WO2018086095A1 - 一种锂离子电池用多层复合功能隔膜 - Google Patents

一种锂离子电池用多层复合功能隔膜 Download PDF

Info

Publication number
WO2018086095A1
WO2018086095A1 PCT/CN2016/105633 CN2016105633W WO2018086095A1 WO 2018086095 A1 WO2018086095 A1 WO 2018086095A1 CN 2016105633 W CN2016105633 W CN 2016105633W WO 2018086095 A1 WO2018086095 A1 WO 2018086095A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
functional separator
composite functional
porous
polymer
Prior art date
Application number
PCT/CN2016/105633
Other languages
English (en)
French (fr)
Inventor
李建华
程素贞
王政强
余美华
智庆领
张鑫
闫绍军
Original Assignee
上海顶皓新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海顶皓新材料科技有限公司 filed Critical 上海顶皓新材料科技有限公司
Priority to JP2019546951A priority Critical patent/JP6938657B2/ja
Priority to US16/349,947 priority patent/US11411281B2/en
Priority to CN201680090794.2A priority patent/CN109964338A/zh
Priority to PCT/CN2016/105633 priority patent/WO2018086095A1/zh
Priority to KR1020197017122A priority patent/KR102215959B1/ko
Publication of WO2018086095A1 publication Critical patent/WO2018086095A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and in particular to the technical field of lithium ion battery separators, in particular to a multilayer composite functional membrane and a preparation method thereof.
  • Lithium-ion batteries As a kind of New environmentally friendly, superior performance energy storage products are used in a wide range of applications. Applications in the fields of energy storage, electric vehicles, aerospace and other fields have placed more stringent requirements on lithium-ion batteries. Lithium-ion batteries have been widely publicized since the beginning of commercialization, and are still lithium batteries. The focus of attention and resolution of manufacturers and research institutions.
  • lithium-ion battery separators do not participate in chemical reactions in lithium-ion batteries, they are key materials that affect the safety of lithium-ion batteries.
  • the requirements for lithium-ion batteries for the diaphragm are: (1) electronically insulating to ensure mechanical isolation of the positive and negative electrodes; (2) having a certain pore size and porosity, ensuring low electrical resistance and high ionic conductivity , has good permeability to lithium ions; (3) because the solvent of the electrolyte is a highly polar organic compound, the separator must be resistant to electrolyte corrosion, and has sufficient chemical and electrochemical stability; (4) the electrolyte It has good wettability and sufficient liquid absorption and moisturizing ability; (5) has sufficient mechanical properties, including puncture strength, tensile strength, etc., but the thickness is as small as possible; (6) space stability and flatness are good; (7) The thermal stability and automatic shutdown protection performance and (8) the diaphragm heat shrinkage is small, which is especially important for lithium ion power batteries, because
  • polyolefin-based porous membranes are commonly used in commercial lithium ion batteries, and can be classified into dry and wet methods due to different preparation processes. The difference between these two types is mainly due to the different mechanism of pore formation in the membrane.
  • the outstanding problem of the two battery separators is that during the abnormal charging and discharging of the lithium ion battery separator, the diaphragm shrinks or ruptures due to the temperature rise, and the battery electrode is directly connected. The battery is short-circuited by the touch, and the battery explosion occurs under extreme conditions. In addition, it has problems such as poor liquid absorption capability and poor wettability.
  • the object of the present invention is to provide a multilayer composite functional membrane having good heat resistance and a preparation method thereof.
  • the multi-layer composite functional separator has simple preparation method, low cost and high heat resistance, and can meet the safety requirements of the lithium ion battery, especially the lithium ion power battery.
  • the multi-layer composite functional separator of the present invention comprises an A layer, a B layer, a C layer and a D layer, wherein the A layer is a base layer, the B layer is a porous structural layer composed of an insulating inorganic compound or a high temperature resistant polymer; the C layer is a porous layer composed of high molecular polymer microspheres having temperature-excited expansion characteristics; the D layer is a porous layer composed of a thermoplastic resin; and the B layer, the C layer and the D layer are sequentially attached to one side or both sides of the A layer.
  • the A layer is a porous film formed of a material selected from one or more of the following: polyethylene (PE), polypropylene (PP), polyester (PET), polyimide (PI), poly Terephthaloyl p-phenylenediamine (PPTA), polyisobutylene (PIB).
  • PE polyethylene
  • PP polypropylene
  • PET polyester
  • PI polyimide
  • PPTA poly Terephthaloyl p-phenylenediamine
  • PIB polyisobutylene
  • the insulating inorganic compound may be selected from various inorganic compounds having insulating properties; preferably a mixture of one or more of alumina, zirconia, silica, zirconium silicate, barium sulfate; more preferably oxidized a mixture of aluminum or aluminum oxide and barium sulfate; more preferably, a preferred volume ratio of the mixture of alumina and barium sulfate is 1:1;
  • the high temperature resistant polymer means a polymer having a melting temperature of more than 180 ° C;
  • ester PET
  • PI polyimide
  • PSF polysulfone
  • PPS polyphenylene sulfide
  • PBI polybenzimidazole
  • POB polyparaben
  • the temperature-excited expansion property refers to a property of the polymer rapidly expanding at a certain temperature, and the present invention requires the polymer to have an expansion excitation initial temperature of less than 120 ° C and a volume expansion ratio of more than 100%;
  • the microspheres have an average particle diameter of 2 to 10 ⁇ m, preferably an acrylic polymer, such as a heat-expandable microsphere formed by Sekisui Chemical Co., which contains a low-boiling hydrocarbon in a thermoplastic polymer packet.
  • the D layer is located on the outer layer of the multilayer composite functional separator of the present invention, and the thermoplastic resin has a thermoplastic resin having a melting point of 80-110 ° C and a crystallinity of ⁇ 50%, preferably polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • a porous layer composed of a mixture of one or more of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) and polyacrylic resin (PAA) organic glass (PMMA); more preferably polyvinylidene fluoride (PVDF).
  • polymeric organics of the various layers described above are selected from organic polymeric materials within the range of degrees of polymerization commonly used in the art.
  • Each of the above layers (B layer, C layer and D layer) is attached to the A layer by a method commonly used in the art, such as coating, thermal compounding or dipping.
  • the thickness of the multi-layer composite functional separator of the present invention may be the thickness of a commonly used separator in the art, wherein the thickness of the A layer is related to the preparation method, and the thickness of the B layer, the C layer and the D layer is related to the adhesion method.
  • the multilayer composite functional separator of the present invention has a total thickness of 12-50 um, wherein the thickness of the layer A is 6-30 um, the thickness of the layer B is 1-8 um, and the thickness of the layer C is 1-10 um.
  • the thickness of the D layer is 1-6 um.
  • Each of the above layers adopts a porous structure, and the porosity thereof is also closely related to the preparation method.
  • the multilayer composite functional separator of the present invention has an average porosity of more than 40%; wherein the porosity of the layer A is 40-70%; the porosity of the layer B is 40-60%; and the porosity of the layer C is 30-40%; the D layer has a porosity of 30-35%.
  • the present invention proposes a multilayer composite functional separator having the following structure and having good heat resistance.
  • a multi-layer composite functional separator comprises an A layer, a B layer, a C layer and a D layer, wherein the A layer is a base layer, the B layer is a porous structural layer composed of an insulating inorganic compound or a high temperature resistant polymer; the C layer is composed of a temperature a porous layer composed of high molecular polymer microspheres which excites swelling characteristics; a D layer is a porous layer composed of a thermoplastic resin; and the B layer, the C layer and the D layer are sequentially attached to both sides of the A layer (DCBABCD).
  • a multi-layer composite functional separator comprises an A layer, a B layer, a C layer and a D layer, wherein the A layer is a base layer, the B layer is a porous structural layer composed of an insulating inorganic compound or a high temperature resistant polymer; the C layer is composed of a porous layer composed of high molecular polymer microspheres excited by temperature; the D layer is a porous layer composed of a thermoplastic resin; the B layer is attached to one side of the A layer to form an AB composite layer, and then the C layer and the D layer are sequentially Attached to both sides of the AB composite layer (DCABCD).
  • DCABCD AB composite layer
  • a multi-layer composite functional separator comprises an A layer, a B layer, a C layer and a D layer, wherein the A layer is a base layer, the B layer is a porous structural layer composed of an insulating inorganic compound or a high temperature resistant polymer; the C layer is composed of a temperature a porous layer composed of high molecular polymer microspheres which excites swelling characteristics; a D layer is a porous layer composed of a thermoplastic resin; the B layer is attached to both sides of the A layer to form a BAB composite layer, and then the C layer is attached to the BAB composite layer On one side, a CBAB composite layer or a BABC composite layer is formed, and finally the D layer is attached to both sides of the CBAB composite layer or the BABC composite layer (DCBABD or DBABCD).
  • DCBABD or DBABCD DCBABD or DBABCD
  • a multi-layer composite functional separator comprises an A layer, a B layer, a C layer and a D layer, wherein the A layer is a base layer, the B layer is a porous structural layer composed of an insulating inorganic compound or a high temperature resistant polymer; the C layer is composed of a temperature a porous layer composed of high molecular polymer microspheres which excites swelling characteristics; a D layer is a porous layer composed of a thermoplastic resin; the B layer, the C layer and the D layer are sequentially attached to one side of the A layer (DCBA or CBAD or DABC or CABD).
  • a multi-layer composite functional separator comprises an A layer, a B layer, a C layer and a D layer, wherein the A layer is a base layer, the B layer is a porous structural layer composed of an insulating inorganic compound or a high temperature resistant polymer; the C layer is composed of a temperature a porous layer composed of high molecular polymer microspheres which excites swelling characteristics; a D layer is a porous layer composed of a thermoplastic resin; the B layer is attached to both sides of the A layer to form a BAB composite layer, and then the C layer and the D layer are sequentially attached.
  • the BAB composite layer CBABD or BABCD
  • the thickness of the multi-layer composite functional separator of the present invention may be the thickness of a commonly used separator in the art, wherein the thickness of the A layer is related to the preparation method, and the thickness of the B layer, the C layer and the D layer is related to the adhesion method.
  • the multilayer composite functional separator of the present invention has a total thickness of 12-50 um, wherein the thickness of the layer A is 6-30 um, the thickness of the layer B is 1-8 um, and the thickness of the layer C is 1-10 um.
  • the thickness of the D layer is 1-6 um.
  • Each of the above layers adopts a porous structure, and the porosity thereof is also closely related to the preparation method.
  • the multilayer composite functional separator of the present invention has an average porosity of more than 40%; wherein the porosity of the layer A is 40-70%; the porosity of the layer B is 40-60%; and the porosity of the layer C is 30-40%; the D layer has a porosity of 30-35%.
  • the present invention also provides a method for preparing the multilayer composite functional separator.
  • the preparation method of the multilayer composite functional separator according to the present invention comprises the following steps:
  • B layer slurry uniformly dispersing one or more insulating inorganic compounds or high temperature resistant polymers in an aqueous solution, adding an organic acid polymer solution, uniformly mixing and dispersing at a high speed;
  • the thickener adjusts the viscosity of the solution to a viscosity of 100-500 cps, and the solid content is 30%-60%, that is, the slurry used for the B coating is obtained;
  • Disposing the C layer slurry dispersing one or more polymer polymer microspheres in an aqueous solution, adding an organic acid polymer solution to uniformly mix and disperse at a high speed; adjusting the viscosity of the solution by adding a thickener, The viscosity of the coating is 100-500 cps, the solid content is 3%-15%, that is, the slurry used for the C coating is obtained;
  • thermoplastic resin fine powders having a melting point of 80-110 ° C and a crystallinity of ⁇ 50% are dispersed in the aqueous solution, and the organic acid polymer solution is added to uniformly mix and disperse at high speed.
  • the viscosity of the solution is adjusted by adding a water-soluble polymer organic acid binder and a thickener to have a viscosity of 200-800 cps and a solid content of 15%-40%, that is, a slurry for obtaining a D coating;
  • the A-layer separator can be directly purchased from a commercial base film, and its porosity is controlled to be 40%-70%, and the surface does not require special treatment.
  • step 2) the dispersion can be carried out by a high speed dispersing device or a high speed grinding device;
  • the organic acid polymer solution is one or two groups having a carboxylic acid group and a sulfonic acid group, and the solid content range of the organic acid polymer solution is 20-50wt%;
  • the thickener is selected from the group consisting of cellulose or polyacrylic polymer; or a mixture of two;
  • the water-soluble polymer organic acid binder may be various water-soluble polymer organic acid binders commonly used in the art, and particularly selected from water-soluble polymer organic acids having a viscosity average molecular weight of more than 20,000. Agent.
  • the existing lithium ion battery separator adopts a PP/PE/PP three-layer composite separator produced by an extrusion drawing method, and the closed pore function of the separator is realized by a low melting temperature of PE, and the temperature of the PE cannot be adjusted.
  • thermal expansion is employed. As the temperature of the polymer microspheres rises, the volume expansion can automatically adjust the current density of the battery and reduce the current distribution at a position where the battery temperature is high. When the temperature is out of control, the expanded microsphere completely closes the pores of the diaphragm, and the expansion of the diaphragm will Increasing the distance between the positive and negative electrodes can more effectively ensure the safety of the battery.
  • the multilayer composite functional separator of the present invention is suitable for a lithium ion battery, particularly a power type lithium ion battery, and has excellent heat resistance.
  • the heat shrinkage rate is less than 1% after heating at a high temperature of 200 ° C for 1 h; in addition, the safety of the battery is improved due to the introduction of the organic polymer microspheres.
  • Example 1 is a distribution diagram of functional layers of a multilayer composite functional separator for a lithium ion battery of Example 1;
  • Example 2 is a distribution diagram of functional layers of the multilayer composite functional separator for a lithium ion battery of Example 2;
  • Example 3 is a distribution diagram of functional layers of a multilayer composite functional separator for a lithium ion battery of Example 3;
  • Fig. 6 is a view showing a preferred functional layer distribution pattern of the multilayer composite functional separator for a lithium ion battery of the present invention.
  • the peel strength of the coated separator was measured by a microcomputer-controlled electronic universal material testing machine, and the bonding property was measured according to the strength.
  • a cutting machine to cut a rectangular diaphragm diaphragm with a size of 1cm*15cm, stack the multilayer diaphragms together, place an aluminum foil current collector in the middle, and place the stacked diaphragms in the middle of two plexiglasses, and place them It was placed in an oven at 130 ° C for 30 min and pressed with a 10 N weight.
  • the micro-machine controlled electronic universal material testing machine was used, and the peeling test mode was selected to test the bonding performance of the coated separator.
  • DMC lithium nickel cobalt manganese oxide
  • graphite used as the negative electrode active material
  • electrolyte salt in the electrolyte is 1 mol/L LiPF 6
  • test method Charge and discharge test Overcharge acupuncture 150 ° C hot box Test Conditions 1C A charging 3C A charging 2-5mm in diameter Keep warm for 30min
  • the multilayer composite functional separator of the present invention is prepared according to the following steps:
  • the porous film formed by using polyethylene terephthalate (PET) material is A layer, the porosity is 60%, and the thickness is 20um;
  • Disposing the C layer slurry dispersing the polymer polymer microspheres (acrylic polymer microspheres, hydrophobic chemical) in an aqueous solution, adding an organic acid polymer solution, uniformly mixing and dispersing at a high speed;
  • the thickener adjusts the viscosity of the solution to a viscosity of 100 cps, and the solid content is 3%, that is, the slurry used for the C coating is obtained;
  • D layer slurry Disposing the D layer slurry: dispersing polyvinylidene fluoride (PVDF) in an aqueous solution, adding an organic acid polymer solution to uniformly mix and disperse at a high speed; adjusting the viscosity of the solution by adding an adhesive and a thickener, The viscosity of the solution is 300 centimeters, and the solid content is 25%, that is, the slurry used for the D coating is obtained;
  • PVDF polyvinylidene fluoride
  • the B layer slurry, the C layer slurry and the D layer slurry are sequentially attached to the A layer, and the specific distribution mode is DCBABCD; the B layer drying temperature is 70 ° C, the C layer The drying temperature is 55 ° C, and the D layer drying temperature is 70 ° C.
  • the composite multilayer functional separator has a total thickness of 50 um, the A layer has a thickness of 28 um, the B layer has a thickness of 4 + 4 um, the C layer has a thickness of 3 + 3 um, and the D layer has a thickness of 4 + 4 um.
  • the multilayer composite functional separator of the present invention is prepared according to the following steps:
  • the porous film formed by using polyparaphenylene terephthalamide (PPTA) material is A layer;
  • the B layer slurry, the C layer slurry and the D layer slurry are sequentially attached to the A layer, and the specific distribution mode is DCABCD; the B layer drying temperature is 75 ° C, the C layer The drying temperature is 60 ° C, and the D layer drying temperature is 70 ° C.
  • the composite multilayer functional separator has a total thickness of 40 um, the A layer has a thickness of 22 um, the B layer has a thickness of 5 um, the C layer has a thickness of 3.5 + 3.5 um, and the D layer has a thickness of 3 + 3 um.
  • the multilayer composite functional separator of the present invention is prepared according to the following steps:
  • the polyvinylidene fluoride in the first embodiment is changed to polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP), and the slurry is disposed in the same manner as in step 4) of the first embodiment;
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene
  • the B layer slurry, the C layer slurry and the D layer slurry are sequentially attached to the A layer, and the specific distribution mode is CABD; the B layer drying temperature is 65 ° C, the C layer The drying temperature is 55 ° C, and the D layer drying temperature is 60 ° C.
  • the composite multilayer functional separator has a total thickness of 27 ⁇ m, the A layer has a thickness of 20 ⁇ m, the B layer has a thickness of 2.5 ⁇ m, the C layer has a thickness of 2 ⁇ m, and the D layer has a thickness of 2.5 ⁇ m.
  • the multilayer composite functional separator of the present invention is prepared according to the following steps:
  • PET polyethylene terephthalate
  • PP polypropylene
  • the alumina powder is changed to a zirconia powder having an average particle diameter D50 of 0.73 um, uniformly dispersed in purified water, and an organic acid polymer solution is added to uniformly mix and disperse at a high speed; the viscosity of the solution is adjusted by adding a thickener. To have a viscosity of 500 cps;
  • step 3) the same as step 3) in the embodiment 1;
  • Example 1 The polyvinylidene fluoride in Example 1 was changed to polyacrylic resin (PAA), and the slurry was disposed in the same manner as in step 4) of Example 1;
  • PAA polyacrylic resin
  • the B layer slurry, the C layer slurry and the D layer slurry are sequentially attached to the A layer, and the specific distribution mode is DCAB; the B layer drying temperature is 70 ° C, the C layer The drying temperature is 55 ° C, and the D layer drying temperature is 60 ° C.
  • the composite multilayer functional separator has a total thickness of 12 ⁇ m, the A layer has a thickness of 7 ⁇ m, the B layer has a thickness of 3 ⁇ m, the C layer has a thickness of 1 ⁇ m, and the D layer has a thickness of 1 ⁇ m.
  • the multilayer composite functional separator of the present invention is prepared according to the following steps:
  • PET polyethylene terephthalate
  • PIB polyisobutylene
  • step 3) the same as step 3) in the embodiment 1;
  • the B layer slurry, the C layer slurry and the D layer slurry are sequentially attached to the A layer, and the specific distribution mode is BABCD; the B layer drying temperature is 50 ° C, the C layer The drying temperature is 55 ° C, and the D layer drying temperature is 80 ° C.
  • the composite multilayer functional separator has a total thickness of 31 ⁇ m, the A layer has a thickness of 20 ⁇ m, the B layer has a thickness of 3+3 ⁇ m, the C layer has a thickness of 2 ⁇ m, and the D layer has a thickness of 3 ⁇ m.
  • the multilayer composite functional separator of the present invention is prepared according to the following steps:
  • the porous film formed by using a polyimide (PI) material is the A layer;
  • Alumina powder having a volume ratio of 1:1 (average particle diameter D50 of 0.5 um) and barium sulfate powder (average particle diameter D50 of 0.38 um) are uniformly dispersed in purified water, and an organic acid polymer solution is added to make The mixture is uniformly mixed and dispersed at a high speed; the viscosity of the solution is adjusted by adding a thickener to have a viscosity of 400 cps;
  • the B layer slurry, the C layer slurry and the D layer slurry are sequentially attached to the A layer, and the specific distribution mode is DCBABD; the B layer drying temperature is 75 ° C, the C layer The drying temperature is 60 ° C, and the D layer drying temperature is 70 ° C.
  • the total thickness of the composite multilayer functional separator is 29 um, the thickness of the A layer is 17 um, the thickness of the B layer is 2.5 + 2.5 um, the thickness of the C layer is 3 um, and the thickness of the D layer is 2+ 2 um.
  • the multilayer composite functional separator of the present invention is prepared according to the following steps:
  • the porous film formed by using polyethylene terephthalate (PET) material is A layer, and its pores The gap ratio is 65% and the thickness is 20um;
  • the B layer slurry and the C layer slurry are sequentially attached to the A layer; the B layer drying temperature is 75 ° C, and the C layer drying temperature is 60 ° C.
  • the composite multilayer functional separator has a total thickness of 26.5 um, the A layer has a thickness of 20 um, the B layer has a thickness of 4.5 um, and the C layer has a thickness of 2 um.
  • the multilayer composite functional separator of the present invention is prepared according to the following steps:
  • the porous film formed by using polyparaphenylene terephthalamide (PPTA) material is A layer, the porosity is 65%, and the thickness is 15um;
  • the B layer slurry and the D layer slurry are sequentially attached to the A layer; the B layer drying temperature is 75 ° C, and the D layer drying temperature is 60 ° C.
  • the composite multilayer functional separator has a total thickness of 25 ⁇ m, the A layer has a thickness of 15 ⁇ m, the B layer has a thickness of 5.5 ⁇ m, and the D layer has a thickness of 4.5 ⁇ m.
  • the multilayer composite functional separator of the present invention is prepared according to the following steps:
  • the porous film formed by using polyethylene terephthalate (PET) material is A layer, the porosity is 65%, and the thickness is 17um;
  • the C layer slurry and the D layer slurry are sequentially attached to the A layer; the B layer drying temperature is 75 ° C, and the D layer drying temperature is 60 ° C.
  • the composite multilayer functional separator has a total thickness of 25 ⁇ m, the A layer has a thickness of 17 ⁇ m, the B layer has a thickness of 3 ⁇ m, and the D layer has a thickness of 5 ⁇ m.
  • the composite coating functional separator obtained in Examples 1-3 and Comparative Examples 1-3 and the polypropylene microporous membrane not coated with the composite coating were placed at a temperature of 120 ° C, 140 ° C, 160 ° C, 180 ° C, 200. Heated in an oven at °C for 1 h to determine the thermal stability of the separator at various temperatures, as shown in Table 1.
  • the composite coating functional separators prepared in Examples 1-3 and Comparative Examples 1-3 exhibited lower heat shrinkage rates at ordinary temperatures than ordinary PP films.
  • the thermal stability of the composite coating membrane is enhanced due to the strong heat resistance of the B layer slurry in the composite coating; when the temperature reaches 180 ° C or higher, the heat of the composite coating membrane is increased.
  • the shrinkage is still less than 1.0%, and the commercially available PP film has completely melted.
  • Example 1 Example 2
  • Example 3 example 1
  • Example 2 Example 3
  • Example 4 Peel strength (N) 1.5 1.3
  • the composite multilayer functional separator prepared in Examples 1-3 and Comparative Examples 1, 3 can cut off the charge and discharge path of the battery at 130 ° C, and functions as a heat seal.
  • the composite multilayer functional separator prepared in Examples 1-3 and Comparative Examples 1, 3 can cut off the charge and discharge path of the battery at 130 ° C, and functions as a heat seal.
  • the composite coating functional separator obtained in Examples 1-3 and Comparative Examples 1-3 and the uncoated composite coating were obtained.
  • the layer of polypropylene microporous membrane was prepared into a lithium ion battery, which was overcharged, needled and placed in an oven at 150 ° C for electrochemical experiments to observe whether the experimental phenomenon occurred burning or exploding to test it separately. Safety performance, the results are shown in Table 4.
  • Diaphragm type Overcharge acupuncture 150 ° C hot box Example 1 No burning, no explosion No burning, no explosion No burning, no explosion Example 2 No burning, no explosion No burning, no explosion No burning, no explosion Example 3 No burning, no explosion No burning, no explosion No burning, no explosion Comparative example 1 Burning does not explode Burning does not explode Burning does not explode Comparative example 2 Burning does not explode Burning does not explode Burning does not explode Comparative example 3 Burning does not explode Burning does not explode Burning does not explode Comparative example 4 Burning explosion Burning explosion Burning explosion Burning explosion Burning explosion Burning explosion Burning explosion
  • the multi-layer composite functional separator of the present invention can exert the superiority of the multi-layer composite functional membrane against high heat by coating different coating layers, and effectively improve the safety and reliability of the energy storage device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)

Abstract

一种锂离子电池用多层复合功能隔膜及其制备方法。所述的多层复合功能隔膜包括A层,B层,C层及D层,其中A层为基膜,B层是由绝缘无机化合物或耐高温聚合物组成的多孔结构层;C层是由具有温度激发膨胀特性的高分子聚合物微球组成的多孔层;D层是熔点在80-110℃,结晶度<50%的热塑性树脂;所述B层,C层和D层依次附着在A层的一侧或者两侧。与现有的锂离子电池用隔膜相比,该多层复合功能隔膜具有优异的耐热性,其在200℃高温下加热1h以内,热收缩率小于1%;而且由于有机高分子微球的引入,实现了对电池的热闭合作用,提高了电池的安全性。

Description

一种锂离子电池用多层复合功能隔膜 技术领域
本发明属于锂离子电池技术领域,具体的说,涉及锂离子电池隔膜技术领域,特别是提出一种多层复合功能隔膜及其制备方法。
背景技术
锂离子电池从1990年Sony公司进行商品化以来,取得了令世人瞩目的快速发展,随着全球环保意识的增强,新能源技术的开发及利用成为全球各个国家的共识,锂离子电池作为一种新型环保,性能优越的能源存储产品,在各个领域的应用越来越广泛。储能,电动汽车,航空航天等领域的应用对锂离子电池提出了更为苛刻的要求,锂离子电池从商品化之初,就广为受公众关注的安全问题,到目前仍然是各锂电池厂家及研究机构所关注和解决的焦点问题。
锂离子电池隔膜虽然不参与锂离子电池中的化学反应,但是却是影响锂离子电池安全性的关键材料。一般来说,锂离子电池对隔膜的要求为:(1)具有电子绝缘性,保证正负极的机械隔离;(2)有一定的孔径和孔隙率,保证低的电阻和高的离子电导率,对锂离子有很好的透过性;(3)由于电解质的溶剂为强极性的有机化合物,隔膜必须耐电解液腐蚀,有足够的化学和电化学稳定性;(4)对电解液的浸润性好并具有足够的吸液保湿能力;(5)具有足够的力学性能,包括穿刺强度、拉伸强度等,但厚度尽可能小;(6)空间稳定性和平整性好;(7)热稳定性和自动关断保护性能好以及(8)隔膜受热收缩要小,这一点对于锂离子动力电池格外重要,因为如果受热收缩过大,会引起短路,进而引发电池热失控。
目前,商品化锂离子电池中普遍使用的是聚烯烃类多孔膜,由于制备工艺的不同可分为干法和湿法两大类。这两类的区别主要在于隔膜微孔成孔的机理不同。但是这两种电池隔膜存在的突出问题是锂离子电池隔膜在不正常充放电的过程中,由于温度升高导致隔膜收缩变形或破膜,电池电极直接接 触使得电池发生短路,极端情况下发生电池爆炸,此外它还存在吸液能力差、润湿性差等问题。
因此,为满足上述锂离子电池安全性的要求,有必要提出一种更耐热的多层复合功能隔膜。
发明内容
本发明的目的在于提出一种耐热性能好的多层复合功能隔膜及其制备方法。该多层复合功能隔膜制备方法简单,成本低且耐高热,能够满足锂离子电池,特别是锂离子动力电池对隔膜的安全性要求。
本发明所述的多层复合功能隔膜包括A层,B层,C层及D层,其中A层为基层,B层是由绝缘无机化合物或耐高温聚合物组成的多孔结构层;C层是由具有温度激发膨胀特性的高分子聚合物微球组成的多孔层;D层是热塑性树脂组成的多孔层;所述B层,C层和D层依次附着在A层的一侧或者两侧。
其中,所述A层是由选自以下一种或多种的材料形成的多孔膜:聚乙烯(PE),聚丙烯(PP),聚酯(PET),聚酰亚胺(PI),聚对苯二甲酰对苯二胺(PPTA),聚异丁烯(PIB)。
B层中,所述绝缘无机化合物可选具有绝缘特性的各种无机化合物;优选氧化铝,氧化锆,二氧化硅,硅酸锆,硫酸钡中的一种或多种的混合物;更优选氧化铝或氧化铝和硫酸钡的混合物;更为优选的,氧化铝和硫酸钡的混合物中优选体积比例为1:1;所述耐高温聚合物是指熔融温度大于180℃的聚合物;优选聚酯(PET),聚酰亚胺(PI),聚砜(PSF),聚苯硫醚(PPS),聚苯并咪唑(PBI),聚对羟基苯甲酸酯(POB)中一种或多种的混合物;如使用混合物,上述各种耐高温聚合物可根据需要采用各种比例。
C层中,所述温度激发膨胀特性是指聚合物在一定温度下快速膨胀的特性,本发明要求所述聚合物的膨胀激发初始温度小于120℃,体积膨胀率大于100%;所述聚合物的微球的平均粒径为2-10um,优选丙烯酸类聚合物,如积水化学开发的在热塑性聚合物小包中内包低沸点碳氢化合物而形成的热膨胀性微小球体。
所述D层位于本发明所述的多层复合功能隔膜的外层,所述的热塑性树脂选择熔点在80-110℃,结晶度<50%的热塑性树脂,优选聚偏氟乙烯(PVDF),聚偏氟乙烯-六氟丙烯(PVDF-HFP),聚丙烯酸树脂(PAA)有机玻璃(PMMA)的一种或多种的混合物组成的多孔层;更优选聚偏氟乙烯(PVDF)。
如无明确指明,上述各层的聚合有机物都选择本领域常用的聚合度范围内的有机聚合物材料。
上述各层(B层,C层及D层)均以本领域常用的方法附着在A层上,如涂覆,热复合或者浸渍等方式。
另外,本发明所述的多层复合功能隔膜的厚度可为本领域常用隔膜的厚度,其中所述A层的厚度与制备方法相关,B层,C层及D层的厚度与附着方法相关。
一般来说,本发明所述的多层复合功能隔膜的总厚度为12-50um,其中A层的厚度为6-30um,B层的厚度为1-8um,C层的厚度为1-10um,D层的厚度为1-6um。
上述各层均采用多孔结构,其孔隙率也与制备方法紧密相关。
一般来说,本发明所述的多层复合功能隔膜的平均孔隙率大于40%;其中A层的孔隙率为40-70%;B层的孔隙率40-60%;C层的孔隙率为30-40%;D层的孔隙率为30-35%。
进一步的,本发明在大量实验的基础上,特提出以下结构的耐热性能好的多层复合功能隔膜。
一种多层复合功能隔膜包括A层,B层,C层及D层,其中A层为基层,B层是由绝缘无机化合物或耐高温聚合物组成的多孔结构层;C层是由具有温度激发膨胀特性的高分子聚合物微球组成的多孔层;D层是热塑性树脂组成的多孔层;所述B层,C层和D层依次附着在A层的两侧(DCBABCD)。
一种多层复合功能隔膜包括A层,B层,C层及D层,其中A层为基层,B层是由绝缘无机化合物或耐高温聚合物组成的多孔结构层;C层是由具有 温度激发膨胀特性的高分子聚合物微球组成的多孔层;D层是热塑性树脂组成的多孔层;所述B层附着在A层的一侧,形成AB复合层,然后C层和D层依次附着在AB复合层的两侧(DCABCD)。
一种多层复合功能隔膜包括A层,B层,C层及D层,其中A层为基层,B层是由绝缘无机化合物或耐高温聚合物组成的多孔结构层;C层是由具有温度激发膨胀特性的高分子聚合物微球组成的多孔层;D层是热塑性树脂组成的多孔层;所述B层附着在A层的两侧,形成BAB复合层,然后C层附着在BAB复合层的一侧,形成CBAB复合层或BABC复合层,最后D层附着在CBAB复合层或BABC复合层的两侧(DCBABD或DBABCD)。
一种多层复合功能隔膜包括A层,B层,C层及D层,其中A层为基层,B层是由绝缘无机化合物或耐高温聚合物组成的多孔结构层;C层是由具有温度激发膨胀特性的高分子聚合物微球组成的多孔层;D层是热塑性树脂组成的多孔层;所述B层,C层和D层依次附着在A层的一侧(DCBA或CBAD或DABC或CABD)。
一种多层复合功能隔膜包括A层,B层,C层及D层,其中A层为基层,B层是由绝缘无机化合物或耐高温聚合物组成的多孔结构层;C层是由具有温度激发膨胀特性的高分子聚合物微球组成的多孔层;D层是热塑性树脂组成的多孔层;所述B层附着在A层的两侧,形成BAB复合层,然后C层和D层依次附着在BAB复合层的一侧(CBABD或BABCD)。
另外,本发明所述的多层复合功能隔膜的厚度可为本领域常用隔膜的厚度,其中所述A层的厚度与制备方法相关,B层,C层及D层的厚度与附着方法相关。
一般来说,本发明所述的多层复合功能隔膜的总厚度为12-50um,其中A层的厚度为6-30um,B层的厚度为1-8um,C层的厚度为1-10um,D层的厚度为1-6um。
上述各层均采用多孔结构,其孔隙率也与制备方法紧密相关。
一般来说,本发明所述的多层复合功能隔膜的平均孔隙率大于40%;其中A层的孔隙率为40-70%;B层的孔隙率40-60%;C层的孔隙率为30-40%;D层的孔隙率为30-35%。
进一步的,本发明还提供所述的多层复合功能隔膜的制备方法。
本发明所述的多层复合功能隔膜的制备方法,包括以下步骤:
1)取A层隔膜;
2)配置B层浆料:将一种或多种具有绝缘性的无机化合物或耐高温聚合物均匀分散在水溶液中,加入有机酸类高分子溶液,使其混合均匀并高速分散;通过添加增稠剂调节溶液粘度,使其粘度为100-500厘波,固含量为30%-60%,即得到B涂层所用的浆料;
3)配置C层浆料:将一种或多种高分子聚合物微球分散在水溶液中,加入有机酸类高分子溶液,使其混合均匀并高速分散;通过添加增稠剂调节溶液粘度,使其粘度为100-500厘波,固含量为3%-15%,即得到C涂层所用的浆料;
4)配置D层浆料:将一种或多种熔点在80-110℃,结晶度<50%的热塑性树脂微粉分散在水溶液中,加入有机酸类高分子溶液,使其混合均匀并高速分散;通过添加水溶性高分子有机酸类粘结剂和增稠剂调节溶液粘度,使其粘度是200-800厘波,固含量为15%-40%,即得到D涂层所用的浆料;
5)采用涂覆,浸渍,印刷或热复合工艺中的一种或多种,依次将B层浆料,C层浆料及D层浆料附着到A层上;每层附着后需要进行烘烤,烘干温度范围为40℃-80℃。
步骤1)中,所述A层隔膜可直接购买商业化的基膜,其孔隙率控制在40%-70%,表面不需要特殊处理。
步骤2)中,所述分散可通过高速分散设备或高速研磨设备来进行;
步骤2)-4)中,所述有机酸类高分子溶液,是具有羧酸基和磺酸基的一种或者两种基团,其所述的有机酸类高分子溶液的固含量范围是20-50wt%;
所述的增稠剂选用纤维素类,聚丙烯酸类高分子聚合物中的一种或两种的混合物;
所述的水溶性高分子有机酸类粘结剂可采用本领域常用的各种水溶性高分子有机酸类粘结剂,特别选用其粘均分子量大于20000的水溶性高分子有机酸类粘结剂。
现有的锂离子电池隔膜采用挤出拉伸法生产的PP/PE/PP三层复合隔膜,通过PE的低融化温度实现隔膜的闭孔功能,PE的温度不可以调整,本发明中采用热膨胀的高分子微球随温度的上升,体积膨胀可以自动调节电池的电流密度,减少电池温度高的位置的电流分布,在温度失控时,膨胀的微球完全将隔膜孔隙闭合,而且隔膜的膨胀会增大正负极片之间的距离,更能有效地保证电池的安全。
本发明所述的多层复合功能隔膜与现有的锂离子电池用隔膜相比,该多层复合功能隔膜适用于锂离子电池,特别是动力型锂离子电池,具有优异的耐热性,其在200℃高温下加热1h以内,热收缩率小于1%;此外,由于有机高分子微球的引入,提高了电池的安全性。
附图说明
图1为实施例1的锂离子电池用多层复合功能隔膜的各功能层的分布图;
图2为实施例2的锂离子电池用多层复合功能隔膜的各功能层的分布图;
图3为实施例3的锂离子电池用多层复合功能隔膜的各功能层的分布图;
图4为本发明所述锂离子电池用多层复合功能隔膜的一种优选的功能层分布方式;
图5为本发明所述锂离子电池用多层复合功能隔膜的一种优选的功能层分布方式;
图6为本发明所述锂离子电池用多层复合功能隔膜的一种优选的功能层分布方式。
具体实施方式
下面通过具体实施例并结合附图对本发明进一步阐述,其性能测试方法如下:
1.热稳定性
按照隔膜机械方向MD(Machine Direction)和TD(Transverse Direction)裁切尺寸为15cm*10cm的长方形隔膜膜片,长方形长边平行于隔膜的MD 方向,窄边平行于隔膜的TD方向,放入到温度设定为200℃的烘箱中放置1h。取出测量薄膜膜片的长度(L)和宽度(W)的数值:
MD方向热收缩=L/15×100%;TD方向热收缩=W/10×100%。
2.孔隙率测试
采用美国康塔PoreMaster全自动压汞仪测量隔膜的孔隙率
3.粘结性测试
采用微机控制电子万能材料试验机测量涂层隔膜的剥离强度,根据强度大小来测定其粘结性能。利用裁样机裁切尺寸是1cm*15cm的长方形隔膜膜片,将多层膜片叠放在一起,中间放置一铝箔集流体,将叠放的膜片放置在两块有机玻璃中间,将其置于130℃的烘箱中30min,并用10N的重物压置。采用微机控制电子万能材料试验机,选用剥离试验模式,对涂层隔膜进行粘结性能测试。
4.电化学性能测试
锂离子电池制备方法:以镍钴锰酸锂作为正极活性物质,以石墨作为负极活性材料,电解液中电解质盐为1mol/L的LiPF6、电解液溶剂为DMC:EC:EMC=1:1:1,选用复合涂层隔膜,组装成型号为200mm*170mm*10mm的锂离子电池。
测试的条件和类别如下:
测试方式 充放电测试 过充 针刺 150℃热箱
测试条件 1C A充电 3C A充电 直径2-5mm 保温30min
实施例1
按照以下步骤制备本发明所述的多层复合功能隔膜:
1)选用聚对苯二甲酸乙二醇酯(PET)材料形成的多孔膜为A层,其孔隙率为60%,厚度为20um;
2)配置B层浆料:将平均粒径D50为0.8um的氧化铝粉均匀分散在纯净水中,采用高速分散机加入有机酸类高分子溶液,使其混合均匀并高速分 散;通过添加增稠剂调节溶液粘度,使其粘度为120厘波,固含量为45%,即得到B涂层所用的浆料;
3)配置C层浆料:将高分子聚合物微球(丙烯酸类聚合物微球,积水化学)分散在水溶液中,加入有机酸类高分子溶液,使其混合均匀并高速分散;通过添加增稠剂调节溶液粘度,使其粘度为100厘波,固含量为3%,即得到C涂层所用的浆料;
4)配置D层浆料:将聚偏氟乙烯(PVDF)分散在水溶液中,加入有机酸类高分子溶液,使其混合均匀并高速分散;通过添加胶黏剂和增稠剂调节溶液粘度,使其粘度为300厘波,固含量为25%,即得到D涂层所用的浆料;
5)采用凹版涂布的工艺中,依次将B层浆料,C层浆料及D层浆料附着到A层上,其具体分布方式是DCBABCD;B层烘干温度为70℃,C层烘干温度为55℃,D层烘干温度70℃。
复合多层功能隔膜的总厚度为50um,A层的厚度为28um,B层的厚度为4+4um,C层的厚度为3+3um,D层的厚度为4+4um。
实施例2
按照以下步骤制备本发明所述的多层复合功能隔膜:
1)选用聚对苯二甲酰对苯二胺(PPTA)材料形成的多孔膜为A层;
2)3)4),这三个步骤与实施例1中的2)3)4)相同;
5)采用浸入式涂布的工艺,依次将B层浆料,C层浆料及D层浆料附着到A层上,其具体分布方式是DCABCD;B层烘干温度为75℃,C层烘干温度为60℃,D层烘干温度70℃。
复合多层功能隔膜的总厚度为40um,A层的厚度为22um,B层的厚度为5um,C层的厚度为3.5+3.5um,D层的厚度为3+3um。
实施例3
按照以下步骤制备本发明所述的多层复合功能隔膜:
1)2)3),这两个步骤与实施例1中的1)2)3)相同;
4)将实施例1中的聚偏氟乙烯改为聚偏氟乙烯-六氟丙烯(PVDF-HFP),浆料配置方式同实施例1的步骤4);
5)采用浸入式涂布的工艺,依次将B层浆料,C层浆料及D层浆料附着到A层上,其具体分布方式是CABD;B层烘干温度为65℃,C层烘干温度为55℃,D层烘干温度60℃。
复合多层功能隔膜的总厚度为27um,A层的厚度为20um,B层的厚度为2.5um,C层的厚度为2um,D层的厚度为2.5um。
实施例4
按照以下步骤制备本发明所述的多层复合功能隔膜:
1)将聚对苯二甲酸乙二醇酯(PET)膜改为聚丙烯(PP),作为A层,厚度为20um;
2)将氧化铝粉改为平均粒径D50为0.73um的氧化锆粉末,均匀分散在纯净水中,加入有机酸类高分子溶液,使其混合均匀并高速分散;通过添加增稠剂调节溶液粘度,使其粘度为500厘波;
3)与实施例1中的步骤3)相同;
4)将实施例1中的聚偏氟乙烯改为聚丙烯酸树脂(PAA),浆料配置方式同实施例1的步骤4);
5)采用浸入式涂布的工艺,依次将B层浆料,C层浆料及D层浆料附着到A层上,其具体分布方式是DCAB;B层烘干温度为70℃,C层烘干温度为55℃,D层烘干温度60℃。
复合多层功能隔膜的总厚度为12um,A层的厚度为7um,B层的厚度为3um,C层的厚度为1um,D层的厚度为1um。
实施例5
按照以下步骤制备本发明所述的多层复合功能隔膜:
1)将聚对苯二甲酸乙二醇酯(PET)膜改为聚异丁烯(PIB),作为A层,厚度为20um;
2)将聚酰亚胺(PI)加入有机酸类高分子溶液,使其混合均匀并高速分散;通过添加增稠剂调节溶液粘度,使其粘度为400厘波;
3)与实施例1中的步骤3)相同;
4)将实施例1中的聚偏氟乙烯改为有机玻璃(PMMA),浆料配置方式同实施例1的步骤4);
5)采用凹版涂布的工艺中,依次将B层浆料,C层浆料及D层浆料附着到A层上,其具体分布方式是BABCD;B层烘干温度为50℃,C层烘干温度为55℃,D层烘干温度80℃。
复合多层功能隔膜的总厚度为31um,A层的厚度为20um,B层的厚度为3+3um,C层的厚度为2um,D层的厚度为3um。
实施例6
按照以下步骤制备本发明所述的多层复合功能隔膜:
1)选用聚酰亚胺(PI)材料形成的多孔膜为A层;
2)将体积比为1:1的氧化铝粉(平均粒径D50为0.5um)和硫酸钡粉末(平均粒径D50为0.38um)均匀分散在纯净水中,加入有机酸类高分子溶液,使其混合均匀并高速分散;通过添加增稠剂调节溶液粘度,使其粘度为400厘波;
3)4),这三个步骤与实施例1中的3)4)相同;
5)采用浸入式涂布的工艺,依次将B层浆料,C层浆料及D层浆料附着到A层上,其具体分布方式是DCBABD;B层烘干温度为75℃,C层烘干温度为60℃,D层烘干温度70℃。
复合多层功能隔膜的总厚度为29um,A层的厚度为17um,B层的厚度为2.5+2.5um,C层的厚度为3um,D层的厚度为2+2um。
对比例1
按照以下步骤制备本发明所述的多层复合功能隔膜:
1)选用聚对苯二甲酸乙二醇酯(PET)材料形成的多孔膜为A层,其孔 隙率为65%,厚度为20um;
2)3),这两个步骤与实施例1中的2)3)相同;
4)采用浸入式涂布的工艺,依次将B层浆料,C层浆料附着到A层上;B层烘干温度为75℃,C层烘干温度为60℃。
复合多层功能隔膜的总厚度为26.5um,A层的厚度为20um,B层的厚度为4.5um,C层的厚度为2um。
对比例2
按照以下步骤制备本发明所述的多层复合功能隔膜:
1)选用聚对苯二甲酰对苯二胺(PPTA)材料形成的多孔膜为A层,其孔隙率为65%,厚度为15um;
2)3),这两个步骤与实施例1中的2)4)相同;
4)采用浸入式涂布的工艺,依次将B层浆料,D层浆料附着到A层上;B层烘干温度为75℃,D层烘干温度为60℃。
复合多层功能隔膜的总厚度为25um,A层的厚度为15um,B层的厚度为5.5um,D层的厚度为4.5um。
对比例3
按照以下步骤制备本发明所述的多层复合功能隔膜:
1)选用聚对苯二甲酸乙二醇酯(PET)材料形成的多孔膜为A层,其孔隙率为65%,厚度为17um;
2)3),这两个步骤与实施例1中的3)4)相同;
4)采用浸入式涂布的工艺,依次将C层浆料,D层浆料附着到A层上;B层烘干温度为75℃,D层烘干温度为60℃。
复合多层功能隔膜的总厚度为25um,A层的厚度为17um,B层的厚度为3um,D层的厚度为5um。
对比例4
商业化的PP隔膜,未经任何处理,直接测试。
(1)不同温度下的热稳定性
取实施例1-3以及对比例1-3得到的复合涂层功能隔膜及未涂覆复合涂层的聚丙烯微孔膜,放置于温度为120℃、140℃、160℃、180℃、200℃的烘箱中加热1h,测定隔膜在不同温度下的热稳定性,如表1。
表1 不同温度下复合隔膜的热稳定性
Figure PCTCN2016105633-appb-000001
从表1可以看出,实施例1-3以及对比例1-3制备的复合涂层功能隔膜在各温度下的热收缩率均低于普通PP膜。当温度持续升高时,复合涂层中由于B层浆料的耐热性较强,其复合涂层隔膜的热稳定性就会增强;当温度达到180℃以上时,复合涂层隔膜的热收缩率仍小于1.0%,而市售的PP膜已经完全熔化。
(2)不同隔膜的粘结性
取实施例1-3以及对比例1-3得到的复合涂层功能隔膜及未涂覆复合涂层的聚丙烯微孔膜,在同一剥离速度50mm/min下,根据剥离强度测定其粘结性,如表2。
表2 不同隔膜的粘结性能
  实施 实施 实施 对比 对比 对比 对比
  例1 例2 例3 例1 例2 例3 例4
剥离强度(N) 1.5 1.3 1.0 0.3 0.9 0.7 /
从表2可以看出,实施例1-3与对比例1-3制备的复合涂层功能隔膜在相同剥离速度下的涂层附着力,展现出优异的粘结性能。
(3)应用不同隔膜的锂离子电池的充放电性能
取实施例1-3以及对比例1-3得到的复合涂层功能隔膜及未涂覆复合涂层的聚丙烯微孔膜,制备锂离子电池,并在不同的温度下对该电池进行充放电性能测试,结果如表3。
表3 不同隔膜的锂离子电池的充放电性能
Figure PCTCN2016105633-appb-000002
从表3不同隔膜的充放电情况可以看出,实施例1-3及对比例1、3制备的复合多层功能隔膜在130℃时能够切断电池的充放电通路,起到了热闭合作用。通过分析,由于复合涂层中有机高分子微球的存在,在高温下熔化,使得进行充放电的过程中,电压急剧增大至最大值,电流无法正常充电,表明该隔膜实现了对电池的热闭合作用。
(4)应用不同隔膜的锂离子电池的安全性能
取实施例1-3以及对比例1-3得到的复合涂层功能隔膜及未涂覆复合涂 层的聚丙烯微孔膜,制备成锂离子电池,对其进行过充、针刺和将其置于150℃的烘箱中进行电化学实验,观察其实验现象是否发生燃烧或者爆炸来分别测试其安全性能,结果如表4。
表4 应用不同隔膜的锂离子电池的安全性能
隔膜种类 过充 针刺 150℃热箱
实施例1 不燃烧不爆炸 不燃烧不爆炸 不燃烧不爆炸
实施例2 不燃烧不爆炸 不燃烧不爆炸 不燃烧不爆炸
实施例3 不燃烧不爆炸 不燃烧不爆炸 不燃烧不爆炸
对比例1 燃烧不爆炸 燃烧不爆炸 燃烧不爆炸
对比例2 燃烧不爆炸 燃烧不爆炸 燃烧不爆炸
对比例3 燃烧不爆炸 燃烧不爆炸 燃烧不爆炸
对比例4 燃烧爆炸 燃烧爆炸 燃烧爆炸
从表4中,可以分析得出,实施例1-3制备的锂离子电池具有优越的安全性能。
综上所述,本发明的多层复合功能隔膜可以通过不同涂层的涂覆,发挥该多层复合功能隔膜耐高热的优异性,有效提高储能器件的安全性和可靠性。
以上所述仅是本发明的实施方式的举例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (14)

  1. 一种锂离子电池用多层复合功能隔膜,其特征在于,所述的多层复合功能隔膜包括A层,B层,C层及D层,其中A层为基层,B层是由绝缘无机化合物或耐高温聚合物组成的多孔结构层;C层是由具有温度激发膨胀特性的高分子聚合物微球组成的多孔层;D层是热塑性树脂组成的多孔层;所述B层,C层和D层依次附着在A层的一侧或者两侧。
  2. 如权利要求1所述的多层复合功能隔膜,其特征在于,所述A层是由选自以下一种或多种的材料形成的多孔膜:聚乙烯,聚丙烯,聚酯,聚酰亚胺,聚对苯二甲酰对苯二胺,聚异丁烯。
  3. 如权利要求1所述的多层复合功能隔膜,其特征在于,所述B层中,所述绝缘无机化合物为氧化铝,氧化锆,二氧化硅,硅酸锆,硫酸钡中的一种或多种的混合物。
  4. 如权利要求1或3所述的多层复合功能隔膜,其特征在于,所述绝缘无机化合物为氧化铝或氧化铝和硫酸钡的混合物。
  5. 如权利要求4所述的多层复合功能隔膜,其特征在于,所述绝缘无机化合物为体积比例为1:1的氧化铝和硫酸钡的混合物。
  6. 如权利要求1所述的多层复合功能隔膜,其特征在于,所述B层中,所述耐高温聚合物是指熔融温度大于180℃的聚合物。
  7. 如权利要求1或5所述的多层复合功能隔膜,其特征在于,所述耐高温聚合物为聚酯,聚酰亚胺,聚砜,聚苯硫醚,聚苯并咪唑,聚对羟基苯甲酸酯中的一种或多种的混合物。
  8. 如权利要求1所述的多层复合功能隔膜,其特征在于,所述C层中,所述聚合物的膨胀激发初始温度小于120℃,体积膨胀率大于100%;所述聚合物的微球的平均粒径为2-5um。
  9. 如权利要求1所述的多层复合功能隔膜,其特征在于,所述D层中,所述的热塑性树脂选择熔点在80-110℃,结晶度<50%的热 塑性树脂。
  10. 如权利要求1或8所述的多层复合功能隔膜,其特征在于,所述热塑性树脂为聚偏氟乙烯,聚偏氟乙烯-六氟丙烯,聚丙烯酸树脂,有机玻璃的一种或多种的混合物组成的多孔层;更优选聚偏氟乙烯。
  11. 如权利要求1所述的多层复合功能隔膜,其特征在于,所述多层复合功能隔膜的总厚度为12-50um,其中A层的厚度为6-30um,B层的厚度为1-8um,C层的厚度为1-10um,D层的厚度为1-6um。
  12. 如权利要求1所述的多层复合功能隔膜,其特征在于,所述多层复合功能隔膜的平均孔隙率大于40%;其中A层的孔隙率为40-70%;B层的孔隙率40-60%;C层的孔隙率为30-40%;D层的孔隙率为30-35%。
  13. 如权利要求1所述的多层复合功能隔膜,其特征在于,所述多层复合功能隔膜具有下述结构中的一种:
    所述多层复合功能隔膜包括A层,B层,C层及D层,其中A层为基层,B层是由绝缘无机化合物或耐高温聚合物组成的多孔结构层;C层是由具有温度激发膨胀特性的高分子聚合物微球组成的多孔层;D层是热塑性树脂组成的多孔层;所述B层,C层和D层依次附着在A层的两侧;
    所述多层复合功能隔膜包括A层,B层,C层及D层,其中A层为基层,B层是由绝缘无机化合物或耐高温聚合物组成的多孔结构层;C层是由具有温度激发膨胀特性的高分子聚合物微球组成的多孔层;D层是热塑性树脂组成的多孔层;所述B层附着在A层的一侧,形成AB复合层,然后C层和D层依次附着在AB复合层的两侧;
    所述多层复合功能隔膜包括A层,B层,C层及D层,其中A层为基层,B层是由绝缘无机化合物或耐高温聚合物组成的多孔结构层;C层是由具有温度激发膨胀特性的高分子聚合物微球组成的多孔层;D层是热塑性树脂组成的多孔层;所述B层附着在A 层的两侧,形成BAB复合层,然后C层附着在BAB复合层的一侧,形成CBAB复合层或BABC复合层,最后D层附着在CBAB复合层或BABC复合层的两侧;
    所述多层复合功能隔膜包括A层,B层,C层及D层,其中A层为基层,B层是由绝缘无机化合物或耐高温聚合物组成的多孔结构层;C层是由具有温度激发膨胀特性的高分子聚合物微球组成的多孔层;D层是热塑性树脂组成的多孔层;所述B层,C层和D层依次附着在A层的一侧;
    所述层复合功能隔膜包括A层,B层,C层及D层,其中A层为基层,B层是由绝缘无机化合物或耐高温聚合物组成的多孔结构层;C层是由具有温度激发膨胀特性的高分子聚合物微球组成的多孔层;D层是热塑性树脂组成的多孔层;所述B层附着在A层的两侧,形成BAB复合层,然后C层和D层依次附着在BAB复合层的一侧。
  14. 如权利要求1-13任意一项所述的多层复合功能隔膜的制备方法,包括以下步骤:
    1)取A层隔膜;
    2)配置B层浆料:将一种或多种具有绝缘性的无机化合物或耐高温聚合物均匀分散在水溶液中,加入有机酸类高分子溶液,使其混合均匀并高速分散;通过添加增稠剂调节溶液粘度,使其粘度为100-500厘波,固含量为30%-60%,即得到B涂层所用的浆料;
    3)配置C层浆料:将一种或多种高分子聚合物微球分散在水溶液中,加入有机酸类高分子溶液,使其混合均匀并高速分散;通过添加增稠剂调节溶液粘度,使其粘度为100-500厘波,固含量为3%-15%,即得到C涂层所用的浆料;
    4)配置D层浆料:将一种或多种熔点在80-110℃,结晶度<50%的热塑性树脂微粉分散在水溶液中,加入有机酸类高分子溶液,使其混合均匀并高速分散;通过添加水溶性高分子有机酸类粘结剂和增稠剂调节溶液粘度,使其粘度是200-800厘波,固含量为 15%-40%,即得到D涂层所用的浆料;
    5)采用涂覆,浸渍,印刷或热复合工艺中的一种或多种,依次将B层浆料,C层浆料及D层浆料附着到A层上;每层附着后需要进行烘烤,烘干温度范围为40℃-80℃。
PCT/CN2016/105633 2016-11-14 2016-11-14 一种锂离子电池用多层复合功能隔膜 WO2018086095A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019546951A JP6938657B2 (ja) 2016-11-14 2016-11-14 リチウムイオン電池用複合機能多層セパレーター
US16/349,947 US11411281B2 (en) 2016-11-14 2016-11-14 Multi-layered composite functional separator for lithium-ion battery
CN201680090794.2A CN109964338A (zh) 2016-11-14 2016-11-14 一种锂离子电池用多层复合功能隔膜
PCT/CN2016/105633 WO2018086095A1 (zh) 2016-11-14 2016-11-14 一种锂离子电池用多层复合功能隔膜
KR1020197017122A KR102215959B1 (ko) 2016-11-14 2016-11-14 리튬이온배터리용 다층 복합 기능 격막

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105633 WO2018086095A1 (zh) 2016-11-14 2016-11-14 一种锂离子电池用多层复合功能隔膜

Publications (1)

Publication Number Publication Date
WO2018086095A1 true WO2018086095A1 (zh) 2018-05-17

Family

ID=62110021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105633 WO2018086095A1 (zh) 2016-11-14 2016-11-14 一种锂离子电池用多层复合功能隔膜

Country Status (5)

Country Link
US (1) US11411281B2 (zh)
JP (1) JP6938657B2 (zh)
KR (1) KR102215959B1 (zh)
CN (1) CN109964338A (zh)
WO (1) WO2018086095A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019179698A (ja) * 2018-03-30 2019-10-17 旭化成株式会社 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池、並びに蓄電デバイス
CN111293262A (zh) * 2020-03-18 2020-06-16 溧阳天目先导电池材料科技有限公司 降低锂电池热失控风险的复合隔膜、制备方法和锂电池
FR3098347A1 (fr) * 2019-07-04 2021-01-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cellule électrochimique pour batterie au lithium comprenant des moyens pour assurer la sécurite de celle-ci en cas d’emballement thermique
CN112670667A (zh) * 2020-12-23 2021-04-16 珠海冠宇电池股份有限公司 一种隔膜、电池及隔膜的制造方法
WO2021085487A1 (ja) * 2019-10-30 2021-05-06 富士フイルム株式会社 非水電解液二次電池、これに用いるセパレータ、及び非水電解液二次電池の製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP2019067492A (ja) * 2017-09-28 2019-04-25 三洋電機株式会社 非水電解質二次電池用セパレータ及び非水電解質二次電池
JP6430617B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11158907B2 (en) * 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430618B1 (ja) * 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430621B1 (ja) * 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP7474115B2 (ja) * 2020-05-28 2024-04-24 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
CN111916621A (zh) * 2020-08-19 2020-11-10 北京宇程科技有限公司 一种锂离子电池用耐高温复合隔膜及其制备方法
JP7392621B2 (ja) * 2020-09-30 2023-12-06 トヨタ自動車株式会社 亜鉛二次電池用セパレータ
KR20220111565A (ko) * 2021-02-02 2022-08-09 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
CN113437435B (zh) * 2021-06-23 2023-05-26 江苏星源新材料科技有限公司 涂覆浆料、涂覆隔膜及其制备方法
CN118235289A (zh) * 2021-11-10 2024-06-21 电能法亚公司 锂离子传导隔膜
CN115820064B (zh) * 2022-01-27 2024-03-22 宁德时代新能源科技股份有限公司 涂料组合物、隔离膜、二次电池、电池模块、电池包和用电装置
CN114709565B (zh) * 2022-06-07 2022-09-02 中材锂膜(宁乡)有限公司 有机/无机复合层多孔隔膜、其制备方法及电化学装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101218695A (zh) * 2005-12-08 2008-07-09 日立麦克赛尔株式会社 电化学元件用隔板及其制造方法以及电化学元件及其制造方法
CN102668173A (zh) * 2009-11-03 2012-09-12 阿莫绿色技术有限公司 具有耐热性和高强度的超细纤维多孔隔板及其制造方法以及使用所述隔板的二次电池
CN103915594A (zh) * 2014-04-21 2014-07-09 上海顶皓新材料科技有限公司 一种低离子阻抗耐高温锂电池涂层隔膜
CN104347835A (zh) * 2013-07-26 2015-02-11 天津东皋膜技术有限公司 一种双面耐热陶瓷涂层复合隔膜
CN105140450A (zh) * 2015-09-17 2015-12-09 中航锂电(洛阳)有限公司 一种锂离子电池复合隔膜及其制备方法、锂离子电池
CN105845871A (zh) * 2016-05-20 2016-08-10 成都慧成科技有限责任公司 一种具有热开关功能的锂电池隔膜及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096456A (en) * 1995-09-29 2000-08-01 Showa Denko K.K. Film for a separator of electrochemical apparatus, and production method and use thereof
KR20010053640A (ko) * 1999-06-22 2001-06-25 다니구찌 이찌로오, 기타오카 다카시 전지용 세퍼레이터, 전지, 및 세퍼레이터의 제조방법
DE10238945B4 (de) * 2002-08-24 2013-01-03 Evonik Degussa Gmbh Elektrischer Separator mit Abschaltmechanismus, Verfahren zu dessen Herstellung, Verwendung des Separators in Lithium-Batterien und Batterie mit dem Separator
DE10347567A1 (de) * 2003-10-14 2005-05-12 Degussa Elektrischer Separator mit Abschaltmechanismus, Verfahren zu dessen Herstellung und Verwendung in Lithium-Batterien
JP4686182B2 (ja) * 2004-12-29 2011-05-18 恵和株式会社 電池用セパレータ及び製造方法、並びに二次電池
TWI330136B (en) * 2005-11-28 2010-09-11 Lg Chemical Ltd Organic/inorganic composite porous membrane and electrochemical device using the same
JP4184404B2 (ja) * 2005-12-08 2008-11-19 日立マクセル株式会社 電気化学素子用セパレータおよび電気化学素子
JP2007273127A (ja) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd 非水系二次電池
JP2012043629A (ja) * 2010-08-18 2012-03-01 Mitsubishi Chemicals Corp 非水系電解液二次電池用セパレータ及び非水系電解液二次電池
US9337461B2 (en) * 2010-09-02 2016-05-10 Toray Battery Separator Film Co., Ltd. Composite porous membrane and method of producing the same
JP5946257B2 (ja) * 2011-09-29 2016-07-06 デクセリアルズ株式会社 電池用セパレータシート、その製造方法及び電池
US9276244B2 (en) * 2012-02-08 2016-03-01 Sumitomo Chemical Company, Limited Method for producing polyolefin porous film, and laminated porous film
JP2014137985A (ja) * 2013-01-18 2014-07-28 Toyota Motor Corp 二次電池
US8999553B2 (en) * 2013-03-15 2015-04-07 Ford Global Technologies, Llc Rechargeable battery with shutdown layer comprising a low melting point material and an electrically conductive material
JP6372680B2 (ja) * 2013-12-06 2018-08-15 三星エスディアイ株式会社Samsung SDI Co., Ltd. 非水電解質二次電池用マイクロカプセル(microcapsule)、非水電解質二次電池用セパレータ(separator)、非水電解質二次電池用電極、非水電解質二次電池用電極活物質層、及び非水電解質二次電池
JP6431688B2 (ja) * 2014-04-30 2018-11-28 ユニチカ株式会社 セパレータ用コーティング材料、スラリー、セパレータ、および二次電池
KR20230107896A (ko) * 2014-12-15 2023-07-18 데이진 가부시키가이샤 비수 전해질 전지용 세퍼레이터, 비수 전해질 전지,및 비수 전해질 전지의 제조 방법
KR102604599B1 (ko) * 2015-04-02 2023-11-22 에스케이이노베이션 주식회사 리튬 이차전지용 복합 분리막 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101218695A (zh) * 2005-12-08 2008-07-09 日立麦克赛尔株式会社 电化学元件用隔板及其制造方法以及电化学元件及其制造方法
CN102668173A (zh) * 2009-11-03 2012-09-12 阿莫绿色技术有限公司 具有耐热性和高强度的超细纤维多孔隔板及其制造方法以及使用所述隔板的二次电池
CN104347835A (zh) * 2013-07-26 2015-02-11 天津东皋膜技术有限公司 一种双面耐热陶瓷涂层复合隔膜
CN103915594A (zh) * 2014-04-21 2014-07-09 上海顶皓新材料科技有限公司 一种低离子阻抗耐高温锂电池涂层隔膜
CN105140450A (zh) * 2015-09-17 2015-12-09 中航锂电(洛阳)有限公司 一种锂离子电池复合隔膜及其制备方法、锂离子电池
CN105845871A (zh) * 2016-05-20 2016-08-10 成都慧成科技有限责任公司 一种具有热开关功能的锂电池隔膜及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019179698A (ja) * 2018-03-30 2019-10-17 旭化成株式会社 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池、並びに蓄電デバイス
JP7166773B2 (ja) 2018-03-30 2022-11-08 旭化成株式会社 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池、並びに蓄電デバイス
FR3098347A1 (fr) * 2019-07-04 2021-01-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cellule électrochimique pour batterie au lithium comprenant des moyens pour assurer la sécurite de celle-ci en cas d’emballement thermique
WO2021085487A1 (ja) * 2019-10-30 2021-05-06 富士フイルム株式会社 非水電解液二次電池、これに用いるセパレータ、及び非水電解液二次電池の製造方法
JPWO2021085487A1 (zh) * 2019-10-30 2021-05-06
JP7314296B2 (ja) 2019-10-30 2023-07-25 富士フイルム株式会社 非水電解液二次電池、これに用いるセパレータ、及び非水電解液二次電池の製造方法
CN111293262A (zh) * 2020-03-18 2020-06-16 溧阳天目先导电池材料科技有限公司 降低锂电池热失控风险的复合隔膜、制备方法和锂电池
CN112670667A (zh) * 2020-12-23 2021-04-16 珠海冠宇电池股份有限公司 一种隔膜、电池及隔膜的制造方法

Also Published As

Publication number Publication date
JP6938657B2 (ja) 2021-09-22
US11411281B2 (en) 2022-08-09
US20190334149A1 (en) 2019-10-31
KR102215959B1 (ko) 2021-02-15
KR20190074321A (ko) 2019-06-27
JP2019536253A (ja) 2019-12-12
CN109964338A (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
WO2018086095A1 (zh) 一种锂离子电池用多层复合功能隔膜
US10347892B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP5655088B2 (ja) セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子
KR101814921B1 (ko) 다공질층, 적층체, 다공질층을 포함하는 비수 전해액 이차 전지용 부재, 및 다공질층을 포함하는 비수 전해액 이차 전지
CN108352485B (zh) 非水系二次电池用隔膜及非水系二次电池
CN102171856B (zh) 具有多孔涂层的隔膜及含有该隔膜的电化学装置
TWI517483B (zh) 具多孔活性塗層之有機/無機複合隔離板及包含其之電化學裝置
CN108352484B (zh) 非水系二次电池用隔膜及非水系二次电池
KR101577383B1 (ko) 비수 전해질 전지용 세퍼레이터 및 비수 전해질 전지
KR20160096536A (ko) 적층체, 세퍼레이터 및 비수 이차 전지
US11777175B2 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
JP2014526776A (ja) セパレータの製造方法、その方法で形成されたセパレータ、及びそれを含む電気化学素子
KR20130091459A (ko) 내열성 및 안정성이 우수한 폴리올레핀계 복합 미세다공막 및 이의 제조방법
WO2012119361A1 (zh) 含有纳米预交联橡胶微粉的共挤复合隔膜以及使用其的锂离子电池
KR20190044529A (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
CN112272892B (zh) 制造用于电化学装置的隔板的方法
CN114430093A (zh) 耐热性提高的隔膜和应用该隔膜的锂二次电池
KR101623101B1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자
KR101708882B1 (ko) 세퍼레이터의 제조방법
KR20220027454A (ko) 분리막 및 이를 이용한 전기 화학 소자
KR20210017843A (ko) 다공성 분리막 및 이를 포함하는 전기화학소자
KR20220098896A (ko) 열전도도가 우수한 분리막 및 이를 이용한 전기 화학 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197017122

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16921330

Country of ref document: EP

Kind code of ref document: A1