WO2018079334A1 - ヒュームドシリカ及びその製造方法 - Google Patents
ヒュームドシリカ及びその製造方法 Download PDFInfo
- Publication number
- WO2018079334A1 WO2018079334A1 PCT/JP2017/037482 JP2017037482W WO2018079334A1 WO 2018079334 A1 WO2018079334 A1 WO 2018079334A1 JP 2017037482 W JP2017037482 W JP 2017037482W WO 2018079334 A1 WO2018079334 A1 WO 2018079334A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fumed silica
- less
- ppm
- content
- sieve
- Prior art date
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 192
- 229910021485 fumed silica Inorganic materials 0.000 title claims abstract description 134
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 238000007873 sieving Methods 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000006185 dispersion Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 69
- 239000002245 particle Substances 0.000 claims description 36
- 239000007789 gas Substances 0.000 claims description 32
- 238000007906 compression Methods 0.000 claims description 21
- 239000000377 silicon dioxide Substances 0.000 claims description 21
- 229910000077 silane Inorganic materials 0.000 claims description 18
- 230000006835 compression Effects 0.000 claims description 17
- 238000000926 separation method Methods 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000002994 raw material Substances 0.000 claims description 14
- 238000011084 recovery Methods 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 11
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 9
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 5
- 238000005323 electroforming Methods 0.000 claims description 4
- 230000003301 hydrolyzing effect Effects 0.000 claims description 4
- 239000012495 reaction gas Substances 0.000 claims description 4
- 238000005498 polishing Methods 0.000 abstract description 52
- 239000007788 liquid Substances 0.000 abstract description 8
- 239000000843 powder Substances 0.000 description 22
- 239000012535 impurity Substances 0.000 description 19
- 239000011163 secondary particle Substances 0.000 description 19
- 238000005259 measurement Methods 0.000 description 16
- -1 silane compound Chemical class 0.000 description 15
- 238000006460 hydrolysis reaction Methods 0.000 description 13
- 239000002002 slurry Substances 0.000 description 13
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 12
- 150000004756 silanes Chemical class 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 239000011362 coarse particle Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 238000007872 degassing Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000011164 primary particle Substances 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 239000006061 abrasive grain Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000001132 ultrasonic dispersion Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000012086 standard solution Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000005046 Chlorosilane Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010332 dry classification Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- SFAZXBAPWCPIER-UHFFFAOYSA-N chloro-[chloro(dimethyl)silyl]-dimethylsilane Chemical compound C[Si](C)(Cl)[Si](C)(C)Cl SFAZXBAPWCPIER-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- KTQYJQFGNYHXMB-UHFFFAOYSA-N dichloro(methyl)silicon Chemical compound C[Si](Cl)Cl KTQYJQFGNYHXMB-UHFFFAOYSA-N 0.000 description 1
- KTPJDYNQZVAFBU-UHFFFAOYSA-N dichloro-[chloro(dimethyl)silyl]-methylsilane Chemical compound C[Si](C)(Cl)[Si](C)(Cl)Cl KTPJDYNQZVAFBU-UHFFFAOYSA-N 0.000 description 1
- JTBAMRDUGCDKMS-UHFFFAOYSA-N dichloro-[dichloro(methyl)silyl]-methylsilane Chemical compound C[Si](Cl)(Cl)[Si](C)(Cl)Cl JTBAMRDUGCDKMS-UHFFFAOYSA-N 0.000 description 1
- JZALIDSFNICAQX-UHFFFAOYSA-N dichloro-methyl-trimethylsilylsilane Chemical compound C[Si](C)(C)[Si](C)(Cl)Cl JZALIDSFNICAQX-UHFFFAOYSA-N 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- 239000005048 methyldichlorosilane Substances 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- 239000005051 trimethylchlorosilane Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 238000010333 wet classification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
- C01B33/181—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
- C01B33/183—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process by oxidation or hydrolysis in the vapour phase of silicon compounds such as halides, trichlorosilane, monosilane
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B20/00—Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30625—With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/042—Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
- B24B37/044—Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Definitions
- the present invention relates to fumed silica and a method for producing the same, and more particularly to fumed silica for chemical mechanical polishing capable of reducing scratches and a method for producing the same.
- CMP chemical mechanical polishing
- silica, cerium oxide or the like is used as the abrasive particles for CMP.
- fumed silica that has been frequently used in the past has excellent purity and high polishing efficiency
- the CMP method has a problem that many scratches are generated due to the influence of chemical components.
- colloidal silica reduces scratches, it has a lower polishing efficiency than fumed silica and has a problem in purity.
- cerium oxide is known to have a high polishing efficiency, but there are many scratches due to poor dispersion stability, and there is also a problem in terms of purity.
- Fumed silica forms secondary particles in which primary particles are strongly aggregated by fusion or the like, and the secondary particles are gradually aggregated to form tertiary particles. It exists as the tertiary particles.
- the fumed silica is strongly dispersed in water, it is dispersed up to the size of the secondary particles, but not up to the primary particles. Therefore, CMP is considered to be performed in the state of secondary particles, and the occurrence of scratches is considered to decrease if the secondary particles are prevented from becoming large (Miya Yoshio et al., “Fumed Silica”). Production and Properties of Flames-Flame Analysis and Adaptability of Generated Particles to CMP ", Proceedings of the 2008 Annual Meeting of the Japan Society for Precision Engineering, p857-858).
- the polishing composition is filtered with a filter, and abrasive particles having a particle size of 0.56 ⁇ m or more and less than 1 ⁇ m or abrasive particles having a particle size of 3 ⁇ m or more are reduced to a certain amount or less.
- a polishing composition is described. Specifically, the particle size of the abrasive particles in the polishing composition using the colloidal silica slurry is determined using a number counting method (Sizing Particle Optical Sensing Method), specifically, Accusizer 780APS manufactured by Particle Sizing Systems. Measuring.
- the ratio of coarse particles defined as sintered coarse particles having a density of 200 g / l to 2,500 g / l and a particle size of 0.5 ⁇ m to 500 ⁇ m is less than 0.03% by weight.
- Shown is fumed silica with less than 100,000 coarse particles per ml of 10 wt% aqueous dispersion.
- the ratio of coarse particles is dispersed in silica in a dispersion medium such as water, and is dispersed for 5 minutes or more at a rotational speed of 25,000 rpm or more using a rotor-stator disperser, and further, alkaline stability is maintained at a pH of 9.9 to 10.2.
- the silica dispersion prepared by removing fine fumed silica is converted into a light shielding method such as white light and laser light, specifically, Accusizers 680 and 780, PSM Liquilaz, Topas It is described that coarse particles of 0.5 ⁇ m to 500 ⁇ m are measured using FAS.
- the slurry used for polishing is on the order of 100 ml and the amount of silica is on the order of 10 g.
- the amount of slurry used for quantification is on the order of 1 ⁇ l and the amount of silica. Therefore, the sample to be used for the measurement is extracted from a silica slurry that is likely to have non-uniform silica, rather than the total amount of silica powder measured. For these reasons, it is thought that there remains a problem in the accuracy of the evaluated coarse grain amount.
- An object of the present invention is to provide a fumed silica for CMP capable of remarkably reducing scratches generated on the surface of an object after polishing, which is important in miniaturization and multilayering.
- the present inventors have conducted intensive research to solve the above problems.
- the remaining amount on the screen (hereinafter referred to as “mesh”) when the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m is used.
- “The remaining amount on the screen when the wet sieving method using an electric sieve having an opening of 5 ⁇ m is also referred to as“ the remaining amount on the screen having an opening of 5 ⁇ m ”) has a particularly important influence on the occurrence of scratches. I found out.
- the present invention is a fumed silica having a BET specific surface area of 57 m 2 / g or more and 400 m 2 / g or less, and the fumed silica is added to water so that the amount is 6.25% by mass.
- the residual amount on the screen by the wet sieving method using an electroforming screen having an opening of 5 ⁇ m is 5 ppm or less. Fumed silica.
- One embodiment of the fumed silica of the present invention has an Fe content of 0.3 ppm or less, an Al content of 0.3 ppm or less, a Ni content of 0.1 ppm or less, a Cr content of 0.1 ppm or less, and a Ti content.
- the amount is 0.1 ppm or less and the boron content is 0.1 ppm or less.
- the fumed silica of the present invention is suitably used as fumed silica for CMP.
- the fumed silica of the present invention can be suitably used for CMP. If the fumed silica is used as polishing abrasive grains for polishing semiconductor wafers, devices, etc., there is no contamination by impurities, excellent polishing efficiency, The scratch at the time of polishing can be remarkably reduced.
- the fumed silica of the present embodiment is not particularly limited in its raw materials, reaction conditions, etc., but the combustion reaction or flame hydrolysis reaction of the silane compound, that is, the silane compound is converted into a combustible gas such as hydrogen gas. It refers to general silica powder obtained by a production method in which it is burned or hydrolyzed in a flame formed with an oxygen-containing gas such as air. Fumed silica is generally produced by flame hydrolysis of silicon chloride such as chlorosilane as described in Patent Document 3.
- the fumed silica of the present embodiment has a BET specific surface area of 57 m 2 / g or more and 400 m 2 / g or less.
- the BET specific surface area is preferably 60 m 2 / g or more and 400 m 2 or less, more preferably 60 m 2 / g or more and 160 m 2 / g or less, and 60 m 2 / g or more and 90 m 2 / g or less. Further preferred.
- the BET specific surface area is smaller than the lower limit of the above range, scratching during polishing increases when used for CMP. Scratches are scratches caused by polishing. Further, when the BET specific surface area is larger than the upper limit of the above range, the polishing rate is remarkably lowered, so that the production efficiency of the semiconductor device is significantly deteriorated.
- the greatest feature of the fumed silica of this embodiment is that the remaining amount on the sieve having an opening of 5 ⁇ m is remarkably small. Specifically, 6.25% by mass of fumed silica was added to water and dispersed by ultrasonic waves (vibration frequency 20 kHz, amplitude 15 ⁇ m to 25 ⁇ m, 3 minutes). It is fumed silica whose remaining amount on the screen when sieving by the wet sieving method used is 5 ppm or less. The residual amount on the sieve is preferably 3 ppm or less, and more preferably 1 ppm or less.
- fumed silica forms secondary particles in which primary particles generated by reaction in a flame are strongly aggregated by fusion or the like, and the secondary particles are gradually aggregated to form tertiary particles. Particles are formed. Usually, it exists as the above-mentioned tertiary particles in the powder, but when the fumed silica is strongly dispersed in water (the degree of dispersion is increased), it is dispersed to the size of the secondary particles.
- the abrasive grains in CMP are considered to be in the state of secondary particles. As described above, in the CMP method, the abrasive particles are dispersed in a polishing liquid to obtain a polishing liquid composition, and then a filter is used. Coarse grains are generally removed. Nevertheless, when fumed silica was used as the abrasive particles, it was found that there was a good reproducible correlation between the remaining amount on the sieve having an opening of 5 ⁇ m and the number of scratches per unit area.
- the quantification method of the remaining amount on the sieve having an opening of 5 ⁇ m is a wet sieving method using an electroforming sieve. According to this method, the amount of silica used in the test can be made sufficiently large. Specifically, the sample amount can be set to the order of 10 g, and the total amount of the sample can be used for measurement.
- the residual amount on the sieve is a value obtained when sieving 20 g or more of fumed silica as a sample quantity.
- the 6.25 mass% ultrasonic dispersion liquid can be prepared at one time or can be prepared by dividing. For example, 20 g of fumed silica may be measured in one container, 300 g of water may be added, and then ultrasonic waves may be irradiated under conditions of a vibration frequency of 20 kHz, an amplitude of 15 ⁇ m to 25 ⁇ m, and 3 minutes.
- Each container may be weighed in an amount of 5 g and water may be added in an amount of 75 g, and then each may be irradiated with ultrasonic waves under conditions of vibration frequency 20 kHz, amplitude 15 ⁇ m to 25 ⁇ m, and 3 minutes.
- the ultrasonic dispersion treatment can be performed under conditions of a vibration frequency of 20 kHz, an amplitude of 15 ⁇ m to 25 ⁇ m, and 3 minutes.
- a vibration frequency 20 kHz
- an amplitude 15 ⁇ m to 25 ⁇ m
- 3 minutes 3 minutes.
- the vibration frequency is 20 kHz
- the output scale is 6, the amplitude corresponds to 22.5 ⁇ m.
- the temperature of the dispersion used for the ultrasonic irradiation is 20 to 30 ° C.
- the fumed silica of the present embodiment preferably has an Fe content of 0.3 ppm or less, and more preferably 0.1 ppm or less. It is not clear how the Fe content affects the generation of scratches during polishing, but generally there is a tendency for scratches to increase as the Fe content increases, and the Fe content is in the above range. The scratch at the time of polishing can be remarkably reduced.
- the Fe is usually derived from the raw material and contained, but there may be contamination of wear powder from a reaction vessel, piping or the like.
- the fumed silica of this embodiment has an Al content of 0.3 ppm or less, an Ni content of 0.1 ppm or less, a Cr content of 0.1 ppm or less, a Ti content of 0.1 ppm or less, and a boron content. Is preferably 0.1 ppm or less.
- fumed silica with highly reduced impurities is preferable because it can be suitably used in applications requiring the use of high-purity abrasive grains, such as the CMP process of semiconductor devices.
- boron is generally derived from raw materials among the above impurities, and Al, Ni, Cr, Ti are not only derived from raw materials, The thing derived from abrasion powder, such as a reaction container and piping, is also contained.
- abrasion powder such as a reaction container and piping
- the fumed silica of the present embodiment has a remarkably small residual amount on a sieve having an opening of 5 ⁇ m, and thus the generation of scratches is reduced, so that it can be suitably used as a fumed silica for CMP.
- it is preferably used for CMP of a metal film as a conductor, CMP of polysilicon as a semiconductor, or CMP of a silicon oxide film (insulating film) as a nonconductor in a CMP process of a semiconductor device.
- the fumed silica of the present embodiment may be used after appropriately performing a known surface treatment using a known surface treatment agent.
- the surface-treated fumed silica can be used for various uses, for example, various resin fillers, thickeners, fluidizing agents, and external additives for electrophotographic toners.
- the method for producing the fumed silica of the present embodiment is not particularly limited, and the produced silica fine particles have a BET specific surface area of 57 m 2 / g or more and 400 m 2 / g or less, and are wet using an electric sieve having an opening of 5 ⁇ m. Any method for producing silica fine particles can be employed as long as the residual amount on the sieve by the sieving method is 5 ppm or less. Specifically, a method of supplying a silane compound to a reactor and burning or hydrolyzing in a flame can be mentioned.
- JP-B-47-46274 JP-B-58-54085, JP-A-59-169922, JP-A-59-184721, and JP-A-60-011218. be able to.
- Fumed silica is produced by supplying a raw material gas containing a silane compound into a flame in the reaction step and burning or hydrolyzing the silane compound in the flame.
- the fumed silica generated from the reaction step is cooled in the cooling step and then sent to the separation and recovery step. In this step, the solid content is separated from the reaction gas and recovered, and then deoxidized in the deoxidation step as necessary.
- the fumed silica thus obtained is a powder with a small bulk density of about 0.023 g / cm 3, and packaging it as it is increases the packaging and transportation costs of the product, and also has a high powder scattering property and handling of the powder. Because of the above problems, usually, the bulk density is largely adjusted in the compression process, and then sent to the packaging process.
- the method for producing the fumed silica of the present embodiment is not particularly limited, but as one aspect, the classification step of classifying and removing the enlarged secondary particles by a dry method is described in detail later. After that, it is preferably provided before the compression step, whereby the remaining amount on the sieve having an opening of 5 ⁇ m can be significantly reduced.
- the preferred embodiment will be described.
- a raw material silane gas is supplied to the reactor and burned or hydrolyzed in a flame to produce fumed silica.
- the raw material silane gas is heated and vaporized in a raw material vaporizer, and premixed with a combustible gas such as hydrogen or a hydrogen-containing gas, and a combustion-supporting gas such as oxygen or air, and an incombustible gas such as nitrogen or argon as necessary.
- a combustible gas such as hydrogen or a hydrogen-containing gas
- a combustion-supporting gas such as oxygen or air
- an incombustible gas such as nitrogen or argon as necessary.
- the reactor that flame-combusts or hydrolyzes the premixed gas easily maintains the pressure in the reactor and prevents intrusion of contaminants, so that the atmosphere in the reactor is completely the same as the atmosphere.
- a closed system that is blocked is preferable. That is, a burner is installed in the reactor, and the gas supplied to the burner and the reactor, the gas
- the pressure in the reactor is not particularly limited, but the higher the flame pressure, the shorter the flame length and the smaller the temperature distribution in the flame, resulting in a fumed silica with a uniform primary particle diameter and a small primary particle variation coefficient. be able to.
- the pressure in the reactor can be easily measured by installing a pressure gauge at an arbitrary location (a location other than the vicinity of the reactor outlet where gas is discharged from the reactor). The pressure in the vicinity of the reactor outlet is likely to fluctuate depending on the flow rate of the exhaust gas. In consideration of adhesion of the produced fumed silica, measurement is usually performed by installing a pressure gauge on the burner installation surface of the reactor or on the upstream side wall surface of the gas flow flowing from the burner to the reactor outlet.
- the method for adjusting the pressure in the reactor is not particularly limited, but can be adjusted by applying pressure loss to the amount of gas introduced into the reactor and the outlet of the reactor or the lower process.
- the pressure in the reactor is The pressure is preferably 1 MPaG or less for reasons such as the pressure resistance of the apparatus and the pressure upper limit of the raw material supply pump.
- the adiabatic flame temperature during the reaction is not particularly limited, but generally it is often carried out at 1500 ° C. or higher and 2300 ° C. or lower.
- the flame is usually formed by a burner.
- a burner it is preferable to use a multi-tube burner having a concentric cross section in terms of ease of ignition, stability of combustion, and the like.
- the multi-tube burner is composed of a central tube and a plurality of annular tubes extending concentrically from the central tube. Generally, a double tube, a triple tube, and a quadruple tube are used, and a triple tube is particularly preferable.
- These multi-tube burners generally have a central tube diameter of about 5 to 150 mm.
- the flame formation by the multi-tube burner is such that the combustible gas and the oxygen-containing gas at the combustion port of the burner are placed in the central tube and each annular tube so that the desired combustion ratio at which the adiabatic flame temperature is obtained is obtained. Or may be supplied as a mixed gas with different mixing ratios. Specifically, in the case of a triple pipe in which the first annular pipe and the second annular pipe are arranged in this order from the central pipe side to the radially outer side of the central pipe, hydrogen and air are supplied to the central pipe. It is preferable to supply hydrogen and / or air to the first annular tube and supply only air to the second annular tube.
- the vaporized silane compound is also supplied to any gas supply pipe of the multi-tube burner so that the combustion reaction or hydrolysis reaction proceeds in the flame. good. Since the silane compound is supplied to the center of the flame base and the combustion reaction or hydrolysis reaction proceeds stably, it is particularly preferable to supply the silane compound to the central tube.
- the silane compound that is a raw material of fumed silica is organic silane, halogenated silane, or the like, and is not particularly limited, but preferably has a boiling point of 250 ° C. or lower so that it can be gasified and easily supplied to a multi-tube burner.
- tetraethoxysilane octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, methyltrichlorosilane, methyldichlorosilane, trimethylchlorosilane, dimethyldichlorosilane, 1,1,2,2-tetrachloro-1,2 -Dimethyldisilane, 1,1,2-trimethyltrichlorodisilane, 1,2-dichlorotetramethyldisilane, 1,1,1,2-tetramethyldichlorodisilane, tetrachlorosilane, trichlorosilane and the like.
- the CMP silica of this embodiment preferably has an Fe content of 0.3 ppm or less.
- the Fe content in the source gas is preferably 0.12 ppm or less.
- the silane compound can realize an impurity content suitable as the fumed silica of the present embodiment described above with respect to Al, Ni, Cr, Ti, and boron as impurities other than Fe.
- the impurity content in the source gas is such that the Al content is 0.12 ppm or less, the Ni content is 0.04 ppm or less, the Cr content is 0.04 ppm or less, and the boron content Is preferably 0.04 ppm or less.
- the center tube 75 to a silane compound 1.1 ⁇ 4.2kmol / h, hydrogen to 200 Nm 3 / h, air was respectively supplied in the range of 25 ⁇ 500Nm 3 / h, the hydrogen to the first annular pipe 10 ⁇ 40 Nm 3 / H, air is supplied in the range of 10 to 50 Nm 3 / h, and air is supplied to the second annular pipe in the range of 25 to 75 Nm 3 / h.
- the fumed silica obtained preferably has reaction conditions such that the BET specific surface area is 57 m 2 / g or more and 400 m 2 / g or less, and the adiabatic flame temperature is set so that the desired BET specific surface area is obtained.
- the conditions such as the pressure of the reactor, the supply ratio of oxygen (air) and hydrogen to the burner, and the supply amount of raw materials can be adjusted.
- Fumed silica produced and grown in a reaction flame is rapidly cooled to prevent sintering, fusing, or surface changes, and to a temperature above the dew point of water or other condensable reactants. It is sent to the separation and recovery process.
- the cooling method is not particularly limited, and may be a known method such as spraying in an additional gas such as nitrogen or cooling with a heat exchanger.
- the classification step is preferably provided after the cooling step and before the compression step described later. More preferably, after the separation and recovery step described later, before the compression step, and when the deoxidation step described later is provided, it is better to provide the classifier with the acid after the deoxidation step and before the compression step. It is more preferable because it has less influence and is easy to design.
- the secondary particles are aggregated to form tertiary particles. Therefore, when the secondary particles that have become large are efficiently removed by dry classification. It is difficult to distinguish from the tertiary particles, and it is difficult to accurately reduce the residual particles on the sieve as in this embodiment.
- the fumed silica before the compression step having a small bulk density is in the most highly dispersed state in the gas phase.
- the dry classifying means is not particularly limited, and examples include classifying means using a sieve, a gravity classifier, an inertia classifier, a centrifugal classifier, a fluidized bed classifier, an air classifier, an electrostatic classifier, and the like.
- the classification means may be one type or a combination of two or more types.
- the combination in the case of using two or more classification means is not particularly limited.
- each classification means can be used repeatedly a plurality of times. By repeating the classification operation a plurality of times by combining or repeating the classification means, the residual particles on the sieve can be reduced more accurately.
- the installation location of the classification process when it is repeatedly performed a plurality of times is not particularly limited as long as it is after the cooling process and before the compression process, and may be installed at one location or separately at multiple locations.
- the classification operation when it is provided twice, it may be provided once after the separation and recovery step and after the deoxidation step, or twice after the deoxidation step.
- the degree of classification may be sequentially adjusted according to the selected classification means, the number of classifications, etc., so that the final amount of fumed silica obtained is 5 ppm or less on the sieve.
- a drying step is essential, and particles are strongly aggregated during the drying, and on the contrary, residual particles on the sieve are generated. This is inappropriate.
- the cooled fumed silica is recovered as a powder by separating solids and gas with a filter, a cyclone or the like.
- the purpose of this separation and recovery process is to separate fumed silica that is solid from the reaction gas that is gaseous with a high yield, and to remove the enlarging secondary particles in fumed silica that is solid.
- the classification process is distinguished from the present specification.
- the fumed silica after the separation step is sent to the deoxidation step as necessary, and deoxidized.
- the deoxidation treatment is required when a halogenated silane is used as the raw material silane compound. Specifically, when chlorosilanes are used, hydrogen chloride is used as a by-product of the flame hydrolysis reaction. Produces. Since such an acid has corrosiveness, it is deoxidized in the deoxidation step.
- the method of deoxidation treatment is not particularly limited, and a known method can be adopted, but a dry method is preferable.
- the fumed silica after the separation step is put into a heated deoxidizer such as a moving bed method or a fluidized bed method, and preferably a gas such as heated air or nitrogen is circulated. It is more preferable to add water vapor to the flowing gas as it increases the deoxidation efficiency.
- the means for compressing is not particularly limited, and examples thereof include a known means such as a method of compressing powder by processing with a press, ball mill, mixer or other device. It is done. Even if it does not take the compression means by the above apparatus, since it is compressed by its own weight in the silo by collecting in the silo and the bulk density increases, the step of storing in the product silo shall also be included in the compression step .
- the compression in the present embodiment may be performed by selecting a compression means and appropriately adjusting the degree of compression so that a desired bulk density with appropriate applied physical properties can be obtained. Two or more types of compression means may be combined.
- the bulk density is preferably 0.03 to 0.1 g / cm 3 , more preferably 0.05 to 0.1 g / cm 3 .
- Electroformed sieve Wet sieving was performed using an electroformed sieve having a mesh size of 5 ⁇ m, and the residue on the sieve mesh was quantified.
- the measurement sample was prepared by measuring 20 g of fumed silica fine particles, adding 300 g of distilled water at 25 ° C., and then using an ultrasonic homogenizer (US-600T) manufactured by Nippon Seiki Seisakusho Co., Ltd., output scale 6 (vibration frequency). 20 kHz, corresponding to a vibration amplitude value of 22.5 ⁇ m) and a dispersion time of 3 minutes to make a 6.25 mass% ultrasonic dispersion, and the whole amount was used as a measurement sample.
- US-600T ultrasonic homogenizer
- Impurity content measurement Pretreatment was performed by adding hydrofluoric acid and nitric acid to the fumed silica of each example and comparative example and heating, and using a residue as an aqueous solution, each impurity was analyzed by ICP emission analysis. The content was measured.
- ICP emission analysis device Vista-MPX manufactured by Agilent Technologies, Inc. is used as ICP standard solution for ICP multi-element standard IX (for 23 elements) as ICP standard solution.
- ICP emission analysis device Vista-MPX manufactured by Agilent Technologies, Inc. is used as ICP standard solution for ICP multi-element standard IX (for 23 elements) as ICP standard solution.
- ICP standard solution for Ti, ICP standard manufactured by Wako Pure Chemical Industries, Ltd. The solution was used.
- Scratch density measurement method -Slurry preparation conditions-
- the sample slurry used for evaluation of scratch density and polishing rate is Yamaguchi et al., “Relationship between Fumed Silica Slurry for CMP and Scratch Defect Generation”, Proc. It was prepared according to “2.1 Slurry Preparation Conditions” of “Preliminary Collection” and the preparation conditions of the prototype slurry sample 2 shown in FIG. However, in preparing this sample slurry, fumed silica of each of Examples and Comparative Examples was used as silica. Further, various stirring / dispersing devices and dispersion conditions used for the preparation of the slurry were changed as follows with respect to the conditions described in “Preliminary Collection”.
- the polishing using the slurry was performed except that the sample slurry prepared in the above-described procedure was used as the sample slurry used in the CMP process (main CMP), “2.2 Copper Wafer Polishing Conditions” in the Preliminary Book, Table 1 and FIG. It carried out on the conditions shown in.
- the polishing apparatus used was a table type polishing apparatus NF-300 manufactured by Nano Factor Co., Ltd., and the object to be polished (copper wafer) was a 3-inch Cu plated Si wafer (Cu plating thickness: 5 ⁇ m) manufactured by D-process Co., Ltd. is there. Further, Clean 100 manufactured by Wako Pure Chemical Industries, Ltd. was used as a residual abrasive grain / organic matter remover (cleaning liquid) on the surface of the copper wafer after CMP processing (main CMP).
- the scratch density and the polishing rate were measured for a copper wafer on which the surface provided with the Cu plating film was polished under the above polishing conditions.
- the scratch density was measured according to the procedure shown in “2.3 Measurement of Scratch Number” in FIG. Note that the scratch evaluation of the Cu plating film has a correlation with the scratch evaluation of the silicon oxide film (insulating film) (refer to the proceedings). Therefore, it is estimated that the same tendency as the measurement result of the scratch density described later can be obtained even when the silicon oxide film (insulating film) is polished.
- polishing rate The allowable polishing rate is 12 nm / min or more, and more preferably 17 nm / min or more.
- Examples 1 to 3 Fumed silica was manufactured by using a tetrachlorosilane as a halogenated silane by a flame hydrolysis reaction under the manufacturing conditions shown in Table 1, and recovered after the separation and recovery step.
- the amount of impurities in the tetrachlorosilane gas is Fe: less than 0.1 ppm, Al: less than 0.1 ppm, Ni: less than 0.01 ppm, Cr: less than 0.01 ppm, Ti: less than 0.01 ppm, boron: less than 0.01 ppm Met.
- this fumed silica was introduced into a fluidized bed made of quartz glass having an inner diameter of 15 cm. Preheated air heated to the same level as the fumed silica was introduced from the lower part at 5 Nm 3 / h for 30 minutes, and then 225 g of the introduced silica was extracted from the upper part of the tube. The fumed silica after classification was subjected to a deoxidation step and recovered again. 225 g of fumed silica recovered from the deoxidation step was again introduced into the fluidized bed, fluidized under the above conditions, and then classified by extracting 203 g from the top of the tube.
- the fumed silica obtained after classification was compressed with a degassing press to adjust the bulk density to 0.05 g / cm 3 to obtain fumed silica powder.
- Table 1 shows the specific surface area of the fumed silica powder obtained, the impurity content, the residual amount on the screen by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m, the scratch density, and the polishing rate.
- Example 4 Using the same tetrachlorosilane as in Example 1 as the halogenated silane, fumed silica was produced by a flame hydrolysis reaction under the production conditions described in Table 1, and recovered after the deoxidation step. 250 g of this fumed silica was introduced into a fluidized bed made of quartz glass having an inner diameter of 15 cm. After introducing preheated air heated to the same level as the temperature of fumed silica from the lower part at 5 Nm 3 / h for 30 minutes, 225 g of the introduced silica was extracted from the upper part of the tube and classified. This classification process was repeated twice to obtain 203 g of fumed silica.
- the obtained fumed silica was compressed by a deaeration press to adjust the bulk density to 0.05 g / cm 3 to obtain fumed silica powder.
- Table 1 shows the specific surface area of the fumed silica obtained, the impurity content, the remaining amount on the screen by the wet sieving method using an electroformed screen having a mesh size of 5 ⁇ m, the scratch density, and the polishing rate.
- Example 5 Using the same tetrachlorosilane as in Example 1 as the halogenated silane, fumed silica was produced by a flame hydrolysis reaction under the production conditions described in Table 1, and recovered after the separation and recovery step. 250 g of this fumed silica was introduced into a fluidized bed made of quartz glass having an inner diameter of 15 cm. After introducing preheated air heated to the same level as the fumed silica from the lower part at 10 Nm 3 / h for 30 minutes, 225 g of the introduced silica was extracted from the upper part of the tube. The fumed silica after classification was subjected to a deoxidation step and recovered again.
- fumed silica recovered from the deoxidation step was again introduced into the fluidized bed, fluidized under the above conditions, and then classified by extracting 203 g from the top of the tube.
- the fumed silica obtained after classification was compressed with a degassing press to adjust the bulk density to 0.05 g / cm 3 to obtain fumed silica powder.
- Table 1 shows the specific surface area of the fumed silica powder obtained, the impurity content, the residual amount on the screen by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m, the scratch density, and the polishing rate.
- Example 6 Using the same tetrachlorosilane as in Example 1 as the halogenated silane, fumed silica was produced by a flame hydrolysis reaction under the production conditions described in Table 1, and recovered after the separation and recovery step. 250 g of this fumed silica was introduced into a fluidized bed made of quartz glass having an inner diameter of 15 cm. Preheated air heated to the same level as the temperature of fumed silica was introduced from the lower part at 5 Nm 3 / h for 60 minutes, and then 225 g of the introduced silica was extracted from the upper part of the tube.
- the fumed silica obtained after classification was subjected to a deoxidation step and then compressed with a degassing press to adjust the bulk density to 0.05 g / cm 3 to obtain fumed silica powder.
- Table 1 shows the specific surface area of the fumed silica powder obtained, the impurity content, the residual amount on the screen by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m, the scratch density, and the polishing rate.
- fumed silica was produced by a flame hydrolysis reaction under the production conditions described in Table 1, and recovered after the separation and recovery step. 250 g of this fumed silica was introduced into a fluidized bed made of quartz glass having an inner diameter of 15 cm. After introducing preheated air heated to the same level as the temperature of fumed silica from the lower part at 5 Nm 3 / h for 30 minutes, 225 g of the introduced silica was extracted from the upper part of the tube and classified. The fumed silica after classification was subjected to a deoxidation step and recovered again.
- fumed silica recovered from the deoxidation step was again introduced into the fluidized bed, fluidized under the above conditions, and then classified by extracting 203 g from the top of the tube.
- the fumed silica obtained after classification was compressed with a degassing press to adjust the bulk density to 0.05 g / cm 3 to obtain fumed silica powder.
- Table 1 shows the specific surface area of the fumed silica powder obtained, the impurity content, the residual amount on the screen by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m, the scratch density, and the polishing rate.
- Table 1 shows the specific surface area of the fumed silica powder obtained, the impurity content, the residual amount on the screen by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m, the scratch density, and the polishing rate.
- Table 1 shows the specific surface area, impurity content, residual amount on the screen by the wet sieving method using a 5 ⁇ m mesh sieve, scratch density, and polishing rate for three types of fumed silica that are commercially available from three companies. It shows together with.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Silicon Compounds (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
本実施形態の反応工程では、反応器に原料シランガスを供給し火炎中で燃焼もしくは加水分解させてヒュームドシリカを生成する工程である。上記原料シランガスは、原料気化器で加熱気化され、水素または水素含有ガスなどの可燃性ガスおよび酸素または空気などの支燃性ガス、必要に応じ窒素、アルゴンなどの不燃性ガスと予混合される。該予混合ガスを火炎燃焼もしくは火炎加水分解する反応器は、反応器内の圧力の維持が容易であることと、汚染物質の侵入を防ぐことから、該反応器内の雰囲気が大気と完全に遮断されるクローズド系とすることが好ましい。即ち、反応器内にバーナーが設置され、該バーナー及び反応器に供給するガス、該反応器から排出するガス、及びヒュームドシリカは各々配管を流通する。
反応火炎中にて生成成長したヒュームドシリカは、焼結や融着あるいは表面変化などが生じないように急速に冷却し、水または他の凝縮しやすい反応物の露点以上の温度に冷却して分離回収工程に送られる。
反応工程や冷却工程の高温部では融着等の強固な凝集により2次粒子が形成されるが、この凝集によって巨大化した2次粒子が存在すると目開き5μmの篩上残量が増加すると考えられる。前述の通り、本実施形態のヒュームドシリカの製造方法における態様として、上記反応工程及び/または冷却工程で生成した巨大化した2次粒子を乾式で分級除去する分級工程を設ける。これにより、湿式篩法において目開き5μmの電成篩上に残留する粒子(以下、篩上残留粒子ともいう)を効果的に除去することができる。
冷却されたヒュームドシリカは、分離回収工程において、フィルタやサイクロン等により固形分とガスを分離し、粉体として回収される。この分離回収工程は固体であるヒュームドシリカを気体である反応ガスより収率良く分離することが目的であり、固体であるヒュームドシリカ中の巨大化した2次粒子の除去を目的とする前述の分級工程と本願明細書中では区別される。
分離工程後のヒュームドシリカは、必要に応じて脱酸工程に送られ、脱酸処理される。脱酸処理が必要となるのは、原料であるシラン化合物として、特にハロゲン化シランを用いた場合であって、具体的にはクロロシラン類を用いると、火炎加水分解反応の副生成物として塩化水素が生成する。斯様な酸は、腐食性を有するため、該脱酸工程において脱酸処理される。
通常、回収されたヒュームドシリカの嵩密度は、約0.023g/cm3と小さいため、往々にして処理および包装が困難であるとともに、輸送や保管の際に多くのスペースをとるため不経済である。したがって、脱酸工程がある場合は脱酸工程後に、脱酸工程がない場合は分離回収工程の後に、嵩密度を大きくする圧縮工程を設ける。
以下、実施例によって本実施形態をさらに詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。
-スラリー調製条件-
スクラッチ密度および研磨レートの評価に用いたサンプルスラリーは、山口他、「CMP用ヒュームドシリカスラリーとスクラッチ欠陥発生の関係」、2010年度精密工学会熊本地方講演論文集、p1-2(以下、単に「予稿集」と称す)の「2.1 スラリー調製条件」および図1に示す試作スラリーサンプル2の調製条件に準じ準備した。但し、このサンプルスラリーの調整に際しては、シリカとして各実施例および比較例のヒュームドシリカを用いた。また、スラリーの調整に用いた各種の撹拌・分散装置および分散条件は「予稿集」に記載された条件に対して以下のように変更した。撹拌はアズワン株式会社製トルネードSM-103およびタービン羽根を用いて600rpmで5分撹拌した後、プライミクス株式会社製T.K.ホモミクサーMARK IIを用いて10000rpmで10分撹拌した。次に分散は、吉田機械興業株式会社製Nano-Mizer Mark IIを用いて80MPa/分散1回とした。また、濾過にはポールコーポレーション製のフィルタ(プロファイルII、濾過精度:1μm、材質:ポリプロピレン製)を用いた。なお、上記予稿集の内容は本願明細書中の記載の一部として組み入れられる。
スラリーを用いた研磨は、CMP加工(本CMP)で用いるサンプルスラリーとして上述した手順で調整したサンプルスラリーを用いた以外は、予稿集の「2.2 銅ウエハー研磨条件」、表1および図2に示された条件にて実施した。なお、使用した研磨装置は株式会社ナノファクター製卓上型ポリッシング装置NF-300であり、研磨対象物(銅ウエハー)は株式会社D-process製3インチCuメッキSiウエハー(Cuメッキ厚み:5μm)である。また、CMP加工(本CMP)後における銅ウエハー表面の残留砥粒・有機物除去剤(洗浄液)として和光純薬工業株式会社製Clean100を10倍希釈して用いた。
上記研磨条件にてCuメッキ膜が設けられた面が研磨された銅ウエハーについてスクラッチ密度および研磨レートを測定した。ここで、スクラッチ密度は、予稿集の「2.3 スクラッチ数の計測」および図3に示された手順にて測定した。なお、Cuメッキ膜のスクラッチ評価は、シリコン酸化膜(絶縁膜)のスクラッチ評価と相関性がある(予稿集参照)。よって、後述するスクラッチ密度の測定結果と同様の傾向が、シリコン酸化膜(絶縁膜)を研磨した場合においても得られると推定される。
(a)スクラッチ密度
スクラッチ密度は40pcs/mm2以下が許容範囲であり、30pcs/mm2以下がより望ましい。
研磨レートは12nm/min以上が許容値であり、17nm/min以上がより望ましい。
ハロゲン化シランとしてテトラクロロシランを用いて、表1記載の製造条件で火炎加水分解反応させることによりヒュームドシリカを製造し、分離回収工程後に回収した。上記テトラクロロシランガス中の不純物量はFe:0.1ppm未満、Al:0.1ppm未満、Ni:0.01ppm未満、Cr:0.01ppm未満、Ti:0.01ppm未満、ホウ素:0.01ppm未満であった。
ハロゲン化シランとして実施例1と同じテトラクロロシランを用いて、表1記載の製造条件で火炎加水分解反応させることによりヒュームドシリカを製造し、脱酸工程後に回収した。このヒュームドシリカ250gを内径15cmの石英ガラス製流動層に導入した。下部からヒュームドシリカの温度と同程度に加熱した予熱空気を5Nm3/hで30分間導入した後、導入したシリカのうち225gを管上部から抜き出すことで分級した。この分級工程を2回繰り返し、ヒュームドシリカ203gを得た。得られたヒュームドシリカを脱気プレスで圧縮することにより、0.05g/cm3の嵩密度に調整しヒュームドシリカ粉体を得た。得られたヒュームドシリカの比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
ハロゲン化シランとして実施例1と同じテトラクロロシランを用いて、表1記載の製造条件で火炎加水分解反応させることによりヒュームドシリカを製造し、分離回収工程後に回収した。このヒュームドシリカ250gを内径15cmの石英ガラス製流動層に導入した。下部からヒュームドシリカの温度と同程度に加熱した予熱空気を10Nm3/hで30分間導入した後、導入したシリカのうち225gを管上部から抜き出すことで分級した。分級後のヒュームドシリカは脱酸工程を行い再度回収した。脱酸工程より回収したヒュームドシリカ225gを再度上記流動層に導入し、上記条件にて流動させた後管上部から203gを抜き出すことで分級した。分級後得られたヒュームドシリカを脱気プレスで圧縮することにより、0.05g/cm3の嵩密度に調整しヒュームドシリカ粉体を得た。得られたヒュームドシリカ粉体の比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
ハロゲン化シランとして実施例1と同じテトラクロロシランを用いて、表1記載の製造条件で火炎加水分解反応させることによりヒュームドシリカを製造し、分離回収工程後に回収した。このヒュームドシリカ250gを内径15cmの石英ガラス製流動層に導入した。下部からヒュームドシリカの温度と同程度に加熱した予熱空気を5Nm3/hで60分間導入した後、導入したシリカのうち225gを管上部から抜き出すことで分級した。分級後得られたヒュームドシリカは脱酸工程を行った後、脱気プレスで圧縮することにより、0.05g/cm3の嵩密度に調整しヒュームドシリカ粉体を得た。得られたヒュームドシリカ粉体の比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
ハロゲン化シランとして実施例1と同じテトラクロロシランを用いて、表1記載の製造条件で火炎加水分解反応させることによりヒュームドシリカを製造し、脱酸工程後のヒュームドシリカを脱気プレスで圧縮することにより、0.05g/cm3の嵩密度に調整しヒュームドシリカ粉体を得た。得られたヒュームドシリカの比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
ハロゲン化シランとして実施例1と同じテトラクロロシランを用いて、表1記載の製造条件で火炎加水分解反応させることによりヒュームドシリカを製造し、分離回収工程後に回収した。このヒュームドシリカ250gを内径15cmの石英ガラス製流動層に導入した。下部からヒュームドシリカの温度と同程度に加熱した予熱空気を5Nm3/hで30分間導入した後、導入したシリカのうち225gを管上部から抜き出すことで分級した。分級後のヒュームドシリカは脱酸工程を行い再度回収した。脱酸工程より回収したヒュームドシリカ225gを再度上記流動層に導入し、上記条件にて流動させた後管上部から203gを抜き出すことで分級した。分級後得られたヒュームドシリカを脱気プレスで圧縮することにより、0.05g/cm3の嵩密度に調整しヒュームドシリカ粉体を得た。得られたヒュームドシリカ粉体の比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
ハロゲン化シランとして実施例1と同じテトラクロロシランを用いて、表1記載の製造条件で火炎加水分解反応させることによりヒュームドシリカを製造し、脱酸工程後のヒュームドシリカを脱気プレスで圧縮することにより、0.05g/cm3の嵩密度に調整しヒュームドシリカを得た。このヒュームドシリカ250gを内径15cmの石英ガラス製流動層に導入した。下部からヒュームドシリカの温度と同程度に加熱した予熱空気を5Nm3/hで30分間導入した後、導入したシリカのうち225gを管上部から抜き出すことにより分級した。この分級工程を2回繰り返し、ヒュームドシリカ203gを得た。得られたヒュームドシリカ粉体の比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
市販されている、3社3種類のヒュームドシリカについて、比表面積、不純物含有量、目開き5μmの電成篩を用いた湿式篩法での篩上残量、スクラッチ密度、研磨レートを表1に併せて示す。
上述の実施形態は本願発明の例示であって、本願発明はこれらの例に限定されず、これらの例に周知技術や慣用技術、公知技術を組み合わせたり、一部置き換えたりしてもよい。また当業者であれば容易に思いつく改変発明も本願発明に含まれる。
Claims (4)
- BET比表面積が57m2/g以上400m2/g以下であり、
水の中に6.25質量%の量を、振動周波数20kHz、振幅15μm~25μm、3分という条件により超音波により分散させた分散液において、目開き5μmの電成篩を用いた湿式篩法により篩分けした際の篩上残量が5ppm以下であることを特徴とするヒュームドシリカ。 - Fe含有量が0.3ppm以下、Al含有量が0.3ppm以下、Ni含有量が0.1ppm以下、Cr含有量が0.1ppm以下、Ti含有量が0.1ppm以下、且つホウ素含有量が0.1ppm以下である請求項1記載のヒュームドシリカ。
- 請求項1または2に記載のヒュームドシリカよりなるCMP用ヒュームドシリカ。
- 請求項1に記載されたヒュームドシリカを製造する方法であって、
反応器に原料シランガスを供給し、火炎中で燃焼もしくは加水分解させてヒュームドシリカを生成させる反応工程と、
生成させた前記ヒュームドシリカ及び反応ガスを冷却する冷却工程と、
前記ヒュームドシリカを前記反応ガスより分離し回収する分離回収工程と、
前記ヒュームドシリカの嵩密度を大きくする圧縮工程と
を含み、さらに前記圧縮工程の前に5μm以上の粒径の前記ヒュームドシリカの除去を行う分級工程を含んでいることを特徴とするヒュームドシリカの製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780066958.2A CN110167879A (zh) | 2016-10-28 | 2017-10-17 | 气相二氧化硅及其制备方法 |
US16/344,285 US20190270914A1 (en) | 2016-10-28 | 2017-10-17 | Fumed silica and method for producing the same |
PCT/JP2017/037482 WO2018079334A1 (ja) | 2016-10-28 | 2017-10-17 | ヒュームドシリカ及びその製造方法 |
JP2018531261A JP6442116B2 (ja) | 2016-10-28 | 2017-10-17 | ヒュームドシリカ及びその製造方法 |
EP17864976.0A EP3533760A4 (en) | 2016-10-28 | 2017-10-17 | PYROGENATED SILICA AND ITS PRODUCTION METHOD |
KR1020197013358A KR102442003B1 (ko) | 2016-10-28 | 2017-10-17 | 흄드 실리카 및 그 제조 방법 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016211229 | 2016-10-28 | ||
JP2016-211229 | 2016-10-28 | ||
PCT/JP2017/037482 WO2018079334A1 (ja) | 2016-10-28 | 2017-10-17 | ヒュームドシリカ及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018079334A1 true WO2018079334A1 (ja) | 2018-05-03 |
Family
ID=62025055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/037482 WO2018079334A1 (ja) | 2016-10-28 | 2017-10-17 | ヒュームドシリカ及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20190270914A1 (ja) |
EP (1) | EP3533760A4 (ja) |
JP (1) | JP6442116B2 (ja) |
KR (1) | KR102442003B1 (ja) |
CN (1) | CN110167879A (ja) |
TW (1) | TW201829312A (ja) |
WO (1) | WO2018079334A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109294450A (zh) * | 2018-11-26 | 2019-02-01 | 厦门大学 | 一种用于混合抛光液的机械分散方法 |
WO2022091953A1 (ja) * | 2020-10-30 | 2022-05-05 | 株式会社トクヤマ | ゴム組成物の製造方法、ゴム組成物用フュームドシリカおよびゴム組成物 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110976100B (zh) * | 2019-12-13 | 2020-10-09 | 内蒙古鄂托克旗昊源煤焦化有限责任公司 | 一种氧化煤泥的分选方法 |
KR102379372B1 (ko) * | 2020-02-28 | 2022-03-29 | 주식회사 케이씨씨실리콘 | 흄드 실리카용 조성물 |
CN112090215A (zh) * | 2020-09-17 | 2020-12-18 | 郑州格矽科技发展有限公司 | 一种超细粉体表面吸附物的处理装置及其处理方法 |
CN114275786A (zh) * | 2021-12-17 | 2022-04-05 | 上海交通大学 | 一种白炭黑制备方法和制备系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008019157A (ja) * | 2006-06-09 | 2008-01-31 | Tokuyama Corp | 乾式シリカ微粒子 |
JP2014214042A (ja) * | 2013-04-24 | 2014-11-17 | 株式会社トクヤマ | 乾式シリカ微粒子 |
WO2015012118A1 (ja) * | 2013-07-24 | 2015-01-29 | 株式会社トクヤマ | Cmp用シリカ、水性分散液およびcmp用シリカの製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030069347A1 (en) * | 2001-09-28 | 2003-04-10 | Hideki Oishi | Calcined silica particle and manufacturing method of same |
JP3984902B2 (ja) * | 2002-10-31 | 2007-10-03 | Jsr株式会社 | ポリシリコン膜又はアモルファスシリコン膜研磨用化学機械研磨用水系分散体およびこれを用いた化学機械研磨方法ならびに半導体装置の製造方法 |
TWI364450B (en) * | 2004-08-09 | 2012-05-21 | Kao Corp | Polishing composition |
JP2006136996A (ja) | 2004-10-12 | 2006-06-01 | Kao Corp | 研磨液組成物の製造方法 |
CN101454246A (zh) * | 2006-06-09 | 2009-06-10 | 株式会社德山 | 干式二氧化硅微粒 |
CN104649282B (zh) * | 2006-06-09 | 2017-06-13 | 株式会社德山 | 干式二氧化硅微粒 |
DE102006054156A1 (de) | 2006-11-16 | 2008-05-21 | Wacker Chemie Ag | Pyrogene Kieselsäure hergestellt in einer Produktions-Anlage mit großer Kapazität |
ATE497483T1 (de) * | 2007-05-21 | 2011-02-15 | Evonik Degussa Gmbh | Pyrogen hergestelltes siliciumdioxid mit niedriger verdickungswirkung |
JP5355099B2 (ja) * | 2009-01-08 | 2013-11-27 | ニッタ・ハース株式会社 | 研磨組成物 |
JP6011361B2 (ja) * | 2013-01-25 | 2016-10-19 | 株式会社ニコン | シリカ粒子分散液の製造方法およびシリカ粒子分散液を用いた研磨方法 |
EP2957613B1 (en) * | 2013-02-13 | 2020-11-18 | Fujimi Incorporated | Polishing composition, method for producing polishing composition and method for producing polished article |
-
2017
- 2017-10-17 JP JP2018531261A patent/JP6442116B2/ja active Active
- 2017-10-17 KR KR1020197013358A patent/KR102442003B1/ko active IP Right Grant
- 2017-10-17 US US16/344,285 patent/US20190270914A1/en not_active Abandoned
- 2017-10-17 CN CN201780066958.2A patent/CN110167879A/zh active Pending
- 2017-10-17 EP EP17864976.0A patent/EP3533760A4/en active Pending
- 2017-10-17 WO PCT/JP2017/037482 patent/WO2018079334A1/ja active Application Filing
- 2017-10-27 TW TW106137148A patent/TW201829312A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008019157A (ja) * | 2006-06-09 | 2008-01-31 | Tokuyama Corp | 乾式シリカ微粒子 |
JP2014214042A (ja) * | 2013-04-24 | 2014-11-17 | 株式会社トクヤマ | 乾式シリカ微粒子 |
WO2015012118A1 (ja) * | 2013-07-24 | 2015-01-29 | 株式会社トクヤマ | Cmp用シリカ、水性分散液およびcmp用シリカの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3533760A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109294450A (zh) * | 2018-11-26 | 2019-02-01 | 厦门大学 | 一种用于混合抛光液的机械分散方法 |
WO2022091953A1 (ja) * | 2020-10-30 | 2022-05-05 | 株式会社トクヤマ | ゴム組成物の製造方法、ゴム組成物用フュームドシリカおよびゴム組成物 |
Also Published As
Publication number | Publication date |
---|---|
EP3533760A1 (en) | 2019-09-04 |
CN110167879A (zh) | 2019-08-23 |
KR102442003B1 (ko) | 2022-09-07 |
US20190270914A1 (en) | 2019-09-05 |
EP3533760A4 (en) | 2020-12-23 |
KR20190077397A (ko) | 2019-07-03 |
TW201829312A (zh) | 2018-08-16 |
JPWO2018079334A1 (ja) | 2018-11-01 |
JP6442116B2 (ja) | 2018-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6442116B2 (ja) | ヒュームドシリカ及びその製造方法 | |
CN105264646B (zh) | Cmp用二氧化硅、水性分散液以及cmp用二氧化硅的制造方法 | |
US20100025373A1 (en) | Pyrogenic silica produced in a production facility with high capacity | |
TW555691B (en) | Aqueous dispersion, a process for the preparation and the use thereof | |
JP4541955B2 (ja) | 熱分解法により製造された二酸化ケイ素粉末及びこの粉末を含有するシリコーンシーラント | |
US7803341B2 (en) | Fine dry silica particles | |
JP2006193403A (ja) | 熱分解法により製造された二酸化ケイ素粉末 | |
TW460963B (en) | Polishing slurry and polishing method | |
CN1543491A (zh) | 硅石基淤浆 | |
US20110256030A1 (en) | Pyrogenic Silicic Acid Manufactured in a Small-Scale Production Plant | |
JP6901853B2 (ja) | 親水性乾式シリカ粉末 | |
JP6112888B2 (ja) | 乾式シリカ微粒子 | |
JP2010085837A (ja) | 疎水性シリカ微粒子及び電子写真用トナー組成物 | |
US12098076B2 (en) | Silica powder, resin composition, and dispersion | |
US20240254313A1 (en) | Silica powder in which aggregation is reduced, resin composition, and semiconductor sealing material | |
KR20240144979A (ko) | 구상 실리카 분말 | |
KR20240144978A (ko) | 구상 실리카 분말 | |
WO2023189802A1 (ja) | 微粒子及び微粒子の製造方法 | |
WO2024128321A1 (ja) | 球状アルミナ粉末 | |
JP2011224751A (ja) | 酸化セリウム研磨剤及びこの研磨剤を用いた基板の研磨方法 | |
JP2010280020A (ja) | 酸化セリウム研磨剤及びこの研磨剤を用いた基板の研磨法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018531261 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17864976 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197013358 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017864976 Country of ref document: EP Effective date: 20190528 |