolled body
WO2018097165A1 (ja) ダイカスト金型の製造方法およびダイカスト金型
CN109111087A (zh) 用来制造玻璃管或玻璃棒的丹纳管和方法
CN106216577A (zh) 一种长杆类零件的锻造工艺
KR101820812B1 (ko) 폭발확관을 이용한 다이스캐스팅 금형의 냉각채널 이종접합방법
CN107030451A (zh) 一种渗碳淬火薄壁件防变形方法
JP5616122B2 (ja) コアピン、コアピンの製造方法、ダイカスト鋳造用金型、およびダイカスト鋳造用金型の製造方法
CN107008882A (zh) 合金锭的制造方法
US9521706B2 (en) Liquid cooled glass melt electrode
JP2010105888A (ja) 溶融ガラス供給装置及びガラス成形体製造装置
KR101295315B1 (ko) 이중관형 엘보의 성형방법
CN206483951U (zh) 一种气门热锻模
CN101974675A (zh) 常化炉水冷辊
JP5647211B2 (ja) 鍛造用金型
JP6583714B2 (ja) 高周波焼入れ方法
JP2016087613A (ja) 連続鋳造用鋳型
CN104419813A (zh) 一种弹簧夹头的热处理工艺
JP4515310B2 (ja) 円筒物の外面焼入方法
KR101632183B1 (ko) 랜스노즐 제조 방법
JP6603747B2 (ja) ランスノズル
JP6187441B2 (ja) 鋼管の焼入れ方法および焼入れ装置
JP2011131240A (ja) 入れ子ピン及び金型
JP5547554B2 (ja) ダイカスト用金型に用いられるコアピンの製造方法
JP5626511B2 (ja) 入子のヒートクラック及び割れ防止方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552609

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873743

Country of ref document: EP

Kind code of ref document: A1