WO2018074040A1 - ポリアルケニルフェノール化合物の製造方法、並びにポリアルケニルフェノール化合物を含む硬化性組成物及びその硬化物 - Google Patents

ポリアルケニルフェノール化合物の製造方法、並びにポリアルケニルフェノール化合物を含む硬化性組成物及びその硬化物 Download PDF

Info

Publication number
WO2018074040A1
WO2018074040A1 PCT/JP2017/028997 JP2017028997W WO2018074040A1 WO 2018074040 A1 WO2018074040 A1 WO 2018074040A1 JP 2017028997 W JP2017028997 W JP 2017028997W WO 2018074040 A1 WO2018074040 A1 WO 2018074040A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
carbon atoms
formula
molecular weight
Prior art date
Application number
PCT/JP2017/028997
Other languages
English (en)
French (fr)
Inventor
葵 長谷川
圭孝 石橋
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020197000020A priority Critical patent/KR102171008B1/ko
Priority to JP2018546160A priority patent/JP6921099B2/ja
Priority to CN201780047703.1A priority patent/CN109563223B/zh
Priority to EP17861822.9A priority patent/EP3530681A4/en
Priority to US16/330,470 priority patent/US20190225566A1/en
Publication of WO2018074040A1 publication Critical patent/WO2018074040A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/06Alkylated phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • C08G8/30Chemically modified polycondensates by unsaturated compounds, e.g. terpenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon unsaturated bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/04Phenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/06Alkylated phenols
    • C07C39/07Alkylated phenols containing only methyl groups, e.g. cresols, xylenols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/205Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing only six-membered aromatic rings as cyclic parts with unsaturation outside the rings
    • C07C39/225Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing only six-membered aromatic rings as cyclic parts with unsaturation outside the rings with at least one hydroxy group on a condensed ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • C08L65/02Polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3424Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms non-conjugated, e.g. paracyclophanes or xylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/10Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors

Definitions

  • Various phenol compounds having an alkenyl group can be obtained by alkenyl etherification using a phenol compound as a raw material, alkenyl etherification, and subsequent Claisen reaction under heating conditions.
  • the rearranged alkenyl group provides building blocks in various derivatizations such as oxidation, metathesis, coupling, etc., thus providing a useful intermediate for synthesis, and one important synthesis method for industrial products, medicines and agrochemicals, etc. It has become.
  • the present invention relates to a method for producing a polyalkenylphenol compound from a poly-2-alkenyl aromatic ether compound using a Claisen rearrangement reaction, which comprises polymerization by radical reaction between alkenyl groups, polyalkenylphenol. It is an object of the present invention to provide a production method that can be expected to suppress side reactions such as oxidation of a compound and coloration thereby, and to obtain a polyalkenylphenol compound having a narrow molecular weight distribution and a low viscosity in a high yield.
  • R 9 and R 10 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • Y represents the following formula (2)
  • R 11 , R 12 , R 13 , R 14 and R 15 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms or a carbon atom.
  • Alkenyl group At least one compound (B) represented by either the following formula (3) or (4) (R 16 to R 27 in formula (3) or (4) are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 10 carbon atoms. Represents.) A method for producing a polyalkenylphenol compound (C), comprising rearranging Claisen in the presence of [2] The method according to [1], wherein the compound (B) is a compound represented by the formula (3).
  • an alkenyl group of the compound (A) having at least two structural units represented by any one of the formulas (1a), (1b) or (1c) is represented by the formula (3).
  • R 9 and R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a cycloalkyl having 5 to 10 carbon atoms. Represents a group or an aryl group having 6 to 12 carbon atoms.
  • Y is the formula (2)
  • R 11 , R 12 , R 13 , R 14 and R 15 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms or a carbon atom.
  • alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n- A hexyl group, an octyl group, a nonyl group, a decyl group, etc. can be mentioned.
  • alkoxy group having 1 to 2 carbon atoms include a methoxy group and an ethoxy group.
  • cycloalkylene group having 5 to 10 carbon atoms include a cyclopentylene group, a cyclohexylene group, a methylcyclohexylene group, and a cycloheptylene group.
  • the divalent organic group having an aromatic ring has 6 to 14 carbon atoms.
  • Specific examples of the divalent organic group having an aromatic ring having 6 to 14 carbon atoms include phenylene group, methylphenylene group, naphthylene group, biphenylene group, fluorenylene group, anthracenylene group, xylylene group, 4,4-methylenediphenyl group, etc. Can be mentioned.
  • the divalent organic group having an alicyclic fused ring preferably has 6 to 10 carbon atoms.
  • Specific examples of the divalent organic group having an alicyclic fused ring having 6 to 10 carbon atoms include a dicyclopentadienylene group.
  • alkyl group having 1 to 5 carbon atoms in R 9 and R 10 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group,
  • alkenyl group having 2 to 6 carbon atoms include vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group and the like, and 5 to 10 carbon atoms.
  • Specific examples of the cycloalkyl group include a cyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, a cycloheptyl group, and the like.
  • Specific examples of the aryl group having 6 to 12 carbon atoms include a phenyl group and a methylphenyl group. , Ethylphenyl group, biphenyl group, naphthyl group and the like.
  • a divalent group Q a dicyclopentadienylene group, a phenylene group, a methylphenylene group and a biphenylene group are preferable in terms of high mechanical strength when used as a curable composition, while —CH 2 — having a small steric hindrance is preferable. It is preferable in terms of reaction rate.
  • alkyl group having 1 to 5 carbon atoms examples include compounds represented by the formula ( This is the same as described for R 9 and R 10 in 1a) to (1c).
  • R 11 , R 12 , R 13 , R 14 and R 15 are all preferably hydrogen atoms, that is, the alkenyl group represented by the formula (2) is preferably an allyl group.
  • the compound (A) preferably has at least two structural units represented by either the formula (1a) or (1b), and more preferably has at least two structural units represented by the formula (1a). preferable.
  • compound (A) consists of one or more structural units selected from the group consisting of formula (1a), formula (1b) and formula (1c).
  • compound (A) has a structural unit other than the structural unit represented by any of formulas (1a), (1b), or (1c).
  • Compound (A) is preferably composed of one or more structural units selected from the group consisting of formulas (1a) and (1b), more preferably one or two represented by formula (1a) Consists of structural units of more than species.
  • Compound (A) may be a mixture of compounds having different numbers of structural units.
  • the average number per molecule of the structural units represented by any one of the formulas (1a), (1b) or (1c) is preferably 2 to 20, and preferably 2 to 15 Is more preferable.
  • the average number of structural units per molecule is 2 or more, the heat resistance of the cured product using the polyalkenylphenol compound, which is the final target, as a curing agent is good, and when it is 20 or less, the flow during molding Good properties.
  • the raw material polyphenol of compound (A) include phenol novolac resin, cresol novolac resin, triphenylmethane type phenol resin, phenol aralkyl resin, biphenyl aralkyl phenol resin, phenol-dicyclopentadiene copolymer resin, naphthol novolak resin.
  • known phenol resins such as phenol-naphthol novolak resin and naphthalene diol resin.
  • the raw material polyphenol is preferably a phenol resin having a number average molecular weight of 500 to 5,000, more preferably 600 to 3,000.
  • the number average molecular weight is 500 or more, the heat resistance of a cured product using the polyalkenylphenol compound, which is the final target, as a curing agent is good, and when it is 5000 or less, the fluidity during molding is good.
  • These phenol resins usually contain a plurality of compounds having different molecular weights (number of structural units). It is not necessary that all the compounds contained in the phenol resin are polyphenol compounds having structural units corresponding to formulas (1a) to (1c). For example, it may contain a binuclear body in which two phenol skeletons are bonded via methylene. However, it is desirable that the content of such a compound is small, and it is preferably 50% by mass or less, more preferably 30% by mass or less, and still more preferably 10% by mass or less based on the raw material polyphenol.
  • Compound (A) can be synthesized from a raw material polyphenol by a known method.
  • a raw material polyphenol and a carboxylic acid 2-alkenyl ester having an alkenyl group represented by the formula (2) are preferably present in the presence of a transition metal complex catalyst, preferably a phosphorus compound as a complexing agent,
  • the compound (A) having at least two structural units represented by any of the formulas (1a), (1b) or (1c) can be obtained by reacting under sexual conditions.
  • reaction methods for example, methods described in JP-A-2011-26253, JP-T-10-511721, or JP-A-2016-028129 can be used. According to the above-mentioned process, the halogen compound derived from the raw material is not mixed in the obtained poly-2-alkenyl aromatic ether.
  • the compound (B) of the present invention is at least one compound represented by either the following formula (3) or (4).
  • R 16 to R 27 in formula (3) or (4) each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
  • alkyl group having 1 to 10 carbon atoms in R 16 to R 27 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a t-butyl group, Examples include n-pentyl group, n-hexyl group, octyl group, nonyl group, decyl group, etc.
  • cycloalkyl group having 3 to 12 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, A cyclohexyl group, a methylcyclohexyl group, a cycloheptyl group, and the like can be given.
  • aryl group having 6 to 10 carbon atoms include a phenyl group, a methylphenyl group, an ethylphenyl group, and a naphthyl group. .
  • Examples of the compound represented by the formula (3) include phenol (C 6 H 5 OH), o-cresol, m-cresol, p-cresol, xylenol, ethylphenol, isopropylphenol, t-butylphenol, octylphenol, nonylphenol, And phenylphenol.
  • Examples of the compound represented by the formula (4) include 1-naphthol, 2-naphthol, 2-methyl-1-naphthol and the like.
  • a compound represented by the formula (3) more preferably a compound in which R 16 to R 20 in the formula (3) are each independently a hydrogen atom or a methyl group, phenol, Even more preferred are o-cresol, m-cresol, and p-cresol, with phenol being particularly preferred.
  • a plurality of compounds (B) can also be used in combination.
  • the boiling point of the compound (B) is preferably 170 to 350 ° C., more preferably 175 to 340 ° C., and further preferably 180 to 330 ° C. If it is 170 ° C. or higher, it is possible to effectively prevent the volatilization of the compound (B) during the Claisen rearrangement reaction and accelerate the reaction. An alkenylphenol compound (C) can be obtained.
  • the amount of the compound (B) is preferably 1 to 120 parts by mass, more preferably 5 to 110 parts by mass, and further preferably 10 to 100 parts by mass with respect to 100 parts by mass of the compound (A). If the amount of the compound (B) is 1 part by mass or more with respect to 100 parts by mass of the compound (A), the reaction can be accelerated, and if it is 120 parts by mass or less, the removal efficiency of the compound (B) is increased and the productivity is increased. Will be improved.
  • Claisen rearrangement of the compound (A) can be performed, for example, by mixing the compound (A) and the compound (B) and heating the resulting mixture.
  • the order and method of adding compound (A) and compound (B) to the reactor are not particularly limited.
  • the Claisen rearrangement reaction can be carried out at a temperature of 140 to 180 ° C, more preferably 145 to 175 ° C, and even more preferably 150 to 170 ° C. If the reaction temperature is 140 ° C or higher, the reaction rate is suitable for industrial use, and if it is 180 ° C or lower, there are few side reactions such as polymerization, and the yield and purity are good.
  • the target polyalkenylphenol compound can be obtained by conducting the Claisen rearrangement reaction generally for 5 to 50 hours, more preferably 6 to 40 hours, and even more preferably 7 to 30 hours. If the reaction time is 5 hours or longer, the conversion rate of the Claisen rearrangement reaction is good, and if it is 50 hours or shorter, side reactions such as polymerization can be suppressed.
  • the target polyalkenylphenol compound can be obtained by performing the Claisen rearrangement reaction in an inert gas atmosphere such as nitrogen gas or argon.
  • an inert gas atmosphere such as nitrogen gas or argon.
  • the molecular weight increase rate defined by the following formula is preferably 0 to 70%, more preferably 0 to 60%, and still more preferably 0 to 50%. If the rate of increase in molecular weight is 70% or less, productivity is good because the viscosity of the product after the reaction is low.
  • Molecular weight increase rate [%] (m C / m A ⁇ 1) ⁇ 100 (M A weight average molecular weight of the compound (A), m C represents a weight average molecular weight of the polyalkenyl phenol compound (C).)
  • the compound (B) can be removed as necessary.
  • the compound (B) can be removed by a known distillation method such as atmospheric distillation, vacuum distillation, molecular distillation or the like using a known distillation apparatus such as a continuous distillation apparatus, a batch distillation apparatus, or a thin film distillation apparatus. .
  • the removal of the compound (B) is preferably by distillation under reduced pressure. By performing distillation under reduced pressure, side reactions such as oxidation and polymerization of the produced polyalkenylphenol compound (C) can be suppressed.
  • the polyalkenylphenol compound (C) obtained according to the present invention is a poly-2-alkenylphenol compound having at least two structural units represented by any of the following formulas (5a), (5b) or (5c). .
  • R 1 to R 8 and Q in the formulas (5a) to (5c) are as described for the formulas (1a) to (1c), and Y is as described for the formula (2).
  • the polyalkenylphenol compound (C) obtained by the present invention can be used as a component of the curable composition.
  • a polyalkenyl phenol compound (C) can be combined with an aromatic bismaleimide compound and a polymerization initiator as a curing accelerator to obtain a thermosetting composition having low viscosity and excellent moldability or coating property.
  • the polyalkenylphenol compound (C) can also be used in the radiation sensitive composition.
  • the composition containing the polyalkenylphenol compound (C) and the cured product thereof can be used for applications such as a semiconductor sealing material, a prepreg, an interlayer insulating resin, a solder resist, and a die attach.
  • A-1 is represented by the formula (1a):
  • Example 1 200 g of the phenol novolac-type polyallyl ether resin A-1 obtained in Synthesis Example 1 and 200 g of phenol (C 6 H 5 OH, manufactured by Junsei Chemical Co., Ltd., boiling point 182 ° C.) were placed in a 1000 mL separable flask. Nitrogen gas was blown into the reaction vessel, the temperature was raised to 170 ° C. while stirring at 300 rpm with a mechanical stirrer, and the Claisen rearrangement reaction was carried out for 7 hours under a nitrogen gas atmosphere. Thereafter, phenol was removed at 160 ° C. under reduced pressure to obtain a reddish brown reaction product.
  • phenol C 6 H 5 OH, manufactured by Junsei Chemical Co., Ltd., boiling point 182 ° C.
  • Example 2 The reaction was conducted in the same manner as in Example 1 except that the amount of phenol added in Example 1 was 66 g, and the reaction product was confirmed by 1 H-NMR. As a result, the desired polyallylphenol resin was obtained in a reaction time of 17 hours. Got. The evaluation results are shown in Table 1.
  • Example 3 The reaction was carried out in the same manner as in Example 1 except that the amount of phenol added in Example 1 was 20 g, and the reaction product was confirmed by 1 H-NMR. As a result, the desired polyallylphenol resin was obtained in a reaction time of 21 hours. Got. The evaluation results are shown in Table 1.
  • Example 4 The reaction was conducted in the same manner as in Example 1 except that the reaction temperature in Example 1 was changed to 150 ° C., and the reaction product was confirmed by 1 H-NMR. As a result, the desired polyallylphenol resin was obtained in a reaction time of 30 hours. Obtained. The evaluation results are shown in Table 1.
  • Example 5 The same operation as in Example 1 was performed except that the polyallyl ether resin A-2 obtained in Synthesis Example 2 was used instead of the polyallyl ether resin A-1.
  • the structural unit of the obtained triphenylmethane type polyallylphenol resin is shown in Formula (5a2), and the evaluation results are shown in Table 1.
  • Example 6 The same operation as in Example 1 was performed except that the polyallyl ether resin A-3 obtained in Synthesis Example 3 was used instead of the polyallyl ether resin A-1.
  • Q —CH 2 —C 6 H 4 —CH 2 —
  • R 15 hydrogen atom was obtained (FIG. 3).
  • the structural unit of the obtained polyallyl naphthalene diol resin is shown in Formula (5c1), and the evaluation results are shown in Table 1.
  • Example 7 The same procedure as in Example 1 was performed except that p-cresol (C 7 H 7 OH, manufactured by Junsei Chemical Co., Ltd., boiling point 202 ° C.) was used instead of the phenol of Example 1, and the reaction was generated by 1 H-NMR. When the product was confirmed, the desired polyallylphenol resin was obtained in a reaction time of 8 hours. The evaluation results are shown in Table 1.
  • Example 1 The reaction was conducted in the same manner as in Example 1 except that no phenol was added in Example 1, and the reaction product was confirmed by 1 H-NMR. As a result, the desired polyallylphenol resin was obtained in a reaction time of 27 hours. It was. The evaluation results are shown in Table 1.
  • Example 2 The reaction was conducted in the same manner as in Example 5 except that no phenol was added in Example 5. The reaction product was confirmed by 1 H-NMR, and the desired polyallylphenol resin was obtained in a reaction time of 27 hours. It was. The evaluation results are shown in Table 1.
  • Example 3 The reaction was conducted in the same manner as in Example 5 except that no phenol was added in Example 6. The reaction product was confirmed by 1 H-NMR, and the desired polyallylphenol resin was obtained in a reaction time of 27 hours. It was. The evaluation results are shown in Table 1.
  • Table 1 suggests that the target polyalkenyl (allyl) phenol compound having a 2-alkenyl (allyl) group can be obtained in higher yield and higher purity in the Examples than in the Comparative Examples.
  • Aromatic bismaleimide compound BMI-4000 (2,2′-bis [4- (4-maleimidophenyloxy) phenyl] propane, melting point 165 ° C., Daiwa Kasei Kogyo Co., Ltd.)
  • Curing accelerator Parkmill (registered trademark) D (Dicumyl peroxide, NOF Corporation)
  • Silica filler MSR 2212 (Spherical silica, average particle size 25.5 ⁇ m, treated with 0.5% by mass of Tatsumori Co., Ltd., silane coupling agent KBM-403 (Shin-Etsu Chemical Co., Ltd.))
  • the mixture was allowed to cool and solidify at room temperature (25 ° C.) for 1 hour and then pulverized using a mill mixer (Osaka Chemical Co., Ltd., model WB-1, 25 ° C., 30 seconds) to obtain the desired powder form.
  • a curable composition was obtained.
  • TMA / SS6100 thermomechanical analyzer manufactured by SII NanoTechnology Co., Ltd.
  • a test piece of 5 mm ⁇ 5 mm ⁇ 5 mm was obtained under the conditions of a temperature range of 30 to 300 ° C., a heating rate of 5 ° C./min, and a load of 20.0 mN.
  • the temperature at the displacement point of the linear expansion coefficient is defined as Tg.
  • Table 2 The results are shown in Table 2.
  • Dielectric constant and dielectric loss tangent Determined by cavity dielectric perturbation complex dielectric constant measurement.
  • molding is performed with a transfer molding machine (manufactured by Matsuda Seisakusho Co., Ltd.) under conditions of a mold temperature of 180 ° C., a holding pressure of 100 kg / cm 2 , and a holding time of 3 minutes.
  • a test piece for tangent measurement is prepared. After the specimen was heated at 230 ° C.
  • a polyalkenylphenol compound having a narrow molecular weight distribution and a low viscosity produced according to the present invention can be obtained, for example, by combining with a main agent such as maleimide as a curing agent to obtain a cured product with good moldability and high electrical reliability.
  • the polyalkenylphenol compound having a narrow molecular weight distribution and a low viscosity produced according to the present invention can be suitably used as a raw material for a semiconductor sealing material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

分子量分布が狭く低粘度のポリアルケニルフェノール化合物を、高純度かつ高収率で製造することのできる方法を提供する。フェノール骨格を2つ以上有するポリ2-アルケニル芳香族エーテル化合物をフェノール又はナフトール系化合物存在下でクライゼン転位させる。

Description

ポリアルケニルフェノール化合物の製造方法、並びにポリアルケニルフェノール化合物を含む硬化性組成物及びその硬化物
 本発明は、ポリアルケニルフェノール化合物の製造方法、並びにポリアルケニルフェノール化合物を含む硬化性組成物及びその硬化物に関する。
 1912年、クライゼンらにより発見されたアルケニルフェニルエーテル類の[3,3]-シグマトロピー転位は芳香族クライゼン反応と呼ばれる。フェノール化合物を原料にハロゲン化アルケニルなどを用い、アルケニルエーテル化、続く加熱条件下におけるクライゼン反応により、アルケニル基を有する様々なフェノール化合物が得られる。転位後のアルケニル基は、酸化、メタセシス、カップリングなどの種々の誘導化におけるビルディングブロックを与えるため、合成上有用な中間体を与え、工業製品、医農薬品などの一つの重要な合成方法となっている。
 従来、クライゼン転位反応は例えばアルケニルエーテル(副生塩を含有する場合もある)を用い、カルビトール、パラフィンオイル、N,N-ジメチルアニリン等の高沸点溶媒の存在下又は無溶剤下において、200℃前後の高温で行われている。溶媒存在下での反応は、例えば特許文献1(特開2004-137200号公報)及び特許文献2(特開2003-104923号公報)に記載されている。特許文献1では4,4’-(9-フルオレニリデン)ジフェノールのジアリルエーテルをN,N-ジエチルアニリンの存在下において200℃でクライゼン転位させている。特許文献2ではビスフェノールAのジアリルエーテルと塩化ナトリウムの混合物を4,4’-イソプロピリデンビス(2,6-ジ-tert-ブチルフェノール)存在下190℃でクライゼン転位させている。
特開2004-137200号公報 特開2003-104923号公報
 特許文献1のような従来の溶媒存在下の液相反応では、副反応としてアルケニル基の脱離によるフェノールの生成、アルケニル基間のラジカル反応による重合などが進行し、生成物の分子量が増加することが知られている。上記方法で製造したアルケニルフェノール化合物は高粘度であるため、例えば成形性、塗布性などが損なわれるおそれがあった。
 特許文献2では沸点の高いフェノール化合物を用いているため、フェノール化合物が反応後に除去されずに不純物として系内に残存するおそれがあった。
 上述の現状に鑑みて、本発明は、ポリ2-アルケニル芳香族エーテル化合物からクライゼン転位反応を用いてポリアルケニルフェノール化合物を製造する方法であって、アルケニル基間のラジカル反応による重合、ポリアルケニルフェノール化合物の酸化、それによる着色などの副反応の抑制が期待でき、分子量分布が狭く低粘度のポリアルケニルフェノール化合物を、高収率で得ることができる製造方法を提供することを目的とする。
 本発明者らは、鋭意検討した結果、特定の構造単位を少なくとも2つ有するポリ2-アルケニル芳香族エーテル化合物のアルケニル基を、少なくとも1つの特定のフェノール性水酸基を有する芳香族化合物の存在下でクライゼン転位させることにより、アルケニル基間のラジカル反応による重合などの副反応の抑制が期待でき、分子量分布の狭い低粘度ポリアルケニルフェノール化合物が高収率で得られることを見出して本発明を完成させた。
 すなわち、本発明は、以下の態様を含む。
[1]
 下記式(1a)、(1b)又は(1c)のいずれかで表される構造単位を少なくとも2つ有する化合物(A)
Figure JPOXMLDOC01-appb-C000005
(式(1a)~(1c)のR~Rはそれぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数1~2のアルコキシ基又は水酸基を表す。R~Rはナフタレン環を構成する炭素原子上のどこに位置していてもよい。Qはそれぞれ独立に式-CR10-で表されるアルキレン基、炭素数5~10のシクロアルキレン基、芳香環を有する二価の有機基、脂環式縮合環を有する二価の有機基又はこれらを組み合わせた二価基であり、R及びR10はそれぞれ独立に水素原子、炭素数1~5のアルキル基、炭素数2~6のアルケニル基、炭素数5~10のシクロアルキル基又は炭素数6~12のアリール基を表す。Yは下記式(2)
Figure JPOXMLDOC01-appb-C000006
で表されるアルケニル基であり、R11、R12、R13、R14及びR15はそれぞれ独立に水素原子、炭素数1~5のアルキル基、炭素数5~10のシクロアルキル基又は炭素数6~12のアリール基を表す。式(2)の*は、酸素原子との結合部を表す。)のアルケニル基を、
 下記式(3)又は(4)のいずれかで表される少なくとも1つの化合物(B)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(式(3)又は(4)のR16~R27はそれぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数3~12のシクロアルキル基又は炭素数6~10のアリール基を表す。)
の存在下でクライゼン転位させることを含む、ポリアルケニルフェノール化合物(C)の製造方法。
[2]
 前記化合物(B)が、式(3)で表される化合物である、[1]に記載の方法。
[3]
 前記化合物(B)が、式(3)で表される化合物であり、R16~R20がそれぞれ独立に水素原子又はメチル基である、[1]又は[2]のいずれかに記載の方法。
[4]
 前記化合物(B)が、フェノール、o-クレゾール、m-クレゾール、及びp-クレゾールからなる群より選択される少なくとも1つの化合物である、[1]~[3]のいずれかに記載の方法。
[5]
 前記化合物(A)が前記式(1a)又は(1b)のいずれかで表される構造単位を少なくとも2つ有する、[1]~[4]のいずれかに記載の方法。
[6]
 前記化合物(A)が前記式(1a)で表される構造単位を少なくとも2つ有する、[1]~[5]のいずれかに記載の方法。
[7]
 前記化合物(A)において前記式(1a)、(1b)又は(1c)のいずれかで表される構造単位の総数の一分子当たりの平均が2~20である、[1]~[6]のいずれかに記載の方法。
[8]
 下記式で定義される分子量増加率が0~70%である、[1]~[7]のいずれかに記載の方法。
分子量増加率[%]=(m/m-1)×100
(mは前記化合物(A)の重量平均分子量、mは前記ポリアルケニルフェノール化合物(C)の重量平均分子量を表す。)
[9]
 反応温度が140~180℃である、[1]~[8]のいずれかに記載の方法。
[10]
 反応時間が5~50時間である、[1]~[9]のいずれかに記載の方法。
[11]
 前記化合物(B)の量が、前記化合物(A)100質量部に対して1~120質量部である、[1]~[10]のいずれかに記載の方法。
[12]
 [1]~[11]のいずれかに記載のポリアルケニルフェノール化合物(C)を含む硬化性組成物。
[13]
 [12]に記載の硬化性組成物の硬化物。
 本発明によれば、ポリ2-アルケニル芳香族エーテル化合物からクライゼン転位反応を用いてポリアルケニルフェノール化合物を製造するにあたり、アルケニル基間のラジカル反応による重合などの副反応を抑制して、分子量分布の狭い低粘度ポリアルケニルフェノール化合物を、高純度かつ高収率で得ることができる。本発明により得られたポリアルケニルフェノール化合物をマレイミドなどの主剤に対して硬化剤として併用することにより、電気的信頼性の高い硬化物を得ることができる。そのため、本発明により得られたポリアルケニルフェノール化合物は半導体封止材等の原料に好適である。
合成例1で得られた生成物のH-NMRスペクトルである。 実施例1で得られた生成物のH-NMRスペクトルである。 実施例6で得られた生成物のH-NMRスペクトルである。
 本開示における「フェノール化合物」は、特定の化合物であるフェノール(phenol、COH)を意味する旨の特段の記載がない限り、芳香族炭化水素基の炭素原子に直接結合した水酸基を有する一群の化合物(phenols、phenolics)を意味するか、そのような化合物に関連する性質(phenolic)を意味する。
 以下に本発明について詳細に説明する。本発明のポリアルケニルフェノール化合物の製造方法は、式(1a)、(1b)又は(1c)のいずれかで表される構造単位を少なくとも2つ有する化合物(A)のアルケニル基を、式(3)又は(4)のいずれかで表される少なくとも1つの化合物(B)の存在下でクライゼン転移させることを含む。
[化合物(A)]
 本発明の化合物(A)は、下記式(1a)、(1b)又は(1c)のいずれかで表される構造単位を少なくとも2つ有する、ポリ2-アルケニル芳香族エーテル化合物である。
Figure JPOXMLDOC01-appb-C000009
 式(1a)~(1c)のR~Rはそれぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数1~2のアルコキシ基又は水酸基を表す。R~Rはナフタレン環を構成する炭素原子上のどこに位置していてもよい。Qはそれぞれ独立に式-CR10-で表されるアルキレン基、炭素数5~10のシクロアルキレン基、芳香環を有する二価の有機基、脂環式縮合環を有する二価の有機基又はこれらを組み合わせた二価基であり、R及びR10はそれぞれ独立に水素原子、炭素数1~5のアルキル基、炭素数2~6のアルケニル基、炭素数5~10のシクロアルキル基又は炭素数6~12のアリール基を表す。Yは式(2)
Figure JPOXMLDOC01-appb-C000010
で表されるアルケニル基であり、R11、R12、R13、R14及びR15はそれぞれ独立に水素原子、炭素数1~5のアルキル基、炭素数5~10のシクロアルキル基又は炭素数6~12のアリール基を表す。式(2)の*は、酸素原子との結合部を表す。「それぞれ独立に」とは、化合物に含まれる複数個のRが同一でも互いに異なっていてもよいことを意味する。置換基R~R15、二価基Q、以下説明する化合物(B)の置換基等についても同様である。
 炭素数1~10のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、オクチル基、ノニル基、デシル基等を挙げることができる。
 炭素数1~2のアルコキシ基の具体例としてはメトキシ基及びエトキシ基が挙げられる。
 炭素数5~10のシクロアルキレン基の具体例としてはシクロペンチレン基、シクロヘキシレン基、メチルシクロヘキシレン基、シクロヘプチレン基等を挙げることができる。
 芳香環を有する二価の有機基の炭素数は6~14であることが好ましい。炭素数6~14の芳香環を有する二価の有機基の具体例として、フェニレン基、メチルフェニレン基、ナフチレン基、ビフェニレン基、フルオレニレン基、アントラセニレン基、キシリレン基、4,4-メチレンジフェニル基等を挙げることができる。
 脂環式縮合環を有する二価の有機基の炭素数は6~10であることが好ましい。炭素数6~10の脂環式縮合環を有する二価の有機基の具体例としては、ジシクロペンタジエニレン基等を挙げることができる。
 R及びR10における、炭素数1~5のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基等を挙げることができ、炭素数2~6のアルケニル基の具体例としてはビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等を挙げることができ、炭素数5~10のシクロアルキル基の具体例としては、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基等を挙げることができ、炭素数6~12のアリール基の具体例としては、フェニル基、メチルフェニル基、エチルフェニル基、ビフェニル基、ナフチル基等を挙げることできる。
 二価基Qとして、ジシクロペンタジエニレン基、フェニレン基、メチルフェニレン基及びビフェニレン基が硬化性組成物とした時に機械強度が高い点で好ましく、一方で、立体障害の小さい-CH-が反応速度の点で好ましい。
 R11、R12、R13、R14及びR15における炭素数1~5のアルキル基、炭素数5~10のシクロアルキル基、及び炭素数6~12のアリール基の具体例は、式(1a)~(1c)のR及びR10について説明したものと同じである。R11、R12、R13、R14及びR15が全て水素原子である、すなわち式(2)で表されるアルケニル基がアリル基であることが好ましい。
 化合物(A)は、式(1a)又は(1b)のいずれかで表される構造単位を少なくとも2つ有することが好ましく、式(1a)で表される構造単位を少なくとも2つ有することがより好ましい。いくつかの実施態様では、化合物(A)は、式(1a)、式(1b)及び式(1c)からなる群より選択される1種又は2種以上の構造単位からなる。別の実施態様では化合物(A)は式(1a)、(1b)又は(1c)のいずれかで表される構造単位以外の構造単位を有する。化合物(A)は、好ましくは式(1a)及び(1b)からなる群より選択される1種又は2種以上の構造単位からなり、より好ましくは式(1a)で表される1種又は2種以上の構造単位からなる。
 化合物(A)は構造単位数の異なる化合物の混合物であってもよい。この実施態様において、式(1a)、(1b)又は(1c)のいずれかで表される構造単位の総数の一分子当たりの平均は2~20であることが好ましく、2~15であることがより好ましい。構造単位の総数の一分子当たりの平均が2以上であると最終目的物であるポリアルケニルフェノール化合物を硬化剤として用いた硬化物の耐熱性が良好であり、20以下であると成形時の流動性が良好である。
 化合物(A)の原料ポリフェノールの具体例としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、トリフェニルメタン型フェノール樹脂、フェノールアラルキル樹脂、ビフェニルアラルキルフェノール樹脂、フェノール-ジシクロペンタジエン共重合体樹脂、ナフトールノボラック樹脂、フェノール-ナフトールノボラック樹脂、ナフタレンジオール樹脂等の公知のフェノール樹脂が挙げられる。
 原料ポリフェノールは、数平均分子量500~5000、より好ましくは600~3000のフェノール樹脂であることが好ましい。数平均分子量が500以上であると最終目的物であるポリアルケニルフェノール化合物を硬化剤として用いた硬化物の耐熱性が良好であり、5000以下であると成形時の流動性が良好である。これらのフェノール樹脂中には通常分子量(構造単位数)の異なる化合物が複数混在している。フェノール樹脂に含まれる全ての化合物が式(1a)~(1c)に対応する構造単位を有するポリフェノール化合物である必要はない。例えば2つのフェノール骨格がメチレンを介して結合している2核体を含むものであってもよい。但し、このような化合物の含有量は少ない方が望ましく、原料ポリフェノールを基準として好ましくは50質量%以下、より好ましくは30質量%以下、さらに好ましくは10質量%以下である。
 化合物(A)は原料ポリフェノールから公知の方法を用いて合成することができる。例えば、原料ポリフェノールと、式(2)で表されるアルケニル基を有するカルボン酸2-アルケニルエステルとを、例えば遷移金属錯体触媒の存在下、好ましくは錯化剤であるリン化合物を共存させ、塩基性条件下で反応させることで式(1a)、(1b)又は(1c)のいずれかで表される構造単位を少なくとも2つ有する化合物(A)を得ることができる。
 具体的な反応方法としては、例えば特開2011-26253号公報、特表平10-511721号公報、又は特開2016-028129号公報に記載の方法を使用することができる。上述の工程によれば、得られるポリ2-アルケニル芳香族エーテル中に原料由来のハロゲン化合物が混入しない。
[化合物(B)]
 本発明の化合物(B)は、下記式(3)又は(4)のいずれかで表される少なくとも1つの化合物である。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 式(3)又は(4)のR16~R27はそれぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数3~12のシクロアルキル基又は炭素数6~10のアリール基を表す。
 R16~R27における、炭素数1~10のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、オクチル基、ノニル基、デシル基等を挙げることができ、炭素数3~12のシクロアルキル基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基等を挙げることができ、炭素数6~10のアリール基の具体例としては、フェニル基、メチルフェニル基、エチルフェニル基、ナフチル基等を挙げることができる。
 式(3)で表される化合物として、例えば、フェノール(COH)、o-クレゾール、m-クレゾール、p-クレゾール、キシレノール、エチルフェノール、イソプロピルフェノール、t-ブチルフェノール、オクチルフェノール、ノニルフェノール、フェニルフェノール等が挙げられる。式(4)で表される化合物として、例えば、1-ナフトール、2-ナフトール、2-メチル-1-ナフトール等が挙げられる。分子量及び沸点の観点から式(3)で表される化合物を使用することが好ましく、式(3)のR16~R20がそれぞれ独立に水素原子又はメチル基である化合物がより好ましく、フェノール、o-クレゾール、m-クレゾール、及びp-クレゾールがさらにより好ましく、フェノールが特に好ましい。複数の化合物(B)を組み合わせて使用することもできる。
 化合物(B)の沸点は170~350℃であることが好ましく、より好ましくは175~340℃、さらに好ましくは180~330℃である。170℃以上であればクライゼン転位反応中の化合物(B)の揮発を効果的に防いで反応を加速することができ、350℃以下であれば化合物(B)の除去効率が上がり高純度のポリアルケニルフェノール化合物(C)を得ることができる。
 化合物(B)の量は、化合物(A)100質量部に対して1~120質量部であることが好ましく、より好ましくは5~110質量部、さらに好ましくは10~100質量部である。化合物(B)の量が化合物(A)100質量部に対して1質量部以上であれば反応を加速することができ、120質量部以下であれば化合物(B)の除去効率が上がり生産性がより向上する。
[クライゼン転位]
 化合物(A)のクライゼン転位は、例えば化合物(A)と化合物(B)を混合し、得られた混合物を加熱することにより行うことができる。化合物(A)及び化合物(B)の反応器への添加の順序及び方法は特に限定されない。
 クライゼン転位反応は、140~180℃、より好ましくは145~175℃、さらに好ましくは150~170℃の温度で実施することができる。反応温度が140℃以上であれば反応速度が工業的利用に適切であり、180℃以下であれば重合等の副反応が少なく、収率及び純度が良好である。
 クライゼン転位反応を一般に5~50時間、より好ましくは6~40時間、さらに好ましくは7~30時間行うことにより、目的とするポリアルケニルフェノール化合物を得ることができる。反応時間が5時間以上であればクライゼン転位反応の転化率が良好であり、50時間以下であれば、重合等の副反応を抑制することができる。
 クライゼン転位反応を、窒素ガス、アルゴンなどの不活性ガス雰囲気下で行うことにより、目的とするポリアルケニルフェノール化合物を得ることができる。反応系内を不活性ガス雰囲気にすることで酸化による目的物の着色、重合等による不溶成分の生成等の副反応を抑制することができる。
 クライゼン転位反応において、反応の進行を過度に阻害することがない範囲でその他の添加剤を加えることも可能である。
 クライゼン転位反応において、下記式で定義される分子量増加率が0~70%であることが好ましく、より好ましくは0~60%であり、さらに好ましくは、0~50%である。分子量増加率が70%以下であれば、反応後の生成物の粘度が低いため生産性が良好である。
分子量増加率[%]=(m/m-1)×100
(mは化合物(A)の重量平均分子量、mはポリアルケニルフェノール化合物(C)の重量平均分子量を表す。)
 クライゼン転位反応を行った後に、必要に応じて化合物(B)を除去することができる。化合物(B)の除去は、常圧蒸留、減圧蒸留、分子蒸留など公知の蒸留方法により、連続式蒸留装置、回分式蒸留装置、薄膜蒸留装置などの公知の蒸留装置を用いて行うことができる。化合物(B)の除去は減圧下での蒸留によることが好ましい。減圧下で蒸留を行うことにより、生成したポリアルケニルフェノール化合物(C)の酸化、重合等の副反応を抑制することができる。
[ポリアルケニルフェノール化合物(C)]
 本発明により得られるポリアルケニルフェノール化合物(C)は、下記式(5a)、(5b)又は(5c)のいずれかで表される構造単位を少なくとも2つ有する、ポリ2-アルケニルフェノール化合物である。
Figure JPOXMLDOC01-appb-C000013
 式(5a)~(5c)におけるR~R及びQは式(1a)~(1c)について説明したとおりであり、Yは式(2)について説明したとおりである。
[ポリアルケニルフェノール化合物(C)の使用方法]
 本発明により得られたポリアルケニルフェノール化合物(C)は、硬化性組成物の成分として使用することができる。例えば、ポリアルケニルフェノール化合物(C)を芳香族ビスマレイミド化合物、及び硬化促進剤として重合開始剤と組み合わせて、低粘度で成形性又は塗布性に優れた熱硬化性組成物を得ることができる。ポリアルケニルフェノール化合物(C)を感放射線性組成物に使用することもできる。ポリアルケニルフェノール化合物(C)を含む組成物及びその硬化物は、例えば半導体封止材、プリプレグ、層間絶縁樹脂、ソルダーレジスト、ダイアタッチなどの用途に用いることができる。
 以下、実施例及び比較例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。
[分析方法]
・収率
 クライゼン転位反応前のポリ2-アルケニル芳香族エーテル化合物(以下の実施例ではポリアリル芳香族エーテル化合物)の仕込み量をM1[g]、クライゼン転位反応後のポリアルケニルフェノール化合物の取り出し量をM2[g]として、収率を以下の式から求めた。
収率[%]=M2/M1×100
・クライゼン転位反応における転化率
 クライゼン転位反応前のポリ2-アルケニル芳香族エーテル化合物のH-NMRスペクトルにおけるδ4.6~4.4ppm(式(1a)~(1c)のアルケニル基Yにおける、酸素原子に結合した炭素原子上の水素原子に基づくシグナル)の積分値を100としたときのクライゼン転位反応後の反応生成物のH-NMRスペクトルにおけるδ4.6~4.4ppmの積分値の減少割合により算出した。使用した装置及び測定条件は以下のとおりである。
 装置名:JEOL AL400(日本電子株式会社製)
 溶媒:重クロロホルム
 温度:27℃
・GPCによる分子量の測定
 GPCの測定条件は以下のとおりである。
 装置名:JASCO LC-2000 plus(日本分光株式会社製)
 カラム:Shodex(登録商標)LF-804(昭和電工株式会社製)
 移動相:テトラヒドロフラン
 流速:1.0mL/min
 検出器:JASCO RI-2031 plus(日本分光株式会社製)
 温度:40℃
 上記測定条件で、ポリスチレンの標準物質を使用して作成した検量線を用いて数平均分子量Mn及び重量平均分子量Mwを算出した。クライゼン転位反応前のポリアリル芳香族エーテル化合物の重量平均分子量をm、クライゼン転位反応後のポリアルケニルフェノール化合物の重量平均分子量をmとして、分子量増加率を以下の式で求めた。
分子量増加率[%]=(m/m-1)×100
・溶融粘度
 レオメーター(回転式粘度計)に試料0.5gを載せ、コーンプレート(CP-15)を用いて測定した。測定条件は以下のとおりである。
 装置名:粘弾性測定装置Bohlin C-VOR(Malvern Instruments社製)
 温度:100℃
[合成例1]ポリアリルエーテル樹脂A-1の製造
 1000mLの3つ口型フラスコに、炭酸カリウム(日本曹達株式会社製)201g(1.45mol)を純水150gに溶解した溶液、フェノールノボラック樹脂ショウノール(登録商標)BRG-556(昭和電工株式会社製、数平均分子量600、重量平均分子量850)及びフェノールノボラック樹脂ショウノール(登録商標)BRG-558(昭和電工株式会社製、数平均分子量1050、重量平均分子量1850)の1:1混合物150.0g(水酸基1.4mol)を仕込み、反応器を窒素ガス置換し85℃に加熱した。窒素ガス気流下、酢酸アリル(昭和電工株式会社製)204g(2.04mol)、トリフェニルホスフィン(北興化学工業株式会社製)3.82g(14.6mmol)、及び50質量%含水5質量%-Pd/C-STDタイプ(エヌ・イーケムキャット株式会社製)0.62g(0.291mmol)を入れ、窒素ガス雰囲気中、105℃に昇温して4時間反応させた後、酢酸アリル29g(0.291mol)を追添し、加熱を10時間継続した。その後撹拌を停止し、静置することで有機層と水層の二層に分離した。析出している塩(酢酸カリウム塩)が溶解するまで、純水(200g)を添加した後、トルエン200gを加え、80℃以上の温度に保持して白色沈殿(酢酸カリウム塩)が析出していないことを確認した後、Pd/Cを濾過(1マイクロメートルのメンブランフィルター(アドバンテック社製KST-142-JAを用いて加圧(0.3MPa))により回収した。この濾滓をトルエン100gで洗浄するとともに、水層を分離した。濾滓の洗浄トルエンと上記有機層を合わせたものを純水200gで3回洗浄し、3度目の洗浄後分離した水層のpHが7.0であることを確認した。分離した有機層に活性炭CN1(日本ノリット株式会社製)4.5gを加え、60℃に加熱し、1時間マグネティックスターラーにて300rpmで撹拌した。その後活性炭を濾過(1マイクロメートルのメンブランフィルター(アドバンテック社製KST-142-JA)を用いて加圧(0.3MPa))により除去した後、減圧下、濃縮(トルエン及び過剰の酢酸アリルを除去)し、褐色油状物A-1を得た。H-NMRスペクトルによる同定により、A-1は式(1a)においてR=R=R=R10=水素原子、Q=-CR10-、式(2)においてR11~R15=水素原子のフェノールノボラック型のポリアリルエーテル樹脂であることが分かった(図1)。数平均分子量は600、重量平均分子量は1200、収率は96%であった。
[合成例2]ポリアリルエーテル樹脂A-2の製造
 フェノールノボラック樹脂ショウノール(登録商標)BRG-556及びBRG-558の1:1混合物150.0gの代わりにトリフェニルメタン型フェノール樹脂ショウノール(登録商標)TRI-002(昭和電工株式会社製、数平均分子量500、重量平均分子量600)150.0gを用いた以外は合成例1と同様の操作によりA-2を得た。H-NMRスペクトルによる同定により、A-2は式(1a)においてR=R=R=水素原子、R10=COH、Q=-CR10-、式(2)においてR11~R15=水素原子のトリフェニルメタン型フェノールのポリアリルエーテル樹脂であることが分かった。数平均分子量は500、重量平均分子量は600、収率は95%であった。
[合成例3]ポリアリルエーテル樹脂A-3の製造
 フェノールノボラック樹脂ショウノール(登録商標)BRG-556及びBRG-558の1:1混合物150.0gの代わりにナフタレンジオール樹脂SN-395(新日鐵化学株式会社製、数平均分子量550、重量平均分子量1200)149.5gを用いた以外は合成例1と同様の操作によりA-3を得た。H-NMRスペクトルによる同定により、A-3は式(1c)においてR=R=水素原子、Q=-CH-C-CH-、式(2)においてR11~R15=水素原子のナフタレンジオール型のポリアリルエーテル樹脂であることが分かった。数平均分子量は600、重量平均分子量は1200、収率は93%であった。
[実施例1]
 合成例1で得られたフェノールノボラック型のポリアリルエーテル樹脂A-1 200g及びフェノール(COH、純正化学株式会社製、沸点182℃)200gを、1000mLのセパラブルフラスコに入れた。反応容器に窒素ガスを吹き込み、メカニカルスターラーにて300rpmで撹拌をしながら170℃まで昇温し、そのまま窒素ガス雰囲気下、7時間クライゼン転位反応を行った。その後、減圧下、160℃でフェノールを除去し、赤褐色の反応生成物を得た。H-NMRスペクトルによる同定により、反応生成物は式(5a)においてR=R=R=R10=水素原子、Q=-CR10-、式(2)においてR11~R15=水素原子とするフェノールノボラック型のポリアリルフェノール樹脂であることが分かった(図2)。得られたフェノールノボラック型ポリアリルフェノール樹脂の構造単位を式(5a1)に示し、その他の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-C000014
[実施例2]
 実施例1のフェノールの添加量を66gとした以外は、実施例1と同様に反応を行い、H-NMRで反応生成物を確認したところ、反応時間17時間で目的とするポリアリルフェノール樹脂を得た。評価結果を表1に示す。
[実施例3]
 実施例1のフェノールの添加量を20gとした以外は、実施例1と同様に反応を行い、H-NMRで反応生成物を確認したところ、反応時間21時間で目的とするポリアリルフェノール樹脂を得た。評価結果を表1に示す。
[実施例4]
 実施例1の反応温度を150℃とした以外は、実施例1と同様に反応を行い、H-NMRで反応生成物を確認したところ、反応時間30時間で目的とするポリアリルフェノール樹脂を得た。評価結果を表1に示す。
[実施例5]
 ポリアリルエーテル樹脂A-1の代わりに合成例2で得られたポリアリルエーテル樹脂A-2を用いた以外は実施例1と同様の操作を行った。H-NMRで反応生成物を確認したところ、式(5a)においてR=R=R=水素原子、R10=COH、Q=-CR10-、式(2)においてR11~R15=水素原子の固体のトリフェニルメタン型のポリアリルフェノール樹脂を得たことが分かった。得られたトリフェニルメタン型ポリアリルフェノール樹脂の構造単位を式(5a2)に示し、評価結果を表1に示す。
Figure JPOXMLDOC01-appb-C000015
[実施例6]
 ポリアリルエーテル樹脂A-1の代わりに合成例3で得られたポリアリルエーテル樹脂A-3を用いた以外は実施例1と同様の操作を行った。H-NMRで反応生成物を確認したところ、式(5c)においてR=R=水素原子、Q=-CH-C-CH-、式(2)においてR11~R15=水素原子の固体のポリアリルナフタレンジオール樹脂を得たことが分かった(図3)。得られたポリアリルナフタレンジオール樹脂の構造単位を式(5c1)に示し、評価結果を表1に示す。
Figure JPOXMLDOC01-appb-C000016
[実施例7]
 実施例1のフェノールの代わりにp-クレゾール(COH、純正化学株式会社製、沸点202℃)を用いた以外は実施例1と同様の操作を行い、H-NMRで反応生成物を確認したところ、反応時間8時間で目的とするポリアリルフェノール樹脂を得た。評価結果を表1に示す。
[比較例1]
 実施例1においてフェノールを添加しなかった以外は、実施例1と同様に反応を行い、H-NMRで反応生成物を確認したところ、反応時間27時間で目的とするポリアリルフェノール樹脂を得た。評価結果を表1に示す。
[比較例2]
 実施例5においてフェノールを添加しなかった以外は、実施例5と同様に反応を行い、H-NMRで反応生成物を確認したところ、反応時間27時間で目的とするポリアリルフェノール樹脂を得た。評価結果を表1に示す。
[比較例3]
 実施例6においてフェノールを添加しなかった以外は、実施例5と同様に反応を行い、H-NMRで反応生成物を確認したところ、反応時間27時間で目的とするポリアリルフェノール樹脂を得た。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000017
 表1より目的とする2-アルケニル(アリル)基を有するポリアルケニル(アリル)フェノール化合物が比較例に比べて実施例で高収率かつ高純度で得られることが示唆される。
[硬化性組成物の製造]
 実施例1で得られたポリアルケニルフェノール化合物(フェノールノボラック型ポリアリルフェノール樹脂)と、次の原料とを混合し、硬化性組成物を得た。
・芳香族ビスマレイミド化合物:BMI-4000(2,2’-ビス[4-(4-マレイミドフェニルオキシ)フェニル]プロパン、融点165℃、大和化成工業株式会社)
・硬化促進剤:パークミル(登録商標)D(ジクミルパーオキサイド、日油株式会社)
・シリカフィラー:MSR2212(球状シリカ、平均粒径25.5μm、株式会社龍森、シランカップリング剤KBM-403(信越化学工業株式会社)0.5質量%を用いて処理)
 BMI-4000 100質量部を反応容器に加え、170℃に加熱して撹拌した。BMI-4000が全て溶融し透明な液状物になったところで、150℃まで降温した。反応容器に、80℃に加熱し溶融させた実施例1のポリアルケニルフェノール化合物 100質量部を加え、150℃で10分間加熱撹拌して2つの化合物を混合した。得られた混合物及び下記の表2に示す各成分を用い、同表に示す割合で配合し、溶融混練(東洋精機製2本ロール(ロール径8インチ)にて、110℃、10分)を行った。ついで、室温(25℃)にて1時間放冷、固化したのちミルミキサー(大阪ケミカル株式会社製、型式WB-1、25℃、30秒)を用いて粉砕することにより、目的とする粉末状の硬化性組成物を得た。
[硬化物特性評価方法]
・ガラス転移温度(Tg)
 粉末状の硬化性組成物を用い、トランスファー成形機(株式会社松田製作所製)で、金型温度180℃、保持圧力100kg/cm、及び保持時間3分間の条件で成形し、ガラス転移温度測定用の試験片を作製する。試験片を230℃にて6時間加熱し、硬化させた後、熱機械測定(TMA)により測定する。エスアイアイ・ナノテクノロジー株式会社製TMA/SS6100熱機械分析装置を使用し、温度範囲30~300℃、昇温速度5℃/min、荷重20.0mNの条件で5mm×5mm×5mmの試験片を用いて測定を行い、線膨張係数の変位点の温度をTgとする。結果を表2に示す。
・曲げ強度及び曲げ弾性率
 粉末状の硬化性組成物を用い、トランスファー成形機(株式会社松田製作所製)で、金型温度180℃、保持圧力100kg/cm、及び保持時間3分間の条件で成形し、3点曲げ試験用の試験片を作製する。試験片を230℃にて6時間加熱し、硬化させた後、エー・アンド・デイ社製テンシロン試験機(型式:MSAT0002RTF/RTG)を用いて測定する。試験片形状は長さ750mm×幅10mm×厚さ3mmである。JIS K7171に準拠して、室温にて試験速度2mm/minで3点曲げ試験を5回行い、その平均値を曲げ強度及び曲げ弾性率とする。結果を表2に示す。
・誘電率及び誘電正接
 空胴共振器摂動法複素誘電率測定により決定する。粉末状の硬化性組成物を用い、トランスファー成形機(株式会社松田製作所製)で、金型温度180℃、保持圧力100kg/cm、及び保持時間3分間の条件で成形し、誘電率及び誘電正接測定用の試験片を作製する。試験片を230℃にて6時間加熱し、硬化させた後、キーサイト・テクノロジー合同会社製8753ES Sパラメータ・ベクトル・ネットワーク・アナライザ、空胴共振器摂動プログラムCPMA-V3、及び5GHz用の空胴共振器CP19を使用し、室温、測定周波数5GHzの条件で1.5mm×1.5mm×70.0mmの試験片を用いて測定を行い、誘電率及び誘電正接の値を決定する。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000018
 本発明により製造された分子量分布が狭く低粘度なポリアルケニルフェノール化合物は、例えば硬化剤としてマレイミド等の主剤と組み合わせることにより、成形性がよく、電気的信頼性の高い硬化物を得ることができる。本発明により製造された分子量分布が狭く低粘度なポリアルケニルフェノール化合物は、半導体封止材の原料等に好適に用いることができる。

Claims (13)

  1.  下記式(1a)、(1b)又は(1c)のいずれかで表される構造単位を少なくとも2つ有する化合物(A)
    Figure JPOXMLDOC01-appb-C000001
    (式(1a)~(1c)のR~Rはそれぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数1~2のアルコキシ基又は水酸基を表す。R~Rはナフタレン環を構成する炭素原子上のどこに位置していてもよい。Qはそれぞれ独立に式-CR10-で表されるアルキレン基、炭素数5~10のシクロアルキレン基、芳香環を有する二価の有機基、脂環式縮合環を有する二価の有機基又はこれらを組み合わせた二価基であり、R及びR10はそれぞれ独立に水素原子、炭素数1~5のアルキル基、炭素数2~6のアルケニル基、炭素数5~10のシクロアルキル基又は炭素数6~12のアリール基を表す。Yは下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    で表されるアルケニル基であり、R11、R12、R13、R14及びR15はそれぞれ独立に水素原子、炭素数1~5のアルキル基、炭素数5~10のシクロアルキル基又は炭素数6~12のアリール基を表す。式(2)の*は、酸素原子との結合部を表す。)のアルケニル基を、
     下記式(3)又は(4)のいずれかで表される少なくとも1つの化合物(B)
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (式(3)又は(4)のR16~R27はそれぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数3~12のシクロアルキル基又は炭素数6~10のアリール基を表す。)
    の存在下でクライゼン転位させることを含む、ポリアルケニルフェノール化合物(C)の製造方法。
  2.  前記化合物(B)が、式(3)で表される化合物である、請求項1に記載の方法。
  3.  前記化合物(B)が、式(3)で表される化合物であり、R16~R20がそれぞれ独立に水素原子又はメチル基である、請求項1又は2のいずれかに記載の方法。
  4.  前記化合物(B)が、フェノール、o-クレゾール、m-クレゾール、及びp-クレゾールからなる群より選択される少なくとも1つの化合物である、請求項1~3のいずれか一項に記載の方法。
  5.  前記化合物(A)が前記式(1a)又は(1b)のいずれかで表される構造単位を少なくとも2つ有する、請求項1~4のいずれか一項に記載の方法。
  6.  前記化合物(A)が前記式(1a)で表される構造単位を少なくとも2つ有する、請求項1~5のいずれか一項に記載の方法。
  7.  前記化合物(A)において前記式(1a)、(1b)又は(1c)のいずれかで表される構造単位の総数の一分子当たりの平均が2~20である、請求項1~6のいずれか一項に記載の方法。
  8.  下記式で定義される分子量増加率が0~70%である、請求項1~7のいずれか一項に記載の方法。
    分子量増加率[%]=(m/m-1)×100
    (mは前記化合物(A)の重量平均分子量、mは前記ポリアルケニルフェノール化合物(C)の重量平均分子量を表す。)
  9.  反応温度が140~180℃である、請求項1~8のいずれか一項に記載の方法。
  10.  反応時間が5~50時間である、請求項1~9のいずれか一項に記載の方法。
  11.  前記化合物(B)の量が、前記化合物(A)100質量部に対して1~120質量部である、請求項1~10のいずれか一項に記載の方法。
  12.  請求項1~11のいずれか一項に記載のポリアルケニルフェノール化合物(C)を含む硬化性組成物。
  13.  請求項12に記載の硬化性組成物の硬化物。
PCT/JP2017/028997 2016-10-18 2017-08-09 ポリアルケニルフェノール化合物の製造方法、並びにポリアルケニルフェノール化合物を含む硬化性組成物及びその硬化物 WO2018074040A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197000020A KR102171008B1 (ko) 2016-10-18 2017-08-09 폴리알케닐페놀 화합물의 제조 방법, 및 폴리알케닐페놀 화합물을 포함하는 경화성 조성물 및 그 경화물
JP2018546160A JP6921099B2 (ja) 2016-10-18 2017-08-09 ポリアルケニルフェノール化合物の製造方法、並びにポリアルケニルフェノール化合物を含む硬化性組成物及びその硬化物
CN201780047703.1A CN109563223B (zh) 2016-10-18 2017-08-09 多烯基酚化合物的制造方法、以及包含多烯基酚化合物的固化性组合物及其固化物
EP17861822.9A EP3530681A4 (en) 2016-10-18 2017-08-09 PROCESS FOR PRODUCING POLYALCENYLPHENOL COMPOUND, CURABLE COMPOSITION CONTAINING POLYALCENYLPHENOL COMPOUND, AND CURED PRODUCT OF CURABLE COMPOSITION
US16/330,470 US20190225566A1 (en) 2016-10-18 2017-08-09 Method for producing polyalkenylphenol compound, curable composition including polyalkenylphenol compound, and cured product of curable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016204487 2016-10-18
JP2016-204487 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018074040A1 true WO2018074040A1 (ja) 2018-04-26

Family

ID=62019142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028997 WO2018074040A1 (ja) 2016-10-18 2017-08-09 ポリアルケニルフェノール化合物の製造方法、並びにポリアルケニルフェノール化合物を含む硬化性組成物及びその硬化物

Country Status (7)

Country Link
US (1) US20190225566A1 (ja)
EP (1) EP3530681A4 (ja)
JP (1) JP6921099B2 (ja)
KR (1) KR102171008B1 (ja)
CN (1) CN109563223B (ja)
TW (1) TWI639635B (ja)
WO (1) WO2018074040A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193850A1 (ja) * 2017-04-19 2018-10-25 昭和電工株式会社 硬化性樹脂組成物、その硬化物、及びその硬化物を含む構造体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153635B2 (ja) * 2017-04-19 2022-10-14 昭和電工株式会社 硬化性樹脂組成物、その硬化物、及びその硬化物を含む構造体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229543A (ja) * 1985-08-01 1987-02-07 Mitsui Toatsu Chem Inc β,γ−不飽和アルケニル基置換フエノ−ル類の製造法
JP2012102282A (ja) * 2010-11-12 2012-05-31 Nitto Denko Corp 熱硬化性樹脂組成物硬化体の製法およびそれにより得られた硬化物
JP2012107145A (ja) * 2010-11-18 2012-06-07 Nitto Denko Corp 熱硬化性樹脂組成物硬化体の製法およびそれにより得られた硬化物
WO2016010124A1 (ja) * 2014-07-18 2016-01-21 昭和電工株式会社 ポジ型感光性樹脂組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087766A (en) * 1989-04-25 1992-02-11 Mitsubishi Petrochemical Co., Ltd. Process for producing allyl-substituted phenol compound and the product
JP2003104923A (ja) 2002-08-29 2003-04-09 Nippon Kayaku Co Ltd アリル化多価フェノール化合物の製造法
JP2004137200A (ja) 2002-10-17 2004-05-13 Jfe Chemical Corp フルオレニリデンジアリルフェノールの製造方法
JP5511251B2 (ja) * 2009-07-27 2014-06-04 昭和電工株式会社 アリルエーテルの製造方法
JP5854359B2 (ja) * 2010-04-29 2016-02-09 ブルー キューブ アイピー エルエルシー ポリシクロペンタジエンポリフェノールのポリ(アリルエーテル)
KR20130079413A (ko) * 2010-04-29 2013-07-10 다우 글로벌 테크놀로지스 엘엘씨 폴리시클로펜타디엔 폴리페놀의 비닐벤질 에테르
JP6271272B2 (ja) * 2014-01-31 2018-01-31 昭和電工株式会社 感放射線組成物および放射線リソグラフィー構造物の製造方法
JP6494444B2 (ja) * 2014-07-08 2019-04-03 昭和電工株式会社 ポリアルケニルフェノール化合物の製造方法
US10160856B2 (en) * 2014-12-25 2018-12-25 Showa Denko K.K. Thermosetting resin composition
KR101964618B1 (ko) * 2014-12-25 2019-04-02 쇼와 덴코 가부시키가이샤 열경화성 수지 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229543A (ja) * 1985-08-01 1987-02-07 Mitsui Toatsu Chem Inc β,γ−不飽和アルケニル基置換フエノ−ル類の製造法
JP2012102282A (ja) * 2010-11-12 2012-05-31 Nitto Denko Corp 熱硬化性樹脂組成物硬化体の製法およびそれにより得られた硬化物
JP2012107145A (ja) * 2010-11-18 2012-06-07 Nitto Denko Corp 熱硬化性樹脂組成物硬化体の製法およびそれにより得られた硬化物
WO2016010124A1 (ja) * 2014-07-18 2016-01-21 昭和電工株式会社 ポジ型感光性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MINAMI, K. ET AL.: "DIASTEREOCONTROL VIA THE PHENOL- AND PALLADIUM(II)-CATALYZED CLAISEN REARRANGEMENT WITH CYCLIC ENOL ETHERS", TETRAHEDRON LETTERS, vol. 28, no. 47, 1987, pages 5879 - 5882, XP055500394 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193850A1 (ja) * 2017-04-19 2018-10-25 昭和電工株式会社 硬化性樹脂組成物、その硬化物、及びその硬化物を含む構造体
JPWO2018193850A1 (ja) * 2017-04-19 2020-02-27 昭和電工株式会社 硬化性樹脂組成物、その硬化物、及びその硬化物を含む構造体
JP7065832B2 (ja) 2017-04-19 2022-05-12 昭和電工株式会社 硬化性樹脂組成物、その硬化物、及びその硬化物を含む構造体

Also Published As

Publication number Publication date
TW201821461A (zh) 2018-06-16
CN109563223A (zh) 2019-04-02
TWI639635B (zh) 2018-11-01
CN109563223B (zh) 2021-07-09
EP3530681A1 (en) 2019-08-28
KR102171008B1 (ko) 2020-10-28
EP3530681A4 (en) 2020-04-29
JPWO2018074040A1 (ja) 2019-08-08
JP6921099B2 (ja) 2021-08-18
KR20190015463A (ko) 2019-02-13
US20190225566A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
US10160856B2 (en) Thermosetting resin composition
KR102187507B1 (ko) 경화성 수지 조성물, 그 경화물, 및 그 경화물을 포함하는 구조체
TWI592442B (zh) Thermosetting resin composition
JP6832938B2 (ja) 硬化性樹脂混合物及び硬化性樹脂組成物の製造方法
WO2018074040A1 (ja) ポリアルケニルフェノール化合物の製造方法、並びにポリアルケニルフェノール化合物を含む硬化性組成物及びその硬化物
JP7065832B2 (ja) 硬化性樹脂組成物、その硬化物、及びその硬化物を含む構造体
JP2019048933A (ja) 硬化性樹脂組成物、その硬化物、該硬化性樹脂組成物を用いた構造体の製造方法、及び該硬化物を含む構造体
JPH0551418A (ja) 封止用樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018546160

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000020

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017861822

Country of ref document: EP

Effective date: 20190520