WO2018066657A1 - 熱電材料 - Google Patents

熱電材料 Download PDF

Info

Publication number
WO2018066657A1
WO2018066657A1 PCT/JP2017/036331 JP2017036331W WO2018066657A1 WO 2018066657 A1 WO2018066657 A1 WO 2018066657A1 JP 2017036331 W JP2017036331 W JP 2017036331W WO 2018066657 A1 WO2018066657 A1 WO 2018066657A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppm
added
thermoelectric material
thermoelectric
site
Prior art date
Application number
PCT/JP2017/036331
Other languages
English (en)
French (fr)
Inventor
多田 智紀
幸宏 磯田
Original Assignee
株式会社ミツバ
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ, 国立研究開発法人物質・材料研究機構 filed Critical 株式会社ミツバ
Priority to EP17858493.4A priority Critical patent/EP3525249B1/en
Priority to JP2018543967A priority patent/JP6762543B2/ja
Priority to US16/336,547 priority patent/US11706986B2/en
Publication of WO2018066657A1 publication Critical patent/WO2018066657A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting

Definitions

  • thermoelectric material relates to a thermoelectric material.
  • This application claims priority based on Japanese Patent Application No. 2016-198206 filed in Japan on October 6, 2016, the contents of which are incorporated herein by reference.
  • thermoelectric conversion converts thermal energy and electrical energy using the Seebeck effect or Peltier effect. Thermoelectric conversion is attracting attention as a technology for efficiently using energy.
  • a thermoelectric material which is a material that can mutually convert thermal energy and electrical energy, is used.
  • thermoelectric material materials such as Mg—Si—Sn, Bi—Te, and Pb—Te are known (see, for example, Patent Documents 1 and 2).
  • Bi-Te and Pb-Te materials use rare and highly harmful elements. For this reason, Bi—Te and Pb—Te materials are expensive and require careful handling.
  • Mg—Si—Sn-based materials are superior in terms of cost and safety because they do not use rare and highly harmful elements.
  • thermoelectric material The performance of the thermoelectric material is evaluated by a dimensionless figure of merit ZT represented by the product of the figure of merit Z and the absolute temperature T. Therefore, although depending on the value of the figure of merit Z, generally higher thermoelectric characteristics can be obtained in the high temperature region. Therefore, as an actual use mode, use in a high temperature region excellent in thermoelectric characteristics is assumed. However, sufficient studies have not been made on the influence on thermoelectric characteristics when thermoelectric materials are continuously used in a high temperature region.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a thermoelectric material excellent in heat resistance with little deterioration in thermoelectric characteristics even in a high temperature environment.
  • thermoelectric properties of the Mg—Si—Sn based material are lowered by the heat treatment.
  • iron (Fe) to the Mg—Si—Sn-based material can suppress the deterioration of thermoelectric properties due to heat treatment. That is, the present invention employs the following means.
  • thermoelectric material according to the first aspect is such that at least one of the Si site and the Sn site of the compound represented by the chemical formula Mg 2 Si 1-x Sn x (0 ⁇ x ⁇ 1) is Sb and Bi. It contains at least one of the substituted Fe and added Fe.
  • the amount of Fe added may be equal to or less than an amount at which the compound does not cause a phase transition.
  • the amount of Fe added may be 5000 ppm or more and 50000 ppm or less.
  • the addition amount of a substitution element that substitutes at least one of the Si site and the Sn site may be 1000 ppm to 15000 ppm.
  • the substitution element that substitutes at least one of the Si site and the Sn site may be Sb, and the amount of Sb added may be 5000 ppm or more.
  • the substitution element that substitutes at least one of the Si site and the Sn site may be Bi, and the amount of Bi added may be 1000 ppm or more and 7500 ppm or less.
  • the range of x in the chemical formula of the thermoelectric material according to the above aspect may be 0.25 ⁇ x ⁇ 0.75.
  • thermoelectric material according to the above aspect it is possible to provide a thermoelectric material excellent in heat resistance with little deterioration in thermoelectric characteristics even in a high temperature environment.
  • thermoelectric material 1 shows a crystal structure of a compound represented by a chemical formula Mg 2 Si 1-x Sn x (0 ⁇ x ⁇ 1). It is a figure which shows the procedure of the manufacturing method of a thermoelectric material. It is a schematic diagram which shows the manufacturing process of a thermoelectric material. It is a measurement result of specific resistance (rho) of Examples 1 and 2 and Comparative Examples 1 and 2. It is a measurement result of Seebeck coefficient ⁇ of Examples 1 and 2 and Comparative Examples 1 and 2. It is a measurement result of thermal conductivity (kappa) of Examples 1 and 2 and Comparative Examples 1 and 2. It is a measurement result of the figure of merit Z of Examples 1 and 2 and Comparative Examples 1 and 2.
  • 3 is a measurement result of specific resistances ⁇ in Examples 2 to 5 and Comparative Example 2.
  • 3 shows measurement results of Seebeck coefficient ⁇ in Examples 2 to 5 and Comparative Example 2.
  • 3 is a measurement result of thermal conductivity ⁇ of Examples 2 to 5 and Comparative Example 2.
  • 3 is a measurement result of a figure of merit Z of Examples 2 to 5 and Comparative Example 2.
  • 3 is a measurement result of dimensionless figure of merit ZT of Examples 2 to 5 and Comparative Example 2. It is a measurement result of specific resistance (rho) of Examples 6 and 7 and Comparative Examples 3 and 4. It is a measurement result of Seebeck coefficient (alpha) of Examples 6 and 7 and Comparative Examples 3 and 4.
  • thermoelectric materials In the thermoelectric material according to the present embodiment, at least one of a silicon (Si) site and tin (Sn) of a compound represented by the chemical formula Mg 2 Si 1-x Sn x (0 ⁇ x ⁇ 1) is antimony ( It contains Fe that is substituted and added with at least one of Sb) and bismuth (Bi).
  • FIG. 1 shows a crystal structure of a compound represented by the chemical formula Mg 2 Si 1-x Sn x (0 ⁇ x ⁇ 1).
  • Mg 2 Si 1-x Sn x (0 ⁇ x ⁇ 1) is a solid solution of Mg 2 Si and Mg 2 Sn.
  • Mg 2 Si 1-x Sn x (0 ⁇ x ⁇ 1) is a ternary compound having an inverted fluorite structure shown in FIG.
  • Mg 2 Si 1-x Sn x (0 ⁇ x ⁇ 1) is described as a stoichiometric composition ratio. In an actual compound, some compositional deviation is allowed in terms of crystal structure. For example, the Mg range may be 1.98 or more and 2.01 or less.
  • the range of x in the chemical formula Mg 2 Si 1-x Sn x is 0 ⁇ x ⁇ 1.
  • the range of x is preferably 0.25 ⁇ x ⁇ 0.75, more preferably 0.35 ⁇ x ⁇ 0.65, and 0.4 ⁇ x ⁇ 0.6. Further preferred. If x is within the range, Mg 2 Si and Mg 2 Sn are easily dissolved. That is, it is easy to obtain a solid solution represented by the chemical formula Mg 2 Si 1-x Sn x .
  • thermoelectric material according to the present embodiment, at least one of the Si site and the Sn site of this compound is substituted with at least one of Sb and Bi.
  • Si and Sn are generally tetravalent.
  • Sb and Bi are pentavalent. Therefore, when at least one of the Si site and the Sn site is substituted with at least one of Sb and Bi, electrons are injected into the compound. Since electrons function as carriers in the compound, the specific resistance of the thermoelectric material is reduced. When the specific resistance of the thermoelectric material is lowered, the thermoelectric properties of the thermoelectric material are improved.
  • thermoelectric property of the thermoelectric material is evaluated by a dimensionless figure of merit ZT.
  • ZT is represented by the following general formula (1).
  • ZT ⁇ 2 T / ⁇ (1)
  • is the Seebeck coefficient
  • T is the absolute temperature
  • is the specific resistance
  • is the thermal conductivity.
  • the Seebeck coefficient ⁇ in the general formula (1) can be expressed by the following formula (2).
  • k B (log (N / n) + C) / e (2)
  • k B is a Boltzmann coefficient
  • e is a charge
  • C is a constant
  • n is a carrier concentration.
  • N is represented by the following general formula (3).
  • N 1/2 ⁇ (2 mk B T / ⁇ h 2 ) 3/2
  • k B is a Boltzmann coefficient
  • h is a Planck constant
  • T is an absolute temperature
  • m is an effective mass. That is, the Seebeck coefficient can be expressed as a function of carrier concentration and effective mass.
  • Both the Si site and the Sn site may be replaced, or one of them may be replaced. It is difficult to analyze exactly which site is replaced by the additive element.
  • substitution element for substituting the Si site and / or the Sn site may be either one of Sb and Bi, or both Sb and Bi.
  • the addition amount of the substitution element is preferably 1000 ppm or more and 30000 ppm or less, more preferably 1000 ppm or more and 15000 ppm or less, further preferably 2500 ppm or more and 10,000 ppm or less, and most preferably 2500 ppm or more and 7500 ppm or less.
  • the addition amount of the substitution element is too large, the substitution element itself or its compound may segregate metallically. Moreover, when there is too little addition amount of a substitution element, it will be difficult to fully reduce a specific resistance and it will become difficult to implement
  • the thermoelectric characteristics of the thermoelectric material are particularly excellent when the addition amount of the substitution element is within the range. This tendency is the same even when Fe described later is added.
  • the amount of Sb added is preferably 5000 ppm or more, more preferably 5000 ppm or more and 15000 ppm or less, and further preferably 7500 ppm.
  • the substitution element is Sb
  • the maximum figure of merit is shown when the addition amount is 7500 ppm. This tendency is the same even when Fe described later is added.
  • the amount of Bi added is preferably 1000 ppm to 15000 ppm, more preferably 1000 ppm to 7500 ppm, and even more preferably 2500 ppm to 7500 ppm.
  • the substitution element is Bi as compared with the case where the substitution element is Sb, a high performance index is exhibited even with a small addition amount. This tendency is the same even when Fe described later is added.
  • substitution element addition amount means the amount of substitution element (mol percent of substitution element with respect to thermoelectric material) to be added when producing the thermoelectric material.
  • substitution element addition amount can be rephrased as “substitution element content”.
  • thermoelectric material according to the present embodiment contains added Fe. It is not clear how the added Fe exists in the crystal structure.
  • the resistance value can be prevented from increasing after the heat treatment, and the thermoelectric characteristics can be prevented from deteriorating.
  • the reason why the added Fe prevents the increase in resistivity after the heat treatment is not clear.
  • the amount of Fe added is preferably not more than an amount that does not cause a phase transition of the compound represented by the chemical formula Mg 2 Si 1-x Sn x (0 ⁇ x ⁇ 1), and more preferably not less than 5000 ppm and not more than 50000 ppm. Preferably, it is 10000 ppm or more and 3000 ppm or less.
  • phase transition means that the crystal structure changes. That is, “does not cause a phase transition” means that a compound represented by the chemical formula Mg 2 Si 1-x Sn x (0 ⁇ x ⁇ 1) is converted into a crystal structure of the second phase or the third phase by adding Fe. It means no change.
  • the “iron addition amount” can also be referred to as “iron content”.
  • thermoelectric characteristics of that part change.
  • Fe more than the amount causing phase transition is added, for example, if there is a region where the added Fe has not undergone phase transition due to segregation or the like, Fe exceeding the amount causing phase transition may be added. Good.
  • thermoelectric material according to the present embodiment can reduce the deterioration of thermoelectric characteristics even in a high temperature environment. That is, the thermoelectric material according to the present embodiment is excellent in heat resistance.
  • thermoelectric material according to the present embodiment can be used for, for example, an n-type thermoelectric element (thermoelectric semiconductor) in a thermoelectric conversion device.
  • FIG. 2 is a flowchart showing the procedure of the thermoelectric material manufacturing method according to the present embodiment.
  • single Mg, Si, and Sn are weighed according to the composition ratio. Further, single Sb and Fe are weighed according to the addition amount (substitution amount). In FIG. 2, the case of Sb is shown as an example, but when Bi is used, Bi is weighed instead of Sb.
  • Mg is preferably 3 to 5 mm. If the size is too large, Mg is difficult to melt, and there is a risk that single Mg will remain. On the other hand, if the size is too small, the surface area oxidized in the atmosphere increases, and the amount of Mg oxide mixed in increases.
  • Si is preferably used in the form of powder or granules, and fine powder of about several tens of ⁇ m is preferable.
  • Sn is preferably granular, and the average particle diameter can be set to 1 to 3 mm, for example.
  • the substitution element and Fe are preferably added in powder form.
  • a heating member 1 is prepared.
  • a carbon board, a crucible or the like can be used.
  • the heating member 1 is preferably pre-baked.
  • a powder mixture 2 composed of Si, Fe and a substitution element and a mixture 4 composed of granular Sn (reference numeral 3) are uniformly spread on the bottom surface 1a of the heating member 1.
  • the granular Mg (reference numeral 5) is placed on the mixture 4.
  • Mg (reference numeral 5) is preferably arranged on the mixture 4 at equal intervals.
  • the above-described mixture 4 is uniformly spread thereon.
  • the heating means 1 and each material accommodated therein are heated in a heating furnace. By this heating, a solid solution of each element is produced.
  • a solid phase reaction method As a method for producing the solid solution, a solid phase reaction method, a liquid-solid phase reaction method, a direct melting method, a mechanical alloying method, or the like can be used. Among these solid solution production methods, the liquid-solid phase reaction method is preferably used.
  • the liquid-solid phase reaction method is a method in which a chemical reaction is advanced with some elements in a solid state and other elements in a molten state.
  • This method is a simple synthesis method that does not cause problems such as compositional deviation, mixing of impurities, and dust explosion.
  • Sn, Mg, Fe, and a substitution element melt and become a liquid, and Si reacts in a solid state.
  • the heating temperature is preferably 800 ° C. or higher, for example, 800 to 1100 ° C.
  • the heating time can be, for example, 1 to 10 hours. In this heating temperature region, other elements can be sufficiently melted while Si is maintained in a solid state. As a result, segregation of each element can be suppressed. Moreover, if it is this heating time, reaction can fully be advanced.
  • Heating is preferably performed in a non-oxidizing atmosphere in order to prevent oxidation of the raw material.
  • a non-oxidizing atmosphere for example, it is desirable to perform in an inert gas atmosphere such as argon (Ar) or a mixed gas atmosphere in which hydrogen (H 2 ) is mixed with an inert gas.
  • an alloy that is a solid solution containing Mg 2 Si, Mg 2 Sn, Fe, and a substitution element is synthesized.
  • this alloy is pulverized.
  • the pulverizing means include a hammer mill, a jaw crusher, a collision type pulverizer, a ball mill, an attritor, and a jet mill.
  • the obtained powder is classified and it is preferable to use a powder having an average particle diameter in a predetermined range, for example, an average particle diameter of 38 to 75 ⁇ m.
  • classification method include an airflow classification method and a sieving method.
  • the average particle size may be, for example, a 50% cumulative particle size in a volume-based particle size distribution.
  • the average particle diameter can be measured by a laser diffraction type particle size distribution analyzer or the like.
  • this powder is pressed and sintered by a hot press or the like.
  • powder is filled in a die and pressed with a punch.
  • the powder becomes a densified sintered body by pressurization.
  • a sintering method there are HIP, plasma sintering method and the like in addition to hot pressing.
  • the temperature condition during sintering is preferably 600 to 800 ° C.
  • the pressing condition (pressing pressure) is preferably 10 to 100 MPa.
  • the atmosphere during sintering is preferably an inert gas atmosphere such as argon (Ar).
  • the pressurizing time can be, for example, 1 to 10 hours.
  • the obtained sintered body becomes a thermoelectric material having excellent characteristics as an n-type thermoelectric material.
  • the sintered body can be cut into a predetermined size according to the purpose, polished, and then measured for thermoelectric properties.
  • Example 1 Mg grains (purity 99.9%), Si powder (99.9999%), Sn powder (99.999%), Sb grains (99.999%), Fe powder (99.99%) were prepared as raw materials. . These raw materials were weighed and arranged in a carbon boat and put into a synthesis furnace to produce an alloy made of a solid solution. This solid solution alloy was prepared by a liquid-solid reaction synthesis method. The synthesis temperature was 1103 K (830 ° C.), the synthesis time was 4 hours, and the reaction atmosphere was a reducing atmosphere of Ar + 3% H 2 .
  • the obtained alloy was pulverized to classify the particle size d into 38 ⁇ m ⁇ d ⁇ 75 ⁇ m.
  • the classified powder was sintered by hot pressing to produce a sintered body.
  • the sintering temperature of the sintered body was 1043 K (770 ° C.)
  • the sintering time was 5 hours
  • the sintering pressure was 80 MPa
  • the reaction atmosphere was an Ar atmosphere.
  • Example 2 The compound (Mg 2 Si 0.50 Sn 0.50 + Sb10000 ppm + Fe20000 ppm) obtained in Example 1 was heated in an Ar atmosphere at 500 ° C. for 24 hours.
  • Comparative Example 1 differs from Example 1 in that no Fe powder was added. That is, in Comparative Example 1, at least one of the Si site and the Sn site of the compound represented by Mg 2 Si 0.50 Sn 0.50 was substituted with 10000 ppm of Sb (hereinafter referred to as “Mg 2 Si 0.50 Sn 0.50 + Sb10000 ppm ”).
  • Comparative Example 2 The compound (Mg 2 Si 0.50 Sn 0.50 + Sb10000 ppm) obtained in Comparative Example 1 was heated in an Ar atmosphere at 500 ° C. for 24 hours.
  • Example 3 In this example, except that 5000 ppm of Fe was added, a compound (Mg 2 Si 0.50 Sn 0.50 + Sb 10000 ppm + Fe 5000 ppm) obtained by the same method as in Example 1 was used in an Ar atmosphere at 500 ° C. for 24 Heated for hours.
  • Example 4 In this example, except that 10000 ppm of Fe was added, the compound (Mg 2 Si 0.50 Sn 0.50 + Sb 10000 ppm + Fe 10000 ppm) obtained in the same manner as in Example 1 was used in an Ar atmosphere at 500 ° C. Heated for hours.
  • Example 5 In this example, except that 50,000 ppm of Fe was added, a compound (Mg 2 Si 0.50 Sn 0.50 + Sb 10000 ppm + Fe 50000 ppm) obtained by the same method as in Example 1 was used in an Ar atmosphere at 500 ° C. for 24 Heated for hours.
  • Example 6 In this example, it was produced in the same manner as in Example 1 except that Bi was added to the raw material instead of Sb.
  • Example 7 The compound obtained in Example 6 (Mg 2 Si 0.50 Sn 0.50 + Bi10000 ppm + Fe20000 ppm) was heated in an Ar atmosphere at 500 ° C. for 24 hours.
  • Comparative Example 3 differs from Example 6 in that no Fe powder was added. That is, in Comparative Example 3, at least one of the Si site and the Sn site of the compound represented by Mg 2 Si 0.50 Sn 0.50 was substituted with 10000 ppm Bi (hereinafter referred to as “Mg 2 Si 0.50 Sn 0.50 + Bi10000 ppm ”).
  • Comparative Example 4 The compound (Mg 2 Si 0.50 Sn 0.50 + Bi10000 ppm) obtained in Comparative Example 3 was heated in an Ar atmosphere at 500 ° C. for 24 hours.
  • Example 8 In this example, except that Mg 2 Si 0.50 Sn 0.50 is replaced by Mg 2.05 Si 0.40 Sn 0.60 , the raw material is weighed in the same manner as in Example 1. Produced. A compound represented by Mg 2.05 Si 0.40 Sn 0.60 , a compound in which at least one of Si site and Sn site is substituted with 10000 ppm of Sb and 20000 ppm of Fe is added (hereinafter, “Mg” 2.05 Si 0.40 Sn 0.60 + Sb 10000 ppm + Fe 20000 ppm ”).
  • Example 9 The compound obtained in Example 8 (Mg 2.05 Si 0.40 Sn 0.60 + Sb10000 ppm + Fe20000 ppm) was heated in an Ar atmosphere at 500 ° C. for 24 hours.
  • Comparative Example 5 differs from Example 8 in that no Fe powder was added. That is, in Comparative Example 5, at least one of the Si site and the Sn site of the compound represented by Mg 2.05 Si 0.40 Sn 0.60 was substituted with 10000 ppm of Sb (hereinafter “Mg”). 2.05 Si 0.40 Sn 0.60 + Sb10000 ppm ”).
  • Comparative Example 6 The compound obtained in Comparative Example 5 (Mg 2.05 Si 0.40 Sn 0.60 + Sb10000 ppm) was heated in an Ar atmosphere at 500 ° C. for 24 hours.
  • thermoelectric materials produced in the examples and comparative examples were measured.
  • the specific resistance was measured using a direct current four-terminal method.
  • 4, 9, 14, and 18 are measurement results of specific resistances of the examples and comparative examples.
  • the horizontal axis is the temperature at the time of measurement, and the vertical axis is the specific resistance.
  • Examples 1 and 2 to which Fe was added had a lower specific resistance than Comparative Examples 1 and 2 to which Fe was not added.
  • the specific resistance of Example 1 to which Fe was added was 6.29 ⁇ 10 ⁇ 6 ⁇ m
  • the specific resistance of Comparative Example 1 to which Fe was not added was 7.59 ⁇ 10 ⁇ 6 ⁇ m. It was. That is, the specific resistance of Example 1 was reduced by 17% with respect to the specific resistance of Comparative Example 1 in a room temperature environment.
  • the specific resistance of Comparative Example 2 was significantly higher than that of Comparative Example 1 by heating at 500 ° C. for 24 hours. Under a room temperature environment, the specific resistance of Comparative Example 1 is 7.59 ⁇ 10 ⁇ 6 ⁇ m, and the specific resistance of Comparative Example 2 is 1.96 ⁇ 10 ⁇ 5 ⁇ m. That is, the specific resistance increased by 158% or more before and after the heat treatment. This tendency is the same in other temperature regions.
  • the specific resistance of Example 2 did not increase significantly from the specific resistance of Example 1 even when heat treatment was performed at 500 ° C. for 24 hours. Under a room temperature environment, the specific resistance of Example 1 is 6.29 ⁇ 10 ⁇ 6 ⁇ m, and the specific resistance of Example 2 is 7.28 ⁇ 10 ⁇ 6 ⁇ m. That is, the specific resistance increases only about 15% before and after the heat treatment. This tendency is the same in other temperature regions.
  • the specific resistance greatly affects the dimensionless figure of merit ZT representing the thermoelectric characteristics of the thermoelectric material.
  • the fact that the specific resistance does not fluctuate greatly by heat treatment means that the thermoelectric characteristics are stabilized against heat, and the heat resistance of the thermoelectric material is excellent.
  • the horizontal axis is the temperature at the time of measurement, and the vertical axis is the Seebeck coefficient.
  • the Seebeck coefficient also has a great influence on the dimensionless figure of merit ZT representing the thermoelectric properties of the thermoelectric material. That the Seebeck coefficient does not fluctuate greatly by heat treatment means that the thermoelectric characteristics are stabilized against heat, and that the heat resistance of the thermoelectric material is excellent.
  • the temperature dependence of the thermal conductivity was measured using a laser flash method (ULVAC RIKO, Inc .; TC-7000). 6, 11, 16, and 20 are the measurement results of the thermal conductivity of Examples and Comparative Examples.
  • the horizontal axis is the temperature at the time of measurement, and the vertical axis is the thermal conductivity.
  • the dimensionless figure of merit is obtained by multiplying the figure of merit Z of the thermoelectric material by an absolute temperature and is generally expressed as ZT.
  • ZT can be obtained from the thermal conductivity, specific resistance, and Seebeck coefficient measured as described above, as shown by the general formula (1).
  • FIGS. 7, 12, 17, and 21 are calculation results of the figure of merit Z of the examples and comparative examples.
  • 8, 13, and 22 are calculation results of the dimensionless figure of merit ZT of the example and the comparative example.
  • 7, 12, 17, and 21 are values before the absolute temperature is applied, and are shown as one index.
  • the figure of merit Z of Example 2 to which Fe was added was the maximum value.
  • the figure of merit Z of Example 2 after the heat treatment is increased as compared with that before the heat treatment.
  • the figure of merit Z of Comparative Example 2 after heating is lower than that before the heat treatment.
  • Example 2 to which iron was added shows the same thermoelectric performance as Comparative Example 1 to which no iron was added. In particular, in the temperature range of 380 ° C. or higher, the thermoelectric performance of Example 2 is superior to the thermoelectric performance of Comparative Example 1.
  • thermoelectric performance is increased before and after heating .
  • ZT before heating increased from 0.9 (Example 1) to 1.1 (Example 2). That is, the thermoelectric performance after the heat treatment is increased to 120% before the heat treatment.
  • thermoelectric performance after the heat treatment is about 68% before the heat treatment.
  • the figure of merit Z increased as the amount of Fe added increased.
  • ZT increased as the amount of Fe added increased. 17 and 21 show the same results as in FIG. FIG. 22 shows the same result as FIG.
  • thermoelectric performance by heating is obtained by adding iron to the thermoelectric material. This is considered to be mainly due to the specific resistance becoming an appropriate value by heating.
  • iron By adding iron to a predetermined thermoelectric material, a thermoelectric material having excellent heat resistance that does not deteriorate thermoelectric characteristics even in a high temperature environment can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicon Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

高温環境下でも熱電特性の低下の少ない耐熱性に優れた熱電材料を提供する。この熱電材料は、化学式MgSi1-xSn(0<x<1)で表記される化合物のSiサイトとSnサイトの少なくともいずれか一方が、SbとBiの少なくともいずれか一方で置換され、添加されたFeを含有する。

Description

熱電材料
 本発明は、熱電材料に関する。
 本願は、2016年10月6日に、日本に出願された特願2016-198206号に基づき優先権を主張し、その内容をここに援用する。
 熱電変換は、ゼーベック効果やペルチェ効果を利用して熱エネルギーと電気エネルギーとを変換する。熱電変換は、エネルギーの高効率利用技術として注目を集めている。熱電変換には、熱エネルギーと電気エネルギーとを相互に変換できる材料である熱電材料が用いられる。
 熱電材料としては、Mg-Si-Sn系、Bi-Te系、Pb-Te系などの材料が知られている(例えば、特許文献1及び2を参照。)。Bi-Te系、Pb-Te系材料は、希少性や有害性の高い元素を用いる。そのため、Bi-Te系、Pb-Te系材料は、高価であり、取り扱いに注意が必要となる。これに対し、Mg-Si-Sn系材料は、希少性や有害性の高い元素を用いないため、コストおよび安全性の点で優れている。
特許第4726452号公報 特許第4726747号公報
 熱電材料の性能は、性能指数Zと絶対温度Tとの積で表される無次元性能指数ZTによって評価される。そのため、性能指数Zの値にもよるが、一般に高温領域の方が高い熱電特性が得られる。そこで、実際の使用態様としては、熱電特性に優れた高温領域での使用が想定される。しかしながら、高温領域下で熱電材料を使用し続けた際の熱電特性への影響については、十分な検討がされていなかった。
 本発明は、このような事情に鑑みてなされたもので、高温環境下でも熱電特性の低下の少ない耐熱性に優れた熱電材料を提供することを目的とする。
 本発明者らは、熱電材料に対して熱処理を加えた際の熱電特性への影響を調べた。その結果、Mg-Si-Sn系材料は、熱処理により熱電特性が低下することを見出した。そこで、更なる検討の結果、Mg-Si-Sn系材料に鉄(Fe)を添加すると、熱処理により熱電特性が低下することを抑制できることを見出した。
 すなわち、本発明は以下の手段を採用した。
(1)第1の態様にかかる熱電材料は、化学式MgSi1-xSn(0<x<1)で表記される化合物のSiサイトとSnサイトの少なくともいずれか一方が、SbとBiの少なくともいずれか一方で置換され、添加されたFeを含有する。
(2)上記態様にかかる熱電材料において、前記Feの添加量が、前記化合物が相転移を起こさない量以下であってもよい。
(3)上記態様にかかる熱電材料において、前記Feの添加量が5000ppm以上50000ppm以下であってもよい。
(4)上記態様にかかる熱電材料において、前記Siサイトと前記Snサイトの少なくともいずれか一方を置換する置換元素の添加量が、1000ppm以上15000ppm以下であってもよい。
(5)上記態様にかかる熱電材料において、前記Siサイトと前記Snサイトの少なくともいずれか一方を置換する置換元素がSbであり、前記Sbの添加量が5000ppm以上であってもよい。
(6)上記態様にかかる熱電材料において、前記Siサイトと前記Snサイトの少なくともいずれか一方を置換する置換元素がBiであり、前記Biの添加量が1000ppm以上7500ppm以下であってもよい。
(7)上記態様にかかる熱電材料における前記化学式においてxの範囲が、0.25≦x<0.75であってもよい。
 上記態様にかかる熱電材料によれば、高温環境下でも熱電特性の低下の少ない耐熱性に優れた熱電材料を提供することができる。
化学式MgSi1-xSn(0<x<1)で表記される化合物の結晶構造を示す。 熱電材料の製造方法の手順を示す図である。 熱電材料の製造過程を示す模式図である。 実施例1と2及び比較例1と2の比抵抗ρの測定結果である。 実施例1と2及び比較例1と2のゼーベック係数αの測定結果である。 実施例1と2及び比較例1と2の熱伝導率κの測定結果である。 実施例1と2及び比較例1と2の性能指数Zの測定結果である。 実施例1と2及び比較例1と2の無次元性能指数ZTの測定結果である。 実施例2~5及び比較例2の比抵抗ρの測定結果である。 実施例2~5及び比較例2のゼーベック係数αの測定結果である。 実施例2~5及び比較例2の熱伝導率κの測定結果である。 実施例2~5及び比較例2の性能指数Zの測定結果である。 実施例2~5及び比較例2の無次元性能指数ZTの測定結果である。 実施例6と7及び比較例3と4の比抵抗ρの測定結果である。 実施例6と7及び比較例3と4のゼーベック係数αの測定結果である。 実施例6と7及び比較例3と4の熱伝導率κの測定結果である。 実施例6と7及び比較例3と4の性能指数Zの測定結果である。 実施例8と9及び比較例5と6の比抵抗ρの測定結果である。 実施例8と9及び比較例5と6のゼーベック係数αの測定結果である。 実施例8と9及び比較例5と6の熱伝導率κの測定結果である。 実施例8と9及び比較例5と6の性能指数Zの測定結果である。 実施例8と9及び比較例5と6の無次元性能指数ZTの測定結果である。
 以下、本実施形態について、図面を基にその構成を説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
「熱電材料」
 本実施形態にかかる熱電材料は、化学式MgSi1-xSn(0<x<1)で表記される化合物のシリコン(Si)サイトとスズ(Sn)の少なくともいずれか一方が、アンチモン(Sb)とビスマス(Bi)の少なくともいずれか一方で置換され、添加されたFeを含有する。
 図1は、化学式MgSi1-xSn(0<x<1)で表記される化合物の結晶構造を示す。MgSi1-xSn(0<x<1)は、MgSiとMgSnの固溶体である。またMgSi1-xSn(0<x<1)は、図1に示す逆蛍石構造の3元系の化合物である。
 上記化学式MgSi1-xSn(0<x<1)は、化学量論的組成比として記載している。実際の化合物では、結晶構造上多少の組成のずれは許容される。例えば、Mgの範囲としては、1.98以上2.01以下の範囲を取り得る。
 この化合物は3元系であるため、上記化学式MgSi1-xSnにおいてxの範囲は、0<x<1である。またxの範囲は、0.25≦x<0.75であることが好ましく、0.35<x<0.65であることがより好ましく、0.4<x≦0.6であることがさらに好ましい。xがその範囲内であれば、MgSiとMgSnとは固溶し易い。すなわち、化学式MgSi1-xSnで表記される固溶体の入手が容易となる。
 本実施形態にかかる熱電材料は、この化合物のSiサイトとSnサイトの少なくともいずれか一方が、SbとBiの少なくともいずれか一方で置換されている。
 Si及びSnは4価の価数が一般的である。これに対し、Sb及びBiは、5価である。そのため、SiサイトとSnサイトの少なくともいずれか一方が、SbとBiの少なくともいずれか一方で置換されると、化合物内に電子が注入される。電子は化合物内で、キャリアとして機能するため、熱電材料の比抵抗が低減する。熱電材料の比抵抗が低下すると、熱電材料の熱電特性は向上する。
 ここで、熱電材料の熱電特性は、無次元性能指数ZTにより評価される。ZTは、以下の一般式(1)で表される。
 ZT=αT/ρκ ・・・(1)
 αはゼーベック係数、Tは絶対温度、ρは比抵抗、κは熱伝導率である。
 また一般式(1)のゼーベック係数αは以下の式(2)で示すことができる。
 α=k(log(N/n)+C)/e ・・・(2)
 ここで、kはボルツマン係数、eは電荷、Cは定数、nはキャリア濃度である。
 Nは以下の一般式(3)で表記される。
 N=1/2×(2mkT/πh3/2 ・・・(3)
 ここで、kはボルツマン係数、hはプランク定数、Tは絶対温度、mは有効質量である。すなわち、ゼーベック係数は、キャリア濃度と有効質量の関数として表記することができる。
 SiサイトとSnサイトは、両方が置換されてもよいし、いずれか一方が置換されていてもよい。厳密にいずれのサイトが、添加元素によって置換されているかを分析することは難しい。
 Siサイト及び/又はSnサイトを置換する置換元素は、SbとBiのいずれか一方のみでもよいし、SbとBiの両方でもよい。
 置換元素の添加量は、1000ppm以上30000ppm以下であることが好ましく、1000ppm以上15000ppm以下であることがより好ましく、2500ppm以上10000ppm以下であることがさらに好ましく、2500ppm以上7500ppm以下であることがもっとも好ましい。
 置換元素の添加量が多すぎると、置換元素自体またはその化合物が金属的に偏析する場合がある。また置換元素の添加量が少なすぎると、比抵抗を十分低下させることが難しく、高い熱電性能を実現することが難しくなる。例えば、特許文献2にも記載のように置換元素の添加量が当該範囲内では、熱電材料の熱電特性が特に優れる。この傾向は、後述するFeを添加しても同様である。
 また置換元素がSbの場合、Sbの添加量は5000ppm以上であることが好ましく、5000ppm以上15000ppm以下であることがより好ましく、7500ppmであることがさらに好ましい。例えば、特許文献2にも記載のように置換元素がSbの場合、添加量が7500ppmで最大の性能指数を示す。この傾向は、後述するFeを添加しても同様である。
 また置換元素がBiの場合、Biの添加量は1000ppm以上15000ppm以下であることが好ましく、1000ppm以上7500ppm以下であることがより好ましく、2500ppm以上7500ppm以下であることがさらに好ましい。例えば、特許文献2にも記載のように置換元素がSbの場合と比較して、置換元素がBiの場合は少ない添加量でも高い性能指数を示す。この傾向は、後述するFeを添加しても同様である。
 ここで「置換元素の添加量」とは、熱電材料を作製する際に添加する置換元素の量(熱電材料に対する置換元素のモルパーセント)を意味する。熱電材料を作製する際に添加する置換元素は、そのまま熱電材料に取り込まれる。そのため、「置換元素の添加量」は「置換元素の含有量」と換言することもできる。
 また本実施形態にかかる熱電材料は、添加されたFeを含有する。添加されたFeは、結晶構造においてどのように存在するかは明確にはなっていない。
 Feを添加すると加熱処理後に抵抗値が高くなることを防ぐことができ、熱電特性の低下を防ぐことができる。添加されたFeが加熱処理後の抵抗率の増加を防止する理由は、明確にはなっていない。
 Feの添加量は、化学式MgSi1-xSn(0<x<1)で表記される化合物が相転移を起こさない量以下であることが好ましく、5000ppm以上50000ppm以下であることがより好ましく、10000ppm以上3000ppm以下であることがさらに好ましい。
 ここで相転移とは、結晶構造が変化することを意味する。すなわち、「相転移を起こさない」とは、化学式MgSi1-xSn(0<x<1)で表記される化合物が、Feの添加により第2相や第3相の結晶構造に変化しないことを意味する。また「鉄の添加量」も「置換元素の添加量」と同様に、「鉄の含有量」と換言できる。
 結晶構造が一部変化すると、その部分の熱電特性が変化する。一方で、相転移を起こす量以上のFeを添加しても、例えば添加したFeが偏析等により化合物が相転移していない領域が残れば、相転移を起こす量以上のFeを添加してもよい。
 本実施形態にかかる熱電材料によれば、高温環境下でも熱電特性の低下を少なくできる。すなわち、本実施形態にかかる熱電材料は耐熱性に優れる。
 本実施形態にかかる熱電材料は、例えば、熱電変換装置においてn型の熱電素子(熱電半導体)に使用できる。
(熱電材料の製造方法)
 本実施形態にかかる熱電材料の製造方法の一例について具体的に説明する。図2は、本実施形態にかかる熱電材料の製造方法の手順を示す流れ図である。
 まず、組成比に応じて、単体のMg、Si、Snを秤量する。また添加量(置換量)に応じて単体のSb及びFeを秤量する。図2では、Sbの場合を例に示したが、Biを用いる場合はSbに変えてBiを秤量する。
 このときMgは、3~5mmであることが好ましい。サイズが大きすぎるとMgが溶融しにくくなり、単体Mgが残留してしまうおそれがある。またサイズが小さすぎると、大気中で酸化される表面積が大きくなり、Mgの酸化物の混入量が増えてしまう。Siは、粉状または粒状として用いることが好ましく、数十μm程度の微粉末が好ましい。Snは、粒状であることが好ましく、その平均粒径は例えば1~3mmとすることができる。置換元素及びFeは、粉状にして添加することが好ましい。
 図3に示すように、加熱用部材1を用意する。加熱用部材1は、カーボンボード、坩堝等を用いることができる。加熱用部材1は予め空焼きしておくのが望ましい。
 Si、Feおよび置換元素からなる粉末混合物2と、粒状のSn(符号3)とからなる混合物4を加熱用部材1の底面1a上に均一に敷き詰める。
 この混合物4の上に粒状のMg(符号5)を置く。Mg(符号5)は混合物4上に均等間隔で並べるのが好ましい。次いで、その上に上述の混合物4を均一に敷き詰める。
 この加熱用手段1およびその内部に収容した各材料を加熱炉内で加熱する。この加熱により、各元素の固溶体を作製する。固溶体の作製方法は、固相反応法、液-固相反応法、直接溶融法、メカニカルアロイング法等を用いることができる。これらの固溶体の作製方法の中でも、液-固相反応法を用いることが好ましい。
 液-固相反応法は、一部の元素を固体の状態とし、その他の元素を溶融させた状態として、化学反応を進める方法である。当該方法は、組成ずれ、不純物の混入及び粉塵爆発等の問題が生じず、簡便な合成法である。本実施形態においては、Sn、Mg、Fe、および置換元素は溶融し液体となり、Siは固体の状態で反応する。
 加熱温度は、800℃以上、例えば800~1100℃が好ましい。加熱時間は、例えば1~10時間とすることができる。この加熱温度領域であれば、Siを固体の状態で維持したまま、その他の元素を十分溶融させることができる。その結果、各元素が偏析することを抑制できる。またこの加熱時間であれば、十分に反応を進めることができる。
 加熱は、原料の酸化を防ぐため、非酸化雰囲気で行うのが好ましい。例えば、アルゴン(Ar)等の不活性ガス雰囲気下や、不活性ガスに水素(H)を混合した混合ガス雰囲気下で行うことが望ましい。これによって、MgSi、MgSn、Feおよび置換元素を含む固溶体である合金が合成される。
 次いで、この合金を粉砕する。粉砕手段としては、ハンマーミル、ジョークラッシャー、衝突式粉砕器、ボールミル、アトライター、ジェットミル等が挙げられる。
 得られた粉末は分級し、平均粒径が所定範囲にあるもの、例えば平均粒径38~75μmのものを使用するのが好ましい。分級方法としては、気流分級法、篩分法等がある。平均粒径は、例えば体積基準の粒子径分布における50%累積粒径であってよい。平均粒径はレーザー回折式粒度分布計などによって測定することができる。
 次いで、この粉末をホットプレス等により加圧して焼結する。例えば、粉末をダイス内に充填し、パンチで加圧する。粉末は、加圧によって、緻密化した焼結体となる。焼結の方法としては、ホットプレスの他に、HIP、プラズマ焼結法などがある。
 焼結時の温度条件は600~800℃が好ましい。加圧条件(プレス圧)は10~100MPaが好ましい。焼結時の雰囲気はアルゴン(Ar)等の不活性ガス雰囲気が好ましい。加圧時間は、例えば1~10時間とすることができる。
 得られた焼結体は、n型の熱電材料としての特性に優れた熱電材料となる。焼結体は、目的に応じて所定の大きさに切り出し、研磨した後、熱電特性を測定できる。
 (実施例1)
 原料としてMg粒(純度99.9%)、Si粉末(99.9999%)、Sn粉末(99.999%)、Sb粒(99.999%)、Fe粉末(99.99%)を準備した。これらの原料を秤量してカーボンボート内に並べて合成炉に投入し、固溶体からなる合金を作製した。この固溶体からなる合金は、液-固相反応合成法によって作製した。合成温度は1103K(830℃)、合成時間は4時間、反応雰囲気はAr+3%Hの還元雰囲気とした。
 続いて得られた合金を粉砕して粒径dを38μm≦d≦75μmに分級した。分級した粉末をホットプレスにより焼結し焼結体を作製した。焼結体の焼結温度は1043K(770℃)、焼結時間は5時間、焼結圧力は80MPa、反応雰囲気はAr雰囲気とした。
 上述の手順で、MgSi0.50Sn0.50で表記される化合物のSiサイトとSnサイトの少なくともいずれか一方が、10000ppmのSbで置換され、20000ppmのFeが添加された化合物(以下、「MgSi0.50Sn0.50+Sb10000ppm+Fe20000ppm」と表記する場合がある)を得た。
 (実施例2)
 実施例1で得た化合物(MgSi0.50Sn0.50+Sb10000ppm+Fe20000ppm)を500℃のAr雰囲気中で、24時間加熱した。
 (比較例1)
 比較例1は、Fe粉末を加えなかった点が実施例1と異なる。すなわち、比較例1では、MgSi0.50Sn0.50で表記される化合物のSiサイトとSnサイトの少なくともいずれか一方が、10000ppmのSbで置換された化合物(以下、「MgSi0.50Sn0.50+Sb10000ppm」と表記する場合がある)を得た。
 (比較例2)
 比較例1で得た化合物(MgSi0.50Sn0.50+Sb10000ppm)を500℃のAr雰囲気中で、24時間加熱した。
 (実施例3)
 本実施例において、5000ppmのFeが添加された点以外は、実施例1と同様の方法で得た化合物(MgSi0.50Sn0.50+Sb10000ppm+Fe5000ppm)を500℃のAr雰囲気中で、24時間加熱した。
(実施例4)
 本実施例において、10000ppmのFeが添加された点以外は、実施例1と同様の方法で得た化合物(MgSi0.50Sn0.50+Sb10000ppm+Fe10000ppm)を500℃のAr雰囲気中で、24時間加熱した。
(実施例5)
 本実施例において、50000ppmのFeが添加された点以外は、実施例1と同様の方法で得た化合物(MgSi0.50Sn0.50+Sb10000ppm+Fe50000ppm)を500℃のAr雰囲気中で、24時間加熱した。
(実施例6)
 本実施例において、原料にSbの代わりにBiが添加された点以外は、実施例1と同様な方法で作製した。MgSi0.50Sn0.50で表記される化合物のSiサイトとSnサイトの少なくともいずれか一方が、10000ppmのBiで置換され、20000ppmのFeが添加された化合物(以下、「MgSi0.50Sn0.50+Bi10000ppm+Fe20000ppm」と表記する場合がある)を得た。
 (実施例7)
 実施例6で得た化合物(MgSi0.50Sn0.50+Bi10000ppm+Fe20000ppm)を500℃のAr雰囲気中で、24時間加熱した。
 (比較例3)
 比較例3は、Fe粉末を加えなかった点が実施例6と異なる。すなわち、比較例3では、MgSi0.50Sn0.50で表記される化合物のSiサイトとSnサイトの少なくともいずれか一方が、10000ppmのBiで置換された化合物(以下、「MgSi0.50Sn0.50+Bi10000ppm」と表記する場合がある)を得た。
 (比較例4)
 比較例3で得た化合物(MgSi0.50Sn0.50+Bi10000ppm)を500℃のAr雰囲気中で、24時間加熱した。
(実施例8)
 本実施例において、MgSi0.50Sn0.50の代わりにMg2.05Si0.40Sn0.60になるように原料を秤量する点以外は、実施例1と同様な方法で作製した。Mg2.05Si0.40Sn0.60で表記される化合物のSiサイトとSnサイトの少なくともいずれか一方が、10000ppmのSbで置換され、20000ppmのFeが添加された化合物(以下、「Mg2.05Si0.40Sn0.60+Sb10000ppm+Fe20000ppm」と表記する場合がある)を得た。
 (実施例9)
 実施例8で得た化合物(Mg2.05Si0.40Sn0.60+Sb10000ppm+Fe20000ppm)を500℃のAr雰囲気中で、24時間加熱した。
 (比較例5)
 比較例5は、Fe粉末を加えなかった点が実施例8と異なる。すなわち、比較例5では、Mg2.05Si0.40Sn0.60で表記される化合物のSiサイトとSnサイトの少なくともいずれか一方が、10000ppmのSbで置換された化合物(以下、「Mg2.05Si0.40Sn0.60+Sb10000ppm」と表記する場合がある)を得た。
 (比較例6)
 比較例5で得た化合物(Mg2.05Si0.40Sn0.60+Sb10000ppm)を500℃のAr雰囲気中で、24時間加熱した。
 (比抵抗の測定)
 実施例及び比較例で作製した熱電材料の比抵抗をそれぞれ測定した。比抵抗は、直流4端子法を用いて測定した。図4、9、14、18は実施例及び比較例の比抵抗の測定結果である。横軸は測定時の温度であり、縦軸は比抵抗である。
 図4に示すように、Feを添加した実施例1及び2は、Feを添加していない比較例1及び2よりも比抵抗が小さかった。室温環境下では、Feを添加した実施例1の比抵抗は6.29×10-6Ωmであり、Feを添加していない比較例1の比抵抗は7.59×10-6Ωmであった。すなわち、実施例1の比抵抗は、室温環境下で、比較例1の比抵抗に対して17%も比抵抗が低減した。
 また比較例2の比抵抗は、500℃の24時間の加熱により比較例1の比抵抗より大幅に高くなった。室温環境下では、比較例1の比抵抗は7.59×10-6Ωmであり、比較例2の比抵抗は1.96×10-5Ωmである。すなわち、加熱処理の前後で比抵抗は、158%以上増加した。この傾向は、その他の温度領域でも同様である。
 これに対し実施例2の比抵抗は、500℃の24時間の加熱処理を行っても、実施例1の比抵抗から大幅に増加することはなかった。室温環境下では、実施例1の比抵抗は6.29×10-6Ωmであり、実施例2の比抵抗は7.28×10-6Ωmである。すなわち、加熱処理の前後で比抵抗は、15%程度しか増加していない。この傾向は、その他の温度領域でも同様である。
 一般式(1)でも示すように、比抵抗は熱電材料の熱電特性を表す無次元性能指数ZTに大きな影響を及ぼす。加熱処理により比抵抗が大きく変動しないことは、熱電特性が熱に対して安定化することを意味し、熱電材料の耐熱性が優れることを意味する。
 また、図9に示すように、Feの添加量が増えると、比抵抗が減少した。図14と図18は、図4と同様な結果を示した。
 (ゼーベック係数の測定)
 無次元性能指数ZTに影響を及ぼす比抵抗以外のパラメータも測定した。パラメータの一つとして、実施例及び比較例のゼーベック係数を測定した。室温でのゼーベック係数は、2K以内の温度差で得られた熱電起電力から算出し、温度依存性は大温度差法を用いて測定した。
 図5、10、15、19は、実施例及び比較例のゼーベック係数の測定結果である。横軸は測定時の温度であり、縦軸はゼーベック係数である。
 図5に示すように、Feを添加した実施例1及び2と、Feを添加していない比較例1のゼーベック係数とを比較すると、ゼーベック係数に大きな差は無かった。
 Feを添加した実施例は、加熱処理前後でゼーベック係数に大きな変動はない(実施例1及び2)。これに対し、Feを添加していない比較例は、加熱前後でゼーベック係数に大きく変動している(比較例1及び比較例2)。
 一般式(1)でも示すように、ゼーベック係数も熱電材料の熱電特性を表す無次元性能指数ZTに大きな影響を及ぼす。加熱処理によりゼーベック係数が大きく変動しないことは、熱電特性が熱に対して安定化することを意味し、熱電材料の耐熱性が優れることを意味する。
 また、図10に示すように、Feの添加量が増えると、ゼーベック係数が増加した。図15と図19は、図5と類似な結果を示した。
 (熱伝導率の測定)
 次いで、無次元性能指数ZTに影響を及ぼすパラメータの一つとして、実施例及び比較例の熱伝導率を測定した。
 熱伝導率は、石英(κ=1.37W/mK)との静的比較法を用いて測定した。また熱伝導率の温度依存性は、レーザーフラッシュ法(アルバック理工株式会社;TC-7000)を用いて測定した。図6、11、16、20は実施例及び比較例の熱伝導率の測定結果である。横軸は測定時の温度であり、縦軸は熱伝導率である。
 図6に示すように、Feを添加した実施例1及び2と、Feを添加していない比較例1の熱伝導率とを比較すると、熱伝導率に大きな差は無かった。また実施例及び比較例のいずれにおいても、加熱処理前後で熱伝導率に大きな変動は見られなかった。
 また、図11、16、20は、図6と同様な結果を示した。
 (無次元性能指数の測定)
 無次元性能指数は、熱電材料の性能指数Zに絶対温度をかけたものであり、ZTと一般に表記される。ZTは、一般式(1)で示すように、上記で測定した熱伝導率、比抵抗、ゼーベック係数から求めることができる。
 図7、12、17、21は、実施例及び比較例の性能指数Zの計算結果である。図8、13、22は、実施例及び比較例の無次元性能指数ZTの計算結果である。図7、12、17、21は、絶対温度をかける前の値であり、一つの指標として図示している。
 図7に示すように、Feを添加した実施例2の性能指数Zは、最大値であった。加熱処理後の実施例2の性能指数Zは、加熱処理前に比べて増大している。これに対し、加熱後の比較例2の性能指数Zは、加熱処理前に比べて低下している。
 図8に示すように、Feを添加した実施例2のZTは、最大値で1.1であった。加熱処理後の実施例2及び加熱処理前の比較例1を比較すると、鉄を添加した実施例2は、鉄を添加していない比較例1と同等の熱電性能を示している。特に、380℃以上の温度領域では、実施例2の熱電性能は比較例1の熱電性能よりも優れている。
 また実施例に示す化合物(MgSi0.50Sn0.50+Sb10000ppm+Fe20000ppm)は、比較例に示す化合物(MgSi0.50Sn0.50+Sb10000ppm)と異なり、加熱前後において熱電性能が増大した。
 化合物(MgSi0.50Sn0.50+Sb10000ppm+Fe20000ppm)は、加熱前のZTが0.9(実施例1)から1.1(実施例2)に増加している。すなわち、加熱処理後の熱電性能は、加熱処理前の120%に増大している。
 これに対し、化合物(MgSi0.50Sn0.50+Sb10000ppm)は、加熱前のZTが1.1(比較例1)から0.75(比較例2)まで低下している。すなわち、加熱処理後の熱電性能は、加熱処理前の68%程度となっている。
 また、図12に示すように、Feの添加量が増えると、性能指数Zが増加した。図13に示すように、Feの添加量が増えると、ZTが増加した。図17、21は、図7と同様な結果を示した。図22は、図8と同様な結果を示した。
 熱電材料に鉄を添加することにより、加熱により熱電性能が増大する効果が得られている。これは、主として、比抵抗が加熱により適正な値になったことによるものと考えられる。所定の熱電材料に鉄を添加することで、高温環境下でも熱電特性が低下しない耐熱性に優れた熱電材料が得られる。
1:加熱用部材、1a:底面、2:粉末混合物、3:Sn、4:混合物、5:Mg

Claims (7)

  1.  化学式MgSi1-xSn(0<x<1)で表記される化合物のSiサイトとSnサイトの少なくともいずれか一方が、SbとBiの少なくともいずれか一方で置換され、添加されたFeを含有する、熱電材料。
  2.  前記Feの添加量が、前記化合物が相転移を起こさない量以下である、請求項1に記載の熱電材料。
  3.  前記Feの添加量が5000ppm以上50000ppm以下である、請求項1又は2のいずれかに記載の熱電材料。
  4.  前記Siサイトと前記Snサイトの少なくともいずれか一方を置換する置換元素の添加量が、1000ppm以上30000ppm以下である請求項1~3のいずれか一項に記載の熱電材料。
  5.  前記Siサイトと前記Snサイトの少なくともいずれか一方を置換する置換元素がSbであり、前記Sbの添加量が5000ppm以上である請求項4に記載の熱電材料。
  6.  前記Siサイトと前記Snサイトの少なくともいずれか一方を置換する置換元素がBiであり、前記Biの添加量が1000ppm以上15000ppm以下である請求項4に記載の熱電材料。
  7.  前記化学式においてxの範囲が、0.25≦x<0.75である請求項1~6のいずれか一項に記載の熱電材料。
PCT/JP2017/036331 2016-10-06 2017-10-05 熱電材料 WO2018066657A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17858493.4A EP3525249B1 (en) 2016-10-06 2017-10-05 Thermoelectric material
JP2018543967A JP6762543B2 (ja) 2016-10-06 2017-10-05 熱電材料
US16/336,547 US11706986B2 (en) 2016-10-06 2017-10-05 Thermoelectric material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-198206 2016-10-06
JP2016198206 2016-10-06

Publications (1)

Publication Number Publication Date
WO2018066657A1 true WO2018066657A1 (ja) 2018-04-12

Family

ID=61831040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036331 WO2018066657A1 (ja) 2016-10-06 2017-10-05 熱電材料

Country Status (4)

Country Link
US (1) US11706986B2 (ja)
EP (1) EP3525249B1 (ja)
JP (1) JP6762543B2 (ja)
WO (1) WO2018066657A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005593A (ja) * 2019-06-25 2021-01-14 学校法人東京理科大学 マグネシウムシリサイド及びその利用
WO2021079644A1 (ja) * 2019-10-25 2021-04-29 株式会社ミツバ 熱電変換素子とその製造方法、および熱電変換デバイス

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146283A (ja) * 2005-10-25 2007-06-14 National Institute For Materials Science マグネシウム、珪素、スズからなる金属間化合物の焼結体およびその製造方法
JP4726452B2 (ja) 2003-10-07 2011-07-20 独立行政法人物質・材料研究機構 マグネシウム−金属化合物
JP2015145512A (ja) * 2014-01-31 2015-08-13 学校法人東海大学 金属間化合物粒子の製造方法および金属間化合物粒子
WO2016030964A1 (ja) * 2014-08-26 2016-03-03 株式会社日立製作所 n型熱電変換材料及び熱電変換素子
JP2016198206A (ja) 2015-04-08 2016-12-01 浜松ホトニクス株式会社 血中酸素状態のモニタリング装置及びモニタリング方法
JP2017098288A (ja) * 2015-11-18 2017-06-01 トヨタ自動車株式会社 熱電材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100385694C (zh) * 1999-03-10 2008-04-30 日立金属株式会社 热电转换材料及其制作方法
CN101589480B (zh) * 2006-12-20 2011-08-24 昭和Kde株式会社 热电转换材料、其制造方法及热电转换元件
JP5765776B2 (ja) * 2011-06-22 2015-08-19 国立大学法人茨城大学 Mg2Si1−xSnx系多結晶体およびその製造方法
JP6390662B2 (ja) 2016-04-22 2018-09-19 トヨタ自動車株式会社 熱電材料の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4726452B2 (ja) 2003-10-07 2011-07-20 独立行政法人物質・材料研究機構 マグネシウム−金属化合物
JP2007146283A (ja) * 2005-10-25 2007-06-14 National Institute For Materials Science マグネシウム、珪素、スズからなる金属間化合物の焼結体およびその製造方法
JP4726747B2 (ja) 2005-10-25 2011-07-20 独立行政法人物質・材料研究機構 マグネシウム、珪素、スズからなる金属間化合物の焼結体およびその製造方法
JP2015145512A (ja) * 2014-01-31 2015-08-13 学校法人東海大学 金属間化合物粒子の製造方法および金属間化合物粒子
WO2016030964A1 (ja) * 2014-08-26 2016-03-03 株式会社日立製作所 n型熱電変換材料及び熱電変換素子
JP2016198206A (ja) 2015-04-08 2016-12-01 浜松ホトニクス株式会社 血中酸素状態のモニタリング装置及びモニタリング方法
JP2017098288A (ja) * 2015-11-18 2017-06-01 トヨタ自動車株式会社 熱電材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3525249A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005593A (ja) * 2019-06-25 2021-01-14 学校法人東京理科大学 マグネシウムシリサイド及びその利用
WO2021079644A1 (ja) * 2019-10-25 2021-04-29 株式会社ミツバ 熱電変換素子とその製造方法、および熱電変換デバイス
JPWO2021079644A1 (ja) * 2019-10-25 2021-04-29
US20240147859A1 (en) * 2019-10-25 2024-05-02 Mitsuba Corporation Thermoelectric conversion element, method for manufacturing the same, and thermoelectric conversion device
JP7506894B2 (ja) 2019-10-25 2024-06-27 株式会社ミツバ 熱電変換素子とその製造方法、および熱電変換デバイス

Also Published As

Publication number Publication date
EP3525249A4 (en) 2020-03-25
US20210280759A1 (en) 2021-09-09
EP3525249A1 (en) 2019-08-14
US11706986B2 (en) 2023-07-18
JPWO2018066657A1 (ja) 2019-08-29
EP3525249B1 (en) 2021-02-24
JP6762543B2 (ja) 2020-09-30

Similar Documents

Publication Publication Date Title
Chen et al. Recent progress of half-Heusler for moderate temperature thermoelectric applications
US9115420B2 (en) Thermoelectric material formed of Mg2Si-based compound and production method therefor
JP4726747B2 (ja) マグネシウム、珪素、スズからなる金属間化合物の焼結体およびその製造方法
JP5765776B2 (ja) Mg2Si1−xSnx系多結晶体およびその製造方法
US6440768B1 (en) Thermoelectric semiconductor material and method of manufacturing the same
JP2013179322A (ja) 熱電変換材料、その製造方法および熱電変換素子
JP6176885B2 (ja) p型熱電材料、熱電素子およびp型熱電材料の製造方法
EP3297048B1 (en) Thermoelectric conversion material
KR102579525B1 (ko) 반도체 소결체, 전기·전자 부재 및 반도체 소결체 제조방법
JP2008021982A (ja) 熱電材料及びその製造方法
Liu et al. Thermoelectric properties of Ge doped n-type Ti x Zr 1− x NiSn 0.975 Ge 0.025 half-Heusler alloys
JP4726452B2 (ja) マグネシウム−金属化合物
WO2018066657A1 (ja) 熱電材料
JP2014165247A (ja) 熱電変換材料の製造方法
US3285019A (en) Two-phase thermoelectric body comprising a lead-tellurium matrix
JP2018059160A (ja) Mg2 Si(1−x)Snx系多結晶体、その焼結体およびその製造方法
JP5482229B2 (ja) 熱電材料およびその製造方法
US11616183B2 (en) Alloy, sintered article, thermoelectric module and method for the production of a sintered article
Cha et al. Synthesis and thermoelectric properties of partially double-filled skutterudites (La 1− z Yb z) 0.8 Fe 4− x Co x Sb 12
JP7159635B2 (ja) 珪化物系合金材料及びそれを用いた素子
JP4630012B2 (ja) 鉛・テルル系熱電材料および熱電素子
WO2019163807A1 (ja) 熱電変換材料、熱電変換素子、及び、熱電変換モジュール
Ueno et al. Effect of impurity oxygen concentration on the thermoelectric properties of hot-pressed Zn4Sb3
Zhang et al. Enhanced Thermoelectric Performance of Non-equilibrium Synthesized Fe0. 4Co3. 6Sb12-x Ge x Skutterudites via Randomly Distributed Multi-scaled Impurity Dots
US10243127B2 (en) Systems and methods of fabrication and use of NbFeSb P-type half-heusler thermoelectric materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543967

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017858493

Country of ref document: EP

Effective date: 20190506