WO2018084256A1 - ポリアミド系熱可塑性エラストマー組成物、成形体及び中空成形体 - Google Patents

ポリアミド系熱可塑性エラストマー組成物、成形体及び中空成形体 Download PDF

Info

Publication number
WO2018084256A1
WO2018084256A1 PCT/JP2017/039773 JP2017039773W WO2018084256A1 WO 2018084256 A1 WO2018084256 A1 WO 2018084256A1 JP 2017039773 W JP2017039773 W JP 2017039773W WO 2018084256 A1 WO2018084256 A1 WO 2018084256A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
structural unit
thermoplastic elastomer
elastomer composition
based thermoplastic
Prior art date
Application number
PCT/JP2017/039773
Other languages
English (en)
French (fr)
Inventor
航介 寺田
竜弥 榎本
洋樹 江端
馨 皆川
洋平 宝谷
晶規 天野
洋平 椛島
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2018549082A priority Critical patent/JP6876715B2/ja
Publication of WO2018084256A1 publication Critical patent/WO2018084256A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances

Definitions

  • the present invention relates to a polyamide-based thermoplastic elastomer composition, a molded body, and a hollow molded body.
  • thermoplastic elastomers do not require a vulcanization process and can be processed on ordinary thermoplastic resin molding machines, so they are considered for use in various applications such as automotive parts and machine parts.
  • polyester-based thermoplastic elastomers have excellent durability, oil resistance, and heat resistance, and because of their high elastic modulus, they can be made thinner, meeting the needs for weight reduction and cost reduction. It is being considered as a material.
  • chloroprene rubber material has been mainly used in the past, but in recent years, the manufacturing process can be simplified, heat resistance is excellent, and boots From the advantage that the durable life as a material is long, an alternative to a polyester-based thermoplastic elastomer is being promoted (for example, Patent Document 1).
  • polyamides represented by polyamide 6, polyamide 6/6 and the like have excellent physical properties such as molding processability, mechanical properties, chemical resistance, etc., so that they are used for automobiles, industrial materials, clothing, electrical / electronics, It is widely used as a component material in various fields such as industrial use.
  • Patent Document 2 proposes a composition comprising the polyamide 12, a plasticizer, and a modified polyolefin.
  • the polyester-based thermoplastic elastomer as shown in Patent Document 1 has a problem that it cannot be maintained in strength and shape at high temperatures because it becomes flexible at high temperatures and its elastic modulus decreases.
  • a molded article of a resin composition containing an aliphatic polyamide, a plasticizer, and a modified polyolefin as shown in Patent Document 2 has flexibility at room temperature, but has an elastic modulus at high temperatures. There was a problem that it was easy to decrease. Therefore, not only the strength and shape cannot be maintained at high temperatures, but also fluids heated to high temperatures (for example, coolant (hereinafter sometimes abbreviated as LLC) and automatic transmission fluids (hereinafter sometimes abbreviated as ATF).
  • LLC coolant
  • ATF automatic transmission fluids
  • BF brake fluid
  • the oil resistance is not sufficient, and there is a problem that the strength is easily lowered due to deterioration over time.
  • the present invention has been made in view of the above circumstances, and is a polyamide-based thermoplastic that has flexibility at room temperature, maintains an elastic modulus even at high temperatures, and can provide a molded product having high oil resistance. It is an object to provide an elastomer composition.
  • DSC differential scanning calorimetry
  • the aliphatic polyamide [I] is one or more selected from the group consisting of polyamide 6, polyamide 6/6, polyamide 6/10, polyamide 6/12, polyamide 9/2 and polyamide 10/10.
  • Melt flow rate (MFR) of aliphatic polyamide [I] at 290 ° C. under a load of 2.16 kg according to ISO 1133 is 0.1 to 100 g / 10 min.
  • the functional group structural unit of the olefin polymer [III] includes a structural unit derived from one or more functional groups selected from the group consisting of a carboxylic acid group, an ester group, an ether group, an aldehyde group, and a ketone group. , [1] to [4], a polyamide-based thermoplastic elastomer composition.
  • the zinc compound is one or more selected from the group consisting of zinc oxide, zinc carbonate, zinc carboxylate and zinc hydroxide. Composition.
  • the polyamide thermoplastic elastomer composition according to [11] wherein an average particle size of the dispersed phase analyzed by a transmission electron microscope image is 0.3 to 5.0 ⁇ m.
  • the total amount of the areas of the dispersed phase having a particle diameter of 3.0 ⁇ m or more analyzed by a transmission electron microscope image is 10% or less with respect to the total area of the analysis region, [11] or [12]
  • the hollow molded body according to [15] wherein the hollow molded body is an automobile-related part.
  • thermoplastic elastomer composition capable of providing a molded article having flexibility at room temperature, maintaining an elastic modulus even at high temperatures, and having high oil resistance.
  • 1A and 1B are TEM photographs of cut surfaces of a polyamide-based thermoplastic elastomer composition according to an embodiment of the present invention.
  • the present inventors have disclosed an aliphatic polyamide [I], a copolymer rubber [II], an olefin polymer [III] containing 0.3 to 5.0% by mass of a functional group structural unit, and a phenol resin system.
  • a polyamide-based thermoplastic elastomer composition obtained by crosslinking (dynamic crosslinking) a rubber composition containing a crosslinking agent [IV] and a predetermined amount of a zinc compound as a crosslinking assistant [V] is flexible at room temperature. It has been found that a molded article having a high oil resistance can be imparted while maintaining the elastic modulus even at high temperatures (reducing the decrease in elastic modulus at high temperatures).
  • a polyamide-based thermoplastic elastomer composition obtained by dynamically cross-linking the rubber composition comprises a matrix phase (sea phase) mainly composed of aliphatic polyamide [I] and a crosslinked copolymer rubber [II]. And a dispersed phase (island phase) mainly composed of olefin polymer [III], and the dispersed phase has a relatively small average diameter and is finely dispersed. Since the polyamide-based thermoplastic elastomer composition having such a microstructure has enhanced mechanical strength, it is easy to maintain the elastic modulus even at high temperatures. Further, since the copolymer rubber [II] constituting the dispersed phase is cross-linked, it is difficult for oil to swell and oil resistance is likely to increase.
  • aliphatic polyamide [I] preferably fully aliphatic polyamide
  • the crystallinity of the matrix phase can be increased as compared with, for example, semi-aromatic polyamide.
  • the elastic modulus of the matrix phase at a high temperature is easily maintained, but also the dispersed phase is easily fixed, so that the swelling of the copolymer rubber [II] constituting the dispersed phase with oil is further reduced. sell.
  • Such a molded body may also have an effect of being excellent in resistance to hydrolysis (acid resistance, hydrolysis resistance) in an acidic medium at high temperature.
  • a molded body obtained from such a polyamide-based thermoplastic elastomer composition is suitable as a hollow molded body for automobile-related parts, for example.
  • the present invention has been made based on such findings.
  • the polyamide thermoplastic elastomer composition of the present invention comprises an aliphatic polyamide [I], an ethylene / ⁇ -olefin / non-conjugated polyene copolymer rubber [II], and an olefin polymer [ III], a phenol resin-based crosslinking agent [IV], and a crosslinked product (dynamically crosslinked product) of a rubber composition containing a zinc compound as a crosslinking aid [V].
  • the crosslinked product is a partially crosslinked product or a completely crosslinked product.
  • Aliphatic polyamide [I] The aliphatic polyamide [I] has “an amide bond [—NH—C ( ⁇ O) —] and does not include an aromatic ring” (an amide bond-containing structural unit that does not include an aromatic ring) as a main component. Including.
  • “including as a main component” means that the content ratio of the amide bond-containing structural unit not containing an aromatic ring is 80 moles relative to the total number of moles of the amide bond-containing structural unit constituting the aliphatic polyamide [I]. % Or more, preferably 90 to 100 mol%.
  • the aliphatic polyamide [I] may be obtained by polycondensation reaction of dicarboxylic acid and diamine, may be obtained by polycondensation reaction of aminocarboxylic acid, or ring-opening polymerization of lactam. It may be obtained by reacting. That is, the aliphatic polyamide [I] is composed of at least one of an amide bond-containing structural unit composed of a dicarboxylic acid structural unit and a diamine structural unit; an aminocarboxylic acid structural unit; and a lactam structural unit.
  • the dicarboxylic acid structural unit constituting the aliphatic polyamide [I] includes an aliphatic dicarboxylic acid structural unit.
  • the aliphatic dicarboxylic acid is preferably an aliphatic dicarboxylic acid having 2 to 14 carbon atoms, more preferably 4 to 14 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • aliphatic dicarboxylic acids examples include oxalic acid (C2), adipic acid (C6), pimelic acid (C7), suberic acid (C8), azelaic acid (C9), sebacic acid (C10), dodecanedioic acid (C12) And tetradecanedioic acid (C14).
  • adipic acid (C6) and dodecanedioic acid (C12) are preferable.
  • One type of aliphatic dicarboxylic acid may be used, or two or more types may be combined.
  • the content ratio of the aliphatic dicarboxylic acid structural unit is preferably 80 mol% or more with respect to the total number of moles of the dicarboxylic acid structural unit constituting the aliphatic polyamide [I].
  • the content ratio of the aliphatic dicarboxylic acid structural unit is more preferably 85 to 100 mol%, still more preferably 90 to 100 mol%, based on the total number of moles of the dicarboxylic acid structural unit.
  • the dicarboxylic acid structural unit constituting the aliphatic polyamide [I] may further contain a small amount of an alicyclic dicarboxylic acid structural unit or an aromatic dicarboxylic acid structural unit as long as the effects of the present invention are not impaired.
  • the diamine structural unit constituting the aliphatic polyamide [I] includes an aliphatic diamine structural unit.
  • the aliphatic diamine is preferably an ⁇ , ⁇ -linear aliphatic diamine having 4 to 12 carbon atoms, more preferably 6 to 10 carbon atoms.
  • Examples of the aliphatic diamine include tetramethylene diamine, hexamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine and the like.
  • tetramethylene diamine, hexamethylene diamine, nonamethylene diamine, and decamethylene diamine are preferable, and tetramethylene diamine and hexamethylene diamine are more preferable.
  • One type of aliphatic diamine may be used, or two or more types may be combined.
  • the content ratio of the aliphatic diamine structural unit is preferably 80 mol% or more with respect to the total number of moles of the diamine structural unit constituting the aliphatic polyamide [I].
  • the content ratio of the aliphatic diamine structural unit is more preferably 85 to 100 mol%, and still more preferably 90 to 100 mol%, based on the total number of moles of the diamine structural unit.
  • the diamine structural unit constituting the aliphatic polyamide [I] may further contain a small amount of an alicyclic diamine structural unit or an aromatic diamine as long as the effects of the present invention are not impaired.
  • the aminocarboxylic acid that can constitute the aliphatic polyamide [I] can be an aminocarboxylic acid having 6 to 12 carbon atoms, preferably 6 to 10 carbon atoms.
  • Examples of such aminocarboxylic acids include 6-aminocaproic acid, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like. Only one type of aminocarboxylic acid may be used, or two or more types may be combined.
  • the lactam that can constitute the aliphatic polyamide [I] can be a lactam having 6 to 12 carbon atoms, preferably 6 to 10 carbon atoms.
  • lactams include ⁇ -pyrrolidone, ⁇ -caprolactam, undecane lactam, ⁇ -laurolactam, ⁇ -enantolactam and the like. Only one type of lactam may be used, or two or more types may be combined.
  • Examples of the aliphatic polyamide [I] include polyamide 6, polyamide 6/6, polyamide 4/6, polyamide 6/10, polyamide 6/12, polyamide 6/14, polyamide 6/13, polyamide 6/15, polyamide 6/16, polyamide 9/2, polyamide 9/10, polyamide 9/12, polyamide 9/13, polyamide 9/14, polyamide 9/15, polyamide 6/16, polyamide 9/36, polyamide 10/10, polyamide 10/12, polyamide 10/13, polyamide 10/14, polyamide 12/10, polyamide 12/12, polyamide 12/13, polyamide 12/14. Of these, polyamide 6, polyamide 6/6, polyamide 6/10, polyamide 6/12, polyamide 9/2 and polyamide 10/10 are preferred because they have good heat resistance. Polyamide 6, polyamide 6/6 and polyamide 6/10 is more preferable. One type of aliphatic polyamide [I] may be used, or two or more types may be used in combination.
  • the terminal groups of at least a part of the molecular chain are sealed with an end-capping agent from the viewpoint of thermal stability during compounding and molding.
  • the amount of terminal amino groups in the molecular chain is preferably 0.1 to 300 mmol / kg, more preferably 5 to 300 mmol / kg, and still more preferably 5 to 200 mmol / kg, particularly preferably 5 to 100 mmol / kg.
  • the end capping agent is not particularly limited as long as it is a monofunctional compound having reactivity with the amino group or carboxyl group at the molecular end of the polyamide, but from the viewpoint of reactivity and stability of the capping end, etc.
  • Monocarboxylic acids or monoamines are preferred, and monocarboxylic acids are more preferred from the viewpoint of ease of handling.
  • acid anhydride monoisocyanates, monoacid halides, monoesters, monoalcohols, and the like can be used.
  • the monocarboxylic acid used as the end-capping agent is not particularly limited as long as it has reactivity with an amino group.
  • monocarboxylic acids include aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid.
  • Acids alicyclic monocarboxylic acids such as cyclohexanecarboxylic acid; aromatic monocarboxylic acids such as benzoic acid, toluic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, and phenylacetic acid. Two or more of these can be used in combination.
  • acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecyl acid, myristic acid, palmitic acid, stearic acid, benzoic acid Acid is more preferred.
  • the monoamine used as the end-capping agent is not particularly limited as long as it has reactivity with a carboxyl group.
  • monoamines include aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine; cyclohexylamine, dicyclohexylamine, etc.
  • aromatic monoamines such as aniline, toluidine, diphenylamine, and naphthylamine. Two or more of these can be used in combination.
  • butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline are more preferable from the viewpoints of reactivity, boiling point, stability of the sealing end and price.
  • the amount of terminal amino groups can be measured by the following method. As for the amount of terminal amino groups of the aliphatic polyamide [I], 0.5 to 0.7 g of the aliphatic polyamide [I] is precisely weighed and dissolved in 30 mL of m-cresol. Then, add 1 to 2 drops of 0.1% thymol blue / m-cresol solution as an indicator to make a sample solution. The sample solution is titrated with a 0.02 normal p-toluenesulfonic acid solution from yellow to bluish purple, and the terminal amino group content ([NH 2 ], unit: ⁇ equivalent / g) is specified.
  • the melting point (Tm) measured by differential scanning calorimetry (DSC) of the aliphatic polyamide [I] is preferably 200 to 290 ° C., more preferably 220 to 280 ° C.
  • DSC differential scanning calorimetry
  • the heat of fusion ( ⁇ H) measured by differential scanning calorimetry (DSC) of the aliphatic polyamide [I] is preferably 45 to 100 mJ / mg.
  • the heat of fusion ( ⁇ H) is 45 mJ / mg or more, the molded product tends to have sufficient oil resistance and heat resistance, and when it is 100 mJ / mg or less, the molded product becomes excessively hard (the elastic modulus is excessive). Can be suppressed).
  • the melting point (Tm) and heat of fusion ( ⁇ H) of the aliphatic polyamide [I] can be measured under the following conditions. Using DSC (Differential Scanning Calorimetry), polyamide [I] is heated and once held at 320 ° C. for 5 minutes, then cooled to 23 ° C. at a rate of 10 ° C./minute, and then 10 ° C./minute. The temperature is increased at a speed. The temperature of the endothermic peak based on melting at this time is defined as the melting point (Tm) of the polyamide. Further, the heat of fusion ( ⁇ H) (mJ / mg) is calculated from the area divided by the endothermic peak of the obtained curve and the base line of the entire endothermic peak.
  • the melting point and heat of fusion ( ⁇ H) of the aliphatic polyamide [I] can be adjusted by, for example, the monomer composition constituting the aliphatic polyamide [I].
  • the carbon number of the dicarboxylic acid, diamine, aminocarboxylic acid and lactam constituting the aliphatic polyamide [I] should be kept below a certain level. preferable.
  • the melt flow rate (MFR) of aliphatic polyamide [I] at 290 ° C. and 2.16 kg load according to ISO 1133 is adjusted from the viewpoint of facilitating fine dispersion by adjusting the viscosity with the copolymer rubber [II] at the time of compounding. 0.1 to 500 g / 10 minutes, preferably 0.1 to 300 g / 10 minutes, 0.1 to 100 g / 10 minutes, and more preferably 1 to 100 g / 10 minutes.
  • the melt flow rate (MFR) of the aliphatic polyamide [I] is preferably not more than a certain value from the viewpoint of easily reducing the particle size of the dispersed phase mainly comprising the copolymer rubber [II].
  • the aliphatic polyamide [I] can be produced by performing a polycondensation reaction of a dicarboxylic acid and a diamine, a polycondensation reaction of an aminocarboxylic acid, or a ring-opening polymerization reaction of a lactam in a solution. it can.
  • aliphatic polyamide [I] may have the terminal group of the at least one molecular chain sealed with the terminal blocker.
  • the amount of the end-capping agent used when producing the aliphatic polyamide [I] is preferably determined from the relative viscosity of the finally obtained aliphatic polyamide [I] and the end-group blocking rate.
  • the specific amount used varies depending on the reactivity, boiling point, reaction apparatus, reaction conditions, etc. of the end-capping agent to be used, but is usually 0.3 to 10 moles relative to the total moles of dicarboxylic acid and diamine as raw materials. %.
  • the content of the aliphatic polyamide [I] is preferably 10 to 60% by mass with respect to the total of the [I] component, [II] component, [III] component and [IV] component.
  • the content of the aliphatic polyamide [I] is 10% by mass or more, since the content ratio of the matrix phase composed of the aliphatic polyamide [I] is high, sufficient heat resistance and oil resistance are imparted to the molded body. It is easy and the flexibility of a molded object is hard to be impaired as it is 60 mass% or less.
  • the content of the aliphatic polyamide [I] is more preferably 20 to 60% by mass with respect to the total of the [I] component, [II] component, [III] component and [IV] component, and 25 to 60 More preferably, it is mass%.
  • Ethylene / ⁇ -olefin / non-conjugated polyene copolymer rubber [II] The ethylene / ⁇ -olefin / nonconjugated polyene copolymer rubber [II] comprises an ethylene structural unit [a], an ⁇ -olefin structural unit [b] having 3 to 20 carbon atoms, and a nonconjugated polyene structural unit [c]. ] Is a copolymer rubber containing.
  • the content of the ethylene structural unit [a] is preferably 50 to 89% by mass, and more preferably 55 to 83% by mass with respect to all the structural units constituting the copolymer rubber [II].
  • examples of the ⁇ -olefin having 3 to 20 carbon atoms constituting the copolymer rubber [II] include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene and 1-heptene.
  • ⁇ -olefins having 3 to 8 carbon atoms such as propylene, 1-butene, 1-hexene and 1-octene are preferable.
  • ⁇ -olefin One type of ⁇ -olefin may be used, or two or more types may be combined. These ⁇ -olefins [b] are preferable because the raw material cost is relatively low and the copolymerization is excellent, and the copolymer rubber [II] is imparted with excellent mechanical properties and good flexibility.
  • the content of the ⁇ -olefin structural unit [b] having 3 to 20 carbon atoms is preferably 10 to 49% by mass with respect to the total structural units constituting the copolymer rubber [II], and 15 to 43 More preferably, it is mass%.
  • the non-conjugated polyene constituting the copolymer rubber [II] is a non-conjugated polyene having at least one carbon / carbon double bond in one molecule that can be polymerized by a metallocene catalyst. Polyene and alicyclic polyene are included.
  • aliphatic polyenes examples include 1,4-hexadiene, 1,5-heptadiene, 1,6-octadiene, 1,7-nonadiene, 1,8-decadiene, 1,12-tetradecadiene, 3-methyl- 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 4-ethyl-1,4-hexadiene, 3,3-dimethyl-1,4-hexadiene, 5- Methyl-1,4-heptadiene, 5-ethyl-1,4-heptadiene, 5-methyl-1,5-heptadiene, 6-methyl-1,5-heptadiene, 5-ethyl-1,5-heptadiene, 4- Methyl-1,4-octadiene, 5-methyl-1,4-octadiene, 4-ethyl-1,4-octadiene, 5-ethyl-1,4-
  • Examples of alicyclic polyenes include 5-ethylidene-2-norbornene (ENB), 5-propylidene-2-norbornene, 5-butylidene-2-norbornene, 5-vinyl-2-norbornene (VNB); 5-allyl 2-alkenyl-2-norbornene such as -2-norbornene; 2,5-norbornadiene, dicyclopentadiene (DCPD), norbornadiene, tetracyclo [4,4,0,12.5,17.10] deca-3,8 -Diene, 2-methyl-2,5-norbornadiene, 2-ethyl-2,5-norbornadiene and the like. Of these, 5-ethylidene-2-norbornene (ENB) is preferable.
  • One type of nonconjugated polyene structural unit [c] may be used, or two or more types may be used in combination.
  • the content ratio of the non-conjugated polyene structural unit [c] is preferably 1 to 20% by mass and more preferably 2 to 15% by mass with respect to all the structural units constituting the copolymer rubber [II]. preferable.
  • the intrinsic viscosity [ ⁇ ] of the copolymer rubber [II] is preferably 0.5 to 5.0 dl / g, more preferably 1.0 to 4.5 dl / g, and 1.5 to Particularly preferred is 4.0 dl / g.
  • This intrinsic viscosity [ ⁇ ] is a value measured in decalin at a temperature of 135 ° C., and can be determined by measuring according to ASTM D 1601.
  • the content of the copolymer rubber [II] is preferably 33 to 86% by mass with respect to the total of the [I] component, [II] component, [III] component and [IV] component.
  • the content of the copolymer rubber [II] is more preferably 33 to 55% by mass with respect to the total of the [I] component, [II] component, [III] component and [IV] component.
  • the mass ratio ([II] / [I]) of the copolymer rubber [II] and the aliphatic polyamide [I] facilitates fine dispersion by combining the viscosities at the time of compounding, and has a good 10 MPa storage elastic modulus.
  • it is preferably 20/80 to 70/30, and more preferably 30/70 to 60/40.
  • the mass ratio of the copolymer rubber [II] is a certain level or more, sufficient flexibility can be easily imparted to the molded body, and when the mass ratio of the copolymer rubber [II] is a certain level or less, the particles of the dispersed phase It is easy to reduce the diameter, and the maintenance temperature and oil resistance of the 10 MPa storage elastic modulus are not easily impaired.
  • the olefin polymer [III] is an olefin polymer containing 0.3 to 5.0% by mass of a functional group structural unit.
  • the functional group structural unit is a structural unit derived from a compound having a functional group or a monomer having a functional group. Examples of functional groups in the functional group structural unit include carboxylic acid groups (including acid anhydride groups), ester groups, ether groups, aldehyde groups, and ketone groups.
  • the olefin polymer [III] having such a functional group structural unit has an affinity for the aliphatic polyamide [I] by having a functional group, and also has a copolymer rubber by having an olefin skeleton. Since it has an affinity with [III], the compatibility of both can be improved.
  • the olefin polymer [III] is obtained by copolymerizing a modified polyolefin [III] -1, in which a functional group is introduced into a polyolefin molecular chain, and an olefin monomer and a monomer having a functional group by reacting a compound having a functional group.
  • Functional group-containing olefin copolymer [III] -2 is obtained by copolymerizing a modified polyolefin [III] -1, in which a functional group is introduced into a polyolefin molecular chain, and an olefin monomer and a monomer having a functional group by reacting a compound having a functional group.
  • polyolefin constituting the modified polyolefin [III] -1 are homopolymers or copolymers of olefins having 2 to 18 carbon atoms, such as low density polyethylene, medium density polyethylene, and high density polyethylene. , Polypropylene, and ethylene / ⁇ -olefin copolymers. Of these, ethylene / ⁇ -olefin copolymers are preferred.
  • the ⁇ -olefin in the ethylene / ⁇ -olefin copolymer is preferably an ⁇ -olefin having 3 to 10 carbon atoms, and examples thereof include propylene and 1-butene.
  • the ethylene / ⁇ -olefin copolymer include an ethylene-propylene copolymer and an ethylene-butene copolymer.
  • Examples of the compound having a functional group constituting the modified polyolefin [III] -1 include an unsaturated carboxylic acid having a functional group or a derivative thereof.
  • unsaturated carboxylic acids having functional groups or derivatives thereof include acrylic acid, methacrylic acid, ⁇ -ethylacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, endocis -Unsaturated carboxylic acids such as bicyclo [2,2,1] hept-5-ene-2,3-dicarboxylic acid (nadic acid), and derivatives of these acid halides, amides, imides, acid anhydrides, esters, etc.
  • maleic anhydride has a relatively high reactivity with the polyolefin before modification, is less likely to cause polymerization between maleic anhydrides, and tends to be stable as a basic structure. Therefore, it is easy to obtain a modified polyolefin [III] -1 having a stable quality.
  • Examples of the modified polyolefin [III] -1 include a modified ethylene / ⁇ -olefin copolymer.
  • the density of the modified ethylene / ⁇ -olefin copolymer is preferably 0.80 to 0.95 g / cm 3 , more preferably 0.85 to 0.90 g / cm 3 .
  • the olefin monomer constituting the functional group-containing olefin copolymer [III] -2 is preferably an olefin monomer having 2 to 18 carbon atoms, and examples thereof include ethylene and propylene, preferably ethylene. is there.
  • Examples of the monomer having a functional group constituting the functional group-containing olefin copolymer [III] -2 include an acrylic monomer and a vinyl monomer.
  • Examples of the functional group-containing olefin copolymer [III] -2 include ethylene / vinyl acetate / maleic anhydride copolymer (Orevac (registered trademark) manufactured by Arkema), ethylene / acrylic acid ester / functional acrylic Acid ester (for example, glycidyl acrylate or glycidyl methacrylate) copolymers (such as Lotader (registered trademark) manufactured by Arkema) are included.
  • the content of the functional group structural unit of the olefin polymer [III] is preferably 0.3 to 5.0% by mass, and more preferably 0.4 to 4.0% by mass.
  • the functional group structural unit is 0.3% by mass or more, not only the dispersibility of the ethylene / ⁇ -olefin / non-conjugated polyene copolymer rubber [II] in the aliphatic polyamide [I] is easily improved, but also the machine The mechanical strength is not easily lost.
  • the functional group structural unit is 5.0% by mass or less, excessive reaction with the aliphatic polyamide [I] is unlikely to occur, so that the melt fluidity is hardly reduced due to gelation, and the moldability is impaired. Hateful.
  • the content of the functional group structural unit is the content of the compound having the functional group or the structural unit derived from the monomer having the functional group with respect to the total mass of the structural unit derived from the monomer having no functional group constituting the olefin polymer [III]. It is a ratio (mass%).
  • the content of the functional group structural unit of the olefin polymer [III] can be measured by 13 C-NMR measurement or 1 H-NMR measurement. Specific measurement conditions are as follows.
  • an ECP500 type nuclear magnetic resonance apparatus manufactured by JEOL Ltd. is used as a measurement apparatus, a mixed solvent of orthodichlorobenzene / heavy benzene (80/20 vol%), a measurement temperature is 120 ° C., The observation nucleus is 13 C (125 MHz), single pulse proton decoupling, 45 ° pulse, repetition time is 5.5 seconds, integration number is 10,000 times or more, and 27.50 ppm is a reference value for chemical shift. Assignment of various signals is performed based on a conventional method, and quantification can be performed based on an integrated value of signal intensity.
  • the intrinsic viscosity [ ⁇ ] measured in a 135 ° C. decalin (decahydronaphthalene) solution of the olefin polymer [III] is preferably 0.5 to 4.0 dl / g, and preferably 0.7 to 3. It is more preferably 0 dl / g, further preferably 0.8 to 2.5 dl / g. If [ ⁇ ] is within the above range, the melt fluidity of the resin composition and the toughness of the resulting molded article can be compatible at a high level.
  • the intrinsic viscosity [ ⁇ ] of the olefin polymer [III] can be measured by the following method based on a conventional method. 20 mg of a sample is dissolved in 15 ml of decalin, and the specific viscosity ( ⁇ sp) is measured in an atmosphere of 135 ° C. using an Ubbelohde viscometer. After adding 5 ml of decalin to the decalin solution and diluting, the same specific viscosity is measured. Based on the measurement result obtained by repeating this dilution operation and viscosity measurement twice more, the “ ⁇ sp / C” value when the concentration (: C) is extrapolated to zero is defined as the intrinsic viscosity [ ⁇ ].
  • Examples of commercially available olefin polymer [III] include Tuffmer series (maleic anhydride modified ethylene-propylene rubber, maleic anhydride modified ethylene-butene rubber, etc.), Admer (maleic anhydride modified). Polypropylene, maleic anhydride modified polyethylene); Kuraray's kraprene (maleic anhydride modified isoprene rubber, maleic acid monomethyl ester modified isoprene rubber), Septon (maleic anhydride modified SEPS); Mitsui DuPont Polychemical Co., Ltd.
  • E-GMA Bond First
  • Clinac carboxy-modified nitrile rubber manufactured by LANXESS
  • Aurolen maleic anhydride-modified EEA manufactured by Nippon Paper Industries Co., Ltd. (all are trade names). These may be used alone or in combination of two or more.
  • the content of the olefin polymer [III] is preferably 0.1 to 30% by mass with respect to the total of the [I] component, [II] component, [III] component and [IV] component.
  • the content of the olefin polymer [III] is 0.1% by mass or more, the compatibility between the [I] component and the [II] component can be sufficiently increased, so that sufficient mechanical strength is imparted to the molded body. It is easy to give and the characteristics of [I] ingredient and [II] ingredient are hard to be impaired as it is 30 mass% or less.
  • the content of the olefin polymer [III] is more preferably 3 to 30% by mass based on the total of the [I] component, [II] component, [III] component and [IV] component. More preferably, it is 20 mass%.
  • the mass ratio ([III] / [II]) of the olefin polymer [III] and the copolymer rubber [II] is preferably 1/500 to 1/1.
  • the mass ratio of the olefin polymer [III] and the copolymer rubber [II] is more preferably 1/20 to 1/1, and further preferably 1/20 to 1/2.
  • Phenolic resin crosslinking agent [IV] The phenol resin-based crosslinking agent is typically a resole resin obtained by condensing an alkyl-substituted or unsubstituted phenol with an aldehyde (preferably formaldehyde) in the presence of an alkali catalyst.
  • the alkyl group of the alkyl-substituted phenol is preferably an alkyl group having 1 to 10 carbon atoms. In particular, dimethylolphenols or phenol resins substituted with an alkyl group having 1 to 10 carbon atoms are preferred.
  • phenol resin-based crosslinking agent examples include a compound represented by the following formula [IV-1].
  • R is an organic group such as an alkyl group, preferably an organic group having less than 20 carbon atoms, more preferably an organic group having 4 to 12 carbon atoms.
  • R ′ is a hydrogen atom or —CH 2 —OH.
  • n and m are each an integer of 0 to 20, preferably an integer of 0 to 15, and more preferably an integer of 0 to 10.
  • phenol resin-based crosslinking agent examples include methylolated alkylphenol resins and halogenated alkylphenol resins.
  • the halogenated alkylphenol resin is an alkylphenol resin in which a hydroxyl group at a molecular chain terminal is substituted with a halogen atom such as bromine, and examples thereof include a compound represented by the following formula [IV-2].
  • N, m and R in the formula [IV-2] have the same meanings as n, m and R in the formula [IV-1], respectively.
  • R ′ in the formula [IV-2] is a hydrogen atom, —CH 3 or —CH 2 —Br.
  • phenolic resin cross-linking agents examples include Takuro Chemical Industries Co., Ltd. Tacco Roll 201, Tacco Roll 250-I, Tacco Roll 250-III; SI Group SP1045, SP1055, SP1056; Showa Denko Co., Ltd. Nord CRM; Tamanol 531 of Arakawa Chemical Co., Ltd .; Sumilite Resin PR of Sumitomo Bakelite Co., Ltd .; Residue Top (all trade names) of Gunei Chemical Industry Co., Ltd. These may be used alone or in combination of two or more. Among them, Takiroll 250-III (brominated alkylphenol formaldehyde resin) manufactured by Taoka Chemical Industries, Ltd. and SP1055 (brominated alkylphenol formaldehyde resin) manufactured by SI Group are preferable.
  • halogenated alkylphenol resins are particularly preferred.
  • the halogen alkylphenol resin is preferable because it is excellent in compatibility with the copolymer rubber [II], has high reactivity, and can relatively quickly start the crosslinking reaction.
  • the average particle size is preferably 0.1 ⁇ m to 3 mm, more preferably 1 ⁇ m to 1 mm, and particularly preferably 5 ⁇ m to 0.5 mm.
  • the flaky curing agent is preferably used after being powdered by a pulverizer such as a jet mill or a pulverizer with a pulverizing blade.
  • the content of the phenol resin crosslinking agent [IV] is preferably 1 to 10% by mass with respect to the total of the [I] component, [II] component, [III] component and [IV] component.
  • the content of the phenolic resin-based crosslinking agent [IV] is 1% by mass or more, the [II] component and the like can be easily crosslinked, so that it is easy to impart sufficient heat resistance and oil resistance to the molded body.
  • the content of the system cross-linking agent [IV] is 10% by mass or less, the properties of the [I] component and the [II] component are hardly impaired.
  • the content of the phenol resin crosslinking agent [IV] is more preferably 1 to 8% by mass with respect to the total of the [I] component, [II] component, [III] component and [IV] component, More preferably, it is 2 to 6% by mass.
  • Crosslinking aid [V] is preferably a zinc compound.
  • the zinc compound is a zinc salt having a Zn +2 cation and a negatively charged counter ion.
  • the negatively charged counterion is preferably a non-toxic, negatively charged counterion that is thermally stable at least about 200 ° C. or lower, and is a negatively charged counterion that is thermally stable at least 300 ° C. or lower. More preferred.
  • Zinc compounds have a molecular weight of about 1000 or less, including Zn 2+ cations and negatively charged counterions.
  • Examples of the zinc compound include zinc carboxylate, zinc carbonate, zinc titanate, zinc molybdate, zinc sulfate, zinc phosphate, zinc oxide, zinc borate and zinc halide.
  • Examples of the zinc halide include zinc iodide.
  • Examples of zinc carboxylates include zinc acetate, zinc stearate, zinc oxalate, zinc palmitate, zinc 2-ethylhexanoate, zinc gluconate, zinc laurate, zinc salicylate, zinc terephthalate, zinc isophthalate, phthalate Zinc acid, zinc succinate, zinc adipate, zinc pyromellitic acid, zinc benzenetricarboxylate, zinc butanetetracarboxylate and zinc trifluoromethanesulfonate are included.
  • it is preferably at least one selected from the group consisting of zinc oxide, zinc carbonate, zinc carboxylate, zinc hydroxide, and combinations thereof, and it is easy to increase the crosslinking reaction rate and finely disperse the resulting dispersed phase.
  • zinc oxide is more preferable.
  • the content of the crosslinking aid [V] (zinc compound) is such that the mass ratio [V] / [I] of the crosslinking aid [V] (zinc compound) to the aliphatic polyamide [I] is 0.0001 to 0.001. 02, preferably 0.0003 to 0.01, more preferably 0.0004 to 0.01, and still more preferably 0.0004 to 0.009.
  • the mass ratio [V] / [I] is 0.0001 or more, it is difficult for crosslinking to be insufficient. Therefore, the particle size of the dispersed phase mainly composed of the copolymer rubber [II] and the olefin polymer [III] Does not become too large (the dispersed phase tends to be finely dispersed).
  • the maintenance temperature of the storage elastic modulus of the polyamide-based thermoplastic elastomer composition is hardly lowered, and the oil resistance is hardly lowered.
  • the mass ratio [V] / [I] is 0.02 or less, the crosslinking rate does not become too high, and the copolymer rubber [II] is easily finely dispersed and then easily crosslinked.
  • the particle size of the dispersed phase containing rubber [II] as a main component does not become too large (the dispersed phase is easily finely dispersed).
  • the maintenance temperature of the storage elastic modulus of the polyamide-based thermoplastic elastomer composition is hardly lowered, and the oil resistance is hardly lowered.
  • the total content of [I] component, [II] component, [III] component, [IV] component and [V] component is preferably 80% by mass or more based on the total mass of the rubber composition, 90 More preferably, it is more than 100 mass%.
  • the rubber composition for obtaining the polyamide-based thermoplastic elastomer composition may further contain other components as necessary within a range not impairing the effects of the present invention.
  • examples of other components include cross-linking agents and cross-linking aids other than phenol resin cross-linking agents [IV], plasticizers, antioxidants, colorants, antistatic agents (conductive agents), fillers, and the like. It is.
  • the other crosslinking agent may be any crosslinking agent that can dynamically crosslink the rubber composition described above, and examples thereof include a sulfur-based crosslinking agent. However, it is preferable that the other crosslinking agent does not contain an organic peroxide. When an organic peroxide is used as the other cross-linking agent, the decomposition rate of the organic peroxide may become too fast because the melt kneading temperature suitable for the polyamide-based thermoplastic elastomer composition of the present invention is relatively high. is there. As a result, the crosslinking reaction of the rubber component ([II] component, [III] component) is likely to proceed rapidly, and may not be sufficiently kneaded with the aliphatic polyamide [I], resulting in insufficient dispersion. Therefore, the physical properties of the polyamide-based thermoplastic elastomer composition may be significantly reduced.
  • the rubber composition for obtaining the polyamide-based thermoplastic elastomer composition is a polyamide other than the above-mentioned aliphatic polyamide [I] (hereinafter also referred to as “other polyamide”) within a range not impairing the effects of the present invention. May further be included.
  • other polyamides include polyamide 11, polyamide 12, aromatic polyamide and the like.
  • the polyamide-based thermoplastic elastomer composition may include one or more of these other polyamides.
  • the polyamide-based thermoplastic elastomer composition of the present invention comprises the above-mentioned aliphatic polyamide [I], ethylene / ⁇ -olefin / non-conjugated polyene copolymer rubber [II], Dynamically crosslinking at least a part of a rubber composition containing an olefin polymer [III], a phenol resin crosslinking agent [IV], and a zinc compound as a crosslinking assistant [V], specifically It can be obtained by crosslinking in a melt flow state (dynamic state).
  • Such a dynamic cross-linking reaction is usually performed by supplying the above-described composition to a melt-kneading apparatus, heating to a predetermined temperature, and melt-kneading.
  • the [I] component, [II] component, [III] component, [IV] component and [V] component may be kneaded simultaneously; [I] component, [II] component, [III] After kneading the component and the [V] component, the [IV] component may be added and further kneaded.
  • melt-kneading apparatus for example, a twin screw extruder, a single screw extruder, a kneader, a Banbury mixer, or the like can be used. Among these, a twin screw extruder is preferable from the viewpoint of good shearing force and continuous productivity.
  • the melt kneading temperature is usually 200 to 320 ° C.
  • the melt kneading time is usually 0.5 to 30 minutes.
  • the ethylene / ⁇ -olefin / non-conjugated polyene copolymer rubber [II] is crosslinked in the polyamide-based thermoplastic elastomer composition.
  • the polyamide-based thermoplastic elastomer composition includes an aliphatic polyamide [I], a copolymer rubber [II] crosslinked with a phenol resin-based crosslinking agent [IV], and a functional group structural unit of 0.3 to 5 Olefin polymer [III] containing 0.0 mass% and crosslinking aid [V] may be included.
  • a sea-island structure is formed.
  • the sea phase (matrix phase) containing aliphatic polyamide [I] as a main component can exhibit thermoplasticity.
  • the island phase (dispersed phase) mainly composed of the crosslinked copolymer rubber [II] and the olefin polymer [III] can exhibit rubber elasticity.
  • the average particle size of the island phase (dispersed phase) is relatively small and finely dispersed.
  • the polyamide-based thermoplastic elastomer composition comprises a matrix component (sea phase) mainly composed of aliphatic polyamide [I], finely dispersed in the matrix phase (sea phase), and a copolymer rubber [ II] and a dispersed phase (island phase) mainly composed of olefin polymer [III].
  • the average particle size of the dispersed phase is preferably from 0.3 ⁇ m to 5.0 ⁇ m, more preferably from 0.3 ⁇ m to 2.5 ⁇ m, and from 0.3 ⁇ m to 1.5 ⁇ m. More preferably it is.
  • the area of the dispersed phase having a particle size of 3.0 ⁇ m or more is measured, and the ratio of the cumulative area of the dispersed phase to the entire area of the analyzed region is 10% or less. Is preferably 8% or less, more preferably 6% or less, and particularly preferably 3% or less.
  • the oil resistance tends to be particularly high.
  • the maintenance temperature of the 10 MPa storage elastic modulus is further lowered Easier to control, especially when the ratio of the total cross-sectional area is 0%, that is, when there is no large dispersed phase group of 3.0 ⁇ m or more, it has flexibility at room temperature and maintains elastic modulus even at high temperatures However, it tends to be excellent in both high oil resistance.
  • the TEM measurement can be performed by the following method. First, a polyamide-based thermoplastic elastomer composition is extruded to prepare a test piece. The prepared test piece is ground with a microtome or the like, and an arbitrary cross section of about 45 ⁇ m ⁇ 75 ⁇ m or more is obtained by using a transmission electron microscope (measuring device: H-7650, manufactured by Hitachi High-Technology Corporation) 3000 times. Expand to analyze. The analysis is performed by binarization processing using image analysis software ImageJ.
  • FIG. 1A and 1B are TEM photographs of a cut surface of a polyamide-based thermoplastic elastomer composition according to an embodiment of the present invention.
  • FIG. 1A is a TEM photograph observed at a magnification of 3000
  • FIG. 1B is a TEM photograph observed at a magnification of 10,000.
  • a matrix phase composed mainly of an aliphatic polyamide [I] (a part having a whiter color than the other part of FIG. 1, a matrix component) and an ethylene / ⁇ -olefin / non-conjugated polyene copolymer
  • the occupancy areas of the dispersed phase (the part having a darker color than the other part of FIG. 1 and the dispersed component) mainly comprising rubber [II] and olefin polymer [III] are specified. Image analysis is performed for each of the specified dispersed phase occupation areas, and the area is calculated.
  • the diameter of the perfect circle of the area equal to the area is calculated
  • the average particle diameter in this embodiment is measured for a dispersed phase having a particle diameter of 0.3 ⁇ m or more (dispersed phase group (referred to as A)).
  • the phase ratio (dispersed phase group (B)) occupies less than 1% of the area ratio in the total dispersed phase (or all particles), and includes a large number of independently existing external additive particle groups. This is because it is considered that there is almost no influence on the oil resistance of the embodiment.
  • a sheet-like or tube-like molded body obtained from such a polyamide-based thermoplastic elastomer composition includes a matrix phase mainly composed of aliphatic polyamide [I], copolymer rubber [II], and olefin-based polymer. Morphology having [III] as a main component (a cross-linked rubber component as a main component) and a dispersed phase is controlled, and has a phase structure in which the dispersed phase is finely dispersed in the matrix phase. Thereby, while having flexibility at room temperature, there is little decrease in elastic modulus even at high temperatures and high oil resistance.
  • the control of the morphology can be adjusted mainly by the viscosity balance between the aliphatic polyamide [I] and the copolymer rubber [II], the crosslinking reaction rate, and the like.
  • the viscosity balance between the aliphatic polyamide [I] and the copolymer rubber [II] is, for example, the MFR of the aliphatic polyamide [I] or the copolymer rubber [II] and the aliphatic polyamide [I]. It can be adjusted by the mass ratio or the like.
  • the crosslinking reaction rate can be adjusted by, for example, the type of the crosslinking agent [IV] and the type and amount of the crosslinking assistant [V].
  • the MFR of the aliphatic polyamide [I], and the mass ratio of the copolymer rubber [II] should not be too large. It is preferable to select a halogenated phenol resin as the cross-linking agent [IV], and it is preferable to select zinc oxide having a high reaction rate as the cross-linking auxiliary [V], and the content of the cross-linking auxiliary [V] is It is preferable to adjust to an appropriate range.
  • Molded products and their uses Molded products obtained by molding the above-mentioned polyamide-based thermoplastic elastomer composition can be used in various applications, such as automobile parts, building material parts, sports equipment, medical instrument parts, industrial parts, etc. It is useful as a molded article for various uses.
  • the molded body obtained from the above-mentioned polyamide-based thermoplastic elastomer composition is capable of suppressing a decrease in elastic modulus in a high temperature range, maintaining a moderate viscosity when the resin is melted, and having high oil resistance. Therefore, it is suitable for a hollow molded body (industrial tube) and a molded body obtained by a specific molding method (blow molding, two-color molding, etc.).
  • the industrial tube includes at least a layer containing the above-described polyamide-based thermoplastic elastomer composition.
  • An industrial tube means a tube used in particular for industrial equipment. Examples of industrial tubes include tubes through which fluids (fuel, solvent, chemicals, gas, etc.) necessary for industrial equipment such as vehicles (for example, automobiles), pneumatic / hydraulic equipment, painting equipment, and medical equipment are passed. In particular, it is very useful in applications such as vehicle piping tubes (for example, fuel system tubes, intake system tubes, cooling system tubes), pneumatic tubes, hydraulic tubes, paint spray tubes, medical tubes (for example, catheters).
  • Molded articles obtained by injection molding, blow molding or two-color molding can be widely used in various applications (for example, automobiles and electrical products) that require such physical properties.
  • molded products obtained by injection molding, blow molding or two-color molding include constant velocity joint boots, boot parts such as dust covers, oil seals, gaskets, packing, dust covers, valves, stoppers, precision seal rubber, weather strips Etc.
  • a constant velocity joint boot for automobiles is preferable.
  • a method for producing a constant velocity joint boot for automobiles a known method such as an injection molding method or a blow molding method (an injection blow molding method or a press blow molding method) can be employed.
  • the molded body obtained by molding the above-mentioned polyamide-based thermoplastic elastomer composition is a resin for automobile-related parts such as intake / exhaust system parts, constant velocity joint boots for automobiles, dust covers, various boot parts, etc. It is particularly useful as a material for the flexible boot made, preferably as an intake / exhaust system part.
  • intake / exhaust system parts examples include air hoses, air ducts, turbo ducts, turbo hoses, intake manifolds, and exhaust manifolds.
  • polymerization was started by injecting 0.9 mmol of triisobutylaluminum and 2.0 ml of the above catalyst solution (0.0005 mmol as Zr) with ethylene.
  • the total pressure was kept at 8.0 kg / cm 2 -G by continuously supplying ethylene, and polymerization was carried out at 80 ° C. for 30 minutes.
  • a small amount of ethanol was introduced into the system to stop the polymerization, and then unreacted ethylene was purged.
  • the obtained solution was put into a large excess of methanol to precipitate a white solid.
  • the white solid was collected by filtration and dried overnight under reduced pressure to obtain a white solid ethylene / 1-butene copolymer.
  • the ethylene / 1-butene copolymer has a density of 0.862 g / cm 3 , MFR (ASTM D1238 standard, 190 ° C., 2160 g load) is 0.5 g / 10 min, and 1-butene structural unit content is 4 Mol%.
  • 100 parts by mass of this ethylene / 1-butene copolymer was mixed with 1.0 part by mass of maleic anhydride and 0.04 parts by mass of peroxide (trade name Perhexin 25B, manufactured by NOF Corporation). The obtained mixture was melt-grafted with a single screw extruder set at 230 ° C. to obtain the maleic anhydride-modified ethylene / 1-butene copolymer.
  • the maleic anhydride-modified ethylene / 1-butene copolymer obtained had a maleic anhydride graft modification amount (functional group structural unit content) of 0.97% by mass, and the intrinsic viscosity measured in a 135 ° C. decalin solution [ ⁇ ] was 1.98 dl / g.
  • the content of the functional group structural unit was measured by the 13 CNMR method described above, and the intrinsic viscosity [ ⁇ ] was measured by the method described above.
  • Examples 2 to 12 Reference Example 1, Comparative Examples 1 to 10> Except having changed into the composition as shown in Table 1 or 2, the pellet of the polyamide-type thermoplastic elastomer composition was obtained like Example 1 except having changed.
  • the storage elastic modulus E ′, oil resistance, mass change rate in the heat loss test, and TEM measurement of the test pieces formed using the pellets obtained in Examples 1 to 12, Reference Example 1 and Comparative Examples 1 to 10 were measured. Each was measured by the following method.
  • the oil resistance was evaluated in accordance with the whole surface immersion test of JIS K6258. Specifically, the obtained pellets were put into a press machine and subjected to hot pressing under the condition of pressing temperature: melting point + 25 ° C. to obtain a square plate (test piece) of 30 mm ⁇ 30 mm ⁇ thickness 2 mm. The obtained film was immersed in IRM903 oil maintained at 120 ° C. or 175 ° C. for 72 hours in accordance with JIS K6258, and then mass change rate (mass%) was determined.
  • Mass change rate (M0 ⁇ M1) / M0 ⁇ 100
  • the molded products obtained from the polyamide-based thermoplastic elastomer compositions of Examples 1 to 12 are the polyamide-based thermoplastic elastomers of Comparative Examples 1 and 2 and the polyamide composition of Comparative Example 3, It can be seen that the maintenance temperature of the 10 MPa storage modulus is higher and the oil resistance is higher than the molded bodies obtained from the polyamides of Comparative Examples 4 and 10. This is considered to be due to the fact that in the molded bodies of Examples 1 to 12, a specific sea-island structure was formed by dynamic crosslinking, and the copolymer rubber [III] constituting the dispersed phase was crosslinked. . Moreover, the polyamide-type thermoplastic elastomer composition of Comparative Example 5 was unable to produce pellets and could not be measured.
  • molded articles obtained from the polyamide thermoplastic elastomer compositions of Examples 1 to 12 containing aliphatic polyamide [I] were obtained from the polyamide thermoplastic elastomer of Reference Example 1 containing semiaromatic polyamide R-4. It can be seen that the maintenance temperature of the 10 MPa storage modulus is higher and the oil resistance is higher than that of the molded article. This is because the aliphatic polyamide [I] constituting the matrix phase has a high degree of crystallinity, and the rigidity (storage modulus) at high temperature is increased, whereby the copolymer rubber [II] component is swollen by oil. This is thought to be due to the suppression of the above.
  • the molded product obtained from the polyamide-based thermoplastic elastomer composition of Example 3 is 10 MPa storage elastic than the molded product obtained from the polyamide-based thermoplastic elastomer composition of Comparative Example 9 using an unmodified olefin polymer. It can be seen that the temperature maintenance rate is high and the oil resistance is also high. Further, the molded product obtained from the polyamide-based thermoplastic elastomer composition of Example 3 is 10 MPa more than the molded product obtained from the polyamide-based thermoplastic elastomer composition of Comparative Example 8 that does not contain the modified olefin polymer [III]. It can be seen that the storage elastic modulus has a high maintenance temperature and high oil resistance.
  • the mass ratio ([II] / [I]) of the copolymer rubber [II] and the aliphatic polyamide [I] is 40 or less / 60 or more, that is, the mass ratio of the copolymer rubber [II]. It can be seen that the particle diameter of the obtained dispersed phase becomes small and the fine dispersion is facilitated when the ratio is below a certain value. Thus, it can be seen that the maintenance temperature of the 10 MPa storage modulus and the oil resistance can be further increased (contrast with Examples 3 to 5).
  • the storage elastic modulus of 10 MPa It can be seen that the maintenance temperature and oil resistance can be further improved. This is because, by setting the content of the crosslinking aid [V] within the above range, the crosslinking rate is moderately slowed, and the dynamic crosslinking proceeds after the copolymer rubber [II] is dispersed. This is probably because a specific sea-island structure with good dispersion of the rubber [II] is easily formed (contrast with Examples 3, 9 and 10 and Comparative Examples 6 and 7).
  • the crosslinking aid [V] preferably zinc oxide
  • the oil resistance is further improved by setting the cumulative cross-sectional area of the dispersed phase having a particle size of 3.0 ⁇ m or more to 10% or less with respect to the entire analyzed area (Examples 1 to 12, Reference Example 1 and Contrast with Comparative Examples 1 to 10)
  • the cumulative cross-sectional area of the dispersed phase having a particle size of 3.0 ⁇ m or more is 5% or less, further 3% or less
  • the maintenance temperature of the 10 MPa storage elastic modulus is further increased.
  • the average particle size of the dispersed phase is 1.5 ⁇ m or less, it can be seen that the maintenance temperature of 10 MPa storage modulus and the oil resistance are further increased (contrast of Examples 3 to 5, comparison of Examples 9 to 12). .
  • thermoplastic elastomer composition capable of providing a molded article having flexibility at room temperature, maintaining an elastic modulus even at high temperatures, and having high oil resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明のポリアミド系熱可塑性エラストマー組成物は、脂肪族ジカルボン酸構造単位を80モル%以上含むジカルボン酸構造単位と、脂肪族ジアミン構造単位を80モル%以上含むジアミン構造単位とからなる脂肪族ポリアミド、又はアミドカルボン酸構造単位若しくはラクタム構造単位からなる脂肪族ポリアミドであって、融点(Tm)が200~290℃である脂肪族ポリアミド[I]と、エチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]と、官能基構造単位を0.3~5.0質量%含むオレフィン系重合体[III]と、フェノール樹脂系架橋剤[IV]と、架橋助剤[V]として、前記脂肪族ポリアミド[I]に対する質量比[V]/[I]が0.0001~0.02である亜鉛化合物とを含むゴム組成物の架橋物である。

Description

ポリアミド系熱可塑性エラストマー組成物、成形体及び中空成形体
 本発明は、ポリアミド系熱可塑性エラストマー組成物、成形体及び中空成形体に関する。
 熱可塑性エラストマーは、加硫ゴムとは異なり加硫工程が不要であり、通常の熱可塑性樹脂の成形機で加工が可能という利点から、自動車部品、機械部品等の様々な用途への適用が検討されている。特にポリエステル系熱可塑性エラストマーは、耐久性、耐油性、耐熱性に優れ、しかも高弾性率ゆえに部材の薄肉化が可能で、軽量化や低コスト化のニーズにも合致することから、耐油ゴム代替材料として検討されている。
 例えば、蛇腹形状を有する樹脂製フレキシブルブーツ類の材料としては、従来はクロロプレンゴム材料が主に使用されていたが、近年では、製造工程の簡素化が可能であり、耐熱性が優れ、さらにブーツ材としての耐久寿命が長いという利点から、ポリエステル系熱可塑性エラストマーへの代替が進められている(例えば特許文献1)。
 また、ポリアミド6、ポリアミド6/6等に代表されるポリアミドは、成形加工性、機械物性、耐薬品性等の物性に優れることから、自動車用、産業資材用、衣料用、電気・電子用、工業用等の各種分野の部品材料として広く用いられている。
 例えば、産業用チューブとしては、従来は金属製チューブが主流であったが、近年では重量の軽減のため樹脂化が進行している。例えば、ポリアミド11やポリアミド12は、柔軟性に優れることから、自動車用燃料配管等のチューブやホース成形品を始めとして、多く用いられつつある。また、ポリアミド12の柔軟性や低温での衝撃性をさらに高める方法として、特許文献2には、ポリアミド12と、可塑剤と、変性ポリオレフィンとからなる組成物が提案されている。
特開2001-173672号公報 特開2000-248174号公報
 しかしながら、特許文献1に示されるようなポリエステル系熱可塑性エラストマーは、高温下では柔軟化し、弾性率が低下することから、その成形体は高温下で強度や形状を保持できないという問題があった。
 また、特許文献2に示されるような脂肪族ポリアミドと、可塑剤と、変性ポリオレフィンとを含む樹脂組成物の成形体は、室温での柔軟性は有しているものの、高温下では弾性率が低下しやすいという問題があった。そのため、高温下で強度や形状を保持できないだけでなく、高温に加熱されたフルード(例えば、クーラント液[以下、LLCと略す場合がある]やオートマチックトランスミッションフルード[以下、ATFと略す場合がある]、ブレーキフルード[以下、BFと略す場合がある]等)中で使用した場合、その耐油性が十分でなく、経時的に劣化して強度が著しく低下しやすいという問題があった。
 本発明は、上記事情に鑑みてなされたものであり、室温での柔軟性を有しつつ、高温下でも弾性率を維持し、且つ高い耐油性を有する成形体を付与しうるポリアミド系熱可塑性エラストマー組成物を提供することを目的とする。
 [1] 炭素原子数2~14の脂肪族ジカルボン酸構造単位を全ジカルボン酸構造単位に対して80モル%以上含むジカルボン酸構造単位と、炭素原子数4~12の脂肪族ジアミン構造単位を全ジアミン構造単位に対して80モル%以上含むジアミン構造単位とからなる脂肪族ポリアミド、又はアミドカルボン酸構造単位若しくはラクタム構造単位からなる脂肪族ポリアミドであって、示差走査熱量測定(DSC)で測定される融点(Tm)が200~290℃である脂肪族ポリアミド[I]と、エチレン構造単位[a]と、炭素原子数3~20のα-オレフィン構造単位[b]と、メタロセン系触媒により重合可能な炭素-炭素二重結合を1分子内に1個以上有する非共役ポリエン構造単位[c]とを含むエチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]と、官能基構造単位を0.3~5.0質量%含むオレフィン系重合体[III]と、フェノール樹脂系架橋剤[IV]と、架橋助剤[V]として、前記脂肪族ポリアミド[I]に対する質量比[V]/[I]が0.0001~0.02である亜鉛化合物とを含むゴム組成物の架橋物である、ポリアミド系熱可塑性エラストマー組成物。
 [2] 前記脂肪族ポリアミド[I]が、ポリアミド6、ポリアミド6/6、ポリアミド6/10、ポリアミド6/12、ポリアミド9/2及びポリアミド10/10からなる群より選ばれる一以上である、[1]に記載のポリアミド系熱可塑性エラストマー組成物。
 [3] 前記脂肪族ポリアミド[I]が、ポリアミド6、ポリアミド6/6及びポリアミド6/10からなる群より選ばれる少なくとも一以上である、[2]に記載のポリアミド系熱可塑性エラストマー組成物。
 [4] 脂肪族ポリアミド[I]の、ISO 1133による290℃、2.16kg荷重におけるメルトフローレート(MFR)は、0.1~100g/10分である、[1]~[3]のいずれかに記載のポリアミド系熱可塑性エラストマー組成物。
 [5] 前記オレフィン系重合体[III]の官能基構造単位が、カルボン酸基、エステル基、エーテル基、アルデヒド基及びケトン基からなる群より選ばれる一以上の官能基由来の構造単位を含む、[1]~[4]のいずれかに記載のポリアミド系熱可塑性エラストマー組成物。
 [6] 前記オレフィン系重合体[III]の官能基構造単位が、無水マレイン酸構造単位である、[5]に記載のポリアミド系熱可塑性エラストマー組成物。
 [7] 前記フェノール樹脂系架橋剤[IV]が、ハロゲン化フェノール樹脂系架橋剤を含む、[1]~[6]のいずれかに記載のポリアミド系熱可塑性エラストマー組成物。
 [8] 前記亜鉛化合物が、酸化亜鉛、炭酸亜鉛、カルボン酸亜鉛及び水酸化亜鉛からなる群より選ばれる一以上である、[1]~[7]のいずれかに記載のポリアミド系熱可塑性エラストマー組成物。
 [9] 前記亜鉛化合物が、酸化亜鉛である、[8]に記載のポリアミド系熱可塑性エラストマー組成物。
 [10] [I]、[II]、[III]及び[IV]の合計100質量%に対して、前記脂肪族ポリアミド[I]を10~60質量%と、前記エチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]を33~86質量%と、前記オレフィン系重合体[III]を0.1~30質量%と、前記フェノール樹脂系架橋剤[IV]を1~10質量%とを含む、[1]~[9]のいずれかに記載のポリアミド系熱可塑性エラストマー組成物。
 [11] 前記脂肪族ポリアミド[I]を含むマトリクス相と、前記マトリクス相に分散し、架橋された前記エチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]と前記オレフィン系重合体[III]とを含む分散相とを有する、[1]~[10]に記載のポリアミド系熱可塑性エラストマー組成物。
 [12] 透過型電子顕微鏡像により解析される前記分散相の平均粒子径が、0.3~5.0μmである、[11]に記載のポリアミド系熱可塑性エラストマー組成物。
 [13] 透過型電子顕微鏡像により解析される粒径3.0μm以上の前記分散相の面積の合計量が、解析領域の全面積に対して10%以下である、[11]又は[12]に記載のポリアミド系熱可塑性エラストマー組成物。
 [14] [1]~[13]のいずれかに記載のポリアミド系熱可塑性エラストマー組成物から得られる、成形体。
 [15] [1]~[13]のいずれかに記載のポリアミド系熱可塑性エラストマー組成物から得られる、中空成形体。
 [16] 前記中空成形体は、自動車関連部品である、[15]に記載の中空成形体。
 [17] 前記自動車関連部品は、吸気・排気系部品である、[16]に記載の中空成形体。
 [18] 前記吸気・排気系部品は、エアホース、エアダクト、ターボダクト、ターボホース、インテークマニホールド、又はエグゾ-ストマニホールドである、[17]に記載の中空成形体。
 本発明によれば、室温での柔軟性を有しつつ、高温下でも弾性率を維持し、且つ高い耐油性を有する成形体を付与しうるポリアミド系熱可塑性エラストマー組成物を提供することができる。
図1A及びBは、本発明の一実施形態のポリアミド系熱可塑性エラストマー組成物の切断面のTEM写真である。
 本発明者らは、脂肪族ポリアミド[I]と、共重合体ゴム[II]と、官能基構造単位を0.3~5.0質量%含むオレフィン系重合体[III]と、フェノール樹脂系架橋剤[IV]と、架橋助剤[V]として所定量の亜鉛化合物とを含むゴム組成物を架橋(動的架橋)して得られるポリアミド系熱可塑性エラストマー組成物は、室温での柔軟性を有しつつも、高温下でも弾性率を維持し(高温下での弾性率の低下を少なくし)、且つ高い耐油性を有する成形体を付与しうることを見出した。
 この理由は明らかではないが、以下のように推測される。上記ゴム組成物を動的架橋して得られるポリアミド系熱可塑性エラストマー組成物は、脂肪族ポリアミド[I]を主成分とするマトリクス相(海相)と、架橋された共重合体ゴム[II]とオレフィン系重合体[III]とを主成分とする分散相(島相)とを有し、且つ分散相の平均径が比較的小さく、微分散している。そのようなミクロ構造を有するポリアミド系熱可塑性エラストマー組成物は、機械的強度が高められているので、高温下でも弾性率を維持しやすい。また、分散相を構成する共重合体ゴム[II]が架橋されているので、油による膨潤も生じにくく、耐油性も高まりやすい。
 さらに、ポリアミドとして脂肪族ポリアミド[I](好ましくは全脂肪族ポリアミド)を用いることで、例えば半芳香族ポリアミドを用いるよりもマトリクス相の結晶化度を高めうる。その結果、マトリクス相の高温下での弾性率を一層維持しやすいだけでなく、分散相が固定されやすくなるので、分散相を構成する共重合体ゴム[II]の油による膨潤も一層低減しうる。それにより、高温下でも弾性率を一層維持しやすく、且つ耐油性も一層高まると考えられる。そのような成形体は、高温下での酸性媒体中での加水分解に対する耐性(耐酸、耐加水分解性)にも優れるという効果も有しうる。
 そのようなポリアミド系熱可塑性エラストマー組成物から得られる成形体は、例えば自動車関連部品等の中空成形体として好適である。本発明はこのような知見に基づいてなされたものである。
 1.ポリアミド系熱可塑性エラストマー組成物
 本発明のポリアミド系熱可塑性エラストマー組成物は、脂肪族ポリアミド[I]と、エチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]と、オレフィン系重合体[III]と、フェノール樹脂系架橋剤[IV]と、架橋助剤[V]としての亜鉛化合物とを含むゴム組成物の架橋物(動的架橋物)である。架橋物とは、部分架橋物又は完全架橋物である。
 1-1.脂肪族ポリアミド[I]
 脂肪族ポリアミド[I]は、「アミド結合[-NH-C(=O)-]を含み、且つ芳香環を含まない構造単位」(芳香環を含まないアミド結合含有構造単位)を主成分として含む。ここで、「主成分として含む」とは、脂肪族ポリアミド[I]を構成するアミド結合含有構造単位の全モル数に対して、芳香環を含まないアミド結合含有構造単位の含有比率が80モル%以上、好ましくは90~100モル%であることをいう。
 脂肪族ポリアミド[I]は、ジカルボン酸とジアミンを重縮合反応させて得られるものであってもよいし、アミノカルボン酸を重縮合反応させたものであってもよいし、ラクタムを開環重合反応させて得られるものであってもよい。即ち、脂肪族ポリアミド[I]は、ジカルボン酸構造単位とジアミン構造単位とで構成されるアミド結合含有構造単位;アミノカルボン酸構造単位;及びラクタム構造単位のうち少なくとも一種で構成される。
 (ジカルボン酸構造単位/ジアミン構造単位)
 脂肪族ポリアミド[I]を構成するジカルボン酸構造単位は、脂肪族ジカルボン酸構造単位を含む。脂肪族ジカルボン酸は、好ましくは炭素原子数2~14、より好ましくは炭素原子数4~14、さらに好ましくは炭素原子数6~12の脂肪族ジカルボン酸である。脂肪族ジカルボン酸の例には、蓚酸(C2)、アジピン酸(C6)、ピメリン酸(C7)、スベリン酸(C8)、アゼライン酸(C9)、セバシン酸(C10)、ドデカン二酸(C12)及びテトラデカン二酸(C14)等が含まれる。中でも、アジピン酸(C6)、ドデカン二酸(C12)が好ましい。脂肪族ジカルボン酸は、一種類であってもよいし、二種類以上を組み合わせてもよい。
 脂肪族ジカルボン酸構造単位の含有比率は、脂肪族ポリアミド[I]を構成するジカルボン酸構造単位の全モル数に対して80モル%以上であることが好ましい。脂肪族ジカルボン酸構造単位の含有比率が80モル%以上であると、脂肪族ポリアミド[I]の結晶化度が高まりやすく、成形体に十分な耐熱性や耐油性を付与しうる。脂肪族ジカルボン酸構造単位の含有比率は、ジカルボン酸構造単位の全モル数に対して85~100モル%であることがより好ましく、90~100モル%であることがさらに好ましい。
 脂肪族ポリアミド[I]を構成するジカルボン酸構造単位は、本発明の効果を損なわない範囲で、少量の脂環族ジカルボン酸構造単位や芳香族ジカルボン酸構造単位をさらに含んでもよい。
 脂肪族ポリアミド[I]を構成するジアミン構造単位は、脂肪族ジアミン構造単位を含む。脂肪族ジアミンは、好ましくは炭素原子数4~12、より好ましくは炭素原子数6~10のα,ω-直鎖脂肪族ジアミンである。脂肪族ジアミンの例には、テトラメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等が含まれる。中でも、テトラメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミンが好ましく、テトラメチレンジアミン及びヘキサメチレンジアミンがより好ましい。脂肪族ジアミンは、一種類であってもよいし、二種類以上を組み合わせてもよい。
 脂肪族ジアミン構造単位の含有比率は、脂肪族ポリアミド[I]を構成するジアミン構造単位の全モル数に対して80モル%以上であることが好ましい。脂肪族ジアミン構造単位の含有比率が80モル%以上であると、脂肪族ポリアミド[I]の結晶化度が高まりやすく、成形体に十分な耐熱性や耐油性を付与しうる。脂肪族ジアミン構造単位の含有比率は、ジアミン構造単位の全モル数に対して85~100モル%であることがより好ましく、90~100モル%であることがさらに好ましい。
 脂肪族ポリアミド[I]を構成するジアミン構造単位は、本発明の効果を損なわない範囲で、少量の脂環族ジアミン構造単位や芳香族ジアミンをさらに含んでもよい。
 (アミノカルボン酸構造単位)
 脂肪族ポリアミド[I]を構成しうるアミノカルボン酸は、炭素数6~12、好ましくは炭素数6~10のアミノカルボン酸でありうる。そのようなアミノカルボン酸の例には、6-アミノカプロン酸、7-アミノヘプタン酸、11-アミノウンデカン酸、12-アミノドデカン酸等が含まれる。アミノカルボン酸は、一種類だけ用いてもよいし、二種類以上を組み合わせてもよい。
 (ラクタム構造単位)
 脂肪族ポリアミド[I]を構成しうるラクタムは、炭素数6~12、好ましくは炭素数6~10のラクタムでありうる。そのようなラクタムの例には、α-ピロリドン、ε-カプロラクタム、ウンデカンラクタム、ω-ラウロラクタム、ε-エナントラクタム等が含まれる。ラクタムは、一種類だけ用いてもよいし、二種類以上を組み合わせてもよい。
 脂肪族ポリアミド[I]の例には、ポリアミド6、ポリアミド6/6、ポリアミド4/6、ポリアミド6/10、ポリアミド6/12、ポリアミド6/14、ポリアミド6/13、ポリアミド6/15、ポリアミド6/16、ポリアミド9/2、ポリアミド9/10、ポリアミド9/12、ポリアミド9/13、ポリアミド9/14、ポリアミド9/15、ポリアミド6/16、ポリアミド9/36、ポリアミド10/10、ポリアミド10/12、ポリアミド10/13、ポリアミド10/14、ポリアミド12/10、ポリアミド12/12、ポリアミド12/13、ポリアミド12/14が含まれる。
 中でも、良好な耐熱性を有することから、ポリアミド6、ポリアミド6/6、ポリアミド6/10、ポリアミド6/12、ポリアミド9/2及びポリアミド10/10が好ましく、ポリアミド6、ポリアミド6/6及びポリアミド6/10がより好ましい。脂肪族ポリアミド[I]は、一種類であってもよいし、二種類以上を併用してもよい。
 脂肪族ポリアミド[I]は、コンパウンドや成形時の熱安定性の観点から、その少なくとも一部の分子鎖の末端基が末端封止剤により封止されていることが好ましい。特に、溶融安定性、耐熱性、耐加水分解性の点から、分子鎖の末端アミノ基量は、好ましくは0.1~300mmol/kg、より好ましくは5~300mmol/kg、さらに好ましくは5~200mmol/kg、特に好ましくは5~100mmol/kgである。
 末端封止剤としては、ポリアミドの分子末端のアミノ基又はカルボキシル基と反応性を有する単官能性の化合物であれば特に制限はないが、反応性及び封止末端の安定性等の点から、モノカルボン酸又はモノアミンが好ましく、取扱いの容易さ等の点から、モノカルボン酸がより好ましい。その他、酸無水物モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類等も使用できる。
 末端封止剤として使用されるモノカルボン酸は、アミノ基との反応性を有するものであれば特に制限はない。モノカルボン酸の例としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソブチル酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸が挙げられる。これらは2種以上併用することもできる。中でも、反応性、封止末端の安定性、価格等の点から、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、安息香酸がさらに好ましい。
 末端封止剤として使用されるモノアミンは、カルボキシル基との反応性を有するものであれば特に制限はない。モノアミンの例としては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミンが挙げられる。これらは2種以上併用することもできる。中でも、反応性、沸点、封止末端の安定性及び価格等の点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン、アニリンがより好ましい。
 末端アミノ基量は、以下の方法で測定することができる。
 脂肪族ポリアミド[I]の末端アミノ基量は、脂肪族ポリアミド[I]を0.5~0.7gを精秤し、m-クレゾール30mLに溶解させる。そして、指示薬である0.1%チモルブルー/m-クレゾール溶液を1~2滴加えて試料溶液とする。当該試料溶液について、0.02規定のp-トルエンスルホン酸溶液で黄色から青紫色になるまで滴定を実施し、末端アミノ基含量([NH]、単位:μ当量/g)を特定する。
 脂肪族ポリアミド[I]の示差走査熱量測定(DSC)より測定される融点(Tm)は、200~290℃であることが好ましく、220~280℃であることがより好ましい。脂肪族ポリアミド[I]がこのような融点(Tm)を有することにより、成形性を損なうことなく、良好な耐熱性を有する成形体を得ることができる。
 脂肪族ポリアミド[I]の示差走査熱量測定(DSC)より測定される溶融熱量(ΔH)は、45~100mJ/mgであることが好ましい。溶融熱量(ΔH)が45mJ/mg以上であると、成形体が十分な耐油性や耐熱性を有しやすく、100mJ/mg以下であると、成形体が過剰に硬くなる(弾性率が過剰に高くなる)のを抑制しうる。
 脂肪族ポリアミド[I]の融点(Tm)と溶融熱量(ΔH)は、以下の条件で測定することができる。
 DSC(示差走査型熱量測定法)を用いて、ポリアミド[I]を加熱して一旦320℃で5分間保持し、次いで10℃/分の速度で23℃まで降温し、その後10℃/分の速度で昇温する。このときの融解に基づく吸熱ピークの温度を、ポリアミドの融点(Tm)とする。また、得られるカーブの吸熱ピークと吸熱ピーク全体のベースラインとで区切られた面積から、溶融熱量(ΔH)(mJ/mg)を算出する。
 脂肪族ポリアミド[I]の融点や溶融熱量(ΔH)は、例えば脂肪族ポリアミド[I]を構成する単量体組成によって調整できる。脂肪族ポリアミド[I]の融点や溶融熱量(ΔH)を高めるためには、例えば脂肪族ポリアミド[I]を構成するジカルボン酸やジアミン、アミノカルボン酸やラクタムの炭素数を一定以下とすることが好ましい。
 脂肪族ポリアミド[I]の、ISO 1133による290℃、2.16kg荷重におけるメルトフローレート(MFR)は、コンパウンド時の共重合体ゴム[II]との粘度を合わせて微分散化しやすくする観点から、0.1~500g/10分であることが好ましく、0.1~300g/10分、0.1~100g/10分、1~100g/10分であることがより好ましい。特に、共重合体ゴム[II]を主成分とする分散相の粒径を小さくしやすくする観点では、脂肪族ポリアミド[I]のメルトフローレート(MFR)は、一定以下であることが好ましい。
 脂肪族ポリアミド[I]は、前述の通り、溶液中で、ジカルボン酸とジアミンを重縮合反応させるか、アミノカルボン酸を重縮合反応させるか、又はラクタムを開環重合反応させて製造することができる。また、脂肪族ポリアミド[I]は、前述の通り、その少なくとも一部の分子鎖の末端基が末端封止剤により封止されていてもよい。
 脂肪族ポリアミド[I]を製造する際の末端封止剤の使用量は、最終的に得られる脂肪族ポリアミド[I]の相対粘度及び末端基の封止率から決定することが好ましい。具体的な使用量は、用いる末端封止剤の反応性、沸点、反応装置、反応条件等によって異なるが、通常、原料であるジカルボン酸とジアミンの総モル数に対して0.3~10モル%の範囲内としうる。
 脂肪族ポリアミド[I]の含有量は、[I]成分、[II]成分、[III]成分及び[IV]成分の合計に対して10~60質量%であることが好ましい。脂肪族ポリアミド[I]の含有量が10質量%以上であると、脂肪族ポリアミド[I]で構成されるマトリクス相の含有比率が高いので、成形体に十分な耐熱性や耐油性を付与しやすく、60質量%以下であると、成形体の柔軟性が損なわれにくい。脂肪族ポリアミド[I]の含有量は、[I]成分、[II]成分、[III]成分及び[IV]成分の合計に対して20~60質量%であることがより好ましく、25~60質量%であることがさらに好ましい。
 1-2.エチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]
 エチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]は、エチレン構造単位[a]と、炭素原子数3~20のα-オレフィン構造単位[b]と、非共役ポリエン構造単位[c]とを含む共重合体ゴムである。
 (エチレン構造単位[a])
 エチレン構造単位[a]の含有割合は、共重合体ゴム[II]を構成する全構造単位に対して50~89質量%であることが好ましく、55~83質量%であることがより好ましい。
 (炭素原子数3~20のα-オレフィン構造単位[b])
 共重合体ゴム[II]を構成する炭素原子数3~20のα-オレフィンの例には、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-エイコセン等が含まれる。中でも、プロピレン、1-ブテン、1-ヘキセン、1-オクテン等の炭素原子数3~8のα-オレフィンが好ましい。α-オレフィンは、一種類であってもよいし、二種類以上を組み合わせてもよい。これらのα-オレフィン[b]は、原料コストが比較的安価で共重合性に優れると共に、共重合体ゴム[II]に優れた機械的性質と良好な柔軟性を付与するので好ましい。
 炭素原子数3~20のα-オレフィン構造単位[b]の含有割合は、共重合体ゴム[II]を構成する全構造単位に対して10~49質量%であることが好ましく、15~43質量%であることがより好ましい。
 (非共役ポリエン構造単位[c])
 共重合体ゴム[II]を構成する非共役ポリエンは、メタロセン系触媒により重合可能な炭素・炭素二重結合を1分子内に1個以上有する非共役ポリエンであり、その例には、脂肪族ポリエンや脂環族ポリエンが含まれる。
 脂肪族ポリエンの例には、1,4-ヘキサジエン、1,5-ヘプタジエン、1,6-オクタジエン、1,7-ノナジエン、1,8-デカジエン、1,12-テトラデカジエン、3-メチル-1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、4-エチル-1,4-ヘキサジエン、3,3-ジメチル-1,4-ヘキサジエン、5-メチル-1,4-ヘプタジエン、5-エチル-1,4-ヘプタジエン、5-メチル-1,5-ヘプタジエン、6-メチル-1,5-ヘプタジエン、5-エチル-1,5-ヘプタジエン、4-メチル-1,4-オクタジエン、5-メチル-1,4-オクタジエン、4-エチル-1,4-オクタジエン、5-エチル-1,4-オクタジエン、5-メチル-1,5-オクタジエン、6-メチル-1,5-オクタジエン、5-エチル-1,5-オクタジエン、6-エチル-1,5-オクタジエン、6-メチル-1,6-オクタジエン、7-メチル-1,6-オクタジエン、6-エチル-1,6-オクタジエン、6-プロピル-1,6-オクタジエン、6-ブチル-1,6-オクタジエン、4-メチル-1,4-ノナジエン、5-メチル-1,4-ノナジエン、4-エチル-1,4-ノナジエン、5-エチル-1,4-ノナジエン、5-メチル-1,5-ノナジエン、6-メチル-1,5-ノナジエン、5-エチル-1,5-ノナジエン、6-エチル-1,5-ノナジエン、6-メチル-1,6-ノナジエン、7-メチル-1,6-ノナジエン、6-エチル-1,6-ノナジエン、7-エチル-1,6-ノナジエン、7-メチル-1,7-ノナジエン、8-メチル-1,7-ノナジエン、7-エチル-1,7-ノナジエン、5-メチル-1,4-デカジエン、5-エチル-1,4-デカジエン、5-メチル-1,5-デカジエン、6-メチル-1,5-デカジエン、5-エチル-1,5-デカジエン、6-エチル-1,5-デカジエン、6-メチル-1,6-デカジエン、6-エチル-1,6-デカジエン、7-メチル-1,6-デカジエン、7-エチル-1,6-デカジエン、7-メチル-1,7-デカジエン、8-メチル-1,7-デカジエン、7-エチル-1,7-デカジエン、8-エチル-1,7-デカジエン、8-メチル-1,8-デカジエン、9-メチル-1,8-デカジエン、8-エチル-1,8-デカジエン、6-メチル-1,6-ウンデカジエン、9-メチル-1,8-ウンデカジエン、さらには1,7-オクタジエン、1,9-デカジエン等のα,ω-ジエンが含まれる。中でも、7-メチル-1,6-オクタジエンが好ましい。
 脂環族ポリエンの例には、5-エチリデン-2-ノルボルネン(ENB)、5-プロピリデン-2-ノルボルネン、5-ブチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン(VNB);5-アリル-2-ノルボルネン等の5-アルケニル-2-ノルボルネン;2,5-ノルボルナジエン、ジシクロペンタジエン(DCPD)、ノルボルナジエン、テトラシクロ[4,4,0,12.5,17.10]デカ-3,8-ジエン、2-メチル-2,5-ノルボルナジエン、2-エチル-2,5-ノルボルナジエン等が含まれる。中でも、5-エチリデン-2-ノルボルネン(ENB)が好ましい。非共役ポリエン構造単位[c]は、一種類であってもよいし、二種類以上を併用してもよい。
 非共役ポリエン構造単位[c]の含有割合は、共重合体ゴム[II]を構成する全構造単位に対して1~20質量%であることが好ましく、2~15質量%であることがより好ましい。
 共重合体ゴム[II]の極限粘度[η]は、0.5~5.0dl/gであることが好ましく、1.0~4.5dl/gであることがより好ましく、1.5~4.0dl/gであることが特に好ましい。この極限粘度[η]は、温度135℃、デカリン中で測定した値であり、ASTM D 1601に従って測定することにより求めることができる。
 共重合体ゴム[II]の含有量は、[I]成分、[II]成分、[III]成分及び[IV]成分の合計に対して33~86質量%であることが好ましい。共重合体ゴム[II]の含有量が33質量%以上であると、成形体に十分な柔軟性を付与しやすく、86質量%以下であると、成形体の耐熱性や耐油性が損なわれにくい。共重合体ゴム[II]の含有量は、[I]成分、[II]成分、[III]成分及び[IV]成分の合計に対して33~55質量%であることがより好ましく、共重合体ゴム[II]を含む分散相をより微分散させやすくし、高温下での貯蔵弾性率の低下を一層抑制し、かつ耐油性を一層高めやすくする観点では、33~50質量%であることがさらに好ましく、33~40質量%であることが特に好ましい。
 共重合体ゴム[II]と脂肪族ポリアミド[I]の質量比([II]/[I])は、コンパウンド時の両者の粘度を合わせて微分散化させやすくし、良好な10MPa貯蔵弾性率の維持温度と耐油性を得やすくする観点では、例えば20/80~70/30であることが好ましく、30/70~60/40であることがより好ましい。共重合体ゴム[II]の質量比が一定以上であると、成形体に十分な柔軟性を付与しやすく、共重合体ゴム[II]の質量比が一定以下であると、分散相の粒径を小さくしやすく、10MPa貯蔵弾性率の維持温度や耐油性が損なわれにくい。
 1-3.オレフィン系重合体[III]
 オレフィン系重合体[III]は、官能基構造単位を0.3~5.0質量%含むオレフィン系重合体である。官能基構造単位とは、官能基を有する化合物又は官能基を有するモノマー由来の構造単位である。官能基構造単位における官能基の例には、カルボン酸基(酸無水物基を含む)、エステル基、エーテル基、アルデヒド基、及びケトン基等が含まれる。そのような官能基構造単位を有するオレフィン系重合体[III]は、官能基を有することにより脂肪族ポリアミド[I]との親和性を有し、且つオレフィン系骨格を有することにより共重合体ゴム[III]との親和性を有することから、両者の相溶性を高めうる。
 オレフィン系重合体[III]は、官能基を有する化合物を反応させることによりポリオレフィン分子鎖に官能基を導入した変性ポリオレフィン[III]-1、オレフィンモノマーと官能基を有するモノマーを共重合させて得られる官能基含有オレフィン系共重合体[III]-2が含まれる。
 変性ポリオレフィン[III]-1を構成するポリオレフィンの例には、炭素数2~18のオレフィンの単独重合体又は共重合体であり、その例には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン・α-オレフィン共重合体が含まれる。中でも、エチレン・α-オレフィン共重合体が好ましい。エチレン・α-オレフィン共重合体におけるα-オレフィンは、炭素数3~10のα-オレフィンであることが好ましく、その例には、プロピレン、1-ブテン等が含まれる。エチレン・α-オレフィン共重合体の例には、エチレン-プロピレン共重合体、エチレン-ブテン共重合体が含まれる。
 変性ポリオレフィン[III]-1を構成する官能基を有する化合物の例には、官能基を有する不飽和カルボン酸又はその誘導体が含まれる。官能基を有する不飽和カルボン酸又はその誘導体の例には、アクリル酸、メタクリル酸、α-エチルアクリル酸、マレイン酸、フマール酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、エンドシス-ビシクロ〔2,2,1〕ヘプト-5-エン-2,3-ジカルボン酸(ナジック酸)等の不飽和カルボン酸、及びこれらの酸ハライド、アミド、イミド、酸無水物、エステル等の誘導体が挙げられる。中でも、不飽和ジカルボン酸又はその酸無水物が好ましく、マレイン酸、ナジック酸又はこれらの酸無水物がより好ましく、無水マレイン酸が特に好ましい。無水マレイン酸は、変性前のポリオレフィンとの反応性が比較的高く、無水マレイン酸同士の重合等が生じにくく、基本構造として安定な傾向がある。このため、安定した品質の変性ポリオレフィン[III]-1が得られやすい。
 変性ポリオレフィン[III]-1の例には、変性エチレン・α-オレフィン共重合体が含まれる。この変性エチレン・α-オレフィン共重合体の密度は、好ましくは0.80~0.95g/cm、より好ましくは0.85~0.90g/cmである。
 官能基含有オレフィン系共重合体[III]-2を構成するオレフィンモノマーは、炭素数2~18のオレフィンモノマーであることが好ましく、その例には、エチレン、プロピレンが含まれ、好ましくはエチレンである。
 官能基含有オレフィン系共重合体[III]-2を構成する官能基を有するモノマーの例には、アクリル系モノマーやビニルモノマー等が含まれる。
 官能基含有オレフィン系共重合体[III]-2の例には、エチレン・酢酸ビニル・無水マレイン酸共重合体(アルケマ社製Orevac(登録商標)等)、エチレン・アクリル酸エステル・官能性アクリル酸エステル(例えばグリシジルアクリレート又はグリシジルメタクリレート)共重合体(アルケマ社製Lotader(登録商標)等)が含まれる。
 オレフィン系重合体[III]の官能基構造単位の含有率は、0.3~5.0質量%であることが好ましく、0.4~4.0質量%であることがより好ましい。官能基構造単位が0.3質量%以上であると、脂肪族ポリアミド[I]に対するエチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]の分散性が向上しやすいだけでなく、機械的強度が損なわれにくい。一方、官能基構造単位が5.0質量%以下であると、脂肪族ポリアミド[I]との過剰な反応が生じにくいので、ゲル化による溶融流動性の低下が生じにくく、成形性が損なわれにくい。
 官能基構造単位の含有率は、オレフィン系重合体[III]を構成する官能基を有しないモノマー由来の構造単位の合計質量に対する官能基を有する化合物又は官能基を有するモノマー由来の構造単位の含有割合(質量%)である。
 オレフィン系重合体[III]の官能基構造単位の含有率は、13C-NMR測定又はH-NMR測定により測定できる。具体的な測定条件は、以下の通りである。
 H-NMR測定の場合、日本電子(株)製ECX400型核磁気共鳴装置を用い、溶媒は、重水素化オルトジクロロベンゼンとし、試料濃度は20mg/0.6mL、測定温度は120℃、観測核はH(400MHz)、シーケンスはシングルパルス、パルス幅は5.12μ秒(45°パルス)、繰り返し時間は7.0秒、積算回数は500回以上とする。基準のケミカルシフトは、テトラメチルシランの水素を0ppmとするが、例えば、重水素化オルトジクロロベンゼンの残存水素由来のピークを7.10ppmとしてケミカルシフトの基準値とすることでも同様の結果を得ることができる。官能基含有化合物由来の1Hなどのピークは、常法によりアサインしうる。
 13C-NMR測定の場合、測定装置は日本電子(株)製ECP500型核磁気共鳴装置を用い、溶媒としてオルトジクロロベンゼン/重ベンゼン(80/20容量%)混合溶媒、測定温度は120℃、観測核は13C(125MHz)、シングルパルスプロトンデカップリング、45°パルス、繰り返し時間は5.5秒、積算回数は1万回以上、27.50ppmをケミカルシフトの基準値とする。各種シグナルのアサインは常法を基にして行い、シグナル強度の積算値を基に定量を行うことができる。
 オレフィン系重合体[III]の135℃デカリン(デカヒドロナフタレン)溶液中で測定される極限粘度[η]は、0.5~4.0dl/gであることが好ましく、0.7~3.0dl/gであることがより好ましく、0.8~2.5dl/gであることがさらに好ましい。[η]が上記の範囲内であれば、樹脂組成物の溶融流動性と得られる成形体の靱性とを高いレベルで両立できる。
 オレフィン系重合体[III]の極限粘度[η]は、常法に基づき、以下の方法で測定することができる。
 サンプル20mgをデカリン15mlに溶解し、ウベローデ粘度計を用い、135℃雰囲気にて比粘度(ηsp)を測定する。このデカリン溶液に更にデカリン5mlを加えて希釈後、同様の比粘度測定を行う。この希釈操作と粘度測定を更に2度繰り返した測定結果を基に、濃度(:C)をゼロに外挿したときの「ηsp/C」値を極限粘度[η]とする。
 オレフィン系重合体[III]の市販品の例には、三井化学(株)のタフマーシリーズ(無水マレイン酸変性エチレン-プロピレンゴム、無水マレイン酸変性エチレン-ブテンゴム等)、アドマー(無水マレイン酸変性ポリプロピレン、無水マレイン酸変性ポリエチレン);(株)クラレのクラプレン(無水マレイン酸変性イソプレンゴム、マレイン酸モノメチルエステル変性イソプレンゴム)、セプトン(無水マレイン酸変性SEPS);三井デュポンポリケミカル(株)のニュクレル(エチレン-メタクリル酸共重合体)、HPR(無水マレイン酸変性EEA、無水マレイン酸変性EVA);Chemtura社のRoyaltuf(無水マレイン酸変性EPDM);Kraton社のクレイトンFG(無水マレイン酸変性SEBS);JX日鉱日石エネルギー(株)の日石ポリブテン(無水マレイン酸変性ポリブテン);Arkema社のボンダイン(無水マレイン酸変性EEA);旭化成(株)のタフテックM(無水マレイン酸変性SEBS);日本ポリエチレン(株)のレクスパールET(無水マレイン酸変性EEA);三菱化学(株)のモディック(無水マレイン酸変性EVA、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性ポリエチレン);住友化学(株)のボンドファースト(E-GMA);LANXESS社のクライナック(カルボキシ変性ニトリルゴム);日本製紙(株)のアウローレン(無水マレイン酸変性EEA)等が含まれる(以上、全て商品名)。これらは、一種類で用いてもよいし、二種以上を併用してもよい。
 オレフィン系重合体[III]の含有量は、[I]成分、[II]成分、[III]成分及び[IV]成分の合計に対して0.1~30質量%であることが好ましい。オレフィン系重合体[III]の含有量が0.1質量%以上であると、[I]成分と[II]成分との相溶性を十分に高めうるので、成形体に十分な機械的強度を付与しやすく、30質量%以下であると、[I]成分や[II]成分の特性が損なわれにくい。オレフィン系重合体[III]の含有量は、[I]成分、[II]成分、[III]成分及び[IV]成分の合計に対して3~30質量%であることがより好ましく、3~20質量%であることがさらに好ましい。
 また、オレフィン系重合体[III]と共重合体ゴム[II]の質量比([III]/[II])は、1/500~1/1であることが好ましい。オレフィン系重合体[III]の質量比が一定以上であると、脂肪族ポリアミド[I]と共重合体ゴム[II]の相溶性が損なわれにくいので、成形体に十分な機械的強度を付与しやすく、一定以下であると、脂肪族ポリアミド[I]と共重合体ゴム[II]の特性が損なわれにくい。オレフィン系重合体[III]と共重合体ゴム[II]の質量比は、1/20~1/1であることがより好ましく、1/20~1/2であることがさらに好ましい。
 1-4.フェノール樹脂系架橋剤[IV]
 フェノール樹脂系架橋剤は、代表的には、アルキル置換又は非置換のフェノールを、アルカリ触媒存在下でアルデヒド(好ましくはホルムアルデヒド)と縮合して得られるレゾ-ル樹脂である。アルキル置換フェノールのアルキル基は、炭素原子数1~10のアルキル基であることが好ましい。特に、炭素原子数1~10のアルキル基で置換されたジメチロールフェノール類又はフェノール樹脂が好ましい。
 フェノール樹脂系架橋剤の例には、下記式[IV-1]で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000001
 式[IV-1]中、Rは、アルキル基等の有機基であり、好ましくは炭素原子数20未満の有機基、より好ましくは炭素原子数4~12の有機基である。R'は、水素原子又は-CH-OHである。n、mは、0~20の整数であり、好ましくは0~15の整数、より好ましくは0~10の整数である。
 フェノール樹脂系架橋剤の他の例には、メチロール化アルキルフェノール樹脂、ハロゲン化アルキルフェノール樹脂が含まれる。ハロゲン化アルキルフェノール樹脂とは、分子鎖末端の水酸基が臭素等のハロゲン原子で置換されたアルキルフェノール樹脂であり、その例には、下記式[IV-2]で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000002
 式[IV-2]中のn、m及びRは、式[IV-1]中のn、m及びRとそれぞれ同義である。式[IV-2]のR'は、水素原子、-CH又は-CH-Brである。
 フェノール樹脂系架橋剤の市販品の例には、田岡化学工業(株)のタッキロール201、タッキロール250-I、タッキロール250-III;SI Group社のSP1045、SP1055、SP1056;昭和電工(株)の ショウノールCRM;荒川化学工業(株)のタマノル531;住友ベークライト(株)社のスミライトレジンPR;群栄化学工業(株)のレジトップ(以上、全て商品名)等が含まれる。これらは、一種類で用いてもよいし、二種以上を併用してもよい。中でも、田岡化学工業(株)のタッキロール250-III(臭素化アルキルフェノールホルムアルデヒド樹脂)やSI Group社のSP1055(臭素化アルキルフェノールホルムアルデヒド樹脂)が好ましい。
 これらの中でも、ハロゲン化アルキルフェノール樹脂が特に好ましい。ハロゲンアルキルフェノール樹脂は、共重合体ゴム[II]との相溶性に優れるとともに、反応性に富んでおり、架橋反応開始時間を比較的早くできるので好ましい。
 フェノール樹脂系架橋剤[IV]が粉体状の架橋剤である場合、その平均粒径は、好ましくは0.1μm~3mm、より好ましくは1μm~1mm、特に好ましくは5μm~0.5mmである。フレーク状の硬化剤は、ジェットミル、粉砕刃付粉砕機などの粉砕機により粉体状にしてから使用することが好ましい。
 フェノール樹脂系架橋剤[IV]の含有量は、[I]成分、[II]成分、[III]成分及び[IV]成分の合計に対して1~10質量%であることが好ましい。フェノール樹脂系架橋剤[IV]の含有量が1質量%以上であると、[II]成分等を十分に架橋させやすいので、成形体に十分な耐熱性や耐油性を付与しやすく、フェノール樹脂系架橋剤[IV]の含有量が10質量%以下であると、[I]成分や[II]成分の特性が損なわれにくい。フェノール樹脂系架橋剤[IV]の含有量は、[I]成分、[II]成分、[III]成分及び[IV]成分の合計に対して、1~8質量%であることがより好ましく、2~6質量%であることがさらに好ましい。
 1-5.架橋助剤[V]
 架橋助剤[V]は、亜鉛化合物であることが好ましい。亜鉛化合物は、Zn+2カチオンと、負電荷対イオンとを有する亜鉛塩である。負電荷対イオンは、非毒性であり、少なくとも約200℃以下で熱的に安定な負電荷対イオンであることが好ましく、少なくとも300℃以下で熱的に安定な負電荷対イオンであることがより好ましい。
 亜鉛化合物は、Zn2+カチオンと負電荷対イオンとを含めて約1000以下の分子量を有する。亜鉛化合物の例には、カルボン酸亜鉛、炭酸亜鉛、チタン酸亜鉛、モリブデン酸亜鉛、硫酸亜鉛、リン酸亜鉛、酸化亜鉛、ホウ酸亜鉛及びハロゲン化亜鉛が含まれる。ハロゲン化亜鉛の例には、ヨウ化亜鉛が含まれる。カルボン酸亜鉛の例には、酢酸亜鉛、ステアリン酸亜鉛、シュウ酸亜鉛、パルミチン酸亜鉛、2-エチルヘキサン酸亜鉛、グルコン酸亜鉛、ラウリン酸亜鉛、サリチル酸亜鉛、テレフタル酸亜鉛、イソフタル酸亜鉛、フタル酸亜鉛、コハク酸亜鉛、アジピン酸亜鉛、ピロメリット酸亜鉛、ベンゼントリカルボン酸亜鉛、ブタンテトラカルボン酸亜鉛およびトリフルオロメタンスルホン酸亜鉛が含まれる。これらの中でも、酸化亜鉛、炭酸亜鉛、カルボン酸亜鉛、水酸化亜鉛及びこれらの組み合わせからなる群より選ばれる一以上であることが好ましく、架橋反応速度を速くしやすく、得られる分散相を微分散させやすくする観点では、酸化亜鉛がより好ましい。
 架橋助剤[V](亜鉛化合物)の含有量は、架橋助剤[V](亜鉛化合物)の脂肪族ポリアミド[I]に対する質量比[V]/[I]が、0.0001~0.02、好ましくは0.0003~0.01、より好ましくは0.0004~0.01、さらに好ましくは0.0004~0.009となるように設定される。質量比[V]/[I]が0.0001以上であると、架橋不足になりにくいので、共重合体ゴム[II]及びオレフィン系重合体[III]を主成分とする分散相の粒径が大きくなりすぎない(分散相を微分散させやすい)。それにより、ポリアミド系熱可塑性エラストマー組成物の貯蔵弾性率の維持温度が低くなりにくく、耐油性が低下しにくい。質量比[V]/[I]が0.02以下であると、架橋速度が速くなりすぎず、共重合体ゴム[II]を十分に微分散させた後に架橋させやすくなるため、共重合体ゴム[II]を主成分とする分散相の粒径が大きくなりすぎない(分散相を微分散させやすい)。それにより、ポリアミド系熱可塑性エラストマー組成物の貯蔵弾性率の維持温度が低くなりにくく、耐油性が低下しにくい。
 [I]成分、[II]成分、[III]成分、[IV]成分及び[V]成分の合計含有量は、ゴム組成物の全質量に対して80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であってもよい。
 1-6.他の成分
 ポリアミド系熱可塑性エラストマー組成物を得るためのゴム組成物は、本発明の効果を損なわない範囲で、必要に応じて他の成分をさらに含んでいてもよい。他の成分の例には、フェノール樹脂系架橋剤[IV]以外の他の架橋剤や架橋助剤、可塑剤、酸化防止剤、着色剤、帯電防止剤(導電剤)、充填剤等が含まれる。
 他の架橋剤は、前述のゴム組成物の動的架橋が可能な架橋剤であればよく、その例には、硫黄系架橋剤が含まれる。但し、他の架橋剤は、有機過酸化物を含まないことが好ましい。他の架橋剤として有機過酸化物を使用した場合、本発明のポリアミド系熱可塑性エラストマー組成物に適した溶融混練温度が比較的高いことから、有機過酸化物の分解速度が速くなりすぎる場合がある。その結果、ゴム成分([II]成分、[III]成分)の架橋反応が急激に進みやすく、脂肪族ポリアミド[I]と十分には混練できず、分散が不十分となる場合がある。そのため、ポリアミド系熱可塑性エラストマー組成物の物性が著しく低下する場合がある。
 また、ポリアミド系熱可塑性エラストマー組成物を得るためのゴム組成物は、本発明の効果を損なわない範囲で、前述の脂肪族ポリアミド[I]以外のポリアミド(以下、「他のポリアミド」とも称する)をさらに含んでいてもよい。他のポリアミドの例には、ポリアミド11、ポリアミド12、芳香族ポリアミド等が含まれる。ポリアミド系熱可塑性エラストマー組成物には、これらの他のポリアミドが一種含まれてもよく、二種以上含まれてもよい。
 2.ポリアミド系熱可塑性エラストマー組成物の製造方法
 本発明のポリアミド系熱可塑性エラストマー組成物は、前述の脂肪族ポリアミド[I]と、エチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]と、オレフィン系重合体[III]と、フェノール樹脂系架橋剤[IV]と、架橋助剤[V]として亜鉛化合物とを含むゴム組成物の少なくとも一部を動的に架橋させること、具体的には溶融流動状態(動的状態)で架橋させて得ることができる。
 このような動的架橋反応は、通常、前述の組成物を溶融混練装置に供給し、所定温度に加熱して溶融混練することにより行う。
 溶融混練は、[I]成分、[II]成分、[III]成分、[IV]成分及び[V]成分を同時に混練してもよいし;[I]成分、[II]成分、[III]成分及び[V]成分を混練した後、[IV]成分を添加してさらに混練してもよい。
 溶融混練装置は、例えば二軸押出機、単軸押出機、ニーダー、バンバリーミキサー等を用いることができる。中でも、剪断力や連続生産性が良好である点から、二軸押出機が好ましい。溶融混練温度は、通常、200~320℃である。溶融混練時間は、通常、0.5~30分である。
 この動的架橋によって、ポリアミド系熱可塑性エラストマー組成物中で、エチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]が架橋される。つまり、ポリアミド系熱可塑性エラストマー組成物は、脂肪族ポリアミド[I]と、フェノール樹脂系架橋剤[IV]で架橋された共重合体ゴム[II]と、官能基構造単位を0.3~5.0質量%含むオレフィン系重合体[III]と、架橋助剤[V]とを含みうる。そして、脂肪族ポリアミド[I]を主成分とする海相(マトリクス相)と、架橋された共重合体ゴム[II]と、オレフィン系重合体[III]とを主成分とする島相(分散相)とを有する海島構造が形成される。脂肪族ポリアミド[I]を主成分とする海相(マトリックス相)は、熱可塑性を発現しうる。一方、架橋した共重合体ゴム[II]と、オレフィン系重合体[III]とを主成分とする島相(分散相)は、ゴム弾性を発現しうる。そして、島相(分散相)の平均粒径は比較的小さく、微分散している。
 このように、ポリアミド系熱可塑性エラストマー組成物は、脂肪族ポリアミド[I]を主成分とするマトリックス成分(海相)と、そのマトリックス相(海相)に微分散し、かつ共重合体ゴム[II]とオレフィン系重合体[III]を主成分とする分散相(島相)とを有する。
 分散相(島相)の平均粒径は、0.3μm以上5.0μm以下であることが好ましく、0.3μm以上2.5μm以下であることがより好ましく、0.3μm以上1.5μm以下であることがさらに好ましい。
 そして、TEM測定で得られた画像において、粒径が3.0μm以上の分散相の面積を測定し、解析した領域の面積全体に対する当該分散相の累計面積の割合は、10%以下であることが好ましく、8%以下であることがより好ましく、6%以下であることがさらに好ましく、3%以下であることが特に好ましい。
 粒径が3.0μm以上の分散相(分散相群(A))の累計断面積の、解析した領域の面積全体に対する割合が10%以下であると、耐油性が特に高くなりやすい。また、粒径が3.0μm以上の分散相(分散相群(A))の累計断面積の割合が6%以下、さらに3%以下であると、さらに10MPa貯蔵弾性率の維持温度の低下を一層抑制しやすく、特に累計断面積の割合が0%、即ち、3.0μm以上の大きな分散相群が存在しない場合には、室温での柔軟性を有しつつ、高温下でも弾性率を維持し、且つ高い耐油性のいずれにも優れたものとなりやすい。
 TEM測定は、以下の方法で行うことができる。
 まず、ポリアミド系熱可塑性エラストマー組成物を押出成形して、試験片を準備する。準備した試験片をミクロトーム等で研削し、得られる任意の断面約45μm×75μm以上の範囲を、透過型電子顕微鏡(測定装置:株式会社日立ハイテクノロジー社製H-7650)を用いて、3000倍に拡大して解析する。解析は、画像解析ソフト ImageJを用いて二値化処理して行う。
 図1A及びBは、本発明の一実施形態のポリアミド系熱可塑性エラストマー組成物の切断面のTEM写真である。図1Aは、3000倍で観察したTEM写真であり、図1Bは、10000倍で観察したTEM写真である。
 図1に示されるように、脂肪族ポリアミド[I]を主成分とするマトリクス相(図1の他部より色が白い部位、マトリックス成分)と、エチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]とオレフィン系重合体[III]とを主成分とする分散相(図1の他部より色が黒い部分、分散成分)の占有域をそれぞれ特定する。
 特定された分散相の占有域の一つ毎に、画像解析を行い、その面積を算出する。
 そして、その面積と等しい面積の真円の直径を求め、それぞれの占有域について求めた値を算術平均したものを分散相の平均粒径とする。
 即ち、各分散相の粒径は、得られた画像において、各分散相の面積Sを求め、Sを用いて、(4S/π)×0.5を各分散相の粒径とする。
 なお、本実施形態における平均粒径は、0.3μm以上の粒径の分散相(分散相群(Aとする)について測定したものである。その理由は、0.3μm未満の粒径の分散相(分散相群(B)とする)は、全分散相(又は全粒子)中に占める面積比率が1%未満であり、独立して存在する外部添加剤の粒子群も多数含まれ、本実施形態の耐油性に与える影響がほとんど無いと考えられるからである。
 このようなポリアミド系熱可塑性エラストマー組成物から得られるシート状又はチューブ状の成形体は、脂肪族ポリアミド[I]を主成分とするマトリックス相と、共重合体ゴム[II]とオレフィン系重合体[III]とを主成分とする(架橋ゴム成分を主成分とする)分散相とを有するモルフォロジーが制御されており、かつマトリックス相中に分散相が微細に分散した状態の相構造を有する。それにより、室温での柔軟性を有しつつ、高温下でも弾性率の低下が少なく、且つ高い耐油性を有する。
 モルフォロジーの制御は、主に脂肪族ポリアミド[I]と共重合体ゴム[II]との粘度バランスや、架橋反応速度などによって調整することができる。具体的には、脂肪族ポリアミド[I]と共重合体ゴム[II]の粘度バランスは、例えば脂肪族ポリアミド[I]のMFRや共重合体ゴム[II]と脂肪族ポリアミド[I]との質量比などによって調整することができる。架橋反応速度は、例えば架橋剤[IV]の種類や架橋助剤[V]の種類や量などによって調整することができる。
 従って、粒径の小さい分散相を微分散させやすくするためには、例えば脂肪族ポリアミド[I]のMFRは小さくすることが好ましく、共重合体ゴム[II]の質量比は多くしすぎないことが好ましく、架橋剤[IV]としてハロゲン化フェノール樹脂を選択することが好ましく、架橋助剤[V]は反応速度が高い酸化亜鉛を選択することが好ましく、架橋助剤[V]の含有量は適切な範囲に調整することが好ましい。
 3.成形体とその用途
 前述のポリアミド系熱可塑性エラストマー組成物を成形して得られる成形体は、種々の用途に用いることができ、例えば自動車部品、建材部品、スポーツ用品、医療器具部品、工業部品等、各種用途の成形体として有用である。
 中でも、前述のポリアミド系熱可塑性エラストマー組成物から得られる成形体は、高温域での弾性率の低下が抑制されると共に樹脂が溶融した際の粘度が適度に保たれ、且つ高い耐油性を有することから、中空成形体(産業用チューブ)や、特定の成形方法(ブロー成形及び二色成形等)で得られる成形体に好適である。
 <中空成形体(産業用チューブ)>
 産業用チューブは、前述のポリアミド系熱可塑性エラストマー組成物を含む層を少なくとも含む。産業用チューブとは、特に産業機器に使用されるチューブを意味する。産業用チューブの例には、車両(例えば自動車)、空圧・油圧機器、塗装機器、医療機器等の産業機器に必要な流体(燃料、溶剤、薬品、ガス等)を通すチューブが挙げられる。特に、車両配管用チューブ(例えば燃料系チューブ、吸気系チューブ、冷却系チューブ)、空圧チューブ、油圧チューブ、ペイントスプレーチューブ、医療用チューブ(例えばカテーテル)等の用途において非常に有用である。
 <射出成形、ブロー成形又は二色成形により得られる成形体>
 射出成形、ブロー成形又は二色成形により得られる成形体は、そのような物性が要求される各種用途(例えば自動車、電気製品)に広く利用可能である。射出成形、ブロー成形又は二色成形により得られる成形体の例には、等速ジョイントブーツ、ダストカバー等のブーツ部品、オイルシール、ガスケット、パッキン、ダストカバー、バルブ、ストッパ、精密シールゴム、ウェザストリップ等が挙げられる。中でも、自動車用等速ジョイントブーツが好ましい。自動車用等速ジョイントブーツの製造方法としては、例えば射出成形法、ブロー成形法(インジェクションブロー成形法、プレスブロー成形法)等、公知の方法を採用できる。
 これらの中でも、前述のポリアミド系熱可塑性エラストマー組成物を成形して得られる成形体は、自動車関連部品である吸気・排気系部品や自動車用等速ジョイントブーツ、ダストカバー、各種ブーツ部品等の樹脂製フレキシブルブーツの材料として、好ましくは吸気・排気系部品として特に有用である。
 吸気・排気系部品の例には、エアホース、エアダクト、ターボダクト、ターボホース、インテークマニホールド、又はエグゾ-ストマニホールド等が含まれる。
 以下において、実施例を参照して本発明をより詳細に説明する。これらの実施例によって、本発明の範囲は限定して解釈されない。
 1.材料
 <脂肪族ポリアミド[I]>
 I-1:ポリカプロアミド(ポリアミド6)(東レ社製、商品名アミラン「CM1046、融点=225℃、溶融熱量(ΔH)=69mJ/mg、末端アミン量=30mmol/kg、MFR=9g/10分)
 I-2:ポリヘキサメチレンアジパミド(ポリアミド6/6)(東レ社製、商品名アミラン「CM3001-N」、融点=265℃、溶融熱量(ΔH)=74mJ/mg、末端アミン量=20mmol/kg、MFR=90g/10分)
 I-3:ポリヘキサメチレンアジパミド(ポリアミド6/6)(デュポン社製、商品名zytel 101、融点265℃、溶融熱量(ΔH)=69mJ/mg、末端アミン量=41mmol/kg、MFR=65g/10分)
 I-4:ポリヘキサメチレンデカミド(ポリアミド6/10)(東レ社製、商品名アミラン「CM2001、融点=225℃、溶融熱量(ΔH)=83mJ/mg、末端アミン量=18mmol/kg、MFR=250g/10分)
 I-5:ポリヘキサメチレンデカミド(ポリアミド6/10)(アルケマ社製、商品名Hiprolon70NN、融点=225℃、溶融熱量(ΔH)=85mJ/mg、末端アミン量=17mmol/kg、MFR=92g/10分)
 I-6:ポリヘキサメチレンデカミド(ポリアミド6/10)(デュポン社製、商品名Zytel RSLC3060、融点=223℃、溶融熱量(ΔH)=77mJ/mg、末端アミン量=52mmol/kg、MFR=31g/10分)
 <比較用樹脂>
 R-1:ポリアミドエラストマー(ダイセルエボニック社製、商品名ベスタミド「E47-S4」、融点=160℃)
 R-2:ポリアミドエラストマー(ダイセルエボニック社製、商品名ベスタミド「X4442」、融点=170℃)
 R-3:ポリアミド12(可塑剤入り)(アルケマ社製、商品名Rilsamid「AESNO P40 TL」、融点=175℃)
 R-4:ヘキサメチレンジアミンとイソフタル酸との塩/ヘキサメチレンジアミンとテレフタル酸との塩の共重合体(三菱エンジニアリングプラスチックス社製、商品名ポリアミドMXD6 レニー「#6007」、融点=243℃、溶融熱量(ΔH)=52mJ/mg、末端アミン量=9mmol/kg、MFR=23g/10分)
 R-5:ポリアミド12(宇部興産(株)製、商品名UBESTA3030U、融点=178℃、末端アミン量=18mmol/kg、MFR=9g/10分)
 R-6:ポリアミド6T6I66(6T/6I/66=44/36/20)
 ジカルボン酸成分=テレフタル酸44質量%、イソフタル酸36質量%、アジピン酸20質量%
 ジアミン成分=1,6-ヘキサンジアミン
 融点(Tm)=265℃
 分子鎖の末端アミノ基量=19mmol/kg
 これらの脂肪族ポリアミド[I]や比較用樹脂の融点、溶融熱量、末端アミン量及びMFRは、それぞれ前述した方法で測定した値である。
 <エチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]>
 共重合体ゴム[II]として、エチレン・プロピレン・5-エチリデン-2-ノルボルネン共重合体ゴム([η]=2.4dl/g、エチレン含量65質量%、ジエン含量4.6質量%)を用意した。
 <オレフィン系重合体[III]>
 オレフィン系重合体[III]として、以下のように合成した変性ポリオレフィンを用意した。
 まず、十分に窒素置換したガラス製フラスコに、ビス(1,3-ジメチルシクロペンタジエニル)ジルコニウムジクロリドを0.63mg入れ、メチルアミノキサンのトルエン溶液(Al:0.13ミリモル/リットル)1.57ml及びトルエン2.43mlをさらに添加して、触媒溶液を得た。
 充分に窒素置換した内容積2リットルのステンレス製オートクレーブに、ヘキサン912mlと1-ブテン320mlを導入し、系内の温度を80℃に昇温した。引き続き、トリイソブチルアルミニウム0.9ミリモル及び上記触媒溶液2.0ml(Zrとして0.0005ミリモル)をエチレンで圧入することにより重合を開始した。
 エチレンを連続的に供給することにより全圧を8.0kg/cm-Gに保ち、80℃で30分間重合を行った。少量のエタノールを系中に導入して重合を停止させた後、未反応のエチレンをパージした。得られた溶液を大過剰のメタノール中に投入することにより、白色固体を析出させた。
 この白色固体を濾過により回収し、減圧下で一晩乾燥し、白色固体状のエチレン・1-ブテン共重合体を得た。このエチレン・1-ブテン共重合体の密度は、0.862g/cm、MFR(ASTM D1238規格、190℃、2160g荷重)は、0.5g/10分、1-ブテン構造単位含有率は4モル%であった。
 このエチレン・1-ブテン共重合体100質量部に、無水マレイン酸1.0質量部と過酸化物(日油(株)製、商品名パーヘキシン25B)0.04質量部とを混合し、得られた混合物を230℃に設定した1軸押出機で溶融グラフト変性することによって、上記の無水マレイン酸変性エチレン・1-ブテン共重合体を得た。
 得られた無水マレイン酸変性エチレン・1-ブテン共重合体の無水マレイン酸グラフト変性量(官能基構造単位含有率)は0.97質量%であり、135℃デカリン溶液中で測定した極限粘度[η]1.98dl/gであった。官能基構造単位の含有率は、前述の13CNMR法で測定し、極限粘度[η]は前述の方法で測定した。
 <未変性オレフィン系重合体>
 未変性オレフィン系重合体:上記で得られた変性前のエチレン・1-ブテン共重合体
 <フェノール樹脂系架橋剤[IV]>
 フェノール樹脂系架橋剤[IV]として、フレーク状の臭素化アルキルフェノールホルムアルデヒド樹脂(田岡化学工業(株)製、商品名タッキロール250-III)をヘンシェルミキサーにて10秒間攪拌して粉状にしたものを用意した。
 <比較用架橋剤>
 過酸化物(日油(株)製、商品名パーヘキシン25B)
 <架橋助剤[V]>
 ハクスイテック(株)製、酸化亜鉛2種
 正同化学工業(株)製、炭酸亜鉛
 日東化成工業(株)製、ステアリン酸亜鉛
 2.ポリアミド系熱可塑性エラストマー組成物の調製
 <実施例1>
 ポリアミド[I-1]47質量%、共重合体ゴム[II]40質量%、オレフィン系重合体[III]10.47質量%、フェノール樹脂系架橋剤[IV]2.5質量%及び0.03質量%(質量比[V]/[I]=0.0006)の架橋助剤(ハクスイテック(株)製、酸化亜鉛2種)を予備混合し、これを二軸押出機((株)日本製鋼所製、TEX-30)に供給し、シリンダー温度280℃、スクリュー回転数300rpmで、溶融混練した。この二軸押出機から押出されたストランドを切断して、ポリアミド系熱可塑性エラストマー組成物のペレットを得た。
 <実施例2~12、参考例1、比較例1~10>
 表1又は2に示されるような組成に変更した以外は実施例1と同様にしてポリアミド系熱可塑性エラストマー組成物のペレットを得た。
 実施例1~12、参考例1及び比較例1~10で得られたペレットを用いて成形した試験片の貯蔵弾性率E’、耐油性、加熱減量試験での質量変化率、及びTEM測定を、それぞれ以下の方法で測定した。
 [貯蔵弾性率E’]
 (23℃貯蔵弾性率E’)
 得られたペレットをプレス機に投入し、プレス温度:融点+25℃の条件で熱プレスを行い、厚さ約500μmのフィルム(試験片)を得た。得られたフィルムをアイティー計測制御社製のDVA-225にセットし、引張モード、昇温速度:3℃/min、周波数:1Hzの条件で貯蔵弾性率(E')を測定し、規定温度(23℃)での貯蔵弾性率(E’)を読み取った。
 (10MPa維持温度)
 得られた貯蔵弾性率(E’)から、10MPaを維持する最大の温度を読み取り、10MPa維持温度とした。一般に、10MPaよりも下回ると、自重での変形等が発生する場合が多く、成形体の形状が保持できなくなる。
 [耐油性]
 耐油性の評価は、JIS K6258の全面浸せき試験に準拠して行った。
 具体的には、得られたペレットをプレス機に投入し、プレス温度:融点+25℃の条件で熱プレスを行い、30mm×30mm×厚さ2mmの角板(試験片)を得た。
 得られたフィルムを、JIS K6258に準拠して、120℃又は175℃に保持したIRM903オイル中に72時間浸した後、質量変化率(質量%)を求めた。
 [加熱減量試験]
 (質量変化率)
 1)得られたペレットをプレス機に投入し、プレス温度:融点+25℃の条件で熱プレスを行い、20cm×20cm×厚さ約500μmのフィルム(試験片)を得た。そして、このフィルムの質量(M0)を測定した。
 2)次いで、真空乾燥機にて、150℃減圧下で10時間保持した。その後、再度フィルムの質量(M1)を測定した。
 3)上記1)と2)のフィルムの質量をそれぞれ下記式に当てはめて、質量変化率(質量%)を算出した。
 質量変化率(質量%)=(M0-M1)/M0×100
 (試験前弾性率/試験後弾性率)
 前述の質量変化率と同様にして、加熱試験後のフィルム(試験片)の貯蔵弾性率を前述の貯蔵弾性率E’と同じ方法で測定した。
 そして、加熱試験後の貯蔵弾性率E’と加熱試験前の貯蔵弾性率(23℃での貯蔵弾性率E’)の比(試験後弾性率/試験前弾性率)(%)を算出した。
 [透過型電子顕微鏡(TEM)測定]
 得られたペレットを、マイクロトームにて研削し、超薄切片をトリミングした。得られた超薄切片の断面を、四酸化ルテニウムの蒸気に一定時間晒して、分散相とマトリクス相のうち分散相のみを選択的に染色させた。これを、透過電子顕微鏡(TEM、株式会社日立ハイテクノロジー社製H-7650)を用いて、3000倍率でそれぞれ観察した。得られたTEM画像から、染色された分散相(分散相群(A))の平均粒径、粒径3.0μm以上の分散相の面積の合計及び解析面積(解析を行った領域の面積)を求め、粒径3.0μm以上の分散相が解析面積全体に対して占める割合を算出した。
 実施例1~12の評価結果を表1に、参考例1及び比較例1~10の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1及び2に示されるように、実施例1~12のポリアミド系熱可塑性エラストマー組成物から得られる成形体は、比較例1及び2のポリアミド系熱可塑性エラストマーや比較例3のポリアミド組成物、比較例4及び10のポリアミドから得られる成形体よりも、10MPa貯蔵弾性率の維持温度が高く、耐油性も高いことがわかる。これは、実施例1~12の成形体では、動的架橋により特定の海島構造が形成されたこと、及び分散相を構成する共重合体ゴム[III]が架橋していることによると考えられる。また、比較例5のポリアミド系熱可塑性エラストマー組成物は、ペレットを作製することができず、測定が不可能であった。
 また、脂肪族ポリアミド[I]を含む実施例1~12のポリアミド系熱可塑性エラストマー組成物から得られる成形体は、半芳香族ポリアミドR-4を含む参考例1のポリアミド系熱可塑性エラストマーから得られる成形体よりも、10MPa貯蔵弾性率の維持温度が高く、耐油性も高いことがわかる。これは、マトリクス相を構成する脂肪族ポリアミド[I]の結晶化度が高く、高温での剛性(貯蔵弾性率)が高まったこと、それにより共重合体ゴム[II]成分が油により膨潤するのを抑制されたことによると考えられる。
 また、実施例3のポリアミド系熱可塑性エラストマー組成物から得られる成形体は、未変性オレフィン重合体を用いた比較例9のポリアミド系熱可塑性エラストマー組成物から得られる成形体よりも、10MPa貯蔵弾性率の維持温度が高く、耐油性も高いことがわかる。また、実施例3のポリアミド系熱可塑性エラストマー組成物から得られる成形体は、変性オレフィン重合体[III]を含まない比較例8のポリアミド系熱可塑性エラストマー組成物から得られる成形体よりも、10MPa貯蔵弾性率の維持温度が高く、耐油性も高いことがわかる。
 また、MFRの値が小さな脂肪族ポリアミド[I]を用いることで、得られる分散相の粒径が小さくなり、微分散しやすくなることがわかる。それにより、特に高温下での耐油性をより高めうることがわかる(実施例6~8の対比)。
 また、共重合体ゴム[II]と脂肪族ポリアミド[I]の質量比([II]/[I])が40以下/60以上であると、つまり、共重合体ゴム[II]の質量比を一定以下であると、得られる分散相の粒径が小さくなり、微分散しやすくなることがわかる。それにより、10MPa貯蔵弾性率の維持温度と耐油性をより高めうることがわかる(実施例3~5の対比)。
 また、架橋助剤[V](好ましくは酸化亜鉛)の含有量を、質量比[V]/[I]が0.0001~0.02となるように設定することで、10MPa貯蔵弾性率の維持温度と耐油性をより高めうることがわかる。これは、架橋助剤[V]の含有量を上記範囲とすることで、架橋速度が適度に遅くなり、共重合体ゴム[II]が分散されてから動的架橋が進行し、共重合体ゴム[II]の分散が良好な特定の海島構造が形成されやすくなったためであると考えられる(実施例3、9及び10と、比較例6及び7との対比)。
 また、架橋助剤[V]として酸化亜鉛を用いることで、炭酸亜鉛やステアリン酸亜鉛を用いるよりも、10MPa貯蔵弾性率の維持温度と耐油性をより高めうることがわかる。これは、酸化亜鉛が、炭酸亜鉛やステアリン酸亜鉛よりも架橋剤[V]を活性化させる速度が高いからであると考えられる(実施例3、11及び12の対比)。
 また、粒径が3.0μm以上の分散相の累計断面積を、解析した面積全体に対して10%以下とすることで、耐油性がより高まり(実施例1~12と、参考例1及び比較例1~10との対比)、粒径が3.0μm以上の分散相の累計断面積を5%以下、さらには3%以下とすることで、10MPa貯蔵弾性率の維持温度も一層高まることがわかる(実施例1~12の対比)。さらに、分散相の平均粒径が1.5μm以下であると、10MPa貯蔵弾性率の維持温度や耐油性も一層高まることがわかる(実施例3~5の対比、実施例9~12の対比)。
 本出願は、2016年11月4日出願の特願2016-216083に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明によれば、室温での柔軟性を有しつつ、高温下でも弾性率を維持し、且つ高い耐油性を有する成形体を付与しうるポリアミド系熱可塑性エラストマー組成物を提供することができる。

Claims (18)

  1.  炭素原子数2~14の脂肪族ジカルボン酸構造単位を全ジカルボン酸構造単位に対して80モル%以上含むジカルボン酸構造単位と、炭素原子数4~12の脂肪族ジアミン構造単位を全ジアミン構造単位に対して80モル%以上含むジアミン構造単位とからなる脂肪族ポリアミド、又はアミドカルボン酸構造単位若しくはラクタム構造単位からなる脂肪族ポリアミドであって、示差走査熱量測定(DSC)で測定される融点(Tm)が200~290℃である脂肪族ポリアミド[I]と、
     エチレン構造単位[a]と、炭素原子数3~20のα-オレフィン構造単位[b]と、メタロセン系触媒により重合可能な炭素-炭素二重結合を1分子内に1個以上有する非共役ポリエン構造単位[c]とを含むエチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]と、
     官能基構造単位を0.3~5.0質量%含むオレフィン系重合体[III]と、
     フェノール樹脂系架橋剤[IV]と
     架橋助剤[V]として、前記脂肪族ポリアミド[I]に対する質量比[V]/[I]が0.0001~0.02である亜鉛化合物と、を含むゴム組成物の架橋物である、ポリアミド系熱可塑性エラストマー組成物。
  2.  前記脂肪族ポリアミド[I]が、ポリアミド6、ポリアミド6/6、ポリアミド6/10、ポリアミド6/12、ポリアミド9/2及びポリアミド10/10からなる群より選ばれる一以上である、請求項1に記載のポリアミド系熱可塑性エラストマー組成物。
  3.  前記脂肪族ポリアミド[I]が、ポリアミド6、ポリアミド6/6及びポリアミド6/10からなる群より選ばれる少なくとも一以上である、請求項2に記載のポリアミド系熱可塑性エラストマー組成物。
  4.  脂肪族ポリアミド[I]の、ISO 1133による290℃、2.16kg荷重におけるメルトフローレート(MFR)は、0.1~100g/10分である、請求項1に記載のポリアミド系熱可塑性エラストマー組成物。
  5.  前記オレフィン系重合体[III]の官能基構造単位が、カルボン酸基、エステル基、エーテル基、アルデヒド基及びケトン基からなる群より選ばれる一以上の官能基由来の構造単位を含む、請求項1に記載のポリアミド系熱可塑性エラストマー組成物。
  6.  前記オレフィン系重合体[III]の官能基構造単位が、無水マレイン酸構造単位である、請求項4に記載のポリアミド系熱可塑性エラストマー組成物。
  7.  前記フェノール樹脂系架橋剤[IV]が、ハロゲン化フェノール樹脂系架橋剤を含む、請求項1に記載のポリアミド系熱可塑性エラストマー組成物。
  8.  前記亜鉛化合物が、酸化亜鉛、炭酸亜鉛、カルボン酸亜鉛及び水酸化亜鉛からなる群より選ばれる一以上である、請求項1に記載のポリアミド系熱可塑性エラストマー組成物。
  9.  前記亜鉛化合物が、酸化亜鉛である、請求項7に記載のポリアミド系熱可塑性エラストマー組成物。
  10.  [I]、[II]、[III]及び[IV]の合計100質量%に対して、
     前記脂肪族ポリアミド[I]を10~60質量%と、
     前記エチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]を33~86質量%と、
     前記オレフィン系重合体[III]を0.1~30質量%と、
     前記フェノール樹脂系架橋剤[IV]を1~10質量%とを含む、請求項1に記載のポリアミド系熱可塑性エラストマー組成物。
  11.  前記脂肪族ポリアミド[I]を含むマトリクス相と、前記マトリクス相に分散し、架橋された前記エチレン・α-オレフィン・非共役ポリエン共重合体ゴム[II]と前記オレフィン系重合体[III]とを含む分散相とを有する、請求項1に記載のポリアミド系熱可塑性エラストマー組成物。
  12.  透過型電子顕微鏡像により解析される前記分散相の平均粒子径が、0.3~5.0μmである、請求項11に記載のポリアミド系熱可塑性エラストマー組成物。
  13.  透過型電子顕微鏡像により解析される粒径3.0μm以上の前記分散相の面積の合計量が、解析領域の全面積に対して10%以下である、請求項12に記載のポリアミド系熱可塑性エラストマー組成物。
  14.  請求項1に記載のポリアミド系熱可塑性エラストマー組成物から得られる、成形体。
  15.  請求項1に記載のポリアミド系熱可塑性エラストマー組成物から得られる、中空成形体。
  16.  前記中空成形体は、自動車関連部品である、請求項15に記載の中空成形体。
  17.  前記自動車関連部品は、吸気・排気系部品である、請求項16に記載の中空成形体。
  18.  前記吸気・排気系部品は、エアホース、エアダクト、ターボダクト、ターボホース、インテークマニホールド、又はエグゾ-ストマニホールドである、請求項17に記載の中空成形体。
PCT/JP2017/039773 2016-11-04 2017-11-02 ポリアミド系熱可塑性エラストマー組成物、成形体及び中空成形体 WO2018084256A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018549082A JP6876715B2 (ja) 2016-11-04 2017-11-02 ポリアミド系熱可塑性エラストマー組成物、成形体及び中空成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016216083 2016-11-04
JP2016-216083 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018084256A1 true WO2018084256A1 (ja) 2018-05-11

Family

ID=62076823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039773 WO2018084256A1 (ja) 2016-11-04 2017-11-02 ポリアミド系熱可塑性エラストマー組成物、成形体及び中空成形体

Country Status (2)

Country Link
JP (1) JP6876715B2 (ja)
WO (1) WO2018084256A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172829A (ja) * 2018-03-28 2019-10-10 三井化学株式会社 ポリアミド系熱可塑性エラストマー組成物、成形体および中空成形体
JP2019206668A (ja) * 2018-05-30 2019-12-05 三井化学株式会社 樹脂組成物および成形体、ならびに樹脂組成物の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341554A (ja) * 1986-08-08 1988-02-22 Mitsui Petrochem Ind Ltd 熱可塑性エラストマ−組成物
JPH0277458A (ja) * 1988-06-17 1990-03-16 Sumitomo Chem Co Ltd エチレン・α―オレフィン共重合系加硫ゴム組成物
JP2006045401A (ja) * 2004-08-06 2006-02-16 Asahi Kasei Chemicals Corp 低燃料膨潤性熱可塑性樹脂組成物
JP2011202136A (ja) * 2010-03-26 2011-10-13 Mitsui Chemicals Inc 熱可塑性エラストマーおよびその製法
WO2015083819A1 (ja) * 2013-12-06 2015-06-11 三井化学株式会社 ポリアミド系熱可塑性エラストマー組成物及びその成形品
JP2016501301A (ja) * 2012-12-04 2016-01-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 耐熱性炭化水素エラストマー組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341554A (ja) * 1986-08-08 1988-02-22 Mitsui Petrochem Ind Ltd 熱可塑性エラストマ−組成物
JPH0277458A (ja) * 1988-06-17 1990-03-16 Sumitomo Chem Co Ltd エチレン・α―オレフィン共重合系加硫ゴム組成物
JP2006045401A (ja) * 2004-08-06 2006-02-16 Asahi Kasei Chemicals Corp 低燃料膨潤性熱可塑性樹脂組成物
JP2011202136A (ja) * 2010-03-26 2011-10-13 Mitsui Chemicals Inc 熱可塑性エラストマーおよびその製法
JP2016501301A (ja) * 2012-12-04 2016-01-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 耐熱性炭化水素エラストマー組成物
WO2015083819A1 (ja) * 2013-12-06 2015-06-11 三井化学株式会社 ポリアミド系熱可塑性エラストマー組成物及びその成形品

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172829A (ja) * 2018-03-28 2019-10-10 三井化学株式会社 ポリアミド系熱可塑性エラストマー組成物、成形体および中空成形体
JP7289615B2 (ja) 2018-03-28 2023-06-12 三井化学株式会社 ポリアミド系熱可塑性エラストマー組成物、成形体および中空成形体
JP2019206668A (ja) * 2018-05-30 2019-12-05 三井化学株式会社 樹脂組成物および成形体、ならびに樹脂組成物の製造方法
JP7061513B2 (ja) 2018-05-30 2022-04-28 三井化学株式会社 樹脂組成物および成形体、ならびに樹脂組成物の製造方法

Also Published As

Publication number Publication date
JPWO2018084256A1 (ja) 2019-06-24
JP6876715B2 (ja) 2021-05-26

Similar Documents

Publication Publication Date Title
KR101777985B1 (ko) 폴리아미드계 열가소성 엘라스토머 조성물 및 그 성형품
EP2121842B1 (en) Polyamide resin composition having superior extensibility and flexing fatigue and pneumatic tire and hose using the same
CN1190316C (zh) 用于输送流体的基于聚酰胺和evoh的多层管
JP6721576B2 (ja) 改良された機械特性を有する熱可塑性ポリマー組成物
JP6603347B2 (ja) 耐熱性炭化水素エラストマー組成物
JP6603346B2 (ja) 耐熱性炭化水素エラストマー組成物
WO2018084256A1 (ja) ポリアミド系熱可塑性エラストマー組成物、成形体及び中空成形体
JP5789876B2 (ja) 熱可塑性弾性組成物
JP2019059059A (ja) 積層構造体
CN1214349A (zh) 共聚酰胺和聚酰胺的组合物、制造方法及用途
JP2019163360A (ja) ポリアミド系熱可塑性エラストマー組成物、成形体および中空成形体
JP2014515706A (ja) 熱可塑性多層チューブ及び製造方法
JP2012007092A (ja) 熱可塑性エラストマー組成物およびその製造方法
JP7289615B2 (ja) ポリアミド系熱可塑性エラストマー組成物、成形体および中空成形体
JP7061513B2 (ja) 樹脂組成物および成形体、ならびに樹脂組成物の製造方法
JP2019059058A (ja) 積層構造体
KR20210056335A (ko) 열가소성 수지 조성물
JP7197056B1 (ja) ポリフェニレンスルフィド樹脂組成物、成形品および成形品の製造方法
JP2024066018A (ja) 多層成形品
KR20070039571A (ko) 충격 개질된 폴리아미드 조성물
WO2015084336A1 (en) Heat resistant ethylene vinyl acetate copolymer composition and process for its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018549082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867559

Country of ref document: EP

Kind code of ref document: A1