WO2018066973A1 - 세탁기 및 그 제어방법 - Google Patents

세탁기 및 그 제어방법 Download PDF

Info

Publication number
WO2018066973A1
WO2018066973A1 PCT/KR2017/011106 KR2017011106W WO2018066973A1 WO 2018066973 A1 WO2018066973 A1 WO 2018066973A1 KR 2017011106 W KR2017011106 W KR 2017011106W WO 2018066973 A1 WO2018066973 A1 WO 2018066973A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
section
laundry
motor
drum
Prior art date
Application number
PCT/KR2017/011106
Other languages
English (en)
French (fr)
Inventor
장민호
이훈봉
배재광
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to AU2017338586A priority Critical patent/AU2017338586B2/en
Priority to CN201780076275.5A priority patent/CN110050096B/zh
Publication of WO2018066973A1 publication Critical patent/WO2018066973A1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/18Condition of the laundry, e.g. nature or weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F23/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry 
    • D06F23/02Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry  and rotating or oscillating about a horizontal axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/32Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/02Rotary receptacles, e.g. drums
    • D06F37/04Rotary receptacles, e.g. drums adapted for rotation or oscillation about a horizontal or inclined axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/02Rotary receptacles, e.g. drums
    • D06F37/04Rotary receptacles, e.g. drums adapted for rotation or oscillation about a horizontal or inclined axis
    • D06F37/06Ribs, lifters, or rubbing means forming part of the receptacle
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/20Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
    • D06F37/22Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations in machines with a receptacle rotating or oscillating about a horizontal axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/26Casings; Tubs
    • D06F37/266Gaskets mounted between tub and casing around the loading opening
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/304Arrangements or adaptations of electric motors
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/36Driving arrangements  for rotating the receptacle at more than one speed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/36Driving arrangements  for rotating the receptacle at more than one speed
    • D06F37/38Driving arrangements  for rotating the receptacle at more than one speed in opposite directions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/04Quantity, e.g. weight or variation of weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/24Spin speed; Drum movements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/26Imbalance; Noise level
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/38Time, e.g. duration
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/44Current or voltage
    • D06F2103/46Current or voltage of the motor driving the drum
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • D06F2105/48Drum speed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/58Indications or alarms to the control system or to the user
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/58Indications or alarms to the control system or to the user
    • D06F2105/60Audible signals
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/32Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F33/40Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry of centrifugal separation of water from the laundry
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/44Control of the operating time, e.g. reduction of overall operating time

Definitions

  • the present invention relates to a washing machine and a control method thereof, the washing machine and the control method for detecting the amount of laundry to be put into the washing machine.
  • a washing machine is an apparatus for processing laundry through various actions such as washing, dehydration and / or drying.
  • the washing machine supplies a certain amount of washing water to a drum in which the laundry is accommodated, dissolves an appropriate amount of detergent in the washing water so that the contaminants on the laundry are removed by chemical reaction with the detergent, and the laundry tank containing the laundry is rotated.
  • the wash water and the laundry causes mechanical friction or vibration, so that contaminants of the laundry can be easily removed.
  • the washing machine is a process for controlling contamination of laundry, and performs washing, rinsing, and dehydrating strokes.
  • the washing machine performs dehydration during the washing and rinsing process as well as during the dehydration operation, thereby removing water included in the laundry.
  • the dehydration operation is a principle in which the water inside the laundry is removed from the laundry as the motor rotates at a high speed and the centrifugal force acts on the laundry inside.
  • This dewatering operation is affected by the amount of the laundry and entanglement of the laundry as the motor rotates at high speed. The more the laundry, the more difficult it is to rotate at high speed, and if a lot of laundry is entangled to one side, unbalance will cause the washing machine to be damaged by the high-speed rotation.
  • the washing machine accurately determines the amount of laundry before dehydration, and adjusts the rotation speed of the dehydration according to the amount of laundry.
  • the amount of laundry is determined by measuring a current applied to the motor.
  • the washing machine equipped with the sensorless motor is difficult to align the position during the initial start-up, which causes the increase in the amount of laundry to be measured. If the spread of the amount of laundry increases, the amount of laundry cannot be distinguished from the calculated data.
  • An object of the present invention is to determine the amount of laundry quickly and accurately with respect to the laundry to be put into the washing machine in the washing machine and a control method thereof, even in a washing machine equipped with a sensorless motor can accurately measure the amount of laundry, It is to provide a washing machine and a control method for saving the washing time by allowing the dehydration operation to be performed easily.
  • the motor is connected to the drum to rotate the drum, by applying the operating power to the motor to operate or stop the motor, to maintain or accelerate the rotational speed of the motor, and to reduce the motor
  • the motor driving unit for controlling, the current sensing unit for measuring the current of the motor in operation, to determine the amount of laundry contained in the drum, to apply the control command for controlling the motor the motor driving unit, the current sensing unit
  • a controller configured to determine the amount of the laundry from a current value input from the controller, wherein the controller divides the operation according to the rotational speed of the motor into a first sensing section for dispersing and a second sensing section for detecting the quantity of water. Determine whether to perform the second detection section in response to an eccentricity detected in the first detection section; The amount of the laundry is calculated based on the data measured in the two detection sections.
  • control method of the washing machine the step of starting the motor, in order to determine the amount of laundry contained in the drum, rotating the motor at a low speed to perform the dispersion in the first detection section, the first Detecting an eccentricity from the data measured in the first detection section; if the eccentricity is greater than or equal to a set value, re-dispersing the laundry by performing the first detection section; and if the eccentricity is less than the set value, performing a second detection section.
  • Performing a dose detection by controlling the rotational speed of the motor step by step; and dividing the data measured in the second detection section into a maintenance section, an acceleration section, and a deceleration section according to the rotational speed of the motor.
  • the control method of the washing machine characterized in that for calculating the amount of the laundry by analyzing the data of the second detection section.
  • Washing machine and control method configured as described above, by measuring the amount of laundry using the gravity and inertia acting during the motor operation with respect to the laundry put into the washing machine, it is possible to calculate the exact amount of laundry, By minimizing the influence of the initial position of the laundry and the flow of the laundry, and using the current value of the motor in operation, the amount of the laundry can be measured regardless of the sensorless characteristics.
  • the present invention is attached to the wall of the drum of the laundry to control the rotation speed above the rotation speed, due to the flow of the laundry according to determine the amount of laundry based on the data on the maintenance section, acceleration section, deceleration section By minimizing the spread, the amount of laundry can be judged more accurately.
  • FIG. 1 is a perspective view of a washing machine according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a part of the washing machine shown in FIG. 1;
  • FIG. 3 is a block diagram showing a control configuration of a washing machine according to an embodiment of the present invention.
  • FIG. 4 is a view referred to to explain the force acting on the laundry in the washing machine according to an embodiment of the present invention.
  • FIG. 5 is a diagram for describing a first sensing section and a second sensing section for measuring an amount of laundry in a washing machine according to an embodiment of the present invention.
  • FIG. 6 is a view referred to explaining a speed change of the first detection section according to an eccentricity when measuring the amount of laundry of FIG. 5.
  • FIG. 7 is a view illustrating another embodiment of a first sensing section and a second sensing section for measuring an amount of laundry in a washing machine according to an embodiment of the present invention.
  • FIG. 8 is a view referred to explaining a change in speed of the first detection section according to an eccentricity when measuring the amount of laundry of FIG. 7.
  • 9 is a view referred to explain the current value according to the speed change of the motor when measuring the amount of laundry of the present invention.
  • FIG. 10 is a view showing a current value measured according to the rotation of the motor of the washing machine of the present invention.
  • FIG. 11 is a flowchart illustrating a control method for measuring an amount of laundry according to a first detection section and a second detection section of the washing machine of the present invention.
  • FIG. 12 is a flowchart illustrating a control method for measuring an amount of laundry according to a speed change of the first detection section of FIG. 11.
  • FIG. 13 is a flowchart illustrating another example of a control method for measuring an amount of laundry according to a speed change of the first detection section of FIG. 11.
  • FIG. 14 is a view showing a result of measuring the amount of laundry according to the weight of the laundry of the present invention.
  • 15 is a view showing a scatter diagram of the result of measuring the amount of laundry according to the weight of the laundry of the present invention.
  • control unit and other components included in the washing machine may be implemented by one or more processors, or may be implemented by a hardware device.
  • FIG. 1 is a perspective view of a washing machine according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view showing a part of the washing machine shown in FIG.
  • the washing machine 100 of the present invention is configured as shown in FIGS. 1 and 2.
  • the casing 110 forms the exterior of the washing machine 100, and a tub 132 containing water is suspended in the casing 110, and a drum 134 in which laundry is accommodated in the tub 132 is rotatable. It is provided.
  • the heater 143 for heating the water contained in the tub 132 may be further provided.
  • the casing 110 forms the exterior of the washing machine 100 and has a cabinet 111 having an open front and an upper surface, a base (not shown) supporting the cabinet 111, and a laundry access hole to allow laundry to enter and exit.
  • the front cover 112 may be formed and coupled to the front surface of the cabinet 111, and the top cover 116 provided on the upper side of the cabinet 111.
  • the front cover 112 may be provided with a door 118 for opening and closing the laundry access hole.
  • the glass 118a may be provided in the door 118 to observe the laundry inside the drum 134 from the outside of the washing machine 100.
  • the glass 118a may be formed in a convex shape, and the front end of the glass 118a may protrude to the inside of the drum 134 while the door 118 is closed.
  • the detergent box 114 accommodates additives such as preliminary or main laundry detergents, fabric softeners, and bleaches, and is provided to be pulled out of the casing 110.
  • Detergent box 114 may be provided with a plurality of partitioned receiving space so that the additives can be accommodated separately without mixing.
  • the tub 132 may be suspended from the top cover 116 by a spring so that vibration generated when the drum 134 is rotated may be dampened, and a damper for supporting the tub 132 from the lower side may be further provided. .
  • a plurality of holes are formed in the drum 134 so that water flows between the tub 132 and the drum 134, and the drum (134) may be lifted and dropped according to the rotation of the drum 134.
  • One or more lifters 134a may be provided along the inner circumferential surface of the 134.
  • the drum 134 may not be disposed completely horizontally, but may be disposed to have a predetermined inclination such that the rear portion of the drum 134 is lower than the horizontal.
  • a motor may be provided to provide a driving force for rotating the drum 134.
  • the driving force provided from the motor to the drum 134 may be divided into a direct drive method and an indirect drive method.
  • the direct drive method the rotating shaft of the motor is directly coupled to the drum 134, and the rotating shaft of the motor and the center of the drum 134 are aligned on the same line.
  • the drum 134 is rotated by a motor 141 provided in a space between the rear of the tub 132 and the cabinet 111.
  • Indirect drive method is to rotate the drum 134 by using a power transmission means such as a belt (belt) or pulley (pully) to transfer the driving force provided from the motor, the rotation axis of the motor and the center of the drum 134 must be the same. It does not have to be aligned on line.
  • a power transmission means such as a belt (belt) or pulley (pully) to transfer the driving force provided from the motor, the rotation axis of the motor and the center of the drum 134 must be the same. It does not have to be aligned on line.
  • the washing machine 100 of the present invention may be configured of any one of a direct drive method and an indirect drive method.
  • a gasket 120 is provided between the casing 110 and the tub 132.
  • the gasket 120 prevents water stored in the tub 132 from leaking between the tub 132 and the casing 110.
  • One side of the gasket 120 is coupled to the casing 110, the other side is coupled along the circumference of the open front portion of the tub 132.
  • the gasket 120 serves to cushion the vibration by elastically folding in accordance with the vibration of the tub 132.
  • the gasket 120 may be made of a deformable or flexible material having somewhat elasticity, and may be formed using natural rubber or synthetic resin.
  • the washing machine 100 is connected to a hot water source (HW) for supplying hot water, a cold water source (CW) for supplying cold water, and a hot water hose and a cold water hose, respectively, and the water introduced through the hot water hose and the cold water hose is Control is supplied to the detergent box 114, steam generator and / or vortex nozzle.
  • HW hot water source
  • CW cold water source
  • Control is supplied to the detergent box 114, steam generator and / or vortex nozzle.
  • the pump 148 drains the water discharged from the tub 132 through the drainage bellows 147 to the outside through the drain hose 149, or pumps the water to the circulation hose 151.
  • the pump 148 also functions as a drain pump and as a circulation pump. In some cases, it is of course also possible to separately provide a pump for drainage and a pump for circulation.
  • the laundry 10 While the drum 134 is being rotated, the laundry 10 is repeatedly lifted and dropped by the lifter 134a, and when the drum is rotated at high speed, the laundry is attached to the wall of the drum, and the laundry is subjected to centrifugal force.
  • the wash water absorbed by the water is separated from the laundry and discharged to the tub through the hole in the drum to perform dehydration.
  • the control panel 180 may include a course selector 182 that receives a course selection from a user, and a display unit 184 that receives various control commands from a user and displays an operating state of the washing machine 100.
  • FIG. 3 is a block diagram showing a control configuration of a washing machine according to an embodiment of the present invention.
  • the washing machine 100 is configured as described above, and in order to control the operation thereof, the input unit 230, the output unit 240, the sensing unit 220, and the motor driving unit ( 260, a motor 270, a current sensing unit 280, a data unit 250, and a controller 210 for controlling the overall operation.
  • the motor driving unit 260, a motor 270, a current sensing unit 280, a data unit 250, and a controller 210 for controlling the overall operation.
  • control unit 210 may further include a control unit for controlling the water supply valve and the drain valve and heating the wash water, and in some cases, a communication unit for transmitting and receiving data with the outside may be provided. It will be omitted below.
  • the controller 210 may be implemented by one or more processors, or may be implemented by a hardware device.
  • the input unit 230 includes input means such as at least one button, a switch, a touch pad, and inputs an operation setting such as a power input, a washing course, a water level, a temperature, and the like.
  • an operation setting such as a power input, a washing course, a water level, a temperature, and the like.
  • the output unit 240 includes a display unit 184 that displays information on the operation setting input by the input unit 230 and outputs an operating state of the washing machine, and outputs a predetermined sound effect or warning sound, such as a speaker and a buzzer. It includes.
  • the data unit 250 stores control data for controlling the operation of the washing machine, input operation setting data, data on a washing course, and reference data for determining whether an error of the washing machine occurs. In addition, the data unit 250 stores data sensed or measured during operation of the washing machine through the detector.
  • the data unit 250 records various types of information necessary for controlling the washing machine, and may include a volatile or nonvolatile recording medium.
  • the recording medium stores data that can be read by a microprocessor, and includes a hard disk drive (HDD), a solid state disk (SSD), a silicon disk drive (SDD), a ROM, a RAM, a CD-ROM, a magnetic Tapes, floppy disks, optical data storage devices, and the like.
  • the sensing unit 220 includes a plurality of sensors to measure the voltage or current of the washing machine, and detects data such as the rotational speed of the motor, the temperature of the washing water, the water level of the washing water, the water pressure of the washing water being drained or drained, and the like. Input to the control unit 210.
  • the sensing unit 220 includes a plurality of sensors including at least one of a current sensor, a voltage sensor, a water level sensor, a temperature sensor, a pressure sensor, and a speed sensor.
  • the water level sensor is installed in the drum or tub, detects the water level of the wash water, and inputs the water level data to the controller 210.
  • the temperature sensor measures the water temperature of the wash water.
  • the temperature sensor may be installed at a plurality of different locations to detect the temperature of the heater when not only the temperature of the wash water but also a temperature inside the control circuit, the heater for heating or drying the wash water.
  • the current detector 280 measures the current applied to the motor and inputs it to the controller 210.
  • the speed sensor detects the rotational speed of the motor and inputs it to the controller.
  • the speed sensor may be connected to the rotating shaft of the motor to detect the speed from the output voltage, or may be measured by installing the rotating shaft photoelectric sensor, and various methods may be used without being limited thereto.
  • the motor 270 is connected to the drum to provide power for the drum to rotate.
  • the motor 270 may be a sensorless motor.
  • the motor driving unit 260 applies operating power to the motor 270.
  • the motor driver 260 controls the motor to operate or stop in response to the control command of the controller 210, and also controls the rotation speed of the motor.
  • the motor driving unit 260 controls the rotation direction, the rotation angle and the rotation speed of the motor 270 according to the control command, and the motor 270 according to the set washing course and each stroke of washing, rinsing, and dehydration that is performed. Control to operate differently. At this time, the motor driving unit 260 controls the rotation direction, the rotation angle and the rotation speed of the motor differently, so that the wash water in the drum to form a specific flow of water.
  • the controller 210 controls the water supply and drainage according to the operation setting input from the input unit 230, and generates a control command to rotate the drum according to the operation of the motor 270 to perform washing to the motor driving unit 260. Is authorized.
  • the controller 210 controls a series of washing processes of washing, rinsing, and dehydration.
  • the controller 210 stores the input operation setting in the data unit 250 and outputs the operation setting or operation state through the output unit 240.
  • the controller may transmit data on operation setting to the terminal.
  • the controller 210 determines whether washing is normally performed based on data input from a plurality of sensors of the sensing unit 220 and data input from the current sensing unit 280 during washing, and an abnormality has occurred. In this case, an error is output through the output unit 240.
  • the control unit 210 applies each control command to the motor driving unit 260 so that the washing process of washing, rinsing, and dehydration is performed according to the operation setting.
  • the control unit 210 determines the state of the motor by storing and analyzing the current value input from the current sensing unit 280 during the motor operation, and also determines the amount of laundry contained in the drum. In addition, the controller 210 determines the degree of cleaning, that is, unbalance of the laundry, based on the measured current.
  • the controller 210 determines the amount of laundry in the drum when the washing operation starts, when the drum rotates at a high speed. Even if the controller 210 determines the amount of the laundry once, if the high speed rotation is necessary, the controller determines the amount of the laundry again before the high speed rotation so that the drum rotates at a high speed corresponding to the determined amount of the laundry. In this case, the controller 210 may change and set the maximum rotation speed in response to the determined amount of laundry.
  • the controller 210 applies a control command to the motor driver 260 to increase or decrease the rotational speed of the motor step by step.
  • the controller 210 accelerates, maintains, and decelerates.
  • the amount of laundry is determined by analyzing a current value input through the current sensing unit 280.
  • the controller 210 calculates the force of gravity and inertia acting in the drum while the motor rotates and the counter electromotive force generated when the motor is braked to determine the amount of laundry.
  • FIG. 4 is a view referred to to explain the force acting on the laundry in the washing machine according to an embodiment of the present invention.
  • the controller 210 determines the amount of laundry using the force acting in the drum.
  • the washing machine separates the foreign matter from the laundry through the rotating operation and removes the wash water absorbed in the laundry, so that the motor torque, inertial torque, friction torque, and load torque for rotating the drum are operated.
  • Motor torque is the force applied to rotate the motor connected to the drum
  • inertial torque is the force that is hindered by the inertia to maintain the existing state of motion (rotation) during the acceleration, deceleration during rotation, drum and laundry
  • the load torque is a force that hinders rotation by the weight of the laundry.
  • the washing machine since the washing machine does not determine the amount of laundry at the time of starting the motor, but determines the laundry during the rotation operation, the washing machine will be described as an example of a force acting on the laundry at an angle ⁇ m.
  • the motor torque Te is a force required to operate the motor, the inertia torque, the friction torque, and the load torque are expressed as a sum value.
  • the motor torque Te is a value obtained by multiplying the radius r of the drum by the force F for lifting the laundry.
  • the inertial torque Jm acts as a force to hinder the rotational motion by the inertia force according to the distribution of the drum and laundry when the acceleration or deceleration is performed during the rotational motion.
  • the inertia torque is proportional to the mass (m), the square of the radius of the drum.
  • the friction torque Bm is proportional to the rotational speed Wm since the friction torque Bm is a friction force acting between the laundry and the tub, and the laundry and the door.
  • the friction torque can be calculated as the product of the friction coefficient and the rotational speed.
  • the load torque TL is a gravity acting according to the distribution of laundry at startup, and the weight (mass m) of the laundry, the acceleration of gravity (g), the radius of the drum (r), and the angle ( [theta] m).
  • the force acting on the laundry is calculated by the force (Fg) due to gravity (g), but the gravity is multiplied by sin ( ⁇ m) since the drum is rotating.
  • the force Fg by gravity is determined by the acceleration of gravity and the radius and mass of the drum.
  • the controller 210 measures the current through the current sensing unit during motor operation.
  • the amount of laundry is calculated using the current value.
  • Friction torque is the friction between the laundry and the door, the change of the value is large when the laundry is caught in the door, the dispersion occurs. In particular, when the amount of laundry increases, the dispersion of friction torque is greatly increased.
  • the load torque varies due to the movement of the laundry.
  • the load torque if the weight of the laundry is more than a certain size, the movement of the laundry decreases, rather, a reverse phenomenon occurs in which the load torque decreases.
  • the inertial torque is affected by the flow of the laundry, but linearity with respect to the amount (weight) of the laundry can be measured more accurately.
  • the inertial torque is a force to be maintained, and thus acts upon acceleration or deceleration.
  • the inertia torque acts on the acceleration section and the deceleration section, but when the rotational speed is kept constant, the inertia torque is not applied, and the gravity, motor torque, friction torque and load torque are applied.
  • the characteristics of the inertia torque can be calculated by excluding the data of the holding section from the data of the acceleration section and the deceleration section.
  • the inertia can be calculated by subtracting the current value of the holding section from the current value of the acceleration section and the current value of the deceleration section, dividing by the speed change per hour, that is, the acceleration, and multiplying the counter electromotive force.
  • the washing machine analyzes the force acting on the acceleration section, the deceleration section, and the maintenance section to determine the amount of laundry based on the inertia torque, and also calculates the force of gravity according to the amount of the laundry in the maintenance section.
  • the amount of laundry can be calculated by calculating the counter electromotive force by braking.
  • the washing machine calculates a quantity detection value by measuring the current value during the motor rotation operation, it is possible to eliminate the error due to the positional alignment of the motor during startup, and also to change the load state, that is, the laundry irregularly through the maintenance section By not flowing, but flowing in a constant state, it is possible to minimize the error due to the variation of the load.
  • the washing machine applies the quantity data for calculating the quantity detection value of the maintenance section and the quantity data for calculating the quantity detection value of the acceleration and deceleration sections differently.
  • the inertia characteristic is minimized, and the inertia is greatly increased in the acceleration section and the deceleration section. Therefore, the amount of laundry is determined by comparing and analyzing the quantity detection values based on different data.
  • the controller 210 determines the amount of laundry by calculating an inertial torque that is operated during the operation of the motor. Therefore, the controller 210 controls the motor to accelerate or decelerate after increasing the rotation speed of the motor to a predetermined rotation speed.
  • the control unit 210 divides the maintenance section, the acceleration section, and the deceleration section according to the rotational speed of the motor, and determines the amount of laundry using the current value measured in each section of the motor operation.
  • the control unit 210 calculates the amount of laundry using friction torque and load torque, which is affected by gravity in the low speed maintenance section, and accelerates from the maintenance section so that the characteristics of the inertial torque are emphasized at a faster rotational speed than the maintenance section. It is possible to determine the amount of laundry due to inertia in the acceleration section.
  • the counter electromotive force is calculated in the deceleration section of the controller to determine the amount of laundry.
  • the counter electromotive force is an electromotive force caused by a current generated in the opposite direction from the motor when the motor is braked.
  • the controller 210 determines the amount of laundry by calculating an average of current values for each section according to an operation of maintaining, accelerating, and decelerating the rotation speed of the motor.
  • the controller 210 calculates a dose by multiplying an average of currents along a section by a counter electromotive force, and the amount of energy for the acceleration section refers to the amount data for inertia, and the amount for the maintenance section refers to the amount data for gravity. Comparative analysis.
  • the control unit 210 uses the counter electromotive force to calculate the amount of power. At this time, the control unit 210 may calculate the data according to the inertia characteristic by subtracting the current value of the sustain period from the current value of the acceleration period, and multiplying the counter electromotive force.
  • FIG. 5 is a view referred to for explaining a method of measuring the amount of laundry in the washing machine according to an embodiment of the present invention.
  • the controller 210 controls the rotation speed of the motor to determine the amount of laundry.
  • the controller 210 compares the current values of the acceleration section and the maintenance section, calculates the counter electromotive force in the deceleration section, and determines the amount of laundry.
  • the controller 210 sets a plurality of sensing sections based on the rotational speed of the motor, and determines the amount of laundry using the current value measured by the current sensing unit in each sensing section.
  • the control unit 210 performs variance to reduce eccentricity and eccentricity in the first detection section A, and performs dose detection in the second detection section B.
  • the controller 210 sets the first sensing section to a rotational speed less than or equal to the rotational speed at which the laundry is completely attached to the wall of the drum.
  • control unit 210 sets the second sensing section for the rotation speed above the rotation speed that the laundry is completely attached to the wall surface of the drum. However, when the rotational speed of the motor rotates above a predetermined rotational speed, resonance occurs due to the rotation, and the controller 210 sets the second detection section at a rotational speed lower than the rotational speed at which the resonance occurs.
  • the control unit 210 controls the rotational speed of the motor to maintain, accelerate, and decelerate a constant rotational speed within the first and second detection sections, and maintain the rotational speed, increase the acceleration section, and decrease the deceleration section.
  • the amount of laundry is determined based on the current value and the counter electromotive force measured from the current sensing unit.
  • the controller 210 detects an eccentricity in the first sensing section, and performs a dose detection in the second sensing section when the eccentricity is less than the set value, and performs dispersion by performing the first sensing section again when the eccentricity is greater than or equal to the set value.
  • the controller 210 tangled or shifted in one direction of the laundry, and as the eccentricity is sensed by the imbalance or more than a set value, the eccentricity is reduced by performing the dispersion of the first detection section.
  • the controller 210 re-detects the eccentricity by re-executing the first sensing section, and performs the second sensing section when the eccentricity is less than the set value, and performs the dispersion by performing the first sensing section again when the eccentricity is more than the set value. To lose.
  • the controller 210 determines that an error and ends the operation for determining the amount of laundry without performing the second detection section.
  • the controller 210 generates an error and outputs the output through the output unit when the first sensing section is repeatedly performed and the second sensing section is not normally performed.
  • the washing machine generates vibration due to eccentricity caused by entanglement or bias of laundry.
  • Eccentricity is the magnitude of vibration increases with the speed of rotation of the drum.When the motor rotates above the rotational speed of rotation with the drum without dropping all laundry to the wall of the drum by centrifugal force, Due to vibration, a drum may collide with the case of the washing machine. Although eccentricity occurs at low speeds, the possibility of damage due to vibrations generated at low speeds is small. But,
  • control unit 210 detects the eccentricity in the first detection section (A) before performing the second detection section (B) that operates at a rotation speed higher than the rotation speed that the laundry is completely attached to the wall of the drum. 2 It is determined whether to carry out a quantity detection of the detection section (B).
  • the controller 210 determines the amount of laundry based on the data measured in the second detection section B.
  • the controller 210 sets the rotational speed at which the laundry is completely attached to the wall of the drum by centrifugal force and rotates together with the drum without falling to the first speed S2.
  • control unit 210 is a higher rotational speed than the first speed (S2), the centrifugal force due to the rotation in the drum increases, the rotational speed less influenced by gravity, that is, the effect of gravity on the laundry is closer to zero As the rotation speed, the rotation speed in the range where resonance does not occur is set to the second speed S3.
  • the first speed S2 may be set to 75 rpm to 85 rpm
  • the second speed S3 may be set to 95 rpm to 110 rpm.
  • the rotation speed may vary depending on the size of the drum or the type and performance of the motor.
  • the control unit 210 generates a control command to maintain, accelerate, and decelerate the rotational speed of the motor within the range of the first speed S2 to the second speed S3 with respect to the second detection section B.
  • the driving unit 260 is applied.
  • the control unit 210 generates a control command to maintain, accelerate, and decelerate the rotational speed of the motor in the range of the third speed S1 to the first speed S2 with respect to the first detection section A.
  • the driving unit 260 is applied. As a result, povariance is performed in the first detection section A.
  • the control unit 210 is a rotational speed at which gravity is equal to centrifugal force acting in the drum by the rotation of the motor, and the laundry is not attached to the wall by the rotation of the drum. Is set to the third speed S1.
  • the third speed is a rotational speed lower than the first speed S2.
  • the third speed S1 is 45 rpm to 55 rpm.
  • the rotation speed may vary depending on the size of the drum or the type and performance of the motor.
  • the first detection section A is a rotational speed at which the third speed S3 is pushed up and falls without being attached to the wall of the drum, so that the laundry flows a lot and disperses the laundry. You can.
  • the controller 210 controls the rotation speed of the motor by applying a control command for the first sensing section A and the second sensing section B to the motor driving unit 260 to determine the amount of laundry.
  • the current detection unit 280 measures the current value of the first detection section and inputs it to the controller, and measures the current by dividing the second detection section into a maintenance section, an acceleration section, and a deceleration section, respectively, to the controller 210. Enter it.
  • the motor driving unit 260 starts the motor at the first time t01 and accelerates the motor until the rotational speed reaches the third speed S1.
  • the motor driving unit 260 responds to the control command and, when the rotational speed of the motor reaches the third speed S1 with respect to the first sensing section A, the third speed S1 for a predetermined time t02 to t03. ) Is maintained. At this time, the laundry is pulled up in the drum, and as a result, podis dispersion is performed.
  • the motor driving unit 260 accelerates the motor to the first speed S2 at the third time t03.
  • the current detector 280 measures the current value of the motor and inputs it to the controller 210, and the controller 210. ) Detects the eccentricity based on the measured current value.
  • the controller 210 controls the motor driver to perform the second sensing section (B).
  • the motor driving unit 260 maintains the rotational speed of the motor at the first speed S2 for a predetermined time, that is, during the maintenance period D01 of the fourth to fifth times t04 to t05. do.
  • the current sensing unit 28 measures the current for the holding section D01 during the fourth to fifth times t04 to t05 and inputs it to the controller 210.
  • the motor driving unit 260 accelerates the rotational speed of the motor to the second speed S3 at the fifth time t05 (acceleration section D02), and reaches the sixth time to seventh time when the second speed S3 is reached.
  • the second speed is maintained during the holding period D03 of the times t06 to t07.
  • the maintenance intervals maintaining the speed may be set to 1.5 to 2.5 seconds respectively.
  • the current sensing unit 28 measures the currents during the acceleration period D02 of the fifth to sixth times t05 to t06 and the holding period D03 of the sixth to seventh times t05 to t07, respectively. To the control unit 210.
  • the motor driving unit 260 reduces the rotational speed of the motor by braking the motor at the seventh time t07 after the holding section D03. Accordingly, the motor stops at the ninth time t09.
  • the current sensing unit 280 is operated for a predetermined time after starting the deceleration during the seventh to ninth times t07 to t09 when the rotational speed of the motor decreases, that is, for the seventh to eighth time t07 to t08.
  • the current for the deceleration section D04 is measured and input to the controller 210.
  • control unit 210 detects an eccentricity in response to the current value input from the current sensing unit 280 in the first sensing section A, and determines whether the second sensing section B is performed.
  • the sensing section is normally performed, the current value of each holding section D01 and D03 in which the first speed S2 and the second speed S3 are maintained, the current value of the acceleration section D02, and the deceleration section D04 Calculate the back EMF to determine the amount of laundry.
  • the control unit 210 determines the amount of laundry by calculating the gravity characteristics of the maintenance section and the inertia characteristics of the acceleration section.
  • the inertia characteristic of the acceleration section can be calculated by subtracting the current value of the sustain section from the current value of the acceleration section. Gravity acts largely in the maintenance section, but the effect of inertia is less as the speed is kept constant.In the acceleration section, gravity acts and inertia trying to maintain the existing rotational motion as the speed changes. Excluding the data of the maintenance section from the interval it is possible to calculate the characteristics of the inertia.
  • FIG. 6 is a view referred to explaining a speed change of the first detection section according to an eccentricity when measuring the amount of laundry of FIG. 5.
  • the controller 210 detects an eccentricity in the first detection section A, and determines whether the second detection section is performed. Accordingly, if the eccentricity sensed in the first sensing section is equal to or greater than the set value, the controller 210 repeatedly disperses the laundry by repeating the first sensing section without performing the second sensing section, and then re-detects the eccentricity in the second sensing section. Allow detection intervals to be performed.
  • the motor driving unit 260 starts the motor at the tenth time t10 in response to the control command, and accelerates the motor until the rotational speed reaches the third speed S1.
  • the motor driving unit 260 maintains the third speed S1 for a predetermined time when the rotational speed of the motor reaches the third speed S1 with respect to the first sensing section A in response to the control command. . At this time, the laundry is pulled up in the drum, and as a result, podis dispersion is performed.
  • the motor driving unit 260 accelerates the motor at the eleventh time t11 until the rotational speed reaches the first speed S2.
  • the controller 210 detects the eccentricity based on the current value input from the current sensing unit.
  • the controller 210 may detect the eccentricity by analyzing the ripple of the current value.
  • the eccentric detection is not limited thereto, and various eccentric detection methods may be applied.
  • the current detector may input a current value for the first primary detection section A01 to the controller.
  • the controller 210 controls the motor driver to perform the second sensing section B as described above, and sets the eccentricity. If it is greater than or equal to the value, the first sensing section is rerun.
  • the motor driving unit 260 brakes the motor to decelerate to the third speed S1 to perform the second first detection section A02.
  • the motor driving unit 260 When the rotational speed of the motor reaches the third speed S1, the motor driving unit 260 maintains the third speed for a predetermined time. At this time, the dispersion is performed while the third speed is maintained. The motor driver 260 accelerates the motor to the first speed S2.
  • the controller 210 receives the second first detection section input from the current sensing unit 280 at the second point P02. Detects the eccentricity based on the current value for (A02).
  • the controller 210 controls the motor driving unit to perform the second sensing section B as described above, and if the eccentricity is greater than or equal to the set value, the first sensing section is reset. To be performed.
  • the motor driving unit 260 brakes the motor to decelerate to the third speed S1 to perform the third first detection section A03.
  • the motor driving unit maintains the rotational speed of the motor at the third speed, performs the dispersion, and then accelerates to the first speed S2 again.
  • the controller 210 causes the first detection section to be re-executed, and the motor driving unit brakes the motor to perform the fourth detection section A04 (t14 to t15). .
  • the controller 210 detects the eccentricity according to the data of the fourth detection section A04, and controls the motor driver to perform the second detection section B when the eccentricity is less than the set value.
  • the motor driving unit 260 maintains the first speed S2 for a predetermined time, that is, for the fifteenth to sixteenth time t15 to t16, and then accelerates the rotational speed of the motor to the second speed S3.
  • the motor is held for a predetermined time (t17 to t18), and the motor is braked to decelerate and the motor is stopped (t18 to t20).
  • the current sensing unit 28 is a holding section for the 15th to 16th time t15 to t16, an acceleration section of the 16th to 17th time t16 to t17, and a 17th to 18th time t17. To t18) and the deceleration section of the eighteenth to nineteenth periods t18 to t19 are measured and input to the controller 210.
  • the controller 210 calculates the amount of laundry based on the current value and the counter electromotive force of the maintenance section, the acceleration section, and the deceleration section.
  • control unit 210 determines that an error is repeated and the operation stops and outputs an error when the first detection section A is repeatedly set for the number of times that the first detection section A is repeated. In other words, even if the dispersion is repeatedly performed by repeating the first detection section more than the set number of times, since the eccentricity is detected more than the set value, an error is output. In addition, if the first detection section is repeated repeatedly, the next operation cannot proceed, and the washing time increases, so that only the set number of times is repeated.
  • FIG. 7 is a view illustrating another embodiment of a first sensing section and a second sensing section for measuring an amount of laundry in a washing machine according to an embodiment of the present invention.
  • the controller 210 controls the rotation speed of the motor to determine the amount of laundry.
  • the controller 210 sets the first sensing section A and the second sensing section B based on the rotation speed at which the laundry is completely attached to the wall of the drum, that is, the first speed S2 and S13.
  • the controller 210 applies a control command for the first sensing section A and the second sensing section B to the motor driver 260 to determine the amount of laundry.
  • the controller 210 controls the rotational speed of the motor to maintain, accelerate, and decelerate a constant rotational speed, maintain a rotational speed, increase an acceleration period, and decrease the first and second detection sections.
  • the amount of laundry is determined based on the current value and the counter electromotive force measured from the current sensing unit in the deceleration section.
  • the current sensing unit 280 measures the current by dividing the first sensing section A and the second sensing section B into a maintenance section, an acceleration section, and a deceleration section, respectively, and inputs them to the controller 210.
  • the control unit 210 detects an eccentricity in the first sensing section A, and performs a dose detection in the second sensing section B when the eccentricity is less than the set value, and resumes the first sensing section when the eccentricity is greater than or equal to the set value. In this way, dispersion and quantity detection are performed in the first detection section.
  • the control unit 210 is tangled in one direction or tangled laundry, as the eccentricity is detected by the imbalance more than the set value, so that the eccentricity is reduced by redistributing the dispersion of the first detection section, the second detection section is not performed In this case, the amount of laundry is detected in the first detection section so that the amount of laundry can be determined based on the data of the first detection section.
  • the controller 210 discards the data measured in the first detection section A, and washes the laundry based on the data measured in the second detection section B. Judge the amount of.
  • the control unit 210 measures in the first detection section A. The amount of laundry is determined based on the data. In addition, the control unit 210 generates an error as the first detection section is repeatedly set, and outputs the error.
  • the controller 210 controls the motor driving unit 260 to perform dispersion and dose detection in the first detection section A and to perform dose detection in the second detection section B.
  • the rotational speed of the motor is maintained, accelerated, and decelerated within the range of the first speed S13 (S2) to the second speed S14 (S3).
  • the control command is generated to be applied to the motor driver 260. Since the second sensing section is set in the same manner as the second sensing section of FIG. 5 described above, a detailed description thereof will be omitted.
  • the control unit 210 issues a control command to maintain, accelerate, and decelerate the rotational speed of the motor in the range of the fourth speed S11 to the first speed S13 and S2 with respect to the first detection section A.
  • FIG. It generates and applies to the motor driving unit 260. Accordingly, dispersion and quantity detection are performed in the first detection section A.
  • the control unit 210 sets the rotational speed at which the laundry rolls in the drum in which the laundry rotates (tumble) to the fourth speed S11.
  • the control unit 210 is a centrifugal force in the drum, and at a rotational speed at which the laundry starts to be attached to the wall of the drum, a part of the laundry is attached to the wall of the drum and is accompanied by the drum. It rotates and one part sets the rotation speed of the state which lifted and dropped by rotation of the drum to 5th speed S12. At this time, the rotation speed may vary depending on the size of the drum or the type and performance of the motor.
  • the fourth speed S11 is a rotation speed lower than the above-described third speed S1
  • the fifth speed S12 is a rotation speed higher than the third speed S1
  • the first speed S13 It is a rotation speed slower than S2.
  • the motor driving unit 260 starts the motor at the twenty-first time t21 in response to the control command, and accelerates the motor until the rotational speed of the motor reaches the fourth speed S11.
  • the motor driving unit 260 responds to the control command and, when the rotational speed of the motor reaches the fourth speed S11 with respect to the first sensing section A, the fourth speed S11 for a predetermined time t22 to t23. ) Is maintained. As the laundry rotates in the drum as the drum rotates, the laundry is dispersed.
  • the motor driver 260 accelerates the motor to the fifth speed S12 at the twenty-third time t23.
  • the motor driving unit 260 maintains the fifth speed S12 for a predetermined time t24 to t25.
  • the current sensing unit 280 measures the current in the holding section D11 at which the fifth speed S12 is maintained and inputs it to the controller 210.
  • the motor driving part 260 accelerates a motor to 1st speed S13 (S2) in 25th time t25.
  • the current sensing unit 280 measures the current of the acceleration section D12 in which the speed increases from the fifth speed S12 to the first speed S13 and S2 and inputs it to the controller 210.
  • the motor driver 260 allows the motor driver 260 to maintain the first speeds S13 and S3 for a predetermined time t26 to t27 when the rotational speed of the motor reaches the first speeds S13 and S2.
  • the current sensing unit 280 measures the current in the holding section D13 at which the first speeds S13 and S2 are maintained and inputs the current to the controller 210.
  • control unit 210 detects the eccentricity based on the input current in the holding section in which the rotational speed of the motor is maintained at the first speed S13 (S2) of the first detection section (A) (P10). In some cases, an eccentricity can be detected with respect to all currents input into the first detection section.
  • the controller 210 causes the second sensing section B to be performed. At this time, since the set value for the eccentricity is before the amount of the laundry is measured, the eccentricity is determined using the reference value of the eccentricity for the case where the amount of the laundry is a large amount.
  • the motor driving unit 260 maintains the rotational speed of the motor for the first speed S13 (S2) for a predetermined time (t27 to t28) (holding period (D01)), the second speed (S14) ( S3) (acceleration section D02), the second speed (S14) (S3) is maintained for a predetermined time (t29 to t30) (holding section (D03)), then the motor is braked to rotate the speed Reduce (deceleration section).
  • the current detector 280 decelerates the holding section D01, the acceleration section D02, the holding section D03, and the thirtieth to thirty-first hours t30 to t31 with respect to the second sensing section B.
  • FIG. The current is measured for the section D04 and input to the controller 210.
  • the controller 210 discards the current value measured through the current sensing unit in the first sensing section A when the second sensing section is performed with the eccentricity measured in the first sensing section A being less than the set value.
  • the amount of laundry is determined based on current values for the maintenance section, the acceleration section, and the deceleration section of the second sensing section B.
  • the control unit 210 determines the amount of laundry by calculating the gravity characteristics of the maintenance section and the inertia characteristics of the acceleration section.
  • the inertia characteristic of the acceleration section can be calculated by subtracting the current value of the sustain section from the current value of the acceleration section. Gravity acts largely in the maintenance section, but the effect of inertia is less as the speed is kept constant.In the acceleration section, gravity acts and inertia trying to maintain the existing rotational motion as the speed changes. Excluding the data of the maintenance section from the interval it is possible to calculate the characteristics of the inertia.
  • the controller 210 causes the first sensing section to be repeatedly performed.
  • FIG. 8 is a view referred to explaining a change in speed of the first detection section according to an eccentricity when measuring the amount of laundry of FIG. 7.
  • the motor driving unit 260 starts the motor 270 at the 35 th time t35 and accelerates to the fourth speed S11.
  • the motor driving unit 260 maintains the fourth speed S11 for a predetermined time t36 to t38 when the rotational speed of the motor reaches the fourth speed S11 with respect to the first detection section A.
  • FIG. As the laundry rotates in the drum as the drum rotates, the laundry is dispersed.
  • the motor driving unit 260 allows the rotational speed of the motor to be increased or maintained for the 38th time t38 to the 42nd time t42 to accelerate and maintain the rotational speed of the motor to the first speed S13 (S2).
  • the current detection unit 280 measures the current in the holding section D11 of the fifth speed S12, the acceleration section D12 up to the first speed, and the holding section D13 of the first speed, respectively, by controlling the controller ( 210).
  • the controller 210 detects the eccentricity based on the input current (P11).
  • the controller 210 may be damaged by the high-speed rotation. Thus, the controller 210 may re-perform the first sensing section A without performing the second sensing section B so that the laundry is dispersed. .
  • the motor driving unit 260 brakes the motor at the 42nd time t42 so that the rotational speed of the motor reaches the fourth speed S11.
  • the current detection unit 280 measures the current for the deceleration section (D14).
  • the motor driving unit ends the first primary detection section A11 and starts the secondary first detection section A12. .
  • the motor driving part 260 maintains the rotational speed of the motor at the fourth speed S11. As the laundry rotates in the drum as the drum rotates, the laundry is dispersed.
  • the motor driver 260 accelerates the motor at the 45 th time t45 so that the rotational speed of the motor reaches the fifth speed S12.
  • the motor driving unit 260 maintains the fifth speed S12 for a predetermined time t46 to t47.
  • the current sensing unit 280 measures the current in the holding section D21 at which the fifth speed S12 is maintained and inputs it to the controller 210.
  • the motor drive unit 260 accelerates the motor to the first speed S13 (S2) at the forty-seventh time t47.
  • the current detector 280 measures the current of the acceleration section D22 in which the speed increases from the fifth speed S12 to the first speeds S13 and S2 and inputs it to the controller 210.
  • the motor driver 260 allows the motor driver 260 to maintain the first speeds S13 and S3 for a predetermined time t48 to t49 when the rotational speed of the motor reaches the first speeds S13 and S2.
  • the current detector 280 measures the current of the holding section D23 at which the first speeds S13 and S2 are maintained and inputs the current to the controller 210.
  • the controller 210 causes the second sensing section B to be performed, and if the eccentricity is greater than the set value, the controller 210 performs the first sensing section again.
  • the motor driving unit decelerates the rotational speed of the motor to the fourth speed S11 to end the second first detection section and starts the third first detection section S13.
  • the current sensing unit measures the current for the deceleration section (D24) and inputs it to the controller.
  • the motor driving unit sequentially drives the motor from the fourth speed S11 to the first speed S13 (S2) for the third first detection period S13 for the 51st to 56th time t51 to t56. Hold and accelerate.
  • the current sensing unit measures the currents for the holding sections D31 and D33 and the acceleration section D32, respectively, and inputs them to the controller.
  • the controller 210 detects the eccentricity again at the 56 th time t56 (P13), and if the eccentricity is less than the set value, the second sensing section B is performed.
  • the motor driving unit 260 maintains the rotational speed of the motor for the first speed S13 (S2) for a predetermined time (t56 to t57) (maintenance section (D01)), the second speed (S14) ( S3) (acceleration section D02), the second speed (S14) (S3) is maintained for a predetermined time (t58 to t59) (holding section (D03)), then the motor is braked to rotate the speed Decrease (deceleration section (D04)).
  • the controller 210 calculates an average of the current value of the second detection section B for each section and calculates back EMF to determine the amount of laundry.
  • the controller 210 discards the data measured in the first detection section A, and washes the laundry based on the data measured in the second detection section B. Judge the amount of.
  • the controller 210 does not perform the second sensing section B, and ends the operation in the first sensing section.
  • the controller 210 outputs an error when the second sensing section is not performed due to the eccentricity.
  • the setting frequency may be set to 5 to 7 times, but is not limited thereto.
  • the control unit 210 measures data measured in the first detection section A.
  • FIG. Determine the amount of laundry based on the amount.
  • the controller 210 calculates an average of the current values for the maintenance section, the acceleration section, and the deceleration section, based on the current measured in the first sensing section A, that is, the orders A11 to A13 of the first sensing section, The counter electromotive force of the deceleration section is calculated to determine the amount of laundry from the first detection section (A).
  • controller 210 determines the amount of laundry, the controller 210 performs the following operation accordingly.
  • 9 is a view referred to explain the current value according to the speed change of the motor when measuring the amount of laundry of the present invention.
  • the current Iq0 of the motor is constantly maintained in the holding section in which the first speed S2 is maintained.
  • the current Iq1 of the motor increases and remains constant while accelerating as shown, and then decreases. At this time, the current value varies depending on the degree of acceleration.
  • the current Iq2 of the motor is kept constant.
  • the controller 210 may detect the eccentricity by analyzing the ripple.
  • FIG. 9 shows a change in current, and the current values of the first speed holding section and the second speed holding section are not necessarily the same. Although the current is kept constant in the holding section, the current value may vary depending on the speed.
  • the controller 210 calculates an average by summing the current values of the holding section of the first speed and the holding section of the second speed, subtracting from the average of the current values of the acceleration section, multiplying the counter electromotive force, and dividing by the gravitational acceleration. We can calculate the characteristics for.
  • FIG. 10 is a view showing a current value measured according to the rotation of the motor of the washing machine of the present invention.
  • 10A and 10B are diagrams showing currents measured during motor operation.
  • the controller 210 may detect the eccentricity by analyzing the ripple.
  • FIG. 11 is a flowchart illustrating a control method for measuring an amount of laundry according to a first detection section and a second detection section of the washing machine of the present invention.
  • the controller 210 applies a control command according to the first sensing section A and the second sensing section B to the motor driving unit to detect the amount of laundry. At this time, the eccentricity is sensed in the first sensing section, and the amount of laundry is sensed in the second sensing section. In addition, in the first sensing section, the dispersion is performed to reduce the eccentricity.
  • the motor 270 is started according to the control command (S310).
  • the motor driving unit 260 accelerates up to the speed for foam dispersion and performs foam dispersion by maintaining the motor rotation speed for a predetermined time (S320).
  • the motor driving unit 260 performs the first sensing section A by maintaining or accelerating the rotational speed of the motor within the range of the first speed S13 (S2) from the speed for dispersing (S330).
  • the first speed (S2) (S13) is the speed at which all the laundry is attached to the wall of the drum to rotate with the drum.
  • the current detector 280 measures the current value in the first detection section A and inputs it to the controller 210.
  • the controller 210 detects an unbalance by analyzing the current measured in the first detection section A (S340), and compares it with the set value (S350).
  • the controller 210 may detect the eccentricity by analyzing the ripple of the current measured in the first detection section A.
  • the criterion for determining the eccentricity is differently set according to the amount of laundry, but since the amount of the laundry is not measured, the control unit 210 sets the reference value for the eccentricity for the case where the amount of the laundry is the largest. To judge.
  • control unit 210 applies a control command to the motor driving unit 260 so that the first sensing section A is re-executed.
  • the controller 210 determines the number of times the first sensing section is repeatedly performed (S360), and if the set number n has not been reached, the first sensing section is repeated.
  • the motor driving unit 260 brakes the motor to decelerate the rotation speed of the motor (S370) and allows the first sensing section A to be re-executed.
  • the motor driving unit 260 decelerates the rotational speed of the motor to a speed for foam dispersion, and then performs the dispersion by maintaining the speed (S320) and gradually accelerates to the first speed S13 (S2). (S330).
  • the controller 210 re-detects the eccentricity based on the current input from the current sensing unit (S340), and if the eccentricity is greater than or equal to the set value, the first sensing section is re-executed (S360, S370, S320 to S340).
  • the controller 210 controls the motor driving unit 260 to perform the second sensing section B.
  • the motor driving unit 260 allows the rotational speed of the motor to be maintained at a first speed S13 (S2) for a predetermined time, and the current sensing unit 280 has data on the first holding section D01 where the first speed is maintained. That is, the current is measured and input to the control unit 210 (S380).
  • the motor driving unit 260 increases the rotational speed of the motor from the first speed to the second speed (S3) (S14), and the current sensing unit (280) in the first acceleration section (D02) up to the second speed.
  • the data, that is, the current, is measured and input to the controller 210 (S390).
  • the motor driving unit 260 maintains the second speed for a predetermined time when the rotational speed of the motor reaches the second speeds S3 and S14, and the current sensing unit 280 maintains the second speed at which the second speed is maintained.
  • the current for the section D03 is measured and data is input to the controller 210 (S400).
  • the motor driving unit 260 brakes the motor to reduce the rotation speed, and the current sensing unit 280 measures the current for the deceleration section D04 and inputs it to the controller 210 (S410).
  • the motor driving unit 260 brakes the motor to decelerate and stops the motor.
  • the controller 210 based on the data input during the second sensing section B, that is, the first, the second holding section, the first acceleration section, and the deceleration section, as the second sensing section B is settled. The average of each section is calculated, the counter electromotive force is calculated in the deceleration section, and the amount of laundry is determined (S420).
  • the control unit 210 determines the amount of laundry by calculating the characteristics of the gravity acting in the maintenance section and the inertia acting in the acceleration section from the current value. As the amount of laundry increases, the influence of gravity and inertia increases, so the gravity and inertia characteristics can be extracted from the measured current and multiplied by the counter electromotive force to determine the amount of laundry.
  • the inertia characteristic can be extracted by excluding the data of the maintenance section from the data of the acceleration section.
  • the controller 210 causes the operation to end without performing the second sensing section B.
  • control unit 210 Since the control unit 210 did not detect the laundry due to the eccentricity, the control unit 210 generates an error for the eccentricity and outputs it through the output unit (S365).
  • the eccentricity is sensed in the first detection section, and if the dispersion is performed, an error is output and the operation is stopped.
  • the amount of laundry may be arbitrarily set to perform the following operation.
  • the amount of laundry can be determined based on the data detected in the first detection section (S420).
  • FIG. 12 is a flowchart illustrating a control method for measuring an amount of laundry according to a speed change of the first detection section of FIG. 11.
  • the motor driving unit 260 starts the motor 270 in response to the control command of the controller (S430) and accelerates the rotational speed of the motor to the third speed S1 (S440). .
  • the third speed is a rotational speed at which gravity is equal to the centrifugal force acting on the drum by the rotation of the motor.
  • the laundry is not attached to the wall by the rotation of the drum, and the laundry is pushed up and falls so that the state of the laundry flows the most.
  • the third speed is a rotational speed lower than the first speed S2.
  • the motor driving unit 260 maintains the third speed for a predetermined time so that the laundry in the drum is dispersed and performs dispersion in step S450.
  • the motor driving unit 260 accelerates the rotational speed of the motor to increase from the third speed S1 to the first speed S2 (S460).
  • the first speed is the rotational speed at which the control unit 210 is completely attached to the wall of the drum by centrifugal force and rotates together with the drum without falling.
  • the control unit 210 detects the eccentricity of the imbalance due to the bias of the laundry.
  • the controller 210 determines that the high-speed rotation is impossible due to the vibration due to the eccentricity, and controls the motor driving unit 260 to re-perform the first detection section A so that the laundry is dispersed.
  • the set value is before the amount of laundry is determined, it is set based on the reference value of the eccentricity for the case where the amount of laundry is maximum.
  • the controller 210 counts the number of repetitions of the first detection section to determine whether the first detection section has been performed more than the set number of times (S490), and if it is less than the set number of times, the first detection section is executed again and reaches the set number of times. In one case, an error due to an eccentricity or an error according to the amount of laundry cannot be determined is generated and output (S510).
  • the motor driving unit 260 brakes the motor so that the rotation speed of the motor is reduced to the third speed S1 (S500).
  • the motor driving unit 260 controls the rotational speed of the motor to be maintained at the third speed to perform dispersion, re-detects the eccentricity, and reduces the eccentricity. It determines (S450 to S470).
  • control unit 210 controls the motor driving unit so that the second detection section (B) for the dose detection.
  • the motor driving unit 260 maintains the rotational speed of the motor at the first speed S2 for a predetermined time, accelerates to the second speed S3, and then the second speed is constant. Keep time and brake the motor to reduce rotation speed.
  • the second speed S3 is a higher rotational speed than the first speed S2, and the centrifugal force due to the in-drum rotation increases to reduce the influence of gravity, that is, the influence of gravity on the laundry is close to zero.
  • the rotation speed is set as the rotation speed in the range where resonance does not occur.
  • the current detecting unit 280 is configured to include a first holding section for maintaining a first speed, an acceleration section for accelerating to a second speed, a second holding section for holding a second speed, and a deceleration section in a second sensing section B.
  • FIG. Current is input to the controller.
  • the controller 210 analyzes the data to determine the amount of laundry (S530).
  • the controller 210 calculates an average of the currents for each section, calculates the counter electromotive force in the deceleration section, calculates a detection value for determining the amount of laundry by adding or subtracting the average of the currents, and multiplying the counter electromotive force. The amount of laundry is finally determined by comparing with the quantity data.
  • FIG. 13 is a flowchart illustrating another example of a control method for measuring an amount of laundry according to a speed change of the first detection section of FIG. 11.
  • the washing machine may operate differently from the operation of FIG. 12.
  • Another example of the operation of the first detection section is as follows.
  • the motor driving unit 260 starts the motor 270 in response to the control command of the controller (S550), and accelerates the rotational speed of the motor to the fourth speed S11 (S560). .
  • the motor driving unit 260 maintains the fourth speed for a predetermined time when the rotational speed of the motor reaches the fourth speed S11 (S570). Accordingly, the first detection section A is performed.
  • the fourth speed S11 is set to a rotational speed at which the laundry rolls in a rotating drum (tumble).
  • the fifth speed S12 which will be described later, is a rotational speed at which laundry starts to be attached to the wall of the drum by the action of centrifugal force in the drum as the rotational speed increases, and a part of the laundry is attached to the wall of the drum and the drum And rotate together, and part of it is set by the rotational speed of the drum in the state of lifting and falling.
  • Each rotation speed may vary depending on the size of the drum or the type and performance of the motor.
  • the fourth speed is a rotation speed slower than the third speed
  • the fifth speed is a rotation speed higher than the third speed
  • the motor driver 260 accelerates from the fourth speed to the fifth speed S12 (S580), when the rotational speed of the motor reaches the fifth speed, the fifth speed is maintained for a predetermined time (S590).
  • the current sensing unit 280 measures the current of the third holding section in which the fifth speed is maintained and inputs it to the controller as data of the third holding section.
  • the motor driving unit 260 accelerates from the fifth speed to the first speed (S2) (S13), and when the first speed is reached to maintain the first speed for a predetermined time (S610).
  • the current sensing unit 280 measures currents of the second acceleration section up to the first speed and the fourth holding section at which the first speed is maintained, and inputs them to the controller.
  • control unit 210 controls the motor driving unit 260 so that the rotational speed of the motor is maintained for a predetermined time with respect to the fourth speed, the fifth speed, and the first speed, and the speed increases step by step, thereby washing the laundry. Rolling in this drum, or some rotating and some falling, allows for dispersion to be carried out in the first sensing zone.
  • controller 210 performs the eccentricity as well as the quantity detection in the first sensing section, as the current for the holding section and the acceleration section for each rotational speed is measured and input through the current sensing section.
  • the controller 210 detects the eccentricity by analyzing the current for the first sensing section, which is input from the current sensing unit.
  • the controller 210 determines that the high-speed rotation is impossible and causes the first sensing section to be redone for dispersion.
  • the controller 210 determines whether the number of repetitions of the first detection section has reached the set number n (S640), and generates a control command so that the first detection section is executed again if the set number of times has not been reached (S640). Apply to drive.
  • the motor driving unit decelerates the rotational speed of the motor to the fourth speed and controls the motor so that the first sensing section is executed again (S650). At this time, the current sensing unit measures data of the deceleration section and inputs it to the control unit.
  • the controller 210 allows the second sensing section to be performed, so that the quantity detection is performed.
  • the motor driving unit 260 maintains the rotational speed of the motor at the first speed for a predetermined time, accelerates to the second speed, and then maintains the second speed for a predetermined time.
  • the current sensing unit measures the current in the first holding section for holding the first speed, the acceleration section up to the second speed, and the holding section for holding the second speed, respectively, and inputs it to the controller.
  • the motor driving unit 260 brakes the motor rotating at the second speed to stop the motor, and the current sensing unit measures the current of the deceleration section and inputs it to the controller.
  • control unit 210 determines the amount of laundry by analyzing the current value measured in the second detection section (B) (S680).
  • the controller 210 discards the data of the third and fourth holding sections, the second acceleration section, and the second deceleration section decelerating at the fourth speed in the first sensing section A, and the second sensing section ( Determine the amount of laundry based on the data measured in B).
  • the controller 210 ends the operation for sensing the amount of laundry and outputs an error.
  • the controller 210 decelerates the data measured in the first sensing section, that is, the third and fourth holding sections, the second acceleration section, and the fourth speed.
  • the amount of laundry is determined by analyzing data of the second deceleration section.
  • the controller 210 calculates an average of the data measured for each repetition order for each section, or selects the data detected in the last first detection section, and washes the laundry. Judge the amount of.
  • the amount of laundry can be calculated, and accordingly, the following operation can be performed.
  • FIG. 14 is a view showing a result of measuring the amount of laundry according to the weight of the laundry of the present invention.
  • Figure 14 (a) is a view showing a result of determining the amount of laundry according to the weight of the laundry of the washing machine according to the prior art
  • Figure 14 (b) is a determination result according to the weight of the laundry of the washing machine according to the present invention is shown It is done.
  • the conventional washing machine determines the amount of laundry using a current value measured when the motor is started, and thus the conventional washing machine has a distribution of values detected for laundry of 6 kg or more. Since overlapping, it is difficult to determine the quantity of laundry for more than 6kg. In particular, as the weight of the laundry increases, there was a problem that can not accurately determine the amount of laundry.
  • the quantity of detection value determined by the current value is 600, it is difficult to distinguish whether the laundry contained in the drum is 6kg or 8kg.
  • the amount of detection of the amount of 900 has the same distribution to 12kg to 18kg, there is a problem that it is difficult to specify the weight value of 12 to 18kg.
  • the washing machine of the present invention is divided into a first sensing section and a second sensing section to measure at a second sensing section, that is, at a rotational speed above the rotation speed at which the laundry is attached to the wall.
  • the detection value is calculated linearly in proportion to the weight of the laundry. Accordingly, the amount of laundry can be more easily determined than in the related art, and the distribution of sensed data is rarely duplicated, thereby making it possible to accurately determine the amount of laundry.
  • 15 is a view showing a scatter diagram of the result of measuring the amount of laundry according to the weight of the laundry of the present invention.
  • Figure 15 (a) is a scatter diagram according to the weight of the laundry in calculating the amount of laundry of the washing machine according to the prior art
  • Figure 15 (b) is a scatter diagram according to the weight of the laundry of the present invention.
  • Sanfoto is 12.05, which means that it is difficult to specify the value from 3 kg.
  • the spread was 27.4 above 7 kg, and the dispersion by weight was 46.57 at 18 kg.
  • the value is different every time the weight of the same laundry is measured, and it becomes difficult to set the weight of the laundry based on the calculated detection value.
  • the washing machine of the present invention determines the amount of laundry on the basis of the data of the second detection interval, the scatter of the measured value measured according to the weight of the laundry is lower than the conventional Able to know.
  • the present invention does not measure the current at the time of starting the motor, but measures the current by dividing the maintenance section, the acceleration section, and the deceleration section in which the rotational speed is maintained with respect to the rotating motor, and calculate the counter electromotive force to calculate the counter electromotive force.
  • the rotation speed is controlled to be higher than the rotation speed of the laundry drum, thereby determining the amount of the laundry, thereby minimizing dispersion due to the flow of the laundry, thereby more accurately determining the amount of the laundry.
  • the motor detects the eccentricity in the first sensing section and rotates stably. If the second sensing section is not performed, the laundry is based on the data measured in the first sensing section. You can judge the amount of.
  • control unit 220 detection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

본 발명은 세탁기 및 그 제어방법에 관한 것으로, 세탁기 내에 투입되는 세탁물에 대하여, 모터 동작 중 작용하는 중력과 관성을 이용하여 세탁물의 양을 측정함으로써 정확한 세탁물의 양 산출이 가능하고, 세탁물의 초기 위치 및 세탁물의 유동에 의한 영향을 최소화하고, 동작중인 모터의 전류값을 이용함으로써 센서리스 특성에 관계없이 세탁물의 양을 측정할 수 있다. 또한, 세탁물의 양에 대한 정확도가 향상되고, 단시간에 세탁물의 양을 판단할 수 있어, 탈수동작으로의 진입이 용이하고, 세탁시간이 감소하여 에너지 절약의 효과가 있다.

Description

세탁기 및 그 제어방법
본 발명은 세탁기 및 그 제어방법에 있어서, 세탁기 내에 투입되는 세탁물의 양을 감지하는 세탁기 및 그 제어방법에 관한 것이다.
일반적으로, 세탁기는 세탁, 탈수 및/또는 건조 등의 여러 작용을 통해 세탁물을 처리하는 장치이다.
세탁기는 세탁물이 수용되는 드럼에 일정량의 세탁수를 공급하고 세탁수에 적당량의 세제를 용해시켜 상기 세탁물에 묻은 오염물이 상기 세제와의 화학 작용에 의해 제거되도록 하고, 세탁물이 담겨진 세탁조가 회전됨에 따라 상기 세탁수와 세탁물이 기계적인 마찰 또는 진동을 일으켜 세탁물의 오염물이 용이하게 제거될 수 있도록 한다.
세탁기는 세탁물을 오염을 제어하기 위한 과정으로, 세탁행정, 헹굼행정, 탈수행정을 수행한다. 세탁기는 세탁 과정에서, 탈수행정뿐 아니라, 세탁과 헹굼 행정 중에도 탈수를 수행하여, 세탁물에 포함되는 물을 제거하게 된다.
탈수동작은 모터가 고속으로 회전동작함에 따라, 내부에서 세탁물에 대하여 원심력이 작용함에 따라, 세탁물 내부의 물이 세탁물로부터 제거되는 원리이다.
이러한 탈수 동작은, 모터가 고속으로 회전하는 만큼, 세탁물의 양과 세탁물의 엉킴에 의해 영향을 받게 된다. 세탁물이 많을수록, 고속회전이 어렵고, 많은 세탁물이 엉켜 어느 일측으로 치우치면 언밸런스로 인하여, 고속회전에 의해 세탁기가 손상되는 문제가 발생하게 된다.
그에 따라 세탁기는 탈수 수행 전, 세탁물의 양을 정확하게 판단하여 세탁물의 양에 따라 탈수의 회전속도를 조절한다.
종래의 세탁기는 정지된 모터를 기동시키는 과정에서, 모터에 인가되는 전류를 측정하여 세탁물의 양을 판단하였다.
그러나 기동 시 세탁물의 양을 판단하는 경우, 소량의 세탁물의 양을 구분하기 어렵고, 또한 정지된 상태에서의 초기 세탁물의 위치 및 모터 구동에 의한 세탁물의 이동으로 인하여 측정되는 세탁물의 양이 상이하게 나타나는 문제점이 있다. 특히 세탁물의 양이 많을수록 측정값의 산포가 증가하게 된다.
또한, 센서리스 모터가 구비되는 세탁기는 초기 기동시에는 위치 정렬이 어려우므로 측정되는 세탁물의 양에 대한 산포가 증가하는 원인이 된다. 세탁물의 양에 대한 산포가 증가하는 경우, 산출되는 데이터로부터 세탁물의 양을 구분할 수 없게 된다.
세탁물의 양을 정확하게 측정하지 못하는 경우, 고속으로 동작하는 탈수동작을 수행하는데 많은 시간이 소요되므로, 세탁시간이 증가하고, 그에 따른 에너지 소비량이 증가하는 문제점이 있다.
본 발명의 목적은 세탁기 및 그 제어방법에 있어서, 세탁기 내에 투입되는 세탁물에 대하여 빠르고 정확하게 세탁물의 양을 판단하고, 센서리스 모터가 구비되는 세탁기에서도 세탁물의 양을 정확하게 측정할 수 있으며, 세탁물의 양을 바탕으로 탈수동작이 용이하게 수행되도록 함으로서 세탁시간을 절약하는 세탁기 및 그 제어방법을 제공하는 데 있다.
본 발명에 따른 세탁기는, 드럼에 연결되어 드럼을 회전시키는 모터, 상기 모터로 동작전원을 인가하여 상기 모터가 동작 또는 정지하도록 하고, 상기 모터의 회전속도를 유지하거나 가속하고, 감속하도록 상기 모터를 제어하는 모터구동부, 동작중인 상기 모터의 전류를 측정하는 전류감지부, 상기 드럼 내에 수용된 세탁물의 양을 판단하기 위해, 상기 모터를 제어하기 위한 제어명령을 상기 모터구동부를 인가하고, 상기 전류감지부로부터 입력되는 전류값으로부터 상기 세탁물의 양을 판단하는 제어부를 포함하고, 상기 제어부는 상기 모터의 회전속도에 따른 동작을 포분산을 위한 제 1 감지구간과 포량감지를 위한 제 2 감지구간으로 구분하여, 상기 제 1 감지구간에서 감지되는 편심에 대응하여 상기 제 2 감지구간의 수행 여부를 판단하고, 상기 제 2 감지구간에서 측정되는 데이터를 바탕으로 상기 세탁물의 양을 산출하는 것을 특징으로 한다.
또한, 본 발명에 따른 세탁기의 제어방법은, 드럼에 수용된 세탁물의 양을 판단하기 위해, 모터를 기동하는 단계, 상기 모터를 저속으로 회전시켜 제 1 감지구간에서 포분산을 수행하는 단계, 상기 제 1 감지구간에서 측정되는 데이터로부터 편심을 감지하는 단계, 상기 편심이 설정값 이상이면, 상기 제 1 감지구간을 재수행하여 상기 세탁물을 분산시키는 단계, 상기 편심이 설정값 미만이면, 제 2 감지구간을 수행하고 상기 모터의 회전속도를 단계적으로 제어하여 포량감지를 수행하는 단계, 및 상기 제 2 감지구간에서 측정되는 데이터를 상기 모터의 회전속도에 따른, 유지구간, 가속구간, 감속구간으로 구분하고, 상기 제 2 감지구간의 데이터를 분석하여 상기 세탁물의 양을 산출하는 것을 특징으로 하는 세탁기의 제어방법.
상기와 같이 구성되는 본 발명에 따른 세탁기 및 그 제어방법은, 세탁기 내에 투입되는 세탁물에 대하여, 모터 동작 중 작용하는 중력과 관성을 이용하여 세탁물의 양을 측정함으로써 정확한 세탁물의 양 산출이 가능하고, 세탁물의 초기 위치 및 세탁물의 유동에 의한 영향을 최소화하고, 동작중인 모터의 전류값을 이용함으로써 센서리스 특성에 관계없이 세탁물의 양을 측정할 수 있다.
또한, 본 발명은 세탁물의 드럼의 벽면에 부착되어 회전하는 속도 이상으로 회전속도를 제어하여, 유지구간, 가속구간, 감속구간에 대한 데이터를 바탕으로 세탁물의 양을 판단함에 따라 세탁물의 유동으로 인한 산포를 최소화하여 세탁물의 양을 보다 정확하게 판단할 수 있다.
도 1 은 본 발명의 일 실시예에 따른 세탁기의 사시도이다.
도 2 는 도 1에 도시된 세탁기를 절개한 일부를 도시한 단면도이다.
도 3 은 본 발명의 일 실시예에 따른 세탁기의 제어구성이 도시된 블록도이다.
도 4 는 본 발명의 일 실시예에 따른 세탁기에서, 세탁물에 작용하는 힘을 설명하는데 참조되는 도이다.
도 5 는 본 발명의 일 실시예에 따른 세탁기에서, 세탁물의 양을 측정하는 제 1 감지구간 및 제 2 감지구간을 설명하는데 참조되는 도이다.
도 6 은 도 5 의 세탁물의 양 측정 시, 편심에 따른 제 1 감지구간의 속도변화를 설명하는데 참조되는 도이다.
도 7 은 본 발명의 일 실시예에 따른 세탁기에서, 세탁물의 양을 측정하는 제 1 감지구간 및 제 2 감지구간의 다른 실시예가 도시된 도이다.
도 8 는 도 7의 세탁물의 양 측정 시, 편심에 따른 제 1 감지구간의 속도변화를 설명하는데 참조되는 도이다.
도 9 는 본 발명의 세탁물의 양 측정 시, 모터의 속도변화에 따른 전류값을 설명하는데 참조되는 도이다.
도 10 은 본 발명의 세탁기의 모터의 회전에 따라 측정되는 전류값이 도시된 도이다.
도 11 은 본 발명의 세탁기의 제 1 감지구간 및 제 2 감지구간에 따른 세탁물의 양 측정을 위한 제어방법이 도시된 순서도이다.
도 12 는 도 11의 제 1 감지구간의 속도변화에 따른, 세탁물의 양 측정을 위한 제어방법이 도시된 순서도이다.
도 13 은 도 11의 제 1 감지구간의 속도변화에 따른, 세탁물의 양 측정을 위한 제어방법의 다른 예가 도시된 순서도이다.
도 14 은 본 발명의 세탁물의 무게에 따른 세탁물의 양 측정 결과가 도시된 도이다.
도 15 는 본 발명의 세탁물의 무게에 따른 세탁물의 양 측정 결과의 산포도가 도시된 도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술 되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, 본 발명은 세탁기에 포함되는 제어부 및 그 외 각 부의 구성이, 하나 또는 그 이상의 프로세서로 구현될 수 있고, 하드웨어 장치로 구현될 수 있다.
도 1 은 본 발명의 일 실시예에 따른 세탁기의 사시도이고, 도 2 는 도 1에 도시된 세탁기를 절개한 일부를 도시한 단면도이다.
본 발명의 세탁기(100)는 도 1 및 도 2에 도시된 바와 같이 구성된다.
케이싱(110)은 세탁기(100)의 외관을 형성하는 것으로, 케이싱(110) 내에는 물이 담기는 터브(132)가 매달리고, 터브(132) 내에는 세탁물이 수용되는 드럼(134)이 회전 가능하게 구비된다. 터브(132) 내에 담긴 물을 가열하기 위한 히터(143)가 더 구비될 수 있다.
케이싱(110)은, 세탁기(100)의 외관을 형성하며 전면과 상면이 개방된 캐비닛(111)과, 캐비닛(111)을 지지하는 베이스(미도시)와, 세탁물이 출입할 수 있도록 세탁물 출입홀이 형성되고 캐비닛(111)의 전면에 결합되는 프론트 커버(112)와, 캐비닛(111)의 상측에 구비되는 탑커버(116)를 포함할 수 있다. 프론트 커버(112)에는 상기 세탁물 출입홀을 개폐하는 도어(118)가 구비될 수 있다.
세탁기(100) 외부에서 드럼(134) 내부의 세탁물을 관찰할 수 있도록, 도어(118)에는 글래스(118a)가 구비될 수 있다. 글래스(118a)는 볼록한 형상으로 형성될 수 있고, 도어(118)가 닫힌 상태에서 글래스(118a)의 선단이 드럼(134) 내측까지 돌출될 수 있다.
세제박스(114)는 예비 또는 본 세탁용 세제, 섬유 유연제, 표백제 등의 첨가제를 수용하는 것으로, 케이싱(110)에 인출가능하게 구비된다. 세제박스(114)에는 상기 첨가제들이 서로 섞이지 않고 분리 수용될 수 있도록 복수의 구획된 수용공간이 제공될 수 있다.
드럼(134) 회전시 발생하는 진동이 완충될 수 있도록, 터브(132)는 스프링에 의해 탑커버(116)에 매달릴 수 있고, 또한 터브(132)를 하측에서 지지하는 댐퍼가 더 구비될 수 있다.
터브(132)와 드럼(134) 간에 물이 유동할 수 있도록, 드럼(134)에는 복수의 홀이 형성되고, 드럼(134)의 회전에 따라 세탁물을 들어올렸다가 떨어뜨려질 수 있도록, 드럼(134)의 내주면을 따라 하나 이상의 리프터(134a)가 구비될 수 있다.
드럼(134)은 완전히 수평하게 배치되는 것이 아니라, 드럼(134)의 후방부가 수평보다 밑으로 내려오도록 소정의 기울기를 갖도록 배치될 수 있다.
드럼(134)을 회전시키기 위한 구동력을 제공하는 모터가 구비될 수 있다. 모터로부터 제공된 구동력을 드럼(134)에 전달하는 방식에 따라 직접구동방식과 간접구동방식으로 구분될 수 있다. 직접구동방식은 모터의 회전축이 드럼(134)과 직접 체결되는 것으로, 모터의 회전축과 드럼(134)의 중심이 동일 선상에 정렬된다. 직접구동방식의 세탁기(100)는 터브(132)의 후방과 캐비닛(111) 사이의 공간에 구비된 모터(141)에 의해 드럼(134)이 회전된다.
간접구동방식은 모터로부터 제공된 구동력을 전달하는 밸트(belt)나 풀리(pully) 등의 동력전달수단을 이용하여 드럼(134)을 회전시키는 것으로, 모터의 회전축과 드럼(134)의 중심이 반드시 동일 선상에 정렬될 필요는 없다.
본 발명의 세탁기(100)는 직접구동방식과 간접구동방식 중 어느 하나로 구성될 수 있다.
케이싱(110)과 터브(132) 사이에는 개스킷(120)이 구비된다. 개스킷(120)은 터브(132)에 저수된 물이 터브(132)와 케이싱(110) 사이로 누설되는 것을 방지하는 것이다. 개스킷(120)의 일측은 케이싱(110)과 결합되고, 타측은 터브(132)의 개구된 전면부의 둘레를 따라 결합된다. 또한, 개스킷(120)은 터브(132)의 진동에 따라 탄성적으로 접철됨으로써 진동을 완충시키는 역할을 한다.
개스킷(120)은 다소 간의 탄력성을 갖는 변형가능한 또는 유연한 재질로 이루어질 수 있고, 천연고무 또는 합성수지를 이용하여 형성될 수 있다.
세탁기(100)는 온수를 공급하는 온수원(H.W)과, 냉수를 공급하는 냉수원(C.W)과 각각 온수호스와 냉수호스를 통해 연결되고, 온수호스와 냉수호스를 통해 유입된 물은 급수부의 제어를 통해 세제박스(114), 스팀발생장치 및/또는 와류노즐로 공급된다.
펌프(148)는 배수 밸로우즈(147)를 통해 터브(132)로부터 배출된 물을 배수호스(149)를 통해 외부로 배수시키거나, 순환호스(151)로 압송시키는 것이다. 본 실시예에서, 펌프(148)는 배수 펌프로써의 기능과 순환 펌프로써의 기능을 겸한다. 경우에 따라, 배수를 위한 펌프와 순환을 위한 펌프가 별도로 구비되는 것도 물론 가능하다.
드럼(134)이 회전되는 중에는 세탁물(10)이 리프터(134a)에 의해 들어 올려졌다가 낙하하는 동작을 반복하고, 드럼이 고속 회전하는 경우, 세탁물이 드럼의 벽면에 부착되어, 원심력에 의해 세탁물에 흡수되었던 세탁수가 세탁물로부터 분리되어 드럼 내의 홀을 통해 터브로 배출됨으로써 탈수를 수행하게 된다.
컨트롤 패널(180)은 사용자로부터 코스 선택을 입력받는 코스 선택부(182)와, 사용자로부터 각종 제어명령을 입력받고 세탁기(100) 작동 상태를 표시하는 디스플레이부(184)를 포함할 수 있다.
도 3 은 본 발명의 일 실시예에 따른 세탁기의 제어구성이 도시된 블록도이다.
도 3에 도시된 바와 같이, 세탁기(100)는, 앞서 설명한 바와 같이 구성되고, 또한, 그 동작을 제어하기 위해, 입력부(230), 출력부(240), 감지부(220), 모터구동부(260), 모터(270), 전류감지부(280), 데이터부(250), 그리고 동작 전반을 제어하는 제어부(210)를 포함한다.
또한, 제어부(210)는 급수밸브 및 배수밸브를 제어하고, 세탁수를 가열하기 위한 제어구성을 더 포함하고, 경우에 따라 외부와의 데이터 송수신을 위한 통신부가 구비될 수 있으나, 그에 대한 설명은 하기에서 생략하기로 한다. 제어부(210)는 하나 또는 그 이상의 프로세서로 구현될 수 있고, 하드웨어 장치로 구현될 수 있다.
입력부(230)는 적어도 하나의 버튼, 스위치, 터치패드와 같은 입력수단을 포함하여, 전원입력, 세탁코스, 수위, 온도 등의 운전설정을 입력한다. 입력부(230)는 코스 선택부(182)를 통해 세탁코스가 선택되면, 선택된 세탁코스에 대한 데이터를 제어부로 입력한다.
출력부(240)는 입력부(230)에 의해 입력된 운전설정에 대한 정보를 표시하고, 세탁기의 동작상태를 출력하는 디스플레이부(184) 포함하고, 소정의 효과음 또는 경고음을 출력하는 스피커, 버저 등을 포함한다.
데이터부(250)에는 세탁기의 동작제어를 위한 제어 데이터, 입력되는 운전설정 데이터, 세탁코스에 대한 데이터, 세탁기의 에러 발생 여부를 판단하기 위한 기준데이터가 저장된다. 또한, 데이터부(250)에는 감지부를 통해 세탁기 동작 중 감지 또는 측정되는 데이터가 저장된다.
데이터부(250)는 세탁기의 제어에 필요한 각종 정보들을 기록하는 것으로, 휘발성 또는 비휘발성 기록 매체를 포함할 수 있다. 기록 매체는 마이크로 프로세서(micro processor)에 의해 읽힐 수 있는 데이터를 저장한 것으로, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등을 포함할 수 있다.
감지부(220)는 복수의 센서를 포함하여 세탁기의 전압 또는 전류를 측정하고, 모터의 회전속도, 세탁수의 온도, 세탁수의 수위, 급수 또는 배수되는 세탁수의 수압 등의 데이터를 감지하여 제어부(210)로 입력한다.
감지부(220)는 전류센서, 전압센서, 수위센서, 온도센서, 압력센서, 속도센서 중 적어도 하나의 센서를 복수로 구비한다.
수위센서는 드럼 또는 터브 내에 설치되어, 세탁수의 수위를 감지하여 수위데이터를 제어부(210)로 입력한다. 온도센서는 세탁수의 수온을 측정한다. 또한, 온도센서는 복수개가 상이한 위치에 설치되어 세탁수의 수온뿐 아니라, 제어회로 내부의 온도, 세탁수 히팅 또는 건조를 위한 히터가 구비되는 경우, 히터의 온도를 감지할 수 있다. 전류감지부(280)는 모터에 인가되는 전류를 측정하여 제어부(210)로 입력한다. 속도센서는 모터의 회전속도를 감지하여 제어부로 입력한다. 속도센서는 모터의 회전축에 연결되어 출력전압으로부터 속도를 감지하거나, 또는 회전축 광전센서를 설치하여 측정할 수 있고, 여기에 한정되지 않고 다양한 방식이 사용될 수 있다.
모터(270)는 드럼에 연결되어, 드럼이 회전동작하도록 동력을 제공한다. 모터(270)는 센서리스모터가 사용될 수 있다.
모터구동부(260)는 모터(270)로 동작전원을 인가한다. 모터구동부(260)는 제어부(210)의 제어명령에 대응하여, 모터가 동작 또는 정지하도록 제어하고, 또한 모터의 회전속도를 제어한다.
모터구동부(260)는 제어명령에 따라 모터(270)의 회전방향, 회전각 및 회전속도를 제어하고, 또한 설정된 세탁코스 및 진행되는 세탁, 헹굼, 탈수의 각 행정에 따라 제 모터(270)가 각각 상이하게 동작하도록 제어한다. 이때, 모터구동부(260)는 모터의 회전방향, 회전각 및 회전속도를 상이하게 제어함으로써, 드럼 내의 세탁수가 특정 형태의 수류를 형성하도록 한다.
제어부(210)는 입력부(230)로부터 입력되는 운전설정에 따라 급수 및 배수를 제어하고, 모터(270)의 동작에 따라 드럼이 회전하여 세탁이 수행되도록 제어명령을 생성하여 모터구동부(260)로 인가한다. 제어부(210)는 세탁, 헹굼, 탈수의 일련의 세탁과정을 제어한다.
제어부(210)는 입력되는 운전설정을 데이터부(250)에 저장하고, 운전설정 또는 동작상태가 출력부(240)를 통해 출력되도록 한다. 경우에 따라 제어부는, 세탁기 제어용 어플리케이션을 탑재하고 세탁기와 무선으로 연결된 단말이 존재하는 경우, 단말로 운전설정에 대한 데이터를 전송할 수 있다.
제어부(210)는 세탁 수행 중, 감지부(220)의 복수의 센서로부터 입력되는 데이터, 그리고 전류감지부(280)로부터 입력되는 데이터를 바탕으로 세탁이 정상적으로 수행되는지 여부를 판단하고, 이상이 발생한 경우 출력부(240)를 통해 에러를 출력한다.
예를 들어 제어부(210)는 급수 중, 급수시간 내에 세탁수의 수위가 지정된 수위에 도달하지 않는 경우, 배수중, 배수시간 내에 공수위가 되지 않는 경우, 세탁 수행중 공수위가 감지되는 경우, 세탁수의 온도가 설정온도에 도달하지 못한 경우, 일정 횟수 또는 설정시간 내에 탈수가 이루어지지 않는 경우에 대하여 에러를 판단한다.
제어부(210)는 운전설정에 따라 세탁, 헹굼, 탈수의 세탁과정이 진행되도록 각각의 제어명령을 모터구동부(260)로 인가한다. 제어부(210)는 모터 동작 시, 전류감지부(280)로부터 입력되는 전류값을 저장하여 분석하여 모터의 상태를 판단하고, 또한 드럼 내에 수용된 세탁물의 양을 판단한다. 또한, 제어부(210)는 측정되는 전류를 바탕으로 세탁물의 치우진 정도, 즉 편심(Unbalance)을 판단한다.
특히, 제어부(210)는 세탁을 시작하는 경우, 드럼이 고속으로 회전동작하는 경우, 드럼 내 세탁물의 양을 판단한다. 제어부(210)는 한번 세탁물의 양을 판단하더라도, 고속회전이 필요한 경우 고속 회전 전에 세탁물의 양을 다시 판단하여 판단된 세탁물의 양에 대응하여 드럼이 고속 회전하도록 한다. 이때 제어부(210)는 판단된 세탁물의 양에 대응하여 최대 회전속도를 변경하여 설정할 수 있다.
제어부(210)는 모터구동부에 의해 모터가 회전 동작하면, 모터의 회전속도가 단계적으로 증가 또는 감소하도록 제어명령을 모터구동부(260)로 인가하고, 모터 회전 시, 가속구간, 유지구간, 감속구간 중, 전류감지부(280)를 통해 입력되는 전류값을 분석하여 세탁물의 양을 판단한다.
제어부(210)는 모터가 회전하는 동안에 드럼 내에 작용하는 중력과 관성의 힘과, 모터 제동 시 발생하는 역기전력을 산출하여, 세탁물의 양을 판단한다.
도 4 는 본 발명의 일 실시예에 따른 세탁기에서, 세탁물에 작용하는 힘을 설명하는데 참조되는 도이다.
앞서 설명한 바와 같이, 제어부(210)는 세탁물의 양을 판단하는데 있어서, 드럼 내의 작용하는 힘을 이용하여 세탁물의 양을 판단한다.
도 4에 도시된 바와 같이, 세탁물이 투입된 드럼에는, 다양한 힘이 작용한다.
세탁기는, 회전동작을 통해 세탁물로부터 이물질은 분리하고 세탁물에 흡수된 세탁수를 제거하는 것이므로, 드럼 회전을 위한 모터토크, 관성토크, 마찰토크, 부하토크가 작용하게 된다.
모터토크는 드럼에 연결된 모터를 회전동작시키기 위해 가해지는 힘이고, 관성토크는 회전 중, 가속 또는 감속하는 경우 기존의 운동상태(회전)를 유지하고자 하는 관성에 의해 방해하는 힘이며, 드럼과 세탁물, 도어와 세탁물, 또는 세탁물 간의 마찰로 인해 회전을 방해하는 힘이고, 부하토크는 세탁물의 무게에 의해 회전을 방해하는 힘이다.
이하, 세탁기는, 모터 기동 시 세탁물의 양을 판단하는 것이 아니라, 회전동작 중에 세탁물을 판단하는 것이므로, 각도 θm에 세탁물에 작용하는 힘을 예로 하여 설명한다.
도 4의 (a)에 도시된 바와 같이, 모터토크(Te)는 모터 동작 시 필요한 힘이므로, 관성토크, 마찰토크, 부하토크가 합산된 값으로 나타난다. 모터토크(Te)는 세탁물을 들어올리는 힘(F)에 드럼의 반지름(r)을 곱한 값이 된다.
도 4의(b)와 같이, 관성토크(Jm)는 회전동작 중 가속 또는 감속하는 경우 드럼 및 세탁물의 분포에 따른 관성의 힘으로 회전동작을 방해하는 힘으로 작용한다.
이때, 관성토크는 질량(m), 드럼의 반지름의 제곱에 비례한다.
도 4의 (c)와 같이, 마찰토크(Bm)는 세탁물과 터브, 세탁물과 도어 사이에 작용하는 마찰력이므로, 회전속도(Wm)에 비례한다. 마찰토크는 마찰계수와 회전속도의 곱으로 산출할 수 있다.
도 4의 (d)와 같이, 부하토크(TL)는 기동시 세탁물의 분포에 따라 작용하는 중력으로, 세탁물의 무게(질량m), 중력가속도(g), 드럼의 반지름(r), 각도(θm)로부터 산출될 수 있다.
각도(θm)에서, 세탁물에 작용하는 힘은 중력(g)에 의한 힘(Fg)이 작용하나, 드럼이 회전하고 있으므로 중력에 sin(θm)을 곱한 값으로 산출할 수 있다. 중력에 의한 힘 Fg는 중력가속도와 드럼의 반지름, 질량으로 결정된다.
드럼이 회전하는 중, 이와 같이 모터토크, 관성토크, 마찰토크, 부하토크가 동시에 작용하고, 이러한 힘의 성분은 모터의 전류값에 반영되므로, 제어부(210)는 모터 동작 중 전류감지부를 통해 측정되는 전류값을 이용하여 세탁물의 양을 산출한다.
모터토크의 경우 무게에 의한 중력의 영향이 크고, 일정 무게 이상이 되는 경우 해상도가 낮아지는 문제점이 있다. 즉 세탁물의 양이 일정 크기 이상으로 증가하게 되면, 세탁물의 양이 증가할수록 무게에 따른 변별력이 감소한다.
마찰토크는 세탁물와 도어의 마찰, 세탁물이 도어에 끼는 경우 그 값의 변화가 커지므로, 산포가 발생한다. 특히 세탁물의 양이 증가하게 되면, 마찰토크의 산포를 크게 증가한다.
부하토크는 세탁물의 움직임으로 인해 그 값에 편차가 발생한다. 또한, 부하토크의 경우 세탁물의 무게가 일정 크기 이상이 되면 세탁물의 움직임이 감소하므로, 오히려 부하토크가 감소하는 역전현상이 발생한다.
반면, 관성토크는 세탁물의 유동에 영향을 받기는 하나, 세탁물의 양(무게)에 대해 선형성을 나타내므로 세탁물의 양을 보다 정확하게 측정할 수 있다.
이때, 관성토크는 유지하고자 하는 힘이므로, 가속 또는 감속 시 작용하게 된다. 즉, 가속구간과 감속구간에는 관성토크가 작용하나, 회전속도를 일정하게 유지하는 경우 관성토크를 작용하지 않고, 중력에 의한, 모터토크, 마찰토크 그리고 부하토크가 작용하게 된다.
관성토크에 대한 특성은 가속구간과 감속구간의 데이터에서 유지구간의 데이터를 제외시켜 산출할 수 있다. 관성은, 가속구간의 전류값과 감속구간의 전류값에서 유지구간의 전류값을 감산한 후, 시간당 속도변화량, 즉 가속도로 나눈 후, 역기전력을 곱하여 산출할 수 있다.
따라서 세탁기는 가속구간 및 감속구간과 유지구간에 작용하는 힘을 분석하여 관성토크를 바탕으로 세탁물의 양을 판단하고, 또한 세탁물의 양에 따른 중력의 힘을 유지구간에서 산출하며, 또한 감속구간에서 제동에 의한 역기전력을 산출하여 세탁물의 양을 산출할 수 있다.
또한, 세탁기는 모터 회전동작 중에 전류값을 측정하여 포량감지값을 산출하므로, 기동 시 모터의 위치정렬로 인한 오차를 배제할 수 있고, 또한 유지구간을 통해 부하 상태의 변화, 즉 세탁물이 불규칙하게 유동하지 않고, 일정한 상태로 유동함에 따라, 부하의 변동으로 인한 오차를 최소화할 수 있다.
이때, 세탁기는, 유지구간의 포량 감지값 산출을 위한 포량데이터와, 가속 및 감속구간의 포량 감지값 산출을 위한 포량데이터를 각각 상이하게 적용한다. 유지구간의 경우 관성특성이 최소화되고, 가속구간과 감속구간에서는 관성이 크게 작용하므로, 각각 상이한 데이터를 바탕으로 포량감지값을 산출하여 상호 비교분석함으로써, 최종 세탁물의 양을 판단한다.
앞서 설명한 바와 같이 제어부(210)는 모터 동작 중 작용하는 관성토크를 산출하여 세탁물의 양을 판단하므로, 모터의 회전속도를 일정 회전속도까지 증가시킨 후, 모터가 가속하거나 또는 감속하도록 제어한다. 제어부(210)는 모터의 회전속도에 따라 유지구간과 가속구간, 감속구간으로 구분하고, 모터 동작 중 각 구간에서 측정되는 전류값을 이용하여 세탁물의 양을 판단한다.
제어부(210)는 저속의 유지구간에서 중력에 영향을 받는, 마찰토크와 부하토크를 이용한 세탁물의 양을 산출하고, 유지구간으로부터 가속하여 유지구간보다 빠른 회전속도에서 관성토크의 특성이 강조되도록 하여 가속구간에서 관성에 의한 세탁물의 양을 판단할 수 있다. 또한, 제어부의 감속구간에서 역기전력을 산출하여 세탁물의 양을 판단한다. 역기전력은 모터 제동 시, 모터로부터 반대방향으로 형성되는 전류에 의한 기전력이다.
제어부(210)는 모터가 회전속도를 유지, 가속, 감속하는 동작에 따른 구간별 전류값의 평균을 산출하여 세탁물의 양을 판단한다.
제어부(210)는 구간에 따른 전류의 평균에 역기전력을 곱하여 포량을 산출하되, 가속구간에 대한 포량은 관성에 대한 포량데이터를 참조하고, 유지구간에 대한 포량은 중력에 대한 포량데이터를 참조하여, 비교 분석한다. 또한, 제어부(210)는 모터의 종류 또는 성능에 따른 특성이 역기전력에 반영되므로, 이를 보상하기 위해서 역기전력을 포량 산출에 사용한다. 이때 제어부(210)는 가속구간의 전류값에서 유지구간의 전류값을 감산한 후, 역기전력을 곱하여 관성특성에 따른 데이터를 산출할 수 있다.
도 5 는 본 발명의 일 실시예에 따른 세탁기에서, 세탁물의 양을 측정하는 방법을 설명하는데 참조되는 도이다.
도 5에 도시된 바와 같이, 제어부(210)는 세탁물의 양을 판단하기 위해, 모터의 회전속도를 제어한다. 제어부(210)는 가속구간과 유지구간의 전류값을 비교하고, 감속구간에서 역기전력을 산출하여 세탁물의 양을 판단한다.
제어부(210)는 모터의 회전속도를 기준으로 복수의 감지구간을 설정하고 각 감지구간에서, 전류감지부를 통해 측정되는 전류값을 이용하여 세탁물의 양을 판단한다.
제어부(210)는 제 1 감지구간(A)에서 편심감지 및 편심을 감소시키기 위한 포분산을 수행하고, 제 2 감지구간(B)에서 포량감지를 수행한다.
제어부(210)는 세탁물이 드럼의 벽면에 완전히 부착되는 회전속도를 기준으로, 세탁물 드럼의 벽면에 완전히 부착되는 회전속도 이하의 회전속도에 대하여 제 1 감지구간으로 설정한다.
또한, 제어부(210)는 세탁물이 드럼의 벽면에 완전히 부착되는 회전속도 이상의 회전속도에 대하여 제 2 감지구간으로 설정한다. 단, 모터의 회전속도가 일정 회전속도 이상으로 회전하는 경우, 회전에 따른 공진이 발생하게 되므로, 제어부(210)는 공진이 발생하는 회전속도보다 낮은 회전속도에서 제 2 감지구간을 설정한다.
제어부(210)는 제 1 및 제 2 감지구간 내에서, 모터의 회전속도가 일정 회전속도를 유지, 가속, 감속하도록 제어하고, 회전속도가 유지되는 유지구간, 증가하는 가속구간, 감소하는 감속구간에 전류감지부로부터 측정되는 전류값과 역기전력을 바탕으로 세탁물의 양을 판단한다.
제어부(210)는 제 1 감지구간에서 편심을 감지하여, 편심이 설정값 미만인 경우 제 2 감지구간에서 포량감지를 수행하고, 편심이 설정값 이상이면 제 1 감지구간을 재수행하여 포분산을 수행한다.
제어부(210)는 세탁물이 엉키거나 일방향으로 치우쳐, 불균형으로 인해 편심이 설정값 이상으로 감지됨에 따라, 제 1 감지구간의 포분산을 수행하여 편심이 감소하도록 한다.
제어부(210)는 제 1 감지구간을 재수행하여 편심을 다시 감지하고, 편심이 설정값 미만인 경우 제 2 감지구간을 수행하고, 편심이 설정값 이상이면 다시 제 1 감지구간을 수행하여 포분산이 이루어지도록 한다.
제 1 감지구간이 설정횟수이상으로 반복하여 수행되는 경우, 제어부(210)는 에러로 판단하여 제 2 감지구간을 수행하지 않고 세탁물의 양을 판단하기 위한 동작을 종료한다. 제어부(210)는 제1 감지구간이 설정횟수 반복 수행되고, 제 2 감지구간이 정상적으로 수행되지 않는 경우, 에러를 생성하여 출력부를 통해 출력한다.
세탁기는, 세탁물의 엉킴 또는 치우침에 의해 발생하는 편심에 의해 진동이 발생하게 된다. 편심은 드럼이 회전하는 속도에 따라 진동의 크기가 증가하는데, 원심력에 의해 세탁물이 전부 드럼의 벽면에 부착되어 낙하하지 않고 드럼과 함께 회전하는 회전속도 이상으로 모터가 회전하게 되는 경우, 편심에 의한 진동으로 인하여 드럼이 세탁기의 케이스와 충돌하는 문제가 발생할 수 있다. 편심은 저속에서도 발생되기는 하나, 저속 회전시, 발생하는 진동으로 인한 손상 가능성은 적다. 그러나,
그에 따라 제어부(210)는, 세탁물이 드럼의 벽면에 완전히 부착되는 회전속도 이상의 회전속도로 동작하는 제 2 감지구간(B)을 수행하기 전, 제 1 감지구간(A)에서 편심을 감지하여 제 2 감지구간(B)의 포량감지를 수행할지 여부를 판단한다.
제어부(210)는 제 2 감지구간(B)에서 포량감지가 정상적으로 수행되면, 제 2 감지구간(B)에서 측정되는 데이터를 바탕으로 세탁물의 양을 판단한다.
제어부(210)는 세탁물이 원심력에 의해 드럼의 벽면에 완전히 부착되어, 낙하하지 않고 드럼과 함께 회전하게 되는 회전속도를 제 1 속도(S2)로 설정한다.
또한, 제어부(210)는 제 1 속도(S2)보다 고속의 회전속도이고, 드럼 내 회전에 의한 원심력이 증가하여 중력에 의한 영향이 적은 회전속도, 즉 중력이 세탁물에 미치는 영향이 제로에 가까워지는 회전속도로써, 공진이 발생하지 않는 범위의 회전속도를 제 2 속도(S3)로 설정한다.
예를 들어 제 1 속도(S2)는 75rpm 내지 85rpm으로 설정되고, 제 2 속도(S3)는 95 rpm 내지 110 rpm으로 설정될 수 있다. 단 회전속도는 드럼의 크기 또는 모터의 종류 및 성능에 따라 차이가 있을 수 있다.
제어부(210)는 제 2 감지구간(B)에 대하여, 제 1 속도(S2) 내지 제 2 속도(S3)의 범위 내에서 모터의 회전속도를 유지, 가속, 및 감속하도록 제어명령을 생성하여 모터구동부(260)로 인가한다.
제어부(210)는 제 1 감지구간(A)에 대하여, 제 3 속도(S1) 내지 제 1 속도(S2)의 범위 내에서, 모터의 회전속도를 유지, 가속, 감속하도록 제어명령을 생성하여 모터구동부(260)로 인가한다. 그에 따라 제 1 감지구간(A)에서 포분산이 수행된다.
제어부(210)는 모터의 회전에 의해 드럼 내에 작용하는 원심력과 중력이 동일해지는 회전속도로써, 세탁물이 드럼의 회전에 의해 벽면에 부착되지 않고, 밀어 올려져 낙하하여 세탁물의 유동이 가장 많은 상태에서의 회전속도를 제 3 속도(S1)로 설정한다. 제 3 속도는 제 1 속도(S2)보다 저속의 회전속도이다.
예를 들어, 제 3 속도(S1)는 45 rpm 내지 55 rpm이다. 회전속도는 드럼의 크기 또는 모터의 종류 및 성능에 따라 차이가 있을 수 있다.
제 1 감지구간(A)은, 앞서 설명한 바와 같이, 제 3 속도(S3)가 세탁물이 드럼의 벽면에 부착되지 않고 밀어 올려져 낙하하는 상태가 되는 회전속도이므로, 세탁물의 유동이 많아 세탁물을 분산시킬 수 있다.
제어부(210)는 세탁물의 양을 판단하기 위해, 제 1 감지구간(A)과 제 2 감지구간(B)에 대한 제어명령을 모터구동부(260)로 인가하여 모터의 회전속도를 제어한다.
전류감지부(280)는 제 1 감지구간의 전류값을 측정하여 제어부로 입력하고, 제 2 감지구간에 대하여, 각각 유지구간, 가속구간, 감속구간으로 구분하여 전류를 측정하여 제어부(210)로 입력한다.
모터구동부(260)는 제어명령에 대응하여, 제 1 시간(t01)에 모터를 기동하여, 모터의 회전속도가 제 3 속도(S1)에 도달하기까지 가속시킨다.
모터구동부(260)는 제어명령에 대응하여, 제 1 감지구간(A)에 대하여, 모터의 회전속도가 제 3 속도(S1)에 도달하면, 일정시간(t02 내지 t03) 동안 제 3 속도(S1)가 유지되도록 한다. 이때, 세탁물은 드럼 내에서 끌어올려 낙하함에 따라, 포분산이 수행된다.
모터구동부(260)는 제 3 시간(t03)에, 제 1 속도(S2)까지 모터를 가속한다. 제 4 시간(t4)에 모터의 회전속도가 제 1 속도(S2)에 도달하면(P0), 전류감지부(280)는 모터의 전류값을 측정하여 제어부(210)로 입력하고, 제어부(210)는 측정되는 전류값을 바탕으로, 편심을 감지한다.
편심이 설정값 미만이면, 제어부(210)는 제 2 감지구간(B)이 수행되도록 모터구동부를 제어한다.
모터구동부(260)는 제어명령에 대응하여, 모터의 회전속도가 제 1 속도(S2)로 일정시간, 즉 제 4 시간 내지 제 5 시간(t04 내지 t05)의 유지구간(D01) 동안, 유지되도록 한다.
전류감지부(28)는 제 4 시간 내지 제 5 시간(t04 내지 t05) 동안의 유지구간(D01)에 대한 전류를 측정하여 제어부(210)로 입력한다.
모터구동부(260)는 제 5 시간(t05)에 모터의 회전속도를 제 2 속도(S3)까지 가속하고(가속구간(D02)), 제 2 속도(S3)에 도달하면 제 6 시간 내지 제 7 시간(t06 내지 t07)의 유지구간(D03) 동안 제 2 속도가 유지되도록 한다. 이때, 속도가 유지되는 유지구간은 각각 1.5 내지 2.5초로 설정될 수 있다.
전류감지부(28)는 제 5 내지 제 6시간(t05 내지 t06)의 가속구간(D02)과, 제 6 시간 내지 제 7 시간(t05 내지 t07)의 유지구간(D03) 동안의 전류를 각각 측정하여 제어부(210)로 입력한다.
모터구동부(260)는 유지구간(D03) 후, 제 7 시간(t07)에 모터를 제동하여 모터의 회전속도를 감소시킨다. 그에 따라 모터는 제 9 시간(t09)에 정지한다.
전류감지부(280)는 모터의 회전속도가 감소하는 제 7 시간 내지 제 9 시간(t07 내지 t09) 중 감속이 시작된 후 일정시간 동안, 즉 제 7 시간 내지 제 8 시간(t07 내지 t08) 동안의 감속구간(D04)에 대한 전류를 측정하여 제어부(210)로 입력한다.
그에 따라 제어부(210)는 제 1 감지구간(A)에서 전류감지부(280)로부터 입력력되는 전류값에 대응하여 편심을 감지하여 제 2 감지구간(B)의 수행여부를 판단하고, 제 2 감지구간이 정상 수행되면, 제 1 속도(S2)와 제 2 속도(S3)가 유지되는 각 유지구간(D01, D03)의 전류값과, 가속구간(D02)의 전류값, 그리고 감속구간(D04)의 역기전력을 산출하여 세탁물의 양을 판단한다.
제어부(210)는 유지구간의 중력특성과 가속구간의 관성특성을 산출하여 세탁물의 양을 판단한다. 가속구간의 관성특성은, 가속구간의 전류값에서 유지구간의 전류값을 감산하여 산출할 수 있다. 유지구간에서는 중력이 크게 작용하나 속도가 일정하게 유지됨에 따라 관성에 의한 영향은 적고, 가속구간에서는 중력이 작용함과 동시에, 속도가 변화함에 따라 기존의 회전동작을 유지하려는 관성이 크게 작용하므로 가속구간에서 유지구간의 데이터를 제외하면 관성에 대한 특성을 산출할 수 있게 된다.
도 6 은 도 5 의 세탁물의 양 측정 시, 편심에 따른 제 1 감지구간의 속도변화를 설명하는데 참조되는 도이다.
제어부(210)는 제 1 감지구간(A)에서 편심을 감지하여, 제 2 감지구간의 수행여부를 판단한다. 그에 따라 제어부(210)는 제 1 감지구간에서 감지되는 편심이 설정값 이상이면, 제 2 감지구간을 수행하지 않고, 제 1 감지구간을 반복하여 세탁물을 분산시킨 후, 편심을 재감지하여 제 2 감지구간이 수행되도록 한다.
도 6에 도시된 바와 같이, 모터구동부(260)는 제어명령에 대응하여, 제 10 시간(t10)에 모터를 기동하여, 모터의 회전속도가 제 3 속도(S1)에 도달하기까지 가속시킨다.
모터구동부(260)는 제어명령에 대응하여, 제 1 감지구간(A)에 대하여, 모터의 회전속도가 제 3 속도(S1)에 도달하면, 일정시간 동안 제 3 속도(S1)가 유지되도록 한다. 이때, 세탁물은 드럼 내에서 끌어올려 낙하함에 따라, 포분산이 수행된다.
모터구동부(260)는 제 11 시간(t11)에, 회전속도가 제 1 속도(S2)에 도달하기까지 모터를 가속한다. 제 12 시간(t12)에 모터의 회전속도가 제 1 속도(S2)에 도달하면, 제어부(210)는 전류감지부로부터 입력되는 전류값을 바탕으로, 편심을 감지한다.
예를 들어, 제어부(210)는 전류값의 리플을 분석하여 편심을 감지할 수 있다. 이러한 편심감지는 하나의 예로, 이에 한정하지 않고, 다양한 편심감지 방법이 적용될 수 있다.
전류감지부는 1차 제 1 감지구간(A01)에 대한 전류값을 제어부로 입력할 수 있다.
제어부(210)는 제 1 지점(P01)에서, 감지된 편심이 설정값 미만이면, 제어부(210)는 앞서 설명한 바와 같이 제 2 감지구간(B)이 수행되도록 모터구동부를 제어하고, 편심이 설정값 이상이면, 제 1 감지구간이 재수행되도록 한다.
모터구동부(260)는 제어명령에 대응하여, 모터를 제동하여 제 3 속도(S1)까지 감속하여 2차 제 1 감지구간(A02)을 수행한다.
모터구동부(260)는 모터의 회전속도가 제 3 속도(S1)에 도달하면, 제 3 속도가 일정시간 유지되도록 한다. 이때 제 3 속도가 유지되는 동안 포분산이 수행된다. 모터구동부(260)는 모터를 제 1 속도(S2)까지 가속한다.
제 13 시간(T13)에, 모터의 회전속도가 제 1 속도(S2)에 도달하면, 제어부(210)는 제 2 지점(P02)에서 전류감지부(280)로부터 입력된 2차 제 1 감지구간(A02)에 대한 전류값을 바탕으로 편심을 감지한다.
제어부(210)는 편심이 설정값 미만이면, 제어부(210)는 앞서 설명한 바와 같이 제 2 감지구간(B)이 수행되도록 모터구동부를 제어하고, 편심이 설정값 이상이면, 제 1 감지구간이 재수행되도록 한다.
모터구동부(260)는 제어명령에 대응하여, 모터를 제동하여 제 3 속도(S1)까지 감속하여 3차 제 1 감지구간(A03)을 수행한다. 모터구동부는 모터의 회전속도가 제 3 속도로 유지되도록 하여 포분산을 수행한 후, 다시 제 1 속도(S2)까지 가속한다.
3차 제 1 감지구간(A03)의 편심에 따라 제어부(210)는 제 1 감지구간이 재수행되도록 하고, 모터구동부는 모터를 제동하여 4차 감지구간(A04)을 수행한다(t14 내지 t15).
제어부(210)는 4차 감지구간(A04)의 데이터에 따라 편심을 감지하고, 편심이 설정값 미만이면, 제 2 감지구간(B)이 수행되도록 모터구동부를 제어한다.
그에 따라 모터구동부(260)는 제 1 속도(S2)가 일정시간, 즉 제 15 시간 내지 제 16시간(t15 내지 t16) 동안 유지되도록 한 후, 모터의 회전속도를 제 2 속도(S3)까지 가속하고(t16 내지 t17), 제 2 속도(S3)에 도달하면 일정시간 유지한 후(t17 내지 t18), 모터를 제동하여 감속시키고, 모터가 정지하도록 한다(t18 내지t20).
전류감지부(28)는 제 15 시간 내지 제 16 시간(t15 내지 t16) 동안의 유지구간과, 제 16 시간 내지 제 17 시간(t16 내지 t17)의 가속구간, 제 17 시간 내지 제 18 시간(t17 내지 t18)의 유지구간, 그리고 제 18 시간 내지 제 19 시간(t18 내지 t19)의 감속구간에 대한 전류를 측정하여 제어부(210)로 입력한다.
그에 따라 제어부(210)는 유지구간, 가속구간, 감속구간의 전류값과 역기전력을 바탕으로 세탁물의 양을 산출한다.
이때, 제어부(210)는 제 1 감지구간(A)이 반복되는 횟수에 대하여, 설정횟수 제 1 감지구간이 반복하여 수행되는 경우 에러로 판단하여 동작을 정지하고 에러를 출력한다. 즉 설정횟수 이상 제 1 감지구간을 반복하여 포분산을 반복수행하더라도 편심이 설정값 이상으로 감지되므로, 에러를 출력한다. 또한 제 1 감지구간이 계속 반복되는 경우 다음 동작을 진행할 수 없고, 세탁시간이 증가하므로, 설정횟수까지만 반복하도록 한다.
도 7 은 본 발명의 일 실시예에 따른 세탁기에서, 세탁물의 양을 측정하는 제 1 감지구간 및 제 2 감지구간의 다른 실시예가 도시된 도이다.
도 7에 도시된 바와 같이, 제어부(210)는 세탁물의 양을 판단하기 위해, 모터의 회전속도를 제어한다.
제어부(210)는 세탁물이 드럼의 벽면에 완전히 부착되는 회전속도, 즉 제 1 속도(S2)(S13)를 기준으로, 제 1 감지구간(A)과 제 2 감지구간(B)을 설정한다.
제어부(210)는 세탁물의 양을 판단하기 위해, 제 1 감지구간(A)과 제 2 감지구간(B)에 대한 제어명령을 모터구동부(260)로 인가한다.
제어부(210)는 제 1 감지구간 및 제 2 감지구간에 대하여, 모터의 회전속도가 일정 회전속도를 유지, 가속, 감속하도록 제어하고, 회전속도가 유지되는 유지구간, 증가하는 가속구간, 감소하는 감속구간에 전류감지부로부터 측정되는 전류값과 역기전력을 바탕으로 세탁물의 양을 판단한다.
전류감지부(280)는 제 1 감지구간(A)과 제 2 감지구간(B)에 대하여, 각각 유지구간, 가속구간, 감속구간으로 구분하여 전류를 측정하고, 제어부(210)로 입력한다.
제어부(210)는 제 1 감지구간(A)에서 편심을 감지하여, 편심이 설정값 미만인 경우 제 2 감지구간(B)에서 포량감지를 수행하고, 편심이 설정값 이상이면 제 1 감지구간을 재수행하여 제 1 감지구간에서 포분산과 포량감지를 수행한다.
제어부(210)는 세탁물이 엉키거나 일방향으로 치우쳐, 불균형으로 인해 편심이 설정값 이상으로 감지됨에 따라, 제 1 감지구간의 포분산을 재수행하여 편심이 감소하도록 하고, 제 2 감지구간이 수행되지 못하는 경우에 제 1 감지구간의 데이터를 바탕으로 세탁물의 양을 판단할 수 있도록 제 1 감지구간에서 포량감지를 수행한다.
제어부(210)는 제 2 감지구간(B)에서 포량감지가 정상적으로 수행되면, 제 1 감지구간(A)에서 측정된 데이터는 폐기하고, 제 2 감지구간(B)에서 측정되는 데이터를 바탕으로 세탁물의 양을 판단한다.
한편, 제 1 감지구간(A)을 설정횟수(n) 이상 반복하여 제 2 감지구간(B)을 수행하지 않고 동작을 종료하게 되는 경우, 제어부(210)는 제 1 감지구간(A)에서 측정되는 데이터를 바탕으로 세탁물의 양을 판단한다. 또한, 제어부(210)는 제1 감지구간이 설정횟수 반복 수행됨에 따라 에러를 생성하여 출력부를 통해 출력한다.
제어부(210)는 제 1 감지구간(A)에서 포분산 및 포량감지를 수행하고, 제 2 감지구간(B)에서 포량감지를 수행하도록 모터구동부(260)를 제어한다.
제 2 감지구간(B)에 대하여, 도 5에서 설명한 바와 같이, 제 1 속도(S13)(S2) 내지 제 2 속도(S14)(S3)의 범위 내에서 모터의 회전속도를 유지, 가속, 감속하도록 제어명령을 생성하여 모터구동부(260)로 인가한다. 제 2 감지구간은 앞서 설명한 도 5의 제 2 감지구간과 동일하게 설정되므로, 그에 대한 자세한 설명은 생략하기로 한다.
제어부(210)는 제 1 감지구간(A)에 대하여, 제 4 속도(S11) 내지 제 1 속도(S13)(S2)의 범위 내에서, 모터의 회전속도를 유지, 가속, 감속하도록 제어명령을 생성하여 모터구동부(260)로 인가한다. 그에 따라 제 1 감지구간(A)에서 포분산 및 포량감지가 수행된다.
제어부(210)는, 세탁물이 회전하는 드럼 내에서 굴러가는 상태(텀블)가 되는 회전속도를 제 4 속도(S11)로 설정한다.
또한, 제어부(210)는 모터의 회전속도가 증가함에 따라, 드럼 내 원심력의 작용으로, 세탁물이 드럼의 벽면에 부착되기 시작하는 회전속도로, 세탁물의 일부가 드럼의 벽면에 부착되어 드럼과 함께 회전하고, 일부는 드럼의 회전에 의해 들어 올려졌다 낙하하는 상태의 회전속도를 제 5 속도(S12)로 설정한다. 이때, 회전속도는 드럼의 크기 또는 모터의 종류 및 성능에 따라 차이가 있을 수 있다.
이때 제 4 속도(S11)는, 앞서 설명한 제 3 속도(S1)보다 저속의 회전속도이고, 제 5 속도(S12)는 제 3 속도(S1)보다 고속의 회전속도이며, 제 1 속도(S13)(S2)보다 저속의 회전속도이다.
모터구동부(260)는 제어명령에 대응하여, 제 21 시간(t21)에 모터를 기동하여, 모터의 회전속도가 제 4 속도(S11)에 도달할 때까지 모터를 가속한다.
모터구동부(260)는 제어명령에 대응하여, 제 1 감지구간(A)에 대하여, 모터의 회전속도가 제 4 속도(S11)에 도달하면, 일정시간(t22 내지 t23) 동안 제 4 속도(S11)가 유지되도록 한다. 세탁물은 드럼이 회전함에 따라, 드럼 내에서 굴러가는 상태가 되므로, 세탁물이 분산된다.
모터구동부(260)는 제 23 시간(t23)에, 모터를 제 5 속도(S12)까지 가속한다.
모터구동부(260)는 모터의 회전속도가 제 5 속도(S12)에 도달하면, 일정시간(t24 내지 t25) 동안 제 5 속도(S12)가 유지되도록 한다.
전류감지부(280)는 제 5 속도(S12)가 유지되는 유지구간(D11)의 전류를 측정하여 제어부(210)로 입력한다.
모터구동부(260)는 제 25 시간(t25)에, 모터를 제 1 속도(S13)(S2)까지 가속한다. 전류감지부(280)는 제 5 속도(S12)에서 제 1 속도(S13)(S2)까지 속도가 증가하는 가속구간(D12)의 전류를 측정하여 제어부(210)로 입력한다.
모터구동부는 모터구동부(260)는 모터의 회전속도가 제 1 속도(S13)(S2)에 도달하면, 일정시간(t26 내지 t27) 동안 제 1 속도(S13)(S3)가 유지되도록 한다.
전류감지부(280)는 제 1 속도(S13)(S2)가 유지되는 유지구간(D13)의 전류를 측정하여 제어부(210)로 입력한다.
이때 제어부(210)는 제 1 감지구간(A) 중, 모터의 회전속도가 제 1 속도(S13)(S2)로 유지되는 유지구간에서, 입력되는 전류를 바탕으로 편심을 감지한다(P10). 경우에 따라 제 1 감지구간에 입력되는 모든 전류에 대하여 편심을 감지할 수 있다.
제어부(210)는 편심이 설정값 미만이면, 제 2 감지구간(B)이 수행되도록 한다. 이때, 편심에 대한 설정값은, 세탁물의 양이 측정되기 전이므로, 세탁물의 양이 다량인 경우에 대한 편심의 기준값을 설정값으로 하여 편심을 판단한다.
그에 따라 모터구동부(260)는 모터의 회전속도가 제 1 속도(S13)(S2)를 일정시간(t27 내지 t28) 동안 유지되도록 한 후(유지구간(D01)), 제 2 속도(S14)(S3)로 가속하고(가속구간(D02)), 제 2 속도(S14)(S3)가 일정시간(t29 내지 t30) 동안 유지되도록 한 후(유지구간(D03)), 모터를 제동하여 회전속도가 감소하도록 한다(감속구간).
전류감지부(280)는 제 2 감지구간(B)에 대하여, 유지구간(D01), 가속구간(D02), 유지구간(D03), 그리고 제 30 시간 내지 제 31 시간(t30 내지 t31)의 감속구간(D04)에 대하여 전류를 측정하여 제어부(210)로 입력한다.
이때 제어부(210)는 제 1 감지구간(A)에서 측정된 편심이 설정값 미만으로 제 2 감지구간이 수행되면, 제 1 감지구간(A)에서 전류감지부를 통해 측정된 전류값은 폐기하고, 제 2 감지구간(B)의 유지구간, 가속구간 및 감속구간에 대한 전류값을 바탕으로 세탁물의 양을 판단한다.
제어부(210)는 유지구간의 중력특성과 가속구간의 관성특성을 산출하여 세탁물의 양을 판단한다. 가속구간의 관성특성은, 가속구간의 전류값에서 유지구간의 전류값을 감산하여 산출할 수 있다. 유지구간에서는 중력이 크게 작용하나 속도가 일정하게 유지됨에 따라 관성에 의한 영향은 적고, 가속구간에서는 중력이 작용함과 동시에, 속도가 변화함에 따라 기존의 회전동작을 유지하려는 관성이 크게 작용하므로 가속구간에서 유지구간의 데이터를 제외하면 관성에 대한 특성을 산출할 수 있게 된다.
한편, 제 1 감지구간에서 편심이 설정값 이상이면, 제어부(210)는 제 1 감지구간이 반복하여 수행되도록 한다.
도 8 는 도 7의 세탁물의 양 측정 시, 편심에 따른 제 1 감지구간의 속도변화를 설명하는데 참조되는 도이다.
도 8에 도시된 바와 같이, 제어부(210)의 제어명령에 따라 모터구동부(260)는 제 35시간(t35)에 모터(270)를 기동하여 제 4 속도(S11)까지 가속한다.
모터구동부(260)는 제 1 감지구간(A)에 대하여, 모터의 회전속도가 제 4 속도(S11)에 도달하면, 일정시간(t36 내지 t38) 동안 제 4 속도(S11)가 유지되도록 한다. 세탁물은 드럼이 회전함에 따라, 드럼 내에서 굴러가는 상태가 되므로, 세탁물이 분산된다.
모터구동부(260)는 제 38 시간(t38) 내지 제 42 시간(t42) 동안 모터의 회전속도가 증가하거나 유지되도록 하여 모터의 회전속도를 제 1 속도(S13(S2)까지 가속한 후 유지되도록 한다. 전류감지부(280)는 각각 제 5 속도(S12)의 유지구간(D11), 제 1 속도까지의 가속구간(D12), 제 1 속도의 유지구간(D13)에 대한 전류를 측정하여 제어부(210)로 입력한다.
제 1 속도가 유지되도록 유지구간에서, 제어부(210)는 입력되는 전류를 바탕으로 편심을 감지한다(P11).
제어부(210)는 편심이 설정값 이상이면, 고속회전으로 인한 손상이 우려되므로, 제 2 감지구간(B)을 수행하지 않고, 제 1 감지구간(A)이 재수행되도록 하여 세탁물이 분산되도록 한다.
모터구동부(260)는 제 42 시간(t42)에, 모터를 제동하여 모터의 회전속도가 제 4 속도(S11)에 도달하도록 한다. 이때 전류감지부(280)는 감속구간(D14)에 대한 전류를 측정한다.
제 44 시간(t44)에 모터의 회전속도가 제 4 속도(S11)에 도달하면, 모터구동부는 1차 제 1 감지구간(A11)을 종료하고, 2차 제 1 감지구간(A12)을 시작한다.
제 44 시간(t44) 내지 제 45 시간(t45) 동안, 모터구동부(260)는 모터의 회전속도가 제 4 속도(S11)를 유지되도록 한다. 세탁물은 드럼이 회전함에 따라, 드럼 내에서 굴러가는 상태가 되므로, 세탁물이 분산된다.
모터구동부(260)는 제 45 시간(t45)에 모터를 가속하여 모터의 회전속도가 제 5 속도(S12)에 도달하도록 한다.
모터구동부(260)는 모터의 회전속도가 제 5 속도(S12)에 도달하면, 일정시간(t46 내지 t47) 동안 제 5 속도(S12)가 유지되도록 한다. 전류감지부(280)는 제 5 속도(S12)가 유지되는 유지구간(D21)의 전류를 측정하여 제어부(210)로 입력한다.
모터구동부(260)는 제 47 시간(t47)에, 모터를 제 1 속도(S13)(S2)까지 가속한다. 전류감지부(280)는 제 5 속도(S12)에서 제 1 속도(S13)(S2)까지 속도가 증가하는 가속구간(D22)의 전류를 측정하여 제어부(210)로 입력한다.
모터구동부는 모터구동부(260)는 모터의 회전속도가 제 1 속도(S13)(S2)에 도달하면, 일정시간(t48 내지 t49) 동안 제 1 속도(S13)(S3)가 유지되도록 한다.
전류감지부(280)는 제 1 속도(S13)(S2)가 유지되는 유지구간(D23)의 전류를 측정하여 제어부(210)로 입력한다.
이때 제어부(210)는 제 1 감지구간(A) 중, 특히 2차 제 1 감지구간(A12)에서, 모터의 회전속도가 제 1 속도(S13)(S2)로 유지되는 유지구간(D23)에서, 입력되는 전류를 바탕으로 편심을 감지한다(P12).
제어부(210)는 편심이 설정값 미만이면, 제 2 감지구간(B)이 수행되도록 하고, 설정값 이상이면 제 1 감지구간에 다시 수행되도록 한다.
그에 따라 모터구동부는 모터의 회전속도를 제 4 속도(S11)까지 감속시켜 2차 제 1 감지구간을 종료하고, 3차 제 1 감지구간(S13)을 시작한다. 이때, 전류감지부는 감속구간(D24)에 대한 전류를 측정하여 제어부로 입력한다.
모터구동부는 3차 제 1 감지구간(S13)에 대하여, 제 51 시간 내지 제 56 시간(t51 내지 t56) 동안, 제 4 속도(S11)부터 제 1 속도(S13)(S2)까지 모터를 단계적으로 유지, 가속시키는 것을 반복한다. 전류감지부는 각각 유지구간(D31)(D33), 가속구간(D32)에 대한 전류를 측정하여 제어부로 입력한다.
제어부(210)는 제 56 시간(t56)에 편심을 다시 감지하고(P13), 편심이 설정값 미만이면 제 2 감지구간(B)이 수행되도록 한다.
그에 따라 모터구동부(260)는 모터의 회전속도가 제 1 속도(S13)(S2)를 일정시간(t56 내지 t57) 동안 유지되도록 한 후(유지구간(D01)), 제 2 속도(S14)(S3)로 가속하고(가속구간(D02)), 제 2 속도(S14)(S3)가 일정시간(t58 내지 t59) 동안 유지되도록 한 후(유지구간(D03)), 모터를 제동하여 회전속도가 감소하도록 한다(감속구간(D04)).
전류감지부(280)는 제 2 감지구간(B)에 대하여, 유지구간(D01), 가속구간(D02), 유지구간(D03), 그리고 제 59 시간 내지 제 61시간(t59 내지 t61) 중, 일부인 감속구간(D04)(t59 내지 t60)에 대하여 전류를 측정하여 제어부(210)로 입력한다.
제어부(210)는 제 2 감지구간(B)의 전류값을 구간별로 평균을 산출하고, 역기전력을 산출하여 세탁물의 양을 판단한다.
제어부(210)는 제 2 감지구간(B)에서 포량감지가 정상적으로 수행되면, 제 1 감지구간(A)에서 측정된 데이터는 폐기하고, 제 2 감지구간(B)에서 측정되는 데이터를 바탕으로 세탁물의 양을 판단한다.
제어부(210)는 제 1 감지구간을 설정횟수 반복한 후에도 편심이 설정값 이상이면, 제 2 감지구간(B)을 수행하지 않고, 제 1 감지구간에서 동작이 종료되도록 한다. 제어부(210)는 편심으로 인하여 제 2 감지구간이 수행되지 못한 경우, 에러를 출력한다. 설정횟수는 5 내지 7회로 설정될 수 있으나, 이에 한정되지 않는다.
제 1 감지구간(A)을 설정횟수(n) 이상 반복하여 제 2 감지구간(B)을 수행하지 않고 동작을 종료하게 되는 경우, 제어부(210)는 제 1 감지구간(A)에서 측정되는 데이터를 바탕으로 세탁물의 양을 판단한다.
제어부(210)는 제 1 감지구간(A)에 측정된 전류, 즉 제 1 감지구간의 차수 별(A11 내지 A13)로, 유지구간, 가속구간, 감속구간에 대한 전류값의 평균을 산출하고, 감속구간의 역기전력을 산출하여 제 1 감지구간(A)으로부터 세탁물의 양을 판단한다.
제어부(210)는 세탁물의 양이 판단되면, 그에 따라 다음 동작이 수행되도록 한다.
도 9 는 본 발명의 세탁물의 양 측정 시, 모터의 속도변화에 따른 전류값을 설명하는데 참조되는 도이다.
도 9에 도시된 바와 같이, 제 1 속도(S2)가 유지되는 유지구간에서 모터의 전류(Iq0)로 일정하게 유지된다.
모터의 회전속도가 제1 속도에서 제 2 속도로 증가하는 가속구간에서, 모터의 전류(Iq1)는 도시된 바와 같이 가속하는 동안 일정값 증가하다가 유지된 후 감소한다. 이때 가속하는 정도에 따라 전류값은 가변된다.
또한, 모터의 회전속도가 제 2 속도로 유지되는 유지구간에서, 모터의 전류(Iq2)는 일정하게 유지된다.
유지구간에서, 전류는 일정하게 유지되나, 드럼 또는 세탁조의 진동으로 인하여 전류값에 리플이 발생하게 된다. 이때, 편심의 정도에 따라 진동의 크기가 가변하고, 그에 따라 리플의 크기가 달라지므로, 제어부(210)는 리플을 분석하여 편심을 감지할 수 있다.
이때, 도 9는 전류의 변화를 도시한 것으로, 제 1 속도 유지구간과 제 2 속도 유지구간의 전류값이 반드시 동일한 것은 아니다. 유지구간에서 전류가 일정하게 유지되기는 하나, 속도에 따라 전류값이 상이할 수 있다.
제어부(210)는 제 1 속도의 유지구간과 제 2 속도의 유지구간의 전류값을 합산하여 평균을 산출한 후 가속구간의 전류값의 평균으로부터 감산하여, 역기전력을 곱하고, 중력가속도로 나누어, 관성에 대한 특성을 산출할 수 있다.
도 10 은 본 발명의 세탁기의 모터의 회전에 따라 측정되는 전류값이 도시된 도이다.
도 10의 (a) 및 (b)는 모터 동작 중 측정되는 전류가 도시된 도이다.
이때, 세탁물이 엉키는 경우, 세탁물이 어느 일측으로 치우치는 경우, 세탁물이 1개인 경우, 세탁물이 고르게 분산되지 않고 치우지게 되어, 진동이 발생하게 된다.
이때 편심의 정도, 즉 치우침의 정도 및 회전속도에 따라 진동의 크기가 상이하게 나타나면, 일정하게 유지되는 전류값에 리플이 발생하게 된다.
편심의 정도에 따라 리플의 크기가 가변되므로, 제어부(210)는 리플을 분석하여 편심을 감지할 수 있다.
도 11 은 본 발명의 세탁기의 제 1 감지구간 및 제 2 감지구간에 따른 세탁물의 양 측정을 위한 제어방법이 도시된 순서도이다.
제어부(210)는 세탁물의 양을 감지하기 위해 제 1 감지구간(A)과 제 2 감지구간(B)에 따른 제어명령을 모터구동부로 인가한다. 이때, 제 1 감지구간에서는 편심을 감지하고, 제 2 감지구간에서는 세탁물의 양을 감지한다. 또한, 제 1 감지구간에서는 편심을 감소시키기 위해 포분산이 수행된다.
도 11에 도시된 바와 같이, 제어명령에 따라 모터(270)를 기동한다(S310).
모터구동부(260)는 포분산을 위한 속도까지 가속하고, 일정시간 모터 회전속도가 유지되도록 함으로써 포분산을 수행한다(S320).
모터구동부(260)는 포분산을 위한 속도로부터 제 1 속도(S13)(S2)의 범위 내에서 모터의 회전속도가 유지되거나 가속하도록 하여 제 1 감지구간(A)을 수행한다(S330). 제 1 속도(S2)(S13)는 모든 세탁물이 드럼의 벽면에 부착되어 드럼과 함께 회전하는 속도이다.
전류감지부(280)는 제 1 감지구간(A)에서의 전류값을 측정하여 제어부(210)로 입력한다.
제어부(210)는 제 1 감지구간(A)에서 측정된 전류를 분석하여 편심(Unbalance)을 감지하고(S340), 설정값과 비교한다(S350).
예를들어 제어부(210)는 제 1 감지구간(A)에서 측정된 전류의 리플을 분석하여 편심을 감지할 수 있다. 이때 편심을 판단하는 기준은 세탁물의 양에 따라 상이하게 설정되나, 세탁물의 양이 측정되지 전이므로, 제어부(210)는 세탁물의 양이 가장 많은 경우에 대한 편심에 대한 기준값을 설정값으로 하여 편심을 판단한다.
편심이 설정값 이상인 경우, 제어부(210)는 제 1 감지구간(A)이 재수행되도록 모터구동부(260)로 제어명령을 인가한다.
이때 제어부(210)는 제1 감지구간이 반복 수행된 횟수를 판단하고(S360), 설정횟수(n)에 도달하지 않은 경우, 제 1 감지구간이 반복되도록 한다.
그에 따라 모터구동부(260)는 모터를 제동하여 모터의 회전속도를 감속하고(S370), 제 1 감지구간(A)이 재수행되도록 한다.
모터구동부(260)는 모터의 회전속도를 포분산을 위한 속도까지 감속한 후, 속도가 유지되도록 하여 포분산을 수행하고(S320), 제 1 속도(S13)(S2)까지 단계적으로 가속하도록 한다(S330).
제어부(210)는 전류감지부로부터 입력되는 전류를 바탕으로 편심을 재감지하고(S340), 편심이 설정값 이상인 경우 제 1 감지구간이 재수행되도록 한다(S360, S370, S320 내지 S340).
제어부(210)는 편심이 설정값 미만인 경우, 제 2 감지구간(B)이 수행되도록 모터구동부(260)를 제어한다.
모터구동부(260)는 모터의 회전속도가 제 1 속도(S13)(S2)로 일정시간 유지되도록 하고, 전류감지부(280)는 제 1 속도가 유지되는 제 1 유지구간(D01)에 대한 데이터, 즉 전류를 측정하여 제어부(210)로 입력한다(S380).
또한, 모터구동부(260)는 모터의 회전속도를 제 1 속도에서 제 2 속도(S3)(S14)까지 증가시키고, 전류감지부(280)는 제 2 속도까지의 제 1 가속구간(D02)에 대한 데이터, 즉 전류를 측정하여 제어부(210)로 입력한다(S390).
모터구동부(260)는 모터의 회전속도가 제 2 속도(S3)(S14)에 도달하면, 제 2 속도가 일정시간 유지되도록 하고, 전류감지부(280)는 제 2 속도가 유지되는 제 2 유지구간(D03)에 대한 전류를 측정하여 제어부(210)로 데이터를 입력한다(S400).
모터구동부(260)는 모터를 제동하여 회전속도가 감소하도록 하고, 전류감지부(280)는 감속구간(D04)에 대한 전류를 측정하여 제어부(210)로 입력한다(S410).
모터구동부(260)는 모터를 제동하여 감속하도록 하고, 모터는 정지한다.
제어부(210)는 제 2 감지구간(B)이 정산 종료됨에 따라 제 2 감지구간(B)동안 입력된 데이터, 즉 제 1, 2 유지구간, 제 1 가속구간, 감속구간의 전류값을 바탕으로, 각 구간별 평균을 산출하고, 감속구간에서 역기전력을 산출하여, 세탁물의 양을 판단한다(S420).
제어부(210)는 유지구간에서 작용하는 중력과, 가속구간에서 작용하는 관성에 대한 특성을 전류값으로부터 산출하여 세탁물의 양을 판단한다. 세탁물의 양이 증가할수록 중력과 관성에 의한 영향이 증가하므로, 측정된 전류로부터 중력특성과 관성특성을 추출하고 역기전력을 곱하여 세탁물의 양을 판단할 수 있다. 관성특성은 가속구간의 데이터로부터 유지구간의 데이터를 제외하여 추출할 수 있다.
한편, 편심이 설정값 이상이고, 재수행 횟수가 설정횟수(n)에 도달하면, 제어부(210)는 제 2 감지구간(B)을 수행하지 않고 동작이 종료되도록 한다.
제어부(210)는 편심으로 인하여 세탁물을 감지하지 못하였으므로 편심에 대한 에러를 생성하여 출력부를 통해 출력한다(S365).
이때, 제 1 감지구간에서 편심을 감지하고, 포분산을 수행하는 경우에는 에러를 출력하고 동작을 정지한다. 경우에 따라 다음 동작을 수행하기 위해 세탁물의 양을 임의 설정할 수 있다.
한편, 제 1 감지구간에서 편심을 감지하고, 포량감지와 포분산을 수행하는 경우에는, 제 1 감지구간에서 감지되는 데이터를 바탕으로 세탁물의 양을 판단할 수 있다(S420).
도 12 는 도 11의 제 1 감지구간의 속도변화에 따른, 세탁물의 양 측정을 위한 제어방법이 도시된 순서도이다.
앞서 설명한 도 11에서 제 1 감지구간의 동작에 대해 보다 상세히 설명하면 다음과 같다.
도 12에 도시된 바와 같이, 모터구동부(260)는 제어부의 제어명령에 대응하여, 모터(270)를 기동하고(S430), 모터의 회전속도를 제 3 속도(S1)까지 가속한다(S440).
제 3 속도는, 모터의 회전에 의해 드럼 내에 작용하는 원심력과 중력이 동일해지는 회전속도로써, 세탁물이 드럼의 회전에 의해 벽면에 부착되지 않고, 밀어 올려져 낙하하여 세탁물의 유동이 가장 많은 상태가 되는 회전속도이다. 제 3 속도는 제 1 속도(S2)보다 저속의 회전속도이다.
모터구동부(260)는 모터의 회전속도가 제 3 속도(S1)에 도달하면, 제 3 속도를 일정시간 유지하여, 드럼 내 세탁물이 분산되도록 하여, 포분산을 수행한다(S450).
모터구동부(260)는 모터의 회전속도가 제 3 속도(S1)에서 제 1 속도(S2)까지 증가하도록 가속한다(S460). 제 1 속도는 제어부(210)는 세탁물이 원심력에 의해 드럼의 벽면에 완전히 부착되어, 낙하하지 않고 드럼과 함께 회전하게 되는 회전속도이다.
모터의 회전속도가 제 1 속도(S2)에 도달하면, 제 1 감지구간(A)에서 전류감지부를 통해 감지되는 전류값을 분석하여, 세탁물에 대한 편심을 감지한다(S470).
세탁물이 엉키게 되는 경우 세탁물이 일측으로 치우치게 됨에 따라 불균형으로 인하여 진동이 발생하게 된다. 제어부(210)는 이러한 세탁물의 치우침으로 인한 불군형에 대한 편심을 감지한다.
제어부(210)는 편심이 설정값 이상인 경우, 편심으로 인한 진동으로 고속회전이 불가능하다고 판단하여, 세탁물이 분산되도록, 제 1 감지구간(A)을 재수행하도록 모터구동부(260)를 제어한다.
이때, 설정값은, 세탁물의 양이 판단되기 전이므로, 세탁물의 양이 최대인 경우에 대한 편심의 기준값을 바탕으로 설정된다.
제어부(210)는 제 1 감지구간의 반복횟수를 카운트하여, 제 1 감지구간이 설정횟수 이상 수행되었는지 판단하고(S490), 설정횟수 미만인 경우 제 1 감지구간이 재수행되도록 하고, 설정횟수에 도달한 경우 편심으로 인한 에러 또는 세탁물의 양 판단 불가에 따른 에러를 생성하여 출력한다(S510).
이때, 제 1 감지구간의 반복횟수가 설정횟수 미만인 경우, 모터구동부(260)는 모터를 제동하여 모터의 회전속도가 제 3 속도(S1)까지 감소하도록 한다(S500).
모터의 회전속도가 감속하여 제 3 속도에 도달하면, 앞서 설명한 바와 같이 모터구동부(260)는 모터의 회전속도가 제 3 속도로 유지되도록 제어하여 포분산을 수행하고, 편심을 재감지하여 편심을 판단한다(S450 내지 S470).
한편, 편심이 설정값 미만이면, 제어부(210)는 포량감지를 위한 제 2 감지구간(B)이 수행되도록 모터구동부를 제어한다.
앞서 설명한 바와 같이, 제 2 감지구간에서, 모터구동부(260)는 모터의 회전속도를 제 1 속도(S2)로 일정시간 유지하고, 제 2 속도(S3)로 가속한 후, 제 2 속도가 일정시간 유지되도록 하며, 모터를 제동하여 회전속도가 감소하도록 한다.
제 2 속도(S3)는, 제 1 속도(S2)보다 고속의 회전속도이고, 드럼 내 회전에 의한 원심력이 증가하여 중력에 의한 영향이 적은 회전속도, 즉 중력이 세탁물에 미치는 영향이 제로에 가까워지는 회전속도로써, 공진이 발생하지 않는 범위의 회전속도로 설정된다.
전류감지부(280)는 제 2 감지구간(B)에서, 제 1 속도가 유지되는 제 1 유지구간, 제 2 속도까지 가속하는 가속구간, 제 2 속도가 유지되는 제 2 유지구간, 감속구간에 대한 전류를 측정하여 제어부로 입력한다.
제어부(210)는 제 2 감지구간(B)이 정상 수행되어, 유지구간, 가속구간, 감속구간에 대한 데이터가 입력되면, 데이터를 분석하여 세탁물의 양을 판단한다(S530).
제어부(210)는 구간별 전류의 평균을 연산하고, 감속구간에서 역기전력을 산출한 후, 전류의 평균의 가산 또는 감산하고 역기전력을 곱하여 세탁물의 양을 판단하기 위한 감지값을 산출하고, 감지값을 포량데이터와 비교함으로써 세탁물의 양을 최종판단한다.
도 13 은 도 11의 제 1 감지구간의 속도변화에 따른, 세탁물의 양 측정을 위한 제어방법의 다른 예가 도시된 순서도이다.
앞서 설명한 도 11에서 제 1 감지구간에서, 세탁기는 도 12의 동작과 상이하게 동작할 수 있다. 제 1 감지구간의 동작에 대한 다른 예는 다음과 같다.
도 13에 도시된 바와 같이, 모터구동부(260)는 제어부의 제어명령에 대응하여, 모터(270)를 기동하고(S550), 모터의 회전속도를 제 4 속도(S11)까지 가속한다(S560).
모터구동부(260)는 모터의 회전속도가 제 4 속도(S11)에 도달하면 제 4 속도가 일정시간 유지되도록 한다(S570). 그에 따라 제 1 감지구간(A))이 수행된다.
이때, 제 4 속도(S11)는 세탁물이 회전하는 드럼 내에서 굴러가는 상태(텀블)가 되는 회전속도로 설정된다.
또한, 후술하는 제 5 속도(S12)는 회전속도가 증가함에 따라, 드럼 내 원심력의 작용으로, 세탁물이 드럼의 벽면에 부착되기 시작하는 회전속도로, 세탁물의 일부가 드럼의 벽면에 부착되어 드럼과 함께 회전하고, 일부는 드럼의 회전에 의해 들어 올려졌다 낙하하는 상태의 회전속도로 설정된다. 각 회전속도는 드럼의 크기 또는 모터의 종류 및 성능에 따라 차이가 있을 수 있다.
제 4 속도는 제 3 속도 보다 저속의 회전속도이고, 제 5 속도는 제 3 속도보다 고속의 회전전속이며, 제 1 속도보다 저속의 회전속도이다.
모터구동부(260)는 제 4 속도에서 제 5 속도(S12)로 가속한 후(S580), 모터의 회전속도가 제 5 속도에 도달하면 제 5 속도가 일정시간 유지되도록 한다(S590). 이때 전류감지부(280)는 제 5 속도가 유지되는 제 3 유지구간의 전류를 측정하여 제 3 유지구간의 데이터로써 제어부로 입력한다.
또한, 모터구동부(260)는 제 5 속도에서 제 1 속도(S2)(S13)로 가속하고, 제 1 속도에 도달하면 제 1 속도가 일정시간 유지되도록 한다(S610). 전류감지부(280)는 제 1 속도까지의 제 2 가속구간과, 제 1 속도가 유지되는 제 4 유지구간의 전류를 각각 측정하여 제어부로 입력한다.
제어부(210)는 이와 같이, 모터구동부(260)를 제어하여, 모터의 회전속도가 제 4 속도, 제 5 속도, 제 1 속도에 대하여 일정시간 유지하고, 또한 단계적으로 속도가 증가하도록 함으로써, 세탁물이 드럼 내에서 굴러다니거나, 일부는 회전하고 일부는 낙하하도록 함으로써 제 1 감지구간에서 포분산이 수행되도록 한다. 또한, 제어부(210)는 각 회전속도에 대한 유지구간, 가속구간에 대한 전류가 전류감지부를 통해 측정되어 입력됨에 따라, 제 1 감지구간에서 편심은 물론 포량감지를 수행하게 된다.
제어부(210)는 전류감지부로부터 입력되는, 제 1 감지구간에 대한 전류를 분석하여 편심을 감지한다.
제어부(210)는 편심이 설정값 이상이면, 고속 회전이 불가능하다고 판단하여 포분산을 위해 제 1 감지구간이 재수행되도록 한다.
제어부(210)는 제 1 감지구간의 반복횟수가 설정횟수(n)에 도달하였는지 여부를 판단하고(S640), 설정횟수에 도달하지 않은 경우 제 1 감지구간이 재수행되도록 제어명령을 생성하여 모터구동부로 인가한다.
모터구동부는 제 4 속도까지 모터의 회전속도를 감속하고 제 1 감지구간이 재수행되도록 모터를 제어한다(S650). 이때 전류감지부는 감속구간의 데이터를 측정하여 제어부로 입력한다.
편심이 설정값 미만이면, 제어부(210)는 제 2 감지구간이 수행되도록 하여, 포량감지가 수행되도록 한다.
모터구동부(260)는 제어부의 제어명령에 대응하여, 모터의 회전속도가 제 1 속도로 일정시간 유지되도록 하고, 제 2 속도까지 가속한 후, 제 2 속도가 일정시간 유지되도록 한다. 또한 전류감지부는 각각 제 1 속도가 유지되는 제 1 유지구간, 제 2 속도까지의 가속구간, 제 2 속도가 유지되는 유지구간의 전류를 측정하여 제어부로 입력한다.
또한, 모터구동부(260)는 제 2 속도로 회전하는 모터를 제동하여 모터가 정지되도록 하고, 전류감지부는 감속구간의 전류를 측정하여 제어부로 입력한다.
그에 따라, 제어부(210)는 제 2 감지구간(B)에서 측정되는 전류값을 분석하여 세탁물의 양을 판단한다(S680).
이때, 제어부(210)는 제 1 감지구간(A)에서, 제 3, 4 유지구간, 제 2 가속구간, 그리고 제 4 속도로 감속하는 제 2 감속구간의 데이터는 폐기하고, 제 2 감지구간(B)에 측정된 데이터를 바탕으로 세탁물의 양을 판단한다.
한편, 편심이 설정값 이상으로 제 1 감지구간이 설정횟수 반복하여 수행되고 제 2 감지구간이 수행되지 않은 경우, 제어부(210)는 세탁물의 양을 감지하기 위한 동작을 종료하고, 에러를 출력한다.
또한, 제어부(210)는 제 2 감지구간이 수행되지 않고 동작이 종료됨에 따라, 제 1 감지구간에서 측정된 데이터, 즉 제 3, 4 유지구간, 제 2 가속구간, 그리고 제 4 속도로 감속하는 제 2 감속구간의 데이터를 분석하여 세탁물의 양을 판단한다.
제어부(210)는 제 1 감지구간(A)이 설정횟수 반복하여 수행됨에 따라, 반복 차수 별로 각각 측정되는 데이터를 구간별로 평균을 연산하거나, 어는 마지막 제 1 감지구간에서 감지된 데이터를 선택하여 세탁물의 양을 판단한다.
이경우, 제 2 감지구간이 수행되지 않더라도 세탁물의 양을 산출할 수 있고, 그에 따라 다음 동작을 수행할 수 있다.
도 14 은 본 발명의 세탁물의 무게에 따른 세탁물의 양 측정 결과가 도시된 도이다.
도 14의 (a)는 종래기술에 따른 세탁기의 세탁물의 무게에 따른 세탁물의 양 판단결과가 도시된 도이고, 도 14 (b)는 본 발명에 따른 세탁기의 세탁물의 무게에 따른 판단결과가 도시된 도이다.
도 14의 (a)에 도시된 바와 같이, 종래의 세탁기는, 모터 기동시 측정되는 전류값을 이용하여 세탁물의 양을 판단함에 따라, 종래의 세탁기는 6kg 이상의 세탁물에 대하여 감지되는 값의 분포가 중복되므로, 6kg 이상의 세탁물에 대한 포량 판단에 어려움이 있다. 특히 세탁물의 무게가 증가할 수록 세탁물의 양을 정확하게 판단할 수 없는 문제점이 있었다.
예를 들어, 전류값에 따라 판단된 포량 감지값이 600인 경우, 드럼 내 수용된 세탁물이 6kg인지 8kg인지 구분하기 어렵다. 또한, 포량 감지값이 900인 경우 12kg 내지 18kg 까지 동일한 분포를 가지므로, 12 내지 18kg 중 무게값을 특정하기 어려운 문제점이 있다.
도 14의 (b)에 도시된 바와 같이, 본 발명의 세탁기는 제 1 감지구간과 제 2 감지구간으로 구분하여 제 2 감지구간에서, 즉 세탁물이 벽면에 모두 부착되는 회전속도 이상의 회전속도에서 측정되는 전류값을 이용하여 세탁물의 양을 판단함에 따라 세탁물의 무게에 비례하여 선형적으로 감지값이 산출된다. 그에 따라 종래에 비해 세탁물의 양을 보다 쉽게 판단할 수 있고 감지값데이터의 분포가 중복되는 경우가 적어서 정확한 포량 판단이 가능하다.
도 15 는 본 발명의 세탁물의 무게에 따른 세탁물의 양 측정 결과의 산포도가 도시된 도이다.
도 15의 (a)는 종래기술에 따른 세탁기의 세탁물의 양 산출에 있어서 세탁물의 무게별 산포도이고, 도 15의 (b)는 본 발명의 세탁물의 무게에 따른 산포도이다.
도 15의 (a)와 같이, 각각의 세탁물을 세탁기에 투입하여 세탁물의 양을 측정한 경우, 동일한 세탁물의 무게에 대해서는 각각 그 결과에 대한 편차가 크게 나타남에 따라, 감지값의 산포도가 크게 나타남을 알수 있다.
예를 들어 3kg에서 산포토는 12.05로, 이미 3kg 부터는 그 값을 특정하기 어려워 짐을 의미한다. 특히 7 kg 이상에서는 산포도가 27.4 이고, 무게에 따른 산포는 계속 증가하여 18kg에서는 46.57로 측정되었다. 동일한 세탁물의 무게에 대하여 측정할때 마다 그 값이 상이하게 나타나는 것으로, 산출된 감지값을 바탕으로 세탁물의 무게를 설정하기 어려운 상태가 된다.
도 15의 (b)에 도시된 바와 같이, 본 발명의 세탁기는 제 2 감지구간의 데이터를 바탕으로 세탁물의 양을 판단함에 따라 세탁물의 무게에 따라 측정되는 감지값의 산포도가 종래에 비해 낮아짐을 알 수 있다.
세탁물의 무게에 따른 산포도가 각 무게별로 10 이하로 나타남에 따라, 세탁물의 양에 대한 감지값에 따라 세탁물의 양을 정확하게 구분할 수 있음 의미한다.
그에 따라 본 발명은, 모터 기동 시의 전류를 측정하는 것이 아니라, 회전동작하는 모터에 대하여 회전속도가 유지되는 유지구간, 가속구간, 감속구간을 구분하여 전류를 측정하고, 역기전력을 산출하여 세탁물의 양을 판단함으로써, 기동 시 전류의 불안전성을 배제할 수 있다. 본 발명은 세탁물의 드럼의 벽면에 부착되어 회전하는 속도 이상으로 회전속도를 제어하여, 세탁물의 양을 판단함에 따라 세탁물의 유동으로 인한 산포를 최소화하여 세탁물의 양을 보다 정확하게 판단할 수 있다. 또한, 고속 회전으로 인한 진동 발생에 대비하여 제 1 감지구간에서 편심을 감지하여 모터가 안정적으로 회전하도록 하고, 만약 제 2 감지구간을 수행하지 못하더라도 제 1 감지구간에서 측정되는 데이터를 바탕으로 세탁물의 양을 판단할 수 있다.
본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합되어 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 본 발명의 목적 범위 안에서라면, 실시예에 따라서는 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
[부호의 설명]
100: 세탁기
132: 터브 134: 드럼
210: 제어부 220: 감지부
260: 모터구동부 270: 모터
280: 전류감지부

Claims (20)

  1. 드럼에 연결되어 드럼을 회전시키는 모터;
    상기 모터로 동작전원을 인가하여 상기 모터가 동작 또는 정지하도록 하고, 상기 모터의 회전속도를 유지하거나 가속하고, 감속하도록 상기 모터를 제어하는 모터구동부;
    동작중인 상기 모터의 전류를 측정하는 전류감지부;
    상기 드럼 내에 수용된 세탁물의 양을 판단하기 위해, 상기 모터를 제어하기 위한 제어명령을 상기 모터구동부를 인가하고, 상기 전류감지부로부터 입력되는 전류값으로부터 상기 세탁물의 양을 판단하는 제어부를 포함하고,
    상기 제어부는 상기 모터의 회전속도에 따른 동작을, 포분산을 수행하는 제 1 감지구간과 포량감지를 위한 제 2 감지구간으로 구분하여, 상기 제 1 감지구간에서 감지되는 편심에 대응하여 상기 제 2 감지구간의 수행 여부를 판단하고, 상기 제 2 감지구간에서 측정되는 데이터를 바탕으로 상기 세탁물의 양을 산출하는 것을 특징으로 하는 세탁기.
  2. 제 1 항에 있어서,
    상기 제어부는 상기 제 2 감지구간에서 상기 세탁물의 양을 산출하기 위해, 상기 모터의 회전속도가 단계적으로 증가, 유지, 감속하도록 상기 모터구동부를 제어하는 것을 특징으로 하는 세탁기.
  3. 제 1 항에 있어서,
    상기 제어부는 상기 제 2 감지구간에서 상기 전류감지부로부터 입력되는 전류값을 상기 모터의 회전속도에 따른, 유지구간, 가속구간, 감속구간으로 구분하고, 구간별 상기 전류값을 분석하여, 상기 세탁물의 양을 산출하는 것을 특징으로 하는 세탁기.
  4. 제 2 항에 있어서,
    상기 제어부는 상기 편심이 설정값 이상이면, 상기 제 1 감지구간을 재수행하여 상기 세탁물이 분산된 후, 상기 편심을 재감지하고, 상기 제 1 감지구간이 설정횟수 이상 반복되면, 에러를 출력하는며,
    상기 편심이 설정값 미만이면 상기 제 2 감지구간이 수행되도록 하여 상기 세탁물의 양을 판단하는 것을 특징으로 하는 세탁기.
  5. 제 1 항에 있어서,
    상기 제어부는 상기 제 1 감지구간에서, 상기 모터의 회전속도가 단계적으로 증가하도록 상기 모터구동부로 제어명령을 인가하고,
    상기 전류감지부로부터 입력되는 상기 제 1 감지구간에 대한 전류값을 데이터로 저장하여,
    상기 제 1 감지구간이 설정횟수 이상 반복되면, 상기 제 1 감지구간에서 측정된 데이터를, 상기 모터의 회전속도에 따라 유지구간, 가속구간, 감속구간으로 구분하고, 구간별 상기 전류값을 분석하여, 상기 세탁물의 양을 산출하는 것을 특징으로 하는 세탁기.
  6. 제 5 항에 있어서,
    상기 제어부는 상기 제 1 감지구간의 반복횟수가 상기 설정횟수에 도달하기 전에 상기 제 2 감지구간이 수행되면, 상기 제 1 감지구간의 데이터를 폐기하고, 상기 제 2 감지구간의 데이터를 바탕으로 상기 세탁물의 양을 판단하는 것을 특징으로 하는 세탁기.
  7. 제 1 항에 있어서,
    상기 제어부는 상기 세탁물이 원심력에 의해 상기 드럼의 벽면에 완전히 부착되어, 낙하하지 않고 상기 드럼과 함께 회전하게 되는 회전속도인 제 1 속도를 기준으로,
    상기 제 1 속도 이하의 회전속도로 상기 모터가 동작하여 상기 제 1 감지구간이 수행되고,
    상기 제 1 속도 이상의 회전속도로 상기 모터가 동작하여 상기 제 2 감지구간이 수행되도록 하는 것을 특징으로 하는 세탁기.
  8. 제 7 항에 있어서,
    상기 모터구동부는 상기 제어명령에 대응하여, 상기 제 2 감지구간에서,
    상기 모터의 회전속도가 제 1 속도로 일정시간 유지되도록 한 후, 상기 제 1 속도보다 고속의 회전속도이고, 회전에 의해 상기 드럼 내에 작용하는 원심력이 증가하여 중력이 세탁물에 미치는 영향이 제로에 가까워지고, 공진이 발생하지 않는 회전속도인 제 2 속도로 가속하고, 상기 제 2 속도가 일정시간 유지되도록 한 후, 상기 모터를 제동하여 감속시키는 것을 특징으로 하는 세탁기.
  9. 제 7 항에 있어서,
    상기 모터구동부는 상기 제어명령에 대응하여, 상기 제 1 감지구간에서,
    상기 제 1 속도보다 저속이고, 상기 세탁물이 상기 드럼의 회전에 의해 벽면에 부착되지 않고, 밀어 올려져 낙하하여 상기 세탁물의 유동이 가장 많은 상태가 되는 회전속도인, 제 3 속도를 일정시간 유지 한 후, 상기 제 1 속도로 가속하고,
    상기 편심에 대응하여 상기 제 1 감지구간이 재수행되도록 설정된 경우, 상기 제 1 속도에서 상기 제 3 속도로 감속하여 상기 제 1 감지구간을 재수행하는 것을 특징으로 하는 세탁기.
  10. 제 7 항에 있어서,
    상기 모터구동부는 상기 제어명령에 대응하여, 상기 제 1 감지구간에서,
    상기 제 1 속도보다 저속이고, 상기 세탁물이 회전하는 상기 드럼 내에서 굴러가는 상태(텀블)가 되는 회전속도인 제 4 속도를 일정시간 유지 한 후,
    상기 제 4 속도보다 고속이고 상기 제 1 속도보다 저속이며, 상기 세탁물이 상기 드럼의 벽면에 부착되기 시작하여, 상기 세탁물의 일부가 상기 드럼의 벽면에 부착되어 상기 드럼과 함께 회전하고, 일부는 상기 드럼의 회전에 의해 들어 올려졌다 낙하하는 상태가 되는 회전속도인, 제 5 속도로 가속하고, 상기 제 5 속도를 일정시간 유지한 후, 상기 제 1 속도까지 가속한 후, 상기 제 1 속도를 일정시간 유지하고,
    상기 편심에 대응하여 상기 제 1 감지구간이 재수행되도록 설정된 경우, 상기 제 4 속도로 감속하여 상기 제 1 감지구간을 재수행하는 것을 특징으로 하는 세탁기.
  11. 제 10 항에 있어서,
    상기 전류감지부는, 상기 제 1 감지구간에 대하여,
    상기 제 5 속도가 유지되는 유지구간, 상기 5 속도에서 상기 제 1 속도로 회전속도가 증가하는 가속구간, 상기 제 1 속도가 유지되는 유지구간, 상기 제 4 속도로 회전속도가 감소하는 감속구간에 대한 전류를 측정하여 상기 제어부로 입력하는 것을 특징으로 하는 세탁기.
  12. 제 3 항에 있어서,
    상기 제어부는 상기 제 2 감지구간에 대하여,
    상기 유지구간, 상기 가속구간 및 상기 감속구간에 대하여, 구간별 전류값의 평균을 산출하고,
    상기 유지구간에서 상기 세탁물에 작용하는 중력과, 상기 가속구간에서 상기 세탁물에 작용하는 관성과, 그리고 상기 감속구간의 역기전력을 바탕으로 상기 세탁물의 양을 판단하며,
    속도가 가변하는 상기 가속구간의 데이터로부터, 속도가 유지되어 관성에 의한 영향이 적은 상기 유지구간의 데이터를 제외시켜 상기 가속구간에서 상기 관성에 대한 데이터를 추출하는 것을 특징으로 하는 세탁기.
  13. 드럼에 수용된 세탁물의 양을 판단하기 위해, 모터를 기동하는 단계;
    상기 모터를 저속으로 회전시켜 제 1 감지구간에서 포분산을 수행하는 단계;
    상기 제 1 감지구간에서 측정되는 데이터로부터 편심을 감지하는 단계;
    상기 편심이 설정값 이상이면, 상기 제 1 감지구간을 재수행하여 상기 세탁물을 분산시키는 단계;
    상기 편심이 설정값 미만이면, 제 2 감지구간을 수행하고 상기 모터의 회전속도를 단계적으로 제어하여 포량감지를 수행하는 단계; 및
    상기 제 2 감지구간에서 측정되는 데이터를 상기 모터의 회전속도에 따른, 유지구간, 가속구간, 감속구간으로 구분하고, 상기 제 2 감지구간의 데이터를 분석하여 상기 세탁물의 양을 산출하는 것을 특징으로 하는 세탁기의 제어방법.
  14. 제 13 항에 있어서,
    상기 편심이 설정값 이상이면, 상기 제 1 감지구간을 재수행하여 상기 세탁물을 분산되도록 한 후, 상기 편심을 재감지하는 단계;
    상기 제 1 감지구간이 설정횟수 이상 반복되면, 에러를 출력하는 단계; 및
    상기 편심이 설정값 이상이고, 상기 제 1 감지구간이 설정횟수 이상 반복되면, 상기 제 1 감지구간에서 측정된 데이터로부터 상기 세탁물의 양을 판단하는 단계를 더 포함하는 세탁기의 제어방법.
  15. 제 13 항에 있어서,
    상기 세탁물이 원심력에 의해 상기 드럼의 벽면에 완전히 부착되어, 낙하하지 않고 상기 드럼과 함께 회전하게 되는 회전속도인 제 1 속도를 기준으로,
    상기 제 1 감지구간은, 상기 제 1 속도 이하의 회전속도로 상기 모터가 동작하고,
    상기 제 2 감지구간은, 상기 제 1 속도 이상의 회전속도로 상기 모터가 동작하는 것을 특징으로 하는 세탁기의 제어방법.
  16. 제 15 항에 있어서,
    상기 제 2 감지구간은,
    상기 모터의 회전속도를 상기 제 1 속도로 일정시간 유지하는 단계;
    상기 제 1 속도로부터, 상기 제 1 속도보다 고속이고, 회전에 의해 상기 드럼 내에 작용하는 원심력이 증가하여 중력이 세탁물에 미치는 영향이 제로에 가까워지고, 공진이 발생하지 않는 회전속도인 제 2 속도로 가속하는 단계;
    상기 제 2 속도가 일정시간 유지되도록 하는 단계;
    상기 모터를 제동하여 감속하는 단계를 더 포함하는 세탁기의 제어방법.
  17. 제 15 항에 있어서,
    상기 제 1 감지구간은,
    상기 제 1 속도보다 저속이고, 상기 세탁물이 상기 드럼의 회전에 의해 벽면에 부착되지 않고, 밀어 올려져 낙하하여 상기 세탁물의 유동이 가장 많은 상태가 되는 회전속도인 제 3 속도로 상기 모터의 회전속도를 일정시간 유지하는 단계;
    상기 제 1 속도로 가속하는 단계; 및,
    상기 편심에 대응하여 상기 제 1 감지구간이 재수행되도록 설정된 경우, 상기 제 1 속도에서 상기 제 3 속도로 감속하는 단계를 더 포함하는 세탁기의 제어방법.
  18. 제 15 항에 있어서,
    상기 제 1 감지구간은,
    상기 모터의 회전속도를 상기 제 1 속도보다 저속이고 상기 제 4 속도는 상기 세탁물이 회전하는 상기 드럼 내에서 굴러가는 상태(텀블)가 되는 회전속도인 제 4 속도로 일정시간 유지하는 단계;
    상기 제 4 속도보다 고속이고 상기 제 1 속도보다 저속이고 상기 세탁물이 상기 드럼의 벽면에 부착되기 시작하여, 상기 세탁물의 일부가 상기 드럼의 벽면에 부착되어 상기 드럼과 함께 회전하고, 일부는 상기 드럼의 회전에 의해 들어 올려졌다 낙하하는 상태가 되는 회전속도로인, 제 5 속도로 가속하는 단계;
    상기 제 5 속도를 일정시간 유지하는 단계;
    상기 제 1 속도까지 가속하는 단계;
    상기 제 1 속도를 일정시간 유지하는 단계; 및
    상기 편심에 대응하여 상기 제 1 감지구간이 재수행되도록 설정된 경우, 상기 제 4 속도로 감속하는 단계를 더 포함하는 세탁기의 제어방법.
  19. 제 18 항에 있어서,
    상기 제 1 감지구간에 대하여,
    상기 제 5 속도가 유지되는 유지구간, 상기 5 속도에서 상기 제 1 속도로 회전속도가 증가하는 가속구간, 상기 제 1 속도가 유지되는 유지구간, 및 상기 제 4 속도로 회전속도가 감소하는 감속구간에 대한 전류값을 각각 측정하는 단계를 더 포함하는 세탁기의 제어방법.
  20. 제 14 항에 있어서,
    상기 제 1 감지구간의 반복횟수가 설정횟수에 도달하기 전, 상기 제 2 감지구간이 수행되면, 상기 제 1 감지구간의 데이터를 폐기하는 단계를 더 포함하고,
    상기 제 2 감지구간의 데이터로부터 상기 세탁물의 양을 판단하는 것을 특징으로 하는 세탁기의 제어방법.
PCT/KR2017/011106 2016-10-07 2017-10-05 세탁기 및 그 제어방법 WO2018066973A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2017338586A AU2017338586B2 (en) 2016-10-07 2017-10-05 Washing machine and method for controlling same
CN201780076275.5A CN110050096B (zh) 2016-10-07 2017-10-05 洗衣机及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0129723 2016-10-07
KR1020160129723A KR102527576B1 (ko) 2016-10-07 2016-10-07 세탁기 및 그 제어방법

Publications (1)

Publication Number Publication Date
WO2018066973A1 true WO2018066973A1 (ko) 2018-04-12

Family

ID=60043077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011106 WO2018066973A1 (ko) 2016-10-07 2017-10-05 세탁기 및 그 제어방법

Country Status (6)

Country Link
US (1) US11603616B2 (ko)
EP (1) EP3305962B1 (ko)
KR (1) KR102527576B1 (ko)
CN (1) CN110050096B (ko)
AU (1) AU2017338586B2 (ko)
WO (1) WO2018066973A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10003653B2 (en) * 2015-08-13 2018-06-19 Delaware Capital Formation, Inc. Wireless interface module for chemical dispensing system
EP3473763B1 (en) * 2017-10-17 2022-02-16 Fisher & Paykel Appliances Limited Laundry appliance and operating method
CN108755009B (zh) * 2018-06-14 2021-02-23 广东威灵电机制造有限公司 衣物处理装置的运行控制方法、系统、装置及存储介质
KR102569216B1 (ko) * 2018-08-30 2023-08-21 엘지전자 주식회사 인공지능 세탁물 처리기기 및 세탁물 처리기기의 제어방법
KR102559073B1 (ko) * 2018-08-30 2023-07-21 엘지전자 주식회사 인공지능 세탁물 처리기기 및 세탁물 처리기기의 제어방법
KR102559072B1 (ko) 2018-08-30 2023-07-21 엘지전자 주식회사 인공지능 세탁물 처리기기 및 세탁물 처리기기의 제어방법
KR102562162B1 (ko) * 2018-11-06 2023-08-02 엘지전자 주식회사 세탁기 및 그 제어방법
KR102596976B1 (ko) 2018-11-30 2023-11-02 삼성전자주식회사 세탁기 및 그의 제어 방법
JP7113181B2 (ja) * 2019-04-12 2022-08-05 パナソニックIpマネジメント株式会社 洗濯機
KR102627107B1 (ko) * 2019-04-16 2024-01-22 엘지전자 주식회사 의류 처리 장치 및 그 제어 방법
DE102019216697A1 (de) * 2019-10-30 2021-05-06 BSH Hausgeräte GmbH Wäschepflegegerät mit einer Steuerung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110048352A (ko) * 2009-11-02 2011-05-11 엘지전자 주식회사 세탁 방법 및 세탁기
KR20120109006A (ko) * 2011-03-24 2012-10-08 엘지전자 주식회사 세탁장치의 제어방법
KR20140045714A (ko) * 2012-10-09 2014-04-17 엘지전자 주식회사 세탁물 처리기기, 및 그 동작방법
KR20150019648A (ko) * 2013-08-14 2015-02-25 엘지전자 주식회사 세탁물 처리기기 및 그 제어방법
KR20160094723A (ko) * 2015-02-02 2016-08-10 엘지전자 주식회사 세탁기의 제어방법

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1271782B (it) * 1994-12-21 1997-06-09 Whirlpool Italia Metodo e disposizione per ottenere il bilanciamento del carico nelle macchine lavabiancheria
KR100274470B1 (ko) * 1997-05-20 2000-12-15 구자홍 드럼 세탁기의 편심 감지방법과 그 제어장치
CA2242994C (en) * 1997-07-14 2008-09-16 Lg Electronics Inc. Method for detecting cloth amount in drum washing machine
KR100314179B1 (ko) * 1999-03-26 2001-11-15 윤종용 세탁기의 불균형 감지장치 및 그 방법
US6640372B2 (en) * 2000-06-26 2003-11-04 Whirlpool Corporation Method and apparatus for detecting load unbalance in an appliance
US7591038B2 (en) * 2003-04-28 2009-09-22 Emerson Electric Co., Method and system for operating a clothes washing machine
JP2005006676A (ja) * 2003-06-16 2005-01-13 Toshiba Corp 洗濯機
KR101052787B1 (ko) * 2003-11-18 2011-07-29 삼성전자주식회사 세탁기 및 그 제어 방법
KR100511289B1 (ko) * 2003-11-27 2005-08-31 엘지전자 주식회사 세탁기의 탈수 운전방법
TR200604628T1 (tr) * 2004-03-01 2007-01-22 Ar�El�K A.�. Bir yük algılama yöntemi
KR100565530B1 (ko) * 2004-05-12 2006-03-30 엘지전자 주식회사 세탁기의 탈수 제어 방법
JP4308089B2 (ja) * 2004-06-04 2009-08-05 三洋電機株式会社 ドラム式洗濯機
US7296445B2 (en) * 2004-06-23 2007-11-20 Whirlpool Corporation Method and apparatus for monitoring load imbalance in a washing machine
KR101065690B1 (ko) * 2004-06-25 2011-09-19 엘지전자 주식회사 드럼세탁기의 탈수 제어방법
US7530133B2 (en) * 2005-02-18 2009-05-12 Whirlpool Corporation Method for controlling a spin cycle in a washing machine
US7739764B2 (en) * 2005-04-27 2010-06-22 Whirlpool Corporation Method and apparatus for monitoring load size and load imbalance in washing machine
US8042211B2 (en) * 2005-08-16 2011-10-25 Whirlpool Corporation Method of detecting an off-balance condition of a clothes load in a washing machine
KR20070025056A (ko) * 2005-08-31 2007-03-08 삼성전자주식회사 세탁기 및 그 언밸런스 검출방법
EP1762647A1 (en) * 2005-09-07 2007-03-14 LG Electronics Inc. Dehydration controlling apparatus for washing machine and method thereof
US7739765B2 (en) * 2006-11-09 2010-06-22 Whirlpool Corporation Tangling detection for an automatic washer
KR101287534B1 (ko) * 2007-05-21 2013-07-18 삼성전자주식회사 세탁기 및 그 제어방법
EP1995366B1 (en) * 2007-05-21 2015-05-06 Samsung Electronics Co., Ltd. Washing machine and control method of maintaining a balanced state of laundry thereof
KR101287536B1 (ko) * 2007-06-05 2013-07-18 삼성전자주식회사 세탁기 및 그 제어방법
US20090106913A1 (en) * 2007-10-30 2009-04-30 Suel Ii Richard D Measuring apparatus and method
KR101407959B1 (ko) * 2008-01-22 2014-06-20 삼성전자주식회사 볼 밸런서를 구비한 드럼 세탁기 및 그 제어방법
KR100977576B1 (ko) * 2008-05-23 2010-08-23 엘지전자 주식회사 세탁물 처리기기 및 세탁물 처리기기의 제어방법
KR100977574B1 (ko) * 2008-05-23 2010-08-23 엘지전자 주식회사 세탁물 처리기기 및 세탁물 처리기기의 제어방법
KR100977575B1 (ko) * 2008-05-23 2010-08-23 엘지전자 주식회사 세탁물 처리기기 및 세탁물 처리기기의 제어방법
KR101028089B1 (ko) * 2008-05-23 2011-04-08 엘지전자 주식회사 세탁물 처리기기 및 세탁물 처리기기의 제어방법
KR101028086B1 (ko) * 2008-05-23 2011-04-08 엘지전자 주식회사 세탁물 처리기기 및 세탁물 처리기기의 제어방법
KR100988625B1 (ko) * 2008-05-26 2010-10-18 엘지전자 주식회사 세탁물 처리기기 및 세탁물 처리기기의 제어방법
US8713736B2 (en) * 2008-08-01 2014-05-06 Lg Electronics Inc. Control method of a laundry machine
US20110030149A1 (en) * 2008-08-01 2011-02-10 In Ho Cho Control method of a laundry machine
KR20100060703A (ko) * 2008-11-28 2010-06-07 삼성전자주식회사 세탁기 및 그 제어방법
WO2011122849A2 (ko) * 2010-03-30 2011-10-06 엘지전자 주식회사 모터 제어방법 및 장치와, 세탁기 및 그 제어방법
US8984693B2 (en) * 2010-12-10 2015-03-24 Whirlpool Corporation Method and apparatus for redistributing an imbalance in a laundry treating appliance
JP2013043030A (ja) * 2011-08-26 2013-03-04 Panasonic Corp 洗濯機
JP6078783B2 (ja) * 2012-09-14 2017-02-15 パナソニックIpマネジメント株式会社 洗濯機
EP2765230B1 (en) * 2013-02-07 2016-07-20 Whirlpool Corporation A method of operating a washing machine and washing machine using such method
CN103225195B (zh) * 2013-04-23 2015-02-18 海信容声(广东)冰箱有限公司 洗衣机及其衣量称重方法
CN103741430B (zh) * 2013-09-29 2015-12-02 佛山市威灵电子电器有限公司 永磁电机滚筒洗衣机及其自动称量衣物重量的方法
KR102199372B1 (ko) * 2014-03-10 2021-01-06 엘지전자 주식회사 세탁기 및 세탁기의 제어방법
CN104294544A (zh) * 2014-10-16 2015-01-21 海信容声(广东)冰箱有限公司 一种洗衣机称重方法及装置
CN105256508A (zh) * 2015-10-30 2016-01-20 珠海格力电器股份有限公司 洗衣机的称重方法和装置
CN105780392A (zh) * 2016-04-29 2016-07-20 无锡小天鹅股份有限公司 洗衣机负载状况的检测方法及脱水方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110048352A (ko) * 2009-11-02 2011-05-11 엘지전자 주식회사 세탁 방법 및 세탁기
KR20120109006A (ko) * 2011-03-24 2012-10-08 엘지전자 주식회사 세탁장치의 제어방법
KR20140045714A (ko) * 2012-10-09 2014-04-17 엘지전자 주식회사 세탁물 처리기기, 및 그 동작방법
KR20150019648A (ko) * 2013-08-14 2015-02-25 엘지전자 주식회사 세탁물 처리기기 및 그 제어방법
KR20160094723A (ko) * 2015-02-02 2016-08-10 엘지전자 주식회사 세탁기의 제어방법

Also Published As

Publication number Publication date
EP3305962A1 (en) 2018-04-11
KR20180038727A (ko) 2018-04-17
CN110050096A (zh) 2019-07-23
EP3305962B1 (en) 2020-08-19
US11603616B2 (en) 2023-03-14
AU2017338586B2 (en) 2020-12-17
CN110050096B (zh) 2021-07-02
AU2017338586A1 (en) 2019-05-23
KR102527576B1 (ko) 2023-04-28
US20180100260A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
WO2018066973A1 (ko) 세탁기 및 그 제어방법
AU2019416316B2 (en) Home appliance and method for voice recognition thereof
WO2012005511A2 (en) Washing machine and method for controlling the same
WO2017217810A1 (ko) 의류처리장치의 제어방법
WO2020159119A1 (en) Washing machine and method for controlling the same
WO2020111616A1 (ko) 의류 관리기 및 그 제어 방법
AU2018257543B2 (en) Washing machine and control method thereof
WO2017018864A1 (ko) 냉장고
WO2018062827A1 (ko) 세탁기 및 그 제어방법
WO2019108009A1 (ko) 건조기 및 그 제어방법
WO2020190074A1 (en) Washing machine and controlling method thereof
AU2017409625B2 (en) Washing machine and method for controlling the same
WO2019108013A1 (ko) 건조기 및 그 제어방법
WO2018190488A1 (en) Washing machine and method for controlling the same
WO2018199433A1 (en) Washing machine and control method thereof
WO2022182113A1 (ko) 의류처리장치 및 의류처리장치의 제어방법
WO2022182119A1 (ko) 의류처리장치 및 의류처리장치의 제어방법
WO2022050755A1 (en) An apparatus for treating laundry and control method thereof
WO2016159539A1 (ko) 세탁기 및 세탁기의 제어 방법
WO2021201509A1 (ko) 세탁기, 그 제어 방법 및 그의 컨트롤 패널
WO2019009609A1 (ko) 의류처리장치 및 이의 제어방법
WO2019009617A1 (ko) 의류처리장치 및 이의 제어방법
WO2019009613A1 (ko) 의류처리장치 및 이의 제어방법
WO2021235847A1 (ko) 의류처리장치
WO2019009621A1 (ko) 의류처리장치 및 이의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017338586

Country of ref document: AU

Date of ref document: 20171005

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17858767

Country of ref document: EP

Kind code of ref document: A1