WO2018076483A1 - Oled显示器 - Google Patents

Oled显示器 Download PDF

Info

Publication number
WO2018076483A1
WO2018076483A1 PCT/CN2016/109570 CN2016109570W WO2018076483A1 WO 2018076483 A1 WO2018076483 A1 WO 2018076483A1 CN 2016109570 W CN2016109570 W CN 2016109570W WO 2018076483 A1 WO2018076483 A1 WO 2018076483A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
water
oxygen quenching
oled
inorganic passivation
Prior art date
Application number
PCT/CN2016/109570
Other languages
English (en)
French (fr)
Inventor
崔磊
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to EP16919636.7A priority Critical patent/EP3534425B1/en
Priority to JP2019522795A priority patent/JP7130638B2/ja
Priority to US15/329,232 priority patent/US10084155B2/en
Priority to KR1020197015720A priority patent/KR102215330B1/ko
Publication of WO2018076483A1 publication Critical patent/WO2018076483A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/874Passivation; Containers; Encapsulations including getter material or desiccant
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of flat panel display technologies, and in particular, to an OLED display.
  • OLED Organic light emitting diode
  • the OLED device is composed of an anode, an organic layer and a cathode, wherein the anode is usually a high work function and high reflectivity indium tin oxide (ITO). It is composed of a three-layer superposed structure of ITO/Ag/ITO of silver (Ag).
  • the organic layer comprises a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer and an electron injection layer, and the cathode is a low work function metal magnesium and Silver Mg/Ag alloy.
  • the organic layer and the cathode are very sensitive to water and oxygen, various methods are required for packaging the organic light-emitting component when preparing the flexible OLED screen.
  • TFE thin film encapsulation
  • FIG. 1 the most common technology for film packaging is that the polymer organic film 21 and the inorganic film 22 are alternately deposited on the surface of the flexible OLED substrate 10 , wherein the flexible OLED substrate 10 includes the substrate 11 and is disposed on the substrate.
  • the inorganic film 22 of the TFE layer has good water and oxygen barrier properties, and the polymer organic film 21 can be well absorbed and dispersed between the layers.
  • the stress prevents the dense inorganic film 22 from being cracked and reduces the barrier property to water and oxygen.
  • the inorganic film 22 in the TFE layer may generate new defects or increase the original defects in the subsequent fabrication process, or the use of the screen (external force impact, bending, falling). These defects will become channels for water and oxygen permeation, reduce the water blocking performance of the TFE layer, and make the water oxygen in the atmospheric environment contact the OLED light emitting device, which affects the service life of the OLED light emitting device.
  • water quenching layer Moisture/Oxygen Quenching Laryer, MOQL
  • the present invention provides an OLED display including a substrate substrate, a TFT array layer disposed on the substrate, an OLED layer disposed on the TFT array layer, and an array disposed on the TFT array. a thin film encapsulation layer on the layer and the OLED layer and covering the OLED layer;
  • the thin film encapsulation layer includes an inorganic passivation layer, an organic buffer layer, and a water oxygen quenching layer; in the thin film encapsulation layer, the inorganic passivation layer and the organic buffer layer are alternately stacked, and the inorganic passivation layer is more than the organic buffer layer One more layer on the number of layers, the inorganic passivation layer and the organic buffer layer together form a laminated structure;
  • the water oxygen quenching layer is a first water oxygen quenching layer, a second water oxygen quenching layer, or a combination of the two, wherein the first water oxygen quenching layer is disposed on the OLED layer, Between the stacked structure and the OLED layer, the second water-oxygen quenching layer is disposed in the stacked structure between the two inorganic passivation layers.
  • the OLED display has a centrally located display area and a non-display area located around the display area, the display area having a plurality of arrayed sub-pixel areas and remaining remaining areas;
  • the first water oxygen quenching layer includes an annular peripheral portion and a central portion located in the outer peripheral portion of the ring, the peripheral portion is disposed corresponding to the non-display region, and the central portion is disposed in the display region
  • the spacing portion is a combination of a network structure corresponding to the spacing region or a plurality of quenching individuals distributed in the spacing region.
  • the material of the first water oxygen quenching layer is an alkali metal, an alkaline earth metal, or an alloy of the two.
  • the material of the first water oxygen quenching layer is an alloy of one or more of Li, Na, K, Ru, Cs, Mg, Ca, and Ba.
  • the shape of the quenching individual is circular, rectangular, or L-shaped;
  • Each quenching individual corresponds to one, or a plurality of sub-pixel regions, or each sub-pixel region corresponds to a plurality of quenching individuals.
  • the thickness of the first water oxygen quenching layer and the second water oxygen quenching layer are both 5 nm to 100 nm.
  • the second water-oxygen quenching layer is located between an inorganic passivation layer and an organic buffer layer, and the upper and lower surfaces of the second water-oxygen quenching layer and the organic buffer layer and the inorganic
  • the passivation layer is in contact;
  • the material of the second water oxygen quenching layer is a light absorbing and hygroscopic physical adsorbing material.
  • the second water-oxygen quenching layer is located between an inorganic passivation layer and an organic buffer layer, and the upper and lower surfaces of the second water-oxygen quenching layer and the inorganic passivation layer and the Organic buffer layer
  • the material of the second water-oxygen quenching layer is a physical adsorbing material having light transmissivity and hygroscopicity.
  • the second water-oxygen quenching layer is a film layer formed by uniformly dispersing a light-transmitting and hygroscopic physical adsorbing material in an organic material, and the second water-oxygen quenching layer serves as an organic buffer layer at the same time.
  • the second water-oxygen quenching layer is a film layer formed by uniformly dispersing a particulate physical adsorption material in the organic material.
  • the present invention also provides an OLED display, comprising: a base substrate, a TFT array layer disposed on the base substrate, an OLED layer disposed on the TFT array layer, and the TFT array layer and the OLED layer And covering the thin film encapsulation layer of the OLED layer;
  • the thin film encapsulation layer includes an inorganic passivation layer, an organic buffer layer, and a water oxygen quenching layer; in the thin film encapsulation layer, the inorganic passivation layer and the organic buffer layer are alternately stacked, and the inorganic passivation layer is more than the organic buffer layer One more layer on the number of layers, the inorganic passivation layer and the organic buffer layer together form a laminated structure;
  • the water oxygen quenching layer is a first water oxygen quenching layer, a second water oxygen quenching layer, or a combination of the two, wherein the first water oxygen quenching layer is disposed on the OLED layer, Between the layered structure and the OLED layer, the second water-oxygen quenching layer is disposed in the layered structure between two inorganic passivation layers;
  • first water oxygen quenching layer and the second water oxygen quenching layer have a thickness of 5 nm to 100 nm;
  • a display area located at the center and a non-display area located around the display area, the display area having a plurality of sub-pixel areas arranged in an array, and remaining remaining areas;
  • the first water oxygen quenching layer includes an annular peripheral portion and a central portion located in the outer peripheral portion of the ring, the peripheral portion is disposed corresponding to the non-display region, and the central portion is disposed in the display region
  • the spacing portion is a combination of a network structure corresponding to the spacing region or a plurality of quenching individuals distributed in the spacing region.
  • the OLED display of the present invention has a thin film encapsulation layer including an inorganic passivation layer, an organic buffer layer, and a water oxygen quenching layer, wherein the inorganic passivation layer and the organic buffer layer together form a stacked structure.
  • the water oxygen quenching layer is a first water oxygen quenching layer between the stacked structure and the OLED layer, or a second water oxygen quenching layer between the two inorganic passivation layers in the stacked structure, or two
  • the water-oxygen quenching layer can effectively interact with the inorganic passivation layer and the organic buffer layer by physical adsorption or chemical reaction without affecting the luminescence performance of the OLED device.
  • FIG. 1 is a schematic structural view of a conventional OLED display
  • FIG. 2 is a schematic view showing the inorganic film in the package structure of the OLED display of FIG. 1 having defects eroded by water and oxygen;
  • FIG. 3 is a schematic structural view of a first embodiment of an OLED display of the present invention.
  • FIG. 4 is a first schematic view showing the first water oxygen quenching layer in the first embodiment of the OLED display of the present invention
  • FIG. 5 is a schematic view showing a second shape of a first water oxygen quenching layer in a first embodiment of the OLED display of the present invention
  • FIG. 6 is a schematic view showing a third shape of a first water oxygen quenching layer in a first embodiment of the OLED display of the present invention
  • FIG. 7 is a schematic view showing a fourth shape of a first water oxygen quenching layer in a first embodiment of the OLED display of the present invention.
  • FIG. 8 is a fifth schematic view showing the shape of the first water oxygen quenching layer in the first embodiment of the OLED display of the present invention.
  • FIG. 9 is a sixth schematic view showing the shape of the first water oxygen quenching layer in the first embodiment of the OLED display of the present invention.
  • FIG. 10 is a schematic structural view of a second embodiment of an OLED display of the present invention.
  • FIG. 11 is a schematic structural view of a third embodiment of an OLED display of the present invention.
  • FIG. 12 is a schematic structural view of a fourth embodiment of an OLED display of the present invention.
  • Figure 13 is a schematic view showing the structure of a fifth embodiment of the OLED display of the present invention.
  • the OLED display includes a substrate substrate 100 and is disposed on the substrate substrate.
  • the thin film encapsulation layer 400 includes an inorganic passivation layer 401, an organic buffer layer 402, and a water oxygen quenching layer 403.
  • the inorganic passivation layer 401 and the organic buffer layer 402 are alternately stacked, and inorganic
  • the passivation layer 401 has one more layer than the organic buffer layer 402, and the inorganic passivation layer 401 and the organic buffer layer 402 together constitute a laminated structure.
  • the water oxygen quenching layer 403 is a first water oxygen quenching layer 4031, a second water oxygen quenching layer 4032, or a combination of the two, wherein the first water oxygen quenching layer 4031 is disposed on the OLED.
  • the second water-oxygen quenching layer 4032 is disposed in the laminated structure between the two inorganic passivation layers 401.
  • the water oxygen quenching layer 403 is a first water oxygen quenching layer 4031.
  • the OLED display has a centrally located display area (AA) and a non-display area located around the display area, the display area having a plurality of arrayed sub-pixel areas, and remaining intervals region.
  • AA centrally located display area
  • non-display area located around the display area, the display area having a plurality of arrayed sub-pixel areas, and remaining intervals region.
  • the TFT array layer 200 includes a plurality of TFT devices arranged in a matrix corresponding to the plurality of sub-pixel regions, wherein the TFT device can be amorphous silicon (a-Si) or low temperature polysilicon (LTPS), an oxide semiconductor, or the like is used as an active layer.
  • a-Si amorphous silicon
  • LTPS low temperature polysilicon
  • oxide semiconductor oxide semiconductor
  • the OLED layer 300 includes a plurality of OLED devices arranged in a matrix corresponding to the plurality of sub-pixel regions, and each OLED device includes an anode, an organic layer 301, and a cathode 302 arranged in this order from top to bottom.
  • the organic layer 301 includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer arranged in this order from top to bottom, wherein the cathode 302 of the plurality of OLED devices is a full surface structure The four side edges of the cathode 302 extend from the display area to the non-display area.
  • the cathode 302 is formed by co-evaporation of Mg and Ag, wherein the composition ratio of Mg and Ag in the cathode 302 can be flexibly regulated according to the performance requirements of the device, specifically, the composition ratio of Mg and Ag in the cathode 302 is 1:9-9. :1.
  • the material of the first water-oxygen quenching layer 4031 is an alkali metal (eg, lithium Li, sodium Na, potassium K, strontium Ru, cesium Cs, etc.), an alkaline earth metal (eg, magnesium Mg, calcium Ca, strontium). Ba, etc.), or an alloy of both.
  • the first water oxygen quenching layer 4031 is more chemically active than the cathode 302 and the organic layer 301, and can be quickly reacted with water and oxygen by a chemical reaction, thereby avoiding the OLED device. Destruction of the organic layer 301 and the cathode 302.
  • the material of the inorganic passivation layer 401 is silicon nitride (SiN), silicon oxide (SiO X ), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), or zirconium oxide (ZrO 2 );
  • the organic buffer layer 402 is a polymer transparent material such as acrylic, polycarbonate polymer, and polystyrene, so that the stress during the film formation of the inorganic passivation layer 401 can be effectively alleviated.
  • the material of the first water-oxygen quenching layer 4031 is an alloy of one or more of Li, Na, K, Ru, Cs, Mg, Ca, and Ba.
  • the first water oxygen quenching layer 4031 is distributed in the non-display area outside the display area and the spacing area in the display area, thereby avoiding affecting the light-emitting effect of the sub-pixel area; the first water oxygen quenching The annihilation layer 4031 includes an annular outer peripheral portion and a central portion located in the outer peripheral portion of the annular shape.
  • the peripheral portion of the first water-oxygen quenching layer 4031 outside the entire display area covers the cathode ring of the cathode 302 in the non-display area, as shown in FIG. 4-9.
  • the central portion of the first water-oxygen quenching layer 4031 can be flexibly designed according to an actual process.
  • the central portion of the first water-oxygen quenching layer 4031 can be a network structure corresponding to the spacing region and surrounding each sub-pixel region.
  • the whole may also be a combination of quenching individuals distributed in a circle, a square (which may include rounded corners), a rectangle, an L-shape, and other shapes distributed around the sub-pixel region, wherein each quenching individual corresponds to One or more sub-pixel regions, or each sub-pixel region corresponds to a plurality of quenching individuals.
  • the first water oxygen quenching layer 4031 has a thickness of 5 nm to 100 nm.
  • the base substrate 100 is a flexible substrate.
  • the first water oxygen quenching layer 4031 is introduced on the OLED layer 300, and the water and oxygen can be effectively avoided by the chemical reaction without affecting the luminescent properties of the OLED device. Damage, thereby increasing the service life of the OLED device, and reducing the number and thickness of the thin film encapsulation layer 400, thereby thinning the thickness of the OLED display as a whole and improving the bending performance of the flexible OLED display.
  • the water-oxygen quenching layer 403 is a second water-oxygen quenching.
  • Layer 4032 is a second water-oxygen quenching.
  • the second water-oxygen quenching layer 4032 is located between an inorganic passivation layer 401 and an organic buffer layer 402, and the second water-oxygen quenching layer 4032 is disposed on the inorganic passivation layer 401.
  • the upper and lower surfaces of the second water-oxygen quenching layer 4032 are respectively in contact with the organic buffer layer 402 and the inorganic passivation layer 401; the material of the second water-oxygen quenching layer 4032 and the first
  • the material of the water-oxygen quenching layer 4031 is a physical adsorbing material having light transmissivity and hygroscopicity.
  • the physical adsorbing material is a transparent porous silica gel, a micro-nano composite silica gel, or a propylene resin. a material having high light transmittance; the second water oxygen quenching layer 4031 has a thickness of 5 nm to 100 nm. Others are the same as the first embodiment described above, and are not described herein again.
  • the second water-oxygen quenching layer 4032 having high light transmittance is introduced in the laminated structure of the inorganic passivation layer 401 and the organic buffer layer 402, without affecting the luminescent properties of the OLED device.
  • the physical adsorption can effectively avoid the damage of the OLED device by water and oxygen, thereby improving the service life of the OLED device, and reducing the number and thickness of the thin film encapsulation layer 400, thereby reducing the thickness of the OLED display and improving the flexibility. Bending performance of OLED displays.
  • FIG. 11 is a schematic structural view of a third embodiment of an OLED display according to the present invention.
  • the second water oxygen quenching layer 4032 is located in a layer of inorganic blunt.
  • the second water-oxygen quenching layer 4032 is disposed on the organic buffer layer 402, and the upper and lower surfaces of the second water-oxygen quenching layer 4032 are respectively
  • the inorganic passivation layer 401 and the organic buffer layer 402 are in contact with each other; the other is the same as the second embodiment described above, and details are not described herein again.
  • FIG. 12 is a schematic structural view of a fourth embodiment of an OLED display according to the present invention.
  • the second water-oxygen quenching layer 4032 is translucent.
  • the hygroscopic physical adsorbing material is uniformly dispersed in the film layer formed in the organic material, and the second water oxygen quenching layer 4032 serves as the organic buffer layer 402 at the same time.
  • the second water-oxygen quenching layer 4032 is a film layer formed by uniformly dispersing a granular physical adsorption material of a nanometer or micron order in an organic material, and the size of the physical adsorbing material is 10 nm to 10 ⁇ m.
  • the physical adsorbent material is made into nano- or micro-scale microspheres, and then uniformly dispersed in an organic material to form a film layer, to obtain a second water-oxygen quenching layer 4032.
  • Others are the same as the second embodiment described above, and are not described herein again.
  • the water-oxygen quenching layer 403 is first water-oxygen quenched.
  • the layer 4031 is combined with the second water oxygen quenching layer 4032, wherein the second water oxygen quenching layer 4032 is a light absorbing and hygroscopic physical adsorbing material; the first water oxygen quenching layer 4031 passes a chemical reaction
  • the second water oxygen quenching layer 4032 is physically adsorbed to avoid damage of the OLED device by water and oxygen. Others are the same as the first embodiment described above, and are not described herein again.
  • the OLED display of the present invention has a thin film encapsulation layer including an inorganic passivation layer, an organic buffer layer, and a water oxygen quenching layer, wherein the inorganic passivation layer and the organic buffer layer together form a laminated structure.
  • the water oxygen quenching layer is a first water oxygen quenching layer between the stacked structure and the OLED layer, or a second water oxygen quenching layer between the two inorganic passivation layers in the stacked structure, or both
  • the combination of the water-oxygen quenching layer in the thin film encapsulation layer by physical adsorption or chemical reaction without affecting the luminescent properties of the OLED device, and the inorganic passivation layer and the organic buffer layer Synergistic effect can effectively avoid the damage of water and oxygen to the OLED device, thereby improving the service life of the OLED device, and at the same time, releasing the stress of the inorganic passivation layer in the thin film encapsulation layer, reducing the number and thickness of the thin film encapsulation layer. Therefore, the overall thickness of the OLED display is thinned, and the bending performance of the flexible OLED display is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种OLED显示器,其薄膜封装层(400)包括无机钝化层(401)、有机缓冲层(402)、及水氧淬灭层(403),其中,无机钝化层和有机缓冲层共同构成层叠结构,水氧淬灭层为位于层叠结构与OLED层(300)之间的第一水氧淬灭层(4031)、或位于层叠结构中两层无机钝化层之间的第二水氧淬灭层(4032)、或两者的组合,薄膜封装层中,水氧淬灭层在不影响OLED器件发光性能的前提下,通过物理吸附或者化学反应,并与无机钝化层、有机缓冲层协同作用,能够有效地避免水氧对OLED器件的损坏,从而提升OLED器件的使用寿命,同时还能够起到释放无机钝化层应力的作用,减少薄膜封装层的层数和厚度,从而整体减薄OLED显示器厚度,提升柔性的OLED显示器的弯折性能。

Description

OLED显示器 技术领域
本发明涉及平板显示技术领域,尤其涉及一种OLED显示器。
背景技术
有机发光二极管(organic light emitting diode,OLED)具有自发光、低能耗、宽视角、色彩丰富、快速响应及可制备柔性屏等诸多优异特性,引起了科研界和产业界极大的兴趣,被认为是极具潜力的下一代显示技术。
目前广泛应用到显示领域的OLED屏幕通常采用顶发射(top-emitting)的器件结构,OLED器件由阳极、有机层和阴极组成,其中阳极通常为高功函高反射率的氧化铟锡(ITO)与银(Ag)的ITO/Ag/ITO三层叠加结构组成,有机层包含空穴注入层、空穴传输层、发光层、电子传输层和电子注入层,阴极为低功函的金属镁与银的Mg/Ag合金。
由于有机层和阴极对水、氧气非常敏感,故在制备柔性OLED屏幕时,需采用各种手段来封装有机发光元器件。当前,薄膜封装(thin film encapsulation,TFE)技术已经被成功应用到柔性OLED屏幕。如图1所示,目前薄膜封装采用最普遍的技术就是聚合物有机薄膜21和无机薄膜22交替沉积在柔性OLED基板10表面,其中,柔性OLED基板10包括衬底基板11、设于衬底基板11上的TFT层12、及设于TFT层12上的OLED层13,TFE层的无机薄膜22具有良好的水氧阻隔性,聚合物有机薄膜21可以很好的吸收与分散层与层之间的应力,避免致密的无机薄膜22产生裂痕而降低对水氧的阻隔性。
如图2所示,通常在TFE层的成膜过程中,不可避免的会引入少量的颗粒(particle),导致无机薄膜22产生缺陷(空洞、微裂纹等)。此外在后续的制成工艺,或者屏幕的使用(外力冲击、弯折、落摔)过程中,TFE层中的无机薄膜22可能产生新的缺陷或者增大原来的缺陷。而这些缺陷会成为水氧渗透的通道,降低TFE层的阻水性能,使大气环境中的水氧接触到OLED发光器件,影响OLED发光器件的使用寿命。
发明内容
本发明的目的在于提供一种OLED显示器,其薄膜封装层具有一层或者多层水氧淬灭层(Moisture/Oxygen Quenching Laryer,MOQL),能够有 效地避免水氧对OLED器件的损坏,从而提升OLED器件的使用寿命,同时还能够起到释放薄膜封装层中无机钝化层应力的作用,减少薄膜封装层的层数和厚度,从而整体减薄OLED显示器厚度,提升弯折性能。
为实现上述目的,本发明提供一种OLED显示器,包括衬底基板、设于所述衬底基板上的TFT阵列层、设于所述TFT阵列层上的OLED层、及设于所述TFT阵列层及OLED层上且覆盖所述OLED层的薄膜封装层;
所述薄膜封装层包括无机钝化层、有机缓冲层、及水氧淬灭层;所述薄膜封装层中,无机钝化层和有机缓冲层交替层叠设置,且无机钝化层比有机缓冲层在层数上多一层,所述无机钝化层和有机缓冲层共同构成层叠结构;
所述水氧淬灭层为第一水氧淬灭层、第二水氧淬灭层、或两者的组合,其中,所述第一水氧淬灭层设于所述OLED层上,位于所述层叠结构与OLED层之间,所述第二水氧淬灭层设于所述层叠结构之中,位于两层无机钝化层之间。
所述OLED显示器具有位于中央的显示区域、及位于显示区域四周的非显示区域,所述显示区域具有数个阵列排布的子像素区域、及剩余的间隔区域;
所述第一水氧淬灭层包括环状的外围部、及位于环状的外围部内的中心部,所述外围部对应所述非显示区域设置,所述中心部分布于所述显示区域内的间隔区域,所述中心部为对应所述间隔区域的呈网络结构的整体、或者为分布于间隔区域的数个淬灭个体的组合。
所述第一水氧淬灭层的材料为碱金属、碱土金属、或者两者的合金。
所述第一水氧淬灭层的材料为Li、Na、K、Ru、Cs、Mg、Ca、及Ba中的一种或多种的合金。
所述淬灭个体的形状为圆形、矩形、或L字形;
每一淬灭个体对应于一个、或者多个子像素区域,或者每一个子像素区域对应于多个淬灭个体。
第一水氧淬灭层、及第二水氧淬灭层的厚度均为5nm-100nm。
所述第二水氧淬灭层位于一层无机钝化层和一层有机缓冲层之间,所述第二水氧淬灭层的上、下两表面分别与该有机缓冲层、及该无机钝化层相接触;所述第二水氧淬灭层的材料为具有透光性、及吸湿性的物理吸附材料。
所述第二水氧淬灭层位于一层无机钝化层和一层有机缓冲层之间,所述第二水氧淬灭层的上、下两表面分别与该无机钝化层、及该有机缓冲层 相接触;所述第二水氧淬灭层的材料为具有透光性、及吸湿性的物理吸附材料。
所述第二水氧淬灭层为具有透光性、及吸湿性的物理吸附材料均匀分散于有机材料中所形成的膜层,所述第二水氧淬灭层同时作为有机缓冲层。
所述第二水氧淬灭层为颗粒状的物理吸附材料均匀分散于有机材料中所形成的膜层。
本发明还提供一种OLED显示器,包括衬底基板、设于所述衬底基板上的TFT阵列层、设于所述TFT阵列层上的OLED层、及设于所述TFT阵列层及OLED层上且覆盖所述OLED层的薄膜封装层;
所述薄膜封装层包括无机钝化层、有机缓冲层、及水氧淬灭层;所述薄膜封装层中,无机钝化层和有机缓冲层交替层叠设置,且无机钝化层比有机缓冲层在层数上多一层,所述无机钝化层和有机缓冲层共同构成层叠结构;
所述水氧淬灭层为第一水氧淬灭层、第二水氧淬灭层、或两者的组合,其中,所述第一水氧淬灭层设于所述OLED层上,位于所述层叠结构与OLED层之间,所述第二水氧淬灭层设于所述层叠结构之中,位于两层无机钝化层之间;
其中,第一水氧淬灭层、及第二水氧淬灭层的厚度均为5nm-100nm;
其中,具有位于中央的显示区域、及位于显示区域四周的非显示区域,所述显示区域具有数个阵列排布的子像素区域、及剩余的间隔区域;
所述第一水氧淬灭层包括环状的外围部、及位于环状的外围部内的中心部,所述外围部对应所述非显示区域设置,所述中心部分布于所述显示区域内的间隔区域,所述中心部为对应所述间隔区域的呈网络结构的整体、或者为分布于间隔区域的数个淬灭个体的组合。
本发明的有益效果:本发明的OLED显示器,其薄膜封装层包括无机钝化层、有机缓冲层、及水氧淬灭层,其中,所述无机钝化层和有机缓冲层共同构成层叠结构,所述水氧淬灭层为位于所述层叠结构与OLED层之间第一水氧淬灭层、或位于层叠结构中两层无机钝化层之间的第二水氧淬灭层、或两者的组合,所述薄膜封装层中,水氧淬灭层在不影响OLED器件发光性能的前提下,通过物理吸附或者化学反应,并与无机钝化层、有机缓冲层协同作用,能够有效地避免水氧对OLED器件的损坏,从而提升OLED器件的使用寿命,同时还能够起到释放薄膜封装层中无机钝化层应力的作用,减少薄膜封装层的层数和厚度,从而整体减薄OLED显示器厚度,提升柔性的OLED显示器的弯折性能。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。
附图中,
图1为一种现有的OLED显示器的结构示意图;
图2为图1的OLED显示器的封装结构中无机薄膜具有缺陷被水氧侵蚀的示意图;
图3为本发明的OLED显示器的第一实施例的结构示意图;
图4为本发明的OLED显示器的第一实施例中第一水氧淬灭层的第一种形状示意图;
图5为本发明的OLED显示器的第一实施例中第一水氧淬灭层的第二种形状示意图;
图6为本发明的OLED显示器的第一实施例中第一水氧淬灭层的第三种形状示意图;
图7为本发明的OLED显示器的第一实施例中第一水氧淬灭层的第四种形状示意图;
图8为本发明的OLED显示器的第一实施例中第一水氧淬灭层的第五种形状示意图;
图9为本发明的OLED显示器的第一实施例中第一水氧淬灭层的第六种形状示意图;
图10为本发明的OLED显示器的第二实施例的结构示意图;
图11为本发明的OLED显示器的第三实施例的结构示意图;
图12为本发明的OLED显示器的第四实施例的结构示意图;
图13为本发明的OLED显示器的第五实施例的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图3,为本发明的OLED显示器的第一实施例的结构示意图,在本实施例中,所述OLED显示器,包括衬底基板100、设于所述衬底基 板100上的TFT阵列层200、设于所述TFT阵列层200上的OLED层300、及设于所述TFT阵列层200及OLED层300上且覆盖所述OLED层300的薄膜封装层400。
所述薄膜封装层400包括无机钝化层401、有机缓冲层402、及水氧淬灭层403;所述薄膜封装层400中,无机钝化层401和有机缓冲层402交替层叠设置,且无机钝化层401比有机缓冲层402在层数上多一层,所述无机钝化层401和有机缓冲层402共同构成层叠结构。
所述水氧淬灭层403为第一水氧淬灭层4031、第二水氧淬灭层4032、或两者的组合,其中,所述第一水氧淬灭层4031设于所述OLED层300上,位于所述层叠结构与OLED层300之间,所述第二水氧淬灭层4032设于所述层叠结构之中,位于两层无机钝化层401之间。具体地,如图3所示,在本实施例中,所述水氧淬灭层403为第一水氧淬灭层4031。
具体地,所述OLED显示器,具有位于中央的显示区域(Active Area,AA)、及位于显示区域四周的非显示区域,所述显示区域具有数个阵列排布的子像素区域、及剩余的间隔区域。
具体地,所述TFT阵列层200包括数个阵列排布的与所述数个子像素区域一一对应的TFT器件,其中,所述TFT器件可以采用非晶硅(a-Si)、低温多晶硅(LTPS)、氧化物半导体(oxide semiconductor)等等作为有源层。
具体地,所述OLED层300包括数个阵列排布的与所述数个子像素区域一一对应的OLED器件,每一OLED器件包括由上至下依次排列的阳极、有机层301、及阴极302,所述有机层301包括由上至下依次排列的空穴注入层、空穴传输层、发光层、电子传输层和电子注入层,其中,所述数个OLED器件的阴极302为整面结构,阴极302的四侧边缘由显示区域延伸至非显示区域。所述阴极302由Mg和Ag共蒸形成,其中Mg和Ag在阴极302中的组成比例可依据器件的性能需要灵活调控,具体地Mg和Ag在阴极302中的组成比例为1:9-9:1。
具体地,所述第一水氧淬灭层4031的材料为碱金属(如,锂Li、钠Na、钾K、铷Ru、铯Cs等)、碱土金属(如,镁Mg、钙Ca、钡Ba等)、或者两者的合金。当水氧渗透到OLED显示器中时,第一水氧淬灭层4031比阴极302、及有机层301的化学活性更高,可通过化学反应很快与水氧反应掉,从而能够避免对OLED器件中的有机层301和阴极302的破坏。
具体地,所述无机钝化层401的材料为氮化硅(SiN)、氧化硅(SiOX)、氧化铝(Al2O3)、氧化钛(TiO2)、或氧化锆(ZrO2);所述第有机缓冲层 402为聚合物透明材料,例如压克力、聚碳酸酯类聚合物、聚苯乙烯,从而可以有效地缓解无机钝化层401成膜过程中的应力。
优选地,所述第一水氧淬灭层4031的材料为Li、Na、K、Ru、Cs、Mg、Ca、及Ba中的一种或多种的合金。
具体地,所述第一水氧淬灭层4031分布于所述显示区域外的非显示区域、及显示区域内的间隔区域,从而避免影响子像素区域的出光效果;所述第一水氧淬灭层4031包括环状的外围部、及位于环状的外围部内的中心部。
具体地,在整个显示区域外的非显示区域第一水氧淬灭层4031的外围部整面覆盖所述阴极302在非显示区域的阴极环(cathode ring),如图4-9所示,第一水氧淬灭层4031的中心部可依据实际制程灵活设计,第一水氧淬灭层4031的中心部可以为与所述间隔区域对应、环绕每一子像素区域的四周而呈网络结构的整体,也可以为数个呈圆形,方形(可包含圆角)、矩形、L字形以及其他形状的分布在子像素区域的四周的淬灭个体的组合,其中,每一淬灭个体对应于一个、或者多个子像素区域,或者每一个子像素区域对应于多个淬灭个体。
具体地,所述第一水氧淬灭层4031的厚度为5nm-100nm。
具体地,所述衬底基板100为柔性基板。
本发明的OLED显示器的第一实施例,在OLED层300之上引入第一水氧淬灭层4031,在不影响OLED器件发光性能的前提下,通过化学反应能够有效地避免水氧对OLED器件损坏,从而提升OLED器件的使用寿命,并能够减少薄膜封装层400的层数和厚度,从而整体减薄OLED显示器厚度,提升柔性的OLED显示器的弯折性能。
请参阅图10,为本发明的OLED显示器的第二实施例的结构示意图,与上述第一实施例相比,在本实施例中,所述水氧淬灭层403为第二水氧淬灭层4032。
具体地,所述第二水氧淬灭层4032位于一层无机钝化层401和一层有机缓冲层402之间,所述第二水氧淬灭层4032设于该层无机钝化层401上,所述第二水氧淬灭层4032的上、下两表面分别与该有机缓冲层402、及该无机钝化层401相接触;所述第二水氧淬灭层4032的材料与第一水氧淬灭层4031的材料不同,为具有透光性、及吸湿性的物理吸附材料,例如,所述物理吸附材料为透明多孔类硅胶、微纳米复合结构的硅胶、或者丙烯类树脂等高透光性的材料;所述第二水氧淬灭层4031的厚度为5nm-100nm。其他与上述第一实施例相同,在此不再赘述。
本发明的OLED显示器的第二实施例,在所述无机钝化层401和有机缓冲层402的层叠结构中引入高透光性的第二水氧淬灭层4032,在不影响OLED器件发光性能的前提下,通过物理吸附能够有效地避免水氧对OLED器件损坏,从而提升OLED器件的使用寿命,并能够减少薄膜封装层400的层数和厚度,从而整体减薄OLED显示器厚度,提升柔性的OLED显示器的弯折性能。
请参阅图11,为本发明的OLED显示器的第三实施例的结构示意图,与上述第二实施例相比,在本实施例中,所述第二水氧淬灭层4032位于一层无机钝化层401和一层有机缓冲层402之间,所述第二水氧淬灭层4032设于该层有机缓冲层402上,所述第二水氧淬灭层4032的上、下两表面分别与该无机钝化层401、及该有机缓冲层402相接触;其他与上述第二实施例相同,在此不再赘述。
请参阅图12,为本发明的OLED显示器的第四实施例的结构示意图,与上述第二实施例相比,在本实施例中,所述第二水氧淬灭层4032为具有透光性、及吸湿性的物理吸附材料均匀分散于有机材料中所形成的膜层,所述第二水氧淬灭层4032同时作为有机缓冲层402。
具体地,所述第二水氧淬灭层4032为纳米级或微米级的颗粒状的物理吸附材料均匀分散于有机材料中所形成的膜层,所述物理吸附材料的尺寸为10nm-10μm,例如,将所述物理吸附材料制成纳米级或微米级的微球,然后将其均匀分散于有机材料中制成膜层,得到第二水氧淬灭层4032。其他与上述第二实施例相同,在此不再赘述。
请参阅图13,为本发明的OLED显示器的第五实施例的结构示意图,与上述第二实施例相比,在本实施例中,所述水氧淬灭层403为第一水氧淬灭层4031与第二水氧淬灭层4032组合,其中,第二水氧淬灭层4032为具有透光性、及吸湿性的物理吸附材料;所述第一水氧淬灭层4031通过化学反应,来避免水氧对OLED器件损坏,所述第二水氧淬灭层4032通过物理吸附,来避免水氧对OLED器件损坏。其他与上述第一实施例相同,在此不再赘述。
综上所述,本发明的OLED显示器,其薄膜封装层包括无机钝化层、有机缓冲层、及水氧淬灭层,其中,所述无机钝化层和有机缓冲层共同构成层叠结构,所述水氧淬灭层为位于所述层叠结构与OLED层之间第一水氧淬灭层、或位于层叠结构中两层无机钝化层之间的第二水氧淬灭层、或两者的组合,所述薄膜封装层中,水氧淬灭层在不影响OLED器件发光性能的前提下,通过物理吸附或者化学反应,并与无机钝化层、有机缓冲层 协同作用,能够有效地避免水氧对OLED器件的损坏,从而提升OLED器件的使用寿命,同时还能够起到释放薄膜封装层中无机钝化层应力的作用,减少薄膜封装层的层数和厚度,从而整体减薄OLED显示器厚度,提升柔性的OLED显示器的弯折性能。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (18)

  1. 一种OLED显示器,包括衬底基板、设于所述衬底基板上的TFT阵列层、设于所述TFT阵列层上的OLED层、及设于所述TFT阵列层及OLED层上且覆盖所述OLED层的薄膜封装层;
    所述薄膜封装层包括无机钝化层、有机缓冲层、及水氧淬灭层;所述薄膜封装层中,无机钝化层和有机缓冲层交替层叠设置,且无机钝化层比有机缓冲层在层数上多一层,所述无机钝化层和有机缓冲层共同构成层叠结构;
    所述水氧淬灭层为第一水氧淬灭层、第二水氧淬灭层、或两者的组合,其中,所述第一水氧淬灭层设于所述OLED层上,位于所述层叠结构与OLED层之间,所述第二水氧淬灭层设于所述层叠结构之中,位于两层无机钝化层之间。
  2. 如权利要求1所述的OLED显示器,其中,具有位于中央的显示区域、及位于显示区域四周的非显示区域,所述显示区域具有数个阵列排布的子像素区域、及剩余的间隔区域;
    所述第一水氧淬灭层包括环状的外围部、及位于环状的外围部内的中心部,所述外围部对应所述非显示区域设置,所述中心部分布于所述显示区域内的间隔区域,所述中心部为对应所述间隔区域的呈网络结构的整体、或者为分布于间隔区域的数个淬灭个体的组合。
  3. 如权利要求2所述的OLED显示器,其中,所述第一水氧淬灭层的材料为碱金属、碱土金属、或者两者的合金。
  4. 如权利要求3所述的OLED显示器,其中,所述第一水氧淬灭层的材料为Li、Na、K、Ru、Cs、Mg、Ca、及Ba中的一种或多种的合金。
  5. 如权利要求2所述的OLED显示器,其中,所述淬灭个体的形状为圆形、矩形、或L字形;
    每一淬灭个体对应于一个、或者多个子像素区域,或者每一个子像素区域对应于多个淬灭个体。
  6. 如权利要求1所述的OLED显示器,其中,第一水氧淬灭层、及第二水氧淬灭层的厚度均为5nm-100nm。
  7. 如权利要求1所述的OLED显示器,其中,所述第二水氧淬灭层位于一层无机钝化层和一层有机缓冲层之间,所述第二水氧淬灭层的上、下两表面分别与该有机缓冲层、及该无机钝化层相接触;所述第二水氧淬灭 层的材料为具有透光性、及吸湿性的物理吸附材料。
  8. 如权利要求1所述的OLED显示器,其中,所述第二水氧淬灭层位于一层无机钝化层和一层有机缓冲层之间,所述第二水氧淬灭层的上、下两表面分别与该无机钝化层、及该有机缓冲层相接触;所述第二水氧淬灭层的材料为具有透光性、及吸湿性的物理吸附材料。
  9. 如权利要求1所述的OLED显示器,其中,所述第二水氧淬灭层为具有透光性、及吸湿性的物理吸附材料均匀分散于有机材料中所形成的膜层,所述第二水氧淬灭层同时作为有机缓冲层。
  10. 如权利要求9所述的OLED显示器,其中,所述第二水氧淬灭层为颗粒状的物理吸附材料均匀分散于有机材料中所形成的膜层。
  11. 一种OLED显示器,包括衬底基板、设于所述衬底基板上的TFT阵列层、设于所述TFT阵列层上的OLED层、及设于所述TFT阵列层及OLED层上且覆盖所述OLED层的薄膜封装层;
    所述薄膜封装层包括无机钝化层、有机缓冲层、及水氧淬灭层;所述薄膜封装层中,无机钝化层和有机缓冲层交替层叠设置,且无机钝化层比有机缓冲层在层数上多一层,所述无机钝化层和有机缓冲层共同构成层叠结构;
    所述水氧淬灭层为第一水氧淬灭层、第二水氧淬灭层、或两者的组合,其中,所述第一水氧淬灭层设于所述OLED层上,位于所述层叠结构与OLED层之间,所述第二水氧淬灭层设于所述层叠结构之中,位于两层无机钝化层之间;
    其中,第一水氧淬灭层、及第二水氧淬灭层的厚度均为5nm-100nm;
    其中,具有位于中央的显示区域、及位于显示区域四周的非显示区域,所述显示区域具有数个阵列排布的子像素区域、及剩余的间隔区域;
    所述第一水氧淬灭层包括环状的外围部、及位于环状的外围部内的中心部,所述外围部对应所述非显示区域设置,所述中心部分布于所述显示区域内的间隔区域,所述中心部为对应所述间隔区域的呈网络结构的整体、或者为分布于间隔区域的数个淬灭个体的组合。
  12. 如权利要求11所述的OLED显示器,其中,所述第一水氧淬灭层的材料为碱金属、碱土金属、或者两者的合金。
  13. 如权利要求12所述的OLED显示器,其中,所述第一水氧淬灭层的材料为Li、Na、K、Ru、Cs、Mg、Ca、及Ba中的一种或多种的合金。
  14. 如权利要求11所述的OLED显示器,其中,所述淬灭个体的形状为圆形、矩形、或L字形;
    每一淬灭个体对应于一个、或者多个子像素区域,或者每一个子像素区域对应于多个淬灭个体。
  15. 如权利要求11所述的OLED显示器,其中,所述第二水氧淬灭层位于一层无机钝化层和一层有机缓冲层之间,所述第二水氧淬灭层的上、下两表面分别与该有机缓冲层、及该无机钝化层相接触;所述第二水氧淬灭层的材料为具有透光性、及吸湿性的物理吸附材料。
  16. 如权利要求11所述的OLED显示器,其中,所述第二水氧淬灭层位于一层无机钝化层和一层有机缓冲层之间,所述第二水氧淬灭层的上、下两表面分别与该无机钝化层、及该有机缓冲层相接触;所述第二水氧淬灭层的材料为具有透光性、及吸湿性的物理吸附材料。
  17. 如权利要求11所述的OLED显示器,其中,所述第二水氧淬灭层为具有透光性、及吸湿性的物理吸附材料均匀分散于有机材料中所形成的膜层,所述第二水氧淬灭层同时作为有机缓冲层。
  18. 如权利要求17所述的OLED显示器,其中,所述第二水氧淬灭层为颗粒状的物理吸附材料均匀分散于有机材料中所形成的膜层。
PCT/CN2016/109570 2016-10-31 2016-12-13 Oled显示器 WO2018076483A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16919636.7A EP3534425B1 (en) 2016-10-31 2016-12-13 Oled display device
JP2019522795A JP7130638B2 (ja) 2016-10-31 2016-12-13 Oledディスプレイ
US15/329,232 US10084155B2 (en) 2016-10-31 2016-12-13 OLED display
KR1020197015720A KR102215330B1 (ko) 2016-10-31 2016-12-13 Oled 디스플레이

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610933085.8A CN106328825B (zh) 2016-10-31 2016-10-31 Oled显示器
CN201610933085.8 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018076483A1 true WO2018076483A1 (zh) 2018-05-03

Family

ID=57819346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109570 WO2018076483A1 (zh) 2016-10-31 2016-12-13 Oled显示器

Country Status (6)

Country Link
US (1) US10084155B2 (zh)
EP (1) EP3534425B1 (zh)
JP (1) JP7130638B2 (zh)
KR (1) KR102215330B1 (zh)
CN (1) CN106328825B (zh)
WO (1) WO2018076483A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630829B (zh) * 2017-03-17 2019-11-08 京东方科技集团股份有限公司 显示面板的制作方法、显示面板及显示装置
CN107104199A (zh) 2017-04-19 2017-08-29 武汉华星光电技术有限公司 显示面板及其制造方法
US11081669B2 (en) * 2017-06-09 2021-08-03 Lg Chem, Ltd. Encapsulation film
TWI768057B (zh) * 2017-06-09 2022-06-21 南韓商Lg化學股份有限公司 封裝膜、包含其之有機電子裝置及製造有機電子裝置之方法
TWI678279B (zh) * 2017-06-09 2019-12-01 南韓商Lg化學股份有限公司 封裝膜
CN109285959B (zh) * 2017-07-21 2020-07-10 上海和辉光电有限公司 一种显示面板、显示装置及显示面板制作方法
CN107464889A (zh) * 2017-09-25 2017-12-12 京东方科技集团股份有限公司 有机发光二极管的封装结构及其制备方法
CN107946480A (zh) * 2017-11-01 2018-04-20 深圳市华星光电半导体显示技术有限公司 Oled封装方法与oled封装结构
US10446790B2 (en) 2017-11-01 2019-10-15 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED encapsulating structure and manufacturing method thereof
KR102508330B1 (ko) * 2017-11-22 2023-03-09 엘지디스플레이 주식회사 유기 발광 장치 및 유기 발광 표시 장치
CN108288640B (zh) * 2018-01-31 2020-04-10 武汉华星光电半导体显示技术有限公司 Oled显示器及其制作方法
US10490777B2 (en) 2018-01-31 2019-11-26 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED display and manufacturing method thereof
CN108448006B (zh) * 2018-03-29 2021-01-22 京东方科技集团股份有限公司 封装结构、电子装置以及封装方法
CN108539040A (zh) * 2018-03-29 2018-09-14 霸州市云谷电子科技有限公司 一种有机发光二极管显示器件及显示装置
CN108321172B (zh) * 2018-04-12 2021-01-22 云谷(固安)科技有限公司 有机发光显示面板、显示装置
CN109103230B (zh) * 2018-08-27 2022-02-08 武汉天马微电子有限公司 一种oled显示面板、oled显示面板的制作方法及显示装置
CN109346622A (zh) * 2018-10-19 2019-02-15 武汉华星光电半导体显示技术有限公司 Oled阵列基板及其制作方法
CN111092099A (zh) * 2018-10-23 2020-05-01 宸鸿光电科技股份有限公司 有机发光二极管显示装置
CN109524565B (zh) * 2018-11-23 2021-01-26 京东方科技集团股份有限公司 一种可拉伸的有机发光显示装置及其制作方法
CN109728193B (zh) * 2018-11-30 2021-04-23 云谷(固安)科技有限公司 显示面板和显示装置
US11818912B2 (en) 2019-01-04 2023-11-14 Apple Inc. Organic light-emitting diode display panels with moisture blocking structures
CN110265570A (zh) * 2019-06-11 2019-09-20 武汉华星光电半导体显示技术有限公司 一种显示面板及其制作方法、显示装置
CN110400889B (zh) * 2019-07-25 2022-01-25 云谷(固安)科技有限公司 显示面板、显示装置及显示面板的制备方法
CN110473981A (zh) * 2019-07-30 2019-11-19 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN112449034A (zh) * 2019-08-30 2021-03-05 北京小米移动软件有限公司 一种移动终端
KR20210063508A (ko) 2019-11-22 2021-06-02 삼성디스플레이 주식회사 표시 장치 제조 방법
CN111092169B (zh) * 2020-01-02 2022-10-18 云谷(固安)科技有限公司 显示面板及显示终端
CN111584741B (zh) * 2020-05-08 2022-12-23 Tcl华星光电技术有限公司 显示基板、显示装置及其封装方法
CN111816072B (zh) * 2020-07-06 2022-03-29 武汉华星光电半导体显示技术有限公司 一种柔性显示屏及显示装置
CN111682057B (zh) * 2020-07-07 2021-09-24 深圳市华星光电半导体显示技术有限公司 显示面板及显示面板的制备方法
CN112599696B (zh) * 2020-12-11 2022-12-06 深圳市华星光电半导体显示技术有限公司 一种显示面板的封装结构及显示装置
CN112820840B (zh) * 2021-01-07 2022-08-23 深圳市华星光电半导体显示技术有限公司 一种显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004063134A1 (de) * 2004-12-22 2006-07-06 Schott Ag Organische elektrolumineszentes Bauelement mit erhöhter Lebensdauer
CN103715221A (zh) * 2012-09-28 2014-04-09 三星显示有限公司 有机发光显示装置及其制造方法
CN103887322A (zh) * 2012-12-20 2014-06-25 三星显示有限公司 有机发光显示装置及其制造方法
CN203910804U (zh) * 2014-04-16 2014-10-29 京东方科技集团股份有限公司 一种有机发光显示装置
CN104465709A (zh) * 2014-12-26 2015-03-25 京东方科技集团股份有限公司 Oled阵列基板及其制作方法、封装结构、显示装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357973A (ja) * 2000-06-15 2001-12-26 Sony Corp 表示装置
JP2002359071A (ja) * 2001-04-20 2002-12-13 Lg Phillips Lcd Co Ltd 有機発光素子
KR100756663B1 (ko) * 2001-04-20 2007-09-07 엘지.필립스 엘시디 주식회사 유기전계발광소자의 패키징장치
US6822264B2 (en) * 2001-11-16 2004-11-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
CN100442573C (zh) * 2002-07-08 2008-12-10 大尼克株式会社 吸湿性成形体
JP2005317476A (ja) 2004-04-30 2005-11-10 Toshiba Matsushita Display Technology Co Ltd 表示装置
KR20060094685A (ko) * 2005-02-25 2006-08-30 삼성전자주식회사 표시 장치 및 이의 제조 방법
CN100464443C (zh) * 2006-04-28 2009-02-25 群康科技(深圳)有限公司 有机电致发光显示装置制造方法
KR20080052928A (ko) * 2006-12-08 2008-06-12 엘지디스플레이 주식회사 유기전계발광표시장치 및 그 제조 방법
KR100873704B1 (ko) * 2007-06-13 2008-12-12 삼성모바일디스플레이주식회사 유기 전계 발광표시장치 및 그의 제조방법
KR100889677B1 (ko) * 2007-06-19 2009-03-19 삼성모바일디스플레이주식회사 유기 전계 발광표시장치 및 그의 제조방법
KR100943185B1 (ko) * 2008-04-24 2010-02-19 삼성모바일디스플레이주식회사 유기 발광 디스플레이 장치
JP2013232279A (ja) * 2010-07-27 2013-11-14 Hitachi Ltd 封止膜およびそれを用いた有機発光ダイオード
KR101754916B1 (ko) * 2010-11-08 2017-07-20 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
KR101182449B1 (ko) * 2010-12-24 2012-09-12 삼성디스플레이 주식회사 봉지시트와 그것을 사용한 평판 표시 장치 및 그 제조방법
KR101903056B1 (ko) * 2012-07-24 2018-10-02 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR101453880B1 (ko) * 2012-11-29 2014-10-22 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
WO2015037237A1 (ja) * 2013-09-13 2015-03-19 パナソニック株式会社 有機発光装置、およびその製造方法
KR20160080994A (ko) * 2014-12-30 2016-07-08 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN104953044B (zh) * 2015-05-06 2017-11-07 深圳市华星光电技术有限公司 柔性oled及其制作方法
CN105098090A (zh) * 2015-06-15 2015-11-25 深圳市华星光电技术有限公司 Oled器件的封装结构及其封装方法
CN106025092B (zh) * 2016-07-19 2018-05-25 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置
CN106058076B (zh) * 2016-08-19 2018-05-18 京东方科技集团股份有限公司 一种显示面板、显示装置及制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004063134A1 (de) * 2004-12-22 2006-07-06 Schott Ag Organische elektrolumineszentes Bauelement mit erhöhter Lebensdauer
CN103715221A (zh) * 2012-09-28 2014-04-09 三星显示有限公司 有机发光显示装置及其制造方法
CN103887322A (zh) * 2012-12-20 2014-06-25 三星显示有限公司 有机发光显示装置及其制造方法
CN203910804U (zh) * 2014-04-16 2014-10-29 京东方科技集团股份有限公司 一种有机发光显示装置
CN104465709A (zh) * 2014-12-26 2015-03-25 京东方科技集团股份有限公司 Oled阵列基板及其制作方法、封装结构、显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534425A4 *

Also Published As

Publication number Publication date
EP3534425A4 (en) 2020-06-17
JP7130638B2 (ja) 2022-09-05
KR20190077054A (ko) 2019-07-02
EP3534425B1 (en) 2023-04-12
US10084155B2 (en) 2018-09-25
CN106328825B (zh) 2019-01-15
US20180248153A1 (en) 2018-08-30
EP3534425A1 (en) 2019-09-04
CN106328825A (zh) 2017-01-11
JP2019533886A (ja) 2019-11-21
KR102215330B1 (ko) 2021-02-15

Similar Documents

Publication Publication Date Title
WO2018076483A1 (zh) Oled显示器
US9786721B1 (en) OLED display panel
WO2019205426A1 (zh) Oled显示面板及其制作方法
US8981643B2 (en) Electroluminescent display panel
TWI641127B (zh) 有機發光顯示設備及其製造方法
EP2866262B1 (en) Organic light emitting display device
WO2018113018A1 (zh) Oled显示面板及其制作方法
CN109546002B (zh) 有机电致发光显示面板及显示装置
WO2019205234A1 (zh) 显示面板及其制作方法
TWI629813B (zh) 有機發光顯示設備及其製造方法
WO2019218629A1 (zh) 显示面板、显示终端及显示母板
WO2019201132A1 (zh) 封装结构、显示装置
WO2019223504A1 (zh) 显示基板及其制作方法、显示器件及其制作方法
WO2017008486A1 (zh) 封装方法、显示面板及显示装置
KR101410102B1 (ko) 유기발광 표시장치
KR102453922B1 (ko) 유기발광 디스플레이 장치
WO2020237827A1 (zh) 有机发光二极管显示面板
CN114497421A (zh) 显示面板、制备方法及显示装置
WO2020006810A1 (zh) 一种oled显示面板及其封装方法
KR102669515B1 (ko) 디스플레이 장치
KR20140102996A (ko) 유기 발광 디스플레이 장치 및 이의 제조 방법
KR102576998B1 (ko) 유기 발광 디스플레이 장치 및 이의 제조 방법
CN213425016U (zh) 一种封装结构
US9887380B2 (en) Display apparatus including bonding member having a core-shell structure and method of manufacturing the same
CN210668424U (zh) Oled显示屏和电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15329232

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522795

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016919636

Country of ref document: EP

Effective date: 20190531

Ref document number: 20197015720

Country of ref document: KR

Kind code of ref document: A