WO2018073970A1 - コンバータ制御装置およびコンバータ制御方法 - Google Patents

コンバータ制御装置およびコンバータ制御方法 Download PDF

Info

Publication number
WO2018073970A1
WO2018073970A1 PCT/JP2016/081369 JP2016081369W WO2018073970A1 WO 2018073970 A1 WO2018073970 A1 WO 2018073970A1 JP 2016081369 W JP2016081369 W JP 2016081369W WO 2018073970 A1 WO2018073970 A1 WO 2018073970A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage value
bus
drive signal
power factor
factor adjustment
Prior art date
Application number
PCT/JP2016/081369
Other languages
English (en)
French (fr)
Inventor
章斗 田中
智 一木
知宏 沓木
鈴木 大介
酒井 顕
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018546134A priority Critical patent/JP6641501B2/ja
Priority to PCT/JP2016/081369 priority patent/WO2018073970A1/ja
Publication of WO2018073970A1 publication Critical patent/WO2018073970A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a converter control device and a converter control method for controlling a converter circuit including a power factor adjustment circuit.
  • the conventional converter control device controls the voltage value of the DC bus by PWM (Pulse Width Modulation) control of the converter circuit.
  • the converter controller uses the current value of the DC bus detected by the DC bus current detector and the voltage value of the DC bus detected by the DC bus voltage detector to perform feedback control so that the DC bus voltage value is constant. Do.
  • the voltage value of the DC bus that has been detected in the past for example, the voltage value of the DC bus that has been detected in the previous or previous time, or the target voltage value of the DC bus (hereinafter referred to as “target voltage value of the DC bus”).
  • target voltage value of the DC bus Even when the voltage value of the DC bus fluctuates rapidly, the target voltage value of the DC bus is determined using the voltage value of the DC bus detected in the past.
  • the DC bus since the target voltage value of the DC bus becomes high, control for increasing the voltage value of the DC bus rapidly is performed, and the DC bus may be boosted rapidly. If the DC bus is boosted rapidly, there is a possibility of causing problems in the electronic components of the peripheral circuits connected to the converter circuit.
  • Patent Literature 1 by detecting an overvoltage of the output voltage based on the output voltage converted voltage value output from the output voltage detection circuit, outputting a signal for stopping the driving of the switch element, and stopping the driving of the switch element, The load is protected from overvoltage.
  • an upper limit voltage value (hereinafter referred to as “protection voltage value”) that can protect electronic components in peripheral circuits connected to the converter circuit in order to detect a sudden boost of the DC bus. Is set).
  • the converter control device stops the control of the converter circuit when the voltage value of the DC bus exceeds the protection voltage value, and when the voltage value of the DC bus falls below the protection voltage value after that, Control is resumed. Even when the control of the converter circuit is resumed, the converter control device determines the target voltage value of the DC bus using the voltage value of the DC bus detected in the past.
  • the target voltage value of the DC bus becomes higher than in the case of feedback control in which the voltage value of the DC bus is gradually increased, control for increasing the voltage value of the DC bus is performed rapidly, and the DC bus is May be boosted.
  • the voltage value of the DC bus may exceed the protection voltage value again, and there is a problem that the voltage value of the DC bus cannot be stably controlled.
  • the present invention has been made in view of the above, and an object thereof is to obtain a converter control device capable of stably controlling the voltage value of a DC bus.
  • a converter control device controls a converter circuit including a power factor adjustment circuit.
  • the converter control device includes a voltage detection unit that detects a voltage value of a DC bus of the converter circuit.
  • the converter control device includes a current detection unit that detects a current value of the DC bus.
  • the converter control device includes a drive signal generation unit that generates a drive signal for driving the power factor adjustment circuit using the target voltage value calculated by the target voltage value calculation unit.
  • the converter control device includes a drive signal output unit that outputs the drive signal generated by the drive signal generation unit.
  • the drive signal output unit When the voltage value of the DC bus is larger than a certain voltage value, the drive signal output unit outputs a drive signal for lowering the voltage value of the DC bus, and after outputting the drive signal, the voltage of the DC bus
  • the target voltage value calculation unit calculates the target voltage value using the fixed voltage value.
  • the converter control device has an effect that the voltage value of the DC bus can be stably controlled.
  • the block diagram which shows an example of the power supply device provided with the converter control apparatus concerning embodiment of this invention The block diagram which shows an example of a function structure of the control apparatus in FIG. FIG. 2 is a configuration diagram showing an example of a power factor adjustment circuit drive signal generation unit in FIG.
  • the flowchart of the process for power factor adjustment control which the control apparatus in FIG. 1 performs The figure for demonstrating the fluctuation
  • FIG. 1 is a configuration diagram illustrating an example of a power supply device including a converter control device according to an embodiment of the present invention.
  • a power supply device 100 including a converter control device includes a converter circuit 3 including an interleaved power factor adjustment circuit.
  • the power factor adjustment circuit includes a reactor unit 6, a switching element unit 7, and a reverse blocking diode unit 8.
  • the reactor L1 of the reactor unit 6, the switching element SW1 and the diode D4 of the switching element unit 7, and the reverse blocking diode D1 of the reverse blocking diode unit 8 constitute a boosting unit.
  • the reactor L2 of the reactor unit 6, the switching element SW2 and the diode D5 of the switching element unit 7, and the reverse blocking diode D2 of the reverse blocking diode unit 8 constitute a boosting unit.
  • the reactor L3 of the reactor unit 6, the switching element SW3 and the diode D6 of the switching element unit 7, and the reverse blocking diode D3 of the reverse blocking diode unit 8 constitute a boosting unit.
  • the converter circuit 3 includes a plurality of boosting units, and is a circuit that can suppress harmonic current by performing control to sequentially switch the switching elements SW1, SW2, and SW3 of each boosting unit.
  • FIG. 1 illustrates a three-stage interleave circuit in which three boosting units are connected in parallel
  • the interleave circuit applied to the power supply apparatus 100 is not limited to the three-stage interleave circuit, and two or more stages are used. Any interleaving circuit having the number of stages may be used.
  • the power supply apparatus 100 includes a noise filter 1 that prevents noise from propagating to the outside, an inrush prevention circuit 2 that prevents inrush current, a converter circuit 3 that converts AC power into DC power, and DC power to AC power. And an inverter circuit 4 for conversion.
  • the power supply device 100 includes a power supply voltage detector 9, a DC bus current detector 10, a DC bus voltage detector 11, and a control device 12 that controls the converter circuit 3.
  • An example of the load of the power supply apparatus 100 is the motor M.
  • the converter circuit 3 includes a diode bridge 5, which is a rectifier circuit that performs full-wave rectification on DC power input from a single-phase AC power supply 13, a reactor unit 6, a switching element unit 7, and a reverse blocking diode unit 8. And a smoothing capacitor C1 and voltage dividing resistors R1 and R2.
  • the diode bridge 5 is a full-wave rectifier circuit configured by combining four diodes d1, d2, d3, and d4.
  • the configuration of the diode bridge 5 is not limited to this, and the metal oxide semiconductor field effect A MOSFET (Metal Oxide Semiconductor-Field Effect Transistor) that is a type transistor may be combined.
  • MOSFET Metal Oxide Semiconductor-Field Effect Transistor
  • One end of the reactor L1 is connected to the positive end of the diode bridge 5.
  • the other end of the reactor L1 is connected to a connection point between the switching element SW1 and the anode side of the reverse blocking diode D1.
  • the cathode side of the reverse blocking diode D1 is connected to the positive side end of the smoothing capacitor C1.
  • the reactor L1, the switching element SW1, and the reverse blocking diode D1 connected in this way constitute a boosting unit.
  • One end of the reactor L2 is connected to the positive end of the diode bridge 5.
  • the other end of the reactor L2 is connected to a connection point between the switching element SW2 and the anode side of the reverse blocking diode D2.
  • the cathode side of the reverse blocking diode D2 is connected to the positive side end of the smoothing capacitor C1.
  • the booster is configured by the reactor L2, the switching element SW2, and the reverse blocking diode D2 connected in this way.
  • One end of the reactor L3 is connected to the positive side end of the diode bridge 5.
  • the other end of the reactor L3 is connected to a connection point between the switching element SW3 and the anode side of the reverse blocking diode D3.
  • the cathode side of the reverse blocking diode D3 is connected to the positive side end of the smoothing capacitor C1.
  • the booster is configured by the reactor L3, the switching element SW3, and the reverse blocking diode D3 connected in this manner.
  • the ends of the three switching elements SW1, SW2, SW3 that are not connected to the reactors L1, L2, L3 are connected to the negative end of the smoothing capacitor C1 and one end of the DC bus current detector 10. .
  • the diodes D4, D5, and D6 of the switching element unit 7 prevent the backflow current from flowing to the switching elements SW1, SW2, and SW3, respectively.
  • the positive side end of the smoothing capacitor C1 is connected to the positive side DC bus P, and the negative side end of the smoothing capacitor C1 is connected to the negative side DC bus N.
  • An inverter circuit 4 is connected to both ends of the smoothing capacitor C1.
  • the smoothing capacitor C1 smoothes the output voltage of the power factor adjustment circuit and outputs it to the inverter circuit 4.
  • One end of the voltage dividing resistor R1 is connected to the positive side DC bus P, and the other end of the voltage dividing resistor R1 is connected to one end of the voltage dividing resistor R2.
  • One end of the voltage dividing resistor R2 is connected to the other end of the voltage dividing resistor R1, and the other end of the voltage dividing resistor R2 is connected to the negative side DC bus N.
  • the voltage dividing resistors R1 and R2 divide the voltage of the DC bus that is the voltage between the positive side DC bus P and the negative side DC bus N, and the voltage at the connection point between the voltage dividing resistor R1 and the voltage dividing resistor R2 is DC.
  • the voltage range that can be detected by the bus voltage detector 11 is limited.
  • the power supply voltage detector 9 detects the power supply voltage Vin1 which is the voltage at one terminal of the AC power supply 13 and the power supply voltage Vin2 which is the voltage at the other terminal of the AC power supply 13, and the detected power supply voltage Vin1 and power supply voltage Vin2 are detected. Information is output to the control device 12.
  • the DC bus current detector 10 detects a current value Idc of the DC bus that is a current flowing between the diode bridge 5 and the inverter circuit 4, and sends information on the detected current value Idc of the DC bus to the control device 12. Output.
  • the DC bus voltage detector 11 detects the divided voltage divided by the voltage dividing resistors R1 and R2 of the voltage of the DC bus, calculates the voltage value Vo of the DC bus from the detected divided voltage, and calculates the calculated DC Information on the voltage value Vo of the bus is output to the control device 12.
  • the control device 12 uses the information output from the power supply voltage detector 9, the DC bus current detector 10, and the DC bus voltage detector 11 to drive the drive signals X, Y for driving the switching elements SW1, SW2, SW3. , Z are output to control on / off of the switching elements SW1, SW2, SW3. Thereby, power factor adjustment control is realized. Note that information other than these may be input to the control device 12, and other information may be used for power factor adjustment control.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of the control device in FIG.
  • the control device 12 includes a control unit 20, a storage unit 21, and a communication unit 22.
  • the control unit 20 includes a target voltage value calculation unit 23, a power factor adjustment circuit drive signal generation unit 24, a power factor adjustment circuit drive signal output unit 25, a determination unit 26, and a detection control unit 27.
  • the target voltage value calculation unit 23 uses fixed value data stored at the start of the power factor adjustment control stored in the storage unit 21.
  • a target voltage value Vo * of the DC bus is calculated.
  • the fixed value data is, for example, a fixed voltage value, and is data for gradually increasing the voltage value of the DC bus at the start of power factor adjustment control.
  • the target voltage value calculation unit 23 starts the power factor adjustment control of the converter circuit 3 by the control device 12
  • the fixed value data used when starting the power factor adjustment control stored in the storage unit 21 is detected.
  • the target voltage value Vo * of the DC bus may be calculated using the voltage value Vo of the DC bus and the detected current value Idc of the DC bus.
  • the target voltage value calculation unit 23 performs the feedback control of the power factor adjustment control of the converter circuit 3 by the control device 12, the fixed voltage data stored in the storage unit 21 or the DC bus detected in the past The target voltage value Vo * of the DC bus is calculated using the data.
  • the DC bus data detected in the past is, for example, the voltage value Vo of the DC bus detected when calculating the target voltage value Vo * of the previous DC bus or when calculating the target voltage value Vo * of the DC bus the previous time. is there.
  • the last time refers to the control cycle before the current control cycle.
  • the previous cycle refers to the control cycle before the current control cycle.
  • the data of the DC bus detected in the past includes, for example, the voltage value Vo of the DC bus detected when the target voltage value Vo * of the previous DC bus is calculated or the target voltage value Vo * of the DC bus is calculated the last time.
  • the current value Idc of the DC bus detected at the time of the previous calculation of the target voltage value Vo * of the DC bus or the previous calculation of the target voltage value Vo * of the DC bus may be used.
  • the power factor adjustment circuit drive signal generation unit 24 uses the target voltage value Vo * of the DC bus calculated by the target voltage value calculation unit 23 to drive the drive signals X and Y for driving the power factor adjustment circuit of the converter circuit 3. , Z is generated. Details of the power factor adjustment circuit drive signal generator 24 will be described later.
  • the power factor adjustment circuit drive signal output unit 25 outputs the drive signal of the power factor adjustment circuit generated by the power factor adjustment circuit drive signal generation unit 24.
  • the power factor adjustment circuit drive signal output unit 25 drives the power factor adjustment circuit to reduce the voltage value Vo of the DC bus when the voltage value Vo of the DC bus is larger than a protection voltage value that is a constant voltage value. Output a signal.
  • the drive signal of the power factor adjustment circuit for reducing the voltage value Vo of the DC bus is, for example, a drive signal of the power factor adjustment circuit that sets the output value to 0, that is, turns off the switching elements SW1, SW2, and SW3. .
  • the discrimination unit 26 discriminates whether or not the voltage value Vo of the DC bus is larger than or smaller than the protection voltage value.
  • the detection control unit 27 controls the DC bus voltage detector 11 to detect the voltage value Vo of the DC bus and detects the DC bus current.
  • the device 10 is controlled so as to detect the current value Idc of the DC bus.
  • the detection control unit 27 performs control so that the DC bus voltage detector 11 detects the voltage value Vo of the DC bus while the feedback control of the power factor adjustment control of the converter circuit 3 by the control device 12 is performed.
  • Control is performed so that the DC bus current detector 10 detects the current value Idc of the DC bus.
  • the detection control unit 27 outputs the voltage value of the DC bus by the DC bus voltage detector 11 while the power factor adjustment circuit drive signal output unit 25 outputs the drive signal of the power factor adjustment circuit whose output is 0. Control is performed so as to continue detection of Vo, and control is performed so that detection of the current value Idc of the DC bus by the DC bus current detector 10 is continued.
  • the storage unit 21 stores fixed value data used at the start of the power factor adjustment control.
  • the storage unit 21 stores DC bus data detected in the past.
  • FIG. 3 is a block diagram showing an example of the power factor adjustment circuit drive signal generator 24 in FIG.
  • the power factor adjustment circuit drive signal generator 24 includes a comparator 50, a power supply phase calculator 51, a subtractor 52, a PI (Proportional Integral) calculator 53, a current target value calculator 54, A subtracting unit 55, a PI calculating unit 56, and a drive signal generating unit 57 are provided.
  • the comparison unit 50 compares the power supply voltage Vin1 and the power supply voltage Vin2 detected by the power supply voltage detector 9, detects the zero cross point of the voltage of the AC power supply 13, and outputs a zero cross signal Vzc indicating the zero cross point.
  • the power supply phase calculation unit 51 calculates the power supply phase ⁇ based on the zero cross signal Vzc.
  • the subtracting unit 52 obtains a deviation between the DC bus voltage value Vo, which is an output signal of the DC bus voltage detector 11, and the DC bus target voltage value Vo * calculated by the target voltage value calculating unit 23.
  • the PI calculation unit 53 performs proportional-integral control so as to eliminate a deviation between the DC bus voltage value Vo and the DC bus target voltage value Vo *, and outputs the control result to the current target value calculation unit 54.
  • the current target value calculation unit 54 calculates the target current value Idc * of the DC bus based on the power supply phase ⁇ calculated by the power supply phase calculation unit 51 and the proportional integral control result of the PI calculation unit 53.
  • the target current value Idc * of the DC bus is a target current value for half-wave rectification with the proportional integral control result as the amplitude and the power supply phase ⁇ as the phase.
  • the subtracting unit 55 obtains a deviation between the target current value Idc * of the DC bus and the current value Idc of the DC bus that is an output signal of the DC bus current detector 10.
  • the PI calculation unit 56 performs proportional-integral control of the deviation between the target current value Idc * of the DC bus and the current value Idc of the DC bus, and calculates the on-duty of the drive signal.
  • the drive signal generator 57 generates the drive signals X, Y, and Z by comparing the on-duty of the drive signal with each of the three triangular waves shifted by 120 degrees, respectively.
  • FIG. 4 is a diagram illustrating an example of a hardware configuration of the control circuit 200 of the control device 12 in FIG.
  • the control device 12 includes a control circuit 200 that is hardware that implements the control unit 20, the storage unit 21, and the communication unit 22.
  • the control device 12 may include a dedicated circuit that implements the control unit 20, the storage unit 21, and the communication unit 22.
  • the control circuit 200 includes an input / output interface circuit 201 including an input circuit for inputting information from the outside of the control circuit 200 and an output circuit for outputting the information to the outside of the control circuit 200, a processor 202, and a memory 203. .
  • the input / output interface circuit 201 sends information received from the outside to the memory 203.
  • the memory 203 stores information received from the input / output interface circuit 201.
  • the memory 203 stores a computer program.
  • the processor 202 reads a computer program stored in the memory 203 and performs arithmetic processing based on information stored in the memory 203. Calculation result information indicating the calculation result by the processor 202 is sent to the memory 203.
  • the input / output interface circuit 201 sends information stored in the memory 203 to the outside.
  • the input / output interface circuit 201 implements the communication unit 22.
  • the processor 202 implements the control unit 20.
  • the memory 203 implements the storage unit 21.
  • FIG. 5 is a flowchart of processing for power factor adjustment control executed by the control device in FIG.
  • the target voltage value calculation unit 23 of the control device 12 uses the fixed voltage value used at the start of the power factor adjustment control stored in the storage unit 21, and the target voltage value Vo of the DC bus. * Is calculated (step S101).
  • the power factor adjustment circuit drive signal generation unit 24 of the control device 12 uses the target voltage value Vo * of the DC bus calculated in step S101 to drive the drive signals X, Y, Z is generated (step S102).
  • step S103 the power factor adjustment circuit drive signal output unit 25 of the control device 12 outputs the drive signals X, Y, and Z generated in step S102 (step S103). Thereby, the power factor adjustment control of the converter circuit 3 by the control device 12 is started.
  • the target voltage value calculation unit 23 of the control device 12 calculates the target voltage value Vo * of the DC bus using the voltage value Vo of the DC bus detected in the past stored in the storage unit 21 (step S104). ).
  • the power factor adjustment circuit drive signal generation unit 24 of the control device 12 uses the target voltage value Vo * of the DC bus calculated in step S104 to drive the drive signals X, Y, Z is generated (step S105).
  • step S106 the power factor adjustment circuit drive signal output unit 25 of the control device 12 outputs the drive signals X, Y, and Z generated in step S104 (step S106). Thereby, feedback control of power factor adjustment control of converter circuit 3 by control device 12 is realized.
  • the determination unit 26 of the control device 12 determines whether or not the voltage value of the DC bus is larger than the protection voltage value (step S107).
  • step S107 If it is determined in step S107 that the voltage value of the DC bus is not greater than the protection voltage value (No in step S107), the process returns to step S104.
  • step S107 when the voltage value of the DC bus is larger than the protection voltage value (Yes in step S107), the power factor adjustment circuit drive signal output unit 25 of the control device 12 sets the voltage value of the DC bus. In order to decrease the power factor adjustment circuit drive signal, the output value is set to 0 (step S108).
  • the detection control unit 27 of the control device 12 detects the DC bus voltage even while the power factor adjustment circuit drive signal output unit 25 outputs the drive signal of the power factor adjustment circuit with the output value set to 0. Control is performed so that the detection of the voltage value of the DC bus by the generator 11 is continued, and control is performed so as to continue the detection of the current value of the DC bus by the DC bus current detector 10 (step S109).
  • the determination unit 26 of the control device 12 determines whether or not the voltage value of the DC bus is smaller than the protection voltage value (step S110).
  • step S110 If it is determined in step S110 that the voltage value of the DC bus is not smaller than the protection voltage value (No in step S110), the process returns to step S108.
  • step S110 If it is determined in step S110 that the voltage value of the DC bus is smaller than the protection voltage value (Yes in step S110), the process returns to step S101.
  • the power factor adjustment circuit drive signal output unit 25 reduces the voltage value of the DC bus.
  • the target voltage value calculation unit 23 performs power factor adjustment control.
  • a target voltage value is calculated using a fixed voltage value used at the start. Since the voltage value of the DC bus detected in the past is not used, the calculation speed of the target voltage value can be improved. As a result, the voltage value of the DC bus can be quickly increased after it becomes smaller than the protection voltage value.
  • the drive signal of the power factor adjustment circuit generated using the target voltage value is a drive signal at the start of power factor adjustment control
  • the voltage value of the DC bus is gradually increased.
  • the voltage value of the DC bus gradually increases, it is possible to prevent the voltage value of the DC bus from rapidly rising again and exceeding the protection voltage value, and to stabilize the voltage value of the DC bus. Can be controlled.
  • FIG. 6 is a diagram for explaining the fluctuation state of the voltage value of the DC bus when the process for the power factor adjustment control of FIG. 5 is executed.
  • the region 30 is a region where, for example, load fluctuation occurs and the voltage value of the DC bus exceeds the protection voltage value.
  • the region 31 is a region where the power factor adjustment circuit drive signal output unit 25 outputs a drive signal for reducing the voltage value of the DC bus.
  • the region 32 calculates the target voltage value using the fixed voltage value that the target voltage value calculation unit 23 uses when starting the power factor adjustment control when the voltage value of the DC bus becomes smaller than the protection voltage value. This is a region where power factor adjustment control is performed. As shown in FIG. 6, since the voltage value of the DC bus gradually increases after becoming smaller than the protection voltage value, the voltage value of the DC bus can be controlled stably.
  • FIG. 7 is a diagram for explaining the fluctuation state of the voltage value of the DC bus in the conventional converter circuit.
  • Region 40 is a region where, for example, load fluctuation occurs and the voltage value of the DC bus exceeds the protection voltage value.
  • the area 41 is an area in which the control of the converter circuit is resumed when the control of the converter circuit is stopped, and then the voltage value of the DC bus falls below the protection voltage value.
  • the conventional converter control device determines the target voltage value of the DC bus using the voltage value of the DC bus detected in the past even when the control of the converter circuit is resumed. The control of increasing the voltage value of the DC bus rapidly is performed, and the DC bus is rapidly boosted. In this case, the voltage value of the DC bus again exceeds the protection voltage value, and the voltage value of the DC bus cannot be stably controlled.
  • the power factor adjustment circuit drive signal output unit 25 sets the output to zero.
  • the circuit drive signal is output. As a result, the voltage value of the DC bus can be lowered without stopping the control of the converter circuit 3.
  • the detection control unit 27 outputs the drive signal output from the power factor adjustment circuit when the power factor adjustment circuit drive signal output unit 25 sets the output value to zero. Control is performed so that the detection of the voltage value of the DC bus by the DC bus voltage detector 11 is continued and the detection of the current value of the DC bus by the DC bus current detector 10 is continued even during the operation. To do. Thereby, the state of the converter circuit 3 can be monitored even while the voltage value of the DC bus is lowered.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit and change the part.

Abstract

コンバータ制御装置は、直流母線電圧検出器(11)と、直流母線電流検出器(10)と、力率調整制御を開始する際は、固定値の電圧値を用いて直流母線の目標電圧値を算出し、力率調整制御を行っている間は、過去に検出した直流母線の電圧値を用いて目標電圧値を算出する目標電圧値算出部(23)と、目標電圧値を用いて駆動信号を生成する力率調整回路駆動信号生成部(24)と、駆動信号を出力する力率調整回路駆動信号出力部(25)とを備える。直流母線の電圧値が一定の電圧値よりも大きい場合、力率調整回路駆動信号出力部(25)は、直流母線の電圧値を低下させるための駆動信号の出力を行い、駆動信号の出力を行った後に直流母線の電圧値が一定の電圧値よりも小さくなった場合、目標電圧値算出部(23)は、固定値の電圧値を用いて目標電圧値の算出を行う。

Description

コンバータ制御装置およびコンバータ制御方法
 本発明は、力率調整回路を備えたコンバータ回路を制御するコンバータ制御装置およびコンバータ制御方法に関する。
 従来のコンバータ制御装置は、コンバータ回路のPWM(Pulse Width Modulation)制御により、直流母線の電圧値を制御する。コンバータ制御装置は、直流母線電流検出器により検出した直流母線の電流値と直流母線電圧検出器により検出した直流母線の電圧値とを用いて直流母線の電圧値が一定となるようにフィードバック制御を行う。フィードバック制御では、過去に検出した直流母線の電圧値、たとえば前回または前々回に検出した直流母線の電圧値を用いて目標とする直流母線の電圧値(以下、「直流母線の目標電圧値」という。)を決定する。直流母線の電圧値が急激に変動した場合においても、過去に検出した直流母線の電圧値を用いて直流母線の目標電圧値を決定している。この場合、直流母線の目標電圧値が高くなるため、直流母線の電圧値を急激に上昇させる制御を行い、直流母線が急激に昇圧してしまうことがある。直流母線が急激に昇圧すると、コンバータ回路に接続されている周辺回路の電子部品に不具合を生じさせてしまう可能性がある。
 特許文献1では、出力電圧検出回路から出力される出力電圧換算電圧値に基づき出力電圧の過電圧を検出してスイッチ素子の駆動を停止させる信号を出力し、スイッチ素子の駆動を停止させることにより、負荷を過電圧から保護している。
特開2011-155813号公報
 従来のコンバータ制御装置では、直流母線の急激な昇圧を検知するために、コンバータ回路に接続されている周辺回路の電子部品を保護することが可能な上限の電圧値(以下、「保護電圧値」という。)を設定している。コンバータ制御装置は、直流母線の電圧値が保護電圧値を超えた場合には、コンバータ回路の制御を停止し、その後に直流母線の電圧値が保護電圧値を下回った場合には、コンバータ回路の制御を再開している。コンバータ制御装置は、コンバータ回路の制御を再開する場合においても、過去に検出した直流母線の電圧値を用いて直流母線の目標電圧値を決定している。この場合、徐々に直流母線の電圧値を上昇させるフィードバック制御の場合と比較して直流母線の目標電圧値が高くなるため、直流母線の電圧値を急激に上昇させる制御を行い、直流母線が急激に昇圧してしまうことがある。この場合、再度直流母線の電圧値が保護電圧値を超えてしまう場合があり、直流母線の電圧値を安定して制御することができないという問題があった。
 本発明は、上記に鑑みてなされたものであって、直流母線の電圧値を安定して制御することができるコンバータ制御装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる、コンバータ制御装置は、力率調整回路を備えたコンバータ回路を制御する。コンバータ制御装置は、コンバータ回路の直流母線の電圧値を検出する電圧検出部を備える。コンバータ制御装置は、直流母線の電流値を検出する電流検出部を備える。コンバータ制御装置は、力率調整回路を駆動させて力率調整制御を開始する際は、力率調整制御の開始時に用いる固定値の電圧値を用いて、直流母線の目標電圧値を算出し、力率調整制御を行っている間は、電圧検出部が過去に検出した直流母線の電圧値を用いて、目標電圧値を算出する目標電圧値算出部を備える。コンバータ制御装置は、目標電圧値算出部が算出した目標電圧値を用いて、力率調整回路を駆動させるための駆動信号を生成する駆動信号生成部を備える。コンバータ制御装置は、駆動信号生成部により生成された駆動信号を出力する駆動信号出力部を備える。直流母線の電圧値が一定の電圧値よりも大きい場合、駆動信号出力部は、直流母線の電圧値を低下させるための駆動信号の出力を行い、駆動信号の出力を行った後に直流母線の電圧値が一定の電圧値よりも小さくなった場合、目標電圧値算出部は、固定値の電圧値を用いて、目標電圧値の算出を行う。
 本発明にかかるコンバータ制御装置は、直流母線の電圧値を安定して制御することができるという効果を奏する。
本発明の実施の形態にかかるコンバータ制御装置を備えた電源装置の一例を示す構成図 図1における制御装置の機能構成の一例を示すブロック図 図2における力率調整回路駆動信号生成部の一例を示す構成図 図1における制御装置の制御回路のハードウェア構成の一例を示す図 図1における制御装置が実行する力率調整制御のための処理のフローチャート 図5の力率調整制御のための処理を実行した場合における直流母線の電圧値の変動状況を説明するための図 従来のコンバータ回路における直流母線の電圧値の変動状況を説明するための図
 以下に、本発明の実施の形態にかかるコンバータ制御装置を備えた電源装置、および本発明の実施の形態にかかるコンバータ制御方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態
 まず、本発明の実施の形態にかかるコンバータ制御装置を備えた電源装置について説明する。図1は、本発明の実施の形態にかかるコンバータ制御装置を備えた電源装置の一例を示す構成図である。
 本発明の実施の形態にかかるコンバータ制御装置を備えた電源装置100は、インターリーブ方式の力率調整回路を備えたコンバータ回路3を備える。当該力率調整回路は、リアクタ部6、スイッチング素子部7および逆阻止ダイオード部8を備える。リアクタ部6のリアクタL1と、スイッチング素子部7のスイッチング素子SW1およびダイオードD4と、逆阻止ダイオード部8の逆阻止ダイオードD1とは昇圧部を構成する。リアクタ部6のリアクタL2と、スイッチング素子部7のスイッチング素子SW2およびダイオードD5と、逆阻止ダイオード部8の逆阻止ダイオードD2とは昇圧部を構成する。リアクタ部6のリアクタL3と、スイッチング素子部7のスイッチング素子SW3およびダイオードD6と、逆阻止ダイオード部8の逆阻止ダイオードD3とは昇圧部を構成する。コンバータ回路3は、昇圧部を複数個備え、各々の昇圧部のスイッチング素子SW1,SW2,SW3を順番にスイッチングさせる制御を行うことで高調波電流を抑制することを可能とした回路である。図1では3つの昇圧部を並列に接続した3段インターリーブ回路が例示されているが、電源装置100に適用されるインターリーブ回路は、3段インターリーブ回路に限定されるものではなく、2段以上の段数のインターリーブ回路であればよい。
 電源装置100は、ノイズが外部へ伝播することを防止するノイズフィルタ1と、突入電流を防止する突入防止回路2と、交流電力を直流電力に変換するコンバータ回路3と、直流電力を交流電力に変換するインバータ回路4とを備える。電源装置100は、電源電圧検出器9と、直流母線電流検出器10と、直流母線電圧検出器11と、コンバータ回路3を制御する制御装置12とを備える。電源装置100の負荷としてはモータMを例示することができる。
 コンバータ回路3は、単相の交流電源13から入力される直流電力に対して全波整流を行う整流回路であるダイオードブリッジ5と、リアクタ部6と、スイッチング素子部7と、逆阻止ダイオード部8と、平滑コンデンサC1と、分圧抵抗R1,R2とを備える。
 ダイオードブリッジ5は、4つのダイオードd1,d2,d3,d4を組み合わせて構成される全波整流回路であるが、ダイオードブリッジ5の構成はこれに限定されるものではなく、金属酸化膜半導体電界効果型トランジスタであるMOSFET(Metal Oxide Semiconductor-Field Effect Transistor)を組み合わせて構成されてもよい。
 ダイオードブリッジ5の正側端にリアクタL1の一端が接続される。リアクタL1の他端がスイッチング素子SW1と逆阻止ダイオードD1のアノード側との接続点に接続される。逆阻止ダイオードD1のカソード側は平滑コンデンサC1の正側端に接続される。このように接続されたリアクタL1、スイッチング素子SW1および逆阻止ダイオードD1により昇圧部が構成される。
 ダイオードブリッジ5の正側端にリアクタL2の一端が接続される。リアクタL2の他端がスイッチング素子SW2と逆阻止ダイオードD2のアノード側との接続点に接続される。逆阻止ダイオードD2のカソード側は平滑コンデンサC1の正側端に接続される。このように接続されたリアクタL2、スイッチング素子SW2および逆阻止ダイオードD2により昇圧部が構成される。
 ダイオードブリッジ5の正側端にリアクタL3の一端が接続される。リアクタL3の他端がスイッチング素子SW3と逆阻止ダイオードD3のアノード側との接続点に接続される。逆阻止ダイオードD3のカソード側は平滑コンデンサC1の正側端に接続される。このように接続されたリアクタL3、スイッチング素子SW3および逆阻止ダイオードD3により昇圧部が構成される。
 3つのスイッチング素子SW1,SW2,SW3のそれぞれのリアクタL1,L2,L3に接続されていない側の端部は、平滑コンデンサC1の負側端と直流母線電流検出器10の一端とに接続される。
 スイッチング素子部7のダイオードD4,D5,D6はそれぞれスイッチング素子SW1,SW2,SW3へ逆流電流が流れることを防止する。
 平滑コンデンサC1の正側端は正極側直流母線Pに接続され、平滑コンデンサC1の負側端は負極側直流母線Nに接続される。平滑コンデンサC1の両端にはインバータ回路4が接続される。平滑コンデンサC1は力率調整回路の出力電圧を平滑してインバータ回路4に出力する。
 分圧抵抗R1の一端は正極側直流母線Pに接続され、分圧抵抗R1の他端は分圧抵抗R2の一端に接続される。分圧抵抗R2の一端は分圧抵抗R1の他端に接続され、分圧抵抗R2の他端は負極側直流母線Nに接続される。分圧抵抗R1,R2は正極側直流母線Pと負極側直流母線Nとの間の電圧である直流母線の電圧を分圧し、分圧抵抗R1と分圧抵抗R2との接続点の電圧を直流母線電圧検出器11で検出可能な電圧範囲に制限する。
 電源電圧検出器9は、交流電源13の一方の端子の電圧である電源電圧Vin1および交流電源13の他方の端子の電圧である電源電圧Vin2を検出し、検出した電源電圧Vin1および電源電圧Vin2の情報を制御装置12に対して出力する。直流母線電流検出器10は、ダイオードブリッジ5とインバータ回路4との間に流れる電流である直流母線の電流値Idcを検出し、検出した直流母線の電流値Idcの情報を制御装置12に対して出力する。直流母線電圧検出器11は、直流母線の電圧の分圧抵抗R1,R2により分圧された分圧電圧を検出し、検出した分圧電圧から直流母線の電圧値Voを算出し、算出した直流母線の電圧値Voの情報を制御装置12に対して出力する。
 制御装置12は、電源電圧検出器9、直流母線電流検出器10および直流母線電圧検出器11から出力された情報を用いて、スイッチング素子SW1,SW2,SW3を駆動させるための駆動信号X,Y,Zを出力して、スイッチング素子SW1,SW2,SW3のオンオフを制御する。これにより力率調整制御が実現される。なお、制御装置12にはこれら以外の他の情報が入力されてもよく、力率調整制御にその他の情報が用いられてもよい。
 図2は、図1における制御装置の機能構成の一例を示すブロック図である。
 図2において、制御装置12は、制御部20と、記憶部21と、通信部22とを備える。制御部20は、目標電圧値算出部23と、力率調整回路駆動信号生成部24と、力率調整回路駆動信号出力部25と、判別部26と、検出制御部27とを備える。
 目標電圧値算出部23は、制御装置12によるコンバータ回路3の力率調整制御を開始する際は、記憶部21に記憶されている力率調整制御の開始時に用いる固定値のデータを用いて、直流母線の目標電圧値Vo*を算出する。固定値のデータは、たとえば固定値の電圧値であり、力率調整制御の開始時に直流母線の電圧値を徐々に上昇させるためのデータである。目標電圧値算出部23は、制御装置12によるコンバータ回路3の力率調整制御を開始する際に、記憶部21に記憶されている力率調整制御の開始時に用いる固定値のデータ、検出された直流母線の電圧値Voおよび検出された直流母線の電流値Idcを用いて、直流母線の目標電圧値Vo*を算出してもよい。目標電圧値算出部23は、制御装置12によるコンバータ回路3の力率調整制御のフィードバック制御を行っている間は、記憶部21に記憶されている固定値のデータまたは過去に検出した直流母線のデータを用いて、直流母線の目標電圧値Vo*を算出する。過去に検出した直流母線のデータは、たとえば前回の直流母線の目標電圧値Vo*の算出の際または前々回の直流母線の目標電圧値Vo*の算出の際に検出した直流母線の電圧値Voである。前回とは、現在の制御周期の前制御周期をいう。前々回とは、現在の制御周期の前々制御周期をいう。過去に検出した直流母線のデータは、たとえば前回の直流母線の目標電圧値Vo*の算出の際または前々回の直流母線の目標電圧値Vo*の算出の際に検出した直流母線の電圧値Voおよび前回の直流母線の目標電圧値Vo*の算出の際または前々回の直流母線の目標電圧値Vo*の算出の際に検出した直流母線の電流値Idcであってもよい。
 力率調整回路駆動信号生成部24は、目標電圧値算出部23が算出した直流母線の目標電圧値Vo*を用いて、コンバータ回路3の力率調整回路を駆動させるための駆動信号X,Y,Zを生成する。力率調整回路駆動信号生成部24の詳細については後述する。
 力率調整回路駆動信号出力部25は、力率調整回路駆動信号生成部24が生成した力率調整回路の駆動信号を出力する。力率調整回路駆動信号出力部25は、直流母線の電圧値Voが一定の電圧値である保護電圧値よりも大きいときは、直流母線の電圧値Voを低下させるための力率調整回路の駆動信号を出力する。直流母線の電圧値Voを低下させるための力率調整回路の駆動信号は、たとえば出力の値を0とした、すなわちスイッチング素子SW1,SW2,SW3をオフにさせる力率調整回路の駆動信号である。
 判別部26は、直流母線の電圧値Voが保護電圧値よりも大きいか否か、および小さいか否かを判別する。
 検出制御部27は、制御装置12によるコンバータ回路3の力率調整制御を開始する際は、直流母線電圧検出器11が直流母線の電圧値Voを検出するように制御するとともに、直流母線電流検出器10が直流母線の電流値Idcを検出するように制御する。検出制御部27は、制御装置12によるコンバータ回路3の力率調整制御のフィードバック制御を行っている間は、直流母線電圧検出器11が直流母線の電圧値Voを検出するように制御するとともに、直流母線電流検出器10が直流母線の電流値Idcを検出するように制御する。検出制御部27は、力率調整回路駆動信号出力部25が出力を0とした力率調整回路の駆動信号の出力を行っている間においても、直流母線電圧検出器11による直流母線の電圧値Voの検出を継続させるように制御するとともに、直流母線電流検出器10による直流母線の電流値Idcの検出を継続させるように制御する。
 記憶部21は、力率調整制御の開始時に用いる固定値のデータを記憶する。記憶部21は、過去に検出した直流母線のデータを記憶する。
 図3は、図2における力率調整回路駆動信号生成部24の一例を示す構成図である。
 図3において、力率調整回路駆動信号生成部24は、比較部50と、電源位相演算部51と、減算部52と、PI(Proportional Integral)演算部53と、電流目標値演算部54と、減算部55と、PI演算部56と、駆動信号生成部57とを備える。
 比較部50は、電源電圧検出器9で検出された電源電圧Vin1および電源電圧Vin2を比較し、交流電源13の電圧のゼロクロス点を検出し、ゼロクロス点を示すゼロクロス信号Vzcを出力する。電源位相演算部51は、ゼロクロス信号Vzcに基づき、電源位相θを演算する。減算部52は、直流母線電圧検出器11の出力信号である直流母線の電圧値Voと、目標電圧値算出部23により算出された直流母線の目標電圧値Vo*との偏差を求める。PI演算部53は、直流母線の電圧値Voと直流母線の目標電圧値Vo*との間の偏差を無くすように比例積分制御を行い、制御結果を電流目標値演算部54に出力する。
 電流目標値演算部54は、電源位相演算部51で演算された電源位相θとPI演算部53の比例積分制御結果とに基づき、直流母線の目標電流値Idc*を演算する。直流母線の目標電流値Idc*は、比例積分制御結果を振幅とし、電源位相θを位相とした半波整流の目標電流値である。
 減算部55は、直流母線の目標電流値Idc*と、直流母線電流検出器10の出力信号である直流母線の電流値Idcとの間の偏差を求める。PI演算部56は、直流母線の目標電流値Idc*と直流母線の電流値Idcとの間の偏差を比例積分制御し、駆動信号のオンデューティ(On-duty)を演算する。駆動信号生成部57は、駆動信号のオンデューティ(On-duty)と、120度ずつずれた3つの三角波のそれぞれとを、三角波比較することで、駆動信号X,Y,Zを生成する。
 次に、制御装置12のハードウェア構成について説明する。図4は、図1における制御装置12の制御回路200のハードウェア構成の一例を示す図である。制御装置12は、制御部20、記憶部21および通信部22を実現するハードウェアである制御回路200を備える。制御装置12は、制御部20、記憶部21および通信部22を実現する専用回路を備えてもよい。
 制御回路200は、制御回路200の外部からの情報が入力される入力回路および情報を制御回路200の外部へ出力する出力回路を含む入出力インターフェース回路201と、プロセッサ202と、メモリ203とを備える。入出力インターフェース回路201は、外部から受信した情報をメモリ203に送る。メモリ203は、入出力インターフェース回路201から受け取った情報を記憶する。また、メモリ203にはコンピュータプログラムが記憶されている。プロセッサ202は、メモリ203に記憶されているコンピュータプログラムを読み出し、メモリ203に記憶されている情報に基づいて演算処理を行う。プロセッサ202による演算結果を示す演算結果情報は、メモリ203に送られる。入出力インターフェース回路201は、メモリ203に記憶されている情報を外部に送る。
 入出力インターフェース回路201は、通信部22を実現する。プロセッサ202は、制御部20を実現する。メモリ203は、記憶部21を実現する。
 次に、図1における制御装置が実行する力率調整制御のための処理について説明する。図5は、図1における制御装置が実行する力率調整制御のための処理のフローチャートである。
 図5において、まず、制御装置12の目標電圧値算出部23は、記憶部21に記憶されている力率調整制御の開始時に用いる固定値の電圧値を用いて、直流母線の目標電圧値Vo*を算出する(ステップS101)。
 次いで、制御装置12の力率調整回路駆動信号生成部24は、ステップS101で算出された直流母線の目標電圧値Vo*を用いて、力率調整回路を駆動させるための駆動信号X,Y,Zを生成する(ステップS102)。
 次いで、制御装置12の力率調整回路駆動信号出力部25は、ステップS102で生成された駆動信号X,Y,Zを出力する(ステップS103)。これにより、制御装置12によるコンバータ回路3の力率調整制御が開始される。
 次いで、制御装置12の目標電圧値算出部23は、記憶部21に記憶されている過去に検出した直流母線の電圧値Voを用いて、直流母線の目標電圧値Vo*を算出する(ステップS104)。
 次いで、制御装置12の力率調整回路駆動信号生成部24は、ステップS104で算出された直流母線の目標電圧値Vo*を用いて、力率調整回路を駆動させるための駆動信号X,Y,Zを生成する(ステップS105)。
 次いで、制御装置12の力率調整回路駆動信号出力部25は、ステップS104で生成された駆動信号X,Y,Zを出力する(ステップS106)。これにより、制御装置12によるコンバータ回路3の力率調整制御のフィードバック制御が実現される。
 次いで、制御装置12の判別部26は、直流母線の電圧値が保護電圧値よりも大きいか否かを判別する(ステップS107)。
 ステップS107での判別の結果、直流母線の電圧値が保護電圧値よりも大きくないときは(ステップS107でNo)、ステップS104の処理に戻る。
 ステップS107での判別の結果、直流母線の電圧値が保護電圧値よりも大きいときは(ステップS107でYes)、制御装置12の力率調整回路駆動信号出力部25は、直流母線の電圧値を低下させるために、出力の値を0とした力率調整回路の駆動信号を出力する(ステップS108)。
 次いで、制御装置12の検出制御部27は、力率調整回路駆動信号出力部25が出力の値を0とした力率調整回路の駆動信号の出力を行っている間においても、直流母線電圧検出器11による直流母線の電圧値の検出を継続させるように制御するとともに、直流母線電流検出器10による直流母線の電流値の検出を継続させるように制御する(ステップS109)。
 次いで、制御装置12の判別部26は、直流母線の電圧値が保護電圧値よりも小さいか否かを判別する(ステップS110)。
 ステップS110での判別の結果、直流母線の電圧値が保護電圧値よりも小さくないときは(ステップS110でNo)、ステップS108の処理に戻る。
 ステップS110での判別の結果、直流母線の電圧値が保護電圧値よりも小さいときは(ステップS110でYes)、ステップS101の処理に戻る。
 図5の力率調整制御のための処理によれば、直流母線の電圧値が保護電圧値よりも大きいときは、力率調整回路駆動信号出力部25が直流母線の電圧値を低下させるための駆動信号である出力の値を0とした駆動信号の出力を行い、その後に直流母線の電圧値が保護電圧値よりも小さくなった際は、目標電圧値算出部23は、力率調整制御の開始時に用いる固定値の電圧値を用いて、目標電圧値の算出を行う。過去に検出された直流母線の電圧値を用いないため、目標電圧値の算出速度を向上させることができる。これにより、直流母線の電圧値を保護電圧値よりも小さくなってから速やかに上昇させることができる。また、当該目標電圧値を用いて生成された力率調整回路の駆動信号は、力率調整制御の開始時の駆動信号であるため、直流母線の電圧値を徐々に上昇させるものである。これにより、直流母線の電圧値は徐々に上昇するため、再度直流母線の電圧値が急激に上昇して保護電圧値を超えてしまうことを防止することができ、直流母線の電圧値を安定して制御することができる。
 図6は、図5の力率調整制御のための処理を実行した場合における直流母線の電圧値の変動状況を説明するための図である。領域30は、たとえば負荷変動が生じて直流母線の電圧値が保護電圧値を超えてしまう領域である。領域31は、力率調整回路駆動信号出力部25が直流母線の電圧値を低下させるための駆動信号の出力を行っている領域である。領域32は、直流母線の電圧値が保護電圧値よりも小さくなった際に、目標電圧値算出部23が力率調整制御の開始時に用いる固定値の電圧値を用いて目標電圧値の算出を行って力率調整制御を行っている領域である。図6に示すように、直流母線の電圧値は保護電圧値よりも小さくなってから徐々に上昇するため、直流母線の電圧値を安定して制御することができる。
 図7は、従来のコンバータ回路における直流母線の電圧値の変動状況を説明するための図である。領域40は、たとえば負荷変動が生じて直流母線の電圧値が保護電圧値を超えてしまう領域である。領域41は、コンバータ回路の制御を停止し、その後に直流母線の電圧値が保護電圧値を下回った場合に、コンバータ回路の制御を再開している領域である。図7に示すように、従来のコンバータ制御装置は、コンバータ回路の制御を再開する場合においても、過去に検出した直流母線の電圧値を用いて直流母線の目標電圧値を決定しているため、直流母線の電圧値を急激に上昇させる制御を行って、直流母線が急激に昇圧してしまう。この場合、再度直流母線の電圧値が保護電圧値を超えてしまい、直流母線の電圧値を安定して制御することができない。
 上述した図5の力率調整制御のための処理によれば、直流母線の電圧値が保護電圧値よりも大きいときは、力率調整回路駆動信号出力部25が出力を0とした力率調整回路の駆動信号を出力する。これにより、コンバータ回路3の制御を停止させないで直流母線の電圧値を低下させることができる。
 上述した図5の力率調整制御のための処理によれば、検出制御部27は、力率調整回路駆動信号出力部25が出力の値を0とした力率調整回路の駆動信号の出力を行っている間においても、直流母線電圧検出器11による直流母線の電圧値の検出を継続させるように制御するとともに、直流母線電流検出器10による直流母線の電流値の検出を継続させるように制御する。これにより、直流母線の電圧値を低下させる間においても、コンバータ回路3の状態を監視することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略および変更することも可能である。
 1 ノイズフィルタ、2 突入防止回路、3 コンバータ回路、4 インバータ回路、5 ダイオードブリッジ、6 リアクタ部、7 スイッチング素子部、8 逆阻止ダイオード部、9 電源電圧検出器、10 直流母線電流検出器、11 直流母線電圧検出器、12 制御装置、13 交流電源、20 制御部、21 記憶部、22 通信部、23 目標電圧値算出部、24 力率調整回路駆動信号生成部、25 力率調整回路駆動信号出力部、26 判別部、27 検出制御部、50 比較部、51 電源位相演算部、52 減算部、53 PI演算部、54 電流目標値演算部、55 減算部、56 PI演算部、57 駆動信号生成部、100 電源装置、200 制御回路、201 入出力インターフェース回路、202 プロセッサ、203 メモリ、C1 平滑コンデンサ、D1,D2,D3 逆阻止ダイオード、D4,D5,D6,d1,d2,d3,d4 ダイオード、L1,L2,L3 リアクタ、M モータ、N 負極側直流母線、P 正極側直流母線、R1,R2 分圧抵抗、SW1,SW2,SW3 スイッチング素子。

Claims (4)

  1.  力率調整回路を備えたコンバータ回路を制御するコンバータ制御装置であって、
     前記コンバータ回路の直流母線の電圧値を検出する電圧検出部と、
     前記直流母線の電流値を検出する電流検出部と、
     前記力率調整回路を駆動させて力率調整制御を開始する際は、前記力率調整制御の開始時に用いる固定値の電圧値を用いて、前記直流母線の目標電圧値を算出し、前記力率調整制御を行っている間は、前記電圧検出部が過去に検出した前記直流母線の電圧値を用いて、前記目標電圧値を算出する目標電圧値算出部と、
     前記目標電圧値算出部が算出した前記目標電圧値を用いて、前記力率調整回路を駆動させるための駆動信号を生成する駆動信号生成部と、
     前記駆動信号生成部により生成された前記駆動信号を出力する駆動信号出力部とを備え、
     前記直流母線の電圧値が一定の電圧値よりも大きい場合、前記駆動信号出力部は、前記直流母線の電圧値を低下させるための前記駆動信号の出力を行い、前記駆動信号の出力を行った後に前記直流母線の電圧値が前記一定の電圧値よりも小さくなった場合、前記目標電圧値算出部は、前記固定値の電圧値を用いて、前記目標電圧値の算出を行う、
     ことを特徴とするコンバータ制御装置。
  2.  前記直流母線の電圧値が前記一定の電圧値よりも大きい場合、前記駆動信号出力部は、出力の値を0とした前記駆動信号の出力を行うことを特徴とする請求項1に記載のコンバータ制御装置。
  3.  前記駆動信号出力部が出力の値を0とした前記駆動信号の出力を行っている間においても、前記電圧検出部による前記直流母線の電圧値の検出、および前記電流検出部による前記直流母線の電流値の検出を継続させるように制御する検出制御部をさらに備えることを特徴とする請求項2に記載のコンバータ制御装置。
  4.  力率調整回路を備えたコンバータ回路を制御するコンバータ制御方法であって、
     前記コンバータ回路の直流母線の電圧値を検出する電圧検出ステップと、
     前記直流母線の電流値を検出する電流検出ステップと、
     前記力率調整回路を駆動させて力率調整制御を開始する際は、前記力率調整制御の開始時に用いる固定値の電圧値を用いて、前記直流母線の目標電圧値を算出し、前記力率調整制御を行っている間は、前記電圧検出ステップで過去に検出した前記直流母線の電圧値を用いて、前記目標電圧値を算出する目標電圧値算出ステップと、
     前記目標電圧値算出ステップで算出した前記目標電圧値を用いて、前記力率調整回路を駆動させるための駆動信号を生成する駆動信号生成ステップと、
     前記駆動信号生成ステップにより生成された前記駆動信号を出力する駆動信号出力ステップとを含み、
     前記直流母線の電圧値が一定の電圧値よりも大きい場合、前記駆動信号出力ステップでは、前記直流母線の電圧値を低下させるための前記駆動信号の出力を行い、前記駆動信号の出力を行った後に前記直流母線の電圧値が前記一定の電圧値よりも小さくなった場合、前記目標電圧値算出ステップでは、前記固定値の電圧値を用いて、前記目標電圧値の算出を行う、
     ことを特徴とするコンバータ制御方法。
PCT/JP2016/081369 2016-10-21 2016-10-21 コンバータ制御装置およびコンバータ制御方法 WO2018073970A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018546134A JP6641501B2 (ja) 2016-10-21 2016-10-21 コンバータ制御装置およびコンバータ制御方法
PCT/JP2016/081369 WO2018073970A1 (ja) 2016-10-21 2016-10-21 コンバータ制御装置およびコンバータ制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/081369 WO2018073970A1 (ja) 2016-10-21 2016-10-21 コンバータ制御装置およびコンバータ制御方法

Publications (1)

Publication Number Publication Date
WO2018073970A1 true WO2018073970A1 (ja) 2018-04-26

Family

ID=62019106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081369 WO2018073970A1 (ja) 2016-10-21 2016-10-21 コンバータ制御装置およびコンバータ制御方法

Country Status (2)

Country Link
JP (1) JP6641501B2 (ja)
WO (1) WO2018073970A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314084A (ja) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd 電源装置と、電動機駆動装置および空気調和機
JP2005027399A (ja) * 2003-06-30 2005-01-27 Fujitsu General Ltd 電源装置
JP2011050207A (ja) * 2009-08-28 2011-03-10 Juki Corp 電源装置
JP2015080317A (ja) * 2013-10-16 2015-04-23 ダイキン工業株式会社 電力変換装置ならびに空気調和装置
JP2016063703A (ja) * 2014-09-19 2016-04-25 東芝ライテック株式会社 電源装置および照明装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314084A (ja) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd 電源装置と、電動機駆動装置および空気調和機
JP2005027399A (ja) * 2003-06-30 2005-01-27 Fujitsu General Ltd 電源装置
JP2011050207A (ja) * 2009-08-28 2011-03-10 Juki Corp 電源装置
JP2015080317A (ja) * 2013-10-16 2015-04-23 ダイキン工業株式会社 電力変換装置ならびに空気調和装置
JP2016063703A (ja) * 2014-09-19 2016-04-25 東芝ライテック株式会社 電源装置および照明装置

Also Published As

Publication number Publication date
JP6641501B2 (ja) 2020-02-05
JPWO2018073970A1 (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
JP4500857B2 (ja) 電源回路及び、それを用いたモータ駆動装置,空調機
TW201044766A (en) Power supply device
JP2009207307A (ja) モータ駆動装置
JP4893219B2 (ja) 電力変換装置
JP5066168B2 (ja) 電源回路及びそれを用いたモータ駆動装置並びに冷凍機器
EP2645554A1 (en) Converter
JP5427957B2 (ja) 電力変換装置
JP2008043057A (ja) Pwmコンバータ
JP5286309B2 (ja) 電源回路およびその制御回路
JP2001314085A (ja) 電源装置と、インバータ装置および空気調和機
WO2018073970A1 (ja) コンバータ制御装置およびコンバータ制御方法
JP3742929B2 (ja) 電源装置
JP5115705B2 (ja) Pwmサイクロコンバータとその制御方法
JP2017188968A (ja) モータ駆動装置
JP5294908B2 (ja) 電力変換装置
JP5873289B2 (ja) 電力変換装置
JP2003111428A (ja) インバータ制御エンジン駆動発電機
JPH066978A (ja) 電力変換装置
JP2509614B2 (ja) 保護回路
WO2023243115A1 (ja) 電力変換装置
WO2022149214A1 (ja) 電力変換装置、空気調和機、及び冷凍サイクル適用機器
JP6958387B2 (ja) 直流電源装置および直流電源装置の制御方法
JPH10127046A (ja) 昇圧形コンバータの制御回路
JP2009278789A (ja) モータ駆動用インバータ制御装置
JPS63302731A (ja) 交直変換器の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018546134

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919579

Country of ref document: EP

Kind code of ref document: A1