WO2018092608A1 - 積層型熱交換器 - Google Patents

積層型熱交換器 Download PDF

Info

Publication number
WO2018092608A1
WO2018092608A1 PCT/JP2017/039800 JP2017039800W WO2018092608A1 WO 2018092608 A1 WO2018092608 A1 WO 2018092608A1 JP 2017039800 W JP2017039800 W JP 2017039800W WO 2018092608 A1 WO2018092608 A1 WO 2018092608A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
pipes
cooling
longitudinal direction
tube portion
Prior art date
Application number
PCT/JP2017/039800
Other languages
English (en)
French (fr)
Inventor
勇輔 高木
亮平 冨田
慎吾 大野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017198371A external-priority patent/JP6658710B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017005880.5T priority Critical patent/DE112017005880B4/de
Priority to CN201780062485.9A priority patent/CN109844942B/zh
Publication of WO2018092608A1 publication Critical patent/WO2018092608A1/ja
Priority to US16/407,863 priority patent/US10962309B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application includes Japanese Patent Application No. 2016-226214 filed on Nov. 12, 2016, Japanese Patent Application No. 2017-149810 filed on Aug. 2, 2017, and Oct. 2, 2017. Is based on Japanese Patent Application No. 2017-198371, which is incorporated herein by reference.
  • This disclosure relates to a stacked heat exchanger for cooling an electronic component from both sides.
  • a flow path tube is disposed so as to sandwich the heating element from both sides.
  • a plurality of cooling pipes arranged so as to sandwich an electronic component from both sides, a supply header section that supplies a cooling medium to the plurality of cooling pipes, and a cooling medium discharged from the plurality of cooling pipes
  • a stack type cooler having a discharge header portion.
  • This cooler has a protruding tube portion that connects the cooling tubes, and the cooling medium flows between the cooling tubes via the protruding tube portion.
  • the cooler described in the above-mentioned Patent Document 1 is a 2 for attaching a refrigerant introduction pipe for introducing a cooling medium and a refrigerant discharge pipe for discharging a cooling medium to a cooling pipe at one end in the stacking direction among a plurality of cooling pipes. Two protruding openings are formed. Then, a refrigerant introduction pipe and a refrigerant discharge pipe are attached so as to be inserted inside these protruding openings.
  • an intermediate cooling pipe among a plurality of stacked cooling pipes (that is, flow path pipes) is provided between adjacent cooling pipes on both sides in the stacking direction.
  • a protruding tube portion to be connected is formed.
  • the cooling pipe at one end in the stacking direction among the plurality of cooling pipes is provided with a protruding opening for attaching the refrigerant introduction pipe and the refrigerant discharge pipe instead of the protruding pipe at one end in the stacking direction. It has been. Therefore, according to the inventor's study, the structure of the cooling pipe at one end in the stacking direction is different from the structure of the cooling pipe at the intermediate part, and the number of parts is large and the cost is high.
  • the cooler described in Patent Document 1 is configured to attach the pipe in accordance with the shape of the medium introduction port and the medium discharge port. Low.
  • This disclosure is intended to reduce the number of parts and enable a pipe to be attached to a flow path pipe without depending on the protruding pipe portion.
  • the stacked heat exchanger is stacked and disposed so as to form a flow path through which a heat medium that exchanges heat with the heat exchange object and sandwich the heat exchange object from both sides.
  • a protruding tube portion that communicates with an adjacent channel tube in the stacking direction of the channel tube, and the channel tube disposed at one end in the stacking direction of the plurality of channel tubes is an input / output channel
  • the pipe has a surface that intersects the longitudinal direction of the pipe at the end of the pipe, and the surface that intersects the longitudinal direction of the pipe is joined to the inlet / outlet flow channel pipe.
  • the pipe has a surface that intersects the longitudinal direction of the pipe at the end of the pipe, and the surface that intersects the longitudinal direction of the pipe is joined to the inlet / outlet flow pipe. Therefore, the entrance / exit channel tube can be configured using the same channel tube disposed in the intermediate portion in the stacking direction, and the number of parts can be reduced. Furthermore, a pipe can be attached to the access channel pipe regardless of the shape of the protruding pipe portion.
  • FIG. 1 is a front view of the stacked cooler according to the first embodiment.
  • FIG. 2 is an enlarged view of region II in FIG.
  • the arrow shown in each figure has shown the up-down direction at the time of vehicle mounting.
  • the multilayer cooler 1 of the present embodiment cools a plurality of electronic components 4 formed in a plate shape containing a power element for controlling high power from both sides.
  • the electronic component 4 is formed in a flat rectangular parallelepiped shape, and a power electrode extends from one long side outer peripheral surface, and a control electrode extends from the other long side outer peripheral surface.
  • the cooling pipe 2 is arranged in contact with one main plane of the electronic component 4 and the cooling pipe 2 is arranged in contact with the other main plane of the electronic component 4. These cooling pipes 2 are connected to a supply header part 11 and a discharge header part 12 provided at both ends of the cooling pipe 2.
  • the cooling pipe 2 corresponds to a flow path pipe.
  • the plurality of electronic components 4 are cooled from both sides. Therefore, the plurality of electronic components 4 and the plurality of cooling pipes 2 are alternately arranged.
  • the cooling pipes 2 are disposed at both ends in the stacking direction in an assembly in which a plurality of electronic components 4 and a plurality of cooling pipes 2 are stacked.
  • the laminated cooler 1 is formed by laminating a plurality of flat cooling tubes 2 provided with a refrigerant flow path 21 for circulating a cooling medium 5 as a heat medium so that the electronic component 4 can be sandwiched from both sides.
  • the stacked cooler 1 includes a supply header portion 11 that supplies the cooling medium 5 to each refrigerant flow path 21 and a discharge header portion 12 that discharges the cooling medium 5 from each refrigerant flow path 21.
  • the cooling pipe 2 is provided with a protruding pipe portion 22 that opens in the stacking direction and protrudes.
  • the outer shell plate 27 constituting the outer shell of the cooling pipe 2 includes a portion constituting a flat tube for contacting the electronic component 4 and taking heat away, and a portion constituting the supply header portion 11 and the discharge header portion 12. Have. Portions constituting the supply header portion 11 and the discharge header portion 12 are formed at both end portions of the outer shell plate 27.
  • the supply header part 11 and the discharge header part 12 there are parts constituting the supply header part 11 and the discharge header part 12.
  • This portion is constituted by a projecting tube portion 22 projecting vertically from the plate-like surface of the outer shell plate 27 and a diaphragm portion 23 formed annularly with a predetermined radial width around the base portion of the projecting tube portion 22. Composed.
  • the protruding pipe part 22 connects the adjacent cooling pipes 2 in the stacking direction, constitutes the supply header part 11 and the discharge header part 12, and provides strength that does not buckle in the stacking direction.
  • the cooling pipe 2 can be constituted by a flat pipe part, a diaphragm part 23, and a protruding pipe part 22 extending in the stacking direction.
  • the protruding tube portion 22 may be constituted by a separate tubular member.
  • the projecting tube portion 22 is connected in-lay. That is, as the protruding tube portion 22, there are a stepped large diameter protruding tube portion 223 disposed on the outside and a small diameter protruding tube portion 222 inserted and disposed inside the large diameter protruding tube portion 223.
  • the stacked cooler 1 includes at least two types of outer shell plates 27.
  • One outer shell plate 27 has a large-diameter protruding tube portion 223, and the remaining one outer shell plate 27 has a small-diameter protruding tube portion 222. These two types of outer shell plates 27 are laminated alternately and on the front and back.
  • the stacked cooler 1 further includes outer shell plates 27 for end portions at both ends thereof. That is, the outer shell plate 27 arranged on the lower side of the cooling pipe 2 at the lowermost end in FIG. 1 does not form the protruding pipe portion 22 and is not open.
  • the outer shell plate 27 arranged on the upper side of the uppermost cooling pipe 2 in FIG. 1 has a refrigerant introduction pipe 31 connecting the refrigerant introduction pipe 31 and the refrigerant discharge pipe 32 to each other.
  • a port 13 and a refrigerant discharge port 14 are formed.
  • the large-diameter protruding tube portion 223 receives the small-diameter protruding tube portion 222 therein.
  • the step portion formed in the large-diameter protruding tube portion 223 functions as a restricting portion for restricting the insertion length of the small-diameter protruding tube portion 222.
  • the tip of the small-diameter protruding tube portion 222 is in contact with the stepped portion, and the insertion length in the axial direction is restricted.
  • the restricting portion can be formed by a bulging portion or a bulge portion that is formed to protrude from the outer peripheral surface of the small diameter protruding tube portion 222.
  • the pair of outer shell plates 27 are arranged with their flange portions 275 in parallel contact and joined by brazing. Therefore, the outer shell plate 27 is laminated and joined between the planes perpendicular to the laminating direction by the flange portion 275 at the outer edge portion thereof. On the other hand, the outer shell plate 27 is laminated and joined between the cylindrical surfaces parallel to the laminating direction by connecting the protruding pipe portions 22 in the portions constituting the supply header portion 11 and the discharge header portion 12. Is done.
  • the adjacent cooling pipes 2 connect the protruding pipe parts 22 to each other and connect the side walls of the protruding pipe parts 22 to each other so that the refrigerant flow paths 21 communicate with each other. Thereby, the supply header portion 11 and the discharge header portion 12 are formed.
  • the electronic component 4 is disposed in close contact with each cooling pipe 2 between adjacent cooling pipes 2. As shown in FIG. 1, in this embodiment, eight electronic components 4 are sandwiched between nine stacked cooling pipes 2.
  • the cooling pipe 2 includes a pair of outer shell plates 27, an intermediate plate 28 disposed between the pair of outer shell plates 27, the intermediate plate 28 and the outer shell.
  • a wave-shaped inner fin (not shown) disposed between the plate 27 and the plate 27 is provided.
  • a coolant channel 21 is formed between the intermediate plate 28 and the outer shell plate 27.
  • outer shell plate 27, the intermediate plate 28, and the inner fin constitute the cooling pipe 2 by being brazed to each other.
  • the intermediate plate 28 has a rectangular plate shape.
  • the intermediate plate 28 has circular openings 284 corresponding to the supply header portion 11 and the discharge header portion 12 at both ends thereof. Further, the outer edge portion of the intermediate plate 28 may be sandwiched between the outer shell plates 27.
  • the inlet / outlet cooling pipe 20 corresponds to an inlet / outlet flow pipe.
  • the entrance / exit cooling pipe 20 has the same shape as the cooling pipe 2 in the intermediate portion in the stacking direction among the plurality of cooling pipes 2.
  • the inlet / outlet cooling pipe 20 is further provided with a reinforcing plate 25 on the surface side where the refrigerant inlet 13 and the refrigerant outlet 14 are formed.
  • the protruding pipe portion 22 of the entrance / exit cooling pipe 20 constitutes a refrigerant inlet 13 and a refrigerant outlet 14.
  • a refrigerant introduction pipe 31 is connected to the refrigerant introduction port 13, and a refrigerant discharge pipe 32 is connected to the discharge header portion 12.
  • the refrigerant introduction pipe 31 is made of a metal such as aluminum having a brazing material clad on the entire inner peripheral surface thereof. As shown in FIG. 2, the refrigerant introduction pipe 31 has a pipe expanding portion 311 and a pipe seat surface 312.
  • the expanded pipe portion 311 increases in diameter as it approaches the end of the refrigerant introduction pipe 31 so as to cover the large diameter protruding tube portion 223 of the protruding tube portion 22.
  • the inner peripheral surface of the refrigerant introduction pipe 31 is in contact with the outer peripheral surface of the large-diameter protruding tube portion 223.
  • the pipe seat surface 312 is formed at the tip of the refrigerant introduction pipe 31 and contacts the plate-like surface of the outer shell plate 27 of the entrance / exit cooling pipe 20.
  • the pipe seat surface 312 is substantially perpendicular to the center line CL of the refrigerant introduction pipe 31.
  • the pipe seat surface 312 has an L-shaped cross section.
  • the pipe seat surface 312 has the center line CL of the refrigerant introduction pipe 31 when the pipe seat surface 312 contacts the plate-like surface of the outer shell plate 27 of the inlet / outlet cooling tube 20. It is formed so as to be substantially perpendicular to the plate-like surface.
  • the pipe seat surface 312 is formed by bending one end portion in the longitudinal direction of the refrigerant introduction pipe 31 approximately 90 degrees in the radially outward direction of the refrigerant introduction pipe 31.
  • the refrigerant introduction pipe 31 is arranged so as to cover the expanded pipe portion 311 and the pipe seating surface 312 formed at the end portions thereof on the protruding pipe portion 22 provided in the entrance / exit cooling pipe 20, and then the outside of the entrance / exit cooling pipe 20. It is fixed to the plate-like surface of the shell plate 27 by brazing.
  • the refrigerant introduction pipe 31 and the entrance / exit cooling pipe 20 are joined by brazing at a contact portion T2 between the pipe seat surface 312 and the plate-like surface of the outer shell plate 27 of the entrance / exit cooling pipe 20, and the gap is closed and sealed.
  • the outer shell plate 27 of the cooling pipe 2 and the inlet / outlet cooling pipe 20 has a low strength because it is made of a thin metal.
  • the entrance / exit cooling pipe 20 disposed at the end of the plurality of cooling pipes 2 needs to have high strength in order to ensure impact resistance and the like.
  • the entrance / exit cooling pipe 20 of the present embodiment uses the same outer shell plate 27 as the intermediate flow path pipe, and therefore the strength of the entrance / exit cooling pipe 20 is increased by the reinforcing plate 25.
  • the reinforcing plate 25 has a function of increasing the strength of the outer shell plate 27 of the inlet / outlet cooling pipe 20 and increasing the fixing strength of the refrigerant introduction pipe 31 and the refrigerant discharge pipe 32.
  • the reinforcing plate 25 is formed of a plate-like member that is thicker than the outer shell plate 27 of the entrance / exit cooling pipe 20.
  • the reinforcing plate 25 is constituted by a plate made of a metal plate having high thermal conductivity such as aluminum or copper.
  • a brazing material is clad on the surface of the reinforcing plate 25 that contacts the outer shell plate 27.
  • the reinforcing plate 25 of the present embodiment is provided so as to cover the entire outer shell plate 27 of the entrance / exit cooling pipe 20. *
  • the reinforcing plate 25 is fixed so as to press the pipe seating surface 312 of the refrigerant introduction pipe 31 from the periphery of the expanded portion 311 of the refrigerant introduction pipe 31 to the outer shell plate 27 side, and then the outer shell plate 27 of the inlet / outlet cooling pipe 20. It is fixed to the plate-like surface by brazing.
  • the reinforcing plate 25 and the pipe seating surface 312 are fixed by brazing at the contact portion T3 between the reinforcing plate 25 and the pipe seating surface 312.
  • the refrigerant discharge pipe 32 side is also assembled to the plate-like surface of the outer shell plate 27 of the inlet / outlet cooling pipe 20 in the same manner as the refrigerant introduction pipe 31 side.
  • the above-mentioned brazing of each part is performed simultaneously in the state which assembled
  • the multilayer heat exchanger includes a plurality of layers arranged so as to form a flow path through which the cooling medium 5 that exchanges heat with the electronic component 4 flows and to sandwich the electronic component 4 from both sides.
  • a cooling pipe 2 is provided. Furthermore, the pipes 31 and 32 connected to the entrance / exit cooling pipe 20 arrange
  • the plurality of cooling pipes 2 and the inlet / outlet cooling pipes 20 each have a protruding pipe portion 22 that protrudes in the stacking direction of the cooling pipes 2 and communicates with the adjacent cooling pipes 2 in the stacking direction of the cooling pipes 2.
  • the cooling pipe 2 disposed at one end in the stacking direction is the entrance / exit cooling pipe 20, and the pipes 31 and 32 are surfaces that intersect the longitudinal direction of the pipes at the ends of the pipes 31 and 32.
  • the surface intersecting the longitudinal direction of the pipe is joined to the inlet / outlet cooling pipe 2.
  • the pipes 31 and 32 have surfaces that intersect the longitudinal direction of the pipes at the ends of the pipes 31 and 32, and the surfaces that intersect the longitudinal direction of the pipe are joined to the inlet / outlet cooling pipe 2. ing. Therefore, the entrance / exit cooling pipe 20 can be configured using the same cooling pipe 2 disposed in the intermediate portion in the stacking direction, and the number of parts can be reduced. Furthermore, a pipe can be attached to the access channel pipe regardless of the shape of the protruding pipe portion.
  • the cooler described in the above-mentioned patent document 1 inserts each pipe inside the medium inlet and the medium outlet when the pipe is attached to the cooling pipe at the end in the stacking direction, and then the tip of each pipe. Has been expanded.
  • the outer peripheral surface at the tip of each pipe and the inner peripheral surface of the medium introduction port, and the outer peripheral surface at the tip of the pipe and the inner peripheral surface of the medium discharge port are brought into close contact with each other.
  • each pipe is inclined and attached to the plate surface of the cooling pipe, and the assembling property is low.
  • the stacked heat exchanger of the present embodiment is joined to the inlet / outlet cooling pipe 2 without expanding the ends of the pipes 31 and 32. That is, since the surface intersecting with the longitudinal direction of the pipe is joined to the entrance / exit cooling pipe 2, the accuracy with respect to the inclination when the pipe is assembled can be improved.
  • a pipe seat surface 312 having an L-shaped cross section constituting a surface intersecting with the longitudinal direction of the pipes 31 and 32 is provided at one end portion of the pipes 31 and 32 in the longitudinal direction. Is formed. Therefore, the pipes 31 and 32 can be more stably fixed to the entrance / exit cooling pipe 2 by the pipe seating surface 312. That is, the pipes 31 and 32 can be fixed with respect to the entrance / exit cooling pipe 20 with higher accuracy with respect to the inclination.
  • a reinforcing plate is provided that presses against the surface side of the inlet / outlet cooling pipe 20 of the pipe seat surface 312. According to this, the strength of the inlet / outlet cooling pipe 20 can be increased and the fixing strength of the refrigerant introduction pipe 31 and the refrigerant discharge pipe 32 can be increased.
  • the end of the refrigerant introduction pipe 31 is fixed to the inlet / outlet cooling pipe 20 so as to cover the small diameter protruding pipe part 222 of the protruding pipe part 22.
  • the refrigerant discharge pipe 32 is joined to the inlet / outlet cooling pipe 20 so as to cover the large diameter protruding pipe part 223 of the protruding pipe part 22.
  • the pipe has a first pipe corresponding to the refrigerant introduction pipe 31 and a second pipe corresponding to the refrigerant discharge pipe 32.
  • the protruding tube portion 20 includes a large-diameter protruding tube portion 223 and a small-diameter protruding tube portion 222 that is inserted and arranged inside the large-diameter protruding tube portion 223.
  • the entrance / exit cooling pipe 20 has a large-diameter protruding pipe part 223 and a small-diameter protruding pipe part 222 on the surface opposite to the adjacent flow path pipe 2 in the stacking direction of the flow path pipes 2.
  • the first pipe 31 is arranged in a state where one end portion in the longitudinal direction of the first pipe 31 is placed outside the small diameter protruding tube portion 222, and the second pipe 32 is one end portion in the longitudinal direction of the second pipe 32. Is arranged in a state of covering the outside of the large-diameter protruding tube portion 223.
  • the large diameter protruding pipe part 223 and the small diameter protruding pipe part 222 having different diameters are provided on the surface opposite to the adjacent flow path pipe 2 in the stacking direction of the flow path pipes 2 in the inlet / outlet cooling pipe 20.
  • Configuration is possible. Even in such a configuration, the first pipe 31 is arranged in a state in which one end portion in the longitudinal direction of the first pipe 31 is placed outside the small-diameter protruding tube portion 222, and the second pipe 32 is the second pipe One end portion in the longitudinal direction of 32 is arranged in a state of covering the outside of the large-diameter protruding tube portion 223.
  • the pipes 31 and 32 can be attached to the entrance / exit passage pipe regardless of the shape of the protruding pipe portion 22. That is, the pipes 31 and 32 having the same diameter can be attached to the access channel pipe. Further, the entrance / exit cooling pipe 20 and the intermediate cooling pipe 2 can be configured as the same kind of cooling pipe.
  • the inner diameter ⁇ P of the first pipe 31 and the second pipe 32 is equal to or smaller than the inner diameter ⁇ U of the small-diameter protruding tube portion 222 of the protruding tube portion 22.
  • the pressure loss of the cooling medium 5 flowing through the protruding tube portion 22 increases.
  • the flow rate of the cooling medium 5 flowing into the cooling pipe 2 decreases as the cooling pipe 2 is located farther from the cooling pipe 2 connected to the first pipe 31 and the second pipe 32.
  • the cooling pipe 2 connected to the first pipe 31 and the second pipe 32 and the cooling pipe 2.
  • the flow rate of the cooling medium 5 that flows into the cooling pipe 2 near is increased. Therefore, the flow rate balance of the cooling medium 5 flowing in each cooling pipe 2 is deteriorated.
  • the inner diameter ⁇ P of the first pipe 31 and the second pipe 32 is equal to or smaller than the inner diameter ⁇ U of the small-diameter protruding tube portion 222 of the protruding tube portion 22. That is, the inner diameter ⁇ U of the small-diameter protruding tube portion 222 is larger than the inner diameter ⁇ P of the first pipe 31 and the second pipe 32. Therefore, the pressure loss of the cooling medium 5 flowing through the protruding pipe portion 22 does not increase, and the flow rate of the cooling medium 5 flowing through each cooling pipe 2 can be made uniform.
  • the cooling pipe 2 connected to the first pipe 31 and the second pipe 32 of this embodiment has a large diameter protruding pipe part 223 and a small diameter protruding pipe part 222.
  • the first pipe 31 is arranged with one end portion in the longitudinal direction of the first pipe 31 covering the outside of the small-diameter protruding tube portion 222, and the second pipe 32 has a large one end portion in the longitudinal direction of the second pipe 32. It arrange
  • the cooling pipe 2 connected to the first pipe 31 and the second pipe 32 may have two large-diameter protruding pipe portions 223.
  • the first pipe 31 is arranged in a state where one end portion in the longitudinal direction of the first pipe 31 is placed outside the one large-diameter protruding tube portion 223, and the second pipe 32 is arranged in the longitudinal direction of the second pipe 32. It may be configured to be arranged in a state in which one end of the cover is placed on the outside of the other large-diameter protruding tube 223.
  • the cooling pipe 2 connected to the first pipe 31 and the second pipe 32 may have two small diameter protruding pipe portions 222.
  • the first pipe 31 is arranged in a state in which one end portion in the longitudinal direction of the first pipe 31 is placed outside the one small-diameter protruding tube portion 222, and the second pipe 32 is arranged in the longitudinal direction of the second pipe 32. You may comprise so that one end part may be arrange
  • the laminated heat exchanger of the first embodiment is configured to increase the fixing strength of the refrigerant introduction pipe 31 and the refrigerant discharge pipe 32 by the reinforcing plate 25.
  • the laminated heat exchanger of the present embodiment in order to further increase the strength around each of the refrigerant introduction pipe 31 and the refrigerant discharge pipe 32, the flow path pipe stepped portion 250a and the seat surface stepped portion are provided on the reinforcing plate 25. A portion 251a is formed.
  • the seat surface stepped portion 251a is configured as a part of the surface of the reinforcing plate 25 that faces the pipe seat surface 312. As shown in FIG. 5, the seat surface stepped portion 251 a is formed in an annular shape along the circumferential direction of the pipe seat surface 312. The seat surface stepped portion 251 a partially protrudes toward the pipe seat surface 312 on the surface of the reinforcing plate 25 that faces the pipe seat surface 312.
  • the flow path pipe stepped portion 250 a is formed on the outer peripheral side of the refrigerant introduction pipe 31 with respect to the bearing surface stepped portion 251 a in the reinforcing plate 25.
  • the flow channel pipe stepped portion 250 a is formed in an arc shape along the circumferential direction of the pipe seat surface 312.
  • the channel pipe stepped portion 250a partially protrudes toward the inlet / outlet cooling pipe 20 on the surface of the reinforcing plate 25 that faces the surface of the inlet / outlet cooling pipe 20.
  • the seat surface stepped portion 251a and the channel pipe stepped portion 250a come into contact with the surface of the entrance / exit cooling pipe 20 first.
  • the brazing material is clad on the entire surface of the reinforcing plate 25, but when heated, fillets are formed from the seat surface stepped portion 251a and the flow path tube stepped portion 250a that are preferentially in contact with each other. That is, the molten brazing material first gathers with the surface tension on the seat surface stepped portion 251a and the flow path tube stepped portion 250a that are preferentially in contact with each other.
  • the reinforcing plate 25 and the flow path tube are firmly joined by the seat surface stepped portion 251a and the flow path tube stepped portion 250a.
  • the seat surface stepped portion 251a and the flow path tube stepped portion 250a are not formed, and a configuration in which only the region AR1 in FIG. 6 is joined is possible.
  • bending stress in the direction of arrow ST in FIG. The bending stress cannot be propagated to the portion around the pipe of the reinforcing plate 25, and the stress is concentrated on the AR2 region, so that it is difficult to maintain the fixing strength of the refrigerant introduction pipe 31. .
  • the laminated heat exchanger of the first embodiment is provided with a reinforcing plate 25 so as to cover the entire outer shell plate 27 of the inlet / outlet cooling pipe 20.
  • the laminated heat exchanger of the present embodiment is provided with the reinforcing plate 25 so as to cover the central portion of the outer shell plate 27 of the inlet / outlet cooling pipe 20.
  • the reinforcing plate 25 is indicated by dot hatching.
  • the reinforcing plate 25 is formed so as to cover the outer circumferential side of the semicircular portion of the small diameter protruding tube portion 222 constituting the supply header portion 11 and the semicircular portion of the large diameter protruding tube portion 223 constituting the discharge header portion 12. .
  • the reinforcing plate 25 may be provided so as to cover a part of the outer shell plate 27 of the entrance / exit cooling pipe 20.
  • a pipe seat surface 312 that is bent outward in the radial direction of the refrigerant introduction pipe 31 is formed at one end portion in the longitudinal direction of the refrigerant introduction pipe 31, and is formed by the pipe seat surface 312.
  • the surface intersecting with the longitudinal direction of the pipe to be formed is joined to the access channel pipe 20.
  • a pipe seat surface 312 that is bent in the radially inward direction of the refrigerant introduction pipe 31 is formed at one end of the refrigerant introduction pipe 31 in the longitudinal direction.
  • a surface intersecting with the longitudinal direction of the pipe formed by the pipe seating surface 312 is joined to the opening end 222 a of the small diameter protruding tube portion 222 of the protruding tube portion 22.
  • the surface that intersects the longitudinal direction of the pipe formed by the pipe seating surface 312 and the open end 222a of the small-diameter protruding tube portion 222 of the protruding tube portion 22 are joined by brazing.
  • the refrigerant introduction pipe 31 can be attached to the protruding tube portion 22 regardless of the length of the protruding tube portion 22 and the shape of the side surface of the protruding tube portion 22. Moreover, since the refrigerant introduction pipe 31 can be attached to the protruding pipe portion 22 without expanding the tip of the refrigerant introduction pipe 31 as in the cooler described in Patent Document 1, the protruding pipe portion 22 can be attached to the protruding pipe portion 22. It is possible to attach the refrigerant introduction pipe 31 without tilting.
  • the refrigerant discharge pipe 32 side can also be assembled to the inlet / outlet cooling pipe 20 in the same manner as the refrigerant introduction pipe 31 side.
  • the end face of the refrigerant introduction pipe 31 is orthogonal to the longitudinal direction of the refrigerant introduction pipe 31.
  • the refrigerant introduction pipe 31 is disposed in a state where one end portion in the longitudinal direction of the refrigerant introduction pipe 31 is placed outside the small-diameter protruding pipe portion 222.
  • the end face of the refrigerant introduction pipe 31 is directly joined to the access channel pipe 20.
  • the refrigerant introduction pipe 31 can be attached to the protruding tube portion 22 regardless of the length of the protruding tube portion 22 and the shape of the side surface of the protruding tube portion 22. Further, since it is not necessary to process the pipe seating surface or the like on the refrigerant introduction pipe 31, low cost can be realized.
  • the refrigerant discharge pipe 32 side can also be assembled to the inlet / outlet cooling pipe 20 in the same manner as the refrigerant introduction pipe 31 side.
  • the electronic component 4 and the heat medium are subjected to heat exchange to cool the electronic component 4.
  • the heat exchange object is not limited to the electronic component 4.

Abstract

積層型熱交換器は、熱交換対象物(4)と熱交換する熱媒体が流通する流路を形成するとともに前記熱交換対象物を両側から挟持するように積層配置された複数の流路管(2)と、前記複数の流路管の積層方向の一端部に配置された前記流路管に接続されるパイプ(31、32)と、を備える。前記複数の流路管は、それぞれ前記流路管の積層方向に突出するとともに前記流路管の積層方向の隣り合う前記流路管と連通する突出管部(22)を有する。前記複数の流路管のうち積層方向の一端部に配置された前記流路管は、出入流路管である。前記パイプは、該パイプの長手方向の一端部に前記パイプの長手方向と交差する面を有し、前記パイプの長手方向と交差する面が前記出入流路管と接合されている。

Description

積層型熱交換器 関連出願への相互参照
 本出願は、2016年11月12日に出願された日本特許出願番号2016-226214号と、2017年8月2日に出願された日本特許出願番号2017-149810号と、2017年10月2日に出願された日本特許出願番号2017-198371号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、電子部品を両面から冷却するための積層型熱交換器に関するものである。
 従来、半導体素子を内蔵した半導体モジュール等の発熱体の放熱を行うために、発熱体を両面から挟持するように流路管を配設した熱交換器が種々提案されている。例えば、特許文献1には、電子部品を両面から挟持するように積層配置した複数の冷却管と、複数の冷却管に冷却媒体を供給する供給ヘッダ部と、複数の冷却管から冷却媒体を排出する排出ヘッダ部と、を有する積層型冷却器が記載されている。この冷却器は、各冷却管の間を連結する突出管部を有し、この突出管部を介して各冷却管の間を冷却媒体が流通するようになっている。
特開2006-5014号公報
 上記特許文献1に記載された冷却器は、複数の冷却管のうち積層方向の一端部の冷却管に、冷却媒体を導入する冷媒導入パイプおよび冷却媒体を排出する冷媒排出パイプを取り付けるための2つの突出開口部が形成されている。そして、これらの突出開口部の内側に差し込むように冷媒導入パイプおよび冷媒排出パイプを取り付けるようになっている。
 すなわち、上記特許文献1に記載された冷却器は、積層された複数の冷却管(すなわち流路管)のうち中間部の冷却管は、積層方向の両面側に隣り合う各冷却管の間を連結させる突出管部が形成されている。これに対し、複数の冷却管のうち積層方向の一端部の冷却管は、積層方向の一端側に上記突出管部に代えて上記冷媒導入パイプおよび冷媒排出パイプを取り付けるための突出開口部が設けられている。したがって、発明者の検討によれば、積層方向の一端部の冷却管の構造が中間部の冷却管の構造と異なり、部品の種類が多くコストが高くなる。
 また、上記特許文献1に記載された冷却器では、複数の冷却管のうち積層方向の一端部の冷却管に設けられた媒体導入口および媒体排出口に上記パイプを取り付ける際に、媒体導入口および媒体排出口の内側に上記パイプが挿入される。そしてその後、上記パイプの先端が拡管されてパイプの先端の外周面と媒体導入口の内周面およびパイプの先端の外周面と媒体排出口の内周面がそれぞれ密着する。
 このように、上記特許文献1に記載された冷却器は、媒体導入口および媒体排出口の形状に合わせて上記パイプを取り付けるようになっているので、発明者の検討によれば、組み付け性が低い。
 本開示は、部品点数を削減し、かつ、突出管部に依ることなく流路管にパイプを取り付けられるようにすることを目的とする。
 本開示の1つの観点によれば、積層型熱交換器は、熱交換対象物と熱交換する熱媒体が流通する流路を形成するとともに熱交換対象物を両側から挟持するように積層配置された複数の流路管と、複数の流路管の積層方向の一端部に配置された流路管に接続されるパイプと、を備え、複数の流路管は、それぞれ流路管の積層方向に突出するとともに流路管の積層方向の隣り合う流路管と連通する突出管部を有し、複数の流路管のうち積層方向の一端部に配置された流路管は、出入流路管であり、パイプは、該パイプの端部にパイプの長手方向と交差する面を有し、パイプの長手方向と交差する面が出入流路管と接合されている。
 このような構成によれば、パイプは、該パイプの端部にパイプの長手方向と交差する面を有し、パイプの長手方向と交差する面が出入流路管と接合されている。したがって、出入流路管を、積層方向の中間部に配置された流路管と同じものを利用して構成することができ、部品点数を削減することができる。さらに、突出管部の形状に依らず出入流路管にパイプを取り付けることができる。
第1実施形態に係る積層型冷却器の正面図である。 図1中の領域IIの拡大図である。 第2実施形態に係る積層型冷却器の出入流路管の部分断面図である。 第3実施形態に係る積層型冷却器の部分拡大図である。 出入流路管と座面段付部および流路管段付部の位置関係を表した図である。 座面段付部および流路管段付部が設けられていない比較例について説明するための図である。 第4実施形態に係る積層型冷却器の補強プレートの形状を表した図である。 第5実施形態に係る積層型冷却器の出入流路管の部分断面図である。 第6実施形態に係る積層型冷却器の部分拡大図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 (第1実施形態)
 第1実施形態に係る積層型冷却器について、図1~図2を用いて説明する。図1は、第1実施形態に係る積層型冷却器の正面図である。図2は、図1中の領域IIの拡大図である。なお、各図中に示す矢印は、車両搭載時における上下方向を示している。
 本実施形態の積層型冷却器1は、図1に示すように、大電力を制御するパワー素子などを収容し板状に形成された複数の電子部品4をその両面から冷却する。電子部品4は扁平な直方体形状に形成され、その一方の長辺側外周面から電力用電極が延び出し、その他方の長辺側外周面から制御用電極が延びだしている。
 電子部品4の一方の主平面に接して冷却管2を配置するとともに、電子部品4の他の主平面にも接して冷却管2が配置される。これら冷却管2は、冷却管2の両端に設けられる供給ヘッダ部11および排出ヘッダ部12に接続されている。なお、冷却管2は、流路管に相当する。本実施形態では、複数の電子部品4を両面から冷却する。そのため、複数の電子部品4と、複数の冷却管2とが、交互に配置される。複数の電子部品4と複数の冷却管2とを積層配置した組み立て体における積層方向の両端には冷却管2が配置される。
 積層型冷却器1は、熱媒体としての冷却媒体5を流通させる冷媒流路21を設けた扁平形状の複数の冷却管2を、上記電子部品4を両面から挟持できるように積層配置してなる。積層型冷却器1は、各冷媒流路21に冷却媒体5を供給する供給ヘッダ部11と、各冷媒流路21から冷却媒体5を排出する排出ヘッダ部12とを有する。
 図1、図2に示したように、上記冷却管2は、積層方向に開口すると共に突出した突出管部22を設けてなる。冷却管2の外殻を構成する外殻プレート27は、電子部品4と接して熱を奪うための扁平管を構成する部分と、供給ヘッダ部11と排出ヘッダ部12とを構成する部分とを有する。この供給ヘッダ部11と排出ヘッダ部12とを構成する部分は、外殻プレート27の両端部に形成される。
 外殻プレート27において、供給ヘッダ部11と排出ヘッダ部12とを構成する部分がある。この部分は、外殻プレート27の板状面から垂直方向に突出する突出管部22と、この突出管部22の付け根部周辺に所定の径方向幅をもって環状に形成されたダイヤフラム部23とにより構成される。突出管部22は、隣接する冷却管2の間を積層方向に連結し、供給ヘッダ部11及び排出ヘッダ部12を構成し、積層方向に関して坐屈しない程度の強度を提供する。
 冷却管2としては、扁平管部分と、ダイヤフラム部23と、積層方向へ延びる突出管部22とにより構成することができる。突出管部22は、別体の管状部材によって構成してもよい。
 また、突出管部22は、インロー接続される。即ち、突出管部22としては、外側に配置される段付き大径突出管部223と、大径突出管部223の内側に挿入配置される小径突出管部222とがある。このため、積層型冷却器1は、少なくとも2種類の外殻プレート27を備える。ひとつの外殻プレート27は、大径突出管部223を有し、残るひとつの外殻プレート27は、小径突出管部222を有する。これら2種類の外殻プレート27は、交互に、かつ表裏に、積層される。
 積層型冷却器1は、その両端に、さらに端部用の外殻プレート27を備える。即ち、図1中の最下端の冷却管2の下側に配された外殻プレート27は、突出管部22を形成せず、開口していない。
 また、図1中の最上端の冷却管2の上側に配された外殻プレート27は、この外殻プレート27の突出管部22が、冷媒導入パイプ31及び冷媒排出パイプ32を接続する冷媒導入口13および冷媒排出口14を構成している。
 大径突出管部223は、その内部に小径突出管部222を受け容れる。大径突出管部223内に形成された段部は、小径突出管部222の挿入長さを規制するための規制部分として機能する。小径突出管部222の先端は、段部に当接して、軸方向への挿入長さが規制される。規制部分は、小径突出管部222の外周面に突出して形成した膨出部又はバルジ部により形成することができる。大径突出管部223の内面と、小径突出管部222の外面との間には、その組み付け過程では挿入可能な程度の隙間があるが、両者はリングろう24を溶かすことによるろう付けにより接合され、隙間は閉じられ、密封される。
 一対の外殻プレート27は、それらのフランジ部275を平行に接触させて配置され、ろう付けにより接合されている。従って、外殻プレート27は、その外側縁部においては、フランジ部275によって積層方向と垂直な平面の間で積層され接合される。その一方で、外殻プレート27は、供給ヘッダ部11及び排出ヘッダ部12を構成する部分においては、突出管部22をインロー継ぎして、積層方向と平行な筒状面の間で積層され接合される。
 上述したように、隣合う上記冷却管2は、上記突出管部22同士を嵌合させると共に該突出管部22の側壁同士を接合することにより、互いの冷媒流路21を連通させている。これにより、上記供給ヘッダ部11及び上記排出ヘッダ部12を形成している。
 電子部品4は、隣合う冷却管2の間に各冷却管2と密着して配置されている。図1に示すように、本実施形態では、積層された9つの冷却管2の間に8つの電子部品4が挟持されている。
 また、図2に示したように、上記冷却管2は、一対の外殻プレート27と、該一対の外殻プレート27の間に配された中間プレート28と、該中間プレート28と上記外殻プレート27との間に配された波形状の不図示のインナーフィンとを有する。
 そして、中間プレート28と外殻プレート27との間に、冷媒流路21が形成されている。
 また、上記外殻プレート27、中間プレート28、及び不図示のインナーフィンは、互いにろう付け接合されることにより、冷却管2を構成している。
 中間プレート28は、長方形の板状である。中間プレート28は、その両端部に供給ヘッダ部11及び排出ヘッダ部12に対応して円形の開口部284を有する。また、中間プレート28の外側縁部は、外殻プレート27の間に挟持されていてもよい。
 本実施形態では、図1中の最上端に配置された冷却管2を出入冷却管20と称す。この出入冷却管20は出入流路管に相当する。出入冷却管20は、複数の冷却管2のうち積層方向の中間部の冷却管2と同じ形状を成している。ただし、出入冷却管20は、さらに、冷媒導入口13および冷媒排出口14が形成された面側に補強プレート25が設けられる。
 出入冷却管20の突出管部22は、冷媒導入口13および冷媒排出口14を構成している。冷媒導入口13には冷媒導入パイプ31が接続され、排出ヘッダ部12には冷媒排出パイプ32が接続される。
 ここで、出入冷却管20と冷媒導入パイプ31の接合部の構成について説明する。冷媒導入パイプ31は、その内周面の全体にろう材がクラッドされたアルミニウム等の金属からなる。図2に示すように、冷媒導入パイプ31は、拡管部311およびパイプ座面312と、を有している。
 拡管部311は、突出管部22の大径突出管部223を覆うように冷媒導入パイプ31の端部に近付くにつれて拡径している。また、冷媒導入パイプ31の内周面は、大径突出管部223の外周面と接触するようになっている。
 パイプ座面312は、冷媒導入パイプ31の先端に形成され、出入冷却管20の外殻プレート27の板状面と当接する。パイプ座面312は、冷媒導入パイプ31の中心線CLに対して略垂直を成している。パイプ座面312は、断面L字形状を成している。
 すなわち、パイプ座面312は、パイプ座面312が出入冷却管20の外殻プレート27の板状面に当接したときに冷媒導入パイプ31の中心線CLが出入冷却管20の外殻プレート27の板状面に対して略垂直となるように形成されている。パイプ座面312は、冷媒導入パイプ31の長手方向の一端部を冷媒導入パイプ31の径外方向に略90度屈曲することにより形成されている。
 冷媒導入パイプ31は、その端部に形成された拡管部311およびパイプ座面312を出入冷却管20に設けられた突出管部22に被せるようにして配置され、その後、出入冷却管20の外殻プレート27の板状面にろう付けにより固定される。
 冷媒導入パイプ31と出入冷却管20は、パイプ座面312と出入冷却管20の外殻プレート27の板状面との接触部T2でろう付けにより接合され、隙間は閉じられ、密封される。
 ところで、冷却管2および出入冷却管20の外殻プレート27は薄い金属を用いて構成されているための強度が低い。しかし、複数の冷却管2のうち端部に配置される出入冷却管20は耐衝撃性等を確保するため強度を高くする必要がある。
 本実施形態の出入冷却管20は、中間の流路管と同じ外殻プレート27を用いているため、補強プレート25で出入冷却管20の強度を高くしている。
 補強プレート25は、出入冷却管20の外殻プレート27の強度を高めるとともに冷媒導入パイプ31および冷媒排出パイプ32の固定強度を高めるための機能を有している。補強プレート25は、出入冷却管20の外殻プレート27よりも肉厚の板状部材により構成されている。補強プレート25は、アルミあるいは銅などの高い熱伝導性をもつ金属板製のプレートにより構成されている。補強プレート25における外殻プレート27と接触する面には、ろう材がクラッドされている。本実施形態の補強プレート25は、出入冷却管20の外殻プレート27の全体を覆うように設けられている。 
 補強プレート25は、冷媒導入パイプ31の拡管部311の周囲から冷媒導入パイプ31のパイプ座面312を外殻プレート27側へ押さえ付けるように固定された後、出入冷却管20の外殻プレート27の板状面にろう付けにより固定される。
 これにより、補強プレート25とパイプ座面312は、補強プレート25とパイプ座面312との接触部T3でろう付けにより固定される。
 なお、冷媒排出パイプ32側についても、冷媒導入パイプ31側と同様に出入冷却管20の外殻プレート27の板状面への組み付けを行う。なお、上記した各部のろう付けは、各部材を組み付けた状態で一斉に行う。
 上記した構成によれば、本積層型熱交換器は、電子部品4と熱交換する冷却媒体5が流通する流路を形成するとともに電子部品4を両側から挟持するように積層配置された複数の冷却管2を備えている。さらに、複数の冷却管2の積層方向の一端部に配置された出入冷却管20に接続されるパイプ31、32を備えている。また、複数の冷却管2および出入冷却管20は、それぞれ冷却管2の積層方向に突出するとともに冷却管2の積層方向の隣り合う冷却管2と連通する突出管部22を有している。複数の冷却管2のうち積層方向の一端部に配置された冷却管2は、出入冷却管20であり、パイプ31、32は、パイプ31、32の端部にパイプの長手方向と交差する面を有し、パイプの長手方向と交差する面が出入冷却管2と接合されている。
 このような構成によれば、パイプ31、32は、パイプ31、32の端部にパイプの長手方向と交差する面を有し、パイプの長手方向と交差する面が出入冷却管2と接合されている。したがって、出入冷却管20を、積層方向の中間部に配置された冷却管2と同じものを利用して構成することができ、部品点数を削減することができる。さらに、突出管部の形状に依らず出入流路管にパイプを取り付けることができる。
 ところで、上記特許文献1に記載された冷却器は、積層方向の端部の冷却管にパイプを取り付ける際に、媒体導入口および媒体排出口の内側に各パイプを挿入した後、各パイプの先端を拡管させている。そして、各パイプの先端の外周面と媒体導入口の内周面およびパイプの先端の外周面と媒体排出口の内周面をそれぞれ密着させている。このようなパイプの取り付け方法では、各パイプの先端を拡管させる際に、各パイプが冷却管の板面に対して傾いて取り付けられ易く組み付け性が低い。
 これに対し、本実施形態の積層型熱交換器は、パイプ31、32の端部を拡管させることなく出入冷却管2と接合される。すなわち、パイプの長手方向と交差する面が出入冷却管2と接合されるため、パイプの組み付け時の傾きに対する精度を向上することができる。さらに、本実施形態の積層型熱交換器は、パイプ31、32の長手方向の一端部には、パイプ31、32の長手方向と交差する面を構成する断面L字形状のパイプ座面312が形成されている。したがって、パイプ座面312によりパイプ31、32をより安定して出入冷却管2に固定することができる。すなわち、傾きに対してより精度よくパイプ31、32を出入冷却管20に対して固定することができる。
 また、パイプ座面312が出入冷却管20の表面にろう付けにより接合されているので、パイプ座面312と出入冷却管20の表面との気密性を確保することができる。
 また、パイプ座面312の出入冷却管20の表面側に押さえ付ける補強プレートを備えている。これによれば、出入冷却管20の強度を高めるとともに冷媒導入パイプ31および冷媒排出パイプ32の固定強度を高めることができる。
 (第2実施形態)
 第2実施形態に係る積層型冷却器について、図3を用いて説明する。上記第1実施形態の積層型熱交換器は、冷媒導入パイプ31の端部を突出管部22の小径突出管部222の周りに被せるようにして出入冷却管20に固着するようにした。これに対し、冷媒排出パイプ32の端部を突出管部22の大径突出管部223の周りに被せるようにして出入冷却管20に接合させている。
 本実施形態では、パイプは、冷媒導入パイプ31に相当する第1パイプと、冷媒排出パイプ32に相当する第2パイプを有している。また、突出管部20は、大径突出管部223と、該大径突出管部223の内側に挿入配置される小径突出管部222とを有している。また、出入冷却管20は、流路管2の積層方向の隣り合う流路管2と反対側の面に、大径突出管部223および小径突出管部222を有している。
 そして、第1パイプ31は、第1パイプ31の長手方向の一端部が小径突出管部222の外側に被せた状態で配置され、第2パイプ32は、第2パイプ32の長手方向の一端部が大径突出管部223の外側に被せた状態で配置されている。
 このように、出入冷却管20における流路管2の積層方向の隣り合う流路管2と反対側の面に、口径の異なる大径突出管部223および小径突出管部222が設けられている構成が可能である。このような構成であっても、第1パイプ31は、第1パイプ31の長手方向の一端部が小径突出管部222の外側に被せた状態で配置され、第2パイプ32は、第2パイプ32の長手方向の一端部が大径突出管部223の外側に被せた状態で配置されている。このため、突出管部22の形状に依らず出入流路管にパイプ31、32を取り付けることができる。すなわち、出入流路管に口径の同じパイプ31、32を取り付けることができる。また、出入冷却管20と中間部の冷却管2を同種の冷却管として構成することもできる。
 また、本実施形態の積層型冷却器は、第1パイプ31および第2パイプ32の内径φPが、突出管部22の小径突出管部222の内径φU以下となっている。
 例えば、小径突出管部222の内径φUが、第1パイプ31および第2パイプ32の内径φPよりも大きくなっている場合、突出管部22を流れる冷却媒体5の圧力損失が大きくなる。この場合、第1パイプ31および第2パイプ32と接続された冷却管2から離れた位置の冷却管2ほど、冷却管2に流入する冷却媒体5の流量が低下する。代わりに、第1パイプ31および第2パイプ32と接続された冷却管2から離れた位置の冷却管2ほど、第1パイプ31および第2パイプ32と接続された冷却管2およびこの冷却管2の近くの冷却管2に流れる冷却媒体5の流量が増大する。したがって、各冷却管2に流れる冷却媒体5の流量バランスが悪化してしまう。
 しかし、本実施形態の積層型冷却器は、第1パイプ31および第2パイプ32の内径φPが、突出管部22の小径突出管部222の内径φU以下となっている。すなわち、小径突出管部222の内径φUが、第1パイプ31および第2パイプ32の内径φPよりも大きくなっている。したがって、突出管部22を流れる冷却媒体5の圧力損失が大きくなるといったことがなく、各冷却管2に流れる冷却媒体5の流量を均一化することができる。
 本実施形態の第1パイプ31および第2パイプ32と接続された冷却管2は、大径突出管部223と小径突出管部222とを有している。第1パイプ31は、第1パイプ31の長手方向の一端部が小径突出管部222の外側に被せた状態で配置され、第2パイプ32は、第2パイプ32の長手方向の一端部が大径突出管部223の外側に被せた状態で配置されている。
 これに対し、第1パイプ31および第2パイプ32と接続された冷却管2は、2つの大径突出管部223を有してもよい。そして、第1パイプ31は、第1パイプ31の長手方向の一端部が一方の大径突出管部223の外側に被せた状態で配置され、第2パイプ32は、第2パイプ32の長手方向の一端部が他方の大径突出管部223の外側に被せた状態で配置されるよう構成してもよい。
 また、第1パイプ31および第2パイプ32と接続された冷却管2は、2つの小径突出管部222を有してもよい。そして、第1パイプ31は、第1パイプ31の長手方向の一端部が一方の小径突出管部222の外側に被せた状態で配置され、第2パイプ32は、第2パイプ32の長手方向の一端部が他方の小径突出管部222の外側に被せた状態で配置されるよう構成してもよい。
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。
 (第3実施形態)
 第3実施形態に係る積層型冷却器について、図4~図6を用いて説明する。上記第1実施形態の積層型熱交換器は、補強プレート25により冷媒導入パイプ31および冷媒排出パイプ32の固定強度を高めるよう構成されている。これに対し、本実施形態の積層型熱交換器は、冷媒導入パイプ31及び冷媒排出パイプ32の各パイプ周りの強度をより高めるため、補強プレート25に流路管段付部250aと座面段付部251aが形成されている。
 座面段付部251aは、補強プレート25におけるパイプ座面312と対向する面の一部として構成されている。図5に示すように、座面段付部251aは、パイプ座面312の周方向に沿って円環状に形成されている。座面段付部251aは、補強プレート25におけるパイプ座面312と対向する面において、パイプ座面312側に部分的に突出している。
 流路管段付部250aは、補強プレート25における座面段付部251aより冷媒導入パイプ31の外周側に形成されている。流路管段付部250aは、パイプ座面312の周方向に沿って円弧状に形成されている。流路管段付部250aは、補強プレート25における出入冷却管20の表面と対向する面において、出入冷却管20側に部分的に突出している。
 補強プレート25を出入冷却管20の表面に接触させる際に、座面段付部251aと流路管段付部250aが先に出入冷却管20の表面に接触する。
 ろう材は、補強プレート25の片面の全体にクラッドされているが、加熱すると優先的に接触している座面段付部251aと流路管段付部250aからフィレットが形成されていく。すなわち、溶融したろう材が、優先的に接触している座面段付部251aと流路管段付部250aに表面張力で先に集まっていく。そして、座面段付部251aと流路管段付部250aで補強プレート25と流路管が強固に接合される。
 図5中の矢印ST方向の曲げストレスが冷媒導入パイプ31に加えられた場合でも、座面段付部251aおよび流路管段付部250aの接着性が十分である。そのため、パイプ周りを含む補強プレート25の部材全体で応力を受けることができ、冷媒導入パイプ31の固定強度は確保される。
 これに対し、座面段付部251aおよび流路管段付部250aが形成されておらず、図6中の領域AR1でのみ接合された構成が可能である。この構成では、図5中の矢印ST方向への曲げストレスが冷媒導入パイプ31に加えられる場合がある。この曲げストレスを補強プレート25のパイプ周りの部分に応力を伝搬させることができず、AR2領域に集中してストレスを受けることになり、冷媒導入パイプ31の固定強度を維持することが困難となる。
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。
 (第4実施形態)
 第4実施形態に係る積層型冷却器について、図7を用いて説明する。上記第1実施形態の積層型熱交換器は、出入冷却管20の外殻プレート27の全体を覆うように補強プレート25が設けられている。これに対し、本実施形態の積層型熱交換器は、出入冷却管20の外殻プレート27の中央部を覆うように補強プレート25が設けられている。なお、図7中では、補強プレート25を点ハッチングで示してある。
 補強プレート25は、供給ヘッダ部11を構成する小径突出管部222の半円部と排出ヘッダ部12を構成する大径突出管部223の半円部の外周側を覆うように形成されている。このように、出入冷却管20の外殻プレート27の一部を覆うように補強プレート25を設けるように構成してもよい。
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。
 (第5実施形態)
 第5実施形態に係る積層型冷却器について、図8を用いて説明する。上記第1実施形態の積層型熱交換器は、冷媒導入パイプ31の長手方向の一端部に冷媒導入パイプ31の径外方向に屈曲するパイプ座面312を形成し、このパイプ座面312により形成されるパイプの長手方向と交差する面を出入流路管20と接合させる。これに対し、本実施形態では、冷媒導入パイプ31の長手方向の一端部に冷媒導入パイプ31の径内方向に屈曲するパイプ座面312が形成される。そして、このパイプ座面312により形成されるパイプの長手方向と交差する面が突出管部22の小径突出管部222の開口端222aと接合される。
 本実施形態において、パイプ座面312により形成されるパイプの長手方向と交差する面と突出管部22の小径突出管部222の開口端222aはろう付けにより接合されている。
 このような構成によれば、突出管部22の長さや突出管部22の側面の形状に依らず突出管部22に冷媒導入パイプ31を取り付けることができる。また、上記特許文献1に記載された冷却器のように、冷媒導入パイプ31の先端を拡管させることなく突出管部22に冷媒導入パイプ31を取り付けることができるので、突出管部22に対して傾くことなく冷媒導入パイプ31を取り付けることが可能である。
 なお、冷媒排出パイプ32側についても、冷媒導入パイプ31側と同様に出入冷却管20への組み付けを行うことができる。
 (第6実施形態)
 第6実施形態に係る積層型冷却器について、図9を用いて説明する。本実施形態の積層型熱交換器は、冷媒導入パイプ31の端面が、該冷媒導入パイプ31の長手方向と交差しており、冷媒導入パイプ31の端面が、出入流路管20に直接接合されている。
 冷媒導入パイプ31の端面は、該冷媒導入パイプ31の長手方向と直交している。また、冷媒導入パイプ31は、該冷媒導入パイプ31の長手方向の一端部が小径突出管部222の外側に被せた状態で配置されている。そして、冷媒導入パイプ31の端面が、出入流路管20に直接接合されている。
 このような構成によれば、突出管部22の長さや突出管部22の側面の形状に依らず突出管部22に冷媒導入パイプ31を取り付けることができる。また、冷媒導入パイプ31にパイプ座面等の加工を施す必要がないので、低コストを実現することもできる。
 なお、冷媒排出パイプ32側についても、冷媒導入パイプ31側と同様に出入冷却管20への組み付けを行うことができる。
 (他の実施形態)
 (1)上記各実施形態では、電子部品4と熱媒体とを熱交換させて電子部品4を冷却する例を示したが、熱交換対象物は電子部品4に限定されるものではない。
 (2)上記各実施形態では、熱交換対象物と熱媒体とを熱交換させて熱交換対象物を冷却する積層型冷却器の例を示したが、熱交換対象物と熱媒体とを熱交換させて熱交換対象物を加熱する積層型加熱器として構成することもできる。
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。

Claims (7)

  1. 積層型熱交換器であって、
     熱交換対象物(4)と熱交換する熱媒体が流通する流路を形成するとともに前記熱交換対象物を両側から挟持するように積層配置された複数の流路管(2)と、
     前記複数の流路管の積層方向の一端部に配置された前記流路管に接続されるパイプ(31、32)と、を備え、
     前記複数の流路管は、それぞれ前記流路管の積層方向に突出するとともに前記流路管の積層方向の隣り合う前記流路管と連通する突出管部(22)を有し、
     前記複数の流路管のうち積層方向の一端部に配置された前記流路管は、出入流路管であり、
     前記パイプは、該パイプの長手方向の一端部に前記パイプの長手方向と交差する面を有し、前記パイプの長手方向と交差する面が前記出入流路管と接合されている積層型熱交換器。
  2.  前記パイプは、第1パイプ(31)および第2パイプ(32)を有し、
     前記突出管部は、大径突出管部(223)と、該大径突出管部の内側に挿入配置される小径突出管部(222)とを有し、
     前記出入流路管は、前記流路管の積層方向の隣り合う前記流路管と反対側の面に、前記大径突出管部および前記小径突出管部を有し、
     前記第1パイプは、該第1パイプの長手方向の一端部が前記小径突出管部の外側に被せた状態で配置され、
     前記第2パイプは、該第2パイプの長手方向の一端部が前記大径突出管部の外側に被せた状態で配置されている請求項1に記載の積層型熱交換器。
  3.  前記パイプの長手方向の一端部には、前記パイプの長手方向と交差する面を構成する断面L字形状のパイプ座面(312)が形成されている請求項1または2に記載の積層型熱交換器。
  4.  前記パイプ座面を前記出入流路管の表面側に押さえ付ける補強プレートを備えた請求項3に記載の積層型熱交換器。
  5.  前記補強プレートは、前記パイプ座面の周方向に沿うように形成されて前記パイプ座面と当接する面側に部分的に突出する座面段付部(251a)を有する請求項4に記載の積層型熱交換器。
  6.  前記補強プレートは、前記座面段付部より外周側に形成されて前記出入流路管の表面側に向かって部分的に突出する流路管段付部(250a)を有する請求項5に記載の積層型熱交換器。
  7.  前記第1パイプおよび前記第2パイプの内径(φP)は、前記突出管部の前記小径突出管部の内径(φU)以下となっている請求項2に記載の積層型熱交換器。
PCT/JP2017/039800 2016-11-21 2017-11-02 積層型熱交換器 WO2018092608A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017005880.5T DE112017005880B4 (de) 2016-11-21 2017-11-02 Gestapelter Wärmetauscher
CN201780062485.9A CN109844942B (zh) 2016-11-21 2017-11-02 层叠型热交换器
US16/407,863 US10962309B2 (en) 2016-11-21 2019-05-09 Stacked heat exchanger

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016226214 2016-11-21
JP2016-226214 2016-11-21
JP2017149810 2017-08-02
JP2017-149810 2017-08-02
JP2017198371A JP6658710B2 (ja) 2016-11-21 2017-10-12 積層型熱交換器
JP2017-198371 2017-10-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/407,863 Continuation US10962309B2 (en) 2016-11-21 2019-05-09 Stacked heat exchanger

Publications (1)

Publication Number Publication Date
WO2018092608A1 true WO2018092608A1 (ja) 2018-05-24

Family

ID=62145402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039800 WO2018092608A1 (ja) 2016-11-21 2017-11-02 積層型熱交換器

Country Status (1)

Country Link
WO (1) WO2018092608A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005014A (ja) * 2004-06-15 2006-01-05 Denso Corp 積層型冷却器
WO2013094028A1 (ja) * 2011-12-20 2013-06-27 トヨタ自動車株式会社 半導体モジュール
JP2013183021A (ja) * 2012-03-01 2013-09-12 Toyota Industries Corp 冷却器
JP2014230458A (ja) * 2013-05-27 2014-12-08 株式会社デンソー 電力変換装置
JP2015216295A (ja) * 2014-05-13 2015-12-03 トヨタ自動車株式会社 電子機器
JP2016046322A (ja) * 2014-08-20 2016-04-04 株式会社デンソー 積層式冷却器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005014A (ja) * 2004-06-15 2006-01-05 Denso Corp 積層型冷却器
WO2013094028A1 (ja) * 2011-12-20 2013-06-27 トヨタ自動車株式会社 半導体モジュール
JP2013183021A (ja) * 2012-03-01 2013-09-12 Toyota Industries Corp 冷却器
JP2014230458A (ja) * 2013-05-27 2014-12-08 株式会社デンソー 電力変換装置
JP2015216295A (ja) * 2014-05-13 2015-12-03 トヨタ自動車株式会社 電子機器
JP2016046322A (ja) * 2014-08-20 2016-04-04 株式会社デンソー 積層式冷却器

Similar Documents

Publication Publication Date Title
JP6658710B2 (ja) 積層型熱交換器
US10462931B2 (en) Heat exchanger
JP2007053307A (ja) 積層型熱交換器及びその製造方法
WO2014021026A1 (ja) 熱交換器
JP2016157733A (ja) 冷却器
JP2017172864A (ja) 流路構造
JP6439454B2 (ja) 熱交換器
JP2006292307A (ja) 多板式熱交換器
WO2018092608A1 (ja) 積層型熱交換器
JP6331870B2 (ja) 積層式冷却器
JP6717326B2 (ja) 熱交換器
WO2014077084A1 (ja) 積層熱交換器
JP6080746B2 (ja) プレート積層体
JP7247717B2 (ja) 熱交換器
JP6750420B2 (ja) 積層型熱交換器
JP2011222815A (ja) 積層型熱交換器およびその製造方法
JP6447449B2 (ja) 熱交換チューブ
JP2019200039A (ja) プレート積層型の熱交換器
JP6731266B2 (ja) 熱交換器
JP2016161161A (ja) 熱交換器
JP2005233454A (ja) 熱交換器
JP2018074121A (ja) 積層型熱交換器
JP7121551B2 (ja) 熱交換器
JP2008082647A (ja) 熱交換器
WO2019216183A1 (ja) プレート積層型の熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871380

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17871380

Country of ref document: EP

Kind code of ref document: A1