WO2021079644A1 - 熱電変換素子とその製造方法、および熱電変換デバイス - Google Patents

熱電変換素子とその製造方法、および熱電変換デバイス Download PDF

Info

Publication number
WO2021079644A1
WO2021079644A1 PCT/JP2020/034386 JP2020034386W WO2021079644A1 WO 2021079644 A1 WO2021079644 A1 WO 2021079644A1 JP 2020034386 W JP2020034386 W JP 2020034386W WO 2021079644 A1 WO2021079644 A1 WO 2021079644A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
bonding layer
thermoelectric conversion
side bonding
layer
Prior art date
Application number
PCT/JP2020/034386
Other languages
English (en)
French (fr)
Inventor
多田 智紀
幸宏 磯田
Original Assignee
株式会社ミツバ
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ, 国立研究開発法人物質・材料研究機構 filed Critical 株式会社ミツバ
Priority to EP20878073.4A priority Critical patent/EP4050669A4/en
Priority to JP2021554147A priority patent/JPWO2021079644A1/ja
Publication of WO2021079644A1 publication Critical patent/WO2021079644A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/8556Thermoelectric active materials comprising inorganic compositions comprising compounds containing germanium or silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys

Definitions

  • the present invention relates to a thermoelectric conversion element, a method for manufacturing the same, and a thermoelectric conversion device.
  • the present application claims priority based on Japanese Patent Application No. 2019-194228 filed in Japan on October 25, 2019, the contents of which are incorporated herein by reference.
  • thermoelectric conversion is a technique for directly converting thermal energy to electrical energy using the Seebeck effect, or direct conversion of electrical energy to thermal energy using the Peltier effect.
  • thermoelectric conversion is attracting attention as a technology that enables power generation from waste heat.
  • Mg 2 SiSn which does not contain rare metals or toxic elements, is attracting attention, and a thermoelectric conversion device using Mg 2 SiSn is being developed.
  • Patent Document 1 discloses a technique of forming a Ti layer between an aluminum brazing metal as a joining material and an electrode to join the thermoelectric material and the electrode.
  • Patent Documents 2 to 4 a compound composed of Al and Ni, or an element constituting a thermoelectric element, is formed at the junction interface between an electrode and a thermoelectric material of Mg 2 Si-based, Si—Ge, or Mn Si-based SiO having a composition containing Si.
  • Patent Document 5 discloses a technique for forming a layer containing Al 3 Ni 2 and Al 3 Ni at the bonding interface between a Ni layer and a Ni electrode as a bonding material.
  • Japanese Unexamined Patent Publication No. 2006-49736 Japanese Patent No. 5913657 Japanese Patent No. 6160740 JP-A-2018-160560 JP-A-2018-152499
  • the production of high-power devices using Mg 2 SiSn, bonding between Mg 2 SiSn and the electrode is an important technology.
  • the upper limit temperature of Mg 2 SiSn is 400 ° C., and a bonding capable of withstanding this temperature is required. Brazing in a furnace is considered to be the most suitable joining method, but the brazing temperature is generally as high as around 700 ° C.
  • Active silver wax is often used for electrode bonding of Mg 2 SiSn, but there is a problem that cracks and voids are generated at the bonding interface due to high bonding temperature and diffusion of silver. Due to such circumstances, it is difficult to put into practical use and commercialize a thermoelectric conversion device using a heat source in a medium temperature range of 200 to 400 ° C.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermoelectric conversion element, a method for manufacturing the same, and a thermoelectric conversion device, which are highly reliable and capable of obtaining high output.
  • the present invention employs the following means.
  • the thermoelectric conversion element includes an n-type semiconductor, a p-type semiconductor, n-side junction layers formed on the first and second surfaces of the n-type semiconductor, and the p.
  • the p-side bonding layer formed on the first and second surfaces of the type semiconductor and one side are bonded to the first surface of the n-type semiconductor via the n-side bonding layer, and the other side is the p-side.
  • the first electrode bonded to the first surface of the p-type semiconductor via a bonding layer, the second surface of the n-type semiconductor, and the second surface of the p-type semiconductor, respectively, the n-side bonding layer and the p.
  • the n-type semiconductor has a composition represented by the following formula (1), and the p-type semiconductor is represented by the following formula (2).
  • the n-side bonding layer and the p-side bonding layer contain Al.
  • Mg 2 Si a Sn 1-a + A (1) (However, 0.25 ⁇ a ⁇ 0.75, and A includes at least one of Sb, Bi, and Fe.)
  • thermoelectric conversion element it is preferable that Sn is contained in at least one of the n-side bonding layer and the p-side bonding layer.
  • the p-side bonding layer contains at least one of the constituent material of the first electrode and Al on the first electrode side. It is preferable to have a one-p-side alloy layer and a second p-side alloy layer containing at least one of the constituent material of the second electrode and Al on the second electrode side.
  • the n-side bonding layer has at least one of the constituent material of the first electrode and Al on the first electrode side. It is preferable to have a first n-side alloy layer containing the alloy layer, and to have a second n-side alloy layer containing at least one of the constituent material of the second electrode and Al on the second electrode side.
  • the first electrode and the second electrode contain Ni as a main component, and the n-side bonding layer is the same. It has an AlNi layer and an Al 3 Ni 2 layer in order from the first electrode side or the second electrode side , and the p-side bonding layer is Ni 3 Sn 2 in order from the first electrode side or the second electrode side. It is preferable to have a layer, an AlNi layer, and an Al 3 Ni 2 layer.
  • the Si content ratio in the n-side bonding layer and the p-side bonding layer is 2 wt% or more and 15 wt% or less. Is preferable.
  • thermoelectric conversion device is a thermoelectric conversion device in which a plurality of thermoelectric conversion elements according to any one of (1) to (6) above are connected and adjacent to each other.
  • the two thermoelectric conversion elements share the second electrode, and of the two adjacent thermoelectric conversion elements, the n-side bonding layer constituting one and the p-side bonding layer constituting the other are used. They are connected with the shared second electrode interposed therebetween.
  • the method for manufacturing a thermoelectric conversion element according to one aspect of the present invention is the method for manufacturing a thermoelectric conversion element according to any one of (1) to (6) above, wherein the n-type semiconductor is described above.
  • a first n-side bonding layer and a second n-side bonding layer are arranged on the first surface and the second surface, respectively, and the p-type semiconductor has the first surface and the second surface, respectively.
  • the first p-side bonding layer and the second p-side bonding layer are arranged, and the first electrode is arranged so as to straddle both bonding layers with respect to the first n-side bonding layer and the first p-side bonding layer.
  • the laminate has a pressurizing step of pressurizing the laminate from both sides in the lamination direction and a heating step of heating the pressurized laminate, and in the heating step, the heating temperature is 550 ° C. or higher and 640 ° C. or lower.
  • the heating time is set to 1 minute or more and 60 minutes or less.
  • thermoelectric conversion element (9) In the method for manufacturing a thermoelectric conversion element according to (8), it is preferable that the temperature lowering rate of the laminated body after the heating step is 2 ° C./min or more and 500 ° C./min or less.
  • thermoelectric conversion element In the method for manufacturing a thermoelectric conversion element according to any one of (8) or (9), the heating rate of the laminated body before the heating step is set to 5 ° C./min or more and 200 ° C./min or less. It is preferable to do so.
  • the pressure applied to the laminate is 0.01 kg / cm 2 or more and 816 kg. It is preferably / cm 2 or less.
  • thermoelectric conversion element having high reliability and capable of obtaining a high output
  • method for manufacturing the thermoelectric conversion element and a thermoelectric conversion device.
  • thermoelectric conversion element which concerns on one Embodiment of this invention. It is a perspective view of the thermoelectric conversion device which connected a plurality of thermoelectric conversion elements of FIG.
  • A It is an SEM image of the junction portion of an n-type semiconductor, a junction layer, and an electrode in the thermoelectric conversion element of Example 1 of the present invention.
  • B In the SEM image of (a), the vicinity of the joint portion between the joint layer and the electrode is enlarged.
  • A It is an SEM image of the junction portion of a p-type semiconductor, a junction layer, and an electrode in the thermoelectric conversion element of Example 1 of the present invention.
  • FIG. (A) to (c) are photographs of the junction of n-type semiconductors in the thermoelectric conversion elements of Examples 2 and Comparative Examples 1 and 2 of the present invention.
  • (A) to (c) are photographs of the junction of n-type semiconductors in the thermoelectric conversion elements of Examples 3 and Comparative Examples 3 and 4 of the present invention.
  • (A), (b) It is a photograph of the junction of an n-type semiconductor in the thermoelectric conversion element of Example 4 and Comparative Example 5 of the present invention.
  • (A) to (c) are photographs of the junction of p-type semiconductors in the thermoelectric conversion elements of Examples 5 and 6 and Comparative Example 6 of the present invention.
  • FIG. 1 is a plan view schematically showing the configuration of a ⁇ -type thermoelectric conversion element 100 according to an embodiment of the present invention.
  • the thermoelectric conversion element 100 mainly includes an n-type semiconductor 101, two n-side bonding layers 102, a p-type semiconductor 103, two p-side bonding layers 104, a first electrode 105, and two second electrodes. It is equipped with 106.
  • the n-type semiconductor 101 is bonded to the first electrode 105 and the second electrode 106 via the n-side bonding layer 102
  • the p-type semiconductor 103 is bonded to the first electrode 105 and the second electrode 106 via the p-side bonding layer 104. It is joined to the second electrode 106.
  • the semiconductor 101 the junction layer 102, the semiconductor 103, and the junction of the n-type semiconductor 101, the n-side junction layer 102, the p-type semiconductor 103, the p-side junction layer 104, the first electrode 105, and the second electrode 106, respectively. It may be referred to as a layer 104, an electrode 105, or an electrode 106).
  • the n-type semiconductor 101 has a composition represented by the following formula (1).
  • A contains at least one of Sb, Bi, and Fe.
  • the p-type semiconductor 103 has a composition represented by the following equation (2).
  • the n-side bonding layer 102 is formed on one main surface (first surface) 101a and the other main surface (second surface) 101b of the surfaces of the n-type semiconductor 101.
  • the p-side bonding layer 103 is formed on one main surface (first surface) 103a and the other main surface (second surface) 103b of the surfaces of the p-type semiconductor 103.
  • the thickness of the n-side bonding layer 102 and the p-side bonding layer 104 is preferably 5 ⁇ m or more and 500 ⁇ m or less, and more preferably about 80 ⁇ m.
  • the material of the n-side bonding layer 102 and the p-side bonding layer 104 for example, Al (aluminum), Ag (silver), Ti (titanium), Ni (nickel), or an alloy containing 80 w% or more of them (Al wax). , Silver wax, titanium wax, nickel wax) and the like. Among these, Al wax having a low bonding temperature is particularly preferable.
  • the composition material of Al wax other than Al include Si, Fe, Mg, Cu, Mn, Cr, Zn, Ti, Bi and the like.
  • the composition ratio of Al wax can be, for example, Al: 87.2 wt%, Si: 12 wt%, and Fe: 0.8 wt%.
  • the heating temperature (bonding temperature) for bonding the n-type semiconductor 101 to the first electrode 105 and the second electrode 106 is proportional to the Si content ratio in the n-side bonding layer 102.
  • the heating temperature for bonding the p-type semiconductor 103 to the first electrode 105 and the second electrode 106 is proportional to the Si content ratio in the p-side bonding layer 104. Therefore, a suitable bonding temperature can be realized by adjusting the Si content ratio. Specifically, if the Si content ratio is 11 wt% or more and 13 wt% or less, the bonding temperature can be set to about 550 ° C to 640 ° C, which is highly reliable and produces high output when operated as a device. It is possible to realize a joint state that can be obtained.
  • the n-side bonding layer 102 may have a first n-side alloy layer (not shown) containing at least one of the constituent material of the first electrode 105 and Al in the vicinity of the interface on the first electrode 105 side.
  • the n-side bonding layer 102 may have a second n-side alloy layer (not shown) containing at least one of the constituent material of the second electrode and Al in the vicinity of the interface on the second electrode side (described later). See examples).
  • the p-side bonding layer 104 may have a first p-side alloy layer (not shown) containing at least one of the constituent material of the first electrode 105 and Al in the vicinity of the interface on the first electrode 105 side.
  • the p-side bonding layer 104 may have a second p-side alloy layer (not shown) containing at least one of the constituent material of the second electrode 106 and Al in the vicinity of the interface on the second electrode 106 side. Yes (see Examples below).
  • n-side bonding layer 102 includes, in order from the first electrode 105 side or the second electrode 106 side (bonding interface), it will have an AlNi layer, Al 3 Ni 2 layers.
  • the p-side bonding layer 104 has a Ni 3 Sn 2 layer, an AlNi layer, and an Al 3 Ni 2 layer in this order from the first electrode 105 side or the second electrode 106 side (bonding interface).
  • Sn (tin) is contained in at least one of the n-side bonding layer 102 and the p-side bonding layer 104. Since Sn is contained, the occurrence of cracks and the like can be suppressed, and the bonding state between the semiconductors 102 and 103 and the electrodes 105 and 106 can be improved. In the state in which Sn is contained, for example, some Sns constituting the semiconductors 102 and 103 are activated and freed in the heating step, penetrate the bonding layers 102 and 104, and finally the electrodes 105. This is achieved by segregating the alloy layer near the interface of 106.
  • the melting point of the p-type semiconductor 103 is lower than that of the n-type semiconductor 101, and Sn tends to be free.
  • Sn is segregated with respect to the p-side bonding layer 104 with a higher frequency than that of the n-side bonding layer 102.
  • the shape of the first electrode 105 and the two second electrodes 106 is not limited, but it is preferably flat.
  • one side 105a (here, the left side) is bonded to the first surface 101a of the n-type semiconductor via the n-side bonding layer 102, and the other side 105b (here, the right side) is on the p side. It is bonded to the first surface 103a of the p-type semiconductor via the bonding layer 104.
  • One side (here, the right side) of one second electrode 106A is bonded to the second surface 101b of the n-type semiconductor via the n-side bonding layer 102, and the other second electrode 106B is bonded to one side (here, the left side). Is bonded to the second surface 103b of the p-type semiconductor via the p-side bonding layer 104.
  • Examples of the material of the first electrode 105 and the second electrode 106 include Ni, Cu, Ti, Fe, Au, Ag, Al, etc., but in the manufacturing process of the thermoelectric conversion element, the temperature is as high as 500 ° C. or higher. Ni, which has high heat resistance, is preferable because it requires heating.
  • FIG. 2 is a perspective view of a thermoelectric conversion device 110 in which a plurality of thermoelectric conversion elements 100 are connected. Two adjacent thermoelectric conversion elements 100 share a second electrode 106. Of the two adjacent thermoelectric conversion elements 100, the n-side bonding layer 101 constituting one and the p-side bonding layer 103 constituting the other are connected with the shared second electrode 106 interposed therebetween.
  • thermoelectric conversion element 100 of this embodiment can be manufactured mainly through the following procedure.
  • the n-type semiconductor 101, the n-side bonding layer 102, the p-type semiconductor 103, the p-side bonding layer 104, the first electrode 105, and the second electrode 106 are aligned with the stacking order of the completed thermoelectric conversion element 100.
  • first n-side bonding layer 102A and the second n-side bonding layer 102B are arranged on the first surface 101a and the second surface 101b of the n-type semiconductor 101, respectively.
  • first p-side bonding layer 104A and the second p-side bonding layer 104B are arranged on the first surface 103a and the second surface 103b of the p-type semiconductor 103, respectively.
  • the first electrode 105 is arranged so as to straddle both the bonding layers with respect to the first n-side bonding layer 102A and the first p-side bonding layer 104A. That is, the first electrode 105 is arranged so that one side is in contact with the first n-side bonding layer 102A and the other side is in contact with the first p-side bonding layer 104A.
  • the second electrode 106A is arranged so that one side is in contact with the second n-side bonding layer 102B, and the other second electrode 106B is arranged so that one side is in contact with the second p-side bonding layer 104B.
  • pressure is applied (pressed) from both sides in the stacking direction L (pressurization step).
  • the pressure applied against the laminate it is preferable that the 0.01 kg / cm 2 or more 816kg / cm 2 or less.
  • thermoelectric conversion element 100 of the present embodiment can be obtained by housing the pressurized laminate in a vacuum furnace and heating it (heating step).
  • the heating temperature (joining temperature) is preferably 550 ° C. or higher and 570 ° C. or lower, and the heating time (joining time) is preferably 1 minute or longer and 19 minutes or lower.
  • the heating rate of the laminated body before the heating step is preferably 5 ° C./min or more and 200 ° C./min or less, and the temperature lowering rate of the laminated body after the heating step is 2 ° C./min or more and 500 ° C./min or less. The following is preferable.
  • thermoelectric conversion device 110 When forming the thermoelectric conversion device 110, in the laminate forming step, the pressurization step and the heating step are performed after assembling so that each layer has the same arrangement as the thermoelectric conversion device 110.
  • both the n-type semiconductor and the p-type semiconductor are composed of Mg 2 SiSn-based thermoelectric materials, and both semiconductors have substantially the same coefficient of linear expansion. doing. Therefore, the difference in coefficient of linear expansion in a high temperature state in the manufacturing process can be suppressed to a small value, damage to the joint portion with the electrode can be prevented, and reliability can be improved.
  • thermoelectric conversion element an aluminum-based material having a low bonding temperature is used as the bonding material. Therefore, it is possible to manufacture a thermoelectric conversion element at a temperature corresponding to the melting point (845 ° C.) and the operating temperature (400 ° C.) of Mg 2 SiSn constituting the n-type semiconductor and the p-type semiconductor. It is possible to realize the optimum joining state with suppressed damage. As a result, high output can be obtained when operating as a device.
  • thermoelectric conversion element was manufactured according to the procedure described above.
  • the materials and compositions of each semiconductor and each layer are as follows.
  • p-type semiconductor Mg 2 Si 0.25 Sn 0.65 Ge 0.1 + Ag 20000ppm + Li 5000ppm -N-side bonding layer
  • p-side bonding layer Al wax (Al: 87.2 wt%, Si: 12 wt%, Fe: 0.8 wt%)
  • First electrode, second electrode Ni
  • each component is as follows. ⁇ N-type semiconductor, p-type semiconductor: 4 mm x 4 mm x 4 mm -N-side bonding layer, p-side bonding layer: 4 mm x 4 mm x 80 ⁇ m ⁇ First electrode, second electrode: 4 mm x 4 mm x 1 mm
  • the heating temperature was 561 ° C.
  • the heating time was 20 minutes
  • the heating rate was 10 ° C./min
  • the temperature lowering rate was 5 ° C.
  • FIG. 3A is an SEM image of the junction portion of the n-type semiconductor 101, the n-side junction layer 102, and the second electrode 106 in the thermoelectric conversion element obtained after the temperature is lowered.
  • FIG. 3B is an enlarged view of the vicinity of the junction portion between the n-side junction layer 102 and the second electrode 106 in the SEM image of FIG. 3A. From these SEM images, it can be seen that the alloy layer 107 is formed between the n-side bonding layer 102 and the second electrode 106.
  • the alloy layer 107 is composed of two layers, and as a result of elemental analysis, the first layer 107A from the n-side bonding layer 102 side is composed of Al 3 Ni 2 , and the second layer 107B is composed of Al Ni.
  • the thickness of the first layer 107A of the alloy layer is 0.45 to 1.5 ⁇ m, and the thickness of the second layer 107B is 6 to 7 ⁇ m.
  • a segregated portion 108 of Sn can be seen at a part of the interface between the alloy layer 107 and the n-side bonding layer 107.
  • FIG. 4A is an SEM image of the junction portion of the p-type semiconductor 103, the p-side junction layer 102, and the second electrode 106 in the thermoelectric conversion element obtained after the temperature is lowered.
  • FIG. 4B is an enlarged view of the vicinity of the joint portion between the p-side bonding layer 102 and the second electrode 106 in the SEM image of FIG. 4A. From these SEM images, it can be seen that the alloy layer 109 is formed between the p-side bonding layer 102 and the second electrode 106.
  • the alloy layer 109 is composed of three layers, and as a result of elemental analysis, the first layer 109A is composed of Al 3 Ni 2 from the p-type semiconductor 103 side, the second layer 109B is composed of AlNi, and the third layer 109C. Is known to be composed of Ni 3 Sn 2.
  • the thickness of the first layer 109A of the alloy layer is 5.4 to 9.4 ⁇ m, the thickness of the second layer 109B is 10 to 2.1 ⁇ m, and the thickness of the third layer 109C is 0.6 ⁇ m. ing.
  • FIG. 5 is a graph showing the result.
  • the horizontal axis of the graph shows the temperature difference ⁇ T (° C.) between the first electrode 105 side and the second electrode 106 side
  • the vertical axis of the graph shows the output P (W) generated from the thermoelectric conversion element.
  • the output when the temperature difference is 0.9 ° C. is 0.91 ⁇ W
  • the output when the temperature difference is 370.1 ° C. is 0.24 W. Since the plots of all the measurement results are on almost the same curve, it can be seen that stable output characteristics are obtained.
  • thermoelectric conversion elements were manufactured as Example 2 and Comparative Examples 1 and 2 when the heating time was 20 minutes and the heating temperatures were 561 ° C., 573 ° C., and 615 ° C., respectively.
  • the conditions other than the heating time and the heating temperature were the same as in Example 1.
  • thermoelectric conversion elements of Examples 2 and Comparative Examples 1 and 2, respectively, of the present invention.
  • the heating temperatures are 573 ° C and 615 ° C, cracks and voids are generated, which is not suitable for the thermoelectric conversion element.
  • the heating temperature is 561 ° C, a good bonding interface is obtained. Has been done.
  • the heating temperature is 549 ° C., the reaction at the interface is insufficient, and the n-type semiconductor and the electrode cannot be sufficiently bonded.
  • Example 3 Comparative Examples 3 and 4
  • the thermoelectric conversion element was manufactured as Example 3 and Comparative Examples 3 and 4, respectively.
  • the conditions other than the heating time and the heating temperature were the same as in Example 1.
  • FIG. 7 (a) to 7 (c) are photographs of the junctions of n-type semiconductors in the thermoelectric conversion elements of Examples 3 and Comparative Examples 3 and 4, respectively, of the present invention.
  • the heating time is 20 minutes, many small voids are generated, but when the heating time is 5 minutes and 10 minutes, such voids are not generated.
  • the heating time is 20 minutes and 10 minutes, the bonding interface between the n-type semiconductor and the electrode has an uneven structure, but when the heating time is 5 minutes, the bonding interface is flat. It has become.
  • Example 4 Comparative Example 5
  • Thermoelectric conversion elements were manufactured as Example 4 and Comparative Example 5 when the heating temperature in the heating step was 573 ° C. and the temperature lowering rate after heating in the heating step was 5 ° C./min and 1 ° C./min, respectively.
  • the conditions other than the heating temperature and the temperature lowering rate were the same as in Example 1.
  • FIGS. 8 (a) and 8 (b) are photographs of the junctions of n-type semiconductors in the thermoelectric conversion elements of Example 4 and Comparative Example 5 of the present invention, respectively.
  • the temperature lowering rate is 1 ° C./min
  • Al wax after bonding has melted out
  • the thickness of the alloy layer is not uniform, and voids occupy 40% of the alloy layer.
  • the temperature lowering rate is 5 ° C./min
  • the alloy layer is normally formed and a good bonding interface is obtained.
  • thermoelectric conversion elements were manufactured as Example 5 and Comparative Example 6 when the heating temperatures were 561 ° C., 567 ° C., and 573 ° C., respectively.
  • the conditions other than the heating temperature were the same as in Example 1.
  • thermoelectric conversion elements 9 (a) and 9 (b) are photographs of the junctions of p-type semiconductors in the thermoelectric conversion elements of Examples 5 and 6 and Comparative Example 6 of the present invention, respectively.
  • the heating temperature is 573 ° C
  • cracks and voids occur, which makes it unsuitable for thermoelectric conversion elements.
  • the heating temperature is 561 ° C and 567 ° C
  • a good bonding interface is obtained. Has been done.
  • Thermoelectric conversion element 101 ... n-type semiconductor 101a ... First surface of n-type semiconductor 101b ... Second surface of n-type semiconductor 102 ... n-side bonding layer 102A ... First n-side bonding layer 102B ... Second n-side bonding layer 103 ... p-type semiconductor 104 ... p-side bonding layer 105 ... First electrode 105a ... One side 105b of the first electrode ... One side 106 of one electrode ... Second electrode 107 ... Alloy layer 107A ... First layer of alloy layer 107B ... Second layer of alloy layer 108 ... Segregation part 109 of Sn ... Alloy layer 109A ... Alloy layer first layer 109B ... Alloy layer second layer 109C ... Alloy layer third layer 110 ... Thermoelectric conversion device L ... Lamination direction

Abstract

本発明の熱電変換素子(100)は、n側接合層(102)を介してn型半導体の第一面(101a)に片側が接合され、p側接合層(104)を介してp型半導体の第一面(103a)に他の片側が接合された第一電極(105)と、n型半導体の第二面(101b)、p型半導体の第二面(103b)に、それぞれn側接合層(102)、p側接合層(104)を介して接合された第二電極(106)と、を備え、n型半導体(101)、p型半導体(103)が、それぞれ下記(1)、(2)式で表される組成を有し、n側接合層(102)およびp側接合層(104)が、Alを含んでいる。 MgSiSn1-a+A (1) MgSiSnGe+B (2)

Description

熱電変換素子とその製造方法、および熱電変換デバイス
 本発明は、熱電変換素子とその製造方法、および熱電変換デバイスに関する。
 本願は、2019年10月25日に、日本に出願された特願2019-194228号に基づき優先権を主張し、その内容をここに援用する。
 地球温度化対策となる省エネルギー社会を実現するため、自動車や工場から排出されている200~400℃の廃熱を有効利用する研究開発が盛んになっている。熱電変換は、ゼーベック効果を利用した熱エネルギーから電気エネルギーへの直接変換、または、ペルチェ効果を利用した電気エネルギーから熱エネルギーへの直接変換を行う技術である。例えば、熱電素子に温度差を与えると、ゼーベック効果による熱起電力を発生させることができるため、熱電変換は、廃熱からの発電を可能とする技術として注目されている。中温域で使用される熱電材料としては、希少金属や毒性を有する元素を含まないMgSiSnが注目されており、MgSiSnを用いた、熱電変換デバイスの開発が行われている。
 熱電変換デバイスを構成する熱電材料と電極との接合に、アルミニウム系材料が用いられている。アルミニウム系材料を用いるメリットとして、他の接合材(Ag系材料、Ti系材料、Ni系材料)と比較して、接合温度が低いことが挙げられる。特許文献1では、接合材料としてのアルミろうと電極の間にTi層を形成し、熱電材料と電極を接合する技術が開示されている。特許文献2~4では、Siを含む組成のMgSi系、Si-Ge系、MnSi系のシリサイドの熱電材料と電極の接合界面に、AlとNiからなる化合物、または熱電素子を構成する元素とAlの化合物層を形成し、熱電素子と電極を接合する技術が開示されている。特許文献5では、接合材料としてのNi層とNi電極の接合界面に、AlNi、AlNiを含む層を形成する技術が開示されている。
特開2006-49736号公報 特許第5931657号公報 特許第6160740号公報 特開2018-160560号公報 特開2018-152499号公報
 MgSiSnを用いた高出力デバイスの作製には、MgSiSnと電極との接合が重要な技術となる。MgSiSnの使用上限温度は400℃であり、この温度に耐えうる接合が必要となる。接合方法としては、炉中ろう付けが最適であると考えられるが、ろう付け温度は一般的に700℃付近の高い温度となっている。MgSiSnの電極接合には、活性銀ろうが多く用いられているが、接合温度が高く、銀が拡散することにより、接合界面にクラックや空隙が生じることが問題となっている。このような事情により、200~400℃の中温域を熱源とした熱電変換デバイスの実用化・製品化が困難となっている。
 本発明は上記事情に鑑みてなされたものであり、信頼性が高く、高出力を得ることが可能な熱電変換素子とその製造方法、および熱電変換デバイスを提供することを目的とする。
 上記課題を解決するため、本発明は以下の手段を採用している。
(1)本発明の一態様に係る熱電変換素子は、n型半導体と、p型半導体と、前記n型半導体の第一面、第二面にそれぞれ形成されたn側接合層と、前記p型半導体の第一面、第二面にそれぞれ形成されたp側接合層と、片側が前記n側接合層を介して前記n型半導体の第一面に接合され、他の片側が前記p側接合層を介して前記p型半導体の第一面に接合された第一電極と、前記n型半導体の第二面、前記p型半導体の第二面に、それぞれ前記n側接合層、前記p側接合層を介して接合された第二電極と、を備え、前記n型半導体が、下記(1)式で表される組成を有し、前記p型半導体が、下記(2)式で表される組成を有し、前記n側接合層および前記p側接合層が、Alを含んでいる。
 MgSiSn1-a+A    (1)
(ただし、0.25≦a<0.75であり、AはSb、Bi、Feのうち少なくとも一つを含む。)
 MgSiSnGe+B    (2)
(ただし、1.98≦m≦2.01、0<x≦0.25、0.60≦y≦0.95、z≧0、x+y+z=1、かつ-1.00x+0.40≧z≧-2.00x+0.10(0.00<x≦0.25)、-1.00y+1.00≧z≧-1.00y+0.75(0.60≦y≦0.90)、-2.00y+1.90≧z≧-1.00y+0.75(0.90<y≦0.95)であり、Bは、1A族のアルカリ金属、Au、Ag、Cu、Zn、Ca、Gaのうち少なくとも一つを含む。)
(2)前記(1)に記載の熱電変換素子において、前記n側接合層と前記p側接合層の少なくとも一方に、Snが含まれていることが好ましい。
(3)前記(1)または(2)のいずれかに記載の熱電変換素子において、前記p側接合層が、第一電極側に、前記第一電極の構成材料とAlの少なくとも一方を含む第一p側合金層を有し、第二電極側に、前記第二電極の構成材料とAlの少なくとも一方を含む第二p側合金層を有することが好ましい。
(4)前記(1)~(3)のいずれか一つに記載の熱電変換素子において、前記n側接合層が、第一電極側に、前記第一電極の構成材料とAlの少なくとも一方を含む第一n側合金層を有し、第二電極側に、前記第二電極の構成材料とAlの少なくとも一方を含む第二n側合金層を有することが好ましい。
(5)前記(1)~(4)のいずれか一つに記載の熱電変換素子において、前記第一電極、前記第二電極が、Niを主成分として含み、前記n側接合層が、前記第一電極側または前記第二電極側から順に、AlNi層、AlNi層を有し、前記p側接合層が、前記第一電極側または前記第二電極側から順に、NiSn層、AlNi層、AlNi層を有することが好ましい。
(6)前記(1)~(5)のいずれか一つに記載の熱電変換素子において、前記n側接合層および前記p側接合層におけるSiの含有比率が、2wt%以上15wt%以下であることが好ましい。
(7)本発明の一態様に係る熱電変換デバイスは、前記(1)~(6)のいずれか一つに記載の熱電変換素子が、複数連結されてなる熱電変換デバイスであって、隣接する二つの前記熱電変換素子が、前記第二電極を共有し、隣接する二つの前記熱電変換素子のうち、一方を構成する前記n側接合層と、他方を構成する前記p側接合層とが、共有する前記第二電極を挟んで連結されている。
(8)本発明の一態様に係る熱電変換素子の製造方法は、前記(1)~(6)のいずれか一つに記載の熱電変換素子の製造方法であって、前記n型半導体の前記第一面、前記第二面に対して、それぞれ、第一n側接合層、第二n側接合層を配置し、前記p型半導体の前記第一面、前記第二面に対して、それぞれ、第一p側接合層、第二p側接合層を配置し、前記第一n側接合層および前記第一p側接合層に対して、両接合層を跨ぐように第一電極を配置し、前記第二n側接合層、前記第二p側接合層に対して、それぞれ、二つの前記第二電極のうち一方、他方を配置してなる、積層体を形成する積層体形成工程と、前記積層体に対し、積層方向における両側から加圧する加圧工程と、加圧された前記積層体を加熱する加熱工程と、を有し、前記加熱工程において、加熱温度を550℃以上640℃以下とし、加熱時間を1分以上60分以下とする。
(9)前記(8)に記載の熱電変換素子の製造方法において、前記加熱工程後の前記積層体の降温速度を、2℃/min以上500℃/min以下とすることが好ましい。
(10)前記(8)または(9)のいずれかに記載の熱電変換素子の製造方法において、前記加熱工程前の前記積層体の昇温速度を、5℃/min以上200℃/min以下とすることが好ましい。
(11)前記(8)~(10)のいずれか一つに記載の熱電変換素子の製造方法の前記加圧工程において、前記積層体に対して加える圧力を、0.01kg/cm以上816kg/cm以下とすることが好ましい。
 本発明によれば、信頼性が高く、高出力を得ることが可能な熱電変換素子とその製造方法、および熱電変換デバイスを提供することができる。
本発明の一実施形態に係る熱電変換素子の平面図である。 図1の熱電変換素子を複数連結した熱電変換デバイスの斜視図である。 (a)本発明の実施例1の熱電変換素子における、n型半導体、接合層、電極の接合部分のSEM画像である。(b)(a)のSEM画像のうち、接合層と電極の接合部分の近傍を拡大したものである。 (a)本発明の実施例1の熱電変換素子における、p型半導体、接合層、電極の接合部分のSEM画像である。(b)(a)のSEM画像のうち、接合層と電極の接合部分の近傍を拡大したものである。 実施例1の熱電変換素子によって得られる、出力特性の測定結果を示すグラフである。 (a)~(c)本発明の実施例2、比較例1、2の熱電変換素子における、n型半導体の接合部の写真である。 (a)~(c)本発明の実施例3、比較例3、4の熱電変換素子における、n型半導体の接合部の写真である。 (a)、(b)本発明の実施例4、比較例5の熱電変換素子における、n型半導体の接合部の写真である。 (a)~(c)本発明の実施例5、6、比較例6の熱電変換素子における、p型半導体の接合部の写真である。
 以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
 図1は、本発明の一実施形態に係る、π型の熱電変換素子100の構成を、模式的に示す平面図である。熱電変換素子100は、主に、n型半導体101と、二つのn側接合層102と、p型半導体103と、二つのp側接合層104と、第一電極105と、二つの第二電極106と、を備えている。n型半導体101は、n側接合層102を介して、第一電極105、第二電極106に接合されており、p型半導体103は、p側接合層104を介して、第一電極105、第二電極106に接合されている。
(以下では、n型半導体101、n側接合層102、p型半導体103、p側接合層104、第一電極105と、第二電極106について、それぞれ半導体101、接合層102、半導体103、接合層104、電極105、電極106と呼ぶことがある。)
 n型半導体101は、下記(1)式で表される組成を有する。
  MgSiSn1-a+A   (1)
 ただし、0.25≦a<0.75であり、AはSb、Bi、Feのうち少なくとも一つを含む。
 p型半導体103は、下記(2)式で表される組成を有する。
  MgSiSnGe+B   (2)
 ただし、1.98≦m≦2.01、0<x≦0.25、0.60≦y≦0.95、z≧0、x+y+z=1、かつ-1.00x+0.40≧z≧-2.00x+0.10(0.00<x≦0.25)、-1.00y+1.00≧z≧-1.00y+0.75(0.60≦y≦0.90)、-2.00y+1.90≧z≧-1.00y+0.75(0.90<y≦0.95)であり、Bは、1A族のアルカリ金属、Au、Ag、Cu、Zn、Ca、Gaのうち少なくとも一つを含む。
 n側接合層102は、n型半導体101の表面うち、一方の主面(第一面)101a、および他方の主面(第二面)101bに形成されている。p側接合層103は、p型半導体103の表面うち、一方の主面(第一面)103a、および他方の主面(第二面)103bに形成されている。n側接合層102、p側接合層104の厚みは、いずれも5μm以上500μm以下であることが好ましく、80μm程度であればより好ましい。
 n側接合層102、p側接合層104の材料としては、例えば、Al(アルミニウム)、Ag(銀)、Ti(チタン)、Ni(ニッケル)、あるいは、それらを80w%以上含む合金(Alろう、銀ろう、チタンろう、ニッケルろう)等が挙げられる。これらの中でも、接合温度が低いAlろうが特に好ましい。AlろうのAl以外の組成材料としては、例えば、Si、Fe、Mg、Cu、Mn、Cr、Zn、Ti、Bi等が挙げられる。AlろうをAl、Si、Feで構成する場合のAlろうの組成比は、一例として、Al:87.2wt%、Si:12wt%、Fe:0.8wt%とすることができる。
 n型半導体101を、第一電極105、第二電極106と接合するための加熱温度(接合温度)は、n側接合層102におけるSiの含有比率に比例する。同様に、p型半導体103を、第一電極105、第二電極106と接合するための加熱温度は、p側接合層104におけるSiの含有比率に比例する。そのため、このSiの含有比率を調整することにより、好適な接合温度を実現することができる。具体的には、Siの含有比率が11wt%以上13wt%以下であれば、接合温度を550℃~640℃程度とすることができ、信頼性が高く、デバイスとして動作させた際に高出力を得ることが可能な接合状態を実現することができる。
 n側接合層102は、第一電極105側の界面近傍に、第一電極105の構成材料と、Alとの少なくとも一方を含む第一n側合金層(不図示)を有することがある。同様に、n側接合層102は、第二電極側の界面近傍に、前記第二電極の構成材料とAlの少なくとも一方を含む第二n側合金層(不図示)を有することがある(後述する実施例参照)。
第一n側合金層、第二n側合金層がある場合、積層方向における組成の変化が緩やかになるため、応力緩和の効果が得られると考えられ、第一電極105、第二電極106の剥がれの問題を防ぐことができ、信頼性を高めることができる。
 p側接合層104は、第一電極105側の界面近傍に、第一電極105の構成材料と、Alとの少なくとも一方を含む第一p側合金層(不図示)を有することがある。同様に、p側接合層104は、第二電極106側の界面近傍に、第二電極106の構成材料と、Alとの少なくとも一方を含む第二p側合金層(不図示)を有することがある(後述する実施例参照)。第一p側合金層、第二p側合金層がある場合、積層方向における組成の変化が緩やかになるため、応力緩和の効果が得られると考えられ、第一電極105、第二電極106の剥がれの問題を防ぐことができ、信頼性を高めることができる。
 一例として、第一電極105、第二電極106が、Niを主成分として含む場合には、これらと接するn側接合層102、p側接合層104の界面近傍に、Niが染み出すように分布し、NiとAlの合金層が形成される。この場合、n側接合層102は、第一電極105側または第二電極106側(接合界面)から順に、AlNi層、AlNi層を有することになる。また、p側接合層104は、第一電極105側または前記第二電極106側(接合界面)から順に、NiSn層、AlNi層、AlNi層を有することになる。
 n側接合層102とp側接合層104の少なくとも一方に、Sn(スズ)が含まれていることが好ましい。Snが含まれていることにより、クラック等の発生が抑えられ、半導体102、103と電極105、106との接合状態を向上させることができる。Snが含まれた状態は、例えば、半導体102、103を構成する一部のSnが、加熱工程において活性化されてフリーになり、接合層102、104を貫通し、最終的に、電極105、106の界面近傍の合金層に、偏析することによって実現する。(Snの偏析のさせ方は、このプロセスに沿っていなくてもよい。)実際には、n型半導体101に比べて、p型半導体103の方が融点が低く、Snがフリーになりやすいため、n側接合層102に比べて、p側接合層104に対し、より高い頻度でSnが偏析されることになる。
 第一電極105、二つの第二電極106(106A、106B)は、形状が限定されることはないが、平板状であることが好ましい。第一電極105は、片側105a(ここでは左側)が、n側接合層102を介してn型半導体の第一面101aに接合されており、他の片側105b(ここでは右側)が、p側接合層104を介してp型半導体の第一面103aに接合されている。一方の第二電極106Aは、片側(ここでは右側)が、n側接合層102を介してn型半導体の第二面101bに接合され、他方の第二電極106Bは、片側(ここでは左側)が、p側接合層104を介してp型半導体の第二面103bに接合されている。
 第一電極105、第二電極106の材料としては、例えば、Ni、Cu、Ti、Fe、Au、Ag、Al等が挙げられるが、熱電変換素子の製造過程においては500℃以上の高い温度での加熱が必要になるため、高い耐熱性を有するNiが好ましい。
 図2は、熱電変換素子100を複数連結した熱電変換デバイス110の斜視図である。隣接する二つの熱電変換素子100が、第二電極106を共有している。隣接する二つの熱電変換素子100のうち、一方を構成するn側接合層101と、他方を構成するp側接合層103とが、共有する第二電極106を挟んで連結されている。
 本実施形態の熱電変換素子100は、主に、次の手順を経て製造することができる。
 初めに、n型半導体101、n側接合層102、p型半導体103、p側接合層104、第一電極105、第二電極106を、完成状態の熱電変換素子100の積層順と揃うように積層し(組み立てて)、積層体を形成する(積層体形成工程)。
 具体的には、n型半導体101の第一面101a、第二面101bに対して、それぞれ、第一n側接合層102A、第二n側接合層102Bを配置する。同様に、p型半導体103の第一面103a、第二面103bに対して、それぞれ、第一p側接合層104A、第二p側接合層104Bを配置する。
 その上で、第一n側接合層102Aおよび第一p側接合層104Aに対して、両接合層を跨ぐように第一電極105を配置する。つまり、第一電極105を、片側が第一n側接合層102Aに接するように、かつ他の片側が第一p側接合層104Aに接するように配置する。
 また、第二n側接合層102B、第二p側接合層104Bに対して、それぞれ、二つの第二電極106のうち一方(ここでは左側)の第二電極106A、他方(ここでは右側)の第二電極106Bを配置する。つまり、一方の第二電極106Aを、片側が第二n側接合層102Bに接するように配置し、他方の第二電極106Bを、片側が第二p側接合層104Bに接するように配置する。
 次に、形成した積層体に対し、各層の配置を固定するために、積層方向Lにおける両側から加圧(押圧)する(加圧工程)。積層体に対して加える圧力は、0.01kg/cm以上816kg/cm以下とすることが好ましい。
 最後に、加圧した積層体を、真空炉に収容して加熱する(加熱工程)ことによって、本実施形態の熱電変換素子100を得ることができる。加熱温度(接合温度)は550℃以上570℃以下とし、加熱時間(接合時間)は1分以上19分以下とすることが好ましい。加熱工程前の前記積層体の昇温速度は、5℃/min以上200℃/min以下とすることが好ましく、加熱工程後の前記積層体の降温速度は、2℃/min以上500℃/min以下とすることが好ましい。
 熱電変換デバイス110を形成する場合には、積層体形成工程において、各層が熱電変換デバイス110と同様の配置となるように、組み立てを行った上で、加圧工程、加熱工程を行う。
 以上のように、本実施形態に係る熱電変換素子は、n型半導体とp型半導体が、いずれもMgSiSn系の熱電材料で構成されており、両半導体がほぼ同等の線膨張係数を有している。そのため、製造過程の高温状態における線膨張係数差を小さく抑えることができ、電極との接合部分の破損を防ぐことができ、信頼性を高めることができる。
 また、本実施形態に係る熱電変換素子では、接合材として、接合温度が低いアルミニウム系の材料が用いられている。そのため、n型半導体とp型半導体を構成するMgSiSnの融点(845℃)、および使用温度(400℃)に対応した温度での、熱電変換素子の製造が可能であり、熱によるクラック等のダメージを抑えた最適な接合状態を実現することができる。その結果として、デバイスとして動作させた際に、高い出力を得ることができる。
 以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
(実施例1)
 上述した手順に沿って、熱電変換素子を製造した。各半導体と各層の材料および組成は、次の通りとした。
・n型半導体:MgSi0.5Sn0.5+Sb10000ppm・p型半導体:MgSi0.25Sn0.65Ge0.1+Ag20000ppm+Li5000ppm
・n側接合層、p側接合層:Alろう
     (Al:87.2wt%、Si:12wt%、Fe:0.8wt%)
・第一電極、第二電極:Ni
 また、各構成要素の寸法は次の通りとした。
・n型半導体、p型半導体:4mm×4mm×4mm
・n側接合層、p側接合層:4mm×4mm×80μm
・第一電極、第二電極:4mm×4mm×1mm
 これらを積層し、積層方向に加圧した上で、加熱を行った。加熱温度(接合温度)を561℃、加熱時間(接合時間)を20分、昇温速度を10℃/min、降温速度を5℃とした。
 図3(a)は、降温後に得られた熱電変換素子における、n型半導体101、n側接合層102、第二電極106の接合部分のSEM画像である。図3(b)は、図3(a)のSEM画像のうち、n側接合層102と第二電極106の接合部分の近傍を拡大したものである。これらのSEM画像から、n側接合層102と第二電極106との間に、合金層107が形成されていることが分かる。合金層107は二つの層で構成されており、元素分析の結果、n側接合層102側から一層目107AがAlNiで構成され、二層目107BがAlNiで構成されていることが分かっている。合金層の一層目107Aの厚みは0.45~1.5μmとなっており、二層目107Bの厚みは6~7μmとなっている。合金層107とn側接合層107の界面の一部に、Snの偏析部108が見られる。
 図4(a)は、降温後に得られた熱電変換素子における、p型半導体103、p側接合層102、第二電極106の接合部分のSEM画像である。図4(b)は、図4(a)のSEM画像のうち、p側接合層102と第二電極106の接合部分の近傍を拡大したものである。これらのSEM画像から、p側接合層102と第二電極106との間に、合金層109が形成されていることが分かる。合金層109は三つの層で構成されており、元素分析の結果、p型半導体103側から一層目109AがAlNiで構成され、二層目109BがAlNiで構成され、三層目109CがNiSnで構成されていることが分かっている。合金層の一層目109Aの厚みは5.4~9.4μmとなっており、二層目109Bの厚みは10~2.1μmとなっており、三層目109Cの厚みは0.6μmとなっている。
 得られた熱電変換素子の出力特性を測定した。図5は、その結果を示すグラフである。
グラフの横軸は、第一電極105側と第二電極106側との温度差ΔT(℃)を示しており、グラフの縦軸は、熱電変換素子から発生する出力P(W)を示している。温度差が0.9℃のときの出力は0.91μWとなり、温度差が370.1℃のときの出力は0.24Wとなっている。いずれの測定結果のプロットも、ほぼ同一の曲線に載っていることから、安定した出力特性が得られていることが分かる。
(実施例2、比較例1、2)
 加熱工程において、加熱時間を20分とし、加熱温度を561℃、573℃、615℃とした場合について、それぞれ実施例2、比較例1、2として、熱電変換素子を製造した。加熱時間、加熱温度以外の条件については、実施例1と同様とした。
 図6(a)~(c)は、それぞれ、本発明の実施例2、比較例1、2の熱電変換素子における、n型半導体の接合部の写真である。加熱温度を573℃、615℃とした場合には、クラックやボイドが生じており、熱電変換素子に適していない状態となっているが、561℃とした場合には、良好な接合界面が得られている。なお、ここには開示していないが、加熱温度を549℃とした場合には、界面の反応が不十分であり、n型半導体と電極とを十分に接合することができていない。
(実施例3、比較例3、4)
 加熱工程において、加熱温度を573℃とし、加熱時間を5分、10分、20分とした場合について、それぞれ実施例3、比較例3、4として、熱電変換素子を製造した。加熱時間、加熱温度以外の条件については、実施例1と同様とした。
 図7(a)~(c)は、それぞれ、本発明の実施例3、比較例3、4の熱電変換素子における、n型半導体の接合部の写真である。加熱時間を20分とした場合には小さなボイドが多数発生しているが、加熱時間を5分、10分にした場合には、こうしたボイドは発生していない。また、加熱時間を20分、10分とした場合には、n型半導体と電極の接合界面が凹凸構造を有しているが、加熱時間を5分にした場合には、当該接合界面が平坦になっている。
(実施例4、比較例5)
 加熱工程における加熱温度を573℃とし、加熱工程の加熱後の降温速度を5℃/min、1℃/minとした場合について、それぞれ実施例4、比較例5として、熱電変換素子を製造した。加熱温度、降温速度以外の条件については、実施例1と同様とした。
 図8(a)、(b)は、それぞれ、本発明の実施例4、比較例5の熱電変換素子における、n型半導体の接合部の写真である。降温速度を1℃/minとした場合、接合後のAlろうが溶け出しており、合金層の厚みが均一になっておらず、また、ボイドが合金層の40%を占めている。これに対し、降温速度を5℃/minとした場合には、合金層が正常に形成されており、良好な接合界面が得られている。
(実施例5、6、比較例6)
 加熱工程において、加熱温度を561℃、567℃、573℃とした場合について、それぞれ実施例5、比較例6として、熱電変換素子を製造した。加熱温度以外の条件については、実施例1と同様とした。
 図9(a)、(b)は、それぞれ、本発明の実施例5、6、比較例6の熱電変換素子における、p型半導体の接合部の写真である。加熱温度を573℃とした場合には、クラックやボイドが生じており、熱電変換素子に適していない状態となっているが、561℃、567℃とした場合には、良好な接合界面が得られている。
100・・・熱電変換素子
101・・・n型半導体
101a・・・n型半導体の第一面
101b・・・n型半導体の第二面
102・・・n側接合層
102A・・・第一n側接合層
102B・・・第二n側接合層
103・・・p型半導体
104・・・p側接合層
105・・・第一電極
105a・・・第一電極の片側
105b・・・第一電極の他の片側
106・・・第二電極
107・・・合金層
107A・・・合金層の一層目
107B・・・合金層の二層目
108・・・Snの偏析部
109・・・合金層
109A・・・合金層の一層目
109B・・・合金層の二層目
109C・・・合金層の三層目
110・・・熱電変換デバイス
L・・・積層方向

Claims (11)

  1.  n型半導体と、
     p型半導体と、
     前記n型半導体の第一面、第二面にそれぞれ形成されたn側接合層と、
     前記p型半導体の第一面、第二面にそれぞれ形成されたp側接合層と、
     片側が前記n側接合層を介して前記n型半導体の第一面に接合され、他の片側が前記p側接合層を介して前記p型半導体の第一面に接合された第一電極と、
     前記n型半導体の第二面、前記p型半導体の第二面に、それぞれ前記n側接合層、前記p側接合層を介して接合された第二電極と、を備え、
     前記n型半導体が、下記(1)式で表される組成を有し、
     前記p型半導体が、下記(2)式で表される組成を有し、
     前記n側接合層および前記p側接合層が、Alを含んでいることを特徴とする熱電変換素子。
     MgSiSn1-a+A    (1)
    (ただし、0.25≦a<0.75であり、AはSb、Bi、Feのうち少なくとも一つを含む。)
     MgSiSnGe+B    (2)
    (ただし、1.98≦m≦2.01、0<x≦0.25、0.60≦y≦0.95、z≧0、かつx+y+z=1、-1.00x+0.40≧z≧-2.00x+0.10(0.00<x≦0.25)、-1.00y+1.00≧z≧-1.00y+0.75(0.60≦y≦0.90)、-2.00y+1.90≧z≧-1.00y+0.75(0.90<y≦0.95)であり、Bは、1A族のアルカリ金属、Au、Ag、Cu、Zn、Ca、Gaのうち少なくとも一つを含む。)
  2.  前記n側接合層と前記p側接合層の少なくとも一方に、Snが含まれていることを特徴とする請求項1に記載の熱電変換素子。
  3.  前記p側接合層が、第一電極側に、前記第一電極の構成材料とAlの少なくとも一方を含む第一p側合金層を有し、第二電極側に、前記第二電極の構成材料とAlの少なくとも一方を含む第二p側合金層を有することを特徴とする請求項1または2のいずれかに記載の熱電変換素子。
  4.  前記n側接合層が、第一電極側に、前記第一電極の構成材料とAlの少なくとも一方を含む第一n側合金層を有し、第二電極側に、前記第二電極の構成材料とAlの少なくとも一方を含む第二n側合金層を有することを特徴とする1~3のいずれか一項に記載の熱電変換素子。
  5.  前記第一電極、前記第二電極が、Niを主成分として含み、
     前記n側接合層が、前記第一電極側または前記第二電極側から順に、AlNi層、AlNi層を有し、
     前記p側接合層が、前記第一電極側または前記第二電極側から順に、NiSn層、AlNi層、AlNi層を有することを特徴とする請求項1~4のいずれか一項に記載の熱電変換素子。
  6.  前記n側接合層および前記p側接合層におけるSiの含有比率が、2wt%以上15wt%以下であることを特徴とする請求項1~5のいずれか一項に記載の熱電変換素子。
  7.  請求項1~6のいずれか一項に記載の熱電変換素子が、複数連結されてなる熱電変換デバイスであって、
     隣接する二つの前記熱電変換素子が、前記第二電極を共有し、
     隣接する二つの前記熱電変換素子のうち、一方を構成する前記n側接合層と、他方を構成する前記p側接合層とが、共有する前記第二電極を挟んで連結されていることを特徴とする熱電変換デバイス。
  8.  請求項1~6のいずれか一項に記載の熱電変換素子の製造方法であって、
     前記n型半導体の前記第一面、前記第二面に対して、それぞれ、第一n側接合層、第二n側接合層を配置し、
     前記p型半導体の前記第一面、前記第二面に対して、それぞれ、第一p側接合層、第二p側接合層を配置し、
     前記第一n側接合層および前記第一p側接合層に対して、両接合層を跨ぐように第一電極を配置し、
     前記第二n側接合層、前記第二p側接合層に対して、それぞれ、二つの前記第二電極のうち一方、他方を配置してなる、積層体を形成する積層体形成工程と、
     前記積層体に対し、積層方向における両側から加圧する加圧工程と、
     加圧された前記積層体を加熱する加熱工程と、を有し、
     前記加熱工程において、加熱温度を550℃以上640℃以下とし、加熱時間を1分以上60分以下とすることを特徴とする熱電変換素子の製造方法。
  9.  前記加熱工程後の前記積層体の降温速度を、2℃/min以上500℃/min以下とすることを特徴とする請求項8に記載の熱電変換素子の製造方法。
  10.  前記加熱工程前の前記積層体の昇温速度を、5℃/min以上200℃/min以下とすることを特徴とする請求項8または9のいずれかに記載の熱電変換素子の製造方法。
  11.  前記加圧工程において、前記積層体に対して加える圧力を、0.01kg/cm以上816kg/cm以下とすることを特徴とする請求項8~10のいずれか一項に記載の熱電変換素子の製造方法。
PCT/JP2020/034386 2019-10-25 2020-09-11 熱電変換素子とその製造方法、および熱電変換デバイス WO2021079644A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20878073.4A EP4050669A4 (en) 2019-10-25 2020-09-11 THERMOELECTRIC CONVERSION ELEMENT AND PRODUCTION METHOD THEREOF AND THERMOELECTRIC CONVERSION DEVICE
JP2021554147A JPWO2021079644A1 (ja) 2019-10-25 2020-09-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-194228 2019-10-25
JP2019194228 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021079644A1 true WO2021079644A1 (ja) 2021-04-29

Family

ID=75619790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034386 WO2021079644A1 (ja) 2019-10-25 2020-09-11 熱電変換素子とその製造方法、および熱電変換デバイス

Country Status (3)

Country Link
EP (1) EP4050669A4 (ja)
JP (1) JPWO2021079644A1 (ja)
WO (1) WO2021079644A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913657B2 (ja) 1978-04-20 1984-03-31 松下電器産業株式会社 加熱装置
JPS6160740B2 (ja) 1979-08-02 1986-12-22 Nichirin Rubber Ind
JP2006049736A (ja) 2004-08-09 2006-02-16 Komatsu Ltd 熱電モジュール
WO2016052272A1 (ja) * 2014-10-03 2016-04-07 株式会社ミツバ p型熱電材料、熱電素子およびp型熱電材料の製造方法
JP2017107925A (ja) * 2015-12-08 2017-06-15 日立化成株式会社 熱電変換モジュールおよびその製造方法
WO2018066657A1 (ja) * 2016-10-06 2018-04-12 株式会社ミツバ 熱電材料
JP2018152499A (ja) 2017-03-14 2018-09-27 三菱マテリアル株式会社 熱電変換モジュール及びその製造方法
JP2018160560A (ja) 2017-03-23 2018-10-11 日立化成株式会社 熱電変換モジュールおよびその製造方法
JP2019194228A (ja) 2013-08-14 2019-11-07 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 疼痛を制御するための組成物及び方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5274146B2 (ja) * 2008-08-08 2013-08-28 独立行政法人物質・材料研究機構 マグネシウム、珪素、スズからなる熱電半導体およびその製造方法
FR2982996B1 (fr) * 2011-11-23 2013-12-27 Valeo Systemes Thermiques Dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile, et procede de fabrication dudit dispositif.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913657B2 (ja) 1978-04-20 1984-03-31 松下電器産業株式会社 加熱装置
JPS6160740B2 (ja) 1979-08-02 1986-12-22 Nichirin Rubber Ind
JP2006049736A (ja) 2004-08-09 2006-02-16 Komatsu Ltd 熱電モジュール
JP2019194228A (ja) 2013-08-14 2019-11-07 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 疼痛を制御するための組成物及び方法
WO2016052272A1 (ja) * 2014-10-03 2016-04-07 株式会社ミツバ p型熱電材料、熱電素子およびp型熱電材料の製造方法
JP2017107925A (ja) * 2015-12-08 2017-06-15 日立化成株式会社 熱電変換モジュールおよびその製造方法
WO2018066657A1 (ja) * 2016-10-06 2018-04-12 株式会社ミツバ 熱電材料
JP2018152499A (ja) 2017-03-14 2018-09-27 三菱マテリアル株式会社 熱電変換モジュール及びその製造方法
JP2018160560A (ja) 2017-03-23 2018-10-11 日立化成株式会社 熱電変換モジュールおよびその製造方法

Also Published As

Publication number Publication date
JPWO2021079644A1 (ja) 2021-04-29
EP4050669A4 (en) 2023-10-25
EP4050669A1 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
EP2377175B1 (en) Method for fabricating thermoelectric device
KR102094995B1 (ko) 열전모듈, 이를 구비한 열전장치, 및 열전모듈의 제조방법
US8841540B2 (en) High temperature thermoelectrics
JP6078438B2 (ja) 熱電発電モジュール
WO2010050455A1 (ja) 熱電モジュール
JP2009099686A (ja) 熱電変換モジュール
WO2013076765A1 (ja) 熱電変換モジュール
WO2010111462A2 (en) Thermoelectric device, electrode materials and method for fabricating thereof
JP2007109942A (ja) 熱電モジュール及び熱電モジュールの製造方法
US10224472B2 (en) Thermoelectric power module
WO2017098863A1 (ja) 熱電変換モジュールおよびその製造方法
US20220230935A1 (en) Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board
JP5463204B2 (ja) 熱電素子およびその製造方法、ならびに熱電モジュール
US10026708B2 (en) Strong, heat stable junction
JP2003092435A (ja) 熱電モジュール及びその製造方法
TW201448294A (zh) 使用直接接合之熱電元件製造
US20130139866A1 (en) Ceramic Plate
WO2010007729A1 (ja) 熱発電デバイスの製造方法
JPH06342940A (ja) 熱発電器およびその製造方法
WO2021079644A1 (ja) 熱電変換素子とその製造方法、および熱電変換デバイス
JP2006237547A (ja) 熱電変換モジュール、これを用いた発電装置及び冷却装置
JP2018160560A (ja) 熱電変換モジュールおよびその製造方法
JP6850988B2 (ja) 熱電変換モジュール
JP4917375B2 (ja) パワー半導体モジュールの製造方法
WO2016088762A2 (ja) シリサイド系熱電発電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554147

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17769352

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020878073

Country of ref document: EP

Effective date: 20220525