WO2018074353A1 - ポリアリーレンスルフィド樹脂粉粒体混合物および三次元造形物の製造方法 - Google Patents

ポリアリーレンスルフィド樹脂粉粒体混合物および三次元造形物の製造方法 Download PDF

Info

Publication number
WO2018074353A1
WO2018074353A1 PCT/JP2017/037157 JP2017037157W WO2018074353A1 WO 2018074353 A1 WO2018074353 A1 WO 2018074353A1 JP 2017037157 W JP2017037157 W JP 2017037157W WO 2018074353 A1 WO2018074353 A1 WO 2018074353A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
polyarylene sulfide
mixture
sulfide resin
particle size
Prior art date
Application number
PCT/JP2017/037157
Other languages
English (en)
French (fr)
Inventor
渡邊圭
竹田多完
御山寿
西田幹也
柴田光
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017563149A priority Critical patent/JP6773051B2/ja
Priority to EP17861706.4A priority patent/EP3530701A4/en
Priority to US16/343,668 priority patent/US20200055234A1/en
Priority to CN201780053709.XA priority patent/CN109689788B/zh
Publication of WO2018074353A1 publication Critical patent/WO2018074353A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/14PVF, i.e. polyvinyl fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2081/00Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
    • B29K2081/04Polysulfides, e.g. PPS, i.e. polyphenylene sulfide or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a polyarylene sulfide resin particle mixture suitable as a material powder for producing a three-dimensional structure by a powder sintering method 3D printer, and a method for producing a three-dimensional structure using the mixture.
  • a technique called rapid prototyping (RP) is known as a technique for modeling a three-dimensional solid object.
  • This technology calculates the cross-sectional shape sliced in the stacking direction based on data (STL (Standard Triangulated Language) format data) that describes the surface of one 3D shape as a collection of triangles, and forms each layer according to the shape.
  • STL Standard Triangulated Language
  • This is a technology for modeling solid objects.
  • a melt deposition method FDM: Fused Deposition Molding
  • SL Stereo Lithography
  • SLS Selective Laser Sintering
  • An ink-jet binder method is known as a method for modeling a three-dimensional object.
  • the powder sintering method is a thin layer forming process in which the powder is developed into a thin layer, and the formed thin layer is irradiated with laser light in a shape corresponding to the cross-sectional shape of the object to be shaped, and the powder is combined. It is a method of manufacturing by sequentially repeating the cross-sectional shape forming step to be performed, and has an advantage that a support member is unnecessary, which is suitable for precision modeling as compared with other modeling methods.
  • a method of manufacturing an artificial bone model using a powder obtained by mixing 30 to 90% by weight of a synthetic resin powder and 10 to 70% by weight of an inorganic filler is disclosed (see Patent Document 1).
  • Such a technique is promising as a method for producing a complicated shape that is difficult to produce by conventional molding methods represented by injection molding and extrusion molding.
  • JP 2004-184606 A Japanese Unexamined Patent Publication No. 7-62240 Japanese Patent Laid-Open No. 2005-14214
  • thermoplastic resins having a relatively low melting point, such as polyamide 11 and polyamide 12, and three-dimensional structures produced by powder sintering method 3D printers.
  • PAS polyarylene sulfide
  • PPS polyphenylene sulfide
  • Patent Document 2 describes a method for producing a PAS resin granule having a high melt viscosity, but is not suitable for a powder sintering method 3D printer because of its wide particle size distribution and high uniformity.
  • Patent Document 3 PPS resin granules having a narrow particle size distribution are obtained by dissolving PPS in a high-temperature solvent, cooling and precipitating, but the strength is high because the melt viscosity of the PAS resin used is low. A three-dimensional structure cannot be obtained.
  • An object of the present invention is to obtain a polyarylene sulfide resin particle mixture for a powder sintering method 3D printer capable of obtaining a three-dimensional structure that has both heat resistance and high toughness.
  • the present invention has resulted in the following invention as a result of intensive studies to solve such problems.
  • the present invention is as follows. (1) A powder mixture containing 5 to 25 parts by weight of a fluororesin powder with respect to 100 parts by weight of a polyarylene sulfide resin powder, and the average particle size of the powder mixture is more than 1 ⁇ m and not more than 100 ⁇ m, A polyarylene sulfide resin particle mixture characterized by an angle of repose of 43 degrees or less and a uniformity of 4 or less. (2)
  • the fluororesin constituting the fluororesin granular material is polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), perfluoroalkoxy fluorine.
  • the polyarylene sulfide resin powder mixture according to (1) wherein the mixture is at least one.
  • the polyarylene sulfide resin granular material contains 0.1 to 5 parts by weight of inorganic fine particles with respect to 100 parts by weight of the polyarylene sulfide resin granular material.
  • a method for producing a three-dimensional structure comprising supplying the polyarylene sulfide resin powder mixture according to any one of (1) to (6) to a powder sintering method 3D printer.
  • a polyarylene sulfide resin granular material mixture that is a material for producing a three-dimensional structure that has both heat resistance and high toughness.
  • PAS resin The PAS in the present invention is a homopolymer or copolymer having a repeating unit of the formula, — (Ar—S) —, as the main structural unit, and preferably containing 80 mol% or more of the repeating unit.
  • Ar is a group containing an aromatic ring in which a bond is present in the aromatic ring, and examples thereof include divalent repeating units represented by the following formulas (A) to (L), among which the formula ( The repeating unit represented by A) is particularly preferred.
  • R1 and R2 are substituents selected from hydrogen, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms and a halogen group, and R1 and R2 are the same or different. May be good.
  • the PAS in the present invention may be any of a random copolymer, a block copolymer and a mixture thereof containing the above repeating unit.
  • PASs include polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfide ketone, random copolymers thereof, block copolymers, and mixtures thereof.
  • Particularly preferred PASs include polyphenylene sulfide, polyphenylene sulfide sulfone and polyphenylene sulfide ketone containing 80 mol% or more, particularly 90 mol% or more of p-phenylene sulfide units as the main structural unit of the polymer.
  • the PAS used in the present invention can be obtained by various methods, for example, a method for obtaining a polymer having a relatively small molecular weight described in JP-B-45-3368, or JP-B-52-12240 and JP-A-61-7332. Can be produced by a method for obtaining a polymer having a relatively large molecular weight as described in Japanese Patent Publication No. JP-A.
  • the obtained PPS resin is subjected to crosslinking / polymerization by heating in air, heat treatment under an inert gas atmosphere such as nitrogen or reduced pressure, washing with an organic solvent, hot water, an acid aqueous solution, etc., acid anhydride It can also be used after various treatments such as activation with functional group-containing compounds such as products, amines, isocyanates and functional group disulfide compounds.
  • the PAS resin particles used in the present invention are not particularly limited, and the polymer obtained by the above-described method can be used as PAS resin particles, or the PAS resin is molded into pellets, fibers, or films. PAS resin particles can also be obtained.
  • the PAS resin particles indicate a PAS resin having a particle size range suitable for the present invention and a PAS resin having a particle size larger than the particle size range suitable for the present invention.
  • pulverization process mentioned later can be performed according to the form of the PAS resin particle to be used.
  • the method of spray drying after dissolving the raw materials in the solvent the poor solvent precipitation method in which an emulsion is formed in the solvent and then contacting with the poor solvent, and the liquid for removing the organic solvent by drying after forming the emulsion in the solvent
  • examples thereof include an intermediate drying method and a forced melt kneading method in which a sea-island structure is formed by mechanically kneading a resin component desired to be granulated and a resin component different from the resin component, and then removing the sea component with a solvent.
  • the melt viscosity of the PAS used in the present invention is preferably 150 Pa ⁇ s or more and 500 Pa ⁇ s or less.
  • the melt viscosity is less than 150 Pa ⁇ s, the strength of the produced three-dimensional structure is lowered, and when the melt viscosity is higher than 500 Pa ⁇ s, when the PAS resin is melted by irradiation with laser light, the melt resin is below Since it does not penetrate into the layers, the adhesion between the layers is weakened and the strength in the height direction is significantly reduced.
  • melt viscosity 150 Pa.s, More preferably, it is 160 Pa.s, More preferably, it is 170 Pa.s, Most preferably, it is 180 Pa.s.
  • the upper limit with preferable melt viscosity is 500 Pa.s, More preferably, it is 450 Pa.s, More preferably, it is 400 Pa.s, Most preferably, it is 350 Pa.s.
  • a method for adjusting the melt viscosity of PAS to a desired range a method for adjusting the ratio of a sulfidizing agent and a dihalogenated aromatic compound during polymerization, a polymerization aid in addition to the sulfidizing agent and the dihalogenated aromatic compound, and Examples thereof include a method of adding a polyhalogenated aromatic compound and a method of oxidizing PAS by heating PAS in an oxygen atmosphere.
  • the recrystallization temperature of the PAS used in the present invention is preferably 150 ° C. or higher and 210 ° C. or lower.
  • the recrystallization temperature of PAS is less than 150 ° C., solidification after laser light irradiation is remarkably slow, and a uniform powder surface cannot be formed when a powder layer is laminated on the top of the molten resin.
  • the PAS recrystallization temperature is 210 ° C. or higher, the PAS resin melted by the laser light irradiation is crystallized to cause shrinkage and warpage.
  • the recrystallization temperature was maintained at 340 ° C. for 5 minutes after raising the temperature of the PAS resin particles from 50 ° C. to 340 ° C. at 20 ° C./min using a differential scanning calorimeter.
  • a preferable lower limit of the recrystallization temperature is 150 ° C., more preferably 153 ° C., further preferably 155 ° C., and particularly preferably 160 ° C.
  • the upper limit with preferable recrystallization temperature is 210 degreeC, More preferably, it is 205 degreeC, More preferably, it is 200 degreeC, Especially preferably, it is 195 degreeC.
  • Organic acid metal salts or inorganic acid metal salts include calcium acetate, magnesium acetate, sodium acetate, potassium acetate, calcium propionate, magnesium propionate, sodium propionate, potassium propionate, calcium hydrochloride, magnesium hydrochloride, sodium hydrochloride, hydrochloric acid Although potassium etc. are mentioned, it is not limited to these.
  • the amount of the organic acid metal salt or inorganic acid metal salt added is preferably 0.01 to 5% by weight based on PAS.
  • the ratio of PAS and aqueous solution is usually preferably selected as a bath ratio of 10 to 500 g of PAS per 1 liter of aqueous solution.
  • PAS resin powder In the present invention, a PAS resin particle is used such that the average particle size of the PAS resin particle mixture exceeds 1 ⁇ m and is 100 ⁇ m or less.
  • the average particle size of the PAS resin particles is preferably more than 1 ⁇ m and not more than 100 ⁇ m.
  • the lower limit of the average particle size of the PAS resin particles is preferably 3 ⁇ m, more preferably 5 ⁇ m, still more preferably 8 ⁇ m, particularly preferably 10 ⁇ m, particularly preferably 13 ⁇ m, and most preferably 15 ⁇ m. is there.
  • the upper limit of the average particle diameter is preferably 95 ⁇ m, more preferably 90 ⁇ m, still more preferably 85 ⁇ m, particularly preferably 80 ⁇ m, particularly preferably 75 ⁇ m, and most preferably 70 ⁇ m. If the average particle size of the PAS resin particles exceeds 100 ⁇ m, a uniform powder surface cannot be formed during powder lamination in the powder sintering method 3D printer. In addition, even when the average particle size of the PAS resin particles is less than 1 ⁇ m, the particles are aggregated, and similarly, a uniform powder surface cannot be formed.
  • the particle size distribution of the PAS resin particles is uniform.
  • the uniformity of the PAS resin particles is preferably 4.0 or less, more preferably 3.5 or less, still more preferably 3.0 or less, and particularly preferably 2.5 or less. Preferably it is 2.0 or less.
  • the lower limit of the degree of uniformity is theoretically 1, but practically it is preferably 1.1 or more, more preferably 1.2 or more, still more preferably 1.3 or more, and particularly preferably 1 .4 or more, and particularly preferably 1.5 or more.
  • the average particle size of the PAS resin powder particles in the present invention is 50% of the cumulative frequency from the small particle size side of the particle size distribution measured with a laser diffraction particle size distribution meter based on Fraunhofer's scattering / diffraction theory. Is the particle size (d50).
  • the uniformity of the PAS resin particles in the present invention is the cumulative particle size (d60) from the small particle size side with the cumulative frequency from the small particle size side of the particle size distribution measured by the above method being 60%. It is a value divided by the particle size (d10) at which the frequency is 10%.
  • a PAS resin particle having a large average particle diameter or a PAS resin particle having a large uniformity is used as a raw material, pulverized, a method of spray drying after dissolving the raw material in a solvent, and an emulsion in the solvent.
  • the pulverization treatment is preferably used from the viewpoint of economy, but the pulverization method is not particularly limited, and examples thereof include jet mill, bead mill, hammer mill, ball mill, sand mill, turbo mill, and freeze pulverization.
  • dry pulverization such as turbo mill, jet mill, and freeze pulverization is preferable, and freeze pulverization is more preferable.
  • fluororesin powder particles are added in order to further improve the toughness of the three-dimensional structure obtained using the polyarylene sulfide resin particle mixture.
  • the toughness of the three-dimensional structure obtained by using the PAS resin particle mixture is agglomerated and deteriorated due to the interaction with nearby particles when the particle size of the fluororesin particle is small, but from the PAS resin particle.
  • by adding a fluororesin granular material having a small particle diameter it is possible to uniformly disperse and improve the toughness of the three-dimensional structure obtained using the PAS resin granular material mixture.
  • the fluororesin constituting the fluororesin powder to be added is preferably polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), or perfluoro.
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl fluoride
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl fluoride
  • FEP alkoxy fluororesin
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • ECTFE ethylene / chlorotrifluoroethylene copolymer
  • the fluororesin powder particles added to the PAS resin particle mixture are preferably those having an average particle size of 100 nm to 1 ⁇ m.
  • an average particle diameter is the value measured by the method similar to the average particle diameter of said PAS resin granular material.
  • the upper limit of the average particle size of the fluororesin powder is preferably 1 ⁇ m, more preferably 900 nm, more preferably 800 nm, particularly preferably 700 nm, and particularly preferably 600 nm.
  • the lower limit is preferably 100 nm, more preferably 200 nm, more preferably 300 nm, and particularly preferably 400 nm. If the average particle diameter of the fluororesin is 1 ⁇ m or less, it can be uniformly dispersed in the PAS resin particles. Moreover, if the average particle diameter of a fluororesin granular material is 100 nm or more, it can disperse
  • the particle size distribution of the fluororesin powder is uniform.
  • the degree of uniformity of the fluororesin powder particles is preferably 3.0 or less, more preferably 2.5 or less, still more preferably 2.0 or less, and particularly preferably 1.8 or less.
  • the lower limit of the degree of uniformity is theoretically 1, but practically it is preferably 1.1 or more, more preferably 1.2 or more, still more preferably 1.3 or more, and particularly preferably 1 .4 or more, and particularly preferably 1.5 or more. If the uniformity of the fluororesin granular material is 3 or less, it can be uniformly dispersed in the PAS resin granular material.
  • the blending amount of the fluororesin granules is 5 to 25 parts by weight with respect to 100 parts by weight of the PAS resin granules.
  • the upper limit of the amount is preferably 25 parts by weight, more preferably 20 parts by weight, more preferably 15 parts by weight, particularly preferably 12 parts by weight, and particularly preferably 10 parts by weight.
  • the lower limit of the amount is preferably 5 parts by weight, more preferably 6 parts by weight, and particularly preferably 7 parts by weight. If the addition amount of the fluororesin granules is 25 parts by weight or less, it can be uniformly dispersed in the PAS resin granules. Moreover, if the addition amount of a fluororesin granular material is 5 weight part or more, the sufficient effect which improves the toughness of the three-dimensional structure obtained using a PAS resin granular material mixture will be acquired.
  • inorganic fine particles can be added in order to improve the fluidity of the polyarylene sulfide resin powder mixture.
  • the fluidity of the PAS resin particle mixture deteriorates due to the interaction with nearby particles when the particle mixture particle size is small, but the addition of inorganic fine particles with a particle size smaller than that of the PAS resin particle mixture Can increase the interparticle distance, improve the fluidity of the powder mixture, and can be suitably used to obtain a three-dimensional structure.
  • the inorganic fine particles added to the PAS resin particle mixture preferably have an average particle size of 20 nm to 500 nm.
  • an average particle diameter is the value measured by the method similar to the average particle diameter of said PAS resin granular material.
  • the upper limit of the average particle size of the inorganic fine particles is preferably 500 nm, more preferably 400 nm, more preferably 300 nm, particularly preferably 250 nm, and particularly preferably 200 nm.
  • the lower limit is preferably 20 nm, more preferably 30 nm, more preferably 40 nm, and particularly preferably 50 nm. If the average particle diameter of the inorganic fine particles is 500 nm or less, it can be uniformly dispersed in the PAS resin powder. Moreover, if the average particle diameter of the inorganic fine particles is 20 nm or more, a sufficient effect of improving the fluidity of the PAS resin powder mixture can be obtained.
  • calcium carbonate powder such as light calcium carbonate, heavy calcium carbonate, finely divided calcium carbonate, special calcium-based filler; Sintered fine powder, montmorillonite, bentonite, etc., clay such as silane modified clay (aluminum silicate powder); talc; fused silica, crystalline silica, amorphous silica and other silica (silicon dioxide) powder; diatomaceous earth, Silica-containing compounds such as silica sand; natural minerals such as pumice powder, pumice balloon, slate powder, and mica powder; alumina-containing compounds such as alumina (aluminum oxide), alumina colloid (alumina sol), alumina white, and aluminum sulfate Barium sulfate, lithopone, calcium sulfate, two Minerals such as molybdenum fluoride, graphite (graphite); glass fillers such as glass fiber
  • the shape of the inorganic fine particles in the present invention includes a spherical shape, a porous shape, a hollow shape, an indeterminate shape, and the like, and is not particularly defined, but is preferably a spherical shape because it exhibits good fluidity.
  • the spherical shape includes not only a true sphere but also a distorted sphere.
  • the shape of the inorganic fine particles is evaluated by the circularity when the particles are projected two-dimensionally.
  • the circularity is (peripheral length of a circle equal to the area of the projected particle image) / (peripheral length of the projected particle).
  • the average circularity of the inorganic fine particles is preferably 0.7 or more and 1 or less, more preferably 0.8 or more and 1 or less, and still more preferably 0.9 or more and 1 or less.
  • Silica powder is preferable as the inorganic fine particles, but the silica powder is obtained by explosively burning combustion method silica (that is, fumed silica) obtained by burning a silane compound or metal silicon powder according to the production method.
  • Deflagration silica wet silica obtained by neutralization reaction between sodium silicate and mineral acid (of which, silica gel synthesized and aggregated under alkaline conditions is precipitated silica, silica gel synthesized and aggregated under acidic conditions is gel silica ), Colloidal silica (silica sol) obtained by polymerizing acidic silicic acid obtained by sodium removal from sodium silicate with an ion exchange resin, and sol-gel silica obtained by hydrolysis of a silane compound.
  • sol-gel silica is preferred.
  • silica is preferable among the inorganic fine particles, more preferably sol-gel silica and / or spherical silica, and most preferably sol-gel spherical silica.
  • the surface is hydrophobized with a silane compound or a silazane compound.
  • a silane compound or a silazane compound By hydrophobizing the surface, aggregation of inorganic fine particles is suppressed, and dispersibility of the inorganic fine particles in the PAS resin powder is improved.
  • silane compound examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, Non-substituted or halogen-substituted trialkoxysilane such as butyltrimethoxysilane, butyltriethoxysilane, hexyltrimethoxysilane, trifluoropropyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, preferably methyltrimethoxysilane, Methyltriethoxysilane, ethyltrimethoxysilane and ethyltriethoxysilane, more
  • silazane compound examples include hexamethyldisilazane and hexaethyldisilazane, preferably hexamethyldisilazane.
  • monofunctional silane compounds include monosilanol compounds such as trimethylsilanol and triethylsilanol; monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane; monoalkoxysilanes such as trimethylmethoxysilane and trimethylethoxysilane; trimethylsilyldimethylamine and trimethylsilyldiethylamine And monoacyloxysilanes such as trimethylacetoxysilane, preferably trimethylsilanol, trimethylmethoxysilane or trimethylsilyldiethylamine, particularly preferably trimethylsilanol or trimethylmethoxysilane.
  • These inorganic fine particles can be used alone or in combination of two or more.
  • the blending amount of the inorganic fine particles is preferably 0.1 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the PAS resin particles.
  • the upper limit of the amount is preferably 5 parts by weight, more preferably 4 parts by weight, and still more preferably 3 parts by weight.
  • 0.2 weight part is preferable, as for the minimum of a compounding quantity, 0.3 weight part is more preferable, and 0.4 weight part is further more preferable.
  • PAS resin powder mixture In the present invention, as described above, a PAS resin particle mixture is obtained by mixing the PAS resin particles and fluororesin particles, preferably inorganic fine particles. The resulting PAS resin powder mixture has the following characteristics.
  • the average particle size of the PAS resin particle mixture is more than 1 ⁇ m and not more than 100 ⁇ m.
  • the preferable lower limit of the average particle diameter of the PAS resin particle mixture is 3 ⁇ m, more preferably 5 ⁇ m, still more preferably 8 ⁇ m, particularly preferably 10 ⁇ m, particularly preferably 13 ⁇ m, most preferably 15 ⁇ m. It is.
  • the upper limit of the average particle diameter is preferably 95 ⁇ m, more preferably 90 ⁇ m, still more preferably 85 ⁇ m, particularly preferably 80 ⁇ m, particularly preferably 75 ⁇ m, and most preferably 70 ⁇ m. If the average particle size of the PAS resin particle mixture exceeds 100 ⁇ m, a uniform powder surface cannot be formed during powder lamination in the powder sintering method 3D printer. In addition, when the average particle size of the PAS resin powder mixture is less than 1 ⁇ m, the powder mixture is agglomerated and a uniform powder surface cannot be formed.
  • the particle size distribution of the PAS resin particle mixture is uniform.
  • the uniformity of the PAS resin granules is 4 or less. Preferably it is 4.0 or less, More preferably, it is 3.5 or less, More preferably, it is 3.0 or less, Especially preferably, it is 2.5 or less, Most preferably, it is 2.2 or less.
  • the lower limit of the degree of uniformity is theoretically 1, but practically it is preferably 1.1 or more, more preferably 1.2 or more, still more preferably 1.3 or more, and particularly preferably 1 .4 or more, and particularly preferably 1.5 or more.
  • the PAS resin powder mixture has a characteristic of excellent powder flowability.
  • the angle of repose is 43 degrees or less. According to a preferred embodiment of the invention, it is 42 degrees or less, and according to a more preferred embodiment, it is 40 degrees or less.
  • the lower limit of the angle of repose is usually 20 degrees or more.
  • the angle of repose in the present invention is a value measured based on the measurement method of Carr's fluidity index.
  • Such a mixture of powders and particles is excellent in fluidity and difficult to be consolidated by powder pressure, so that troubles such as clogging during supply / discharge to a silo and clogging during pneumatic transportation are unlikely to occur.
  • a mixing method for obtaining a powder and particle mixture a mixing method by shaking, a mixing method involving grinding such as a ball mill or a coffee mill, a mixing method using a stirring blade such as a Nauter mixer or a Henschel mixer, a V-type mixer Mixing method that rotates together with containers such as, method of drying after liquid phase mixing in solvent, mixing method of stirring by airflow using flash blender, etc., powder and / or slurry using atomizer
  • a spraying mixing method can be employed.
  • the PAS resin granular material mixture of the present invention is useful for producing a three-dimensional structure by a powder sintering method.
  • Manufacturing of a modeled object by the powder sintering additive manufacturing method includes a thin layer forming step of developing a PAS resin powder mixture into a thin layer, and a laser beam in a shape corresponding to the cross-sectional shape of the modeling target object in this thin layer. It can be performed by a method of manufacturing a powder sintered laminate model by sequentially repeating the cross-section forming step of irradiating and bonding the PAS resin particle mixture.
  • the three-dimensional structure obtained by the powder sintering method using the PAS resin particle mixture of the present invention uses a PAS resin particle, so it has high heat resistance, chemical resistance, dimensional stability, appropriate Since the material powder having a high melt viscosity is used, it has excellent mechanical strength. Furthermore, since the PAS resin granular material mixture contains fluororesin granular material, the resulting three-dimensional structure is excellent in toughness. Further, since the PAS resin powder mixture preferably contains inorganic fine particles, it has excellent fluidity and can form a uniform powder surface. Furthermore, since the PAS resin particle mixture of the present invention has a small average particle size and a small degree of uniformity, when producing a three-dimensional structure by the powder sintering method, can do.
  • the average particle size of the PAS resin powder is measured using a Microtrac BEL spray particle size distribution measuring device Aerotrac 3500A, irradiated with a measurement sample dispersed with laser light, detected by diffracted scattered light, analyzed based on Fraunhofer diffraction theory, and volume-based Calculate the particle size distribution.
  • Aerotrac 3500A Aerotrac 3500A
  • a cumulative curve was obtained by setting the total volume of the fine particles obtained by analysis as 100%, and the particle size (median diameter: d50) at which the cumulative curve reached 50% was defined as the average particle size of the PAS resin particles.
  • Average particle size of inorganic fine particles To measure the average particle size of inorganic fine particles, randomly select 100 particles from an image magnified 100,000 times using an electron microscope, and measure the particle size using the maximum length as the particle size. The number average value was defined as the average particle size.
  • the uniformity of the PAS resin particles was defined as the value of d60 / d10 of the particle size distribution measured using a Microtrac BEL spray particle size distribution measuring device Aerotrac 3500A type as the uniformity of the PAS resin particles. The wider the particle size distribution, the greater the uniformity.
  • the angle of repose of the powder and granule mixture was measured using a multi-tester MT-1 manufactured by Seishin Company.
  • melt viscosity For the melt viscosity of the PAS resin constituting the PAS resin granular material, Toyo Seiki Capillograph 1C was used, and a die having a hole length of 10.00 mm and a hole diameter of 0.50 mm was used. About 20 g of a sample was put into a cylinder set at 300 ° C., held for 5 minutes, and then measured at a shear rate of 1216 sec ⁇ 1 .
  • the recrystallization temperature of the PAS resin constituting the PAS resin granules was measured using a Perkin Elmer DSC7 and about 10 mg of the granules in a nitrogen atmosphere under the following measurement conditions. -Hold at 50 ° C x 1 minute-Temperature rise from 50 ° C to 340 ° C, temperature rise rate 20 ° C / min -Hold at 340 ° C for 5 minutes-Temperature drop from 340 ° C to 50 ° C, temperature drop rate 20 ° C / min The peak of the exothermic peak accompanying crystallization at the time of temperature fall was made into recrystallization temperature.
  • the bending elastic modulus of the three-dimensional structure produced using the PAS resin particle mixture was prepared by using a powder sintering method 3D printer to produce an ISO1A type test piece. It was measured with a testing machine RTG-1250). The measurement method was ISO-178, and the average value measured four times was defined as the flexural modulus.
  • the heat resistance of the three-dimensional structure produced using the PAS resin particle mixture is prepared by using a powder sintering method 3D printer to produce an ISO1A type test piece, and the cut piece of the test piece is TGA (manufactured by PerkinElmer). Using STA6000, the weight reduction rate was measured under the following measurement conditions, and the temperature at which the weight reduction rate was 5% by weight was measured.
  • the contents were taken out, diluted with 0.5 liters of NMP, the solvent and solids were filtered off with a sieve (80 mesh), and the resulting particles were washed several times with 1 liter of warm water and then 0% against PAS. Washing was performed by adding 800 g of 45% by weight calcium acetate monohydrate, washing with 1 liter of warm water, and filtration to obtain a cake. The obtained cake was dried at 120 ° C. under a nitrogen stream to obtain PAS-1.
  • the obtained PAS-1 had an average particle size of 1600 ⁇ m, a uniformity of 4.1, a melt viscosity of 210 Pa ⁇ s, and a recrystallization temperature of 168 ° C.
  • PAS-1 was pulverized with a jet mill (100AFG manufactured by Hosokawa Micron Corporation) for 120 minutes to obtain PAS resin particles having an average particle diameter of 50 ⁇ m and a uniformity of 1.6. 7 parts by weight of fluororesin (PTFE) granular material having an average particle size of 500 nm and a uniformity of 1.5 are added to this granular material, and further inorganic fine particles (sol-gel method spherical silica having an average particle size of 170 nm, Shin-Etsu Chemical Co., Ltd.) 1 part by weight of X-24-9600A) was added to obtain a PAS resin particle mixture having an average particle size of 50 ⁇ m, a uniformity of 1.9 and an angle of repose of 39 °.
  • PTFE fluororesin
  • a three-dimensional structure was produced by a powder sintering method 3D printer (Rafael 300 manufactured by Aspect Co., Ltd.). A good three-dimensional structure was obtained without causing the powder surface roughness during powder lamination.
  • the bending elastic modulus of the three-dimensional structure was 530 MPa, and the temperature at which the weight reduction rate was 5% by weight was 510 ° C.
  • Example 2 A PAS resin particle mixture was obtained in the same manner as in Example 1 except that the addition amount of the fluororesin (PTFE) particle was 5 parts by weight.
  • the average particle size of the PAS resin particle mixture was 50 ⁇ m, the uniformity was 1.7, and the angle of repose was 38 degrees.
  • a three-dimensional structure was produced by a powder sintering method 3D printer (Rafael 300 manufactured by Aspect Co., Ltd.). A good three-dimensional structure was obtained without causing the powder surface roughness during powder lamination.
  • the bending elastic modulus of the three-dimensional structure was 1110 MPa, and the temperature at which the weight reduction rate was 5% by weight was 490 ° C.
  • Example 3 A PAS resin particle mixture was obtained in the same manner as in Example 1 except that the addition amount of the fluororesin (PTFE) particles was 9 parts by weight.
  • the average particle size of the PAS resin powder mixture was 46 ⁇ m, the uniformity was 3.1, and the angle of repose was 40 degrees.
  • a three-dimensional structure was produced by a powder sintering method 3D printer (Rafael 300 manufactured by Aspect Co., Ltd.). A good three-dimensional structure was obtained without causing the powder surface roughness during powder lamination.
  • the bending elastic modulus of the three-dimensional structure was 400 MPa, and the temperature at which the weight reduction rate was 5% by weight was 530 ° C.
  • Example 4 A PAS resin particle mixture was obtained in the same manner as in Example 1 except that the fluororesin (PTFE) particles had an average particle size of 12 ⁇ m and a uniformity of 1.7.
  • the average particle diameter of the PAS resin powder mixture was 48 ⁇ m, the uniformity was 1.7, and the angle of repose was 37 degrees.
  • a three-dimensional structure was produced by a powder sintering method 3D printer (Rafael 300 manufactured by Aspect Co., Ltd.). A good three-dimensional structure was obtained without causing the powder surface roughness during powder lamination.
  • the bending elastic modulus of the three-dimensional structure was 980 MPa, and the temperature at which the weight reduction rate was 5% by weight was 510 ° C.
  • Example 5 A PAS resin particle mixture was obtained in the same manner as in Example 4 except that the addition amount of the fluororesin (PTFE) particle was 20 parts by weight.
  • the average particle size of the PAS resin powder mixture was 34 ⁇ m, the uniformity was 1.7, and the angle of repose was 38 degrees.
  • a three-dimensional structure was produced by a powder sintering method 3D printer (Rafael 300 manufactured by Aspect Co., Ltd.). A good three-dimensional structure was obtained without causing the powder surface roughness during powder lamination.
  • the bending elastic modulus of the three-dimensional structure was 550 MPa, and the temperature at which the weight reduction rate was 5% by weight was 550 ° C.
  • Example 1 A PAS resin particle mixture having an average particle diameter of 50 ⁇ m, a uniformity of 1.6, and an angle of repose of 34 degrees was obtained in the same manner as in Example 1 except that the fluororesin was added. Using this granular material, a three-dimensional structure was produced by a powder sintering method 3D printer (Rafael 300 manufactured by Aspect Co., Ltd.). A good three-dimensional structure was obtained without causing the powder surface roughness during powder lamination. The bending elastic modulus of the three-dimensional model was 3090 MPa, the model was hard, and the toughness was insufficient. The temperature at which the weight reduction rate of the three-dimensional structure was 5% by weight was 460 ° C.
  • a PAS resin particle mixture was obtained in the same manner as in Example 1 except that the addition amount of the fluororesin (PTFE) particle was 35 parts by weight.
  • the average particle size of the PAS resin powder mixture was 43 ⁇ m, the uniformity was 13, and the angle of repose was 44 degrees.
  • a three-dimensional structure was attempted with a powder sintering method 3D printer (Rafael 300 manufactured by Aspect Co., Ltd.), but the powder surface was roughened during powder lamination, and a three-dimensional structure was obtained. There wasn't.
  • the PAS resin particle mixture of the present invention has a fine particle size and a uniform particle size distribution, it can form a smooth powder surface when used in a powder sintering method 3D printer. it can. Furthermore, since the fluororesin powder particles contained in the PAS resin particle mixture of the present invention have an appropriate average particle diameter and uniformity, the fluororesin is uniformly dispersed and bent when a three-dimensional structure is produced. A three-dimensional structure having a small elastic modulus can be obtained. Therefore, a three-dimensional structure excellent in heat resistance and high toughness can be obtained by a powder sintering method using the PAS resin particle mixture of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

耐熱性および高靭性を両立する三次元造形物を得ることができる3Dプリンター用ポリアリーレンスルフィド樹脂粉粒体混合物を得ることを課題とする。ポリアリーレンスルフィド樹脂粉粒体100重量部に対し、フッ素樹脂粉粒体を5~25重量部含む粉粒体混合物であり、粉粒体混合物の平均粒径が1μmを超え100μm以下、安息角が43度以下、かつ均一度が4以下であることを特徴とするポリアリーレンスルフィド樹脂粉粒体混合物である。

Description

ポリアリーレンスルフィド樹脂粉粒体混合物および三次元造形物の製造方法
 本発明は、粉末焼結法3Dプリンターによって三次元造形物を作製するための材料粉末として好適なポリアリーレンスルフィド樹脂粉粒体混合物、およびそれを用いた三次元造形物の製造方法に関する。
 三次元の立体物を造形する技術として、ラピッド・プロトタイピング(RP:Rapid Prototyping)と呼ばれる技術が知られている。この技術は、ひとつの三次元形状の表面を三角形の集まりとして記述したデータ(STL(Standard Triangulated Language)フォーマットのデータ)により、積層方向について薄く切った断面形状を計算し、その形状に従って各層を形成して立体物を造形する技術である。また、立体物を造形する手法としては、溶融物堆積法(FDM:Fused Deposition Molding)、UV硬化インクジェット法、光造形法(SL:Stereo Lithography)、粉末焼結法(SLS:Selective Laser Sintering)、インクジェットバインダ法などが知られている。特に、粉末焼結法は、粉末を薄層に展開する薄層形成工程と、形成された薄層に、造形対象物の断面形状に対応する形状にレーザー光を照射して、その粉末を結合させる断面形状形成工程とを順次繰り返すことにより製造する方法であり、他の造形方法と比較して精密造形に好適である、サポート部材が不要であるという利点を有する。例えば、合成樹脂粉末30~90重量%と無機充填材10~70重量%とを混合した粉末を用いて人工骨モデルを製造する方法が開示されている(特許文献1参照)。このような技術は、射出成型や押出成型に代表される従来の成型方法では作製が困難な複雑形状を作製する方法として有望である。
特開2004-184606号公報 特開平7-62240号公報 特開2005-14214号公報
 しかしながら、従来の粉末焼結法3Dプリンター用材料粉末は、ポリアミド11、ポリアミド12のような比較的融点の低い熱可塑性樹脂が主流であり、粉末焼結法3Dプリンターで作製された三次元造形物の適用は、模型や試作時の形状確認のように強度や耐熱性を要求されない用途に留まり実装用部材への展開が困難であった。これらの課題を解決するために、ポリフェニレンスルフィド(以下PPSと略すことがある。)に代表されるポリアリーレンスルフィド(以下PASと略すことがある。)など、優れた耐熱性、バリア性、耐薬品性、電気絶縁性、耐湿熱性を有するエンジニアリングプラスチックについて、三次元造形へと適用されている。しかしながら、組み込み試験用部品などの靭性が要求される用途において用いることができず、耐熱性および高靭性を両立する三次元造形物を得ることができる粉末焼結法3Dプリンター用材料粉粒体は開発されていない。
 特許文献2には、溶融粘度の高いPAS樹脂粉粒体の製造方法が記載されているが、粒径分布が広く均一度が高いため粉末焼結法3Dプリンターには適さない。
 特許文献3には、PPSを高温の溶媒に溶解させ、冷却・析出させることにより粒径分布の狭いPPS樹脂粉粒体を得ているが、使用するPAS樹脂の溶融粘度が低いため強度の高い三次元造形物を得ることができない。
 本発明は、耐熱性および高靭性を両立する三次元造形物を得ることができる粉末焼結法3Dプリンター用ポリアリーレンスルフィド樹脂粉粒体混合物を得ることを課題とする。
 本発明は、かかる課題を解決すべく鋭意検討を行った結果、下記発明に至った。
 すなわち、本発明は、以下のとおりである。
(1)ポリアリーレンスルフィド樹脂粉粒体100重量部に対し、フッ素樹脂粉粒体を5~25重量部含む粉粒体混合物であり、粉粒体混合物の平均粒径が1μmを超え100μm以下、安息角が43度以下、かつ均一度が4以下であることを特徴とするポリアリーレンスルフィド樹脂粉粒体混合物。
(2)前記フッ素樹脂粉粒体を構成するフッ素樹脂が、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、およびエチレン・クロロトリフルオロエチレン共重合体(ECTFE)から選ばれる少なくとも1種であることを特徴とする(1)記載のポリアリーレンスルフィド樹脂粉粒体混合物。
(3)前記ポリアリーレンスルフィド樹脂粉粒体の、平均粒径が1μmを超え100μm以下であることを特徴とする(1)または(2)記載のポリアリーレンスルフィド樹脂粉粒体混合物。
(4)前記フッ素樹脂粉粒体の平均粒径が100nm以上1μm以下であることを特徴とする(1)~(3)のいずれか記載のポリアリーレンスルフィド樹脂粉粒体混合物。
(5)さらに、ポリアリーレンスルフィド樹脂粉粒体100重量部に対し、無機微粒子を0.1重量部以上5重量部以下含むことを特徴とする(1)~(4)のいずれか記載のポリアリーレンスルフィド樹脂粉粒体混合物。
(6)前記無機微粒子の平均粒径が、20nm以上500nm以下であることを特徴とする(5)記載のポリアリーレンスルフィド樹脂粉粒体混合物。
(7)(1)~(6)のいずれか記載のポリアリーレンスルフィド樹脂粉粒体混合物を粉末焼結法3Dプリンターに供給することを特徴とする三次元造形物の製造方法。
 本発明によれば、耐熱性、高靭性を両立する、三次元造形物を作製するための材料であるポリアリーレンスルフィド樹脂粉粒体混合物を得ることができる。
 [PAS樹脂]
 本発明におけるPASとは、式、-(Ar-S)-の繰り返し単位を主要構成単位とする、好ましくは当該繰り返し単位を80モル%以上含有するホモポリマーまたはコポリマーである。Arは結合手が芳香環に存在する芳香環を含む基であり、下記の式(A)~式(L)などで表される二価の繰り返し単位などが例示されるが、なかでも式(A)で表される繰り返し単位が特に好ましい。
Figure JPOXMLDOC01-appb-C000001
(ただし、式中のR1,R2は水素、炭素数1から6のアルキル基、炭素数1から6のアルコキシ基およびハロゲン基から選ばれた置換基であり、R1とR2は同一でも異なっていてもよい。)
 また、本発明におけるPASは上記繰り返し単位を含むランダム共重合体、ブロック共重合体及びそれらの混合物のいずれかであってもよい。
 これらの代表的なものとして、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトン、これらのランダム共重合体、ブロック共重合体及びそれらの混合物などが挙げられる。特に好ましいPASとしては、ポリマーの主要構成単位としてp-フェニレンスルフィド単位を80モル%以上、特に90モル%以上含有するポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトンが挙げられる。
 本発明でいうPASは種々の方法、例えば、特公昭45-3368号公報に記載される比較的分子量の小さな重合体を得る方法、あるいは、特公昭52-12240号公報や特開昭61-7332号公報に記載される比較的分子量の大きい重合体を得る方法などによって製造することができる。本発明において、得られたPPS樹脂を、空気中加熱による架橋/高分子量化、窒素などの不活性ガス雰囲気下あるいは減圧下での熱処理、有機溶媒、熱水および酸水溶液などによる洗浄、酸無水物、アミン、イソシアネートおよび官能基ジスルフィド化合物などの官能基含有化合物による活性化など、種々の処理を施した上で使用することも可能である。
 本発明に使用するPAS樹脂粒子は、特に制限されるものではなく、上記手法で得られる重合体をPAS樹脂粒子とすることもできるし、PAS樹脂をペレットや繊維、フィルムに成型したものなどからPAS樹脂粒子を得ることも出来る。ここでPAS樹脂粒子とは、本発明に好適な粒径範囲のPAS樹脂および本発明に好適な粒径範囲よりも大きな粒径のPAS樹脂を示す。また、使用するPAS樹脂粒子の形態に応じて後述する粉砕処理を行うことができる。また、溶媒に原材料を溶解させた後にスプレードライする方法、溶媒中でエマルションを形成した後で貧溶媒に接触させる貧溶媒析出法、溶媒中でエマルションを形成した後で有機溶媒を乾燥除去する液中乾燥法、粒子化したい樹脂成分とそれとは異なる樹脂成分とを機械的に混練することにより海島構造を形成させ、その後に海成分を溶媒で除去する強制溶融混練法も挙げられる。
 本発明に用いるPASの溶融粘度は、150Pa・s以上500Pa・s以下であることが好ましい。溶融粘度が150Pa・s未満であると作製した三次元造形物の強度が低くなり、溶融粘度が500Pa・sより高いとレーザー光を照射してPAS樹脂を溶融させた際、溶融樹脂が下の層に浸透しないため、層間の密着が弱くなり高さ方向の強度が著しく低下する。ここで溶融粘度は、東洋精機製キャピログラフ1Cを用い、孔長10.00mm、孔直径0.50mmのダイスを用いた。300℃に設定したシリンダーにサンプル約20gを投入し、5分保持した後、剪断速度1216sec-1で溶融粘度は測定を行った値である。溶融粘度の好ましい下限は150Pa・sであり、より好ましくは160Pa・sであり、さらに好ましくは170Pa・sであり、特に好ましくは180Pa・sである。溶融粘度の好ましい上限は500Pa・sであり、より好ましくは450Pa・sであり、さらに好ましくは400Pa・sであり、特に好ましくは350Pa・sである。
 PASの溶融粘度を所望の範囲に調整する方法としては、重合時にスルフィド化剤とジハロゲン化芳香族化合物の比率を調整する方法や、スルフィド化剤、ジハロゲン化芳香族化合物に加えて重合助剤及び/またはポリハロゲン化芳香族化合物を添加する方法、PASを酸素雰囲気下で加熱して酸化架橋させる方法などが挙げられる。
 さらに、本発明に用いるPASの再結晶化温度は、150℃以上210℃以下であることが好ましい。PASの再結晶化温度が150℃未満であるとレーザー光照射後の固化が著しく遅くなり、溶融樹脂の上部に粉末層を積層する際に均一な粉面を形成できない。また、PASの再結晶化温度が210℃以上であると、レーザー光照射により溶融したPAS樹脂が結晶化することで収縮・反りが発生する。粉末焼結法においては、溶融樹脂に反りが発生すると、溶融樹脂の上部に粉末層を積層する際に反った溶融樹脂が引き摺られ、所望の形状の三次元造形物を得ることができない。ここで再結晶化温度は、PAS樹脂粉粒体を窒素雰囲気中、示差走査熱量計を用いて、50℃から340℃まで20℃/minで昇温後、340℃で5分間保持し、340℃から50℃まで20℃/minで降温した際の結晶化時の発熱ピークの頂点温度を指す。再結晶化温度の好ましい下限は150℃であり、より好ましくは153℃であり、さらに好ましくは155℃であり、特に好ましくは160℃である。再結晶化温度の好ましい上限は210℃であり、より好ましくは205℃であり、さらに好ましくは200℃であり、特に好ましくは195℃である。
 PASの再結晶化温度を所望の範囲に調整する方法としては、重合後のPAS樹脂に有機酸金属塩または無機酸金属塩を添加して洗浄する方法が挙げられる。かかる洗浄は、温水または熱水洗浄で残留オリゴマーや残留塩を除いた後に行うことが好ましい。有機酸金属塩または無機酸金属塩としては、酢酸カルシウム、酢酸マグネシウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸カルシウム、プロピオン酸マグネシウム、プロピオン酸ナトリウム、プロピオン酸カリウム、塩酸カルシウム、塩酸マグネシウム、塩酸ナトリウム、塩酸カリウムなどが挙げられるが、これらに限定されるものではない。かかる有機酸金属塩または無機酸金属塩の添加量は、PASに対して0.01~5重量%であることが好ましい。PASを洗浄する際は、かかる有機酸金属塩または無機酸金属塩の水溶液を用いるのが好ましく、洗浄温度は50℃以上90℃以下が好ましい。PASと水溶液の割合は、通常、水溶液1リットルに対し、PAS10~500gの浴比が好ましく選択される。
 [PAS樹脂粉粒体]
 本発明では、PAS樹脂粉粒体混合物の平均粒径が1μmを超え100μm以下となるような、PAS樹脂粉粒体を用いる。PAS樹脂粉粒体の平均粒径は、1μmを超え100μm以下であることが好ましい。
 PAS樹脂粉粒体の平均粒径の好ましい下限は3μmであり、より好ましくは5μmであり、さらに好ましくは8μmであり、特に好ましくは10μmであり、著しく好ましくは13μmであり、最も好ましくは15μmである。また、好ましい平均粒径の上限は95μmであり、より好ましくは、90μmであり、さらに好ましくは85μmであり、特に好ましくは80μmであり、著しく好ましくは75μmであり、最も好ましくは70μmである。PAS樹脂粉粒体の平均粒径が100μmを超えると、粉末焼結法3Dプリンターでの粉末積層時に均一な粉面を形成することができない。また、PAS樹脂粉粒体の平均粒径が1μm未満である場合にも、粉粒体の凝集が発生し、同様に均一な粉面を形成することができない。
 また、PAS樹脂粉粒体の粒径分布は均一であることが好ましい。PAS樹脂粉粒体の均一度は、好ましくは4.0以下であり、より好ましくは3.5以下であり、さらに好ましくは3.0以下であり、特に好ましくは2.5以下であり、著しく好ましくは2.0以下である。均一度の下限は、理論的には1であるが、現実的には1.1以上が好ましく、より好ましくは1.2以上であり、さらに好ましくは1.3以上であり、特に好ましくは1.4以上であり、著しく好ましくは1.5以上である。PAS樹脂粉粒体の均一度が4を超える場合は、たとえ平均粒径が適切な範囲であっても、3Dプリンターでの粉末積層時に均一な粉面を形成することができず、本発明の効果を奏することが出来ない。
 本発明におけるPAS樹脂粉粒体の平均粒径とは、フラウンホーファの散乱・回折理論に基づくレーザー回折式粒径分布計にて測定される粒径分布の小粒径側からの累積度数が50%となる粒径(d50)である。 また、本発明におけるPAS樹脂粉粒体の均一度は、上記方法により測定した粒径分布の小粒径側からの累積度数が60%となる粒径(d60)を小粒径側からの累積度数が10%となる粒径(d10)で除した値である。
 [PAS樹脂粉粒体の製造方法]
 本発明においては、平均粒径が大きいPAS樹脂粒子や、均一度が大きい(均一でない)PAS樹脂粒子を原料として、粉砕、溶媒に原材料を溶解させた後にスプレードライする方法、溶媒中でエマルションを形成した後で貧溶媒に接触させる貧溶媒析出法、溶媒中でエマルションを形成した後で有機溶媒を乾燥除去する液中乾燥法、粒子化したい樹脂成分とそれとは異なる樹脂成分とを機械的に混練することにより海島構造を形成させ、その後に海成分を溶媒で除去する強制溶融混練法などの処理を行うことで本発明に適する粉粒体を得ることが出来る。
 経済性の観点から粉砕処理が好適に用いられるが、粉砕処理の方法に特に制限は無く、ジェットミル、ビーズミル、ハンマーミル、ボールミル、サンドミル、ターボミル、冷凍粉砕が挙げられる。好ましくは、ターボミル、ジェットミル、冷凍粉砕などの乾式粉砕であり、さらに好ましくは冷凍粉砕が好ましい。
 [フッ素樹脂]
 本発明において、ポリアリーレンスルフィド樹脂粉粒体混合物を用いて得られる三次元造形物の靭性を更に改善するためにフッ素樹脂粉粒体を添加する。PAS樹脂粉粒体混合物を用いて得られる三次元造形物の靭性は、フッ素樹脂粉粒体の粒径が小さいと近傍の粒子との相互作用により凝集し悪化するが、PAS樹脂粉粒体よりも粒径の小さなフッ素樹脂粉粒体を添加することで、均一に分散し、PAS樹脂粉粒体混合物を用いて得られる三次元造形物の靭性を改善することができる。
 添加するフッ素樹脂粉粒体を構成するフッ素樹脂としては、好ましくは、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、およびエチレン・クロロトリフルオロエチレン共重合体(ECTFE)から選ばれる少なくとも1種である。特に好ましくは耐薬品性が高いPTFEである。
これらのフッ素樹脂は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 [フッ素樹脂粉粒体]
本発明で、PAS樹脂粉粒体混合物に添加するフッ素樹脂粉粒体は、平均粒径が100nm以上1μm以下のものを用いることが好ましい。ここで、平均粒径は、上記のPAS樹脂粉粒体の平均粒径と同様の方法で測定した値である。
 フッ素樹脂粉粒体の平均粒径の上限は、1μmが好ましく、さらに好ましくは900nmであり、より好ましくは800nmであり、特に好ましくは700nmであり、著しく好ましくは600nmである。下限は、100nmが好ましく、さらに好ましくは200nmであり、より好ましくは300nmであり、特に好ましくは400nmである。フッ素樹脂の平均粒径が1μm以下であれば、PAS樹脂粉粒体に対し、均一に分散させることができる。また、フッ素樹脂粉粒体の平均粒径が100nm以上であれば、凝集せず分散させることができる。
 また、フッ素樹脂粉粒体の粒径分布は均一であることが好ましい。フッ素樹脂粉粒体の均一度は、好ましくは3.0以下であり、より好ましくは2.5以下であり、さらに好ましくは2.0以下であり、特に好ましくは1.8以下である。均一度の下限は、理論的には1であるが、現実的には1.1以上が好ましく、より好ましくは1.2以上であり、さらに好ましくは1.3以上であり、特に好ましくは1.4以上であり、著しく好ましくは1.5以上である。フッ素樹脂粉粒体の均一度が3以下であれば、PAS樹脂粉粒体に対し、均一に分散させることができる。
 フッ素樹脂粉粒体の配合量は、PAS樹脂粉粒体100重量部に対し、5重量部以上25重量部以下である。配合量の上限は、25重量部が好ましく、さらに好ましくは20重量部であり、より好ましくは15重量部であり、特に好ましくは12重量部であり、著しく好ましくは10重量部である。また、配合量の下限は、5重量部が好ましく、さらに好ましくは6重量部であり、特に好ましくは7重量である。フッ素樹脂粉粒体の添加量が25重量部以下であれば、PAS樹脂粉粒体に対し、均一に分散させることができる。また、フッ素樹脂粉粒体の添加量が5重量部以上であれば、PAS樹脂粉粒体混合物を用いて得られる三次元造形物の靭性を向上させる十分な効果が得られる。
 [無機微粒子]
 本発明において、ポリアリーレンスルフィド樹脂粉粒体混合物の流動性を改善するために無機微粒子を添加することができる。PAS樹脂粉粒体混合物の流動性は、粉粒体混合物の粒径が小さいと近傍の粒子との相互作用により悪化するが、PAS樹脂粉粒体よりも粒径の小さな無機微粒子を添加することで粒子間距離を広げ、粉粒体混合物の流動性を改善することができ、三次元造形物を得る際に好適に用いることができる。
 本発明で、PAS樹脂粉粒体混合物に添加する無機微粒子は、平均粒径が20nm以上500nm以下のものが好ましく用いられる。ここで、平均粒径は、上記のPAS樹脂粉粒体の平均粒径と同様の方法で測定した値である。
 無機微粒子の平均粒径の上限は、500nmが好ましく、さらに好ましくは400nmであり、より好ましくは300nmであり、特に好ましくは250nmであり、著しく好ましくは200nmである。下限は、20nmが好ましく、さらに好ましくは30nmであり、より好ましくは40nmであり、特に好ましくは50nmである。無機微粒子の平均粒径が500nm以下であれば、PAS樹脂粉粒体に対し、均一に分散させることができる。また、無機微粒子の平均粒径が20nm以上であれば、PAS樹脂粉粒体混合物の流動性を向上させる十分な効果が得られる。
 添加する無機微粒子としては、上記平均粒径のものを使用することができ、好ましくは、軽質炭酸カルシウム、重質炭酸カルシウム、微粉化炭酸カルシウム、特殊カルシウム系充填剤などの炭酸カルシウム粉末;霞石閃長石微粉末、モンモリロナイト、ベントナイト等の焼成クレー、シラン改質クレーなどのクレー(ケイ酸アルミニウム粉末);タルク;溶融シリカ、結晶シリカ、アモルファスシリカなどのシリカ(二酸化ケイ素)粉末;ケイ藻土、ケイ砂などのケイ酸含有化合物;軽石粉、軽石バルーン、スレート粉、雲母粉などの天然鉱物の粉砕品;アルミナ(酸化アルミニウム)、アルミナコロイド(アルミナゾル)、アルミナホワイト、硫酸アルミニウムなどのアルミナ含有化合物;硫酸バリウム、リトポン、硫酸カルシウム、二硫化モリブデン、グラファイト(黒鉛)などの鉱物;ガラスファイバー、ガラスビーズ、ガラスフレーク、発泡ガラスビーズなどのガラス系フィラー;フライアッシュ球、火山ガラス中空体、合成無機中空体、単結晶チタン酸カリ、カーボン繊維、カーボンナノチューブ、炭素中空球、炭素64フラーレン、無煙炭粉末、人造氷晶石(クリオライト)、酸化チタン、酸化マグネシウム、塩基性炭酸マグネシウム、ドロマイト、チタン酸カリウム、亜硫酸カルシウム、マイカ、アスベスト、ケイ酸カルシウム、アルミニウム粉、硫化モリブデン、ボロン繊維、炭化ケイ素繊維などが挙げられるが、さらに好ましくは炭酸カルシウム粉末、シリカ粉末、アルミナ含有化合物、ガラス系フィラーが挙げられる。特に好ましくはシリカ粉末が挙げられるが、中でも人体への有害性の小さいアモルファスシリカ粉末が工業上極めて好ましい。
 本発明における無機微粒子の形状は、球状、多孔状、中空状、不定形状などがあり特に定めるものではないが、良好な流動性を示すことから中でも球状であることが好ましい。
 この場合、球状とは真球だけでなく、歪んだ球も含む。なお、無機微粒子の形状は、粒子を二次元に投影した時の円形度で評価する。ここで円形度とは、(投影した粒子像の面積と等しい円の周囲長)/(投影した粒子の周囲長)である。無機微粒子の平均円形度は、0.7以上1以下が好ましく、0.8以上1以下がより好ましい、さらに好ましくは0.9以上1以下が好ましい。
 無機微粒子としては、シリカ粉末が好ましいが、シリカ粉末は、その製法によって、シラン化合物を燃焼させて得られる燃焼法シリカ(即ち、フュームドシリカ)、金属珪素粉を爆発的に燃焼させて得られる爆燃法シリカ、珪酸ナトリウムと鉱酸との中和反応によって得られる湿式シリカ(このうち、アルカリ条件で合成し凝集させたものを沈降法シリカ、酸性条件で合成し凝集させたものをゲル法シリカという)、珪酸ナトリウムからイオン交換樹脂で脱ナトリウムして得られた酸性珪酸をアルカリ性にして重合することで得られるコロイダルシリカ(シリカゾル)、シラン化合物の加水分解によって得られるゾルゲル法シリカなどに大別できるが、本発明の効果を得るためには、ゾルゲル法シリカが好ましい。
 すなわち、無機微粒子の中でもシリカが好ましく、さらに好ましくはゾルゲル法シリカおよび/または球状シリカ、なかでもゾルゲル法球状シリカが最も好ましい。
 さらに好ましくはシラン化合物やシラザン化合物等で表面を疎水化処理したものが用いられる。表面を疎水化処理することにより、無機微粒子同士の凝集を抑制し、無機微粒子のPAS樹脂粉粒体への分散性が向上する。前記シラン化合物は、例えばメチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ヘキシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン等の非置換若しくはハロゲン置換のトリアルコキシシラン等、好ましくは、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン及びエチルトリエトキシシラン、より好ましくは、メチルトリメトキシシラン及びメチルトリエトキシシラン、またはこれらの部分加水分解縮合生成物が挙げられる。また、前記シラザン化合物としては、例えば、ヘキサメチルジシラザン、ヘキサエチルジシラザン等、好ましくはヘキサメチルジシラザンが挙げられる。1官能性シラン化合物としては、例えば、トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物;トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン;トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン;トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミン等のモノアミノシラン;トリメチルアセトキシシラン等のモノアシルオキシシランが挙げられ、好ましくは、トリメチルシラノール、トリメチルメトキシシラン又はトリメチルシリルジエチルアミン、特に好ましくは、トリメチルシラノール又はトリメチルメトキシシランが挙げられる。
 これらの無機微粒子は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 無機微粒子の配合量は、PAS樹脂粉粒体100重量部に対し、0.1重量部以上5重量部以下が好ましい。配合量の上限は、5重量部が好ましく、4重量部がより好ましく、3重量部がさらに好ましい。また、配合量の下限は、0.2重量部が好ましく、0.3重量部がより好ましく、0.4重量部がさらに好ましい。
 [PAS樹脂粉粒体混合物]
 本発明では、前記のとおりPAS樹脂粉粒体およびフッ素樹脂粉粒体、好ましくは無機微粒子を混合することで、PAS樹脂粉粒体混合物が得られる。得られるPAS樹脂粉粒体混合物は以下のような特性を有する。
 PAS樹脂粉粒体混合物の平均粒径は、1μmを超え100μm以下である。
 PAS樹脂粉粒体混合物の平均粒径の好ましい下限は3μmであり、より好ましくは5μmであり、さらに好ましくは8μmであり、特に好ましくは10μmであり、著しく好ましくは13μmであり、最も好ましくは15μmである。また、好ましい平均粒径の上限は95μmであり、より好ましくは、90μmであり、さらに好ましくは85μmであり、特に好ましくは80μmであり、著しく好ましくは75μmであり、最も好ましくは70μmである。PAS樹脂粉粒体混合物の平均粒径が100μmを超えると、粉末焼結法3Dプリンターでの粉末積層時に均一な粉面を形成することができない。また、PAS樹脂粉粒体混合物の平均粒径が1μm未満である場合にも、粉粒体混合物の凝集が発生し、同様に均一な粉面を形成することができない。
 また、PAS樹脂粉粒体混合物の粒径分布は均一であることが好ましい。PAS樹脂粉粒体の均一度は、4以下である。好ましくは4.0以下であり、より好ましくは3.5以下であり、さらに好ましくは3.0以下であり、特に好ましくは2.5以下であり、著しく好ましくは2.2以下である。均一度の下限は、理論的には1であるが、現実的には1.1以上が好ましく、より好ましくは1.2以上であり、さらに好ましくは1.3以上であり、特に好ましくは1.4以上であり、著しく好ましくは1.5以上である。PAS樹脂粉粒体の均一度が4を超える場合は、たとえ平均粒径が適切な範囲であっても、3Dプリンターでの粉末積層時に均一な粉面を形成することができず、本発明の効果を奏することが出来ない。
 PAS樹脂粉粒体混合物は、粉体流動性に優れた特徴を有する。具体的には、安息角が43度以下である。発明の好ましい様態によれば42度以下であり、より好ましい様態によれば40度以下である。安息角の下限は通常20度以上である。
 本発明における安息角は、Carrの流動性指数の測定方法に基づいて測定した値である。
 このような粉粒体混合物は流動性に優れるとともに、粉体圧による圧密化が起こりづらいため、サイロなどへの供給・排出時の詰まりや空気輸送での閉塞などのトラブルが発生しにくい。
 粉粒体混合物を得るための混合の方法としては、振とうによる混合方法、ボールミル、コーヒーミルなどの粉砕を伴う混合方法、ナウターミキサーやヘンシェルミキサーなどの攪拌翼による混合方法、V型混合機などの容器ごと回転させる混合方法、溶媒中での液相混合した後に乾燥する方法、フラッシュブレンダーなどを使用して気流によって攪拌する混合方法、アトマイザーなどを使用して粉粒体および/またはスラリーを噴霧する混合方法などが採用できる。
 [PAS樹脂粉粒体混合物の用途]
 本発明のPAS樹脂粉粒体混合物は、粉末焼結法による三次元造形物の製造に有用である。
 粉末焼結積層造形法による造形物の製造は、PAS樹脂粉粒体混合物を薄層に展開する薄層形成工程と、この薄層に、造形対象物の断面形状に対応する形状にレーザ光を照射して、PAS樹脂粉粒体混合物を結合させる断面形成工程とを順次繰り返すことで粉末焼結積層造形物を製造する方法によって行うことができる。
 本発明のPAS樹脂粉粒体混合物を用いて粉末焼結法による得られる三次元造形物は、PAS樹脂粉粒体を用いていることから、高い耐熱性、耐薬品性、寸法安定性、適切な溶融粘度を有する材料粉末を使用しているため優れた機械的強度を有している。さらにPAS樹脂粉粒体混合物は、フッ素樹脂粉粒体を含むことから、得られる三次元造形物は靱性に優れるものが得られる。また、PAS樹脂粉粒体混合物は好ましくは無機微粒子を含むことから、流動性に優れ、粉面を均一に形成できる。さらに、本発明のPAS樹脂粉粒体混合物は、平均粒径が小さく均一度が小さいことから、粉末焼結法で三次元造形物を製造する際に、欠陥の少ない優れた形状の造形物とすることができる。
 以下、本発明の方法を実施例及び比較例により更に具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。なお、各種測定法は以下の通りである。
 [PAS樹脂粉粒体、フッ素樹脂粉粒体および粉粒体混合物の平均粒径]
 PAS樹脂粉粒体の平均粒径はMicrotracBEL製スプレー粒径分布測定装置Aerotrac3500A型を用い、レーザー光を分散した測定試料に照射し、回折散乱光を検出、フラウンホーファ回折理論に基づき解析し、体積基準の粒径分布を演算。解析して得られる微粒子の総体積を100%として累積カーブを求め、その累積カーブが50%となる点の粒径(メジアン径:d50)をPAS樹脂粉粒体の平均粒径とした。
 [無機微粒子の平均粒径]
 無機微粒子の平均粒径の測定には、電子顕微鏡を用いて10万倍に拡大した画像から、無作為に任意の100個の粒子を選び、最大長さを粒径として粒径を測長し、その数平均値を平均粒径とした。
 [PAS樹脂粉粒体、フッ素樹脂粉粒体および粉粒体混合物の均一度]
 PAS樹脂粉粒体の均一度は、MicrotracBEL製スプレー粒径分布測定装置Aerotrac3500A型を用いて測定した粒径分布のd60/d10の値をPAS樹脂粉粒体の均一度とした。粒径分布が広いほど均一度は大きくなる。
 [粉粒体混合物の安息角]
 PAS樹脂粉粒体の安息角は、セイシン企業製マルチテスターMT-1を用いて測定した。
 [溶融粘度]
 PAS樹脂粉粒体を構成するPAS樹脂の溶融粘度は、東洋精機製キャピログラフ1Cを用い、孔長10.00mm、孔直径0.50mmのダイスを用いた。300℃に設定したシリンダーにサンプル約20gを投入し、5分保持した後、剪断速度1216sec-1で測定を行った。
 [再結晶化温度]
 PAS樹脂粉粒体を構成するPAS樹脂の再結晶化温度は、パーキンエルマー製DSC7を用いて粉粒体約10mgを、窒素雰囲気中、下記測定条件を用いて測定した。
・50℃×1分間保持
・50℃から340℃まで昇温、昇温速度20℃/min
・340℃×5分間保持
・340℃から50℃まで降温、降温速度20℃/min
降温時の結晶化に伴う発熱ピークの頂点を再結晶化温度とした。
 [曲げ弾性率]
 PAS樹脂粉粒体混合物を使用して作製した三次元造形物の曲げ弾性率は、粉末焼結法3Dプリンターを使用してISO1A型試験片を作製し、万能試験機(株式会社エーアンドデイ製テンシロン万能試験機RTG―1250)にて測定した。測定方法はISO-178に従い、4回測定した平均値を曲げ弾性率とした。
 [造形物の耐熱性]
 PAS樹脂粉粒体混合物を使用して作製した三次元造形物の耐熱性は、粉末焼結法3Dプリンターを使用してISO1A型試験片を作製し、試験片の切削物をTGA(パーキンエルマー製STA6000を使用して、下記測定条件を用いて重量減少率を測定し、重量減少率が5重量%となる温度を測定した。
・50℃×1分間保持
・50℃から1000℃まで昇温、昇温速度50℃/min
 [製造例1]
 撹拌機付きの1リットルオートクレーブに、47重量%水硫化ナトリウム1.00モル、46重量%水酸化ナトリウム1.05モル、N-メチル-2-ピロリドン(NMP)1.65モル、酢酸ナトリウム0.45モル、及びイオン交換水5.55モルを仕込み、常圧で窒素を通じながら225℃まで約2時間かけて徐々に加熱し、水11.70モルおよびNMP0.02モルを留出したのち、反応容器を160℃に冷却した。また、硫化水素の飛散量は0.01モルであった。
 次に、p-ジクロロベンゼン(p-DCB)1.02モル、NMP1.32モルを加え、反応容器を窒素ガス下に密封した。その後、400rpmで撹拌しながら、200℃から240℃まで90分、240℃から270℃まで30分かけて二段階で昇温した。270℃到達10分経過後に水0.75モルを15分かけて系内に注入した。270℃で120分経過後、200℃まで1.0℃/分の速度で冷却し、その後室温近傍まで急冷して内容物を取り出した。
 内容物を取り出し、0.5リットルのNMPで希釈後、溶剤と固形物をふるい(80mesh)で濾別し、得られた粒子を1リットルの温水で数回洗浄した後、PASに対して0.45重量%の酢酸カルシウム・1水和物800gを加えて洗浄し、さらに1リットルの温水で洗浄、濾別してケークを得た。
得られたケークを窒素気流下、120℃で乾燥することにより、PAS-1を得た。得られたPAS-1の平均粒径は1600μm、均一度は4.1、溶融粘度は210Pa・s、再結晶化温度は168℃であった。
 [実施例1]
 PAS-1をジェットミル(ホソカワミクロン製100AFG)で120分間粉砕し、平均粒径50μm、均一度1.6のPAS樹脂粉粒体を得た。この粉粒体に平均粒径500nm、均一度1.5のフッ素樹脂(PTFE)粉粒体を7重量部添加し、さらに無機微粒子(平均粒径170nmのゾルゲル法球状シリカ、信越化学工業株式会社製X-24-9600A)を1重量部添加して、平均粒径50μm、均一度1.9、安息角39度のPAS樹脂粉粒体混合物を得た。この樹脂粉粒体を使用して粉末焼結法3Dプリンター((株)アスペクト製Rafael300)によって三次元造形物を作製した。粉末積層時の粉面荒れは発生せず良好な三次元造形物が得られた。三次元造形物の曲げ弾性率は530MPaであり、重量減少率が5重量%となる温度は510℃であった。
 [実施例2]
 フッ素樹脂(PTFE)粉粒体の添加量が5重量部であること以外は実施例1と同様にしてPAS樹脂粉粒体混合物を得た。PAS樹脂粉粒体混合物の平均粒径50μm、均一度1.7、安息角38度であった。この樹脂粉粒体を使用して粉末焼結法3Dプリンター((株)アスペクト製Rafael300)によって三次元造形物を作製した。粉末積層時の粉面荒れは発生せず良好な三次元造形物が得られた。三次元造形物の曲げ弾性率は1110MPaであり、重量減少率が5重量%となる温度は490℃であった。
 [実施例3]
 フッ素樹脂(PTFE)粉粒体の添加量が9重量部であること以外は実施例1と同様にしてPAS樹脂粉粒体混合物を得た。PAS樹脂粉粒体混合物の平均粒径46μm、均一度3.1、安息角40度であった。この樹脂粉粒体を使用して粉末焼結法3Dプリンター((株)アスペクト製Rafael300)によって三次元造形物を作製した。粉末積層時の粉面荒れは発生せず良好な三次元造形物が得られた。三次元造形物の曲げ弾性率は400MPaであり、重量減少率が5重量%となる温度は530℃であった。
 [実施例4]
 フッ素樹脂(PTFE)粉粒体の平均粒径12μm、均一度1.7であること以外は実施例1と同様にしてPAS樹脂粉粒体混合物を得た。PAS樹脂粉粒体混合物の平均粒径48μm、均一度1.7、安息角37度であった。この樹脂粉粒体を使用して粉末焼結法3Dプリンター((株)アスペクト製Rafael300)によって三次元造形物を作製した。粉末積層時の粉面荒れは発生せず良好な三次元造形物が得られた。三次元造形物の曲げ弾性率は980MPaであり、重量減少率が5重量%となる温度は510℃であった。
 [実施例5]
 フッ素樹脂(PTFE)粉粒体の添加量が20重量部であること以外は実施例4と同様にしてPAS樹脂粉粒体混合物を得た。PAS樹脂粉粒体混合物の平均粒径34μm、均一度1.7、安息角38度であった。この樹脂粉粒体を使用して粉末焼結法3Dプリンター((株)アスペクト製Rafael300)によって三次元造形物を作製した。粉末積層時の粉面荒れは発生せず良好な三次元造形物が得られた。三次元造形物の曲げ弾性率は550MPaであり、重量減少率が5重量%となる温度は550℃であった。
 [比較例1]
 フッ素樹脂を添加すること以外は実施例1と同様にして、平均粒径50μm、均一度1.6、安息角34度のPAS樹脂粉粒体混合物を得た。この粉粒体を使用して粉末焼結法3Dプリンター((株)アスペクト製Rafael300)によって三次元造形物を作製した。粉末積層時の粉面荒れは発生せず良好な三次元造形物が得られた。三次元造形物の曲げ弾性率は3090MPaであり、造形物が固く、靱性が不十分であった。三次元造形物の重量減少率が5重量%となる温度は460℃であった。
 [比較例2]
 フッ素樹脂(PTFE)粉粒体の添加量が35重量部であること以外は実施例1と同様にしてPAS樹脂粉粒体混合物を得た。PAS樹脂粉粒体混合物の平均粒径43μm、均一度13、安息角44度であった。この樹脂粉粒体を使用して粉末焼結法3Dプリンター((株)アスペクト製Rafael300)によって三次元造形物を試みたが、粉末積層時の粉面荒れが生じ、三次元造形物が得られなかった。
Figure JPOXMLDOC01-appb-T000002
 本発明のPAS樹脂粉粒体混合物は、粒径が微細であり、かつ、均一な粒径分布を有するため、粉末焼結法3Dプリンターに使用する際に、平滑な粉面を形成することができる。さらに、本発明のPAS樹脂粉粒体混合物に含まれるフッ素樹脂粉粒体が適切な平均粒径、均一度を有するため、三次元造形物を作製した際にフッ素樹脂が均一に分散し、曲げ弾性率の小さい三次元造形物を得ることができる。そのため、本発明のPAS樹脂粉粒体混合物を用いた粉末焼結法により、耐熱性、高靭性に優れた三次元造形物を得ることができる。

Claims (7)

  1. ポリアリーレンスルフィド樹脂粉粒体100重量部に対し、フッ素樹脂粉粒体を5~25重量部含む粉粒体混合物であり、粉粒体混合物の平均粒径が1μmを超え100μm以下、安息角が43度以下、かつ均一度が4以下であることを特徴とするポリアリーレンスルフィド樹脂粉粒体混合物。
  2. 前記フッ素樹脂粉粒体を構成するフッ素樹脂が、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、およびエチレン・クロロトリフルオロエチレン共重合体(ECTFE)から選ばれる少なくとも1種であることを特徴とする請求項1記載のポリアリーレンスルフィド樹脂粉粒体混合物。
  3. 前記ポリアリーレンスルフィド樹脂粉粒体の平均粒径が、1μmを超え100μm以下であることを特徴とする請求項1または2記載のポリアリーレンスルフィド樹脂粉粒体混合物。
  4. 前記フッ素樹脂粉粒体の平均粒径が、100nm以上1μm以下であることを特徴とする請求項1~3のいずれかに記載のポリアリーレンスルフィド樹脂粉粒体混合物。
  5. さらに、ポリアリーレンスルフィド樹脂粉粒体100重量部に対し、無機微粒子を0.1重量部以上5重量部以下含むことを特徴とする請求項1~4のいずれかに記載のポリアリーレンスルフィド樹脂粉粒体混合物。
  6. 前記無機微粒子の平均粒径が、20nm以上500nm以下であることを特徴とする請求項5記載のポリアリーレンスルフィド樹脂粉粒体混合物。
  7. 請求項1~6のいずれかに記載のポリアリーレンスルフィド樹脂粉粒体混合物を粉末焼結法3Dプリンターに供給することを特徴とする三次元造形物の製造方法。
PCT/JP2017/037157 2016-10-21 2017-10-13 ポリアリーレンスルフィド樹脂粉粒体混合物および三次元造形物の製造方法 WO2018074353A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017563149A JP6773051B2 (ja) 2016-10-21 2017-10-13 粉末焼結法3dプリンター用ポリアリーレンスルフィド樹脂粉粒体混合物および三次元造形物の製造方法
EP17861706.4A EP3530701A4 (en) 2016-10-21 2017-10-13 MIXTURE OF POLYARYLENE SULFIDE RESIN PARTICLES, AND METHOD FOR MANUFACTURING THREE-DIMENSIONAL MOLDED OBJECT
US16/343,668 US20200055234A1 (en) 2016-10-21 2017-10-13 Polyarylene sulfide resin powder granular article mixture and method for producing three-dimensional molded article
CN201780053709.XA CN109689788B (zh) 2016-10-21 2017-10-13 聚芳撑硫醚树脂粉粒体混合物及三维造型物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016206652 2016-10-21
JP2016-206652 2016-10-21

Publications (1)

Publication Number Publication Date
WO2018074353A1 true WO2018074353A1 (ja) 2018-04-26

Family

ID=62018405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037157 WO2018074353A1 (ja) 2016-10-21 2017-10-13 ポリアリーレンスルフィド樹脂粉粒体混合物および三次元造形物の製造方法

Country Status (5)

Country Link
US (1) US20200055234A1 (ja)
EP (1) EP3530701A4 (ja)
JP (1) JP6773051B2 (ja)
CN (1) CN109689788B (ja)
WO (1) WO2018074353A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020011990A1 (en) * 2018-07-12 2020-01-16 Solvay Specialty Polymers Usa, Llc Method for manufacturing a three-dimensional object from a poly(arylene sulfide) polymer
WO2020022439A1 (ja) * 2018-07-27 2020-01-30 ポリプラスチックス株式会社 熱プレス成形品用複合材料及び熱プレス成形品
JP2020075990A (ja) * 2018-11-07 2020-05-21 株式会社リコー 樹脂粉末、造形装置、及び造形方法
EP3738749A1 (en) * 2019-05-17 2020-11-18 Ricoh Company, Ltd. Thermoplastic resin powder, resin powder, resin powder for producing three-dimensional object, three-dimensional object and three-dimensional object producing method
WO2022250003A1 (ja) * 2021-05-27 2022-12-01 東レ株式会社 樹脂粉末混合物およびその製造方法、ならびに三次元造形物の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880286B (zh) * 2019-02-28 2021-09-03 武汉材料保护研究所有限公司 一种用于涉水运动副的减摩抗磨复合材料及其制备方法
CN115243867A (zh) 2020-03-10 2022-10-25 索尔维特殊聚合物美国有限责任公司 含有聚(芳硫醚)(pas)聚合物的粉状材料(p)及其用于增材制造的用途

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS453368B1 (ja) 1964-11-27 1970-02-04
JPS5077429A (ja) * 1973-11-13 1975-06-24
JPS5212240B2 (ja) 1973-11-19 1977-04-05
JPS617332A (ja) 1984-06-20 1986-01-14 Kureha Chem Ind Co Ltd 高分子量ポリアリ−レンスルフイドの製造法
JPH05295300A (ja) * 1992-04-20 1993-11-09 Furukawa Electric Co Ltd:The ポリフェニレンスルフィド樹脂系粉体塗料組成物
JPH0762240A (ja) 1993-08-27 1995-03-07 Dainippon Ink & Chem Inc 粉末成形用ポリアリーレンスルフィド樹脂成形材料
JPH11269383A (ja) * 1998-03-19 1999-10-05 Asahi Glass Co Ltd 樹脂組成物
JPH11343415A (ja) * 1998-06-02 1999-12-14 Otsuka Chem Co Ltd ポリフェニレンサルファイド樹脂組成物及びその成形体
JP2004184606A (ja) 2002-12-02 2004-07-02 Ono & Co Ltd 人工骨モデルの製造方法
JP2005014214A (ja) 2003-06-23 2005-01-20 Yuniiku Kk 耐薬品性特に耐溶剤性に優れたパッキングの製造方法
WO2015129487A1 (ja) * 2014-02-25 2015-09-03 東レ株式会社 ポリアリーレンスルフィド樹脂粉粒体組成物およびその製造方法
WO2017126484A1 (ja) * 2016-01-20 2017-07-27 東レ株式会社 ポリアリーレンスルフィド樹脂粉粒体およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3052338B2 (ja) * 1990-06-08 2000-06-12 ダイキン工業株式会社 摺動材組成物およびその製造方法
JP4041206B2 (ja) * 1998-03-26 2008-01-30 株式会社クレハ ポリアリーレンスルフィド樹脂組成物を成形してなる電子写真方式の画像形成装置における摺動部材
JP2004211030A (ja) * 2003-01-08 2004-07-29 Kureha Chem Ind Co Ltd コーティング用ポリフェニレンサルファイド、およびそれを用いたコーティング膜、ならびにそのコーティング膜の製造方法
JP4701645B2 (ja) * 2003-07-09 2011-06-15 東レ株式会社 樹脂組成物、錠剤、成形品およびシャーシまたは筐体
DE102006015791A1 (de) * 2006-04-01 2007-10-04 Degussa Gmbh Polymerpulver, Verfahren zur Herstellung und Verwendung eines solchen Pulvers und Formkörper daraus
CN105985632A (zh) * 2015-10-28 2016-10-05 合肥学院 一种选择性激光烧结用粉末材料及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS453368B1 (ja) 1964-11-27 1970-02-04
JPS5077429A (ja) * 1973-11-13 1975-06-24
JPS5212240B2 (ja) 1973-11-19 1977-04-05
JPS617332A (ja) 1984-06-20 1986-01-14 Kureha Chem Ind Co Ltd 高分子量ポリアリ−レンスルフイドの製造法
JPH05295300A (ja) * 1992-04-20 1993-11-09 Furukawa Electric Co Ltd:The ポリフェニレンスルフィド樹脂系粉体塗料組成物
JPH0762240A (ja) 1993-08-27 1995-03-07 Dainippon Ink & Chem Inc 粉末成形用ポリアリーレンスルフィド樹脂成形材料
JPH11269383A (ja) * 1998-03-19 1999-10-05 Asahi Glass Co Ltd 樹脂組成物
JPH11343415A (ja) * 1998-06-02 1999-12-14 Otsuka Chem Co Ltd ポリフェニレンサルファイド樹脂組成物及びその成形体
JP2004184606A (ja) 2002-12-02 2004-07-02 Ono & Co Ltd 人工骨モデルの製造方法
JP2005014214A (ja) 2003-06-23 2005-01-20 Yuniiku Kk 耐薬品性特に耐溶剤性に優れたパッキングの製造方法
WO2015129487A1 (ja) * 2014-02-25 2015-09-03 東レ株式会社 ポリアリーレンスルフィド樹脂粉粒体組成物およびその製造方法
WO2017126484A1 (ja) * 2016-01-20 2017-07-27 東レ株式会社 ポリアリーレンスルフィド樹脂粉粒体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3530701A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020011990A1 (en) * 2018-07-12 2020-01-16 Solvay Specialty Polymers Usa, Llc Method for manufacturing a three-dimensional object from a poly(arylene sulfide) polymer
CN112424264A (zh) * 2018-07-12 2021-02-26 索尔维特殊聚合物美国有限责任公司 由聚(亚芳基硫醚)聚合物制造三维物体的方法
WO2020022439A1 (ja) * 2018-07-27 2020-01-30 ポリプラスチックス株式会社 熱プレス成形品用複合材料及び熱プレス成形品
JPWO2020022439A1 (ja) * 2018-07-27 2020-08-06 ポリプラスチックス株式会社 熱プレス成形品用複合材料及び熱プレス成形品
JP2020075990A (ja) * 2018-11-07 2020-05-21 株式会社リコー 樹脂粉末、造形装置、及び造形方法
JP7172463B2 (ja) 2018-11-07 2022-11-16 株式会社リコー 立体造形用樹脂粉末、造形装置、及び造形方法
EP3738749A1 (en) * 2019-05-17 2020-11-18 Ricoh Company, Ltd. Thermoplastic resin powder, resin powder, resin powder for producing three-dimensional object, three-dimensional object and three-dimensional object producing method
WO2022250003A1 (ja) * 2021-05-27 2022-12-01 東レ株式会社 樹脂粉末混合物およびその製造方法、ならびに三次元造形物の製造方法
JP7255755B1 (ja) * 2021-05-27 2023-04-11 東レ株式会社 樹脂粉末混合物およびその製造方法、ならびに三次元造形物の製造方法

Also Published As

Publication number Publication date
EP3530701A4 (en) 2020-05-27
EP3530701A1 (en) 2019-08-28
CN109689788B (zh) 2021-04-06
CN109689788A (zh) 2019-04-26
JP6773051B2 (ja) 2020-10-21
US20200055234A1 (en) 2020-02-20
JPWO2018074353A1 (ja) 2019-08-22

Similar Documents

Publication Publication Date Title
JP6256818B2 (ja) ポリアリーレンスルフィド樹脂粉粒体およびその製造方法
JP6773051B2 (ja) 粉末焼結法3dプリンター用ポリアリーレンスルフィド樹脂粉粒体混合物および三次元造形物の製造方法
JP6638257B2 (ja) ポリアリーレンスルフィド樹脂粉粒体混合物
JP5839148B1 (ja) ポリアリーレンスルフィド樹脂粉粒体組成物およびその製造方法
JP7375547B2 (ja) 三次元造形物の製造方法
KR101795527B1 (ko) Sls-3d 프린터용 pi 복합분말 및 이의 제조방법
WO2021090768A1 (ja) 3次元造形物を製造するためのポリマー粉末、ポリマー粉末を用いて粉末床溶融結合方式によって3次元造形物を製造する方法、および3次元造形物
JP7074268B2 (ja) 薄膜状成形体、及びその製造方法
KR20230150257A (ko) 폴리머 분말 및 그 제조 방법, 그리고 3차원 조형물의제조 방법
JP5877745B2 (ja) 複合金属水酸化物粒子、及びそれを含む樹脂組成物
WO2022250003A1 (ja) 樹脂粉末混合物およびその製造方法、ならびに三次元造形物の製造方法
CN116887973A (zh) 使用树脂粉粒体的三维造型物制造方法、三维造型物及树脂粉粒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017563149

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017861706

Country of ref document: EP

Effective date: 20190521