WO2018083832A1 - 硬化性樹脂組成物、硬化物、及び半導体装置 - Google Patents

硬化性樹脂組成物、硬化物、及び半導体装置 Download PDF

Info

Publication number
WO2018083832A1
WO2018083832A1 PCT/JP2017/022176 JP2017022176W WO2018083832A1 WO 2018083832 A1 WO2018083832 A1 WO 2018083832A1 JP 2017022176 W JP2017022176 W JP 2017022176W WO 2018083832 A1 WO2018083832 A1 WO 2018083832A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
curable resin
polyorganosiloxane
polysiloxane
Prior art date
Application number
PCT/JP2017/022176
Other languages
English (en)
French (fr)
Inventor
中川泰伸
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2018083832A1 publication Critical patent/WO2018083832A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a curable resin composition, a cured product of the curable resin composition, and a semiconductor device obtained by sealing a semiconductor element using the curable resin composition as a sealant.
  • the sealant in the optical semiconductor device has heat resistance capable of withstanding the heat generated by the semiconductor element when cured, and does not increase in hardness even under high temperature conditions and can maintain flexibility. Desired.
  • a methylsilicone resin having excellent heat resistance as described in Patent Document 1 is mainly used particularly for lighting applications.
  • the methyl silicone resin has a problem in that methyl silicone deteriorates, loses flexibility, increases in hardness, and becomes brittle under a high temperature condition of about 200 ° C.
  • Patent Documents 2 and 3 a carboxylate of a rare earth compound such as cerium was added to the hydrosilylation-curable silicone rubber composition.
  • a carboxylate of a rare earth compound such as cerium was added to the hydrosilylation-curable silicone rubber composition.
  • deterioration of methylsilicone is suppressed by adding a carboxylate of a rare earth compound such as cerium, and it does not become hard even at a high temperature of about 200 ° C. and can maintain flexibility and has high transparency. It has been reported that a cured product can be obtained.
  • the object of the present invention is to have good solubility in silicone resin even when the amount of rare earth compound added is increased, and to have good transparency and heat resistance when cured, especially in a high temperature condition of about 250 ° C. It is providing the curable resin composition which can form the hardened
  • cured material which can suppress a raise and embrittlement. Another object of the present invention is to provide a cured product having good transparency and excellent heat resistance, and in particular, the hardness does not increase even under a high temperature condition of about 250 ° C., and the flexibility can be maintained. Furthermore, another object of the present invention is to provide a semiconductor device (particularly an optical semiconductor) excellent in quality and durability, in which a semiconductor element (particularly an optical semiconductor element) is encapsulated using the curable resin composition as a sealing agent. Device).
  • the present inventor has disclosed a specific polysiloxane having two or more alkenyl groups in a molecule, a specific polysiloxane having two or more hydrosilyl groups in the molecule, and a specific amount of a specific rare earth compound. According to the composition, it was found that the solubility of the rare earth compound in the silicone resin is good, and by curing it, a cured product that does not increase in hardness even under a high temperature condition of about 250 ° C. can be formed, thereby completing the present invention.
  • the present invention is selected from the group consisting of a polyorganosiloxane (A1) having two or more alkenyl groups in the molecule and a polyorganosiloxysilalkylene (A2) having two or more alkenyl groups in the molecule.
  • a polysiloxane (B1) having two or more hydrosilyl groups in the molecule, and a polyorganosiloxysilalkylene (B2) having two or more hydrosilyl groups in the molecule A polysiloxane (B) which is at least one selected from the group consisting of: a rare earth compound (C) represented by the following formula (1): [M (L1) (L2) (L3)] (1) [In Formula (1), M is a rare earth metal atom, and L1, L2, and L3 are the same or different, and the following Formula (1a) R 31 COCHR 32 COR 33 (1a) (In the formula (1a), R 31 represents a linear or branched alkyl group having 1 to 30 carbon atoms which may contain a halogen atom as a substituent, and R 32 represents a hydrogen atom or a substituent.
  • R 31 represents a linear or branched alkyl group having 1 to 30 carbon atoms which may contain a halogen atom as a substituent
  • R 33 represents a linear or branched alkyl group having 1 to 30 carbon atoms which may contain a halogen atom
  • aromatic represents a heterocyclic group, or a group —OR 34.
  • R 34 represents a linear or branched alkyl group having 1 to 30 carbon atoms which may contain a halogen atom as a substituent, R 31 and R 32 may be bonded to each other to form a ring, and R 32 and R 33 may be bonded to each other to form a ring)
  • a curable resin composition having a rare earth metal atom content of 30 to 500 ppm based on the total amount of the curable resin composition.
  • the rare earth metal atom is preferably at least one selected from the group consisting of cerium, lanthanum, praseodymium, neodymium, samarium, and yttrium.
  • the curable resin composition of the present invention preferably further contains a hydrosilylation catalyst (E).
  • the curable resin composition of the present invention is represented by the polyorganosiloxane represented by the following average unit formula (a-1) and the following average unit formula (a-2) as the polysiloxane (A).
  • R 1 s are the same or different and each represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, or an alkenyl group having 2 to 8 carbon atoms.
  • R 1 represents an alkenyl group and is in a range of 2 or more in the molecule.
  • X 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • a1, a2, a3, a4 and a5 are respectively 1> a1 ⁇ 0, 1> a2 ⁇ 0, 1>a3> 0, 1> a4 ⁇ 0, 0.05 ⁇ a5 ⁇ 0, a1 + a4> 0,
  • a numerical value satisfying a1 + a2 + a3 + a4 + a5 1]
  • R 2 s are the same or different and each represents an alkyl group having 1 to 10 carbon
  • R 2 is an alkenyl group and is in a range of 2 or more in the molecule.
  • R A is the same or different and represents an alkylene group having 1 to 14 carbon atoms.
  • X 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • b1, b2, b3, b4, b5, and b6 are 1> b1 ⁇ 0, 1>b2> 0, 1> b3 ⁇ 0, 1> b4 ⁇ 0, 0.7>b5> 0, 0, respectively.
  • polysiloxane (D) that is at least one selected from the group consisting of:
  • the curable resin composition of the present invention includes, as the polysiloxane (D), a polyorganosiloxane represented by the following average unit formula (a-1) ′, and the following average unit formula (a-1) ′ ′: Polyorganosiloxysilalkylene average unit formula (a-1) ′ represented by: (R 1 SiO 3/2 ) a1 (R 1 3 SiO 1/2 ) a3 (X 1 O 1/2 ) a5 [In the average unit formula (a-1) ′, R 1 s are the same or different and are the same as defined above. X 1 is the same as described above.
  • R 1 and X 1 are the same as defined above.
  • the polyorganosiloxane represented by the average unit formula (a-1) ′ is preferably silsesquioxane.
  • the content of the polysiloxane (D) is preferably 1 to 70% by weight with respect to the total amount of the polysiloxane (A).
  • the curable resin composition of the present invention is preferably a sealant.
  • the curable resin composition of the present invention is preferably a lens-forming resin composition.
  • the present invention also provides a cured product of the curable resin composition.
  • the cured product of the present invention preferably has a light transmittance of 80% or more at a wavelength of 450 nm when the thickness is 3 mm.
  • this invention is a semiconductor device which has a semiconductor element and the sealing material which seals the said semiconductor element, Comprising:
  • the said sealing material is a hardened
  • the semiconductor device of the present invention is a semiconductor device having a semiconductor element and a lens, and the lens is preferably a cured product of the curable resin composition.
  • the semiconductor device of the present invention is a semiconductor device having a semiconductor element, a sealing material for sealing the semiconductor element, and a lens, and the sealing material is a cured product of the curable resin composition.
  • the lens is preferably a cured product of the curable resin composition.
  • the semiconductor device of the present invention is preferably an optical semiconductor device.
  • the curable resin composition of the present invention has the above-described configuration, even if the amount of rare earth compound added is increased, the solubility in the silicone resin is good, and by curing, the transparency is good and the heat resistance is excellent.
  • a cured product that can suppress an increase in hardness and embrittlement can be formed even under a high temperature condition of about 250 ° C.
  • the cured product of the present invention has good transparency and excellent heat resistance. In particular, the hardness does not increase even under a high temperature condition of about 250 ° C., and the flexibility can be maintained.
  • the semiconductor device of the present invention is excellent in quality and durability.
  • FIG. 1 It is the schematic which shows one Embodiment of the optical semiconductor device by which the optical semiconductor element was sealed with the hardened
  • the left figure (a) is a perspective view
  • the right figure (b) is a sectional view.
  • the curable resin composition of the present invention comprises a group consisting of a polyorganosiloxane (A1) having two or more alkenyl groups in the molecule and a polyorganosiloxysilalkylene (A2) having two or more alkenyl groups in the molecule.
  • the curable resin composition of the present invention includes, in addition to the above-described essential components, other components such as a hydrosilylation catalyst (E), a curing retarder (F), and a silane coupling agent (G) described below. You may go out.
  • other components such as a hydrosilylation catalyst (E), a curing retarder (F), and a silane coupling agent (G) described below. You may go out.
  • the polysiloxane (A) is a polysiloxane having two or more alkenyl groups in the molecule. That is, the polysiloxane (A) is a polysiloxane having an alkenyl group, and a component that causes a hydrosilylation reaction with a component having a hydrosilyl group (for example, polysiloxane (B) described later).
  • the polysiloxane (A) includes a polyorganosiloxane (A1) having two or more alkenyl groups in the molecule (sometimes simply referred to as “polyorganosiloxane (A1)”) and two or more alkenyls in the molecule. And at least one selected from the group consisting of polyorganosiloxysilalkylene (A2) having a group (sometimes simply referred to as “polyorganosiloxysilalkylene (A2)”).
  • the polyorganosiloxysilalkylene (A2) is, in addition to —Si—O—Si— (siloxane bond) as a main chain, —Si—R A —Si— (silalkylene bond: R A represents an alkylene group). ) Containing polyorganosiloxane. And the said polyorganosiloxane (A1) is a polyorganosiloxane which does not contain the said silalkylene bond as a principal chain.
  • Polyorganosiloxane (A1)) examples include those having a linear, partially branched linear, branched, and network molecular structure.
  • polyorganosiloxane (A1) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • two or more polyorganosiloxanes (A1) having different molecular structures can be used in combination, for example, a linear polyorganosiloxane (A1) and a branched polyorganosiloxane (A1) Can also be used together.
  • alkenyl group having the polyorganosiloxane (A1) in the molecule examples include substituted or unsubstituted alkenyl groups such as vinyl group, allyl group, butenyl group, pentenyl group, and hexenyl group.
  • substituent examples include a halogen atom, a hydroxy group, and a carboxy group.
  • alkenyl group a vinyl group is preferable.
  • the polyorganosiloxane (A1) may have only one alkenyl group or may have two or more alkenyl groups.
  • the alkenyl group of the polyorganosiloxane (A1) is preferably bonded to a silicon atom.
  • Examples of the group other than the alkenyl group that the polyorganosiloxane (A1) has include a hydrogen atom and an organic group.
  • Examples of the organic group include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group) and a cycloalkyl group (for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group).
  • aryl group eg, phenyl group, tolyl group, xylyl group, naphthyl group, etc.
  • cycloalkyl-alkyl group eg, cyclohexylmethyl group, methylcyclohexyl group, etc.
  • aralkyl group eg, Benzyl group, phenethyl group, etc.
  • halogenated hydrocarbon groups in which one or more hydrogen atoms in the hydrocarbon group are substituted with halogen atoms (for example, chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoro) Monovalent substituted or unsubstituted hydrocarbon groups such as halogenated alkyl groups such as propyl groups) And the like.
  • the “group bonded to a silicon atom” usually means a group not containing a silicon atom.
  • the polyorganosiloxane (A1) may have a hydroxy group or an alkoxy group as a group bonded to a silicon atom.
  • the polyorganosiloxane (A1) (polysiloxane (A)) is preferably a polyorganosiloxane represented by the following average unit formula (a-1).
  • the polyorganosiloxane represented by the average unit formula (a-1) is one type of polysiloxane (D) described later.
  • R 1 s are the same or different and each represents an alkyl group having 1 to 10 carbon atoms (preferably an alkyl group having 1 to 6 carbon atoms), an aryl group having 6 to 14 carbon atoms ( Preferably a phenyl group) or an alkenyl group having 2 to 8 carbon atoms (preferably an alkenyl group having 2 to 6 carbon atoms).
  • R 1 is an alkenyl group (preferably a vinyl group) and is in a range of 2 or more in the molecule.
  • X 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms (preferably an alkyl group having 1 to 4 carbon atoms, particularly preferably a methyl group).
  • a1 is 0 or a positive number less than 1 (1> a1 ⁇ 0)
  • a2 is 0 or a positive number less than 1 (1> a2 ⁇ 0)
  • a3 is less than 1
  • a4 is 0 or a positive number less than 1 (1> a4 ⁇ 0)
  • a5 is 0 or a positive number of 0.05 or less (0.05 ⁇ a5 ⁇ 0)
  • the polyorganosiloxane (A1) is preferably a polyorganosiloxane represented by the following average unit formula (a-1) ′ or a polyorganosiloxane represented by the average unit formula (a-1) ′′.
  • the polyorganosiloxane represented by the average unit formula (a-1) ′ is preferably silsesquioxane.
  • the polyorganosiloxane represented by the average unit formula (a-1) ′ and the polyorganosiloxane represented by the average unit formula (a-1) ′′ represented by the average unit formula (a-1) Siloxane is one of the polyorganosiloxane represented by the average unit formula (a-1) and the polysiloxane (D) described later.
  • Average unit formula (a-1) ' (R 1 SiO 3/2 ) a1 (R 1 3 SiO 1/2 ) a3 (X 1 O 1/2 ) a5
  • R 1 is the same or different and is the same as described above.
  • X 1 is the same as described above.
  • R 1 and X 1 are the same as described above.
  • polyorganosiloxane (A1) is a linear polyorganosiloxane having two or more alkenyl groups in the molecule.
  • alkenyl group described above can be given as examples of the alkenyl group of the linear polyorganosiloxane, and among them, a vinyl group is preferable.
  • Examples of the group bonded to the silicon atom other than the alkenyl group in the linear polyorganosiloxane include, for example, a monovalent substituted or unsubstituted hydrocarbon group. Among them, an alkyl group (particularly a methyl group), Aryl groups (particularly phenyl groups) are preferred.
  • the ratio of alkenyl groups to the total amount of groups bonded to silicon atoms (100 mol%) is preferably 0.1 to 40 mol%. Further, the ratio of alkyl groups (particularly methyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is preferably 1 to 20 mol%. Further, the ratio of aryl groups (particularly phenyl groups) to the total amount of groups bonded to silicon atoms (100 mol%) is preferably 30 to 90 mol%.
  • the linear polyorganosiloxane has a ratio of aryl groups (particularly phenyl groups) to 40 mol% or more (for example, 45 to 80 mol%) with respect to the total amount (100 mol%) of groups bonded to silicon atoms.
  • cured material to improve more.
  • the ratio of alkyl groups (particularly methyl groups) to 90 mol% or more (for example, 95 to 99 mol%) relative to the total amount (100 mol%) of groups bonded to silicon atoms is used, There is a tendency that the thermal shock resistance of is improved.
  • the linear polyorganosiloxane is represented, for example, by the following formula (I-1).
  • R 11 are the same or different and each represents a monovalent substituted or unsubstituted hydrocarbon group. However, at least two of R 11 are alkenyl groups.
  • m1 is an integer of 5 to 2000]
  • polyorganosiloxane (A1) is a branched polyorganosiloxane having two or more alkenyl groups in the molecule and having a siloxane unit (T unit) represented by RSiO 3/2. It is done.
  • R is a monovalent substituted or unsubstituted hydrocarbon group.
  • Specific examples of the alkenyl group described above can be given as examples of the alkenyl group of the branched polyorganosiloxane. Among them, a vinyl group is preferable. In addition, you may have only 1 type of alkenyl group, and you may have 2 or more types of alkenyl groups.
  • Examples of the group bonded to the silicon atom other than the alkenyl group in the branched polyorganosiloxane include the above-mentioned monovalent substituted or unsubstituted hydrocarbon group, and among them, an alkyl group (particularly a methyl group). ) Or an aryl group (particularly a phenyl group). Furthermore, as R in the T unit, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.
  • the ratio of alkenyl groups to the total amount of groups bonded to silicon atoms (100 mol%) is preferably 0.1 to 40 mol% from the viewpoint of curability of the curable resin composition.
  • the ratio of alkyl groups (particularly methyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is preferably 10 to 40 mol%.
  • the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is preferably 5 to 70 mol%.
  • the ratio of aryl groups (especially phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is 40 mol% or more (preferably 45 to 60 mol%).
  • cured material to improve more.
  • a cured product can be obtained by using a compound in which the ratio of alkyl groups (particularly methyl groups) to 50 mol% or more (preferably 60 to 99 mol%) with respect to the total amount (100 mol%) of groups bonded to silicon atoms is used. There is a tendency that the thermal shock resistance of is improved.
  • the branched polyorganosiloxane can be represented by the above average unit formula in which a1 is a positive number.
  • a2 / a1 is a number from 0 to 10
  • a3 / a1 is a number from 0 to 0.5
  • a4 / (a1 + a2 + a3 + a4) is a number from 0 to 0.3
  • a5 / (a1 + a2 + a3 + a4) is from 0 to 0.4.
  • the molecular weight of the branched polyorganosiloxane is preferably 500 to 20,000, more preferably 700 to 6000, based on gel permeation chromatography (GPC) in terms of standard polystyrene.
  • a1 and a2 are 0, the following average unit formula X 1 is a hydrogen atom: (R 1a 2 R 1b SiO 1/2 ) a6 (R 1a 3 SiO 1/2 ) a7 (SiO 4/2 ) a8 (HO 1/2 ) a9
  • X 1 is a hydrogen atom: (R 1a 2 R 1b SiO 1/2 ) a6 (R 1a 3 SiO 1/2 ) a7 (SiO 4/2 ) a8 (HO 1/2 ) a9
  • R 1a is the same or different and represents a C 1-10 alkyl group, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, and a cyclohexyl group. Among them, a methyl group is preferable.
  • R 1b is the same or different and represents an alkenyl group, and among them, a vinyl group is preferable.
  • a7 may be 0.
  • a6 / (a6 + a7 + a8) is preferably 0.2 to 0.3.
  • a8 / (a6 + a7 + a8) is preferably 0.55 to 0.60.
  • a9 / (a6 + a7 + a8) is preferably from 0.01 to 0.025 from the viewpoint of the adhesiveness and mechanical strength of the cured product.
  • examples of such polyorganosiloxanes include polyorganosiloxanes composed of SiO 4/2 units and (CH 3 ) 2 (CH 2 ⁇ CH) SiO 1/2 units, SiO 4/2 units and (CH 3 ) Polyorganosiloxane composed of 2 (CH 2 ⁇ CH) SiO 1/2 units and (CH 3 ) 3 SiO 1/2 units.
  • the polyorganosiloxysilalkylene (A2) has two or more alkenyl groups in the molecule, and in addition to the siloxane bond as the main chain, the silalkylene bond —Si—R A —Si— (sil It is a polyorganosiloxane containing an alkylene bond: R A represents an alkylene group. That is, the polyorganosiloxysilalkylene (A2) does not include a polyorganosiloxane having no silalkylene bond such as the above-mentioned polyorganosiloxane (A1).
  • the curable resin composition of the present invention contains such a polyorganosiloxysilalkylene (A2), a cured product excellent in barrier properties against thermal corrosive gas and thermal shock resistance can be formed.
  • Examples of the alkylene group (R A ) in the silalkylene bond of the polyorganosiloxysilalkylene (A2) in the molecule include linear or branched C 1-12 alkylene such as methylene group, ethylene group and propylene group. A C 2-4 alkylene group (particularly an ethylene group) is preferable.
  • the polyorganosiloxysilalkylene (A2) is less likely to produce a low molecular weight ring in the production process than the polyorganosiloxane (A1), and is not easily decomposed by heating or the like to produce a silanol group (—SiOH).
  • silanol group —SiOH
  • polyorganosiloxysilalkylene (A2) examples include those having a linear, partially branched linear, branched, or network molecular structure.
  • polyorganosiloxysil alkylene (A2) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • two or more kinds of polyorganosiloxysilalkylene (A2) having different molecular structures can be used in combination, for example, linear polyorganosiloxysilalkylene (A2) and branched polyorganosiloxy.
  • Silalkylene (A2) can also be used in combination.
  • Examples of the alkenyl group that the polyorganosiloxysilalkylene (A2) has in the molecule include the above-mentioned substituted or unsubstituted alkenyl groups, and among them, a vinyl group is preferable.
  • the polyorganosiloxysilalkylene (A2) may have only one alkenyl group or may have two or more alkenyl groups.
  • the alkenyl group of the polyorganosiloxysilalkylene (A2) is preferably bonded to a silicon atom.
  • Examples of the group bonded to the silicon atom other than the alkenyl group of the polyorganosiloxysilalkylene (A2) include a hydrogen atom and an organic group.
  • Examples of the organic group include the above-described organic groups (for example, substituted or unsubstituted hydrocarbons such as an alkyl group, a cycloalkyl group, an aryl group, a cycloalkyl-alkyl group, an aralkyl group, and a halogenated hydrocarbon group). It is done.
  • the polyorganosiloxysilalkylene (A2) may have a hydroxy group or an alkoxy group as a group bonded to a silicon atom.
  • polyorganosiloxysilalkylene (A2) polyorganosiloxysilalkylene represented by the following average unit formula (a-2) is preferable.
  • the polyorganosiloxysilalkylene represented by the average unit formula (a-2) is one kind of polysiloxane (D) described later.
  • R 2 is the same or different and is an alkyl group having 1 to 10 carbon atoms (preferably an alkyl group having 1 to 6 carbon atoms) or an aryl group having 6 to 14 carbon atoms ( Preferably a phenyl group) or an alkenyl group having 2 to 8 carbon atoms (preferably an alkenyl group having 2 to 6 carbon atoms).
  • R 2 is an alkenyl group (preferably a vinyl group) and is in a range of 2 or more in the molecule.
  • R A is the same or different and represents an alkylene group having 1 to 14 carbon atoms (preferably an alkylene group having 1 to 8 carbon atoms).
  • X 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms (preferably an alkyl group having 1 to 4 carbon atoms, particularly preferably a methyl group).
  • b1 is 0 or a positive number less than 1 (1> b1 ⁇ 0)
  • b2 is a positive number less than 1 (1>b2> 0)
  • b3 is a positive number less than 1 (1>b3> 0)
  • b4 is 0 or a positive number less than 1 (1> b4 ⁇ 0)
  • b5 is a positive number of 0.07 or less (0.7 ⁇ b5> 0)
  • b6 is 0 or 0,.
  • a positive number of 0.05 or less (0.05 ⁇ b6 ⁇ 0)
  • the sum of b3 and b4 is a positive number (b3 + b4> 0)
  • examples of the polyorganosiloxysilalkylene (A2) include polyorganosiloxysilalkylene having a structure represented by the following formula (I-2).
  • R 12 are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • R 12 include the specific examples of the monovalent substituted or unsubstituted hydrocarbon group described above (for example, an alkyl group, an aryl group, an aralkyl group, a halogenated hydrocarbon group, etc.) and the above-described alkenyl group.
  • at least two of R 12 are alkenyl groups (particularly vinyl groups).
  • R 12 other than the alkenyl group is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).
  • R A represents an alkylene group as described above, and among them, an alkylene group having 2 to 4 carbon atoms (particularly an ethylene group) is preferable.
  • R A may be the same and may differ.
  • r1 represents an integer of 1 or more (for example, 1 to 100).
  • r1 is an integer greater than or equal to 2
  • subjected to r1 may be the same respectively, and may differ.
  • r2 represents an integer of 1 or more (eg, 1 to 400).
  • r2 is an integer greater than or equal to 2
  • subjected r2 may be respectively the same, and may differ.
  • r3 represents 0 or an integer of 1 or more (for example, 0 to 50).
  • r3 is an integer of 2 or more, the structures in parentheses to which r3 is attached may be the same or different.
  • r4 represents 0 or an integer of 1 or more (for example, 0 to 50).
  • r4 is an integer of 2 or more, the structures in parentheses to which r4 is attached may be the same or different.
  • r5 represents 0 or an integer of 1 or more (for example, 0 to 50).
  • r5 is an integer of 2 or more, the structures in parentheses to which r5 is attached may be the same or different.
  • each structural unit in the above formula (I-2) may be a random type or a block type. Further, the order of arrangement of each structural unit is not particularly limited.
  • the terminal structure of the polyorganosiloxysilalkylene having the structure represented by the formula (I-2) includes, for example, a silanol group, an alkoxysilyl group, a trialkylsilyl group (for example, a structure in parentheses attached with r5, trimethylsilyl Group) and the like.
  • Various groups such as an alkenyl group and a hydrosilyl group may be introduced at the terminal of the polyorganosiloxysilalkylene.
  • the polyorganosiloxysilalkylene (A2) can be produced by a known or commonly used method, and the production method can be produced by, for example, the method described in JP2012-140617A.
  • a product containing polyorganosiloxysilalkylene (A2) for example, trade names “ETERLED GD1130”, “ETERLED GD1125”, “ETERLED GS5145”, “ETERLED GS5135”, “ETERLED GS5120” (all are Choko Material Industries ( Etc.) are available.
  • polysiloxane (A) in the curable resin composition of this invention, can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the property of the polysiloxane (A) may be liquid or solid at 25 ° C.
  • polysiloxane (A) should just have two or more alkenyl groups in a molecule
  • the polysiloxane (A) may be a polysiloxane (B) described later.
  • the content (blending amount) (total amount) of the polysiloxane (A) in the curable resin composition of the present invention is preferably 50 to 99% by weight with respect to the total amount (100% by weight) of the curable resin composition, More preferred is 60 to 97% by weight, still more preferred is 70 to 95% by weight. By setting the content to 50% by weight or more, the toughness and transparency of the cured product tend to be further improved.
  • polysiloxane (A) mentioned later is contained in polysiloxane (A).
  • polysiloxane (A) in the curable resin composition of the present invention only polyorganosiloxane (A1) can be used, or only polyorganosiloxysilalkylene (A2) can be used. Polyorganosiloxane (A1) and polyorganosiloxysilalkylene (A2) can also be used in combination. When the polyorganosiloxane (A1) and the polyorganosiloxysilalkylene (A2) are used in combination, these ratios are not particularly limited and can be appropriately set.
  • the polysiloxane (D) is selected from the group consisting of the polyorganosiloxane represented by the average unit formula (a-1) and the polyorganosiloxysilalkylene represented by the average unit formula (a-2). At least one.
  • the polysiloxane (D) is one of the polysiloxanes (A), and is a polysiloxane having a branched chain structure.
  • the polysiloxane (D) is preferably used in combination with the polysiloxane (A).
  • the polysiloxane (D) is preferably a polyorganosiloxane represented by the average unit formula (a-1) ′ or a polyorganosiloxane represented by the average unit formula (a-1) ′′.
  • polysiloxane (D) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the total content of the polysiloxane (D) is, for example, 1 to 70% by weight, preferably 3 to 50% by weight, more preferably 5 to 40% by weight, based on the total amount of the polysiloxane (A). Preferably, it is 8 to 30% by weight.
  • the total content of the polysiloxane (D) is, for example, 1 to 60% by weight, preferably 2 to 50% by weight, more preferably 3 to 40% by weight, based on the total amount of the curable resin composition. Preferably, it is 5 to 30% by weight.
  • the polysiloxane (B) which is an essential component of the curable resin composition of the present invention, is a polyorganosiloxane having two or more hydrosilyl groups (Si—H) in the molecule. That is, the polysiloxane (B) is a polysiloxane having a hydrosilyl group, and is a component that causes a hydrosilylation reaction with a component having an alkenyl group (for example, polysiloxane (A)).
  • the polysiloxane (B) is composed of a polyorganosiloxane (B1) having two or more hydrosilyl groups in the molecule (sometimes simply referred to as “polyorganosiloxane (B1)”) and two or more hydrosilyl groups in the molecule.
  • the polyorganosiloxysilalkylene (B2) is, in addition to —Si—O—Si— (siloxane bond) as a main chain, —Si—R A —Si— (silalkylene bond: R A represents an alkylene group).
  • R A represents an alkylene group.
  • polyorganosiloxane (B1) in this specification is polyorganosiloxane which does not contain the said silalkylene bond as a principal chain.
  • examples of R A (alkylene group) in the silalkylene bond include a linear or branched C 1-12 alkylene group as described above, and preferably a linear or branched C 2. -4 alkylene group (especially ethylene group).
  • Polyorganosiloxane (B1)) examples include those having a linear, partially branched linear, branched, and network molecular structure.
  • polyorganosiloxane (B1) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • two or more polyorganosiloxanes (B1) having different molecular structures can be used in combination, for example, a linear polyorganosiloxane (B1) and a branched polyorganosiloxane (B1). Can also be used together.
  • groups other than hydrogen atoms are, for example, the above-mentioned monovalent substituted or unsubstituted hydrocarbon groups, more specifically, alkyl groups, aryl groups, aralkyls. Group, halogenated hydrocarbon group and the like. Of these, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.
  • the polyorganosiloxane (B1) may or may not have an alkenyl group (for example, a vinyl group) as a group bonded to a silicon atom other than a hydrogen atom.
  • the property of the polyorganosiloxane (B1) may be liquid or solid. Among them, liquid is preferable, and liquid having a viscosity at 25 ° C. of 0.1 to 1 billion mPa ⁇ s is more preferable.
  • the polyorganosiloxane (B1) is preferably a polyorganosiloxane represented by the following average unit formula (B-1).
  • R 3 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • the hydrogen group for example, an alkyl group, an aryl group, an aralkyl group, a halogenated alkyl group, and the like
  • the above-described alkenyl group can be given.
  • a part of R 3 is a hydrogen atom (hydrogen atom constituting a hydrosilyl group), and the ratio thereof is controlled in a range where two or more hydrosilyl groups are present in the molecule.
  • the ratio of hydrogen atoms to the total amount of R 3 (100 mol%) is preferably 0.1 to 40 mol%.
  • R 3 other than a hydrogen atom is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).
  • X 3 represents a hydrogen atom or an alkyl group.
  • alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group is particularly preferable.
  • c1 is 0 or a positive number
  • c2 is 0 or a positive number
  • c3 is 0 or a positive number
  • c4 is 0 or a positive number
  • c5 is 0 or a positive number
  • the sum (c1 + c2 + c3) of c1 to c3 is a positive number.
  • polyorganosiloxane (B1) includes a linear polyorganosiloxane having two or more hydrosilyl groups in the molecule.
  • group bonded to a silicon atom other than a hydrogen atom in the linear polyorganosiloxane include the above-mentioned monovalent substituted or unsubstituted hydrocarbon group and the above-mentioned alkenyl group.
  • an alkyl group In particular, a methyl group
  • an aryl group particularly a phenyl group
  • the ratio of hydrogen atoms (hydrogen atoms bonded to silicon atoms) to the total amount (100 mol%) of groups bonded to silicon atoms is preferably 0.1 to 40 mol%. Further, the ratio of alkyl groups (particularly methyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is preferably 20 to 99 mol%. Further, the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is preferably 40 to 80 mol%.
  • the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is 40 mol% or more (preferably 45 to 70 mol%).
  • cured material to improve more.
  • a cured product can be obtained by using a compound in which the ratio of alkyl groups (particularly methyl groups) is 90 mol% or more (preferably 95 to 99 mol%) with respect to the total amount (100 mol%) of groups bonded to silicon atoms.
  • the thermal shock resistance of is improved.
  • the linear polyorganosiloxane is represented, for example, by the following formula (II-1).
  • R 21 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. However, at least two of R 21 are hydrogen atoms.
  • m2 is an integer of 5 to 1000]
  • polyorganosiloxane (B1) is a branched polyorganosiloxane having two or more hydrosilyl groups in the molecule and having a siloxane unit (T unit) represented by RSiO 3/2.
  • R is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • Examples of the group bonded to a silicon atom other than a hydrogen atom in the branched polyorganosiloxane include the monovalent substituted or unsubstituted hydrocarbon group described above and the alkenyl group described above. (Especially methyl group) and aryl group (particularly phenyl group) are preferable.
  • examples of R in the T unit include a hydrogen atom, the above-described monovalent substituted or unsubstituted hydrocarbon group, and the above-described alkenyl group.
  • the ratio of the aryl group (particularly phenyl group) to the total amount of R in the T unit (100 mol%) is preferably 30 mol% or more from the viewpoint of the barrier property against the corrosive gas of the cured product.
  • the ratio of alkyl groups (particularly methyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is preferably 70 to 95 mol%. Furthermore, the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is preferably 10 to 70 mol%. In particular, in the branched polyorganosiloxane, the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is 10 mol% or more (for example, 10 to 70 mol%).
  • a cured product can be obtained by using a compound in which the ratio of alkyl groups (particularly methyl groups) is 50 mol% or more (for example, 50 to 90 mol%) with respect to the total amount (100 mol%) of groups bonded to silicon atoms. There is a tendency that the thermal shock resistance of is improved.
  • the branched polyorganosiloxane can be represented, for example, by the above average unit formula in which c1 is a positive number.
  • c2 / c1 is a number from 0 to 10
  • c3 / c1 is a number from 0 to 0.5
  • c4 / (c1 + c2 + c3 + c4) is a number from 0 to 0.3
  • c5 / (c1 + c2 + c3 + c4) is from 0 to 0.4.
  • the molecular weight of the branched polyorganosiloxane is preferably 300 to 10,000, more preferably 500 to 3,000, based on gel permeation chromatography (GPC) in terms of standard polystyrene.
  • the polyorganosiloxysilalkylene (B2) is a polyorganosiloxane having two or more hydrosilyl groups in the molecule and containing a silalkylene bond as a main chain in addition to a siloxane bond.
  • the alkylene group in the silalkylene bond is preferably, for example, an alkylene group having 2 to 4 carbon atoms (particularly an ethylene group).
  • the polyorganosiloxysilalkylene (B2) is less likely to form a low molecular weight ring in the production process than the polyorganosiloxane (B1), and is not easily decomposed by heating or the like to produce a silanol group (—SiOH).
  • polyorganosiloxysilalkylene (B2) is used, the surface tackiness of the cured product of the curable resin composition is reduced, and it tends to be more difficult to yellow.
  • polyorganosiloxysilalkylene (B2) examples include those having a linear, partially branched linear, branched, or network molecular structure.
  • polyorgano siloxysil alkylene (B2) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • two or more kinds of polyorganosiloxysilalkylene (B2) having different molecular structures can be used in combination, for example, linear polyorganosiloxysilalkylene (B2) and branched polyorganosiloxy.
  • Silalkylene (B2) can also be used in combination.
  • Examples of the group bonded to the silicon atom other than the hydrogen atom that the polyorganosiloxysilalkylene (B2) has include an organic group.
  • an organic group the above-mentioned monovalent substituted or unsubstituted hydrocarbon group, the above-mentioned alkenyl group, etc. are mentioned, for example. Of these, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.
  • the polyorganosiloxane (B2) may or may not have an alkenyl group (for example, a vinyl group) as a group bonded to a silicon atom other than a hydrogen atom.
  • polyorganosiloxysilalkylene (B2) polyorganosiloxysilalkylene represented by the following average unit formula (B-2) is preferable.
  • R 4 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • the hydrogen group for example, an alkyl group, an aryl group, an aralkyl group, a halogenated alkyl group, and the like
  • the above-described alkenyl group, and the like can be given.
  • a part of R 4 is a hydrogen atom, and the ratio thereof is controlled within a range of 2 or more in the molecule.
  • the ratio of hydrogen atoms to the total amount of R 4 (100 mol%) is preferably 0.1 to 50 mol%, more preferably 5 to 35 mol%.
  • R 4 other than a hydrogen atom is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).
  • R A is an alkylene group as described above.
  • An ethylene group is particularly preferable.
  • X 4 is a hydrogen atom or an alkyl group as in X 3 above.
  • alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group is particularly preferable.
  • d1 is a positive number
  • d2 is a positive number
  • d3 is 0 or a positive number
  • d4 is 0 or a positive number
  • d5 is a positive number
  • d6 is 0 or a positive number.
  • d1 is preferably 1 to 50
  • d2 is preferably 1 to 50
  • d3 is preferably 0 to 10
  • d4 is preferably 0 to 5
  • d5 is preferably 1 to 30.
  • examples of the polyorganosiloxysilalkylene (B2) include polyorganosiloxysilalkylene having a structure represented by the following formula (II-2).
  • R 22 s are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • R 22 include a hydrogen atom, specific examples of the monovalent substituted or unsubstituted hydrocarbon group described above (eg, alkyl group, aryl group, aralkyl group, halogenated hydrocarbon group, etc.), and the above alkenyl group. It is done. However, at least two of R 22 are hydrogen atoms.
  • R 22 other than a hydrogen atom is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).
  • R A like R A in formula (I-2), an alkylene group, among them, C 2-4 alkylene group (particularly an ethylene group).
  • R A like R A in formula (I-2), an alkylene group, among them, C 2-4 alkylene group (particularly an ethylene group).
  • these may be the same and may differ.
  • q1 represents an integer of 1 or more (for example, 1 to 100).
  • q1 is an integer greater than or equal to 2
  • subjected q1 may each be the same, and may differ.
  • q2 represents an integer of 1 or more (for example, 1 to 400).
  • q2 is an integer greater than or equal to 2
  • subjected q2 may each be the same, and may differ.
  • q3 represents 0 or an integer of 1 or more (for example, 0 to 50).
  • q3 is an integer greater than or equal to 2
  • subjected q3 may be respectively the same, and may differ.
  • q4 represents 0 or an integer of 1 or more (for example, 0 to 50).
  • q4 is an integer greater than or equal to 2
  • subjected q4 may be the same respectively, and may differ.
  • q5 represents 0 or an integer of 1 or more (for example, 0 to 50).
  • q5 is an integer greater than or equal to 2
  • subjected q5 may each be the same, and may differ.
  • each structural unit in the above formula (II-2) may be a random type or a block type.
  • the terminal structure of the polyorganosiloxysilalkylene having the structure represented by the formula (II-2) is, for example, a silanol group, an alkoxysilyl group, a trialkylsilyl group (for example, a structure in parentheses attached with q5, trimethylsilyl Group) and the like.
  • Various groups such as a hydrosilyl group may be introduced at the terminal of the polyorganosiloxysilalkylene.
  • Polyorganosiloxysilalkylene (B2) can be produced by a known or commonly used method, and the production method can be produced by, for example, the method described in JP2012-140617A.
  • polysiloxane (B) in the curable resin composition of this invention, can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the property of the polysiloxane (B) may be liquid or solid at 25 ° C., for example.
  • the content (blending amount) of the polysiloxane (B) in the curable resin composition of the present invention is, for example, 1 to 100 parts by weight, preferably 1.5 parts per 100 parts by weight of the total amount of the polysiloxane (A). -50 parts by weight, more preferably 2-30 parts by weight, still more preferably 2.5-15 parts by weight.
  • polysiloxane (B) in the curable resin composition of the present invention only polyorganosiloxane (B1) can be used, or only polyorganosiloxysilalkylene (B2) can be used.
  • Polyorganosiloxane (B1) and polyorganosiloxysilalkylene (B2) can also be used in combination.
  • these ratios are not particularly limited and can be appropriately set.
  • the total content (total content) of the polysiloxane (A) and the polysiloxane (B) is preferably 60 to 99% by weight, more preferably 70 to 96% by weight, more preferably 70% to 96% by weight, based on the total amount of the curable resin composition. Preferably, it is 80 to 90% by weight.
  • the curable resin composition of the present invention may contain ladder-type silsesquioxane as an example of the silsesquioxane.
  • ladder-type silsesquioxane When the curable resin composition of the present invention contains a ladder-type silsesquioxane component, flexibility and thermal shock resistance tend to be remarkably improved.
  • the ladder-type silsesquioxane has one or more (preferably two or more) alkenyl groups and one or more (preferably 2 to 50) aryl groups in the molecule, and has a ladder structure —Si— Silsesquioxanes having an O—Si— skeleton can be used.
  • alkenyl group and aryl group that the ladder-type silsesquioxane has in the molecule examples include those exemplified above as examples of the alkenyl group and aryl group that the polyorganosiloxane (A1) has in the molecule.
  • the alkenyl group and aryl group of the ladder-type silsesquioxane are preferably groups bonded to a silicon atom.
  • Examples of the group bonded to the silicon atom other than the alkenyl group and aryl group that the ladder-type silsesquioxane has in the molecule include a hydrogen atom and an organic group.
  • Examples of the organic group include the monovalent substituted or unsubstituted hydrocarbon group described above. Of these, an alkyl group (particularly a methyl group) is preferable.
  • the ladder type silsesquioxane may have a hydroxy group or an alkoxy group as a group bonded to a silicon atom.
  • the ratio of the alkenyl group in the entire ladder-type silsesquioxane (100% by weight) is not particularly limited as long as it is controlled within a range in which one or more alkenyl groups are present in the molecule. 0.0% by weight, preferably 1.5 to 15.0% by weight.
  • the proportion of the aryl group is, for example, 1.0 to 50.0% by weight, preferably 5.0 to 25.0% by weight. By having an aryl group within the above-mentioned range, there is a tendency that a cured product excellent in various physical properties such as heat resistance, crack resistance and gas barrier properties is easily obtained.
  • the proportion of the alkyl group is, for example, 10.0 to 50.0% by weight, preferably 20.0 to 40.0% by weight.
  • the ratio of the alkenyl group, aryl group, and alkyl group in the ladder type silsesquioxane can be calculated by, for example, NMR spectrum (eg, 1 H-NMR spectrum) measurement.
  • Silsesquioxane is a polysiloxane having T unit (unit consisting of a trivalent group in which a silicon atom is bonded to three oxygen atoms) as a basic structural unit, and its basic structural formula (empirical formula) is RSiO. It is represented by 3/2 .
  • Examples of the structure of the Si—O—Si skeleton of silsesquioxane include a random structure, a cage structure, and a ladder structure.
  • the weight average molecular weight (Mw) of the ladder type silsesquioxane is preferably from 100 to 800,000, more preferably from 200 to 100,000, still more preferably from 300 to 10,000, particularly preferably from 500 to 8000, most preferably from 1700 to 7000. If the Mw is less than 100, the heat resistance of the cured product may decrease. On the other hand, if Mw exceeds 800,000, the compatibility with other components may decrease. In addition, said Mw is a value of standard polystyrene conversion by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the number average molecular weight (Mn) of the ladder type silsesquioxane is preferably 800 to 800,000, more preferably 150 to 100,000, still more preferably 250 to 10,000, particularly preferably 400 to 8000, and most preferably 1500 to 7000.
  • Mn is less than 80, the heat resistance of the cured product may be lowered.
  • Mn exceeds 800,000, the compatibility with other components may decrease.
  • said Mn is the value of standard polystyrene conversion by gel permeation chromatography (GPC).
  • the molecular weight dispersity (Mw / Mn) in terms of standard polystyrene as measured by gel permeation chromatography (GPC) of the ladder-type silsesquioxane is preferably 1.00 to 1.40, more preferably 1.35 or less. (For example, 1.05 to 1.35), more preferably 1.30 or less (for example, 1.10 to 1.30).
  • Mw / Mn molecular weight dispersity
  • the molecular weight dispersity exceeds 1.40 for example, low-molecular siloxane increases, and the adhesiveness of the cured product tends to decrease.
  • the molecular weight dispersity for example, by setting the molecular weight dispersity to 1.05 or more, it tends to be liquid at room temperature, and the handleability may be improved.
  • the number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight dispersity (Mw / Mn) can be measured by the following apparatus and conditions.
  • Alliance HPLC system 2695 manufactured by Waters
  • Refractive Index Detector 2414 manufactured by Waters
  • Column: Tskel GMH HR -M.2 manufactured by Tosoh Corporation
  • Guard column: Tskel guard column H HR L manufactured by Tosoh Corporation
  • the ladder-type silsesquioxane is preferably liquid at normal temperature (about 25 ° C.). More specifically, the viscosity at 23 ° C. is preferably 100 to 100,000 mPa ⁇ s, more preferably 500 to 10,000 mPa ⁇ s, and still more preferably 1000 to 8000 mPa ⁇ s. If the viscosity is less than 100 mPa ⁇ s, the heat resistance of the cured product may decrease. On the other hand, when the viscosity exceeds 100,000 mPa ⁇ s, it may be difficult to prepare and handle the curable resin composition. The viscosity at 23 ° C.
  • the ladder-type silsesquioxane can be used alone or in combination of two or more.
  • the curable resin composition of the present invention preferably contains ladder-type silsesquioxane from the viewpoint of the strength (resin strength), flexibility, and thermal shock resistance of the cured product.
  • the content (blending amount) of the ladder-type silsesquioxane in the curable resin composition of the present invention is such that the polysiloxane (A) and the polysiloxane
  • the amount is preferably 0.05 to 50 parts by weight, more preferably 0.1 to 45 parts by weight, and still more preferably 0.2 to 40 parts by weight with respect to 100 parts by weight of the siloxane (B).
  • the content (blending amount) of the ladder-type silsesquioxane is preferably 0.01 to 20% by weight, more preferably 0.05 to 15% with respect to the curable resin composition (100% by weight). % By weight, more preferably 0.1 to 10% by weight.
  • the curable resin composition of this invention contains the rare earth compound (C) (rare earth complex compound) represented by following formula (1).
  • C rare earth complex compound
  • M is a rare earth metal atom
  • L1, L2, and L3 are the same or different and are represented by the following formula (1a): ⁇ -diketone or ⁇ -ketoester anion or enolate anion Represents a ligand that is R 31 COCHR 32 COR 33 (1a)
  • R 31 represents a linear or branched alkyl group having 1 to 30 carbon atoms which may contain a halogen atom as a substituent.
  • the alkyl group having 1 to 30 carbon atoms include: An alkyl group having 1 to 20 carbon atoms is preferable, an alkyl group having 2 to 15 carbon atoms is more preferable, an alkyl group having 3 to 10 carbon atoms is more preferable, and an alkyl group having 3 to 10 carbon atoms having a branched chain is particularly preferable. .
  • Examples of the branched alkyl group having 3 to 10 carbon atoms include isopropyl group, isobutyl group, t-butyl group, s-butyl group, isopentyl group, t-pentyl group, isohexyl group, t-hexyl group, isoheptyl group, Examples thereof include t-heptyl group, isooctyl group, t-octyl group, 2-ethylhexyl group, isononyl group, isodecyl group and the like.
  • isopropyl, isobutyl, t-butyl, s-butyl, isopentyl, and t-pentyl are preferred.
  • substituents include a halogen atom, a hydroxy group, a carboxy group, etc., preferably a halogen atom, and examples of the halogen atom include a fluorine, chlorine, bromine, and iodine atom. preferable.
  • R 32 represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms which may contain a halogen atom as a substituent.
  • alkyl group having 1 to 30 carbon atoms include the above R 31
  • the groups mentioned are preferred, but the most preferred group for R 32 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the above substituents are the same as those mentioned for R 31 above.
  • R 33 represents an alkyl group having 1 to 30 carbon atoms, an aromatic heterocyclic group, or an —OR 34 group which may contain a halogen atom as a substituent.
  • R 34 represents an alkyl group having 1 to 30 carbon atoms which may contain a halogen atom as a substituent.
  • the group having 1 to 30 carbon atoms is preferably the same group as mentioned for R 31 above.
  • aromatic heterocyclic group examples include pyridyl group, pyrimidinyl group, pyrazolyl group, pyridazinyl group, pyrazinyl group, triazinyl group, furanyl group, thienyl group, indolyl group, oxazolyl group, thiazolyl group, imidazolyl group and the like. It is done.
  • the above substituents are the same as those mentioned for R 31 above.
  • R 31 and R 32 may combine with each other to form a ring, and R 32 and R 33 may combine with each other to form a ring.
  • the anion has the structure represented by the formula (1a ′), and the enolate anion is represented by the formula (1a ′′). It is a structure.
  • R 31 , R 32 and R 33 in formula (1a ′) and formula (1a ′′) are the same as above.
  • the rare earth compound (C) is, for example, a compound represented by the following formula (1 ′).
  • M represents a rare earth metal atom
  • R 35 represents an alkyl group having 1 to 30 carbon atoms which may contain a halogen atom as a substituent
  • R 36 represents a hydrogen atom, Or an alkyl group having 1 to 30 carbon atoms which may contain a halogen atom as a substituent
  • R 37 represents an alkyl group having 1 to 30 carbon atoms which may contain a halogen atom as a substituent, an aromatic complex
  • R 38 represents an alkyl group having 1 to 30 carbon atoms which may contain a halogen atom as a substituent.
  • R 35 and R 36 may combine with each other to form a ring, and R 36 and R 37 may combine with each other to form a ring]
  • the rare earth metal atom in M is as described above, and examples of the alkyl group having 1 to 30 carbon atoms which may contain a halogen atom as a substituent in R 35 , R 36 , R 37 and R 38 include
  • R 31 is preferable
  • the aromatic heterocyclic group is the same group as that described above for R 33
  • the substituent is the same as the group described above for R 31 .
  • rare earth metal atom examples include cerium, lanthanum, praseodymium, neodymium, samarium, yttrium, etc. Among them, cerium is preferable because it is easily available.
  • the compound represented by the following formula (1-1) [cerium trimethyloctanedione]
  • the formula (1- The compound represented by 2) [Ce (DPM) 3 : cerium tripivaloylmethane]
  • the compound represented by formula (1-3) [Ce (HFAA) 3 : cerium trihexafluoroacetylacetone] are particularly preferred.
  • the rare earth compound (C) can be used alone or in combination of two or more. Moreover, a commercial item can also be used as a rare earth compound (C).
  • the content (weight basis) of the rare earth metal atom is 30 to 500 ppm, preferably 35 to 400 ppm, more preferably 40 to 300 ppm, still more preferably 50 to 200 ppm, particularly preferably based on the total amount of the curable resin composition. 60 to 150 ppm.
  • the rare earth metal atom content is less than 30 ppm, it becomes impossible to suppress an increase in the hardness of the cured product under high temperature conditions, and when it exceeds 500 ppm, the transparency of the cured product may be deteriorated.
  • the content (blending amount) of the rare earth compound (C) is not particularly limited as long as the content of the rare earth metal atom is 30 to 500 ppm, but it is 0.00% with respect to 100 parts by weight of the polysiloxane (A).
  • 01 to 0.5 parts by weight is preferable, more preferably 0.015 to 0.4 parts by weight, still more preferably 0.02 to 0.3 parts by weight, and particularly preferably 0.02 to 0.2 parts by weight. . If the content of rare earth metal atoms is too small and the increase in hardness of the cured product under high temperature conditions cannot be suppressed, and if it is too large, the transparency of the cured product may deteriorate.
  • the polysiloxane (A) includes the polysiloxane (D).
  • the curable resin composition of the present invention has good solubility in a silicone resin (particularly, polysiloxane (A)) even when the addition amount of the rare earth compound (C) is increased. Heat resistance is improved, and hardness is not increased even under a high temperature condition of about 250 ° C., and flexibility can be maintained.
  • the curable resin composition of the present invention may contain a hydrosilylation catalyst (E).
  • a hydrosilylation catalyst When the curable resin composition of the present invention contains a hydrosilylation catalyst, the hydrosilylation between an aliphatic carbon-carbon double bond (especially an alkenyl group) and a hydrosilyl group in the curable resin composition is performed by heating. There is a tendency that the reaction can proceed more efficiently.
  • the said hydrosilylation catalyst (E) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • hydrosilylation catalyst (E) examples include well-known hydrosilylation catalysts such as platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. Specifically, platinum fine powder, platinum black, platinum-supported silica fine particles are exemplified.
  • Platinum-supported activated carbon chloroplatinic acid, complexes of chloroplatinic acid with alcohols, aldehydes, ketones, platinum olefin complexes, platinum-carbonyl complexes such as platinum-carbonylvinylmethyl complexes, platinum-divinyltetramethyldisiloxane complexes
  • Platinum catalyst such as platinum-cyclovinylmethylsiloxane complex, platinum-vinyl catalyst such as platinum-vinylmethylsiloxane complex, platinum-phosphine complex, platinum-phosphite complex, and the above platinum-based catalyst contains palladium atom or rhodium atom instead of platinum atom Palladium-based catalyst or rhodium-based catalyst.
  • a platinum-vinylmethylsiloxane complex a platinum-carbonylvinylmethyl complex, or a complex of chloroplatinic acid and an alcohol or an aldehyde is preferable because the reaction rate is good.
  • the content (blending amount) of the hydrosilylation catalyst is an aliphatic carbon-carbon double bond (particularly an alkenyl group) contained in the curable resin composition.
  • the amount is preferably 1 ⁇ 10 ⁇ 8 to 1 ⁇ 10 ⁇ 2 mol, more preferably 1.0 ⁇ 10 ⁇ 6 to 1.0 ⁇ 10 ⁇ 3 mol, relative to 1 mol of the total amount.
  • the content (blending amount) of the hydrosilylation catalyst (E) is, for example, 0.01 to 1000 ppm by weight of platinum, palladium, or rhodium in the hydrosilylation catalyst with respect to the total amount of the curable resin composition. An amount that falls within the range is preferable, and an amount that falls within the range of 0.1 to 500 ppm is more preferable. When the content of the hydrosilylation catalyst is in such a range, a cured product can be formed more efficiently, and a cured product having a more excellent hue tends to be obtained.
  • the curable resin composition of the present invention may further contain a curing retardant (F).
  • the curing retarder (F) controls the catalytic activity of the platinum group metal catalyst and prevents the curable resin composition of the present invention from thickening or gelling before heat curing. It is an optional addition.
  • curing retarder (F) known or conventional compounds that can retard curing can be used, and are not particularly limited.
  • 1-ethynyl-1-cyclohexanol, 3-methyl-1-butyne- 3-ol, 3-methyl-1-pentyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, 3-methyl-3-trimethylsiloxy-1-butyne, 3-methyl-3-trimethyl Alkyne compounds such as siloxy-1-pentyne, 3,5-dimethyl-3-trimethylsiloxy-1-hexyne, 1-ethynyl-1-trimethylsiloxycyclohexane, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, crown ether compound ( For example, 12-crown-4, 15-crown-5, 18-crown- Polyether compounds such as pyrrole compounds, pyrazole compounds, 3,5-dimethylpyrazole compounds, imidazole compounds, 1,2,3-
  • the said hardening retarder (F) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • a hardening retarder (F) can also be manufactured by a well-known thru
  • the content (blending amount) of the curing retarder (F) is not particularly limited as long as it does not interfere with the effects of the present invention, but the polysiloxane (A), polysiloxane (B), and polysiloxane (D).
  • the polysiloxane (A), polysiloxane (B), and polysiloxane (D) For example, 0.001 to 5 parts by weight, preferably 0.005 to 3 parts by weight, and more preferably 0.01 to 2 parts by weight.
  • the curable resin composition of the present invention may contain a silane coupling agent (G).
  • a silane coupling agent (G) there exists a tendency for the adhesiveness with respect to the adherend of a hardened
  • silane coupling agent (G) known or conventional silane coupling agents can be used.
  • silane coupling agents such as silane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N -2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3 -Triethoxysilyl-N- (1,3-dimethyl-butyryl
  • the silane coupling agent (G) can be used alone or in combination of two or more. Moreover, as a silane coupling agent (G), a commercial item can also be used.
  • the content (blending amount) of the silane coupling agent (G) in the curable resin composition of the present invention is the curable resin composition.
  • the content is preferably 0.01 to 15% by weight, more preferably 0.1 to 10% by weight, and still more preferably 0.5 to 5% by weight with respect to (100% by weight).
  • the content of the silane coupling agent (G) is 0.01% by weight or more, the adhesiveness of the cured product to the adherend tends to be further improved.
  • the content of the silane coupling agent (G) is 15% by weight or less, the curing reaction proceeds sufficiently, and the toughness and heat resistance of the cured product tend to be further improved.
  • the curable resin composition of the present invention may contain other components in addition to the components described above.
  • other components include siloxane compounds other than polysiloxane (A) and polysiloxane (B) (for example, cyclic siloxane compounds, low molecular weight linear or branched siloxane compounds, etc.), isocyanurate compounds, hydrosilylation reactions, and the like.
  • An inhibitor, a solvent, various additives, etc. are mentioned.
  • additives include precipitated silica, wet silica, fumed silica, calcined silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, calcium carbonate, carbon black, silicon carbide, silicon nitride, boron nitride and the like.
  • the aliphatic carbon-carbon double bond (particularly, alkenyl group) is 0.2 to 4 moles per mole of the hydrosilyl group present in the curable resin composition.
  • the composition (formulation composition) is preferable, more preferably 0.5 to 3.0 mol, and still more preferably 0.8 to 2.0 mol.
  • the curable resin composition of the present invention can be prepared by stirring and mixing the above components at room temperature.
  • the curable resin composition of the present invention can be used as a one-component composition in which each component is mixed in advance, for example, two or more stored separately. It can also be used as a multi-component (for example, two-component) composition in which the components are mixed at a predetermined ratio before use.
  • it may be heated (for example, 30 to 100 ° C.) to such an extent that it does not cure.
  • the curable resin composition of the present invention may have either a solid state or a liquid state, but is usually liquid at room temperature (about 25 ° C.).
  • the viscosity of the curable resin composition of the present invention at 23 ° C. is preferably 300 to 20,000 mPa ⁇ s, more preferably 500 to 10,000 mPa ⁇ s, and still more preferably 1000 to 8000 mPa ⁇ s.
  • cured material to improve more by making a viscosity into 300 mPa * s or more.
  • by setting the viscosity to 20,000 mPa ⁇ s or less it is easy to prepare a curable resin composition, the productivity and handleability are further improved, and bubbles are less likely to remain in the cured product.
  • cured material especially sealing material
  • the curable resin composition of the present invention can be preferably used as a composition for sealing a semiconductor element in a semiconductor device (sometimes referred to as “encapsulant of the present invention”).
  • the sealing agent can be particularly preferably used for sealing an optical semiconductor element (LED element) in an optical semiconductor device (that is, as an optical semiconductor sealing agent).
  • the cured product obtained by curing the sealant not only has high heat resistance and transparency peculiar to polysiloxane materials, but also does not increase in hardness even under high temperature conditions of about 250 ° C., and is flexible. Can be maintained.
  • the said sealing agent can be preferably used especially as a sealing agent etc. of a high-intensity, short wavelength optical semiconductor element.
  • the curable resin composition of the present invention is not limited to the above-mentioned encapsulant application, but other than the encapsulant, lens (optical lens, heat-resistant plastic lens, etc.) formation, optical member, functional coating agent, transparent device , Adhesives (heat-resistant transparent adhesives, etc.), electrical insulating materials (insulating films, etc.), laminates, coatings, inks, paints, sealants, resists, composite materials, transparent substrates, transparent sheets, transparent films, optical elements, light From the point that it can be preferably used for optical and semiconductor related applications such as modeling, electronic paper, touch panel, solar cell substrate, optical waveguide, light guide plate, holographic memory, etc. It can be preferably used for lens formation. That is, the curable resin composition of the present invention can be preferably used as a lens-forming resin composition.
  • a cured product (sometimes referred to simply as “cured product of the present invention”) is obtained.
  • Conditions for curing can be appropriately selected from conventionally known conditions.
  • the temperature (curing temperature) is preferably 25 to 180 ° C., more preferably It is 60 to 150 ° C.
  • the time (curing time) is preferably 5 to 720 minutes. Curing can be performed in one stage or in multiple stages.
  • the cured product of the present invention include a sealing material and a lens.
  • the cured product of the present invention not only has the high heat resistance and transparency specific to polysiloxane materials, but also does not increase in hardness even under a high temperature condition of about 250 ° C., and can maintain flexibility.
  • the cured product of the present invention has high transparency.
  • the light transmittance of the cured product of the present invention is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more at a thickness of 3 mm and a wavelength of 450 nm.
  • the light transmittance can be measured using a light transmittance meter (ultraviolet-visible light spectrophotometer).
  • the semiconductor device of the present invention is a semiconductor device having at least a semiconductor element and a sealing material for sealing the semiconductor element, and the sealing material is the curable resin composition of the present invention (the sealing agent of the present invention). ) Is a cured product.
  • the production of the semiconductor device of the present invention can be carried out by a known or conventional method.
  • the sealing agent of the present invention can be injected into a predetermined mold and cured by heating under predetermined conditions.
  • the curing temperature and the curing time can be set in the same range as at the time of preparing the cured product.
  • the encapsulant for semiconductor of the present invention is preferably an optical semiconductor device because it has heat resistance and transparency, and does not increase in hardness even under high temperature conditions of about 250 ° C. and can maintain flexibility.
  • FIG. 1 An example of the optical semiconductor device of the present invention is shown in FIG.
  • 100 is a reflector
  • 101 is a metal wiring (electrode)
  • 102 is an optical semiconductor element
  • 103 is a bonding wire
  • 104 is a cured product (sealing material).
  • the semiconductor device of the present invention is a semiconductor device having a semiconductor element and a lens, and the lens is preferably a cured product of the curable resin composition of the present invention.
  • the semiconductor device of the present invention is a semiconductor device having a semiconductor element, a sealing material for sealing the semiconductor element, and a lens, and the sealing material is a curable resin composition of the present invention (the present invention). It is preferable that the lens is a cured product of the curable resin composition of the present invention.
  • the obtained rare earth compound C-1 is a compound represented by the above formula (1-1).
  • the obtained rare earth compound C-3 is a compound represented by the above formula (1-3).
  • the temperature of the reaction vessel was raised to 70 ° C., and when the temperature reached 70 ° C., 10.91 g of water was added, and a polycondensation reaction was performed at the same temperature under nitrogen. Furthermore, 6.25 g of vinyltriethoxysilane was added, and an aging reaction was performed at the same temperature. Subsequently, 15.0 g of hexamethyldisiloxane was added to the obtained reaction solution, and a silylation reaction was performed at 70 ° C. Thereafter, the reaction solution was cooled, washed with water until the lower layer solution became neutral, and then the upper layer solution was collected.
  • the temperature of the reaction vessel was raised to 70 ° C., and when the temperature reached 70 ° C., 10.91 g of water was added, and a polycondensation reaction was performed at the same temperature under nitrogen. Furthermore, 2.08 g of vinyltriethoxysilane was added, and an aging reaction was performed at the same temperature. Subsequently, 15.0 g of hexamethyldisiloxane was added to the obtained reaction solution, and a silylation reaction was performed at 70 ° C. Thereafter, the reaction solution was cooled, washed with water until the lower layer solution became neutral, and then the upper layer solution was collected.
  • polysiloxane (A) terminal vinyl group dimethyl silicone, trade name “DMS-V35” (manufactured by Gelest) was used.
  • polysiloxane (B) terminal trimethylsiloxy-terminated methylhydrosiloxane-dimethylsiloxane copolymer silicone, trade name “HMS-301” (manufactured by Gelest) was used.
  • rare earth compound (C) the rare earth compounds C-1 to C-3 synthesized in Synthesis Examples 1 to 3 were used.
  • other rare earth compounds rare earth compounds other than the rare earth compound (C)
  • the following rare earth compounds C-4 and C-5 were used.
  • Rare earth compound C-4 cerium (III) 2-ethylhexanoate 49% 2-ethylhexanoic acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) (however, the values in Table 1 are effective for cerium 2-ethylhexanoate) Value of quantity) Rare earth compound C-5: Cerium (IV) oxide (manufactured by Wako Pure Chemical Industries, Ltd.)
  • polyorganosiloxane (D) polyorganosiloxanes D-1 and D-3 synthesized in Production Examples 4 and 5 and the following polyorganosiloxane D-2 were used.
  • Polyorganosiloxane D-2 Vinyl MQ resin, trade name “MQV-7” (manufactured by Nagase Sangyo Co., Ltd.)
  • hydrosilylation catalyst (E) PtVTS: 2% Pt-1,3-divinyltetramethyldisiloxane complex xylene solution (manufactured by N.E. Chemcat Co., Ltd.) was used.
  • curing retarder (F) 1-ethynylcyclohexanol (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
  • Examples 1-8, Comparative Example 1 [Production of curable resin composition]
  • Predetermined amounts of the hydrosilylation catalyst (E) shown in Table 1 were added to each compounded solution used in the method for evaluating the compatibility of the rare earth compound, and the mixture was stirred for 10 minutes to obtain a curable resin composition.
  • the rare earth metal atom content and the hydrosilylation catalyst (E) content in Table 1 are weight-based values (ppm) relative to the total amount of the curable resin composition.
  • Examples 1 to 8 using the rare earth compound (C) have good compatibility with the silicone resin, good transparency of the cured product, and suppressed increase in hardness even under high temperature conditions of 250 ° C. It was.
  • cerium 2-ethylhexanoate was used as the rare earth compound of Comparative Example 1, it precipitated without dissolving in the silicone resin.
  • Comparative Example 2 although the cerium 2-ethylhexanoate content was small, no precipitation occurred, but the hardness increased after the 250 ° C. thermal aging test. Further, when cerium oxide was used as the rare earth compound of Comparative Example 3, it was precipitated without dissolving in the silicone resin.
  • a polyorganosiloxane (B1) having two or more hydrosilyl groups in the molecule and a polyorganosiloxysilalkylene (B2) having two or more hydrosilyl groups in the molecule.
  • Curable resin composition [2] The curability according to [1], wherein the alkenyl group of the polyorganosiloxane (A1) when the polyorganosiloxane (A1) is contained is a vinyl group, an allyl group, a butenyl group, a pentenyl group, or a hexenyl group. Resin composition.
  • the polysiloxane (A) is selected from the group consisting of a polyorganosiloxane represented by an average unit formula (a-1) and a polyorganosiloxysilalkylene represented by an average unit formula (a-2)
  • Group consisting of polyorganosiloxane represented by average unit formula (a-1) ′ and polyorganosiloxysilalkylene represented by average unit formula (a-1) ′′ as polysiloxane (D) Curable resin composition as described in [3] containing at least 1 sort (s) selected more.
  • the polyorganosiloxane (A1) When the polyorganosiloxane (A1) is contained, the polyorganosiloxane (A1) has two or more alkenyl groups in the molecule, and RSiO 3/2 (R is a monovalent substituted or unsubstituted carbonization)
  • the curable resin composition according to any one of [1] to [6], which is a branched polyorganosiloxane having a siloxane unit (T unit) represented by (hydrogen group).
  • T unit siloxane unit represented by (hydrogen group).
  • Any one of [1] to [10], wherein the alkylene group in the silalkylene bond in the case of containing polyorganosiloxysilalkylene (A2) is a linear or branched C 1-12 alkylene group.
  • the alkenyl group of the polyorganosiloxysilalkylene (A2) is a substituted or unsubstituted alkenyl group (preferably a vinyl group) [1] to [11]
  • the polyorganosiloxysil alkylene (A2) is included, the polyorganosiloxysil alkylene (A2) is a polyorganosiloxysil alkylene represented by the average unit formula (a-2) [1] to [ 12].
  • the polyorganosiloxysilalkylene (A2) is a polyorganosiloxysilalkylene having a structure represented by the formula (I-2) [1] to [1] [13]
  • the curable resin composition according to any one of [13].
  • the polyorganosiloxane (B1) is a polyorganosiloxane represented by the average unit formula (B-1) when the polyorganosiloxane (B1) is contained.
  • the polyorganosiloxane (B1) is included, the polyorganosiloxane (B1) is a linear polyorganosiloxane having two or more hydrosilyl groups in the molecule.
  • the curable resin composition as described in any one.
  • the ratio of hydrogen atoms (hydrogen atoms bonded to silicon atoms) to the total amount (100 mol%) of groups bonded to silicon atoms in the linear polyorganosiloxane is 0.1 to 40 mol%.
  • the polyorganosiloxane (B1) contains a polyorganosiloxane (B1)
  • the polyorganosiloxane (B1) has two or more hydrosilyl groups in the molecule, and RSiO 3/2 (R is a hydrogen atom or a monovalent substitution or
  • R is a hydrogen atom or a monovalent substitution or
  • the curable resin composition according to any one of [1] to [16], which is a branched polyorganosiloxane having a siloxane unit (T unit) represented by an unsubstituted hydrocarbon group.
  • the alkylene group of the silalkylene bond of the polyorganosiloxysilalkylene (B2) is an alkylene group having 2 to 4 carbon atoms (preferably an ethylene group) [ [1] The curable resin composition according to any one of [20].
  • the polyorganosiloxysilalkylene (B2) is contained, the polyorganosiloxysilalkylene (B2) is a polyorganosiloxysilalkylene represented by the average unit formula (B-2) [1] to [ 21] The curable resin composition as described in any one of [21].
  • the polyorganosiloxysilalkylene (B2) is a polyorganosiloxysilalkylene having a structure represented by the formula (II-2) [1] to [22]
  • the curable resin composition according to any one of [22].
  • the total content (total content) of polysiloxane (A) and polysiloxane (B) is 60 to 99% by weight based on the total amount of the curable resin composition [1] to [24]
  • the curable resin composition as described in any one of these.
  • the rare earth compound (C) is a compound represented by the formula (1-1) [cerium trimethyloctanedione], a compound represented by the formula (1-2) [Ce (DPM) 3 : cerium tripivalo Ylmethane] and at least one compound selected from the group consisting of the compound represented by formula (1-3) [Ce (HFAA) 3 : cerium trihexafluoroacetylacetone], [1] to [28]
  • the curable resin composition as described in any one.
  • the content of the rare earth compound (C) is 0.01 to 0.5 parts by weight with respect to 100 parts by weight of the polysiloxane (A), according to any one of [1] to [29] Curable resin composition.
  • the hydrosilylation catalyst (E) is a platinum-based catalyst, a rhodium-based catalyst, or a palladium-based catalyst.
  • the content of the hydrosilylation catalyst (E) is 0.01 to 1000 ppm by weight of platinum, palladium, or rhodium in the hydrosilylation catalyst with respect to the total amount of the curable resin composition [32].
  • the content of the curing retarder (F) is 0.001 to 5 parts by weight with respect to a total of 100 parts by weight of the polysiloxane (A), polysiloxane (B), and polysiloxane (D).
  • the curable resin composition according to any one of [1] to [37] which is a lens-forming resin composition.
  • the curable resin composition of the present invention can be used as a sealant for sealing a semiconductor element or a resin composition for lens formation.
  • Reflector 101 Metal wiring (electrode) 102: Optical semiconductor element 103: Bonding wire 104: Cured material (sealing material)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Silicon Polymers (AREA)
  • Sealing Material Composition (AREA)

Abstract

本発明は、希土類化合物の添加量を増やしてもシリコーン樹脂への溶解性が良く、析出せず、硬化させることにより、透明性が良く、耐熱性に優れ、特に250℃程度の高温条件下でも硬度の上昇や脆化が抑えられ、硬化物を形成できる硬化性樹脂組成物を提供する。 本発明の硬化性樹脂組成物は、分子内に2個以上のアルケニル基を有するポリオルガノシロキサン(A1)及び分子内に2個以上のアルケニル基を有するポリオルガノシロキシシルアルキレン(A2)からなる群より選択される少なくとも1種であるポリシロキサン(A)と、分子内に2個以上のヒドロシリル基を有するポリオルガノシロキサン(B1)及び分子内に2個以上のヒドロシリル基を有するポリオルガノシロキシシルアルキレン(B2)からなる群より選択される少なくとも1種であるポリシロキサン(B)と、式(1)で表される希土類化合物(C)を含み、硬化性樹脂組成物全量に対する希土類金属原子の含有量が30~500ppmである。なお、前記式(1)で表される希土類化合物(C)は、明細書に記載のとおりである。

Description

硬化性樹脂組成物、硬化物、及び半導体装置
 本発明は、硬化性樹脂組成物、前記硬化性樹脂組成物の硬化物、前記硬化性樹脂組成物を封止剤として使用して半導体素子を封止して得られる半導体装置に関する。本願は、2016年11月2日に、日本に出願した特願2016-214739号の優先権を主張し、その内容をここに援用する。
 半導体装置において半導体素子を被覆して保護するための封止剤(硬化性樹脂組成物)としては、各種の樹脂が使用されている。特に、光半導体装置における封止剤には、硬化させたときに半導体素子が発生する熱にも耐えることができる耐熱性があり、高温条件下でも硬度が上昇せず、柔軟性を維持できることが求められる。
 光半導体装置における封止剤(硬化性樹脂組成物)として、特に照明用途には、特許文献1に記載のように耐熱性の優れるメチルシリコーン系樹脂が主流で使用されている。しかし、メチルシリコーン系樹脂では、200℃程度の高温条件下において、メチルシリコーンが劣化し、柔軟性が失われ、硬度が上昇し脆化する課題があった。
 上記課題を解決するために、特許文献2及び3では、ヒドロシリル化硬化型シリコーンゴム組成物にセリウム等の希土類化合物のカルボン酸塩を添加した。特許文献2及び3では、セリウム等の希土類化合物のカルボン酸塩を添加することでメチルシリコーンの劣化を抑制し、200℃程度の高温条件下でも硬くならず柔軟性を維持でき、透明性が高い硬化物が得られることが報告されている。
国際公開第2014/109349号 特許第5422755号 国際公開第2015/186722号
 近年、LEDなどの照明の高輝度化に伴い発生する熱量も大きくなるため、更なる耐熱性が要求されており、250℃程度の高温条件下でも硬くならず柔軟性を維持できる材料が求められている。そこで、本発明者は、250℃程度の高温条件下でも効果を発揮させるために、上記特許文献2及び3に記載の組成物について検証を行った。特許文献2及び3に記載の組成物における希土類化合物のカルボン酸塩の添加量を多くした場合、希土類化合物のカルボン酸塩がシリコーン樹脂に溶けなくなり、希土類化合物のカルボン酸塩が析出することが分かった(本願比較例1)。また、希土類化合物のカルボン酸塩の析出を防ぐために、希土類化合物のカルボン酸塩の添加量を少なくした場合、250℃程度の高温条件下では硬度上昇に対して効果がないことが分かった(本願比較例2)。
 従って、本発明の目的は、希土類化合物の添加量を増やしてもシリコーン樹脂への溶解性が良く、硬化させることにより透明性が良く、耐熱性に優れ、特に250℃程度の高温条件下でも硬度の上昇や脆化が抑えられる硬化物を形成できる硬化性樹脂組成物を提供することにある。また、本発明の他の目的は、透明性が良く、耐熱性に優れ、特に250℃程度の高温条件下でも硬度が上昇せず、柔軟性を維持できる硬化物を提供することにある。さらに、本発明の他の目的は、上記硬化性樹脂組成物を封止剤として使用して半導体素子(特に光半導体素子)を封止した、品質と耐久性に優れた半導体装置(特に光半導体装置)を提供することにある。
 本発明者は、分子内に2個以上のアルケニル基を有する特定のポリシロキサンと、分子内に2個以上のヒドロシリル基を有する特定のポリシロキサンと、特定の希土類化合物を特定量含む硬化性樹脂組成物によると、希土類化合物のシリコーン樹脂への溶解性が良く、硬化させることにより特に250℃程度の高温条件下でも硬度が上昇しない硬化物を形成できることを見出し、本発明を完成させた。
 すなわち、本発明は、分子内に2個以上のアルケニル基を有するポリオルガノシロキサン(A1)及び分子内に2個以上のアルケニル基を有するポリオルガノシロキシシルアルキレン(A2)からなる群より選択される少なくとも1種であるポリシロキサン(A)と、分子内に2個以上のヒドロシリル基を有するポリオルガノシロキサン(B1)及び分子内に2個以上のヒドロシリル基を有するポリオルガノシロキシシルアルキレン(B2)からなる群より選択される少なくとも1種であるポリシロキサン(B)と、下記式(1)で表される希土類化合物(C)
 [M(L1)(L2)(L3)]       (1)
[式(1)中、Mは、希土類金属原子であり、L1、L2及びL3は、同一又は異なって、下記式(1a)
 R31COCHR32COR33      (1a)
(式(1a)中、R31は、置換基としてハロゲン原子を含有してもよい直鎖若しくは分岐鎖状の炭素数1~30のアルキル基を示し、R32は、水素原子、又は置換基としてハロゲン原子を含有してもよい炭素数1~30のアルキル基を示し、R33は、ハロゲン原子を含有してもよい直鎖若しくは分岐鎖状の炭素数1~30のアルキル基、芳香族複素環式基、又は-OR34基を示す。R34は、置換基としてハロゲン原子を含有してもよい直鎖若しくは分岐鎖状の炭素数1~30のアルキル基を示す。R31及びR32は、互いに結合して環を形成してもよく、R32及びR33は、互いに結合して環を形成してもよい)
で表される、β-ジケトン、又はβ-ケトエステルのアニオン若しくはエノラートアニオンであるリガンドを表す]
を含み、硬化性樹脂組成物全量に対する希土類金属原子の含有量が30~500ppmである硬化性樹脂組成物を提供する。
 また、本発明の硬化性樹脂組成物は、前記希土類金属原子が、セリウム、ランタン、プラセオジム、ネオジム、サマリウム、及びイットリウムからなる群より選択される少なくとも1種であることが好ましい。
 また、本発明の硬化性樹脂組成物は、さらに、ヒドロシリル化触媒(E)を含むことが好ましい。
 また、本発明の硬化性樹脂組成物は、前記ポリシロキサン(A)として、下記平均単位式(a-1)で表されるポリオルガノシロキサン、及び下記平均単位式(a-2)で表されるポリオルガノシロキシシルアルキレン
 平均単位式(a-1):
(R1SiO3/2a1(R1 2SiO2/2a2(R1 3SiO1/2a3(SiO4/2a4(X11/2a5
[平均単位式(a-1)中、R1は、同一又は異なって、炭素数1~10のアルキル基、炭素数6~14のアリール基、又は炭素数2~8のアルケニル基を示す。但し、R1の一部はアルケニル基であり、分子内に2個以上となる範囲である。X1は、水素原子又は炭素数1~6のアルキル基を示す。a1、a2、a3、a4、及びa5は、それぞれ、1>a1≧0、1>a2≧0、1>a3>0、1>a4≧0、0.05≧a5≧0、a1+a4>0、及びa1+a2+a3+a4+a5=1を満たす数値を示す]
 平均単位式(a-2):
(R2 2SiO2/2b1(R2 3SiO1/2b2(R2SiO3/2b3(SiO4/2b4(RAb5(X21/2b6
[平均単位式(a-2)中、R2は、同一又は異なって、炭素数1~10のアルキル基、炭素数6~14のアリール基、又は炭素数2~8のアルケニル基を示す。但し、R2の一部はアルケニル基であり、分子内に2個以上となる範囲である。RAは、同一又は異なって、炭素数1~14のアルキレン基を示す。X2は、水素原子又は炭素数1~6のアルキル基を示す。b1、b2、b3、b4、b5、及びb6は、それぞれ、1>b1≧0、1>b2>0、1>b3≧0、1>b4≧0、0.7>b5>0、0.05≧b6≧0、b3+b4>0、及びb1+b2+b3+b4+b5+b6=1を満たす数値を示す]
からなる群より選択される少なくとも1種であるポリシロキサン(D)を含むことが好ましい。
 また、本発明の硬化性樹脂組成物は、前記ポリシロキサン(D)として、下記平均単位式(a-1)’で表されるポリオルガノシロキサン、及び下記平均単位式(a-1)’ ’で表されるポリオルガノシロキシシルアルキレン
平均単位式(a-1)’:
(R1SiO3/2a1(R1 3SiO1/2a3(X11/2a5
[平均単位式(a-1)’中、R1は、同一又は異なって、前記と同じである。X1は、前記と同じである。a1、a3、及びa5は、それぞれ、1>a1>0、1>a3>0、0.05≧a5≧0、及びa1+a3+a5=1を満たす数値を示す]
 平均単位式(a-1)’’:
(R1 3SiO1/2a3(SiO4/2a4(X11/2a5
[平均単位式(a-1)’’中、R1及びX1は、前記と同じである。a3、a4、及びa5は、それぞれ、1>a3>0、1>a4>0、0.05≧a5≧0、及びa3+a4+a5=1を満たす数値を示す]
からなる群より選択される少なくとも1種を含むことが好ましい。
 また、本発明の硬化性樹脂組成物は、前記平均単位式(a-1)’で表されるポリオルガノシロキサンが、シルセスキオキサンであることが好ましい。
 また、本発明の硬化性樹脂組成物は、前記ポリシロキサン(A)全量に対する、前記ポリシロキサン(D)の含有量が1~70重量%であることが好ましい。
 また、本発明の硬化性樹脂組成物は、封止剤であることが好ましい。
 また、本発明の硬化性樹脂組成物は、レンズ形成用樹脂組成物であることが好ましい。
 また、本発明は、前記の硬化性樹脂組成物の硬化物を提供する。
 また、本発明の硬化物は、厚さが3mmのときの波長450nmにおける光線透過率が80%以上であることが好ましい。
 また、本発明は、半導体素子と、前記半導体素子を封止する封止材とを有する半導体装置であって、前記封止材が、前記の硬化性樹脂組成物の硬化物である半導体装置を提供する。
 また、本発明の半導体装置は、半導体素子と、レンズとを有する半導体装置であって、前記レンズが、前記の硬化性樹脂組成物の硬化物であることが好ましい。
 また、本発明の半導体装置は、半導体素子と、前記半導体素子を封止する封止材とレンズを有する半導体装置であって、前記封止材が、前記の硬化性樹脂組成物の硬化物であり、前記レンズが、前記の硬化性樹脂組成物の硬化物であることが好ましい。
 また、本発明の半導体装置は、光半導体装置であることが好ましい。
 本発明の硬化性樹脂組成物は、上記構成を有するため、希土類化合物の添加量を増やしてもシリコーン樹脂への溶解性が良く、硬化させることによって、透明性が良く、耐熱性に優れ、特に250℃程度の高温条件下でも硬度の上昇や脆化を抑えることができる硬化物を形成できる。本発明の硬化物は、透明性が良く、耐熱性に優れ、特に250℃程度の高温条件下でも硬度が上昇せず、柔軟性を維持できる。本発明の半導体装置は、品質と耐久性に優れる。
本発明の硬化性樹脂組成物の硬化物により光半導体素子が封止された光半導体装置の一実施形態を示す概略図である。左側の図(a)は斜視図であり、右側の図(b)は断面図である。
<硬化性樹脂組成物>
 本発明の硬化性樹脂組成物は、分子内に2個以上のアルケニル基を有するポリオルガノシロキサン(A1)及び分子内に2個以上のアルケニル基を有するポリオルガノシロキシシルアルキレン(A2)からなる群より選択される少なくとも1種であるポリシロキサン(A)(単に「ポリシロキサン(A)」と称する場合がある)と、分子内に2個以上のヒドロシリル基を有するポリオルガノシロキサン(B1)及び分子内に2個以上のヒドロシリル基を有するポリオルガノシロキシシルアルキレン(B2)からなる群より選択される少なくとも1種であるポリシロキサン(B)(単に「ポリシロキサン(B)」と称する場合がある)と、式(1)で表される希土類化合物(C)(単に「希土類化合物(C)」と称する場合がある)を必須成分として含む。本発明の硬化性樹脂組成物は、上述の必須成分以外にも、例えば、後述のヒドロシリル化触媒(E)、硬化遅延剤(F)、シランカップリング剤(G)等のその他の成分を含んでいてもよい。
[ポリシロキサン(A)]
 前記ポリシロキサン(A)は、上述のように、分子内に2個以上のアルケニル基を有するポリシロキサンである。即ち、ポリシロキサン(A)は、アルケニル基を有するポリシロキサンであり、ヒドロシリル基を有する成分(例えば、後述のポリシロキサン(B)等)とヒドロシリル化反応を生じる成分である。
 前記ポリシロキサン(A)は、分子内に2個以上のアルケニル基を有するポリオルガノシロキサン(A1)(単に「ポリオルガノシロキサン(A1)」と称する場合がある)及び分子内に2個以上のアルケニル基を有するポリオルガノシロキシシルアルキレン(A2)(単に「ポリオルガノシロキシシルアルキレン(A2)」と称する場合がある)からなる群より選択される少なくとも1種を含む。
 前記ポリオルガノシロキシシルアルキレン(A2)とは、主鎖として-Si-O-Si-(シロキサン結合)に加えて、-Si-RA-Si-(シルアルキレン結合:RAはアルキレン基を示す)を含むポリオルガノシロキサンである。そして、前記ポリオルガノシロキサン(A1)は、主鎖として前記シルアルキレン結合を含まないポリオルガノシロキサンである。
(ポリオルガノシロキサン(A1))
 前記ポリオルガノシロキサン(A1)としては、直鎖状、一部分岐を有する直鎖状、分岐鎖状、網目状の分子構造を有するものが挙げられる。なお、ポリオルガノシロキサン(A1)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。具体的には、分子構造が異なるポリオルガノシロキサン(A1)の2種以上を併用することができ、例えば、直鎖状のポリオルガノシロキサン(A1)と分岐鎖状のポリオルガノシロキサン(A1)とを併用することもできる。
 前記ポリオルガノシロキサン(A1)を分子内に有するアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等の置換又は無置換アルケニル基が挙げられる。置換基としては、ハロゲン原子、ヒドロキシ基、カルボキシ基等が挙げられる。中でも、アルケニル基としては、ビニル基が好ましい。また、ポリオルガノシロキサン(A1)は、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。ポリオルガノシロキサン(A1)が有するアルケニル基は、ケイ素原子に結合したものが好ましい。
 前記ポリオルガノシロキサン(A1)が有するアルケニル基以外の基は、例えば、水素原子、有機基等が挙げられる。有機基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等)、シクロアルキル基(例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロドデシル基等)、アリール基(例えば、フェニル基、トリル基、キシリル基、ナフチル基等)、シクロアルキル-アルキル基(例えば、シクロへキシルメチル基、メチルシクロヘキシル基等)、アラルキル基(例えば、ベンジル基、フェネチル基等)、炭化水素基における1以上の水素原子がハロゲン原子で置換されたハロゲン化炭化水素基(例えば、クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基等)等の一価の置換又は無置換炭化水素基等が挙げられる。なお、本明細書において「ケイ素原子に結合した基」とは、通常、ケイ素原子を含まない基を指すものとする。
 また、前記ポリオルガノシロキサン(A1)は、ケイ素原子に結合した基として、ヒドロキシ基、アルコキシ基を有していてもよい。
 前記ポリオルガノシロキサン(A1)(ポリシロキサン(A))としては、下記平均単位式(a-1)で表されるポリオルガノシロキサンが好ましい。この平均単位式(a-1)で表されるポリオルガノシロキサンは、後述のポリシロキサン(D)の1種である。
 平均単位式(a-1):
(R1SiO3/2a1(R1 2SiO2/2a2(R1 3SiO1/2a3(SiO4/2a4(X11/2a5
 上記平均単位式(a-1)中、R1は、同一又は異なって、炭素数1~10のアルキル基(好ましくは炭素数1~6のアルキル基)、炭素数6~14のアリール基(好ましくはフェニル基)、又は炭素数2~8のアルケニル基(好ましくは炭素数2~6のアルケニル基)を示す。但し、R1の一部はアルケニル基(好ましくはビニル基)であり、分子内に2個以上となる範囲である。X1は、水素原子又は炭素数1~6のアルキル基(好ましくは炭素数1~4のアルキル基、特に好ましくはメチル基)を示す。
 上記平均単位式(a-1)中、a1は0又は1未満の正数(1>a1≧0)、a2は0又は1未満の正数(1>a2≧0)、a3は1未満の正数(1>a3>0)、a4は0又は1未満の正数(1>a4≧0)、a5は0又は0.05以下の正数(0.05≧a5≧0)であり、a1とa4の合計は正数(a1+a4>0)、且つa1~a5の合計は1(a1+a2+a3+a4+a5=1)である。
 また、ポリオルガノシロキサン(A1)としては、下記平均単位式(a-1)’で表されるポリオルガノシロキサン、又は平均単位式(a-1)’’で表されるポリオルガノシロキサンが好ましい。平均単位式(a-1)’で表されるポリオルガノシロキサンは、シルセスキオキサンであることが好ましい。この平均単位式(a-1)’で表されるポリオルガノシロキサン、及び平均単位式(a-1)で表されるポリオルガノシロキサン平均単位式(a-1)’’で表されるポリオルガノシロキサンは、前記平均単位式(a-1)で表されるポリオルガノシロキサン、及び後述のポリシロキサン(D)の1種である。
 平均単位式(a-1)’:
(R1SiO3/2a1(R1 3SiO1/2a3(X11/2a5
 上記平均単位式(a-1)’中、R1は、同一又は異なって、前記と同じである。X1は、前記と同じである。
 上記平均単位式(a-1)’中、a1、a3、及びa5は、前記と同じであり、a1、a3及びa5の合計は1(a1+a3+a5=1)である。
 平均単位式(a-1)’’:
(R1 3SiO1/2a3(SiO4/2a4(X11/2a5
 平均単位式(a-1)’’中、R1及びX1は、前記と同じである。
 上記平均単位式(a-1)’’中、a3、a4、及びa5は前記と同じであり、a3、a4、及びa5の合計は1(a3+a4+a5=1)である。
 ポリオルガノシロキサン(A1)の一例としては、例えば、分子内に2個以上のアルケニル基を有する直鎖状ポリオルガノシロキサンが挙げられる。この直鎖状ポリオルガノシロキサンが有するアルケニル基としては、上述のアルケニル基の具体例が挙げられるが、中でもビニル基が好ましい。なお、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。また、上記直鎖状ポリオルガノシロキサンにおけるアルケニル基以外のケイ素原子に結合した基としては、例えば、一価の置換又は無置換炭化水素基が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
 上記直鎖状ポリオルガノシロキサンにおける、ケイ素原子に結合した基の全量(100モル%)に対するアルケニル基の割合は、0.1~40モル%が好ましい。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合は、1~20モル%が好ましい。さらに、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、30~90モル%が好ましい。特に、上記直鎖状ポリオルガノシロキサンとして、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合が40モル%以上(例えば45~80モル%)であるものを使用することにより、硬化物の腐食性ガスに対するバリア性がより向上する傾向がある。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合が90モル%以上(例えば、95~99モル%)であるものを使用することにより、硬化物の耐熱衝撃性がより向上する傾向がある。
 前記直鎖状ポリオルガノシロキサンは、例えば、下記式(I-1)で表される。
Figure JPOXMLDOC01-appb-C000001
[上記式(I-1)中、R11は、同一又は異なって、一価の置換又は無置換の炭化水素基である。但し、R11の少なくとも2個はアルケニル基である。m1は、5~2000の整数である]
 ポリオルガノシロキサン(A1)の他の例としては、分子内に2個以上のアルケニル基を有し、RSiO3/2で表されるシロキサン単位(T単位)を有する分岐鎖状ポリオルガノシロキサンが挙げられる。なお、Rは、一価の置換又は無置換炭化水素基である。この分岐鎖状ポリオルガノシロキサンが有するアルケニル基としては、上述のアルケニル基の具体例が挙げられるが、中でもビニル基が好ましい。なお、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。また、上記分岐鎖状ポリオルガノシロキサンにおけるアルケニル基以外のケイ素原子に結合した基としては、例えば、上述の一価の置換又は無置換炭化水素基が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。さらに、上記T単位中のRとしては、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
 前記分岐鎖状ポリオルガノシロキサンにおける、ケイ素原子に結合した基の全量(100モル%)に対するアルケニル基の割合は、硬化性樹脂組成物の硬化性の観点で、0.1~40モル%が好ましい。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合は、10~40モル%が好ましい。さらに、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、5~70モル%が好ましい。特に、上記分岐鎖状ポリオルガノシロキサンとして、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合が40モル%以上(好ましくは45~60モル%)であるものを使用することにより、硬化物の腐食性ガスに対するバリア性がより向上する傾向がある。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合が50モル%以上(好ましくは60~99モル%)であるものを使用することにより、硬化物の耐熱衝撃性がより向上する傾向がある。
 前記分岐鎖状ポリオルガノシロキサンは、a1が正数である上記平均単位式で表すことができる。この場合、a2/a1は0~10の数、a3/a1は0~0.5の数、a4/(a1+a2+a3+a4)は0~0.3の数、a5/(a1+a2+a3+a4)は0~0.4の数が好ましい。また、上記分岐鎖状ポリオルガノシロキサンの分子量は、ゲルパーミエーションクロマトグラフィー(GPC)による標準ポリスチレン換算の重量平均分子量が500~2万が好ましく、より好ましくは700~6000である。
 ポリオルガノシロキサン(A1)のさらに他の例としては、例えば、上記平均単位式中、a1及びa2が0であり、X1が水素原子である下記平均単位式:
(R1a 21bSiO1/2a6(R1a 3SiO1/2a7(SiO4/2a8(HO1/2a9
で表されるポリオルガノシロキサンが挙げられる。上記平均単位式中、R1aは、同一又は異なって、C1-10アルキル基を示し、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基が挙げられ、中でもメチル基が好ましい。また、R1bは、同一又は異なって、アルケニル基を示し、中でもビニル基が好ましい。さらに、a6、a7、a8及びa9はいずれも、a6+a7+a8=1、a6/(a6+a7+a8)=0.01~0.35、a8/(a6+a7+a8)=0.40~0.65、a9/(a6+a7+a8)=0.005~0.03を満たす正数である。但し、a7は0であってもよい。硬化性樹脂組成物の硬化性の観点で、a6/(a6+a7+a8)は0.2~0.3が好ましい。また、硬化物の硬度や機械強度の観点で、a8/(a6+a7+a8)は0.55~0.60が好ましい。さらに、硬化物の接着性や機械強度の観点で、a9/(a6+a7+a8)は0.01~0.025が好ましい。このようなポリオルガノシロキサンとしては、例えば、SiO4/2単位と(CH32(CH2=CH)SiO1/2単位とで構成されるポリオルガノシロキサン、SiO4/2単位と(CH32(CH2=CH)SiO1/2単位と(CH33SiO1/2単位とで構成されるポリオルガノシロキサン等が挙げられる。
(ポリオルガノシロキシシルアルキレン(A2))
 ポリオルガノシロキシシルアルキレン(A2)は、上述のように、分子内に2個以上のアルケニル基を有し、主鎖としてシロキサン結合に加えて、シルアルキレン結合-Si-RA-Si-(シルアルキレン結合:RAはアルキレン基を示す)を含むポリオルガノシロキサンである。即ち、ポリオルガノシロキシシルアルキレン(A2)には、上述のポリオルガノシロキサン(A1)のようなシルアルキレン結合を有しないポリオルガノシロキサンは含まれない。本発明の硬化性樹脂組成物は、このようなポリオルガノシロキシシルアルキレン(A2)を含むと、腐食性ガスに対するバリア性と耐熱衝撃性により優れた硬化物を形成できる。
 ポリオルガノシロキシシルアルキレン(A2)が分子内に有するシルアルキレン結合におけるアルキレン基(RA)としては、例えば、メチレン基、エチレン基、プロピレン基等の直鎖又は分岐鎖状のC1-12アルキレン基等が挙げられ、中でも、C2-4アルキレン基(特に、エチレン基)が好ましい。上記ポリオルガノシロキシシルアルキレン(A2)は、ポリオルガノシロキサン(A1)と比較して製造工程において低分子量の環を生じ難く、また、加熱等により分解してシラノール基(-SiOH)を生じ難いため、ポリオルガノシロキシシルアルキレン(A2)を使用した場合、硬化性樹脂組成物の硬化物の表面粘着性が低減され、より黄変し難くなる傾向がある。
 ポリオルガノシロキシシルアルキレン(A2)としては、直鎖状、一部分岐を有する直鎖状、分岐鎖状、網目状の分子構造を有するものが挙げられる。なお、ポリオルガノシロキシシルアルキレン(A2)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。具体的には、分子構造が異なるポリオルガノシロキシシルアルキレン(A2)の2種以上を併用することができ、例えば、直鎖状のポリオルガノシロキシシルアルキレン(A2)と分岐鎖状のポリオルガノシロキシシルアルキレン(A2)とを併用することもできる。
 ポリオルガノシロキシシルアルキレン(A2)が分子内に有するアルケニル基としては、上述の置換又は無置換アルケニル基が挙げられ、中でも、ビニル基が好ましい。また、ポリオルガノシロキシシルアルキレン(A2)は、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。ポリオルガノシロキシシルアルキレン(A2)が有するアルケニル基は、ケイ素原子に結合したものが好ましい。
 ポリオルガノシロキシシルアルキレン(A2)が有するアルケニル基以外のケイ素原子に結合した基は、例えば、水素原子、有機基等が挙げられる。有機基としては、例えば、上述の有機基(例えば、アルキル基、シクロアルキル基、アリール基、シクロアルキル-アルキル基、アラルキル基、ハロゲン化炭化水素基等の置換又は無置換炭化水素等)が挙げられる。
 また、ポリオルガノシロキシシルアルキレン(A2)は、ケイ素原子に結合した基として、ヒドロキシ基、アルコキシ基を有していてもよい。
 ポリオルガノシロキシシルアルキレン(A2)としては、下記平均単位式(a-2)で表されるポリオルガノシロキシシルアルキレンが好ましい。この平均単位式(a-2)で表されるポリオルガノシロキシシルアルキレンは、後述のポリシロキサン(D)の1種である。
 平均単位式(a-2):(R2 2SiO2/2b1(R2 3SiO1/2b2(R2SiO3/2b3(SiO4/2b4(RAb5(X21/2b6
 上記平均単位式(a-2)中、R2は、同一又は異なって、炭素数1~10のアルキル基(好ましくは炭素数1~6のアルキル基)、炭素数6~14のアリール基(好ましくはフェニル基)、又は炭素数2~8のアルケニル基(好ましくは炭素数2~6のアルケニル基)を示す。但し、R2の一部はアルケニル基(好ましくはビニル基)であり、分子内に2個以上となる範囲である。RAは、同一又は異なって、炭素数1~14のアルキレン基(好ましくは炭素数1~8のアルキレン基)を示す。X2は、水素原子又は炭素数1~6のアルキル基(好ましくは炭素数1~4のアルキル基、特に好ましくはメチル基)を示す。
 上記平均単位式(a-2)中、b1は0又は1未満の正数(1>b1≧0)、b2は1未満の正数(1>b2>0)、b3は1未満の正数(1>b3>0)、b4は0又は1未満の正数(1>b4≧0)、b5は0.07以下の正数(0.7≧b5>0)、b6は0又は0.05以下の正数(0.05≧b6≧0)であり、b3とb4の合計は正数(b3+b4>0)、且つb1~a6の合計は1(b1+b2+b3+b4+b5+b6=1)である。
 ポリオルガノシロキシシルアルキレン(A2)としては、より具体的には、例えば、下記式(I-2)で表される構造を有するポリオルガノシロキシシルアルキレンが挙げられる。
Figure JPOXMLDOC01-appb-C000002
 上記式(I-2)中、R12は、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基である。R12としては、上述の一価の置換又は無置換炭化水素基の具体例(例えば、アルキル基、アリール基、アラルキル基、ハロゲン化炭化水素基等)、及び上述のアルケニル基が挙げられる。但し、R12の少なくとも2個はアルケニル基(特にビニル基)である。また、アルケニル基以外のR12としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
 上記式(I-2)中、RAは、上記と同じく、アルキレン基を示し、中でも、炭素数2~4のアルキレン基(特に、エチレン基)が好ましい。なお、複数のRAが存在する場合、これらは同一であってもよいし、異なっていてもよい。
 上記式(I-2)中、r1は1以上の整数(例えば、1~100)を示す。なお、r1が2以上の整数の場合、r1が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
 上記式(I-2)中、r2は1以上の整数(例えば、1~400)を示す。なお、r2が2以上の整数の場合、r2が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
 上記式(I-2)中、r3は0又は1以上の整数(例えば、0~50)を示す。なお、r3が2以上の整数の場合、r3が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
 上記式(I-2)中、r4は0又は1以上の整数(例えば、0~50)を示す。なお、r4が2以上の整数の場合、r4が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
 上記式(I-2)中、r5は0又は1以上の整数(例えば、0~50)を示す。なお、r5が2以上の整数の場合、r5が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
 また、上記式(I-2)における各構造単位の付加形態は、ランダム型であってもよいし、ブロック型であってもよい。また、各構造単位の配列の順番も特に限定されない。
 式(I-2)で表される構造を有するポリオルガノシロキシシルアルキレンの末端構造は、例えば、シラノール基、アルコキシシリル基、トリアルキルシリル基(例えば、r5が付された括弧内の構造、トリメチルシリル基等)等が挙げられる。上記ポリオルガノシロキシシルアルキレンの末端には、アルケニル基やヒドロシリル基等の各種の基が導入されていてもよい。
 ポリオルガノシロキシシルアルキレン(A2)は、公知乃至慣用の方法により製造することができ、その製造方法は、例えば、特開2012-140617号公報に記載の方法等により製造できる。また、ポリオルガノシロキシシルアルキレン(A2)を含む製品として、例えば、商品名「ETERLED GD1130」、「ETERLED GD1125」、「ETERLED GS5145」、「ETERLED GS5135」、「ETERLED GS5120」(いずれも長興材料工業(株)製)等が入手可能である。
 なお、本発明の硬化性樹脂組成物においてポリシロキサン(A)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。ポリシロキサン(A)の性状は、25℃において、液状であってもよいし、固体状であってもよい。
 なお、ポリシロキサン(A)は、分子内に2個以上のアルケニル基を有していればよく、さらにヒドロシリル基を有していてもよい。この場合、ポリシロキサン(A)は、後述のポリシロキサン(B)でもあり得る。
 本発明の硬化性樹脂組成物におけるポリシロキサン(A)の含有量(配合量)(総量)は、硬化性樹脂組成物の全量(100重量%)に対して、50~99重量%が好ましく、より好ましくは60~97重量%、さらに好ましくは70~95重量%である。含有量を50重量%以上とすることにより、硬化物の強靭性、透明性がより向上する傾向がある。なお、ポリシロキサン(A)には後述のポリシロキサン(D)が含まれる。
 本発明の硬化性樹脂組成物におけるポリシロキサン(A)としては、ポリオルガノシロキサン(A1)のみを使用することもできるし、ポリオルガノシロキシシルアルキレン(A2)のみを使用することもできるし、また、ポリオルガノシロキサン(A1)とポリオルガノシロキシシルアルキレン(A2)とを併用することもできる。ポリオルガノシロキサン(A1)とポリオルガノシロキシシルアルキレン(A2)とを併用する場合、これらの割合は特に限定されず、適宜設定可能である。
(ポリシロキサン(D))
 ポリシロキサン(D)は、前記平均単位式(a-1)で表されるポリオルガノシロキサン、及び前記平均単位式(a-2)で表されるポリオルガノシロキシシルアルキレンからなる群より選択される少なくとも1種である。また、ポリシロキサン(D)は、前記ポリシロキサン(A)の1種であり、中でも分岐鎖構造をもつポリシロキサンである。本発明の硬化性樹脂組成物において、ポリシロキサン(D)は、前記ポリシロキサン(A)と組み合わせて用いることが好ましい。ポリシロキサン(D)としては、前記平均単位式(a-1)’で表されるポリオルガノシロキサン、前記平均単位式(a-1)’’で表されるポリオルガノシロキサンが好ましい。なお、ポリシロキサン(D)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 前記ポリシロキサン(D)の合計の含有量は、前記ポリシロキサン(A)全量に対して、例えば、1~70重量%、好ましくは3~50重量%、より好ましくは5~40重量%、特に好ましくは8~30重量%である。また、ポリシロキサン(D)の合計の含有量は、硬化性樹脂組成物全量に対して、例えば、1~60重量%、好ましくは2~50重量%、より好ましくは3~40重量%、特に好ましくは5~30重量%である。ポリシロキサン(D)を上記範囲で含む場合、靭性が向上し、強度に優れる硬化物が得られる。なお、前記ポリシロキサン(A)には、ポリシロキサン(D)が含まれる。
[ポリシロキサン(B)]
 本発明の硬化性樹脂組成物の必須成分であるポリシロキサン(B)は、上述のように、分子内に2個以上のヒドロシリル基(Si-H)を有するポリオルガノシロキサンである。即ち、ポリシロキサン(B)は、ヒドロシリル基を有するポリシロキサンであり、アルケニル基を有する成分(例えば、ポリシロキサン(A)等)とヒドロシリル化反応を生じる成分である。
 ポリシロキサン(B)は、分子内に2個以上のヒドロシリル基を有するポリオルガノシロキサン(B1)(単に「ポリオルガノシロキサン(B1)」と称する場合がある)及び分子内に2個以上のヒドロシリル基を有するポリオルガノシロキシシルアルキレン(B2)(単に「ポリオルガノシロキシシルアルキレン(B2)」と称する場合がある)からなる群より選択される少なくとも1種であるポリオルガノシロキサンである。
 前記ポリオルガノシロキシシルアルキレン(B2)とは、主鎖として-Si-O-Si-(シロキサン結合)に加えて、-Si-RA-Si-(シルアルキレン結合:RAはアルキレン基を示す)を含むポリオルガノシロキサンである。そして、本明細書におけるポリオルガノシロキサン(B1)は、主鎖として上記シルアルキレン結合を含まないポリオルガノシロキサンである。なお、上記シルアルキレン結合におけるRA(アルキレン基)としては、上記と同じく、例えば、直鎖又は分岐鎖状のC1-12アルキレン基が挙げられ、好ましくは直鎖又は分岐鎖状のC2-4アルキレン基(特に、エチレン基)である。
(ポリオルガノシロキサン(B1))
 前記ポリオルガノシロキサン(B1)としては、直鎖状、一部分岐を有する直鎖状、分岐鎖状、網目状の分子構造を有するものが挙げられる。なお、ポリオルガノシロキサン(B1)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。具体的には、分子構造が異なるポリオルガノシロキサン(B1)の2種以上を併用することができ、例えば、直鎖状のポリオルガノシロキサン(B1)と分岐鎖状のポリオルガノシロキサン(B1)とを併用することもできる。
 前記ポリオルガノシロキサン(B1)が有するケイ素原子に結合した基の中でも水素原子以外の基は、例えば、上述の一価の置換又は無置換炭化水素基、より詳しくは、アルキル基、アリール基、アラルキル基、ハロゲン化炭化水素基等が挙げられる。中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。また、ポリオルガノシロキサン(B1)は、水素原子以外のケイ素原子に結合した基として、アルケニル基(例えば、ビニル基)を有していてもよいし、有していなくてもよい。
 ポリオルガノシロキサン(B1)の性状は、液状であってもよいし、固体状であってもよい。中でも液状が好ましく、25℃における粘度が0.1~10億mPa・sの液状がより好ましい。
 ポリオルガノシロキサン(B1)としては、下記平均単位式(B-1)で表されるポリオルガノシロキサンが好ましい。
 平均単位式(B-1):
(R3SiO3/2c1(R3 2SiO2/2c2(R3 3SiO1/2c3(SiO4/2c4(X31/2c5
 上記平均単位式(B-1)中、R3は、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基であり、水素原子、上述の一価の置換若しくは無置換炭化水素基の具体例(例えば、アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基等)、及び上述のアルケニル基が挙げられる。但し、R3の一部は水素原子(ヒドロシリル基を構成する水素原子)であり、その割合は、ヒドロシリル基が分子内に2個以上となる範囲に制御される。例えば、R3の全量(100モル%)に対する水素原子の割合は、0.1~40モル%が好ましい。水素原子の割合を上記範囲に制御することにより、硬化性樹脂組成物の硬化性がより向上する傾向がある。また、水素原子以外のR3としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
 上記平均単位式(B-1)中、X3は、水素原子又はアルキル基である。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、特にメチル基が好ましい。
 上記平均単位式(B-1)中、c1は0又は正数、c2は0又は正数、c3は0又は正数、c4は0又は正数、c5は0又は正数であり、かつ、c1~c3の合計(c1+c2+c3)は正数である。
 ポリオルガノシロキサン(B1)の一例としては、例えば、分子内に2個以上のヒドロシリル基を有する直鎖状ポリオルガノシロキサンが挙げられる。上記直鎖状ポリオルガノシロキサンにおける水素原子以外のケイ素原子に結合した基としては、例えば、上述の一価の置換又は無置換炭化水素基及び上述のアルケニル基が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
 前記直鎖状ポリオルガノシロキサンにおける、ケイ素原子に結合した基の全量(100モル%)に対する水素原子(ケイ素原子に結合した水素原子)の割合は、0.1~40モル%が好ましい。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合は、20~99モル%が好ましい。さらに、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、40~80モル%が好ましい。特に、上記直鎖状ポリオルガノシロキサンとして、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合が40モル%以上(好ましくは45~70モル%)であるものを使用することにより、硬化物の腐食性ガスに対するバリア性がより向上する傾向がある。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合が90モル%以上(好ましくは95~99モル%)であるものを使用することにより、硬化物の耐熱衝撃性がより向上する傾向がある。
 前記直鎖状ポリオルガノシロキサンは、例えば、下記式(II-1)で表される。
Figure JPOXMLDOC01-appb-C000003
[上記式(II-1)中、R21は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基である。但し、R21の少なくとも2個は水素原子である。m2は、5~1000の整数である]
 前記ポリオルガノシロキサン(B1)の他の例としては、分子内に2個以上のヒドロシリル基を有し、RSiO3/2で表されるシロキサン単位(T単位)を有する分岐鎖状ポリオルガノシロキサンが挙げられる。Rは、水素原子又は一価の置換若しくは無置換炭化水素基である。上記分岐鎖状ポリオルガノシロキサンにおける水素原子以外のケイ素原子に結合した基としては、例えば、上述の一価の置換又は無置換炭化水素基、及び上述のアルケニル基が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。さらに、上記T単位中のRとしては、水素原子、上述の一価の置換又は無置換炭化水素基、及び上述のアルケニル基が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。上記T単位中のRの全量(100モル%)に対するアリール基(特にフェニル基)の割合は、硬化物の腐食性ガスに対するバリア性の観点で、30モル%以上が好ましい。
 上記分岐鎖状ポリオルガノシロキサンにおける、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合は、70~95モル%が好ましい。さらに、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、10~70モル%が好ましい。特に、上記分岐鎖状ポリオルガノシロキサンとして、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合が10モル%以上(例えば、10~70モル%)であるものを使用することにより、硬化物の腐食性ガスに対するバリア性がより向上する傾向がある。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合が50モル%以上(例えば、50~90モル%)であるものを使用することにより、硬化物の耐熱衝撃性がより向上する傾向がある。
 上記分岐鎖状ポリオルガノシロキサンは、例えば、c1が正数である上記平均単位式で表すことができる。この場合、c2/c1は0~10の数、c3/c1は0~0.5の数、c4/(c1+c2+c3+c4)は0~0.3の数、c5/(c1+c2+c3+c4)は0~0.4の数が好ましい。また、上記分岐鎖状ポリオルガノシロキサンの分子量は、ゲルパーミエーションクロマトグラフィー(GPC)による標準ポリスチレン換算の重量平均分子量が300~1万が好ましく、より好ましくは500~3000である。
(ポリオルガノシロキシシルアルキレン(B2))
 前記ポリオルガノシロキシシルアルキレン(B2)は、上述のように、分子内に2個以上のヒドロシリル基を有し、主鎖としてシロキサン結合に加えて、シルアルキレン結合を含むポリオルガノシロキサンである。なお、上記シルアルキレン結合におけるアルキレン基としては、例えば、炭素数2~4のアルキレン基(特にエチレン基)が好ましい。上記ポリオルガノシロキシシルアルキレン(B2)は、ポリオルガノシロキサン(B1)と比較して製造工程において低分子量の環を生じ難く、また、加熱等により分解してシラノール基(-SiOH)を生じ難いため、ポリオルガノシロキシシルアルキレン(B2)を使用した場合、硬化性樹脂組成物の硬化物の表面粘着性が低減され、より黄変し難くなる傾向がある。
 前記ポリオルガノシロキシシルアルキレン(B2)としては、直鎖状、一部分岐を有する直鎖状、分岐鎖状、網目状の分子構造を有するものなどが挙げられる。なお、ポリオルガノシロキシシルアルキレン(B2)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。具体的には、分子構造が異なるポリオルガノシロキシシルアルキレン(B2)の2種以上を併用することができ、例えば、直鎖状のポリオルガノシロキシシルアルキレン(B2)と分岐鎖状のポリオルガノシロキシシルアルキレン(B2)とを併用することもできる。
 前記ポリオルガノシロキシシルアルキレン(B2)が有する水素原子以外のケイ素原子に結合した基は、例えば、有機基等が挙げられる。有機基としては、例えば、上述の一価の置換又は無置換炭化水素基及び上述のアルケニル基等が挙げられる。中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。また、ポリオルガノシロキサン(B2)は、水素原子以外のケイ素原子に結合した基として、アルケニル基(例えば、ビニル基)を有していてもよいし、有していなくてもよい。
 ポリオルガノシロキシシルアルキレン(B2)としては、下記平均単位式(B-2)で表されるポリオルガノシロキシシルアルキレンが好ましい。
 平均単位式(B-2):
(R4 2SiO2/2d1(R4 3SiO1/2d2(R4SiO3/2d3(SiO4/2d4(RAd5(X4O)d6
 上記平均単位式(B-2)中、R4は、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基であり、水素原子、上述の一価の置換若しくは無置換炭化水素基の具体例(例えば、アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基等)、及び上述のアルケニル基等が挙げられる。但し、R4の一部は水素原子であり、その割合は、分子内に2個以上となる範囲に制御される。例えば、R4の全量(100モル%)に対する水素原子の割合は、0.1~50モル%が好ましく、より好ましくは5~35モル%である。水素原子の割合を上記範囲に制御することにより、硬化性樹脂組成物の硬化性がより向上する傾向がある。また、水素原子以外のR4としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
 上記平均単位式中、RAは、上述のようにアルキレン基である。特にエチレン基が好ましい。
 上記平均単位式(B-2)中、X4は、上記X3と同じく、水素原子、又はアルキル基である。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、特にメチル基が好ましい。
 上記平均単位式(B-2)中、d1は正数、d2は正数、d3は0又は正数、d4は0又は正数、d5は正数、d6は0又は正数である。中でも、d1は1~50が好ましく、d2は1~50が好ましく、d3は0~10が好ましく、d4は0~5が好ましく、d5は1~30が好ましい。
 ポリオルガノシロキシシルアルキレン(B2)としては、より具体的には、例えば、下記式(II-2)で表される構造を有するポリオルガノシロキシシルアルキレンが挙げられる。
Figure JPOXMLDOC01-appb-C000004
 上記式(II-2)中、R22は、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基である。R22としては、水素原子、上述の一価の置換若しくは無置換炭化水素基の具体例(例えば、アルキル基、アリール基、アラルキル基、ハロゲン化炭化水素基等)、及び上述のアルケニル基が挙げられる。但し、R22の少なくとも2個は水素原子である。また、水素原子以外のR22としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
 上記式(II-2)中、RAは、式(I-2)におけるRAと同じく、アルキレン基を示し、中でも、C2-4アルキレン基(特にエチレン基)が好ましい。なお、複数のRAが存在する場合、これらは同一であってもよいし、異なっていてもよい。
 上記式(II-2)中、q1は1以上の整数(例えば、1~100)を示す。なお、q1が2以上の整数の場合、q1が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
 上記式(II-2)中、q2は1以上の整数(例えば、1~400)を示す。なお、q2が2以上の整数の場合、q2が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
 上記式(II-2)中、q3は0又は1以上の整数(例えば、0~50)を示す。なお、q3が2以上の整数の場合、q3が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
 上記式(II-2)中、q4は0又は1以上の整数(例えば、0~50)を示す。なお、q4が2以上の整数の場合、q4が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
 上記式(II-2)中、q5は0又は1以上の整数(例えば、0~50)を示す。なお、q5が2以上の整数の場合、q5が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
 また、上記式(II-2)における各構造単位の付加形態は、ランダム型であってもよいし、ブロック型であってもよい。
 式(II-2)で表される構造を有するポリオルガノシロキシシルアルキレンの末端構造は、例えば、シラノール基、アルコキシシリル基、トリアルキルシリル基(例えば、q5が付された括弧内の構造、トリメチルシリル基等)等が挙げられる。上記ポリオルガノシロキシシルアルキレンの末端には、ヒドロシリル基等の各種の基が導入されていてもよい。
 ポリオルガノシロキシシルアルキレン(B2)は、公知乃至慣用の方法により製造することができ、その製造方法は、例えば、特開2012-140617号公報に記載の方法等により製造できる。
 なお、本発明の硬化性樹脂組成物においてポリシロキサン(B)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。ポリシロキサン(B)の性状は、例えば25℃において、液状であってもよいし、固体状であってもよい。
 本発明の硬化性樹脂組成物におけるポリシロキサン(B)の含有量(配合量)は、ポリシロキサン(A)の全量100重量部に対して、例えば、1~100重量部、好ましくは1.5~50重量部、より好ましくは2~30重量部、さらに好ましくは2.5~15重量部である。ポリシロキサン(B)の含有量を上記範囲に制御することにより、硬化性樹脂組成物の硬化性がより向上し、効率的に硬化物を形成することができる傾向がある。ポリシロキサン(B)の含有量が上記範囲内であると、硬化反応が十分に進行すること等により、硬化物の耐熱性、耐熱衝撃性、耐リフロー性等の特性がより向上する傾向がある。
 本発明の硬化性樹脂組成物におけるポリシロキサン(B)としては、ポリオルガノシロキサン(B1)のみを使用することもできるし、ポリオルガノシロキシシルアルキレン(B2)のみを使用することもできるし、また、ポリオルガノシロキサン(B1)とポリオルガノシロキシシルアルキレン(B2)とを併用することもできる。ポリオルガノシロキサン(B1)とポリオルガノシロキシシルアルキレン(B2)とを併用する場合、これらの割合は特に限定されず、適宜設定可能である。
 ポリシロキサン(A)とポリシロキサン(B)の含有量の合計(合計含有量)は、硬化性樹脂組成物全量に対して60~99重量%が好ましく、より好ましくは70~96重量%、さらに好ましくは80~90重量%である。上記合計含有量を上記範囲に制御することにより、硬化物の強靭性、耐熱性、透明性がより向上する傾向がある。
[ラダー型シルセスキオキサン]
 本発明の硬化性樹脂組成物は、前記シルセスキオキサンの一例として、ラダー型シルセスキオキサンを含んでいてもよい。本発明の硬化性樹脂組成物は、ラダー型シルセスキオキサン成分を含むことにより、柔軟性、耐熱衝撃性が著しく向上する傾向がある。ラダー型シルセスキオキサンとしては、分子内に1個以上(好ましくは2個以上)のアルケニル基と1個以上(好ましくは2~50個)のアリール基を有し、ラダー構造の-Si-O-Si-骨格を有するシルセスキオキサンを使用することができる。
 ラダー型シルセスキオキサンが分子内に有するアルケニル基、アリール基としては、ポリオルガノシロキサン(A1)が分子内に有するアルケニル基、アリール基として上記で例示したものと同様のものが挙げられる。ラダー型シルセスキオキサンが有するアルケニル基、アリール基は、ケイ素原子に結合した基であることが好ましい。
 ラダー型シルセスキオキサンが分子内に有するアルケニル基及びアリール基以外のケイ素原子に結合した基としては、例えば、水素原子、有機基等が挙げられる。有機基としては、例えば、上述の一価の置換又は無置換炭化水素基等が挙げられる。中でも、アルキル基(特にメチル基)が好ましい。また、ラダー型シルセスキオキサンは、ケイ素原子に結合した基として、ヒドロキシ基、アルコキシ基を有していてもよい。
 前記ラダー型シルセスキオキサン全体(100重量%)に占めるアルケニル基の割合は、分子内にアルケニル基が1個以上となる範囲に制御される限り特に限定されないが、例えば、1.0~20.0重量%、好ましくは1.5~15.0重量%である。アリール基の割合は、例えば、1.0~50.0重量%、好ましくは5.0~25.0重量%である。上述の範囲でアリール基を有することにより、耐熱性等の各種物性、耐クラック性、ガスバリア性に優れた硬化物が得られやすい傾向がある。アルキル基の割合は、例えば、10.0~50.0重量%、好ましくは20.0~40.0重量%である。なお、ラダー型シルセスキオキサンにおけるアルケニル基、アリール基、アルキル基の割合は、例えば、NMRスペクトル(例えば、1H-NMRスペクトル)測定により算出することができる。
 シルセスキオキサンは、T単位(ケイ素原子が3個の酸素原子と結合した3価の基からなる単位)を基本構成単位とするポリシロキサンであり、その基本構造式(実験式)は、RSiO3/2で表される。シルセスキオキサンのSi-O-Si骨格の構造としては、ランダム構造、カゴ構造、ラダー構造が挙げられる。
 ラダー型シルセスキオキサンの重量平均分子量(Mw)は、100~80万が好ましく、より好ましくは200~10万、さらに好ましくは300~1万、特に好ましくは500~8000、最も好ましくは1700~7000である。Mwが100未満であると、硬化物の耐熱性が低下する場合がある。一方、Mwが80万を超えると、他の成分との相溶性が低下する場合がある。なお、上記Mwは、ゲルパーミエーションクロマトグラフィー(GPC)による標準ポリスチレン換算の値である。
 ラダー型シルセスキオキサンの数平均分子量(Mn)は、80~80万が好ましく、より好ましくは150~10万、さらに好ましくは250~1万、特に好ましくは400~8000、最も好ましくは1500~7000である。Mnが80未満であると、硬化物の耐熱性が低下する場合がある。一方、Mnが80万を超えると、他の成分との相溶性が低下する場合がある。なお、上記Mnは、ゲルパーミエーションクロマトグラフィー(GPC)による標準ポリスチレン換算の値である。
 ラダー型シルセスキオキサンの、ゲルパーミエーションクロマトグラフィー(GPC)による標準ポリスチレン換算の分子量分散度(Mw/Mn)は、好ましくは1.00~1.40であり、より好ましくは1.35以下(例えば、1.05~1.35)、さらに好ましくは1.30以下(例えば、1.10~1.30)である。分子量分散度が1.40を超えると、例えば、低分子シロキサンが増加し、硬化物の密着性等が低下する傾向がある。一方、例えば、分子量分散度を1.05以上とすることにより、室温で液体(液状)となりやすく、取り扱い性が向上する場合がある。
 上記数平均分子量(Mn)、重量平均分子量(Mw)、及び分子量分散度(Mw/Mn)は、下記の装置及び条件により測定することができる。
 Alliance HPLCシステム 2695(Waters製)
 Refractive Index Detector 2414(Waters製)
 カラム:Tskgel GMHHR-M・2(東ソー(株)製)
 ガードカラム:Tskgel guard column HHRL(東ソー(株)製)
 カラムオーブン:COLUMN HEATER U-620(Sugai製)
 溶媒:THF
 測定温度:40℃
 分子量:標準ポリスチレン換算
 ラダー型シルセスキオキサンは、常温(約25℃)で液体であることが好ましい。より具体的には、その23℃における粘度は、100~100000mPa・sが好ましく、より好ましくは500~10000mPa・s、さらに好ましくは1000~8000mPa・sである。粘度が100mPa・s未満であると、硬化物の耐熱性が低下する場合がある。一方、粘度が100000mPa・sを超えると、硬化性樹脂組成物の調製や取り扱いが困難となる場合がある。なお、23℃における粘度は、レオメーター(商品名「Physica UDS-200」、Anton Paar社製)とコーンプレート(円錐直径:16mm、テーパ角度=0°)を用いて、温度:23℃、回転数:8rpmの条件で測定することができる。
 なお、本発明の硬化性樹脂組成物においてラダー型シルセスキオキサンは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本発明の硬化性樹脂組成物は、硬化物の強度(樹脂強度)、柔軟性、耐熱衝撃性の観点で、ラダー型シルセスキオキサンを含むことが好ましい。
 本発明の硬化性樹脂組成物がラダー型シルセスキオキサンを含む場合、本発明の硬化性樹脂組成物におけるラダー型シルセスキオキサンの含有量(配合量)は、ポリシロキサン(A)とポリシロキサン(B)の合計100重量部に対して、0.05~50重量部が好ましく、より好ましくは0.1~45重量部、さらに好ましくは0.2~40重量部である。また、上記ラダー型シルセスキオキサンの含有量(配合量)は、硬化性樹脂組成物(100重量%)に対して、0.01~20重量%が好ましく、より好ましくは0.05~15重量%、さらに好ましくは0.1~10重量%である。上記ラダー型シルセスキオキサンの含有量を上記範囲に制御することにより、硬化物の柔軟性、耐熱衝撃性が著しく向上する傾向がある。
[希土類化合物(C)]
 本発明の硬化性樹脂組成物は、下記式(1)で表される希土類化合物(C)(希土類錯体化合物)を含む。
 [M(L1)(L2)(L3)]       (1)
 式(1)中、Mは、希土類金属原子であり、L1、L2及びL3は、同一又は異なって、下記式(1a)で表される、β-ジケトン、又はβ-ケトエステルのアニオン若しくはエノラートアニオンであるリガンドを表す。
 R31COCHR32COR33      (1a)
 式(1a)中、R31は、置換基としてハロゲン原子を含有してもよい直鎖若しくは分岐鎖状の炭素数1~30のアルキル基を示し、炭素数1~30のアルキル基としては、炭素数1~20のアルキル基が好ましく、炭素数2~15のアルキル基がより好ましく、炭素数3~10のアルキル基がさらに好ましく、分岐鎖を有する炭素数3~10のアルキル基が特に好ましい。分岐鎖を有する炭素数3~10のアルキル基としては、イソプロピル基、イソブチル基、t-ブチル基、s-ブチル基、イソペンチル基、t-ペンチル基、イソヘキシル基、t-ヘキシル基、イソヘプチル基、t-ヘプチル基、イソオクチル基、t-オクチル基、2-エチルヘキシル基、イソノニル基、イソデシル基等が挙げられる。これらの基では、イソプロピル基、イソブチル基、t-ブチル基、s-ブチル基、イソペンチル基、t-ペンチル基が好ましい。前記置換基としては、ハロゲン原子、ヒドロキシ基、カルボキシ基等が挙げられるが、ハロゲン原子を有することが好ましく、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素原子が挙げられ、なかでもフッ素原子が好ましい。
 式(1a)中、R32は、水素原子、又は置換基としてハロゲン原子を含有してもよい炭素数1~30のアルキル基を示し、炭素数1~30のアルキル基としては上記R31で挙げた基が好ましいが、R32において最も好ましい基は、水素原子、炭素数1~4のアルキル基である。上記置換基は、上記R31で挙げたものと同じである。
 式(1a)中、R33は、置換基としてハロゲン原子を含有してもよい炭素数1~30のアルキル基、芳香族複素環式基、又は-OR34基を示す。上記R34は、置換基としてハロゲン原子を含有してもよい炭素数1~30のアルキル基を示す。これらの炭素数1~30のとしては、上記R31で挙げたものと同じ基が好ましい。上記芳香族複素環式基としては、例えば、ピリジル基、ピリミジニル基、ピラゾリル基、ピリダジニル基、ピラジニル基、トリアジニル基、フラニル基、チエニル基、インドリル基、オキサゾリル基、チアゾリル基、イミダゾリル基等が挙げられる。上記置換基は、上記R31で挙げたものと同じである。上記R31及びR32は、互いに結合して環を形成してもよく、上記R32及びR33は、互いに結合して環を形成してもよい。
 なお、上記式(1a)のβ-ジケトン、又はβ-ケトエステルのアニオン若しくはエノラートアニオンにおける、アニオンは式(1a’)で表される構造であり、エノラートアニオンは式(1a’’)で表される構造である。式(1a’)及び式(1a’’)におけるR31、R32、及びR33は上記と同じである。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 前記希土類化合物(C)は、例えば、下記式(1’)で表される化合物である。
Figure JPOXMLDOC01-appb-C000007
[式(1’)中、Mは、希土類金属原子であり、R35は、置換基としてハロゲン原子を含有してもよい炭素数1~30のアルキル基を示し、R36は、水素原子、又は置換基としてハロゲン原子を含有してもよい炭素数1~30のアルキル基を示し、R37は、置換基としてハロゲン原子を含有してもよい炭素数1~30のアルキル基、芳香族複素環式基、又は-OR38基を示す。R38は、置換基としてハロゲン原子を含有してもよい炭素数1~30のアルキル基を示す。R35及びR36は、互いに結合して環を形成してもよく、R36及びR37は、互いに結合して環を形成してもよい]
 上記Mにおける希土類金属原子は、上記のとおりであり、上記R35、R36、R37、及びR38における置換基としてハロゲン原子を含有してもよい炭素数1~30のアルキル基としては、上記R31で挙げた基が好ましく、上記芳香族複素環式基は、上記R33で挙げたものと同じ基であり、上記置換基は、上記R31で挙げた基と同じである。
 前記希土類金属原子としては、例えば、セリウム、ランタン、プラセオジム、ネオジム、サマリウム、イットリウム等が挙げられるが、なかでも入手が容易であるためセリウムが好ましい。
 前記希土類化合物(C)としては、中でもシリコーン樹脂との溶解性に優れ、耐熱性にも優れる点で、下記式(1-1)で表される化合物[セリウムトリメチルオクタンジオン]、式(1-2)で表される化合物[Ce(DPM)3:セリウムトリピバロイルメタン]、式(1-3)で表される化合物[Ce(HFAA)3:セリウムトリヘキサフルオロアセチルアセトン]が特に好ましい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 本発明の硬化性樹脂組成物において希土類化合物(C)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、希土類化合物(C)としては、市販品を使用することもできる。
 前記希土類金属原子の含有量(重量基準)は、硬化性樹脂組成物全量に対して、30~500ppm、好ましくは35~400ppm、より好ましくは40~300ppm、さらに好ましくは50~200ppm、特に好ましくは60~150ppmである。希土類金属原子の含有量が30ppm未満であると、高温条件下での硬化物の硬度の上昇を抑えることができなくなり、500ppmを超えると、硬化物の透明性が悪化する場合がある。
 希土類化合物(C)の含有量(配合量)は、希土類金属原子の含有量が30~500ppmとなる量であれば特に制限されないが、前記ポリシロキサン(A)100重量部に対して、0.01~0.5重量部が好ましく、より好ましくは0.015~0.4重量部、さらに好ましくは0.02~0.3重量部、特に好ましくは0.02~0.2重量部である。希土類金属原子の含有量が少な過ぎる場合と、高温条件下での硬化物の硬度の上昇を抑えることができなくなり、多過ぎる場合、硬化物の透明性が悪化する場合がある。なお、ポリシロキサン(A)には、前記ポリシロキサン(D)が含まれる。
 本発明の硬化性樹脂組成物は、希土類化合物(C)の添加量を増やしてもシリコーン樹脂(特に、ポリシロキサン(A))への溶解性が良く、添加することで硬化物としたときの耐熱性が良くなり、特に250℃程度の高温条件下でも硬度が上昇せず、柔軟性を維持できる。
[ヒドロシリル化触媒(E)]
 本発明の硬化性樹脂組成物は、ヒドロシリル化触媒(E)を含んでいてもよい。本発明の硬化性樹脂組成物がヒドロシリル化触媒を含むことにより、加熱することで、硬化性樹脂組成物中の脂肪族炭素-炭素二重結合(特にアルケニル基)とヒドロシリル基の間のヒドロシリル化反応をより効率的に進行させることができる傾向がある。なお、前記ヒドロシリル化触媒(E)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 前記ヒドロシリル化触媒(E)としては、白金系触媒、ロジウム系触媒、パラジウム系触媒等の周知のヒドロシリル化反応用触媒が例示され、具体的には、白金微粉末、白金黒、白金担持シリカ微粉末、白金担持活性炭、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金のオレフィン錯体、白金-カルボニルビニルメチル錯体等の白金のカルボニル錯体、白金-ジビニルテトラメチルジシロキサン錯体や白金-シクロビニルメチルシロキサン錯体等の白金ビニルメチルシロキサン錯体、白金-ホスフィン錯体、白金-ホスファイト錯体等の白金系触媒、並びに上記白金系触媒において白金原子の代わりにパラジウム原子又はロジウム原子を含有するパラジウム系触媒又はロジウム系触媒が挙げられる。中でも、ヒドロシリル化触媒としては、白金-ビニルメチルシロキサン錯体や白金-カルボニルビニルメチル錯体や塩化白金酸とアルコール、アルデヒドとの錯体が、反応速度が良好であるため好ましい。
 本発明の硬化性樹脂組成物がヒドロシリル化触媒を含む場合、前記ヒドロシリル化触媒の含有量(配合量)は、硬化性樹脂組成物に含まれる脂肪族炭素-炭素二重結合(特にアルケニル基)の全量1モルに対して、1×10-8~1×10-2モルが好ましく、より好ましくは1.0×10-6~1.0×10-3モルである。含有量を1×10-8モル以上とすることにより、より効率的に硬化物を形成させることができる傾向がある。一方、含有量を1×10-2モル以下とすることにより、より色相に優れた(着色の少ない)硬化物を得ることができる傾向がある。
 前記ヒドロシリル化触媒(E)の含有量(配合量)は、例えば、ヒドロシリル化触媒中の白金、パラジウム、又はロジウムが重量単位で、硬化性樹脂組成物全量に対して、0.01~1000ppmの範囲内となる量が好ましく、0.1~500ppmの範囲内となる量がより好ましい。ヒドロシリル化触媒の含有量がこのような範囲にあると、より効率的に硬化物を形成させることができ、また、より色相に優れた硬化物を得ることができる傾向がある。
[硬化遅延剤(F)]
 本発明の硬化性樹脂組成物は、さらに、硬化遅延剤(F)を含んでいてもよい。硬化遅延剤(F)は、白金族金属系触媒の触媒活性を制御し、本発明の硬化性樹脂組成物が加熱硬化前に増粘やゲル化を起こさないようにするために必要に応じて任意に添加するものである。
 硬化遅延剤(F)としては、硬化を遅延させることができる公知乃至慣用の化合物を使用することができ、特に限定されないが、1-エチニル-1-シクロヘキサノール、3-メチル-1-ブチン-3-オール、3-メチル-1-ペンチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、3-メチル-3-トリメチルシロキシ-1-ブチン、3-メチル-3-トリメチルシロキシ-1-ペンチン、3,5-ジメチル-3-トリメチルシロキシ-1-ヘキシン、1-エチニル-1-トリメチルシロキシシクロヘキサン等のアルキン化合物、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、クラウンエーテル化合物(例えば、12-クラウン-4、15-クラウン-5、18-クラウン-6、24-クラウン-8等)等のポリエーテル系化合物;ピロール化合物、ピラゾール化合物、3,5-ジメチルピラゾール化合物、イミダゾール化合物、1,2,3-トリアゾール化合物、1,2,4-トリアゾール化合物等のアゾール系化合物等が挙げられる。
 なお、前記硬化遅延剤(F)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、硬化遅延剤(F)は公知乃至慣用の方法によって製造することもできるし、市販品を入手することもできる。
 前記硬化遅延剤(F)の含有量(配合量)は、本発明の効果を妨げない範囲であれば特に限定されないが、前記ポリシロキサン(A)とポリシロキサン(B)とポリシロキサン(D)の合計100重量部に対して、例えば、0.001~5重量部、好ましくは0.005~3重量部、より好ましくは0.01~2重量部である。
[シランカップリング剤(G)]
 本発明の硬化性樹脂組成物は、シランカップリング剤(G)を含んでいてもよい。本発明の硬化性樹脂組成物は、シランカップリング剤(G)を含む場合、特に、硬化物の被着体に対する密着性がいっそう向上する傾向がある。
 シランカップリング剤(G)としては、公知乃至慣用のシランカップリング剤を使用することができ、例えば、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基含有シランカップリング剤;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、N-(β-アミノエチル)-γ-アミノプロピルメチルジエトキシシラン等のアミノ基含有シランカップリング剤;テトラメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(メトキシエトキシシラン)、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、ビニルトリアセトキシシラン、γ-(メタ)アクリロイルオキシプロピルトリエトキシシラン、γ-(メタ)アクリロイルオキシプロピルトリメトキシシラン、γ-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、γ-(メタ)アクリロイルオキシプロピルメチルジエトキシシラン、メルカプトプロピレントリメトキシシラン、メルカプトプロピレントリエトキシシラン、アルコキシオリゴマー(例えば、商品名「X-41-1053」、「X-41-1059A」、「KR-516」、「X-41-1085」、「X-41-1818」、「X-41-1810」、「X-40-2651」、「X-40-2665A」、「KR-513」、「KC-89S」、「KR-500」、「X-40-9225」、「X-40-9246」、「X-40-9250」;以上、信越化学工業(株)製)等が挙げられる。中でも、エポキシ基含有シランカップリング剤(特に3-グリシドキシプロピルトリメトキシシラン)を好ましく使用できる。
 本発明の硬化性樹脂組成物においてシランカップリング剤(G)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、シランカップリング剤(G)としては、市販品を使用することもできる。
 本発明の硬化性樹脂組成物がシランカップリング剤(G)を含む場合、本発明の硬化性樹脂組成物におけるシランカップリング剤(G)の含有量(配合量)は、硬化性樹脂組成物(100重量%)に対して、0.01~15重量%が好ましく、より好ましくは0.1~10重量%、さらに好ましくは0.5~5重量%である。シランカップリング剤(G)の含有量を0.01重量%以上とすることにより、硬化物の被着体に対する密着性がより向上する傾向がある。一方、シランカップリング剤(G)の含有量を15重量%以下とすることにより、十分に硬化反応が進行し、硬化物の靱性、耐熱性がより向上する傾向がある。
 さらに、本発明の硬化性樹脂組成物は、上述の成分以外のその他の成分を含んでいてもよい。その他の成分としては、例えば、ポリシロキサン(A)及びポリシロキサン(B)以外のシロキサン化合物(例えば、環状シロキサン化合物、低分子量直鎖又は分岐鎖状シロキサン化合物等)、イソシアヌレート化合物、ヒドロシリル化反応抑制剤、溶媒、各種添加剤等が挙げられる。添加剤としては、例えば、沈降シリカ、湿式シリカ、ヒュームドシリカ、焼成シリカ、酸化チタン、アルミナ、ガラス、石英、アルミノケイ酸、酸化鉄、炭酸カルシウム、カーボンブラック、炭化ケイ素、窒化ケイ素、窒化ホウ素等の無機質充填剤、これらの充填剤をオルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物により処理した無機質充填剤;上述以外のシリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂微粉末;銀、銅等の導電性金属粉末等の充填剤、溶剤、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤等)、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤等)、難燃助剤、補強材(他の充填剤等)、核剤、カップリング剤、滑剤、ワックス、可塑剤、離型剤、耐衝撃性改良剤、色相改良剤、流動性改良剤、着色剤(染料、顔料等)、分散剤、消泡剤、脱泡剤、抗菌剤、防腐剤、粘度調整剤、増粘剤、蛍光体等が挙げられる。これらのその他の成分は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。なお、その他の成分の含有量(配合量)は、本発明の効果を損なわない範囲で適宜選択することが可能である。
 本発明の硬化性樹脂組成物は、硬化性樹脂組成物中に存在するヒドロシリル基1モルに対して、脂肪族炭素-炭素二重結合(特に、アルケニル基)が0.2~4モルとなる組成(配合組成)が好ましく、より好ましくは0.5~3.0モル、さらに好ましくは0.8~2.0モルである。ヒドロシリル基と脂肪族炭素-炭素二重結合(特に、アルケニル基)との割合を上記範囲に制御することにより、硬化物の耐熱性、透明性、耐熱衝撃性及び耐リフロー性、並びに腐食性ガスに対するバリア性がより向上する傾向がある。
 本発明の硬化性樹脂組成物は、上記の各成分を室温で撹拌・混合することにより調製することができる。なお、本発明の硬化性樹脂組成物は、各成分があらかじめ混合されたものをそのまま使用する1液系の組成物として使用することもできるし、例えば、別々に保管しておいた2以上の成分を使用前に所定の割合で混合して使用する多液系(例えば、2液系)の組成物として使用することもできる。調製時に必要に応じて硬化しない程度に加温(例えば、30~100℃)してもよい。
 本発明の硬化性樹脂組成物は、固体、液体のいずれの状態を有するものであってもよいが、通常、常温(約25℃)で液体である。
 本発明の硬化性樹脂組成物の23℃における粘度は、300~2万mPa・sが好ましく、より好ましくは500~1万mPa・s、さらに好ましくは1000~8000mPa・sである。粘度を300mPa・s以上とすることにより、硬化物の耐熱性がより向上する傾向がある。一方、粘度を2万mPa・s以下とすることにより、硬化性樹脂組成物の調製がしやすく、その生産性や取り扱い性がより向上し、また、硬化物に気泡が残存しにくくなるため、硬化物(特に封止材)の生産性や品質がより向上する傾向がある。
[封止剤]
 本発明の硬化性樹脂組成物は、半導体装置における半導体素子の封止用の組成物(「本発明の封止剤」と称する場合がある)として好ましく使用することができる。具体的には、前記封止剤は、光半導体装置における光半導体素子(LED素子)の封止用途に(即ち、光半導体用封止剤として)特に好ましく使用できる。前記封止剤を硬化させることにより得られる硬化物は、ポリシロキサン系材料特有の高い耐熱性及び透明性を有するのみならず、特に250℃程度の高温条件下でも硬度が上昇せず、柔軟性を維持できる。このため、前記封止剤は、特に、高輝度、短波長の光半導体素子の封止剤等として好ましく使用できる。
 本発明の硬化性樹脂組成物は、上述の封止剤用途に限定されず、封止剤以外には、レンズ(光学レンズ、耐熱プラスチックレンズ等)形成、光学部材、機能性コーティング剤、透明機器、接着剤(耐熱透明接着剤等)、電気絶縁材(絶縁膜等)、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリ等の光学関連や半導体関連の用途にも好ましく使用でき、なかでも硬化物としたときの透明性に優れる点から、レンズ形成用として好ましく使用できる。即ち、本発明の硬化性樹脂組成物は、レンズ形成用樹脂組成物として好ましく使用できる。
<硬化物>
 本発明の硬化性樹脂組成物を硬化(特にヒドロシリル化反応により硬化)させることによって、硬化物(単に「本発明の硬化物」と称する場合がある)が得られる。硬化(特にヒドロシリル化反応による硬化)の際の条件は、従来公知の条件より適宜選択することができるが、反応速度の点から、温度(硬化温度)は25~180℃が好ましく、より好ましくは60~150℃であり、時間(硬化時間)は5~720分が好ましい。なお、硬化は一段階で実施することもできるし、多段階で実施することもできる。本発明の硬化物としては、例えば、封止材、レンズ等が挙げられる。本発明の硬化物は、ポリシロキサン系材料特有の高い耐熱性及び透明性を有するのみならず、特に250℃程度の高温条件下でも硬度が上昇せず、柔軟性を維持できる。
 本発明の硬化物は、高い透明性を有する。本発明の硬化物の光線透過率は、厚さが3mm、波長450nmにおいて、80%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましい。光線透過率は、光線透過率計(紫外可視光分光光度計)を用いて測定できる。
<半導体装置>
 本発明の硬化性樹脂組成物(本発明の封止剤)を使用して半導体素子を封止することにより、半導体装置(単に「本発明の半導体装置」と称する場合がある)が得られる。即ち、本発明の半導体装置は、半導体素子とこれを封止する封止材とを少なくとも有する半導体装置であって、前記封止材が本発明の硬化性樹脂組成物(本発明の封止剤)の硬化物である半導体装置である。本発明の半導体装置の製造は、公知乃至慣用の方法により実施でき、例えば、本発明の封止剤を所定の成形型内に注入し、所定の条件で加熱硬化して実施できる。硬化温度と硬化時間は、硬化物の調製時と同様の範囲で設定することができる。本発明の半導体用封止剤は、耐熱性及び透明性を有し、特に250℃程度の高温条件下でも硬度が上昇せず、柔軟性を維持できるため、光半導体装置であることが好ましい。
 本発明の光半導体装置の一例を図1に示す。図1において、100はリフレクター、101は金属配線(電極)、102は光半導体素子、103はボンディングワイヤ、104は硬化物(封止材)を示す。
 本発明の半導体装置は、半導体素子と、レンズとを有する半導体装置であって、前記レンズが、本発明の硬化性樹脂組成物の硬化物であることが好ましい。また、本発明の半導体装置は、半導体素子と、前記半導体素子を封止する封止材とレンズを有する半導体装置であって、前記封止材が、本発明の硬化性樹脂組成物(本発明の封止剤)の硬化物であり、前記レンズが、本発明の硬化性樹脂組成物の硬化物であることが好ましい。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 生成物の1H-NMR分析は、JEOL ECA500(500MHz)により行った。また、生成物の重量平均分子量の測定は、Alliance HPLCシステム 2695(Waters製)、Refractive Index Detector 2414(Waters製)、カラム:Tskgel GMHHR-M×2(東ソー(株)製)、ガードカラム:Tskgel guard column HHRL(東ソー(株)製)、カラムオーブン:COLUMN HEATER U-620(Sugai製)、溶媒:THF、測定条件:40℃により行った。
製造例1
[希土類化合物C-1の合成]
 四つ口フラスコに2,7,7-トリメチル-3,5-オクタンジオン4g(21.7mmol)と2-プロパノール36gを計量し、四つ口フラスコに仕込んだ。容器を窒素置換した後に60℃まで加熱し、28wt%ナトリウムメトキシド/メタノール溶液4.19gを滴下した。1時間撹拌した後、塩化セリウム7水和物2.70g(7.24mmol)をメタノール10gに溶解させた液を滴下した。その後、60℃で撹拌し、メンブレンフィルターにて塩を取り除いた後、ロータリーエバポレーターにて溶液を濃縮し黄褐色固体4.18g(収率83.8%)を得た。得られた希土類化合物C-1は、上記式(1-1)で表される化合物である。
製造例2
[希土類化合物C-2の合成]
 四つ口フラスコに2,2,6,6-テトラメチル-3,5-ヘプタンジオン4g(21.7mmol)と2-プロパノール36gを計量し、四つ口フラスコに仕込んだ。容器を窒素置換した後に60℃まで加熱し、28wt%ナトリウムメトキシド/メタノール溶液4.19gを滴下した。1時間撹拌した後、塩化セリウム7水和物2.70g(7.24mmol)をメタノール10gに溶解させた液を滴下した。その後、60℃で撹拌し、メンブレンフィルターにて塩を取り除いた後、ロータリーエバポレーターにて溶液を濃縮し黒紫色固体4.20g(収率84.2%)を得た。得られた希土類化合物C-2は、上記式(1-2)で表される化合物である。
製造例3
[希土類化合物C-3の合成]
 四つ口フラスコにヘキサフルオロアセチルアセトン4g(19.2mmol)と2-プロパノール36gを計量し、四つ口フラスコに仕込んだ。容器を窒素置換した後に60℃まで加熱し、28wt%ナトリウムメトキシド/メタノール溶液3.71gを滴下した。1時間撹拌した後、塩化セリウム7水和物2.39g(6.41mmol)をメタノール2gに溶解させた液を滴下した。その後、60℃で撹拌し、メンブレンフィルターにて塩を取り除いた後、ロータリーエバポレーターにて溶液を濃縮し淡黄色固体4.05g(収率83.2%)を得た。得られた希土類化合物C-3は、上記式(1-3)で表される化合物である。
製造例4
[ポリオルガノシロキサンD-1の合成]
 四つ口フラスコに、メチルトリエトキシシラン40.10g、フェニルトリエトキシシラン3.38g、及びメチルイソブチルケトン(MIBK)17.69gを仕込み、これらの混合物を10℃まで冷却した。上記混合物に水4.33g及び5Nの塩酸0.48gを同時に滴下した。滴下後、これらの混合物を10℃で保持した。その後、MIBKを80・0g添加して、反応溶液を希釈した。
 次に、反応容器の温度を70℃まで昇温し、70℃になった時点で水10.91gを添加し、同温度で重縮合反応を窒素下で行った。さらに、ビニルトリエトキシシラン6.25gを添加し、同温度で熟成反応を行った。
 続いて、得られた反応溶液にヘキサメチルジシロキサン15.0gを添加して、シリル化反応を70℃で行った。その後、反応溶液を冷却し、下層液が中性になるまで水洗を行い、その後、上層液を分取した。次に、当該上層液から、1mmHg、60℃の条件で溶媒を留去し、末端にビニル基とトリメチルシリル基とを有するポリオルガノシルセスキオキサン(ポリオルガノシロキサンD-1)を無色透明の液状の生成物として19.0g得た。
 重量平均分子量(Mw):3000、フェニル基含有率:4モル%、ビニル基含有率:6モル%
 1H-NMR(CDCl3) δ:-0.3-0.3ppm(br)、5.7-6.2ppm(br)、7.1-7.7ppm(br)
製造例5
[ポリオルガノシロキサンD-3の合成]
 四つ口フラスコに、メチルトリエトキシシラン42.61g、フェニルトリエトキシシラン6.76g、及びメチルイソブチルケトン(MIBK)17.69gを仕込み、これらの混合物を10℃まで冷却した。上記混合物に水4.33g及び5Nの塩酸0.48gを同時に滴下した。滴下後、これらの混合物を10℃で保持した。その後、MIBKを80.0g添加して、反応溶液を希釈した。
 次に、反応容器の温度を70℃まで昇温し、70℃になった時点で水10.91gを添加し、同温度で重縮合反応を窒素下で行った。さらに、ビニルトリエトキシシラン2.08gを添加し、同温度で熟成反応を行った。
 続いて、得られた反応溶液にヘキサメチルジシロキサン15.0gを添加して、シリル化反応を70℃で行った。その後、反応溶液を冷却し、下層液が中性になるまで水洗を行い、その後、上層液を分取した。次に、当該上層液から、1mmHg、60℃の条件で溶媒を留去し、末端にビニル基とトリメチルシリル基とを有するポリオルガノシルセスキオキサン(ポリオルガノシロキサンD-3)を無色透明の液状の生成物として19.0g得た。
 重量平均分子量(Mw):2700、フェニル基含有率:4モル%、ビニル基含有率:2モル%
 1H-NMR(CDCl3) δ:-0.3-0.3ppm(br)、5.7-6.2ppm(br)、7.1-7.7ppm(br)
 ポリシロキサン(A)としては、末端ビニル基ジメチルシリコーン、商品名「DMS-V35」(Gelest社製)を使用した。
 ポリシロキサン(B)としては、末端トリメチルシロキシ末端メチルヒドロシロキサン-ジメチルシロキサン共重合シリコーン、商品名「HMS-301」(Gelest社製)を使用した。
 希土類化合物(C)としては、上記合成例1~3で合成した希土類化合物C-1~C-3を使用した。
 その他の希土類化合物(希土類化合物(C)以外の希土類化合物)としては、下記の希土類化合物C-4、C-5を使用した。
希土類化合物C-4:2-エチルヘキサン酸セリウム(III) 49% 2-エチルヘキサン酸溶液(和光純薬工業(株)製)(但し、表1中の数値は、2-エチルヘキサン酸セリウム有効量の値である)
希土類化合物C-5:酸化セリウム(IV)(和光純薬工業(株)製)
 ポリオルガノシロキサン(D)としては、上記製造例4、5で合成したポリオルガノシロキサンD-1、D-3及び下記ポリオルガノシロキサンD-2を使用した。
ポリオルガノシロキサンD-2:ビニルMQレジン、商品名「MQV-7」(長瀬産業(株)製)
 ヒドロシリル化触媒(E)としては、PtVTS:2%Pt-1,3-ジビニルテトラメチルジシロキサン錯体キシレン溶液(エヌ・イーケムキャット(株)製)を使用した。
 硬化遅延剤(F)としては、1-エチニルシクロヘキサノール(和光純薬工業(株)製)を使用した。
<希土類化合物の相溶性の評価方法>
 ポリシロキサン(A)、ポリシロキサン(B)、希土類化合物(C)、その他の希土類化合物、ポリオルガノシロキサン(D)、及び硬化遅延剤(F)を表1記載の所定比率で混合して配合液を作製した。これらの配合液を70℃で4時間攪拌し、その後、透明のガラス瓶に移し、23℃、168時間後の外観を下記評価基準にて目視で確認した。評価結果を表1に示す。
(評価基準)
○:固体析出物なし
×:固体析出物あり
実施例1-8、比較例1
[硬化性樹脂組成物の製造]
 上記希土類化合物の相溶性の評価方法に用いたそれぞれの配合液に対し、ヒドロシリル化触媒(E)を表1記載の所定量を加え、10分間攪拌し、硬化性樹脂組成物を得た。なお、表1の希土類金属原子の含有量、及びヒドロシリル化触媒(E)の含有量は、硬化性樹脂組成物全量に対する重量基準の値(ppm)である。
<初期硬度>
 厚み3mm、幅10mm、長さ50mmの長方形の型に上記で得られた実施例1-8及び比較例1、それぞれの硬化性樹脂組成物を注入し、100℃で1時間、続いて150℃で5時間加熱することで、上記硬化性樹脂組成物の硬化物(厚み3mm)を製造した。これらの硬化物について、JIS K 6253-3に基づき、デュロメータ硬さ試験機(型番「GS-719G」、(株)テクロック社製)を用いて初期硬度を測定した。評価結果を表1に示す。
<光線透過率>
 上記初期硬度で製造した硬化物(厚み3mm)について、紫外可視光分光光度計(型番「UV-2450」、(株)島津製作所製)を用いて波長450nmにおける光線透過率を測定した。評価結果を表1に示す。
<250℃熱エージング試験後の硬度>
 上記初期硬度で製造した硬化物(厚み3mm)を250℃の環境下に200時間暴露し、その後上記初期硬度と同様にして硬度を測定した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000011
 上記表1より、希土類化合物(C)を使用した実施例1~8は、シリコーン樹脂との相溶性が良く、また硬化物の透明性も良く、250℃の高温条件下でも硬度の上昇が抑えられた。一方、比較例1の希土類化合物として2-エチルヘキサン酸セリウムを用いた場合は、シリコーン樹脂に溶解せず析出した。比較例2では、2-エチルヘキサン酸セリウムの含有量が少ないため析出はしないが、250℃熱エージング試験後に硬度が上昇した。また、比較例3の希土類化合物として酸化セリウムを用いた場合は、シリコーン樹脂に溶解せず析出した。さらに、比較例4の希土類化合物(C)の含有量が少な過ぎる場合は、硬化物の熱エージング試験後の硬度が上昇した。また、比較例5の希土類化合物(C)の含有量が多過ぎる場合は、透明性が悪くなった。
 以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記しておく。なお、以下の付記における式(化学式)は、本明細書に記載のとおりである。
[1]分子内に2個以上のアルケニル基を有するポリオルガノシロキサン(A1)及び分子内に2個以上のアルケニル基を有するポリオルガノシロキシシルアルキレン(A2)からなる群より選択される少なくとも1種であるポリシロキサン(A)と、分子内に2個以上のヒドロシリル基を有するポリオルガノシロキサン(B1)及び分子内に2個以上のヒドロシリル基を有するポリオルガノシロキシシルアルキレン(B2)からなる群より選択される少なくとも1種であるポリシロキサン(B)と、式(1)で表される希土類化合物(C)を含み、硬化性樹脂組成物全量に対する希土類金属原子の含有量が30~500ppmである硬化性樹脂組成物。
[2]ポリオルガノシロキサン(A1)を含む場合における、ポリオルガノシロキサン(A1)のアルケニル基が、ビニル基、アリル基、ブテニル基、ペンテニル基、又はヘキセニル基である[1]に記載の硬化性樹脂組成物。
[3]ポリシロキサン(A)として、平均単位式(a-1)で表されるポリオルガノシロキサン、及び平均単位式(a-2)で表されるポリオルガノシロキシシルアルキレンからなる群より選択される少なくとも1種であるポリシロキサン(D)を含む[1]又は[2]に記載の硬化性樹脂組成物。
[4]ポリシロキサン(D)として、平均単位式(a-1)’で表されるポリオルガノシロキサン、及び平均単位式(a-1)’’で表されるポリオルガノシロキシシルアルキレンからなる群より選択される少なくとも1種を含む[3]に記載の硬化性樹脂組成物。
[5]平均単位式(a-1)’で表されるポリオルガノシロキサンが、シルセスキオキサンである[4]に記載の硬化性樹脂組成物。
[6]ポリシロキサン(D)の含有量が、ポリシロキサン(A)全量に対して、1~70重量%である[3]~[5]のいずれか1つに記載の硬化性樹脂組成物。
[7]ポリオルガノシロキサン(A1)を含む場合における、ポリオルガノシロキサン(A1)が、分子内に2個以上のアルケニル基を有する直鎖状ポリオルガノシロキサンである[1]~[6]のいずれか1つに記載の硬化性樹脂組成物。
[8]前記直鎖状ポリオルガノシロキサンにおける、ケイ素原子に結合した基の全量(100モル%)に対するアルケニル基の割合が、0.1~40モル%である[7]に記載の硬化性樹脂組成物。
[9]前記直鎖状ポリオルガノシロキサンが、式(I-1)で表されるポリシロキサンである[7]又は[8]に記載の硬化性樹脂組成物。
[10]ポリオルガノシロキサン(A1)を含む場合における、ポリオルガノシロキサン(A1)が、分子内に2個以上のアルケニル基を有し、RSiO3/2(Rは一価の置換又は無置換炭化水素基)で表されるシロキサン単位(T単位)を有する分岐鎖状ポリオルガノシロキサンである[1]~[6]のいずれか1つに記載の硬化性樹脂組成物。
[11]ポリオルガノシロキシシルアルキレン(A2)を含む場合における、シルアルキレン結合におけるアルキレン基が、直鎖又は分岐鎖状のC1-12アルキレン基である[1]~[10]のいずれか1つに記載の硬化性樹脂組成物。
[12]ポリオルガノシロキシシルアルキレン(A2)を含む場合における、ポリオルガノシロキシシルアルキレン(A2)のアルケニル基が、置換又は無置換アルケニル基(好ましくはビニル基)である[1]~[11]のいずれか1つに記載の硬化性樹脂組成物。
[13]ポリオルガノシロキシシルアルキレン(A2)を含む場合における、ポリオルガノシロキシシルアルキレン(A2)が、平均単位式(a-2)で表されるポリオルガノシロキシシルアルキレンである[1]~[12]のいずれか1つに記載の硬化性樹脂組成物。
[14]ポリオルガノシロキシシルアルキレン(A2)を含む場合における、ポリオルガノシロキシシルアルキレン(A2)が、式(I-2)で表される構造を有するポリオルガノシロキシシルアルキレンである[1]~[13]のいずれか1つに記載の硬化性樹脂組成物。
[15]ポリシロキサン(A)の含有量(総量)が、硬化性樹脂組成物の全量に対して、50~99重量%である[1]~[14]のいずれか1つに記載の硬化性樹脂組成物。
[16]ポリオルガノシロキサン(B1)を含む場合における、ポリオルガノシロキサン(B1)が、平均単位式(B-1)で表されるポリオルガノシロキサンである[1]~[15]のいずれか1つに記載の硬化性樹脂組成物。
[17]ポリオルガノシロキサン(B1)を含む場合における、ポリオルガノシロキサン(B1)が、分子内に2個以上のヒドロシリル基を有する直鎖状ポリオルガノシロキサンである[1]~[16]のいずれか1つに記載の硬化性樹脂組成物。
[18]前記直鎖状ポリオルガノシロキサンにおける、ケイ素原子に結合した基の全量(100モル%)に対する水素原子(ケイ素原子に結合した水素原子)の割合が、0.1~40モル%がである[17]に記載の硬化性樹脂組成物。
[19]前記直鎖状ポリオルガノシロキサンが、式(II-1)で表されるポリシロキサンである[17]又は[18]に記載の硬化性樹脂組成物。
[20]ポリオルガノシロキサン(B1)を含む場合における、ポリオルガノシロキサン(B1)が、分子内に2個以上のヒドロシリル基を有し、RSiO3/2(Rは水素原子又は一価の置換若しくは無置換炭化水素基)で表されるシロキサン単位(T単位)を有する分岐鎖状ポリオルガノシロキサンである[1]~[16]のいずれか1つに記載の硬化性樹脂組成物。
[21]ポリオルガノシロキシシルアルキレン(B2)を含む場合における、ポリオルガノシロキシシルアルキレン(B2)のシルアルキレン結合のアルキレン基が、炭素数2~4のアルキレン基(好ましくはエチレン基)である[1]~[20]のいずれか1つに記載の硬化性樹脂組成物。
[22]ポリオルガノシロキシシルアルキレン(B2)を含む場合における、ポリオルガノシロキシシルアルキレン(B2)が、平均単位式(B-2)で表されるポリオルガノシロキシシルアルキレンである[1]~[21]のいずれか1つに記載の硬化性樹脂組成物。
[23]ポリオルガノシロキシシルアルキレン(B2)を含む場合における、ポリオルガノシロキシシルアルキレン(B2)が、式(II-2)で表される構造を有するポリオルガノシロキシシルアルキレンである[1]~[22]のいずれか1つに記載の硬化性樹脂組成物。
[24]ポリシロキサン(B)の含有量が、ポリシロキサン(A)の全量100重量部に対して、1~100重量部である[1]~[23]のいずれか1つに記載の硬化性樹脂組成物。
[25]ポリシロキサン(A)とポリシロキサン(B)の含有量の合計(合計含有量)が、硬化性樹脂組成物全量に対して、60~99重量%である[1]~[24]のいずれか1つに記載の硬化性樹脂組成物。
[26]ラダー型シルセスキオキサンを含む[1]~[25]のいずれか1つに記載の硬化性樹脂組成物。
[27]希土類化合物(C)が、式(1’)で表される化合物である[1]~[26]のいずれか1つに記載の硬化性樹脂組成物。
[28]前記希土類金属原子が、セリウム、ランタン、プラセオジム、ネオジム、サマリウム、及びイットリウムからなる群より選択される少なくとも1種である[1]~[27]のいずれか1つに記載の硬化性樹脂組成物。
[29]希土類化合物(C)が、式(1-1)で表される化合物[セリウムトリメチルオクタンジオン]、式(1-2)で表される化合物[Ce(DPM)3:セリウムトリピバロイルメタン]、及び式(1-3)で表される化合物[Ce(HFAA)3:セリウムトリヘキサフルオロアセチルアセトン]からなる群より選択される少なくとも1つの化合物である[1]~[28]のいずれか1つに記載の硬化性樹脂組成物。
[30]希土類化合物(C)の含有量が、ポリシロキサン(A)100重量部に対して、0.01~0.5重量部である[1]~[29]のいずれか1つに記載の硬化性樹脂組成物。
[31]さらに、ヒドロシリル化触媒(E)を含む[1]~[30]のいずれか1つに記載の硬化性樹脂組成物。
[32]ヒドロシリル化触媒(E)が、白金系触媒、ロジウム系触媒、又はパラジウム系触媒である[31]に記載の硬化性樹脂組成物。
[33]ヒドロシリル化触媒(E)の含有量が、ヒドロシリル化触媒中の白金、パラジウム、又はロジウムが重量単位で、硬化性樹脂組成物全量に対して、0.01~1000ppmである[32]に記載の硬化性樹脂組成物。
[34]さらに、硬化遅延剤(F)を含む[1]~[33]のいずれか1つに記載の硬化性樹脂組成物。
[35]硬化遅延剤(F)の含有量が、ポリシロキサン(A)とポリシロキサン(B)とポリシロキサン(D)の合計100重量部に対して、0.001~5重量部である[1]~[34]のいずれか1つに記載の硬化性樹脂組成物。
[36]さらに、シランカップリング剤(G)を含む[1]~[35]のいずれか1つに記載の硬化性樹脂組成物。
[37]封止剤である[1]~[36]のいずれか1つに記載の硬化性樹脂組成物。
[38]レンズ形成用樹脂組成物である[1]~[37]のいずれか1つに記載の硬化性樹脂組成物。
[39][1]~[38]のいずれか1項に記載の硬化性樹脂組成物の硬化物。
[40]厚さが3mmのときの波長450nmにおける光線透過率が80%以上である[39]に記載の硬化物。
[41]半導体素子と、前記半導体素子を封止する封止材とを有する半導体装置であって、前記封止材が、[37]に記載の硬化性樹脂組成物の硬化物である半導体装置。
[42]半導体素子と、レンズとを有する半導体装置であって、前記レンズが、[38]に記載の硬化性樹脂組成物の硬化物である半導体装置。
[43]半導体素子と、前記半導体素子を封止する封止材とレンズを有する半導体装置であって、前記封止材が、[37]に記載の硬化性樹脂組成物の硬化物であり、前記レンズが、[38]に記載の硬化性樹脂組成物の硬化物である半導体装置。
[44]光半導体装置である[41]~[43]のいずれか1項に記載の半導体装置。
 本発明の硬化性樹脂組成物は、半導体素子を封止するための封止剤やレンズ形成用樹脂組成物として利用可能である。
 100:リフレクター
 101:金属配線(電極)
 102:光半導体素子
 103:ボンディングワイヤ
 104:硬化物(封止材)

Claims (15)

  1.  分子内に2個以上のアルケニル基を有するポリオルガノシロキサン(A1)及び分子内に2個以上のアルケニル基を有するポリオルガノシロキシシルアルキレン(A2)からなる群より選択される少なくとも1種であるポリシロキサン(A)と、分子内に2個以上のヒドロシリル基を有するポリオルガノシロキサン(B1)及び分子内に2個以上のヒドロシリル基を有するポリオルガノシロキシシルアルキレン(B2)からなる群より選択される少なくとも1種であるポリシロキサン(B)と、下記式(1)で表される希土類化合物(C)
     [M(L1)(L2)(L3)]       (1)
    [式(1)中、Mは、希土類金属原子であり、L1、L2及びL3は、同一又は異なって、下記式(1a)
     R31COCHR32COR33      (1a)
    (式(1a)中、R31は、置換基としてハロゲン原子を含有してもよい直鎖若しくは分岐鎖状の炭素数1~30のアルキル基を示し、R32は、水素原子、又は置換基としてハロゲン原子を含有してもよい炭素数1~30のアルキル基を示し、R33は、ハロゲン原子を含有してもよい直鎖若しくは分岐鎖状の炭素数1~30のアルキル基、芳香族複素環式基、又は-OR34基を示す。R34は、置換基としてハロゲン原子を含有してもよい直鎖若しくは分岐鎖状の炭素数1~30のアルキル基を示す。R31及びR32は、互いに結合して環を形成してもよく、R32及びR33は、互いに結合して環を形成してもよい)
    で表される、β-ジケトン、又はβ-ケトエステルのアニオン若しくはエノラートアニオンであるリガンドを表す]
    を含み、硬化性樹脂組成物全量に対する希土類金属原子の含有量が30~500ppmである硬化性樹脂組成物。
  2.  前記希土類金属原子が、セリウム、ランタン、プラセオジム、ネオジム、サマリウム、及びイットリウムからなる群より選択される少なくとも1種である請求項1に記載の硬化性樹脂組成物。
  3.  さらに、ヒドロシリル化触媒(E)を含む請求項1又は2に記載の硬化性樹脂組成物。
  4.  前記ポリシロキサン(A)として、下記平均単位式(a-1)で表されるポリオルガノシロキサン、及び下記平均単位式(a-2)で表されるポリオルガノシロキシシルアルキレン
     平均単位式(a-1):
    (R1SiO3/2a1(R1 2SiO2/2a2(R1 3SiO1/2a3(SiO4/2a4(X11/2a5
    [平均単位式(a-1)中、R1は、同一又は異なって、炭素数1~10のアルキル基、炭素数6~14のアリール基、又は炭素数2~8のアルケニル基を示す。但し、R1の一部はアルケニル基であり、分子内に2個以上となる範囲である。X1は、水素原子又は炭素数1~6のアルキル基を示す。a1、a2、a3、a4、及びa5は、それぞれ、1>a1≧0、1>a2≧0、1>a3>0、1>a4≧0、0.05≧a5≧0、a1+a4>0、及びa1+a2+a3+a4+a5=1を満たす数値を示す]
     平均単位式(a-2):
    (R2 2SiO2/2b1(R2 3SiO1/2b2(R2SiO3/2b3(SiO4/2b4(RAb5(X21/2b6
    [平均単位式(a-2)中、R2は、同一又は異なって、炭素数1~10のアルキル基、炭素数6~14のアリール基、又は炭素数2~8のアルケニル基を示す。但し、R2の一部はアルケニル基であり、分子内に2個以上となる範囲である。RAは、同一又は異なって、炭素数1~14のアルキレン基を示す。X2は、水素原子又は炭素数1~6のアルキル基を示す。b1、b2、b3、b4、b5、及びb6は、それぞれ、1>b1≧0、1>b2>0、1>b3≧0、1>b4≧0、0.7>b5>0、0.05≧b6≧0、b3+b4>0、及びb1+b2+b3+b4+b5+b6=1を満たす数値を示す]
    からなる群より選択される少なくとも1種であるポリシロキサン(D)を含む請求項1~3の何れか1項に記載の硬化性樹脂組成物。
  5.  前記ポリシロキサン(D)として、下記平均単位式(a-1)’で表されるポリオルガノシロキサン、及び下記平均単位式(a-1)’’で表されるポリオルガノシロキシシルアルキレン
    平均単位式(a-1)’:
    (R1SiO3/2a1(R1 3SiO1/2a3(X11/2a5
    [平均単位式(a-1)’中、R1は、同一又は異なって、前記と同じである。X1は、前記と同じである。a1、a3、及びa5は、それぞれ、1>a1>0、1>a3>0、0.05≧a5≧0、及びa1+a3+a5=1を満たす数値を示す]
     平均単位式(a-1)’’:
    (R1 3SiO1/2a3(SiO4/2a4(X11/2a5
    [平均単位式(a-1)’’中、R1及びX1は、前記と同じである。a3、a4、及びa5は、それぞれ、1>a3>0、1>a4>0、0.05≧a5≧0、及びa3+a4+a5=1を満たす数値を示す]
    からなる群より選択される少なくとも1種を含む請求項4に記載の硬化性樹脂組成物。
  6.  前記平均単位式(a-1)’で表されるポリオルガノシロキサンが、シルセスキオキサンである請求項5に記載の硬化性樹脂組成物。
  7.  前記ポリシロキサン(A)全量に対する、前記ポリシロキサン(D)の含有量が1~70重量%である請求項4~6のいずれか1項に記載の硬化性樹脂組成物。
  8.  封止剤である請求項1~7のいずれか1項に記載の硬化性樹脂組成物。
  9.  レンズ形成用樹脂組成物である請求項1~7のいずれか1項に記載の硬化性樹脂組成物。
  10.  請求項1~9のいずれか1項に記載の硬化性樹脂組成物の硬化物。
  11.  厚さが3mmのときの波長450nmにおける光線透過率が80%以上である請求項10に記載の硬化物。
  12.  半導体素子と、前記半導体素子を封止する封止材とを有する半導体装置であって、前記封止材が、請求項8に記載の硬化性樹脂組成物の硬化物である半導体装置。
  13.  半導体素子と、レンズとを有する半導体装置であって、前記レンズが、請求項9に記載の硬化性樹脂組成物の硬化物である半導体装置。
  14.  半導体素子と、前記半導体素子を封止する封止材とレンズを有する半導体装置であって、前記封止材が、請求項8に記載の硬化性樹脂組成物の硬化物であり、前記レンズが、請求項9に記載の硬化性樹脂組成物の硬化物である半導体装置。
  15.  光半導体装置である請求項12~14のいずれか1項に記載の半導体装置。
PCT/JP2017/022176 2016-11-02 2017-06-15 硬化性樹脂組成物、硬化物、及び半導体装置 WO2018083832A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-214739 2016-11-02
JP2016214739A JP6228284B1 (ja) 2016-11-02 2016-11-02 硬化性樹脂組成物、硬化物、及び半導体装置

Publications (1)

Publication Number Publication Date
WO2018083832A1 true WO2018083832A1 (ja) 2018-05-11

Family

ID=60265850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022176 WO2018083832A1 (ja) 2016-11-02 2017-06-15 硬化性樹脂組成物、硬化物、及び半導体装置

Country Status (3)

Country Link
JP (1) JP6228284B1 (ja)
TW (1) TW201835167A (ja)
WO (1) WO2018083832A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735203A (zh) * 2018-12-25 2019-05-10 陕西科技大学 一种半封闭笼状三官能环氧醚基poss组合料、涂料及制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735015B (zh) * 2019-07-30 2021-08-01 長興材料工業股份有限公司 聚矽氧烷樹脂、含彼之塗料組合物及其應用
KR20240044414A (ko) * 2021-08-11 2024-04-04 제이엔씨 주식회사 실록산 폴리머 조성물, 경화물, 전자 부품, 광학 부품 및 복합 부재

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422755B2 (ja) * 1975-07-18 1979-08-08
JPS62256863A (ja) * 1986-04-30 1987-11-09 Toshiba Silicone Co Ltd ロール用液状シリコーンゴム組成物
JP2016222850A (ja) * 2015-06-02 2016-12-28 株式会社ダイセル 硬化性シリコーン樹脂組成物及びその硬化物、並びに光半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2752459B1 (en) * 2011-12-08 2017-11-15 Momentive Performance Materials Japan LLC Hydrosilylation-curable silicone rubber composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422755B2 (ja) * 1975-07-18 1979-08-08
JPS62256863A (ja) * 1986-04-30 1987-11-09 Toshiba Silicone Co Ltd ロール用液状シリコーンゴム組成物
JP2016222850A (ja) * 2015-06-02 2016-12-28 株式会社ダイセル 硬化性シリコーン樹脂組成物及びその硬化物、並びに光半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735203A (zh) * 2018-12-25 2019-05-10 陕西科技大学 一种半封闭笼状三官能环氧醚基poss组合料、涂料及制备方法
CN109735203B (zh) * 2018-12-25 2021-01-29 陕西科技大学 一种半封闭笼状三官能环氧醚基poss组合料、涂料及制备方法

Also Published As

Publication number Publication date
TW201835167A (zh) 2018-10-01
JP2018070824A (ja) 2018-05-10
JP6228284B1 (ja) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6027209B2 (ja) 硬化性樹脂組成物、硬化物、封止材、及び半導体装置
KR101545471B1 (ko) 경화성 수지 조성물 및 이를 사용한 반도체 장치
JP5805348B1 (ja) 付加硬化型シリコーン組成物
JP6533387B2 (ja) 硬化性樹脂組成物及びその硬化物、並びに半導体装置
JP6502658B2 (ja) 硬化性シリコーン樹脂組成物及びその硬化物
WO2015163352A1 (ja) 硬化性樹脂組成物及びその硬化物
WO2018083832A1 (ja) 硬化性樹脂組成物、硬化物、及び半導体装置
WO2017164265A1 (ja) 硬化性樹脂組成物、その硬化物、及び半導体装置
JPWO2018047633A1 (ja) 硬化性樹脂組成物、その硬化物、及び半導体装置
JPWO2017122712A1 (ja) 硬化性樹脂組成物、硬化物、封止材、及び半導体装置
JP6944119B2 (ja) 硬化性樹脂組成物、その硬化物、及び半導体装置
WO2015163355A1 (ja) 硬化性樹脂組成物及びその硬化物、グリコールウリル誘導体及びその製造方法
JP6496193B2 (ja) 硬化性シリコーン樹脂組成物及びその硬化物、並びに光半導体装置
JP6496185B2 (ja) 硬化性シリコーン樹脂組成物及びその硬化物
JPWO2017146004A1 (ja) 硬化性樹脂組成物、その硬化物、及び半導体装置
JP6452545B2 (ja) 硬化性シリコーン樹脂組成物及びその硬化物
JP6460714B2 (ja) 硬化性樹脂組成物及びその硬化物、並びに半導体装置
CN108368342B (zh) 固化性有机硅树脂组合物及其固化物、以及光半导体装置
JP2017002172A (ja) 高硬度ポリシロキサン硬化物を与える硬化性樹脂組成物及びその硬化物
JP2017145358A (ja) 硬化性シリコーン樹脂組成物及びその硬化物
WO2018235811A1 (ja) 硬化性シリコーン樹脂組成物及びその硬化物
JP2016216642A (ja) 硬化性樹脂組成物及びその硬化物、封止剤、並びに半導体装置
JP2017075216A (ja) 硬化性樹脂組成物、その硬化物、及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866877

Country of ref document: EP

Kind code of ref document: A1