WO2014021026A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2014021026A1
WO2014021026A1 PCT/JP2013/067247 JP2013067247W WO2014021026A1 WO 2014021026 A1 WO2014021026 A1 WO 2014021026A1 JP 2013067247 W JP2013067247 W JP 2013067247W WO 2014021026 A1 WO2014021026 A1 WO 2014021026A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
plate
heat exchanger
flow path
spacer
Prior art date
Application number
PCT/JP2013/067247
Other languages
English (en)
French (fr)
Inventor
回谷 雄一
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to US14/418,814 priority Critical patent/US9846000B2/en
Priority to DE201311003826 priority patent/DE112013003826T5/de
Publication of WO2014021026A1 publication Critical patent/WO2014021026A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another

Definitions

  • the present invention relates to a heat exchanger that allows a first refrigerant and a second refrigerant to flow and performs heat exchange between the first refrigerant and the second refrigerant.
  • Patent Document 1 As this type of conventional heat exchanger, there is one disclosed in Patent Document 1.
  • first plates 101 and second plates 102 are alternately laminated, and each plate 101, 102 has a pair of first communication holes 103 and A pair of second communication holes 104 are formed.
  • Each of the plates 101 and 102 has an outer peripheral wall 105 projecting in the same direction of the stacking direction, and adjacent outer peripheral walls 105 are in contact with each other.
  • the first refrigerant flow path 106 and the second refrigerant flow path 107 are alternately provided.
  • Each first communication hole 103 is opened in the first refrigerant flow path 106, each second communication hole 104 is closed, and each second communication hole 104 is opened in the second refrigerant flow path 107.
  • One communication hole 103 is closed.
  • the first refrigerant flowing through the refrigerant inlet 108 flows into the first refrigerant flow paths 106 from the first communication holes 103 and flows through the first refrigerant flow paths 106.
  • the refrigerant flows out from the other first communication hole 103 through the refrigerant outlet 109.
  • the second refrigerant flowing in through the cooling water inlet 110 flows into each second refrigerant channel 107 through one second communication hole 104, flows through each second refrigerant channel 107, and then enters the other second refrigerant channel 107. It flows out from the two communication holes 104 through the cooling water outlet 111.
  • the first refrigerant and the second refrigerant exchange heat through the first plate 101 or the second plate 102 in the process of flowing through the first refrigerant channel 106 and the second refrigerant channel 107, respectively.
  • the first plate is in a state where the portions to be joined are brought into close contact with each other by applying a load in the laminating direction of the first plate 101 and the second plate 102 with a jig or the like during brazing.
  • the space between 101 and the second plate 102 is fixed by brazing.
  • the load applied in the stacking direction is within a range in which the first plate 101 and the second plate 102 are not deformed, because the degree of adhesion of the portion to be joined increases.
  • first plate 101 and the second plate 102 are weaker in strength at the locations where the first communication holes 103 and the second communication holes 104 are opened than at other locations, and the first communication holes 103 and the second plates 102 are second. It is necessary to reliably braze the periphery of the communication hole 104 where the high-pressure refrigerant flows to provide a highly airtight structure. Specifically, when a high-pressure refrigerant flows through the first refrigerant flow path 106, it is necessary to braze the first communication hole 103 and the first refrigerant flow path 106 so as to be shielded with high airtightness.
  • the first communication hole 103 and the second communication hole 104 are opened. Only a load corresponding to the strength, that is, a relatively small load can be applied, and it is difficult to sufficiently adhere the joint portion. Therefore, the periphery of the communication hole 103 through which the high-pressure refrigerant flows is surely highly airtight. There is a problem that it cannot be brazed.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a heat exchanger that can reliably braze the periphery of the communication hole through which the high-pressure refrigerant flows with high airtightness. To do.
  • a first plate having a pair of first communication holes and a pair of second communication holes and a second plate having a pair of first communication holes and a pair of second communication holes are alternately stacked and adjacent to each other.
  • the first refrigerant flow path and the second refrigerant flow path are alternately provided between the first plate and the second plate, and each first communication hole is opened in the first refrigerant flow path.
  • the second communication hole is closed, each second communication hole is opened in the second refrigerant flow path, and each first communication hole is closed, so that the first refrigerant having a pressure higher than that of the second refrigerant is present.
  • the first refrigerant flows into the first refrigerant flow paths from one of the first communication holes, and the first refrigerant flowing through the first refrigerant flow paths flows out of the other first communication hole, and becomes the first refrigerant.
  • the low-pressure second refrigerant flows into each of the second refrigerant flow paths from one of the second communication holes, and flows through each of the second refrigerant flow paths.
  • the heat exchanger in which the second refrigerant flows out from the other second communication hole wherein a first spacer is interposed around each first communication hole in the first refrigerant flow path, and the second refrigerant
  • a second spacer is interposed in the flow path and at a position corresponding to the periphery of each of the first communication holes.
  • the first spacer allows the flow of the first refrigerant between the first communication hole and the first refrigerant flow path. It is preferable that the first spacer block the flow of the first refrigerant in the both end directions from the position of the first communication hole. It is preferable that the first spacer is interposed also around the second communication hole.
  • An inner fin is disposed in the first refrigerant flow path, and the first spacer preferably surrounds the outer periphery of the inner fin.
  • the first plate and the second plate each have an outer peripheral wall projecting in the same direction of the stacking direction, each outer peripheral wall is provided with a stepped portion, and the first plate in an adjacent position It is preferable that the second plates abut on each other at the stepped portion. When the first plate and the second plate abut, it is preferable that a gap is formed between the outer peripheral wall of the first plate and the outer peripheral wall of the second plate.
  • FIG. 1 shows an embodiment of the present invention and is a partially exploded perspective view of a heat exchanger.
  • FIG. 2 is a configuration diagram of a vehicle heat exchange system to which a heat exchanger is applied according to an embodiment of the present invention.
  • FIG. 3 is an overall perspective view of a heat exchanger according to an embodiment of the present invention.
  • FIG. 4 is a front view of a heat exchanger according to an embodiment of the present invention.
  • FIG. 5 shows an embodiment of the present invention and is a cross-sectional view taken along line AA of FIG.
  • FIG. 6 shows an embodiment of the present invention, and is an enlarged cross-sectional view showing a portion B of FIG.
  • FIG. 7 is a cross-sectional view showing an embodiment of the present invention and further enlarging the portion C of FIG.
  • FIG. 8 is a plan view of the first spacer and the inner fin, showing an embodiment of the present invention.
  • FIG. 9 is an exploded perspective view of the first spacer and the inner fin, showing an embodiment of the present invention.
  • FIG. 10 is a plan view of first spacers and inner fins according to a modification of the embodiment.
  • FIG. 11 is an overall perspective view of a conventional heat exchanger. 12 is a cross-sectional view taken along the line DD of FIG. 13 is a cross-sectional view taken along line EE of FIG.
  • the water-cooled condenser 1 (heat exchanger) of this embodiment is applied to a vehicle heat exchange system 2 as shown in FIG.
  • the vehicle heat exchange system 2 includes a water-cooled condenser 1 according to the present embodiment, a main radiator 21 that cools the cooling water of the engine 20, and a sub-radiator 23 that cools a refrigerant for the water-cooled charge air cooler 22 (water-cooled CAC). And an air cooling condenser 24 for cooling the refrigerant for air conditioning in the vehicle interior.
  • the main radiator 21 is provided on the upstream side of the cooling air of the motor fan 25.
  • the main radiator 21 has a plurality of tubes (not shown) through which the cooling water of the engine 20 flows, and performs heat exchange with the cooling air flowing outside the tubes.
  • the engine coolant is circulated by a pump 26.
  • the sub-radiator 23 is disposed on the upstream side of the cooling air of the main radiator 21 and in the upper half area.
  • the sub-radiator 23 has a plurality of tubes (not shown) through which cooling water, which is the second refrigerant for the water-cooled charge air cooler 22, flows and exchanges heat with the cooling air flowing outside the tubes.
  • Cooling water for the water-cooled charge air cooler 22 is circulated by a pump 29. Since the air supplied to the engine 20 is compressed by the turbo unit 27 using exhaust gas, the intake air becomes high temperature, and the high-temperature compressed air is cooled by the water-cooled charge air cooler 22. Thereby, since the air density supplied to the engine 20 can be improved by cooling the intake air, the combustion efficiency of the engine 20 is improved. That is, the water-cooled charge air cooler 22 exchanges heat between the compressed intake air supplied to the engine 20 and the cooling water to cool the intake air of the engine 20.
  • the air-cooled condenser 24 is disposed on the upstream surface side of the cooling air of the main radiator 21 and in the lower half region.
  • the air-cooling condenser 24 has a plurality of tubes (not shown) through which the air-conditioning refrigerant that is the first refrigerant flows, and performs heat exchange with the cooling air flowing outside the tubes.
  • the water-cooled capacitor 1 of this embodiment will be described.
  • the water-cooled condenser 1 and the air-cooled condenser 24 are connected in series in the refrigeration cycle with the water-cooled condenser 1 as the upstream.
  • the air-conditioning refrigerant which is the first refrigerant that has been brought to high temperature and high pressure by the compressor 28 of the refrigeration cycle, first flows into the water-cooled condenser 1 and then flows out into the air-cooled condenser 24.
  • Cooling water that is the second refrigerant cooled by the sub-radiator 23 flows into the water-cooled condenser 1 and exchanges heat with the air-conditioning refrigerant, and then flows into the water-cooled charge air cooler 22.
  • the water-cooled capacitor 1 of the present embodiment is alternately interposed between first and second plates 3 and 4 that are alternately stacked, and between the first and second plates 3 and 4.
  • the first spacer 5 and the second spacer 6 are provided, and the inner fin 7 is surrounded by the first spacer 5. These parts are fixed by brazing on all contact surfaces.
  • the first plate 3 and the second plate 4 respectively have outer peripheral walls 31 and 41 protruding in the same direction of the stacking direction, and each outer peripheral wall 31 and 41 has a step. Portions 32 and 42 are provided. The first plate 3 and the second plate 4 that are adjacent to each other at the stepped portions 32 and 42 come into contact with each other.
  • Each plate 3, 4 is provided with a plurality of projections 33, 43 that protrude toward the second refrigerant flow path 82 described later and whose tips abut against each other, and the abutment surfaces of these projections 33, 43 are also brazed. .
  • a gap is formed between the outer peripheral wall 31 of the first plate 3 and the outer peripheral wall 41 of the second plate 4 when the first plate 3 and the second plate 4 in adjacent positions contact each other. When brazing, wax accumulates in this gap.
  • the first plate 3 has a pair of first communication holes 34 through which air-conditioning refrigerant flows, and a pair of second communication holes 35 through which cooling water flows.
  • the second plate 4 has a pair of first communication holes 44 through which air-conditioning refrigerant flows, and a pair of second communication holes 45 through which cooling water flows.
  • annular projecting edge portions 34 a and 44 a around the first communication holes 34 and 44 project into the second refrigerant channel 82, and the second refrigerant channel 82. And are joined by brazing so as to overlap each other. Similarly, the annular projecting edge portions 35a and 45a around the second communication holes 35 and 45 protrude into the first refrigerant channel 81, and are brazed and joined in a state of overlapping with each other in the first refrigerant channel 81. Is done.
  • each first communication hole 34, 44 is opened in the first refrigerant flow path 81, and each second communication hole 35, 45 is closed.
  • the air-conditioning refrigerant that has flowed through each first refrigerant flow path 81 flows out from the other first communication holes 34, 44.
  • each second communication hole 35, 45 is opened in the second refrigerant flow path 82, and each first communication hole 34, 44 is closed, so that cooling water having a pressure lower than that of the refrigerant for air conditioning is on one side.
  • the coolant flows into the second refrigerant flow paths 82 from the second communication holes 35 and 45, respectively, and the cooling water flowing through the second refrigerant flow paths 82 flows out of the other second communication holes 35 and 45.
  • a refrigerant inlet 81a and a refrigerant outlet 81b through which air-conditioning refrigerant flows in and out, and cooling through which cooling water flows in and out.
  • a water inlet portion 82a and a cooling water outlet portion 82b are provided so as to protrude.
  • a patch end 83 that closes the end portions of the pair of first communication holes 34 and 44 and the pair of second communication holes 55.
  • a flange portion 84 are provided.
  • the inner fin 7 is disposed in the first refrigerant flow path 81.
  • the contact surfaces of the inner fin 7 and the plates 3 and 4 are also brazed.
  • the first spacer 5 is disposed in the first refrigerant flow path 81.
  • the first spacer 5 includes a fin housing opening 53 for housing the inner fin 7, and a pair of first communication holes 54 provided at positions corresponding to the pair of first communication holes 34 and 44 of the plates 3 and 4.
  • Each of the plates 3 and 4 has a pair of second communication holes 55 provided at positions corresponding to the pair of second communication holes 35 and 45.
  • the first spacer 5 is disposed so as to surround the entire circumference of the inner fin 7.
  • Each first communication hole 54 is open to the fin housing opening 53.
  • Each of the second communication holes 55 is provided with a larger diameter than the protruding edge portions 35 a and 45 a around the second communication holes 35 and 45 of the plates 3 and 4. Thereby, the 1st spacer 5 is arrange
  • the second spacer 6 is disposed in the second refrigerant channel 82.
  • the second spacer 6 has an annular shape as shown in FIG.
  • the second spacer 6 is disposed at a position corresponding to the periphery of the pair of first communication holes 34 and 44 of the plates 3 and 4.
  • the inner diameter of the second spacer 6 is larger than the protruding edges 34 a and 44 a around the first communication holes 34 and 44 of the plates 3 and 4. Accordingly, the second spacer 6 is disposed so as to surround the protruding edges 34a and 44a of the first communication holes 34 and 44.
  • the air-conditioning refrigerant that has been brought into the high-temperature and high-pressure gas state by the compressor 28 of the refrigeration cycle first flows into the water-cooled condenser 1 and then enters one first communication hole of the water-cooled condenser 1 via the refrigerant inlet portion 81a. 34, 44, 54. Thereafter, the air-conditioning refrigerant flows through the first refrigerant flow path 81 between the first plate 3 and the second plate 4, and the air-cooled condenser through the refrigerant outlet portion 81 b from the other first communication holes 34, 44, 54. To 24.
  • the cooling water cooled by the sub-radiator 23 flows into the second communication holes 35, 45, and 55 of the water-cooled condenser 1 through the cooling water inlet portion 82a. After that, it flows through the second refrigerant flow path 82 between the first plate 3 and the second plate 4, flows out from the other second communication holes 35, 45, 55 through the cooling water outlet 82 b, And flows into the water-cooled charge air cooler 22. Thereby, the air-conditioning refrigerant and the cooling water exchange heat through the first plate 3 or the second plate 4 in the process of flowing through the first refrigerant channel 81 and the second refrigerant channel 82 of the water-cooled condenser 1, respectively.
  • a brazing material is applied to the contact points of the components, and the components to which the brazing material has been applied are stacked in a predetermined position.
  • a relatively large load is applied in the stacking direction of the plates 3 and 4 with a jig or the like to sufficiently adhere the brazing material joining portion.
  • the first spacer 5 or the second spacer 6 is interposed over all stages in the stacking direction, and specifically, the first spacer 5 is disposed in each first refrigerant flow path 81.
  • the second spacer 6 is interposed around the first communication holes 34 and 44, and the second spacer 6 is interposed in the second refrigerant flow path 82 at a position corresponding to the periphery of the first communication holes 34 and 44. Since the portions where the first and third communication holes 34 and 44 are opened can be reinforced, even if a large load is applied in the stacking direction of the plates 3 and 4, the first communication holes 34 and 44 of the plates 3 and 4. Can prevent buckling around. Further, since the first spacer 5 is also interposed around the second communication holes 35 and 45 of the plates 3 and 4, the portions where the second communication holes 35 and 45 of the plates 3 and 4 are opened can be reinforced.
  • the water-cooled capacitor 1 can be easily manufactured.
  • the first spacer 5 allows the air-conditioning refrigerant to flow between the first communication holes 34 and 44 of the plates 3 and 4 and the first refrigerant flow path 81, and the air-conditioning refrigerant flows into and out of the first refrigerant flow path 81. Therefore, the air-conditioning refrigerant flows smoothly in the first refrigerant flow path 81.
  • the air-conditioning refrigerant Since the flow of the air-conditioning refrigerant from the position of the first communication holes 34, 44 toward both ends is blocked by the first communication holes 54 of the first spacer 5 and the end surfaces of the fin housing openings 53, the air-conditioning refrigerant is the first air-conditioning refrigerant. It is possible to prevent stagnation in the vicinity of both ends of the refrigerant flow path 81 and to prevent a decrease in heat exchange efficiency.
  • the heat transfer efficiency of the air conditioning refrigerant can be improved more effectively. Further, by appropriately setting the height of the inner fin 7 and the thickness of the first spacer 5 surrounding the outer periphery of the inner fin 7, buckling of the inner fin 7 due to a load acting in the stacking direction during brazing can be prevented. Therefore, by applying a sufficient load in the laminating direction of the plates 3 and 4, the inner fin 7 and the plates 3 and 4 can be sufficiently brought into close contact with each other to be surely brazed. Alternatively, the weight of the plates 3 and 4 can be reduced by reducing the thickness of the inner fins 7 with respect to the load.
  • the first plate 3 and the second plate 4 that are adjacent to each other at the step portions 32 and 42 provided on the outer peripheral wall 31 on the outer periphery of the first plate 3 and the outer peripheral wall 41 on the outer periphery of the second plate 4, respectively. .
  • the contact between the step portions 32 and 42 fixes the relative positional relationship between the first plate 3 and the second plate 4 when a relatively large load is applied in the stacking direction of the plates 3 and 4. Therefore, the fitting margin (overlapping length of the outer peripheral wall) between the first plate 3 and the second plate 4 to be stacked can be appropriately maintained, and the assembling accuracy of the plates 3 and 4 is improved.
  • a brazing property can be improved.
  • the brazing material shortage can be solved particularly on the refrigerant side where pressure resistance is required.
  • FIG. 10 shows the first spacer 5A and the inner fin 7 according to a modification of the embodiment.
  • the modified first spacer 5 ⁇ / b> A includes a frame body 56 that surrounds the inner fin 7, and a pair of annular rings that are connected to the frame body 56 and surround the entire circumference of each second communication hole 55. It is comprised from the part 57 and the connection part 58 which connects the frame 56 and the annular ring part 57.
  • a pair of first communication holes 54 are provided in the frame body 56, and the flow of the first refrigerant from the positions of the first communication holes 34 and 44 toward both ends is blocked by the frame body 56.
  • the first spacer 5A of this modification it is possible to reduce the weight as compared with the first embodiment. Further, since the frame body 56 and the pair of annular portions 57 are connected by the thin connecting portion 58, the yield of the material can be improved.
  • the first spacer is interposed around each first communication hole in the first refrigerant flow path through which the high-pressure refrigerant flows, and the second spacer is disposed in the second refrigerant flow path and By interposing at a position corresponding to the periphery of one communication hole, it is possible to reinforce the location where each first communication hole of the first plate and the second plate is opened, so when a load acts in the stacking direction of the plates, Buckling around each first communication hole of the first plate and the second plate can be prevented.

Abstract

 一対の第1連通孔(34)と一対の第2連通孔(35)を有するプレート(3)と、一対の第1連通孔(44)と一対の第2連通孔(45)を有するプレート(4)と、を交互に積層し、隣り合うプレート(3)、(4)間に第1冷媒流路(81)と第2冷媒流路(82)を交互に設け、第1冷媒流路(81)内の各第1連通孔(34)、(44)の周囲に第1スペーサ(5)を介在し、第2冷媒流路(82)内で、且つ、各第1連通孔(34)、(44)の周囲に対応する位置に第2スペーサ(6)を介在する。

Description

熱交換器
 本発明は、第1冷媒と第2冷媒を流し、第1冷媒と第2冷媒の間で熱交換を行う熱交換器に関する。
 この種の従来の熱交換器としては、特許文献1に開示されたものがある。この熱交換器100は、図11~図13に示すように、第1プレート101と第2プレート102が交互に積層されると共に、各プレート101、102には、一対の第1連通孔103と一対の第2連通孔104がそれぞれ形成されている。各プレート101、102は、積層方向の同一方向に向かって突出する外周壁105をそれぞれ有し、隣り合う外周壁105同士が互いに当接している。また、隣り合うプレート101、102の間には、第1冷媒流路106と第2冷媒流路107が交互に設けられている。第1冷媒流路106には、各第1連通孔103が開口し、各第2連通孔104が閉口し、第2冷媒流路107には、各第2連通孔104が開口し、各第1連通孔103が閉口している。
 上記構成において、冷媒用入口部108を介して流入する第1冷媒は、一方の第1連通孔103より各第1冷媒流路106にそれぞれ流入し、各第1冷媒流路106を流れた後に他方の第1連通孔103より冷媒用出口部109を介して流出する。冷却水用入口部110を介して流入する第2冷媒は、一方の第2連通孔104より各第2冷媒流路107にそれぞれ流入し、各第2冷媒流路107を流れた後に他方の第2連通孔104より冷却水用出口部111を介して流出する。第1冷媒と第2冷媒は、第1冷媒流路106と第2冷媒流路107をそれぞれ流れる過程で第1プレート101若しくは第2プレート102を介して熱交換する。
 上記した積層形の熱交換器100では、ロウ付け時に治具などで第1プレート101と第2プレート102の積層方向に荷重をかけることにより、接合したい箇所を密着させた状態で、第1プレート101と第2プレート102間をロウ付けによって固定する。このとき、積層方向に作用させる前記荷重は、第1プレート101及び第2プレート102が変形しない範囲であれば、大きい方が接合したい箇所の密着度合いが増すため好ましい。
 また、第1プレート101及び第2プレート102は、第1連通孔103や第2連通孔104が開口された箇所の強度が他の箇所に比べて弱く、且つ、第1連通孔103と第2連通孔104の内で高圧の冷媒が流れる方の周辺を確実にロウ付けし、高い気密構造とする必要がある。具体的には、第1冷媒流路106に高圧の冷媒が流れる場合には、第1連通孔103と第1冷媒流路106が高い気密性で遮蔽されるようロウ付けする必要がある。 
特開2007‐205634号公報
 しかしながら、前記従来例の熱交換器100では、ロウ付け時に第1プレート101と第2プレート102の積層方向に荷重をかける際、第1連通孔103や第2連通孔104が開口された箇所の強度に対応する荷重、即ち比較的小さい荷重しか作用させることができず、接合箇所を十分に密着させることが難しいため、高圧の冷媒が流れる方の連通孔103の周囲を確実に高い気密性でロウ付けできないという問題がある。
 そこで、本発明は、前記した課題を解決すべくなされたものであり、高圧の冷媒が流れる方の連通孔の周囲を確実に高い気密性でロウ付けできる熱交換器を提供することを目的とする。 
 本発明は、一対の第1連通孔と一対の第2連通孔を有する第1プレートと、一対の第1連通孔と一対の第2連通孔を有する第2プレートを交互に積層し、隣り合う前記第1プレートと前記第2プレートの間に第1冷媒流路と第2冷媒流路を交互に設け、前記第1冷媒流路には前記各第1連通孔が開口し、且つ、前記各第2連通孔が閉口し、前記第2冷媒流路には前記各第2連通孔が開口し、且つ、前記各第1連通孔が閉口し、第2冷媒に比べて高圧の第1冷媒が一方の前記第1連通孔より前記各第1冷媒流路にそれぞれ流入し、前記各第1冷媒流路を流れた前記第1冷媒が他方の前記第1連通孔より流出し、第1冷媒に比べて低圧の第2冷媒が一方の前記第2連通孔より前記各第2冷媒流路にそれぞれ流入し、前記各第2冷媒流路を流れた前記第2冷媒が他方の前記第2連通孔より流出する熱交換器であって、前記第1冷媒流路内の前記各第1連通孔の周囲に第1スペーサを介在し、前記第2冷媒流路内で、且つ、前記各第1連通孔の周囲に対応する位置に第2スペーサを介在したことを特徴とする。
 前記第1スペーサは、前記第1連通孔と前記第1冷媒流路間の第1冷媒の流れを許容することが好ましい。前記第1スペーサは、前記第1連通孔の位置より両端方向への第1冷媒の流れを阻止することが好ましい。前記第1スペーサは、前記第2連通孔の周囲にも介在することが好ましい。前記第1冷媒流路内には、インナーフィンが配置され、前記第1スペーサは、前記インナーフィンの外周を囲むことが好ましい。前記第1プレート及び前記第2プレートは、積層方向の同一方向に向かって突出する外周壁をそれぞれ有し、前記各外周壁には段差部が設けられ、隣り合う位置にある前記第1プレートと前記第2プレートが前記段差部で互いに当接することが好ましい。前記第1プレート及び前記第2プレートが当接するとき、前記第1プレートの外周壁と前記第2プレートの外周壁の間に隙間が形成されることが好ましい。
図1は、本発明の一実施形態を示し、熱交換器の一部分解斜視図である。 図2は、本発明の一実施形態を示し、熱交換器が適用された車両用熱交換システムの構成図である。 図3は、本発明の一実施形態を示し、熱交換器の全体斜視図である。 図4は、本発明の一実施形態を示し、熱交換器の正面図である。 図5は、本発明の一実施形態を示し、図4のA-A線に沿う横断面図である。 図6は、本発明の一実施形態を示し、図5のB部を拡大して示す横断面図である。 図7は、本発明の一実施形態を示し、図6のC部をさらに拡大して示す横断面図である。 図8は、本発明の一実施形態を示し、第1スペーサ及びインナーフィンの平面図である。 図9は、本発明の一実施形態を示し、第1スペーサ及びインナーフィンの分解斜視図である。 図10は、一実施形態の変形例に係る第1スペーサ及びインナーフィンの平面図である。 図11は、従来例の熱交換器の全体斜視図である。 図12は、図11のD-D線に沿う断面図である。 図13は、図11のE-E線に沿う断面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
(一実施形態)
 図1~図9は本発明の一実施形態を示す。
 本実施形態の水冷コンデンサ1(熱交換器)は、図2に示すように、車両用熱交換システム2に適用される。この車両用熱交換システム2は、本実施形態の水冷コンデンサ1と、エンジン20の冷却水を冷却するメインラジエータ21と、水冷チャージエアクーラ22(水冷CAC)用の冷媒を冷却するサブラジエータ23と、車室内空調用の冷媒を冷却する空冷コンデンサ24とを備えている。
 メインラジエータ21は、モータファン25の冷却風の上流側に設けられている。メインラジエータ21は、その内部をエンジン20の冷却水が流れる複数のチューブ(図示せず)を有し、チューブの外側を流れる冷却風との間で熱交換を行う。エンジン用の冷却水は、ポンプ26によって循環される。
 サブラジエータ23は、メインラジエータ21の冷却風の上流面側で、且つ、上半分領域に配置されている。サブラジエータ23は、その内部を水冷チャージエアクーラ22用の第2冷媒である冷却水が流れる複数のチューブ(図示せず)を有し、チューブの外側を流れる冷却風との間で熱交換を行う。水冷チャージエアクーラ22用の冷却水は、ポンプ29によって循環される。エンジン20に供給する空気は、排気を利用してターボ部27で圧縮するために吸気は高温になるので、この高温の圧縮空気を水冷チャージエアクーラ22で冷却する。これにより、吸気を冷却することでエンジン20に供給する空気密度を向上できるので、エンジン20の燃焼効率が向上する。つまり、水冷チャージエアクーラ22は、エンジン20に供給する圧縮吸気と冷却水の間で熱交換し、エンジン20の吸気を冷却する。
 空冷コンデンサ24は、メインラジエータ21の冷却風の上流面側で、且つ、下半分領域に配置されている。空冷コンデンサ24は、その内部を第1冷媒である空調用冷媒が流れる複数のチューブ(図示せず)を有し、チューブの外側を流れる冷却風との間で熱交換を行う。
 次に、本実施形態の水冷コンデンサ1について説明する。水冷コンデンサ1と空冷コンデンサ24とは、図2に示すように、水冷コンデンサ1を上流として冷凍サイクル内に直列に接続されている。冷凍サイクルの圧縮機28によって高温高圧とされた第1冷媒である空調用冷媒は、先ず水冷コンデンサ1に流入し、その後、空冷コンデンサ24へ流出する。サブラジエータ23で冷却された第2冷媒である冷却水は、水冷コンデンサ1に流入し、空調用冷媒との熱交換を行なった後、水冷チャージエアクーラ22に流入する。
 本実施形態の水冷コンデンサ1は、図1及び図5などに示すように、交互に積層される第1プレート3と第2プレート4と、第1プレート3及び第2プレート4間に交互に介在する第1スペーサ5と第2スペーサ6と、第1スペーサ5により外周が囲まれるインナーフィン7とを備えている。これらの各部品間は、全ての当接面でロウ付けによって固定されている。
 第1プレート3及び第2プレート4は、図5~図7に示すように、積層方向の同一方向に向かって突出する外周壁31、41をそれぞれ有し、各外周壁31、41には段差部32、42が設けられる。段差部32、42で、隣り合う位置にある第1プレート3と第2プレート4が互いに当接する。各プレート3、4には、後述する第2冷媒流路82側に突出し、先端が互いに当接する複数の突起33、43を備え、これらの突起33、43同士の当接面もロウ付けされる。
 隣り合う位置にある第1プレート3と第2プレート4が互いに当接する際、第1プレート3の外周壁31と第2プレート4の外周壁41の間には隙間が形成される。ロウ付け時、この隙間にロウが溜まる。
 第1プレート3は、空調用冷媒が流れる一対の第1連通孔34と、冷却水が流れる一対の第2連通孔35を有する。また第2プレート4は、空調用冷媒が流れる一対の第1連通孔44と、冷却水が流れる一対の第2連通孔45を有する。交互に積層される状態で隣り合う第1プレート3と第2プレート4の間には、図1の実線の矢印で示すように、空調用冷媒が流れる第1冷媒流路81と、図1の破線の矢印で示すように、冷却水が流れる第2冷媒流路82が交互に設けられている。
 第1プレート3と第2プレート4の内、第1連通孔34、44周囲の円環状の各突出縁部34a、44aは、第2冷媒流路82内に突出し、この第2冷媒流路82内で互いに重なり合う状態でロウ付け結合される。同様に、第2連通孔35、45周囲の円環状の各突出縁部35a、45aは、第1冷媒流路81内に突出し、この第1冷媒流路81内で互いに重なり合う状態でロウ付け結合される。
 これによって、第1冷媒流路81には、各第1連通孔34、44が開口し、且つ、各第2連通孔35、45が閉口し、冷却水に比べて高圧の空調用冷媒が一方の第1連通孔34、44より各第1冷媒流路81にそれぞれ流入し、各第1冷媒流路81を流れた空調用冷媒が他方の第1連通孔34、44より流出する。一方、第2冷媒流路82には、各第2連通孔35、45が開口し、且つ、各第1連通孔34、44が閉口し、空調用冷媒に比べて低圧の冷却水が一方の第2連通孔35、45より各第2冷媒流路82にそれぞれ流入し、各第2冷媒流路82を流れた冷却水が他方の第2連通孔35、45より流出する。
 第1プレート3と第2プレート4の積層方向の一端(図5の下端)には、空調用冷媒が流出入する冷媒用入口部81a及び冷媒用出口部81bと、冷却水が流出入する冷却水用入口部82a及び冷却水用出口部82bとがそれぞれ突設されている。第1プレート3と第2プレート4の積層方向の他端(図5の上端)には、一対の第1連通孔34、44と一対の第2連通孔55の各端部を塞ぐパッチエンド83及びフランジ部84が設けられている。
 インナーフィン7は、第1冷媒流路81内に配置されている。インナーフィン7と各プレート3、4の当接面もロウ付けされる。
 第1スペーサ5は、第1冷媒流路81内に配置されている。第1スペーサ5は、インナーフィン7を収容するフィン収容開口部53と、各プレート3、4の一対の第1連通孔34、44に対応する位置に設けられた一対の第1連通孔54と、各プレート3、4の一対の第2連通孔35、45に対応する位置に設けられた一対の第2連通孔55を有している。第1スペーサ5は、インナーフィン7の全周を囲むように配置されている。各第1連通孔54は、フィン収容開口部53に開放している。これにより、空調用冷媒は、第1冷媒流路81に流出入できるようになっているが、各第1連通孔34、44の位置より両端方向に流れないようになっている。各第2連通孔55は、プレート3、4の第2連通孔35、45周囲の各突出縁部35a、45aより大径に設けられている。これにより、第1スペーサ5は、第2連通孔35、45の突出縁部35a、45aを囲むように配置される。
 第2スペーサ6は、第2冷媒流路82内に配置されている。第2スペーサ6は、図1に示すように円環状である。第2スペーサ6は、各プレート3、4の一対の第1連通孔34、44の周囲に対応する位置に配置されている。第2スペーサ6の内周径は、プレート3、4の第1連通孔34、44周囲の各突出縁部34a、44aより大径に設けられている。これにより、第2スペーサ6は、第1連通孔34、44の突出縁部34a、44aを囲むように配置される。
 上記構成において、冷凍サイクルの圧縮機28によって高温高圧のガス状態にされた空調用冷媒は、先ず水冷コンデンサ1に流入し、冷媒用入口部81aを介して水冷コンデンサ1の一方の第1連通孔34、44、54に流入する。その後、空調用冷媒は、第1プレート3と第2プレート4の間の第1冷媒流路81を流れ、他方の第1連通孔34、44、54より冷媒用出口部81bを介して空冷コンデンサ24へ流出する。
 一方、サブラジエータ23で冷却された冷却水は、冷却水用入口部82aを介して水冷コンデンサ1の第2連通孔35、45、55に流入する。その後、第1プレート3と第2プレート4の間の第2冷媒流路82を流れ、他方の第2連通孔35、45、55より冷却水用出口部82bを介して流出し、ポンプ29を介して水冷チャージエアクーラ22に流入する。これにより、空調用冷媒と冷却水は、水冷コンデンサ1の第1冷媒流路81と第2冷媒流路82をそれぞれ流れる過程で第1プレート3若しくは第2プレート4を介して熱交換する。
 次に、水冷コンデンサ1の製造を簡単に説明する。各部品の互いの当接箇所には基本的にロウ材を塗布し、ロウ材を塗布した各部品を所定位置として積層配置される。治具などでプレート3、4の積層方向に比較的大きな荷重をかけて、ロウ材接合箇所を十分に密着させる。
 ここで、プレート3、4の間には積層方向の全段にわたり第1スペーサ5または第2スペーサ6が介在し、具体的には、第1スペーサ5が第1冷媒流路81内の各第1連通孔34、44の周囲に介在すると共に、第2スペーサ6が第2冷媒流路82内で、且つ、各第1連通孔34、44の周囲に対応する位置に介在することにより、プレート3、4の第1連通孔34、44が開口された箇所を補強できるので、プレート3、4の積層方向に大きな荷重を作用させても、プレート3、4の各第1連通孔34、44の周囲の座屈を防止できる。さらに、第1スペーサ5がプレート3、4の第2連通孔35、45の周囲にも介在するので、プレート3、4の各第2連通孔35、45が開口された箇所も補強できる。
 以上より、プレート3、4を積層してロウ付けする際、プレート3、4の積層方向に比較的大きな荷重をかけて接合箇所を十分に密着させることができるため、高圧の冷媒が流れる第1連通孔34、44と第1冷媒流路81の周辺を確実に高い気密性でロウ付けできる。
 又、ロウ付け時にプレート3、4の積層方向へ加える荷重の許容範囲が広がるため、当該水冷コンデンサ1の製作が容易である。
 第1スペーサ5がプレート3、4の第1連通孔34、44と第1冷媒流路81間の空調用冷媒の流れを許容し、空調用冷媒が第1冷媒流路81へ流出入するのを妨げないので、空調用冷媒が第1冷媒流路81内にて円滑に流れる。
 第1連通孔34、44の位置より両端方向への空調用冷媒の流れが第1スペーサ5の第1連通孔54及びフィン収容開口部53の端面で阻止されるので、空調用冷媒が第1冷媒流路81の両端付近で滞留するのを防止でき、熱交換の効率低下を防止できる。
 空調用冷媒が流れる第1冷媒流路81は、インナーフィン7により伝熱面積が増加するため、より効果的に空調用冷媒の熱交換効率を向上できる。また、インナーフィン7の高さとこのインナーフィン7の外周を囲む第1スペーサ5の厚さを適切に設定することにより、ロウ付け時に積層方向へ作用する荷重によるインナーフィン7の座屈を防止できるので、プレート3、4の積層方向へ十分な荷重に加えることによりインナーフィン7とプレート3、4を十分に密着させて確実にロウ付けを行うことができる。あるいは、前記荷重に対するインナーフィン7の強度が向上する分、プレート3、4の板厚を薄くすることにより、軽量化を図ることもできる。
 第1プレート3の外周の外周壁31及び第2プレート4の外周の外周壁41にそれぞれ設けられる段差部32、42において、隣り合う位置にある第1プレート3と第2プレート4が互いに当接する。この段差部32、42での当接により、プレート3、4の積層方向に比較的大きな荷重をかけた際、第1プレート3と第2プレート4の相対的な位置関係が固定される。そのため積層される第1プレート3と第2プレート4間のはめ込み代(外周壁の重ね合わせ長さ)を適正に保つことができ、プレート3、4の組み付け精度が向上する。また、プレート3、4の外周壁31、41間にロウを溜める隙間が形成されるので、ロウ付け性の向上を図ることもできる。
 なお、板厚の比較的大きい第1スペーサ5と第2スペーサ6に両面ロウ材の3層材を用いることにより、特に耐圧強度が要求される冷媒側においてロウ材不足を解消できる。
(変形例)
 図10は、前記実施形態の変形例に係る第1スペーサ5Aとインナーフィン7を示す。図10に示すように、変形例の第1スペーサ5Aは、インナーフィン7を囲む枠体56と、この枠体56にそれぞれ連結され、各第2連通孔55の全周囲を囲む一対の円環部57と、枠体56と円環部57を連結する連結部58とから構成されている。枠体56内には、一対の第1連通孔54が設けられると共に、第1連通孔34、44の位置より両端方向への第1冷媒の流れが枠体56により阻止される。
 他の構成は、前記実施形態のものと同様であるため、重複説明を回避するため、説明を省略する。又、図面には、前記実施形態と同一構成箇所に同一符号を付して明確化を図る。
 この変形例の第1スペーサ5Aでは、前記実施形態のものと比較して軽量化を図ることができる。又、枠体56と一対の円環部57とが細い連結部58で連結された構造であるため、材料の歩留まりを改善することもできる。
 本出願は、2012年8月1日に出願された日本国特許願第2012-170953号に基づく優先権を主張しており、この出願の全内容が参照により本明細書に組み込まれる。
 本発明によれば、第1スペーサが高圧の冷媒が流れる第1冷媒流路内の各第1連通孔の周囲に介在すると共に、第2スペーサが第2冷媒流路内で、且つ、各第1連通孔の周囲に対応する位置に介在することにより、第1プレート及び第2プレートの各第1連通孔が開口された箇所を補強できるので、プレートの積層方向に荷重が作用する場合に、第1プレート及び第2プレートの各第1連通孔の周囲の座屈を防止できる。これにより、プレートを積層してロウ付けする際、プレートの積層方向に比較的大きな荷重をかけて接合箇所を十分に密着させることができるので、高圧の冷媒が流れる第1連通孔と第1冷媒流路の周辺を確実に高い気密性でロウ付けできる。
 1 水冷コンデンサ(熱交換器)
 3 第1プレート
 4 第2プレート
 5、5A 第1スペーサ
 6 第2スペーサ
 7 インナーフィン
 31、41 外周壁
 32、42 段差部
 34、44 第1連通孔
 35、45 第2連通孔
 81 第1冷媒流路
 82 第2冷媒流路

Claims (7)

  1.  一対の第1連通孔と一対の第2連通孔を有する第1プレートと、
     一対の第1連通孔と一対の第2連通孔を有する第2プレートと、
    を交互に積層し、隣り合う前記第1プレートと前記第2プレートの間に第1冷媒が流れる第1冷媒流路 と第2冷媒が流れる第2冷媒流路を交互に設け、
     前記第1冷媒流路には前記各第1連通孔が開口し、且つ、前記各第2連通孔が閉口し、
     前記第2冷媒流路には前記各第2連通孔が開口し、且つ、前記各第1連通孔が閉口し、
     第2冷媒に比べて高圧の第1冷媒が一方の前記第1連通孔より前記各第1冷媒流路にそれぞれ流入し、前記各第1冷媒流路を流れた前記第1冷媒が他方の前記第1連通孔より流出し、
     第1冷媒に比べて低圧の第2冷媒が一方の前記第2連通孔より前記各第2冷媒流路にそれぞれ流入し、前記各第2冷媒流路を流れた前記第2冷媒が他方の前記第2連通孔より流出する熱交換機であって、
     前記第1冷媒流路内の前記各第1連通孔の周囲に第1スペーサを介在し、
     前記第2冷媒流路内で、且つ、前記各第1連通孔の周囲に対応する位置に第2スペーサを介在したことを特徴とする熱交換器。
  2.  請求項1記載の熱交換器であって、
     前記第1スペーサは、前記第1連通孔と前記第1冷媒流路の間の第1冷媒の流れを許容することを特徴とする熱交換器。
  3.  請求項1又は請求項2記載の熱交換器であって、
     前記第1スペーサは、前記第1連通孔の位置より両端方向への第1冷媒の流れを阻止することを特徴とする熱交換器。
  4.  請求項1~請求項3のいずれかに記載の熱交換器であって、
     前記第1スペーサは、前記第2連通孔の周囲にも介在したことを特徴とする熱交換器。
  5.  請求項1~請求項4のいずれかに記載の熱交換器であって、
     前記第1冷媒流路内には、インナーフィンが配置され、前記第1スペーサは、前記インナーフィンの外周を囲むことを特徴とする熱交換器。 
  6.  請求項1~請求項5のいずれかに記載の熱交換器であって、
     前記第1プレート及び前記第2プレートは、積層方向の同一方向に向かって突出する外周壁をそれぞれ有し、前記各外周壁には段差部が設けられ、隣り合う位置にある前記第1プレート3と前記第2プレート4が段差部で互いに当接することを特徴とする熱交換器。
  7.  請求項6に記載の熱交換器であって、
     前記第1プレート及び前記第2プレートが当接するとき、前記第1プレートの外周壁と前記第2プレートの外周壁との間に隙間が形成されることを特徴とする熱交換器。
PCT/JP2013/067247 2012-08-01 2013-06-24 熱交換器 WO2014021026A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/418,814 US9846000B2 (en) 2012-08-01 2013-06-24 Heat exchanger
DE201311003826 DE112013003826T5 (de) 2012-08-01 2013-06-24 Wärmetauscher

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-170953 2012-08-01
JP2012170953A JP5747879B2 (ja) 2012-08-01 2012-08-01 熱交換器

Publications (1)

Publication Number Publication Date
WO2014021026A1 true WO2014021026A1 (ja) 2014-02-06

Family

ID=50027716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067247 WO2014021026A1 (ja) 2012-08-01 2013-06-24 熱交換器

Country Status (4)

Country Link
US (1) US9846000B2 (ja)
JP (1) JP5747879B2 (ja)
DE (1) DE112013003826T5 (ja)
WO (1) WO2014021026A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210341186A1 (en) * 2018-11-16 2021-11-04 Mitsubishi Electric Corporation Plate-type heat exchanger, heat pump device, and heat-pump-type cooling and heating hot-water supply system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2413045B1 (de) * 2010-07-30 2014-02-26 Grundfos Management A/S Wärmetauschereinheit
JP6310306B2 (ja) * 2014-04-07 2018-04-11 古河電気工業株式会社 熱交換器および熱交換器の製造方法
CN106132739B (zh) * 2014-07-24 2018-10-23 翰昂汽车零部件有限公司 车辆用空调系统
WO2016032283A1 (ko) * 2014-08-29 2016-03-03 주식회사 경동나비엔 에어가이드 일체형 증발 냉각기 및 그 제조방법
EP3187809A4 (en) 2014-08-29 2018-05-23 Kyungdong Navien Co., Ltd. Air guide-integrated evaporation cooler and method for manufacturing same
EP3124907B1 (en) * 2015-07-29 2019-04-10 Zhejiang Sanhua Automotive Components Co., Ltd. Heat exchange device
DE112017005174T5 (de) * 2016-10-14 2019-07-11 Dana Canada Corporation Wärmetauscher mit aerodynamischen Eigenschaften zur Verbesserung der Leistung
US10648701B2 (en) 2018-02-06 2020-05-12 Thermo Fisher Scientific (Asheville) Llc Refrigeration systems and methods using water-cooled condenser and additional water cooling
KR102540887B1 (ko) * 2018-09-20 2023-06-08 현대자동차주식회사 연료전지를 구비한 차량의 냉각 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148480U (ja) * 1982-03-31 1983-10-05 株式会社 土屋製作所 プレ−ト式熱交換器
JPS62293091A (ja) * 1986-06-11 1987-12-19 Nippon Denso Co Ltd 積層型熱交換器
JP2001066078A (ja) * 1999-08-24 2001-03-16 Lg Electronics Inc 熱交換機
JP2001099584A (ja) * 1999-09-29 2001-04-13 Toyo Radiator Co Ltd 排気ガス用熱交換器
WO2008023732A1 (fr) * 2006-08-23 2008-02-28 Tokyo Braze Co., Ltd. Échangeur de chaleur compact hautement résistant à la pression, récipient pour occlure l'hydrogène et procédé de production de ceux-ci

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852478U (ja) * 1981-09-30 1983-04-09 住友精密工業株式会社 多板式熱交換器
JPS58148480A (ja) 1982-02-28 1983-09-03 Matsushita Electric Works Ltd 圧電性素子集合体の製法
US4815534A (en) * 1987-09-21 1989-03-28 Itt Standard, Itt Corporation Plate type heat exchanger
JP2547545Y2 (ja) * 1991-05-01 1997-09-10 東洋ラジエーター株式会社 積層型熱交換器
JPH1172295A (ja) * 1997-08-28 1999-03-16 Toyo Radiator Co Ltd プレート型オイルクーラ
JP2007205634A (ja) 2006-02-01 2007-08-16 Hisaka Works Ltd プレート式熱交換器
WO2008072730A1 (ja) * 2006-12-14 2008-06-19 Calsonic Kansei Corporation 複合型熱交換器および熱交換器
JP2010127508A (ja) * 2008-11-26 2010-06-10 Calsonic Kansei Corp 複合熱交換器
DE102010012869A1 (de) * 2009-03-26 2010-09-30 Modine Manufacturing Co., Racine Wärmetauschermodul
JP5838048B2 (ja) * 2011-06-24 2015-12-24 株式会社マーレ フィルターシステムズ オイルクーラ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148480U (ja) * 1982-03-31 1983-10-05 株式会社 土屋製作所 プレ−ト式熱交換器
JPS62293091A (ja) * 1986-06-11 1987-12-19 Nippon Denso Co Ltd 積層型熱交換器
JP2001066078A (ja) * 1999-08-24 2001-03-16 Lg Electronics Inc 熱交換機
JP2001099584A (ja) * 1999-09-29 2001-04-13 Toyo Radiator Co Ltd 排気ガス用熱交換器
WO2008023732A1 (fr) * 2006-08-23 2008-02-28 Tokyo Braze Co., Ltd. Échangeur de chaleur compact hautement résistant à la pression, récipient pour occlure l'hydrogène et procédé de production de ceux-ci

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210341186A1 (en) * 2018-11-16 2021-11-04 Mitsubishi Electric Corporation Plate-type heat exchanger, heat pump device, and heat-pump-type cooling and heating hot-water supply system

Also Published As

Publication number Publication date
JP2014031898A (ja) 2014-02-20
DE112013003826T5 (de) 2015-05-13
US20150211810A1 (en) 2015-07-30
JP5747879B2 (ja) 2015-07-15
US9846000B2 (en) 2017-12-19

Similar Documents

Publication Publication Date Title
JP5747879B2 (ja) 熱交換器
US10508865B2 (en) Heat exchanger
US20130206364A1 (en) Heat exchanger arrangement
JP6619675B2 (ja) 流路構造
US11313623B2 (en) Heat exchanger
US20190309675A1 (en) Intercooler and method for manufacturing intercooler
JP2013524144A (ja) 熱交換器、および熱交換器のための熱交換シート
US10151231B2 (en) Manifold integrated intercooler with structural core
US20190063849A1 (en) U-shaped housing and cover concept for plate fin heat exchangers
JP6601384B2 (ja) インタークーラ
KR20180023184A (ko) 일체형 라디에이터 및 이의 조립 방법
JP4664114B2 (ja) 多板式熱交換器
WO2014103639A1 (ja) 複合型熱交換器
JP2016070655A (ja) 熱交換器
US10954898B2 (en) System for connecting housing elements of a device for heat transfer
US20050274504A1 (en) Heat exchanger having projecting fluid passage
US11156406B2 (en) Heat exchanger
JP6874545B2 (ja) 熱交換器
JP6731266B2 (ja) 熱交換器
US20220144077A1 (en) Shutter device for vehicle
JP6566142B2 (ja) 熱交換器
US20210270548A1 (en) Heat exchanger
JPH10160380A (ja) 熱交換器
WO2018092608A1 (ja) 積層型熱交換器
WO2019045008A1 (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14418814

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130038269

Country of ref document: DE

Ref document number: 112013003826

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13826547

Country of ref document: EP

Kind code of ref document: A1