WO2015129487A1 - ポリアリーレンスルフィド樹脂粉粒体組成物およびその製造方法 - Google Patents

ポリアリーレンスルフィド樹脂粉粒体組成物およびその製造方法 Download PDF

Info

Publication number
WO2015129487A1
WO2015129487A1 PCT/JP2015/053971 JP2015053971W WO2015129487A1 WO 2015129487 A1 WO2015129487 A1 WO 2015129487A1 JP 2015053971 W JP2015053971 W JP 2015053971W WO 2015129487 A1 WO2015129487 A1 WO 2015129487A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
average particle
sulfide resin
powder
particle size
Prior art date
Application number
PCT/JP2015/053971
Other languages
English (en)
French (fr)
Inventor
渡邊圭
竹田多完
竹崎宏
牧田圭
西村陽介
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US15/120,816 priority Critical patent/US9862804B2/en
Priority to ES15755789.3T priority patent/ES2690450T3/es
Priority to JP2015512945A priority patent/JP5839148B1/ja
Priority to KR1020167010928A priority patent/KR101754047B1/ko
Priority to CN201580002098.7A priority patent/CN105612218B/zh
Priority to CA2927426A priority patent/CA2927426C/en
Priority to MX2016011057A priority patent/MX2016011057A/es
Priority to EP15755789.3A priority patent/EP3112424B1/en
Publication of WO2015129487A1 publication Critical patent/WO2015129487A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/04Polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a polyarylene sulfide resin particle composition having a small average particle diameter, excellent powder flowability and low compressibility.
  • Polyarylene sulfide typified by polyphenylene sulfide (hereinafter sometimes abbreviated as PPS) has excellent heat resistance, barrier properties, chemical resistance, electrical insulation properties, moisture and heat resistance, etc. It has suitable properties as an engineering plastic, and is used for various electric / electronic parts, mechanical parts, automobile parts, films, fibers, etc. mainly in injection molding and extrusion molding applications.
  • PAS resin granules As various molding processes, coating agents, and heat-resistant additives, and the following methods have been proposed for producing PAS resin granules. ing.
  • Patent Document 1 PPS is used as an island and another thermoplastic polymer is melt-kneaded as a sea to form a resin composition having a sea-island structure, and then the sea phase is dissolved and washed to obtain PPS resin particles.
  • Patent Document 2 PPS resin particles are obtained by dissolving PPS in a high-temperature solvent and cooling and precipitating.
  • Patent Document 3 it is difficult to eliminate the deterioration of fluidity due to compression in the lower part of the silo or hopper.
  • the PAS resin powder Since the PAS resin powder is easily insulated due to static electricity due to its high electrical insulation, it is not excellent in fluidity. Therefore, there is a problem that troubles during supply and discharge in silos and the like frequently occur in the manufacturing process.
  • the PAS resin granular material has a high degree of compression, and is compressed by powder pressure at the lower part of the silo or hopper, increasing the bulk density and causing further decrease in fluidity.
  • the PPS resin powder obtained by the methods of Patent Documents 1 and 2 has a small particle size, the area in contact with neighboring particles is large, and the particles are likely to aggregate due to static electricity and have poor fluidity.
  • the present invention has been achieved as a result of studying as an object to efficiently obtain a polyarylene sulfide resin granular material having a small average particle diameter, excellent powder flowability and low compressibility.
  • the present invention has resulted in the following invention as a result of intensive studies to solve such problems.
  • the present invention is as follows.
  • An inorganic fine particle having an average particle size of 20 nm or more and 500 nm or less is added in an amount of 0.1 to 5 to 100 parts by weight of a polyarylene sulfide resin particle having an average particle size of more than 1 ⁇ m and 100 ⁇ m or less and a uniformity of 4 or less.
  • a polyarylene sulfide resin granular composition containing parts by weight.
  • Polyarylene sulfide resin granules having an average particle size of more than 1 ⁇ m and not more than 100 ⁇ m and a uniformity of 4 or less, obtained by pulverizing polyarylene sulfide resin particles having an average particle size of 40 ⁇ m or more and 2 mm or less The method for producing a polyarylene sulfide resin granular material composition according to any one of (1) to (3), wherein inorganic fine particles are blended in the composition.
  • PAS resin The PAS in the present invention is a homopolymer or copolymer having a repeating unit of the formula, — (Ar—S) —, as the main structural unit, and preferably containing 80 mol% or more of the repeating unit.
  • Ar is a group containing an aromatic ring in which a bond is present in the aromatic ring, and examples thereof include divalent repeating units represented by the following formulas (A) to (L), among which the formula ( The repeating unit represented by A) is particularly preferred.
  • R1 and R2 are substituents selected from hydrogen, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms and a halogen group, and R1 and R2 are the same or different. May be.
  • the PAS in the present invention may be any of a random copolymer, a block copolymer and a mixture thereof containing the above repeating unit.
  • PASs include polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfide ketone, random copolymers thereof, block copolymers, and mixtures thereof.
  • Particularly preferred PASs include polyphenylene sulfide, polyphenylene sulfide sulfone and polyphenylene sulfide ketone containing 80 mol% or more, particularly 90 mol% or more of p-phenylene sulfide units as the main structural unit of the polymer.
  • the PAS used in the present invention can be obtained by various methods, for example, a method for obtaining a polymer having a relatively small molecular weight described in JP-B-45-3368, or JP-B-52-12240 and JP-A-61-7332. Can be produced by a method for obtaining a polymer having a relatively large molecular weight as described in Japanese Patent Publication No. JP-A.
  • the obtained PPS resin is subjected to crosslinking / polymerization by heating in air, heat treatment under an inert gas atmosphere such as nitrogen or reduced pressure, washing with an organic solvent, hot water, an acid aqueous solution, etc., acid anhydride It can also be used after various treatments such as activation with functional group-containing compounds such as products, amines, isocyanates and functional group disulfide compounds.
  • the PAS resin particles used in the present invention are not particularly limited, and the polymer obtained by the above-described method can be used as PAS resin particles, or the PAS resin is molded into pellets, fibers, or films. PAS resin particles can also be obtained.
  • the PAS resin particles indicate a PAS resin having a particle size range suitable for the present invention and a PAS resin having a particle size larger than the particle size range suitable for the present invention.
  • pulverization process mentioned later can be performed according to the form of the PAS resin particle to be used.
  • the method of spray drying after dissolving the raw materials in the solvent the poor solvent precipitation method in which an emulsion is formed in the solvent and then contacting with the poor solvent, and the liquid for removing the organic solvent by drying after forming the emulsion in the solvent
  • examples thereof include an intermediate drying method and a forced melt kneading method in which a sea-island structure is formed by mechanically kneading a resin component desired to be granulated and a resin component different from the resin component, and then removing the sea component with a solvent.
  • a powder suitable for the present invention can be obtained by subjecting PAS resin particles having a large average particle diameter and PAS resin particles having a large degree of uniformity (not uniform) as raw materials.
  • pulverization method there is no particular limitation on the pulverization method, and examples include jet mill, bead mill, hammer mill, ball mill, sand mill, turbo mill, and freeze pulverization.
  • dry pulverization such as turbo mill, jet mill, and freeze pulverization is used.
  • the average particle size of the PAS resin particles before pulverization is not particularly limited, but the PAS resin particles produced by a technique used in a general production method have an average particle size of about 40 ⁇ m to 10 mm.
  • the particle size before pulverization is large, the time required for pulverization becomes long, so it is preferable to use PAS resin particles of 40 ⁇ m or more and 2 mm or less as a raw material.
  • a PAS resin granule having an average particle size of more than 1 ⁇ m and 100 ⁇ m or less is used by performing a pulverization treatment as necessary.
  • the lower limit of the average particle size of the PAS resin particles is preferably 3 ⁇ m, more preferably 5 ⁇ m, still more preferably 8 ⁇ m, particularly preferably 10 ⁇ m, particularly preferably 13 ⁇ m, and most preferably 15 ⁇ m. is there.
  • the upper limit of the average particle diameter is preferably 75 ⁇ m, more preferably 70 ⁇ m, still more preferably 65 ⁇ m, particularly preferably 60 ⁇ m, particularly preferably 55 ⁇ m, and most preferably 50 ⁇ m.
  • the PAS resin produced by a general production method has a wide particle size distribution and a high degree of uniformity of 5 or more, but the particle size distribution can be made uniform by performing a pulverization treatment. Since the granular material having a small degree of uniformity has a low compressibility when the powder pressure is applied, the uniformity of the PAS resin granular material of the present invention is 4 or less.
  • the uniformity of the PAS resin particles is preferably 3.2 or less, more preferably 3.0 or less, still more preferably 3 or less, particularly preferably 2.5 or less, and extremely preferably 2 or less.
  • the lower limit of the uniformity is theoretically 1, it is preferably 1.1 or more in practice, more preferably 1.15 or more, still more preferably 1.2 or more, and particularly preferably 1 .3 or more, and particularly preferably 1.4 or more.
  • the uniformity of the PAS resin granular material exceeds 4, even if the average particle size is in an appropriate range, the degree of compression is large and the effects of the present invention cannot be achieved.
  • the average particle size of the PAS resin particles or PAS resin particles is from the small particle size side of the particle size distribution measured by a laser diffraction particle size distribution analyzer based on Mie's scattering / diffraction theory.
  • the particle size (d50) is such that the cumulative frequency is 50%.
  • the uniformity of the PAS resin granular material in the present invention is the cumulative frequency from the small particle size side to the particle size (d60) at which the cumulative frequency from the small particle size side of the particle size distribution measured by the above method is 60%. Is the value divided by the particle size (d10) at 10%.
  • inorganic fine particles In the present invention, it is important to add inorganic fine particles in order to improve the fluidity of the polyarylene sulfide resin granules.
  • the fluidity of PAS resin granules deteriorates due to the interaction with nearby particles when the particle size is small, but the interparticle distance is increased by adding inorganic fine particles having a particle size smaller than that of the PAS resin granules. , Fluidity can be improved.
  • the inorganic fine particles to be added to the PAS resin particles are those having an average particle size of 20 nm to 500 nm.
  • an average particle diameter is the value measured by the method similar to the average particle diameter of said PAS resin particle or PAS resin granular material.
  • the upper limit of the average particle size of the inorganic fine particles is preferably 400 nm, more preferably 300 nm, more preferably 200 nm, particularly preferably 150 nm, and particularly preferably 100 nm.
  • the lower limit is preferably 20 nm, more preferably 30 nm, more preferably 40 nm, and particularly preferably 50 nm.
  • the average particle diameter of the inorganic fine particles exceeds 500 nm, the effect of improving the fluidity of the PAS resin powder composition is not sufficient.
  • the average particle diameter of inorganic fine particles is less than 20 nm, an effect of improving fluidity is obtained, but an effect of reducing the degree of compression of the PAS resin particle composition is difficult to obtain.
  • calcium carbonate powder such as light calcium carbonate, heavy calcium carbonate, finely divided calcium carbonate, special calcium-based filler; Sintered fine powder, montmorillonite, bentonite, etc., clay such as silane modified clay (aluminum silicate powder); talc; fused silica, crystalline silica, amorphous silica and other silica (silicon dioxide) powder; diatomaceous earth, Silica-containing compounds such as silica sand; natural minerals such as pumice powder, pumice balloon, slate powder, and mica powder; alumina-containing compounds such as alumina (aluminum oxide), alumina colloid (alumina sol), alumina white, and aluminum sulfate Barium sulfate, lithopone, calcium sulfate, disulfur Minerals such as molybdenum and graphite; glass-based fillers such as glass fibers, glass
  • Silica powder is particularly preferable, and among them, amorphous silica powder that is less harmful to the human body is extremely preferable industrially.
  • the shape of the inorganic fine particles in the present invention includes a spherical shape, a porous shape, a hollow shape, an indefinite shape, and the like, and is not particularly defined, but a spherical shape is preferable among them because it exhibits good fluidity.
  • the spherical shape includes not only a true sphere but also a distorted sphere.
  • the shape of the inorganic fine particles is evaluated by the circularity when the particles are projected two-dimensionally.
  • the circularity is (peripheral length of a circle equal to the area of the projected particle image) / (peripheral length of the projected particle).
  • the average circularity of the inorganic fine particles is preferably 0.7 or more and 1 or less, more preferably 0.8 or more and 1 or less, and still more preferably 0.9 or more and 1 or less.
  • Silica powder is produced by combustion method silica obtained by burning a silane compound (ie, fumed silica), deflagration silica obtained by explosively burning metal silicon powder, sodium silicate and mineral acid.
  • silica obtained by neutralization reaction (of which, synthesized and aggregated under alkaline conditions is precipitated silica, and synthesized and aggregated under acidic conditions is gel silica), dehydrated from sodium silicate with ion exchange resin Colloidal silica (silica sol) obtained by polymerizing acidic silicic acid obtained by sodium to alkalinity, and sol-gel silica obtained by hydrolysis of a silane compound can be broadly classified.
  • sol-gel silica Is preferably sol-gel silica. That is, silica is preferable among the inorganic fine particles, more preferably sol-gel silica and / or spherical silica, and most preferably sol-gel spherical silica.
  • the surface is hydrophobized with a silane compound or a silazane compound.
  • a silane compound or a silazane compound By hydrophobizing the surface, aggregation of inorganic fine particles is suppressed, and dispersibility of the inorganic fine particles in the PAS resin powder is improved.
  • silane compound examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, Non-substituted or halogen-substituted trialkoxysilane such as butyltrimethoxysilane, butyltriethoxysilane, hexyltrimethoxysilane, trifluoropropyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, preferably methyltrimethoxysilane, Methyltriethoxysilane, ethyltrimethoxysilane and ethyltriethoxysilane, more
  • silazane compound examples include hexamethyldisilazane and hexaethyldisilazane, preferably hexamethyldisilazane.
  • monofunctional silane compounds include monosilanol compounds such as trimethylsilanol and triethylsilanol; monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane; monoalkoxysilanes such as trimethylmethoxysilane and trimethylethoxysilane; trimethylsilyldimethylamine and trimethylsilyldiethylamine And monoacyloxysilanes such as trimethylacetoxysilane, preferably trimethylsilanol, trimethylmethoxysilane or trimethylsilyldiethylamine, particularly preferably trimethylsilanol or trimethylmethoxysilane.
  • These inorganic fine particles can be used alone or in combination of two or more.
  • the compounding amount of the inorganic fine particles is 0.1 to 5 parts by weight with respect to 100 parts by weight of the PAS resin powder.
  • the upper limit of the compounding material is preferably 4 parts by weight, more preferably 3 parts by weight, still more preferably 2 parts by weight, and particularly preferably 1 part by weight.
  • 0.2 weight part is preferable, as for the minimum of a compounding quantity, 0.3 weight part is more preferable, and 0.4 weight part is further more preferable.
  • inorganic fine particles are blended into the PAS resin powder.
  • a method for obtaining a uniform resin powder composition is not particularly defined, and the resin powder and inorganic fine particles are mixed by a known method.
  • a method of blending inorganic fine particles and simultaneously performing pulverization and mixing can also be employed.
  • a mixing method As a mixing method, a mixing method by shaking, a mixing method involving pulverization such as a ball mill or a coffee mill, a mixing method using a stirring blade such as a Nauter mixer or a Henschel mixer, or a mixing method for rotating a container such as a V-type mixer.
  • a method of drying after liquid phase mixing in a solvent, a mixing method of stirring by an air stream using a flash blender, a mixing method of spraying particles and / or slurry using an atomizer, etc. can be adopted. .
  • PAS resin powder composition A PAS resin powder composition in which inorganic fine particles are blended with a PAS resin powder is characterized by excellent powder flowability and low compression. Specifically, the angle of repose is 40 degrees or less according to a preferred aspect of the invention, 38 degrees or less according to a more preferred aspect, 35 degrees or less according to a more preferred aspect, and / or the degree of compression. However, according to a preferred embodiment of the invention, it is 7.5 or less, according to a more preferred embodiment, it is 6.5 or less, and according to a more preferred embodiment, a PAS resin powder composition is obtained that is 5.5 or less. .
  • the angle of repose and the degree of compression are values measured based on the measurement method of Carr's fluidity index (Non-patent Document 1).
  • Such a granular material is excellent in fluidity and difficult to be compacted by powder pressure, so troubles such as clogging during supply / discharge to a silo and blockage during pneumatic transportation are unlikely to occur.
  • the average particle size of the PAS resin granules was measured by using Nikkiso's laser diffraction / scattering particle size distribution analyzer MT3300EXII, and polyoxyethylene cumylphenyl ether (trade name: Nonal 912A, manufactured by Toho Chemical Co., Ltd., hereinafter referred to as Nonal 912A). ) was measured using a 0.5 mass% aqueous solution. Specifically, a cumulative curve is obtained by setting the total volume of fine particles obtained by analyzing laser scattered light by the microtrack method to 100%, and the particle size (median at which the cumulative curve from the small particle size side becomes 50% The diameter: d50) was defined as the average particle diameter of the PAS resin particles.
  • the average particle size of fumed silica randomly select 100 particles from an image magnified 100,000 times using an electron microscope, and measure the particle size using the maximum length as the particle size. The number average value was defined as the average particle size.
  • the average particle diameter of silica other than fumed silica was measured by the same method as that for PAS resin particles.
  • the uniformity of the PAS resin particles was defined as the d60 / d10 value of the particle size distribution measured using a Nikkiso laser diffraction / scattering particle size distribution analyzer MT3300EXII. The wider the particle size distribution, the greater the uniformity.
  • the obtained cake was dried at 120 ° C. under a nitrogen stream to obtain PAS-1.
  • the obtained PAS-1 had an average particle size of 1600 ⁇ m and a uniformity of 4.1.
  • the obtained cake was dried at 120 ° C. under a nitrogen stream to obtain PAS-2.
  • the obtained PAS-2 had an average particle size of 40 ⁇ m and a uniformity of 5.0.
  • PAS-1 was pulverized with a jet mill (100AFG manufactured by Hosokawa Micron Corporation) for 120 minutes to obtain a granular material having an average particle size of 40 ⁇ m and a uniformity of 1.6.
  • a jet mill 100AFG manufactured by Hosokawa Micron Corporation
  • the repose angle of the obtained granular material composition was 36 degrees, and the compression rate was 5.4%.
  • Example 2 A PAS resin powder was obtained in the same manner as in Example 1 except that the weight of the added inorganic fine particles was 3.0 g. The repose angle of the obtained granular material composition was 31 degrees, and the compression rate was 5.3%.
  • Example 3 A PAS resin powder was prepared in the same manner as in Example 1 except that the added inorganic fine particles were sol-gel spherical silica (X-24-9163A manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle diameter of 110 nm and surface-treated with hexamethyldisilazane. Granules were obtained. The repose angle of the obtained granular material composition was 35 degrees, and the compression rate was 5.5%.
  • sol-gel spherical silica X-24-9163A manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 1 A PAS resin powder was obtained in the same manner as in Example 1 except that the inorganic fine particles were not added.
  • the repose angle of the obtained granular material composition was 41 degrees, and the compression rate was 19.3%.
  • Example 2 A PAS resin powder was obtained in the same manner as in Example 1 except that the added inorganic fine particles were fumed silica (EVERIK AEROSIL 380) having an average particle diameter of 7 nm.
  • the repose angle of the obtained granular material composition was 34 degrees, and the compression rate was 7.6%.
  • PAS-2 was pulverized with a jet mill (100AFG manufactured by Hosokawa Micron Corporation) for 60 minutes to obtain a granular material having an average particle size of 15 ⁇ m and a uniformity of 3.2.
  • a jet mill 100AFG manufactured by Hosokawa Micron Corporation
  • the repose angle of the obtained granular composition was 39 degrees, and the compression rate was 7.2%.
  • Example 5 A PAS resin powder was obtained in the same manner as in Example 4 except that the added inorganic fine particles were sol-gel spherical silica (X-24-9163A manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle diameter of 110 nm and surface-treated with hexamethyldisilazane. Granules were obtained. The repose angle of the obtained granular composition was 39 degrees, and the compression rate was 7.2%.
  • sol-gel spherical silica X-24-9163A manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 3 A PAS resin powder was obtained in the same manner as in Example 4 except that the added inorganic fine particle was fumed silica having an average particle diameter of 7 nm (AEROSIL 380 manufactured by Nippon Aerosil Co., Ltd.). The repose angle of the obtained granular material composition was 37 degrees, and the compression rate was 9.3%.
  • AEROSIL 380 manufactured by Nippon Aerosil Co., Ltd.
  • PAS-2 powder particles were obtained in the same manner as in Example 4 except that PAS-2 was not pulverized.
  • the repose angle of the obtained granular composition was 47 degrees, and the compression rate was 16.1%.
  • the polyarylene sulfide resin particles obtained by the present invention have excellent powder flowability and thus are excellent in handling properties and are suitably used as molding materials such as injection molding and extrusion molding. Furthermore, since the polyarylene sulfide resin particles obtained by the present invention have a fine particle size and good powder fluidity, good surface smoothness when used as powder coating matrix particles. And when used as a matrix resin of a carbon fiber reinforced resin, good impregnation can be obtained, so that it can be particularly preferably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

平均粒径が小さく、粉体流動性に優れかつ圧縮度の低いポリアリーレンスルフィド樹脂粉粒体組成物を効率よく提供する。 平均粒径が1μmを超え100μm以下であり、均一度が4以下であるポリアリーレンスルフィド樹脂粉粒体100重量部に、平均粒径20nm以上500nm以下の無機微粒子を0.1~5重量部配合したポリアリーレンスルフィド樹脂粉粒体組成物である。

Description

ポリアリーレンスルフィド樹脂粉粒体組成物およびその製造方法
本発明は、平均粒径が小さく、粉体流動性に優れかつ圧縮度の低いポリアリーレンスルフィド樹脂粉粒体組成物に関するものである。
 ポリフェニレンスルフィド(以下PPSと略すことがある。)に代表されるポリアリーレンスルフィド(以下PASと略すことがある。)は、優れた耐熱性、バリア性、耐薬品性、電気絶縁性、耐湿熱性などエンジニアリングプラスチックとしては好適な性質を有しており、射出成形、押出成形用途を中心として各種電気・電子部品、機械部品および自動車部品、フィルム、繊維などに使用されている。
 このような優れたPAS樹脂の粉粒体を各種成型加工・コーティング剤・耐熱添加剤として用途展開する需要は高く、PAS樹脂粉粒体を製造する方法は下記に示すいくつかの方法が提案されている。
 特許文献1では、PPSを島とし他の熱可塑性ポリマーを海として溶融混練し、海島構造の樹脂組成物を形成した後、海相を溶解洗浄してPPS樹脂粉粒体を得ている。また、特許文献2では、PPSを高温の溶媒に溶解させ、冷却・析出させることによりPPS樹脂粉粒体を得ている。
 また、樹脂粉粒体の流動性を改善する方法としては、特許文献3に記載されているように無機微粒子を添加することにより粒子間距離を広げ、粒子同士の相互作用を緩和する方法がある。
特開平10-273594号公報 特開2007-154166号公報 特開2013-166667号公報
粉体工学会編、「粉体工学用語辞典」、第2版、日刊工業新聞社、2000年3月30日、P.56-57
しかしながら、特許文献3に記載されている方法では、サイロやホッパーの下部における圧縮による流動性の悪化を解消することは困難である。
 PAS樹脂粉粒体はその高い電気絶縁性から静電気による凝集を起こし易く流動性が優れないため、製造工程においてサイロ等における供給・排出時のトラブルが頻発する問題がある。また、PAS樹脂粉粒体は圧縮度が高く、サイロやホッパーの下部では粉体圧により圧縮されて嵩密度が増加し更なる流動性の低下を引き起こす。
 特に、特許文献1や2の方法で得たPPS樹脂粉粒体は粒径が小さいために近傍の粒子と接触する面積が大きくなり、静電気による粒子同士の凝集を起こしやすく流動性が悪い。
 本発明は、平均粒径が小さく、粉体流動性に優れかつ圧縮度の低いポリアリーレンスルフィド樹脂粉粒体を効率よく得ることを課題として検討した結果達成されたものである。
 本発明は、かかる課題を解決すべく鋭意検討を行った結果、下記発明に至った。
 すなわち、本発明は、以下のとおりである。
(1)平均粒径が1μmを超え100μm以下であり、均一度が4以下であるポリアリーレンスルフィド樹脂粉粒体100重量部に、平均粒径20nm以上500nm以下の無機微粒子を0.1~5重量部配合したポリアリーレンスルフィド樹脂粉粒体組成物。
(2)前記無機微粒子が球状シリカ微粒子であることを特徴とする(1)記載のポリアリーレンスルフィド樹脂粉粒体組成物。
(3)ポリアリーレンスルフィド樹脂粉粒体の平均粒径が10以上50μm以下である(1)または(2)記載のポリアリーレンスルフィド樹脂粉粒体組成物。
(4)平均粒径が40μm以上2mm以下のポリアリーレンスルフィド樹脂粒子を粉砕して得られる、平均粒径が1μmを超え100μm以下であり、均一度が4以下であるポリアリーレンスルフィド樹脂粉粒体に無機微粒子を配合することを特徴とする(1)~(3)のいずれか記載のポリアリーレンスルフィド樹脂粉粒体組成物の製造方法。
(5)粉砕が乾式粉砕であることを特徴とする(4)記載のポリアリーレンスルフィド樹脂粉粒体組成物の製造方法。
 本発明によれば、平均粒径が小さく、粉体流動性に優れかつ圧縮度の低いポリアリーレンスルフィド樹脂粉粒体組成物を効率よく得ることができる。
 [PAS樹脂]
 本発明におけるPASとは、式、-(Ar-S)-の繰り返し単位を主要構成単位とする、好ましくは当該繰り返し単位を80モル%以上含有するホモポリマーまたはコポリマーである。Arは結合手が芳香環に存在する芳香環を含む基であり、下記の式(A)~式(L)などで表される二価の繰り返し単位などが例示されるが、なかでも式(A)で表される繰り返し単位が特に好ましい。
Figure JPOXMLDOC01-appb-C000001
(ただし、式中のR1,R2は水素、炭素数1から6のアルキル基、炭素数1から6のアルコキシ基およびハロゲン基から選ばれた置換基であり、R1とR2は同一でも異なっていてもよい。)
 また、本発明におけるPASは上記繰り返し単位を含むランダム共重合体、ブロック共重合体及びそれらの混合物のいずれかであってもよい。
 これらの代表的なものとして、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトン、これらのランダム共重合体、ブロック共重合体及びそれらの混合物などが挙げられる。特に好ましいPASとしては、ポリマーの主要構成単位としてp-フェニレンスルフィド単位を80モル%以上、特に90モル%以上含有するポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトンが挙げられる。
 本発明でいうPASは種々の方法、例えば、特公昭45-3368号公報に記載される比較的分子量の小さな重合体を得る方法、あるいは、特公昭52-12240号公報や特開昭61-7332号公報に記載される比較的分子量の大きい重合体を得る方法などによって製造することができる。本発明において、得られたPPS樹脂を、空気中加熱による架橋/高分子量化、窒素などの不活性ガス雰囲気下あるいは減圧下での熱処理、有機溶媒、熱水および酸水溶液などによる洗浄、酸無水物、アミン、イソシアネートおよび官能基ジスルフィド化合物などの官能基含有化合物による活性化など、種々の処理を施した上で使用することも可能である。
本発明に使用するPAS樹脂粒子は、特に制限されるものではなく、上記手法で得られる重合体をPAS樹脂粒子とすることもできるし、PAS樹脂をペレットや繊維、フィルムに成型したものなどからPAS樹脂粒子を得ることも出来る。ここでPAS樹脂粒子とは、本発明に好適な粒径範囲のPAS樹脂および本発明に好適な粒径範囲よりも大きな粒径のPAS樹脂を示す。また、使用するPAS樹脂粒子の形態に応じて後述する粉砕処理を行うことができる。また、溶媒に原材料を溶解させた後にスプレードライする方法、溶媒中でエマルションを形成した後で貧溶媒に接触させる貧溶媒析出法、溶媒中でエマルションを形成した後で有機溶媒を乾燥除去する液中乾燥法、粒子化したい樹脂成分とそれとは異なる樹脂成分とを機械的に混練することにより海島構造を形成させ、その後に海成分を溶媒で除去する強制溶融混練法も挙げられる。
 [粉砕処理]
 本発明においては、平均粒径が大きいPAS樹脂粒子や、均一度が大きい(均一でない)PAS樹脂粒子を原料として、粉砕処理を行うことで本発明に適する粉粒体を得ることが出来る。
 粉砕処理の方法に特に制限は無く、ジェットミル、ビーズミル、ハンマーミル、ボールミル、サンドミル、ターボミル、冷凍粉砕が挙げられる。好ましくは、ターボミル、ジェットミル、冷凍粉砕などの乾式粉砕である。
 粉砕前のPAS樹脂粒子の平均粒径は特に制限はないが、一般的な製造法に用いられる技術で製造されるPAS樹脂粒子は平均粒径が40μm以上10mm以下程度である。粉砕前の粒径が大きいと粉砕に要する時間が長くなるため40μm以上2mm以下のPAS樹脂粒子を原料とすることが好ましい。
 本発明では、必要に応じて粉砕処理を行うことで、平均粒径が1μmを超え100μm以下となったPAS樹脂粉粒体を用いる。PAS樹脂粉粒体の平均粒径の好ましい下限は3μmであり、より好ましくは5μmであり、さらに好ましくは8μmであり、特に好ましくは10μmであり、著しく好ましくは13μmであり、最も好ましくは15μmである。また、好ましい平均粒径の上限は75μmであり、より好ましくは、70μmであり、さらに好ましくは65μmであり、特に好ましくは60μmであり、著しく好ましくは55μmであり、最も好ましくは50μmである。
 一般的な製造方法で製造したPAS樹脂は粒度分布が広く、均一度が大きく5以上であるが、粉砕処理を行うことで粒度分布を均一にすることができる。均一度が小さい粉粒体は粉体圧がかかった際の圧縮度が低くなるため、本発明のPAS樹脂粉粒体の均一度は4以下である。PAS樹脂粉粒体の均一度は、好ましくは3.2以下であり、より好ましくは3.0以下であり、さらに好ましくは3以下であり、特に好ましくは2.5以下であり、著しく好ましくは2以下である。均一度の下限は、理論的には1であるが、現実的には1.1以上が好ましく、より好ましくは1.15以上であり、さらに好ましくは1.2以上であり、特に好ましくは1.3以上であり、著しく好ましくは1.4以上である。PAS樹脂粉粒体の均一度が4を超える場合は、たとえ平均粒径が適切な範囲であっても、圧縮度が大きく、本発明の効果を奏することが出来ない。
 本発明におけるPAS樹脂粒子またはPAS樹脂粉粒体の平均粒径とは、ミー(Mie)の散乱・回折理論に基づくレーザー回折式粒度分布計にて測定される粒度分布の小粒径側からの累積度数が50%となる粒径(d50)である。
 また、本発明におけるPAS樹脂粉粒体の均一度は、上記方法により測定した粒度分布の小粒径側からの累積度数が60%となる粒径(d60)を小粒径側からの累積度数が10%となる粒径(d10)で除した値である。
 [無機微粒子添加] 
 本発明において、ポリアリーレンスルフィド樹脂粉粒体の流動性を改善するために無機微粒子を添加することが重要である。PAS樹脂粉粒体の流動性は、粒径が小さいと近傍の粒子との相互作用により悪化するが、PAS樹脂粉粒体よりも粒径の小さな無機微粒子を添加することで粒子間距離を広げ、流動性を改善することができる。
 本発明で、PAS樹脂粉粒体に添加する無機微粒子は、平均粒径が20nm以上500nm以下のものを用いる。ここで、平均粒径は、上記のPAS樹脂粒子またはPAS樹脂粉粒体の平均粒径と同様の方法で測定した値である。
 無機微粒子の平均粒径の上限は、400nmが好ましく、さらに好ましくは300nmであり、より好ましくは200nmであり、特に好ましくは150nmであり、著しく好ましくは100nmである。下限は、20nmが好ましく、さらに好ましくは30nmであり、より好ましくは40nmであり、特に好ましくは50nmである。無機微粒子の平均粒径が500nmを超えると、PAS樹脂粉粒体組成物の流動性を向上させる効果が十分でない。また、無機微粒子の平均粒径が20nmを下回る場合は、流動性の向上効果は得られるが、PAS樹脂粉粒体組成物の圧縮度を下げる効果が得られにくい。
 添加する無機微粒子としては、上記平均粒径のものを使用することができ、好ましくは、軽質炭酸カルシウム、重質炭酸カルシウム、微粉化炭酸カルシウム、特殊カルシウム系充填剤などの炭酸カルシウム粉末;霞石閃長石微粉末、モンモリロナイト、ベントナイト等の焼成クレー、シラン改質クレーなどのクレー(ケイ酸アルミニウム粉末);タルク;溶融シリカ、結晶シリカ、アモルファスシリカなどのシリカ(二酸化ケイ素)粉末;ケイ藻土、ケイ砂などのケイ酸含有化合物;軽石粉、軽石バルーン、スレート粉、雲母粉などの天然鉱物の粉砕品;アルミナ(酸化アルミニウム)、アルミナコロイド(アルミナゾル)、アルミナホワイト、硫酸アルミニウムなどのアルミナ含有化合物;硫酸バリウム、リトポン、硫酸カルシウム、二硫化モリブデン、グラファイト(黒鉛)などの鉱物;ガラス繊維、ガラスビーズ、ガラスフレーク、発泡ガラスビーズなどのガラス系フィラー;フライアッシュ球、火山ガラス中空体、合成無機中空体、単結晶チタン酸カリ、カーボン繊維、カーボンナノチューブ、炭素中空球、炭素64フラーレン、無煙炭粉末、人造氷晶石(クリオライト)、酸化チタン、酸化マグネシウム、塩基性炭酸マグネシウム、ドロマイト、チタン酸カリウム、亜硫酸カルシウム、マイカ、アスベスト、ケイ酸カルシウム、アルミニウム粉、硫化モリブデン、ボロン繊維、炭化ケイ素繊維などが挙げられるが、さらに好ましくは炭酸カルシウム粉末、シリカ粉末、アルミナ含有化合物、ガラス系フィラーが挙げられる。特に好ましくはシリカ粉末が挙げられるが、中でも人体への有害性の小さいアモルファスシリカ粉末が工業上極めて好ましい。
本発明における無機微粒子の形状は、球状、多孔状、中空状、不定形状などがあり特に定めるものではないが、良好な流動性を示すことから中でも球状であることが好ましい。
この場合、球状とは真球だけでなく、歪んだ球も含む。なお、無機微粒子の形状は、粒子を二次元に投影した時の円形度で評価する。ここで円形度とは、(投影した粒子像の面積と等しい円の周囲長)/(投影した粒子の周囲長)である。無機微粒子の平均円形度は、0.7以上1以下が好ましく、0.8以上1以下がより好ましい、さらに好ましくは0.9以上1以下が好ましい。
シリカ粉末は、その製法によって、シラン化合物を燃焼させて得られる燃焼法シリカ(即ち、フュームドシリカ)、金属珪素粉を爆発的に燃焼させて得られる爆燃法シリカ、珪酸ナトリウムと鉱酸との中和反応によって得られる湿式シリカ(このうち、アルカリ条件で合成し凝集させたものを沈降法シリカ、酸性条件で合成し凝集させたものをゲル法シリカという)、珪酸ナトリウムからイオン交換樹脂で脱ナトリウムして得られた酸性珪酸をアルカリ性にして重合することで得られるコロイダルシリカ(シリカゾル)、シラン化合物の加水分解によって得られるゾルゲル法シリカなどに大別できるが、本発明の効果を得るためには、ゾルゲル法シリカが好ましい。
すなわち、無機微粒子の中でもシリカが好ましく、さらに好ましくはゾルゲル法シリカおよび/または球状シリカ、なかでもゾルゲル法球状シリカが最も好ましい。
さらに好ましくはシラン化合物やシラザン化合物等で表面を疎水化処理したものが用いられる。表面を疎水化処理することにより、無機微粒子同士の凝集を抑制し、無機微粒子のPAS樹脂粉粒体への分散性が向上する。前記シラン化合物は、例えばメチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ヘキシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン等の非置換若しくはハロゲン置換のトリアルコキシシラン等、好ましくは、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン及びエチルトリエトキシシラン、より好ましくは、メチルトリメトキシシラン及びメチルトリエトキシシラン、またはこれらの部分加水分解縮合生成物が挙げられる。また、前記シラザン化合物としては、例えば、ヘキサメチルジシラザン、ヘキサエチルジシラザン等、好ましくはヘキサメチルジシラザンが挙げられる。1官能性シラン化合物としては、例えば、トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物;トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン;トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン;トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミン等のモノアミノシラン;トリメチルアセトキシシラン等のモノアシルオキシシランが挙げられ、好ましくは、トリメチルシラノール、トリメチルメトキシシラン又はトリメチルシリルジエチルアミン、特に好ましくは、トリメチルシラノール又はトリメチルメトキシシランが挙げられる。
 これらの無機微粒子は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 無機微粒子の配合量は、PAS樹脂粉粒体100重量部に対し、0.1重量部以上5重量部以下である。配合料の上限は、好ましくは4重量部、より好ましくは3重量部、さらに好ましくは2重量部、特に好ましくは1重量部である。
また、配合量の下限は、0.2重量部が好ましく、0.3重量部がより好ましく、0.4重量部がさらに好ましい。
 [PAS樹脂粉粒体組成物の製造方法]
 本発明では、前記のPAS樹脂粉粒体に、無機微粒子を配合する。均一な樹脂粉粒体組成物とするための方法としては特に定めるものではなく、樹脂粉粒体と無機微粒子を公知の方法で混合する。前述した粉砕処理を行う際に、無機微粒子を配合して、粉砕と混合を同時に行う方法も採用できる。
 混合の方法としては、振とうによる混合方法、ボールミル、コーヒーミルなどの粉砕を伴う混合方法、ナウターミキサーやヘンシェルミキサーなどの攪拌翼による混合方法、V型混合機などの容器ごと回転させる混合方法、溶媒中での液相混合した後に乾燥する方法、フラッシュブレンダーなどを使用して気流によって攪拌する混合方法、アトマイザーなどを使用して粉粒体および/またはスラリーを噴霧する混合方法などが採用できる。
 [PAS樹脂粉粒体組成物]
 PAS樹脂粉粒体に無機微粒子を配合したPAS樹脂粉粒体組成物は、粉体流動性に優れ、圧縮度が低い特徴を有する。具体的には、安息角が発明の好ましい様態によれば40度以下であり、より好ましい様態によれば38度以下であり、さらに好ましい様態によれば35度以下である、および/または圧縮度が発明の好ましい様態によれば7.5以下であり、より好ましい様態によれば6.5以下であり、さらに好ましい様態によれば5.5以下であるPAS樹脂粉粒体組成物が得られる。
 本発明における安息角および圧縮度とは、Carrの流動性指数の測定方法に基づいて測定した値である(非特許文献1)。
 このような粉粒体は流動性に優れるとともに、粉体圧による圧密化が起こりづらいため、サイロなどへの供給・排出時の詰まりや空気輸送での閉塞などのトラブルが発生しにくい。
 以下、本発明の方法を実施例及び比較例により更に具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。なお、各種測定法は以下の通りである。
 [平均粒径]
 PAS樹脂粉粒体の平均粒径は日機装製レーザー回折・散乱方式粒度分布測定装置MT3300EXIIを用い、分散媒としてポリオキシエチレンクミルフェニルエーテル(商品名ノナール912A 東邦化学工業製 以後、ノナール912Aと称す)の0.5質量%水溶液を用いて測定した。具体的にはマイクロトラック法によるレーザーの散乱光を解析して得られる微粒子の総体積を100%として累積カーブを求め、小粒径側からの累積カーブが50%となる点の粒径(メジアン径:d50)をPAS樹脂粉粒体の平均粒径とした。
 フュームドシリカの平均粒径の測定には、電子顕微鏡を用いて10万倍に拡大した画像から、無作為に任意の100個の粒子を選び、最大長さを粒径として粒径を測長し、その数平均値を平均粒径とした。フュームドシリカ以外のシリカの平均粒径の測定は、PAS樹脂粉粒体と同様の方法で行った。
 [均一度]
 PAS樹脂粉粒体の均一度は、日機装製レーザー回折・散乱方式粒度分布測定装置MT3300EXIIを用いて測定した粒径分布のd60/d10の値をPAS樹脂粉粒体の均一度とした。粒度分布が広いほど均一度は大きくなる。
 [安息角]
 PAS樹脂粉粒体またはPAS樹脂粉粒体組成物の安息角は、ホソカワミクロン製パウダーテスターPT-N型を用いて測定した。
 [圧縮度]
 PAS樹脂粉粒体またはPAS樹脂粉粒体組成物の圧縮度は、ホソカワミクロン製パウダーテスターPT-N型を用いて測定したゆるめ嵩密度と固め嵩密度から以下の式で算出した。
 圧縮度=(固め嵩密度-ゆるめ嵩密度)/固め嵩密度×100
 [製造例1]
 撹拌機付きの1リットルオートクレーブに、47%水硫化ナトリウム1.00モル、46%水酸化ナトリウム1.05モル、N-メチル-2-ピロリドン(NMP)1.65モル、酢酸ナトリウム0.45モル、及びイオン交換水5.55モルを仕込み、常圧で窒素を通じながら225℃まで約2時間かけて徐々に加熱し、水11.70モルおよびNMP0.02モルを留出したのち、反応容器を160℃に冷却した。また、硫化水素の飛散量は0.01モルであった。
 次に、p-ジクロロベンゼン(p-DCB)1.02モル、NMP1.32モルを加え、反応容器を窒素ガス下に密封した。その後、400rpmで撹拌しながら、200℃から240℃まで90分、240℃から270℃まで30分かけて二段階で昇温した。270℃到達10分経過後に水0.75モルを15分かけて系内に注入した。270℃で120分経過後、200℃まで1.0℃/分の速度で冷却し、その後室温近傍まで急冷して内容物を取り出した。
 内容物を取り出し、0.5リットルのNMPで希釈後、溶剤と固形物をふるい(80mesh)で濾別し、得られた粒子を1リットルの温水で数回洗浄、濾別してケークを得た。
 得られたケークを窒素気流下、120℃で乾燥することにより、PAS-1を得た。得られたPAS-1の平均粒径は1600μm、均一度は4.1であった。
 [製造例2]
 攪拌機付きの1リットルオートクレーブに、47%水硫化ナトリウム1.00モル、48%水酸化ナトリウム1.04モル、N-メチル-2-ピロリドン(NMP)2.12モル、及びイオン交換水5.55モルを仕込み、常圧で窒素を通じながら225℃まで約2時間かけて徐徐に加熱し、水11.70モルおよびNMP0.02モルを留出したのち、反応容器を160℃に冷却した。また、硫化水素の飛散量は0.01モルであった。
 次に、p-ジクロロベンゼン(p-DCB)1.03モル、NMP0.76モルを加え、反応容器を窒素ガス下に密封した。その後、400rpmで撹拌しながら、200℃から270℃まで125分かけて昇温し、276℃で65分保持したのち、室温近傍まで急冷して内容物を取り出した。
 得られた固形物およびイオン交換水750ミリリットルを撹拌機付きオートクレーブに入れ、70℃で30分洗浄した後、ガラスフィルターで吸引濾過した。次いで70℃に加熱した4リットルのイオン交換水をガラスフィルターに注ぎ込み、吸引濾過してケークを得た。
 得られたケークおよびイオン交換水600リットルとポリアリーレンスルフィドに対して0.17%の酢酸カルシウム・1水和物を加え、撹拌機付きオートクレーブに仕込み、オートクレーブ内部を窒素で置換した後、190℃まで昇温し、30分保持した。その後オートクレーブを冷却して内容物を取り出した。
 内容物をガラスフィルターで吸引濾過した後、これに70℃のイオン交換水500ミリリットルを注ぎ込み吸引濾過してケークを得た。
 得られたケークを窒素気流下、120℃で乾燥することにより、PAS-2を得た。得られたPAS-2の平均粒径は40μm、均一度は5.0であった。
 [実施例1]
 PAS-1をジェットミル(ホソカワミクロン製100AFG)で120分間粉砕し、平均粒径40μm、均一度1.6の粉粒体を得た。この粉粒体100gに対してヘキサメチルジシラザンで表面処理した平均粒径50nmのゾルゲル法球状シリカ(信越化学工業株式会社製X-24-9404)を0.5g添加し、振とうにより混合した。得られた粉粒体組成物の安息角は36度、圧縮率は5.4%であった。
 [実施例2]
 添加した無機微粒子の重量が3.0gである以外は実施例1と同様にして、PAS樹脂粉粒体を得た。得られた粉粒体組成物の安息角は31度、圧縮率は5.3%であった。
 [実施例3]
 添加した無機微粒子がヘキサメチルジシラザンで表面処理した平均粒径110nmのゾルゲル法球状シリカ(信越化学工業株式会社製X-24-9163A)である以外は実施例1と同様にして、PAS樹脂粉粒体を得た。得られた粉粒体組成物の安息角は35度、圧縮率は5.5%であった。
  [比較例1]
 無機微粒子を添加しなかったこと以外は実施例1と同様にして、PAS樹脂粉粒体を得た。得られた粉粒体組成物の安息角は41度、圧縮率は19.3%であった。
 [比較例2]
 添加した無機微粒子が平均粒径7nmのフュームドシリカ(EVONIK製AEROSIL380)である以外は実施例1と同様にして、PAS樹脂粉粒体を得た。得られた粉粒体組成物の安息角は34度、圧縮率は7.6%であった。
 [実施例4]
 PAS-2をジェットミル(ホソカワミクロン製100AFG)で60分間粉砕し、平均粒径15μm、均一度3.2の粉粒体を得た。この粉粒体100gに対してヘキサメチルジシラザンで表面処理した平均粒径50nmのゾルゲル法球状シリカ(信越化学工業株式会社製X-24-9404)を0.5g添加し、振とうにより混合した。得られた粉粒体組成物の安息角は39度、圧縮率は7.2%であった。
 [実施例5]
 添加した無機微粒子がヘキサメチルジシラザンで表面処理した平均粒径110nmのゾルゲル法球状シリカ(信越化学工業株式会社製X-24-9163A)である以外は実施例4と同様にして、PAS樹脂粉粒体を得た。得られた粉粒体組成物の安息角は39度、圧縮率は7.2%であった。
 [比較例3]
 添加した無機微粒子が平均粒径7nmのフュームドシリカ(日本アエロジル製AEROSIL380)である以外は実施例4と同様にして、PAS樹脂粉粒体を得た。得られた粉粒体組成物の安息角は37度、圧縮率は9.3%であった。
 [比較例4]
 PAS-2の粉砕を行わなかったことは実施例4と同様にして、PAS樹脂粉粒体を得た。得られた粉粒体組成物の安息角は47度、圧縮率は16.1%であった。
 [比較例5]
 無機微粒子を添加しなかったこと以外は比較例4と同様にして、PAS樹脂粉粒体を得た。得られた粉粒体組成物の安息角は48度、圧縮率は19.7%であった。
Figure JPOXMLDOC01-appb-T000002
本発明により得られるポリアリーレンスルフィド樹脂粉粒体は、良好な粉体流動性を有するためハンドリング性に優れ、射出成形や押出成形などの成形材料として好適に用いられる。さらに、本発明により得られるポリアリーレンスルフィド樹脂粉粒体は、粒径が微細であり、かつ、良好な粉体流動性を有するため、粉体塗料母体粒子として用いる場合には良好な表面平滑性が得られ、炭素繊維強化樹脂のマトリックス樹脂として用いる場合には良好な含浸性が得られるため、特に好適に用いることができる。

Claims (5)

  1. 平均粒径が1μmを超え100μm以下であり、均一度が4以下であるポリアリーレンスルフィド樹脂粉粒体100重量部に、平均粒径20nm以上500nm以下の無機微粒子を0.1~5重量部配合したポリアリーレンスルフィド樹脂粉粒体組成物。
  2. 前記無機微粒子が球状シリカ微粒子であることを特徴とする請求項1記載のポリアリーレンスルフィド樹脂粉粒体組成物。
  3. ポリアリーレンスルフィド樹脂粉粒体の平均粒径が10μm以上50μm以下である請求項1または2記載のポリアリーレンスルフィド樹脂粉粒体組成物。
  4. 請求項1~3のいずれか1項記載のポリアリーレンスルフィド樹脂粉粒体組成物の製造方法であって、平均粒径が40μm以上2mm以下のポリアリーレンスルフィド樹脂粒子を粉砕して得られる、平均粒径が1μmを超え100μm以下であり、均一度が4以下であるポリアリーレンスルフィド樹脂粉粒体に無機微粒子を配合することを特徴とするポリアリーレンスルフィド樹脂粉粒体組成物の製造方法。
  5. 粉砕が乾式粉砕であることを特徴とする請求項4記載のポリアリーレンスルフィド樹脂粉粒体組成物の製造方法。
PCT/JP2015/053971 2014-02-25 2015-02-13 ポリアリーレンスルフィド樹脂粉粒体組成物およびその製造方法 WO2015129487A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US15/120,816 US9862804B2 (en) 2014-02-25 2015-02-13 Polyarylene sulfide resin powder/grain composition and method of producing same
ES15755789.3T ES2690450T3 (es) 2014-02-25 2015-02-13 Resina de composición de poli(sulfuro de arileno) en forma de polvo/grano y método para producirla
JP2015512945A JP5839148B1 (ja) 2014-02-25 2015-02-13 ポリアリーレンスルフィド樹脂粉粒体組成物およびその製造方法
KR1020167010928A KR101754047B1 (ko) 2014-02-25 2015-02-13 폴리아릴렌술피드 수지 분립체 조성물 및 그의 제조 방법
CN201580002098.7A CN105612218B (zh) 2014-02-25 2015-02-13 聚芳撑硫醚树脂粉粒体组合物及其制造方法
CA2927426A CA2927426C (en) 2014-02-25 2015-02-13 Polyarylene sulfide resin powder/grain composition and method for producing same
MX2016011057A MX2016011057A (es) 2014-02-25 2015-02-13 Composicion en polvo/grano de resina de sulfuro de poliarileno y metodo para producir la misma.
EP15755789.3A EP3112424B1 (en) 2014-02-25 2015-02-13 Polyarylene sulfide resin powder/grain composition and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-034174 2014-02-25
JP2014034174 2014-02-25

Publications (1)

Publication Number Publication Date
WO2015129487A1 true WO2015129487A1 (ja) 2015-09-03

Family

ID=54008810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053971 WO2015129487A1 (ja) 2014-02-25 2015-02-13 ポリアリーレンスルフィド樹脂粉粒体組成物およびその製造方法

Country Status (9)

Country Link
US (1) US9862804B2 (ja)
EP (1) EP3112424B1 (ja)
JP (1) JP5839148B1 (ja)
KR (1) KR101754047B1 (ja)
CN (1) CN105612218B (ja)
CA (1) CA2927426C (ja)
ES (1) ES2690450T3 (ja)
MX (1) MX2016011057A (ja)
WO (1) WO2015129487A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126484A1 (ja) * 2016-01-20 2017-07-27 東レ株式会社 ポリアリーレンスルフィド樹脂粉粒体およびその製造方法
WO2018074353A1 (ja) * 2016-10-21 2018-04-26 東レ株式会社 ポリアリーレンスルフィド樹脂粉粒体混合物および三次元造形物の製造方法
WO2020022439A1 (ja) * 2018-07-27 2020-01-30 ポリプラスチックス株式会社 熱プレス成形品用複合材料及び熱プレス成形品
US20210276252A1 (en) * 2018-07-12 2021-09-09 Solvay Specialty Polymers Usa, Llc Method for manufacturing a three-dimensional object from a poly(arylene sulfide) polymer
US20210292481A1 (en) * 2018-07-12 2021-09-23 Solvay Specialty Polymers Usa, Llc Method for manufacturing a three-dimensional object from a poly(arylene sulfide) polymer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6638257B2 (ja) * 2015-08-24 2020-01-29 東レ株式会社 ポリアリーレンスルフィド樹脂粉粒体混合物
JP7071235B2 (ja) * 2018-07-03 2022-05-18 ポリプラスチックス株式会社 多孔質成形体及びその製造方法
JP7502314B2 (ja) * 2019-09-27 2024-06-18 株式会社カネカ 粉粒体および粉粒体の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135451A (ja) * 1986-11-27 1988-06-07 Tousoo Sasuteiile Kk ポリ(p―フェニレンスルフィド)の硬化方法
JPH01254765A (ja) * 1988-04-05 1989-10-11 Tosoh Corp ポリアリーレンスルフィド樹脂組成物の製造法
JP2002332351A (ja) * 2001-05-10 2002-11-22 Toray Ind Inc ポリアリーレンスルフィド樹脂およびその製造方法
JP2007154166A (ja) * 2005-11-09 2007-06-21 Toray Ind Inc ポリアリーレンサルファイド微粒子、その製造方法及び分散液
JP2009173878A (ja) * 2007-12-27 2009-08-06 Toray Ind Inc ポリフェニレンサルファイド微粒子、その分散液、およびそれらの製造方法
JP2010065089A (ja) * 2008-09-09 2010-03-25 Toray Ind Inc ポリアリーレンスルフィド樹脂組成物、ポリアリーレンスルフィドフィルムおよびコンデンサ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354129A (en) 1963-11-27 1967-11-21 Phillips Petroleum Co Production of polymers from aromatic compounds
US3322834A (en) 1963-11-27 1967-05-30 Phillips Petroleum Co Process for production of diaryl and di(alkaryl) sulfides
JPS453368B1 (ja) 1964-11-27 1970-02-04
US3919177A (en) 1973-11-19 1975-11-11 Phillips Petroleum Co P-phenylene sulfide polymers
JPS617332A (ja) 1984-06-20 1986-01-14 Kureha Chem Ind Co Ltd 高分子量ポリアリ−レンスルフイドの製造法
EP0482608B1 (en) * 1990-10-26 1994-07-27 The Furukawa Electric Co., Ltd. A polyphenylenesulfide composition for powder coating
JP2934082B2 (ja) 1990-10-26 1999-08-16 古河電気工業株式会社 粉体塗装用ポリフェニレンスルフィド組成物
JP2871949B2 (ja) * 1992-04-20 1999-03-17 古河電気工業株式会社 ポリフェニレンスルフィド樹脂系粉体塗料組成物
JPH10273594A (ja) 1997-03-28 1998-10-13 Dainippon Ink & Chem Inc ポリフェニレンスルフィド球状微粉末及びその製造方法
US8648142B2 (en) * 2004-12-21 2014-02-11 Polyplastics Co., Ltd. Poly (arylene sulfide) resin composition and production process thereof
CN101857770B (zh) * 2010-05-27 2012-10-10 北京航空航天大学 用于输送地热水金属管的疏水涂层材料及其一步成膜制疏水涂层的方法
JP5724401B2 (ja) 2011-01-19 2015-05-27 富士ゼロックス株式会社 樹脂粒子及びその製造方法
JP5644789B2 (ja) 2012-02-15 2014-12-24 信越化学工業株式会社 粉体組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135451A (ja) * 1986-11-27 1988-06-07 Tousoo Sasuteiile Kk ポリ(p―フェニレンスルフィド)の硬化方法
JPH01254765A (ja) * 1988-04-05 1989-10-11 Tosoh Corp ポリアリーレンスルフィド樹脂組成物の製造法
JP2002332351A (ja) * 2001-05-10 2002-11-22 Toray Ind Inc ポリアリーレンスルフィド樹脂およびその製造方法
JP2007154166A (ja) * 2005-11-09 2007-06-21 Toray Ind Inc ポリアリーレンサルファイド微粒子、その製造方法及び分散液
JP2009173878A (ja) * 2007-12-27 2009-08-06 Toray Ind Inc ポリフェニレンサルファイド微粒子、その分散液、およびそれらの製造方法
JP2010065089A (ja) * 2008-09-09 2010-03-25 Toray Ind Inc ポリアリーレンスルフィド樹脂組成物、ポリアリーレンスルフィドフィルムおよびコンデンサ

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126484A1 (ja) * 2016-01-20 2017-07-27 東レ株式会社 ポリアリーレンスルフィド樹脂粉粒体およびその製造方法
JP6256818B2 (ja) * 2016-01-20 2018-01-10 東レ株式会社 ポリアリーレンスルフィド樹脂粉粒体およびその製造方法
JPWO2017126484A1 (ja) * 2016-01-20 2018-01-25 東レ株式会社 ポリアリーレンスルフィド樹脂粉粒体およびその製造方法
US11008426B2 (en) 2016-01-20 2021-05-18 Toray Industries, Inc. Polyarylene sulfide resin particulate and method of producing same
CN108368275A (zh) * 2016-01-20 2018-08-03 东丽株式会社 聚芳撑硫醚树脂粉粒体及其制造方法
CN108368275B (zh) * 2016-01-20 2019-06-21 东丽株式会社 聚芳撑硫醚树脂粉粒体及其制造方法
JPWO2018074353A1 (ja) * 2016-10-21 2019-08-22 東レ株式会社 ポリアリーレンスルフィド樹脂粉粒体混合物および三次元造形物の製造方法
EP3530701A4 (en) * 2016-10-21 2020-05-27 Toray Industries, Inc. MIXTURE OF POLYARYLENE SULFIDE RESIN PARTICLES, AND METHOD FOR MANUFACTURING THREE-DIMENSIONAL MOLDED OBJECT
WO2018074353A1 (ja) * 2016-10-21 2018-04-26 東レ株式会社 ポリアリーレンスルフィド樹脂粉粒体混合物および三次元造形物の製造方法
US20210276252A1 (en) * 2018-07-12 2021-09-09 Solvay Specialty Polymers Usa, Llc Method for manufacturing a three-dimensional object from a poly(arylene sulfide) polymer
US20210292481A1 (en) * 2018-07-12 2021-09-23 Solvay Specialty Polymers Usa, Llc Method for manufacturing a three-dimensional object from a poly(arylene sulfide) polymer
WO2020022439A1 (ja) * 2018-07-27 2020-01-30 ポリプラスチックス株式会社 熱プレス成形品用複合材料及び熱プレス成形品
JPWO2020022439A1 (ja) * 2018-07-27 2020-08-06 ポリプラスチックス株式会社 熱プレス成形品用複合材料及び熱プレス成形品

Also Published As

Publication number Publication date
CN105612218A (zh) 2016-05-25
CN105612218B (zh) 2017-09-15
KR101754047B1 (ko) 2017-07-04
KR20160126967A (ko) 2016-11-02
JPWO2015129487A1 (ja) 2017-03-30
ES2690450T3 (es) 2018-11-21
EP3112424B1 (en) 2018-08-15
MX2016011057A (es) 2018-08-14
JP5839148B1 (ja) 2016-01-06
CA2927426A1 (en) 2015-09-03
US20160362524A1 (en) 2016-12-15
CA2927426C (en) 2021-06-22
EP3112424A4 (en) 2017-07-12
EP3112424A1 (en) 2017-01-04
US9862804B2 (en) 2018-01-09

Similar Documents

Publication Publication Date Title
JP5839148B1 (ja) ポリアリーレンスルフィド樹脂粉粒体組成物およびその製造方法
JP6638257B2 (ja) ポリアリーレンスルフィド樹脂粉粒体混合物
JP6256818B2 (ja) ポリアリーレンスルフィド樹脂粉粒体およびその製造方法
US20190241472A1 (en) Process for the production of geopolymer or geopolymer composite
JP6773051B2 (ja) 粉末焼結法3dプリンター用ポリアリーレンスルフィド樹脂粉粒体混合物および三次元造形物の製造方法
JP6778662B2 (ja) 造粒処理シリカの製造方法
JP7375547B2 (ja) 三次元造形物の製造方法
JP6168237B2 (ja) 成形材料用ポリブチレンテレフタレート樹脂粉粒体混合物
JP5944714B2 (ja) 水酸化マグネシウム粒子、及びそれを含む樹脂組成物
JP5877745B2 (ja) 複合金属水酸化物粒子、及びそれを含む樹脂組成物
TW202419424A (zh) 陶瓷粉末、樹脂組合物及陶瓷粉末之製造方法
TW202302448A (zh) 六方晶氮化硼凝集粒子及六方晶氮化硼粉末、樹脂組成物、樹脂片

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015512945

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755789

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015755789

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015755789

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2927426

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20167010928

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016011889

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15120816

Country of ref document: US

Ref document number: MX/A/2016/011057

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112016011889

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160525