WO2018062482A1 - 半導体装置の製造方法および実装装置 - Google Patents

半導体装置の製造方法および実装装置 Download PDF

Info

Publication number
WO2018062482A1
WO2018062482A1 PCT/JP2017/035469 JP2017035469W WO2018062482A1 WO 2018062482 A1 WO2018062482 A1 WO 2018062482A1 JP 2017035469 W JP2017035469 W JP 2017035469W WO 2018062482 A1 WO2018062482 A1 WO 2018062482A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
bonding
semiconductor chips
semiconductor
press
Prior art date
Application number
PCT/JP2017/035469
Other languages
English (en)
French (fr)
Inventor
智宣 中村
前田 徹
Original Assignee
株式会社新川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新川 filed Critical 株式会社新川
Priority to US16/337,925 priority Critical patent/US10847434B2/en
Priority to KR1020197012051A priority patent/KR102147683B1/ko
Priority to CN201780073516.0A priority patent/CN110024093A/zh
Publication of WO2018062482A1 publication Critical patent/WO2018062482A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67121Apparatus for making assemblies not otherwise provided for, e.g. package constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/115Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16147Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a bonding area disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16237Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81053Bonding environment
    • H01L2224/8109Vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81053Bonding environment
    • H01L2224/81091Under pressure
    • H01L2224/81092Atmospheric pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81905Combinations of bonding methods provided for in at least two different groups from H01L2224/818 - H01L2224/81904
    • H01L2224/81907Intermediate bonding, i.e. intermediate bonding step for temporarily bonding the semiconductor or solid-state body, followed by at least a further bonding step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/8309Vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83091Under pressure
    • H01L2224/83092Atmospheric pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83905Combinations of bonding methods provided for in at least two different groups from H01L2224/838 - H01L2224/83904
    • H01L2224/83907Intermediate bonding, i.e. intermediate bonding step for temporarily bonding the semiconductor or solid-state body, followed by at least a further bonding step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/9205Intermediate bonding steps, i.e. partial connection of the semiconductor or solid-state body during the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06565Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices having the same size and there being no auxiliary carrier between the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector

Definitions

  • the present invention relates to a manufacturing method for manufacturing a semiconductor device by stacking a plurality of semiconductor chips and a semiconductor chip mounting apparatus.
  • Patent Document 1 discloses a technique for stacking and mounting a plurality of semiconductor chips.
  • a thermosetting adhesive film is laminated in advance on a bump forming surface of a semiconductor chip.
  • a plurality of semiconductor chips are sequentially stacked on a substrate or another semiconductor chip while temporarily pressing to form a multistage temporary pressing laminate.
  • the multi-stage temporary press-bonded laminate is pressed and heated from above, thereby performing a main press-bonding step for melting the bumps and curing the thermosetting adhesive film.
  • target number of layers the number of stacked semiconductor chips
  • the semiconductor on the lower layer side The chip may not be mounted properly. That is, in this press-bonding, the multistage temporary press-bonded laminate is heated by pressing a heated heat tool against the uppermost surface of the multistage temporary press-bonded stack. A thermal gradient occurs from the top to the bottom due to heat conduction.
  • the semiconductor chip on the lower layer side may not be sufficiently heated. In this case, since the bumps of the lower semiconductor chip are not sufficiently melted or the thermosetting adhesive film is not sufficiently cured, the lower semiconductor chip is not properly mounted.
  • an object of the present invention is to provide a semiconductor device manufacturing method and a mounting apparatus capable of appropriately mounting each semiconductor chip even when the number of stacked semiconductor chips is large.
  • the mounting method of the present invention is a manufacturing method for manufacturing a semiconductor device by stacking a predetermined target number of semiconductor chips on a substrate, and sequentially mounting one or more semiconductor chips on the substrate.
  • the second stacking step and the second final crimping are performed until the total number of stacked semiconductor chips reaches the target stacking number. Repeat the process.
  • a plurality of arrangement regions are set on the substrate, and in the first stacking step and the first final crimping step, one semiconductor chip is temporarily crimped and finally crimped.
  • the second lamination step is performed after the first main crimping step is performed in all the arrangement regions.
  • Another mounting apparatus is a mounting apparatus that stacks and mounts a predetermined target number of semiconductor chips on a substrate, and the semiconductor chip is disposed on the substrate or a lower semiconductor chip.
  • a temporary press-bonding means for press-bonding by heating with a first load while heating at a first temperature from above, and a chip stack, which is a stack of one or more semiconductor chips, from above, higher than the first temperature By applying pressure with a second load while heating at the second temperature, the main pressure bonding means for collectively pressure bonding one or more semiconductor chips constituting the chip stack, and the temporary pressure bonding means and the main pressure bonding means are controlled.
  • the first chip A first final crimping process in which the one or more semiconductor chips constituting the layered body are finally crimped together by the permanent crimping means, and two or more semiconductor chips are sequentially placed on the temporary crimped semiconductor chip.
  • the second final crimping process is performed by the temporary crimping unit and the final crimping unit.
  • Another mounting device is a mounting device for stacking and mounting a predetermined target number of semiconductor chips on a substrate, and mounting the semiconductor chip disposed on the substrate or a lower semiconductor chip.
  • the chip laminated body that is a laminated body of one or more semiconductor chips is heated from the upper side at the second temperature higher than the first temperature.
  • the control unit includes a bonding unit that collectively press-bonds one or more semiconductor chips constituting the chip stacked body by pressurizing with a second load while heating, and a control unit that controls the bonding unit.
  • the first stack processing unit for forming a first chip stack by sequentially pressing one or more semiconductor chips on the substrate by the bonding unit sequentially, and the first chip stack
  • a first final crimping unit that collectively press-bonds the one or more semiconductor chips to be formed at once by the bonding unit, and two or more semiconductor chips are sequentially provisionally bonded by the bonding unit on the finally-bonded semiconductor chip.
  • a second stacking unit that forms a second chip stack and a two-semiconductor chip that constitutes the second chip stack are collectively bonded together by the bonding unit by laminating while pressing. And a main pressure bonding processing section.
  • the stacking step and the main pressing step are repeated at least twice. For this reason, it is not necessary to perform final pressure bonding of the semiconductor chips having the target number of layers at once, and the semiconductor chips on the lower layer side can also be reliably heated. As a result, when semiconductor chips are stacked and mounted, each semiconductor chip can be mounted appropriately even if the number of stacked layers is large.
  • FIG. 1 It is a figure which shows the structure of the mounting apparatus which is embodiment of this invention. It is a schematic perspective view of the semiconductor wafer which functions as a substrate. It is a figure which shows the structure of the semiconductor chip mounted. It is a figure which shows the structure of a semiconductor device. It is a figure which shows the flow which laminates
  • FIG. 1 is a schematic configuration diagram of a mounting apparatus 100 according to an embodiment of the present invention.
  • the mounting apparatus 100 is an apparatus for mounting the semiconductor chip 10 on the substrate 30.
  • the mounting apparatus 100 has a particularly suitable configuration when a plurality of semiconductor chips 10 are stacked and mounted.
  • the mounting apparatus 100 includes a chip supply unit 102, a chip transport unit 104, a bonding unit 106, and a control unit (not shown) that controls driving of these units.
  • the chip supply unit 102 is a part that takes out the semiconductor chip 10 from the chip supply source and supplies it to the chip transport unit 104.
  • the chip supply unit 102 includes a protrusion 110, a die picker 114, a transfer head 116, and a control unit 130 that controls each part of the mounting apparatus.
  • the plurality of semiconductor chips 10 are placed on the dicing tape TE. At this time, the semiconductor chip 10 is placed in a face-up state with the bumps 18 facing upward.
  • the protruding portion 110 pushes up only one semiconductor chip 10 out of the plurality of semiconductor chips 10 in the face-up state.
  • the die picker 114 receives the semiconductor chip 10 pushed up by the protruding portion 110.
  • the die picker 114 that has received the semiconductor chip 10 rotates 180 degrees on the spot so that the bumps 18 of the semiconductor chip 10 face downward, that is, the semiconductor chip 10 is in a face-down state. In this state, the transfer head 116 receives the semiconductor chip 10 from the die picker 114.
  • the transfer head 116 is movable in the vertical and horizontal directions, and can hold the semiconductor chip 10 by suction at its lower end.
  • the transfer head 116 holds the semiconductor chip 10 by suction at its lower end. Thereafter, the transfer head 116 moves in the horizontal and vertical directions and moves to the chip transfer unit 104.
  • the chip transport unit 104 has a turntable 118 that rotates about a vertical rotation axis Ra.
  • the transfer head 116 places the semiconductor chip 10 at a predetermined position on the turntable 118.
  • the turntable 118 on which the semiconductor chip 10 is placed rotates about the rotation axis Ra, the semiconductor chip 10 is transferred to the bonding unit 106 located on the side opposite to the chip supply unit 102.
  • the bonding unit 106 includes a stage 120 that supports the substrate 30, a mounting head 122 that holds the semiconductor chip 10 and attaches to the substrate 30, and the like.
  • the bonding portion 106 functions as a temporary pressure bonding unit that temporarily pressure-bonds the semiconductor chip 10 and also functions as a main pressure bonding unit that pressure-bonds the semiconductor chip 10.
  • the stage 120 is movable in the horizontal direction and adjusts the relative positional relationship between the mounted substrate 30 and the mounting head 122. Further, the stage 120 may include a heater.
  • the mounting head 122 can hold the semiconductor chip 10 at the lower end thereof, and can rotate and move up and down around the vertical rotation axis Rb.
  • the mounting head 122 presses the semiconductor chip 10 onto the substrate 30 or other semiconductor chip 10 placed on the stage 120. Specifically, the mounting head 122 is lowered so as to press the held semiconductor chip 10 against the substrate 30 or the like, whereby the semiconductor chip 10 is temporarily bonded or permanently bonded.
  • the mounting head 122 has a built-in temperature variable heater.
  • the mounting head 122 has a second temperature higher than the first temperature T1 at the first temperature T1, which will be described later, at the time of performing the temporary pressure bonding, and at the time of the main pressure bonding. Heated to T2. Further, the mounting head 122 applies a first load Ft1 to the semiconductor chip 10 when performing the temporary pressure bonding and a second load Ft2 when performing the main pressure bonding.
  • a camera (not shown) is provided near the mounting head 122.
  • Each of the substrate 30 and the semiconductor chip 10 is provided with an alignment mark serving as a positioning reference.
  • the camera images the substrate 30 and the semiconductor chip 10 so that this alignment mark is reflected.
  • the control unit 130 grasps the relative positional relationship between the substrate 30 and the semiconductor chip 10 based on the image data obtained by the imaging, and rotates the rotation angle around the axis Rb of the mounting head 122 and the stage 120 as necessary. Adjust the horizontal position.
  • the control unit 130 controls the driving of each unit, and includes, for example, a CPU that performs various calculations and a storage unit 138 that stores various data and programs.
  • the control unit 130 reads the program from the storage unit 138 and functions as a first lamination processing unit 132, a first main crimping processing unit 134, a second lamination processing unit 135, and a second main crimping processing unit 136.
  • the first stack processing unit 132 forms a first chip stack by sequentially pressing one or more semiconductor chips 10 on the substrate 30 in order by the bonding unit 106.
  • the first main press-bonding processing unit 134 collectively press-bonds one or more semiconductor chips 10 constituting the first chip stacked body by the bonding unit 106.
  • the second stacking processing unit 135 forms a second chip stacked body by stacking two or more semiconductor chips 10 on the semiconductor chip 10 that has been subjected to the final press bonding, while sequentially bonding the temporary bonding by the bonding unit 106. .
  • the second final press-bonding processing unit 136 collectively press-bonds two or more semiconductor chips 10 constituting the second chip stacked body by the bonding unit 106.
  • both the temporary pressure bonding and the main pressure bonding are performed by one mounting head 122, but a pressure head for temporary pressure bonding and a pressure head for main pressure bonding may be provided.
  • the stage 120 is configured to move horizontally, but the mounting head 122 may be configured to move horizontally instead of or in addition to the stage 120.
  • the configurations of the chip supply unit 102, the chip transfer unit 104, and the like may be changed as appropriate.
  • FIG. 2 is a schematic image diagram of the substrate 30 (semiconductor wafer) used in the present embodiment. As shown in FIG. 2, a plurality of arrangement regions 34 arranged in a lattice pattern are set on the substrate 30. In each arrangement region 34, a plurality of semiconductor chips 10 are stacked and mounted.
  • FIG. 3 is a diagram showing a schematic configuration of the semiconductor chip 10 to be mounted. Electrode terminals 14 and 16 are formed on the upper and lower surfaces of the semiconductor chip 10. Further, bumps 18 are formed on one surface of the semiconductor chip 10 so as to continue to the electrode terminals 14. The bump 18 is made of a conductive metal and melts at a predetermined melting temperature Tm.
  • a non-conductive film (hereinafter referred to as “NCF”) 20 is attached to one surface of the semiconductor chip 10 so as to cover the bumps 18.
  • the NCF 20 functions as an adhesive that bonds the semiconductor chip 10 to the substrate 30 or another semiconductor chip 10, and is a non-conductive thermosetting resin such as a polyimide resin, an epoxy resin, an acrylic resin, or a phenoxy resin. And polyethersulfone resin.
  • the thickness of the NCF 20 is larger than the average height of the bumps 18, and the bumps 18 are almost completely covered with the NCF 20.
  • NCF20 is a solid film at room temperature, but when it exceeds a predetermined softening start temperature Ts, it gradually softens and exhibits fluidity, and when it exceeds a predetermined curing start temperature Tt, it is irreversibly cured. Begin to.
  • the softening start temperature Ts is lower than the melting temperature Tm and the curing start temperature Tt of the bump 18.
  • the first temperature T1 for temporary pressure bonding is higher than the softening start temperature Ts and lower than the melting temperature Tm and the curing start temperature Tt.
  • the second temperature T2 for main press bonding is higher than the melting temperature Tm and the curing start temperature Tt. That is, Ts ⁇ T1 ⁇ (Tm, Tt) ⁇ T2.
  • the mounting head 122 When the semiconductor chip 10 is temporarily bonded to the substrate 30 or the lower semiconductor chip 10 (hereinafter referred to as a “bonded body”), the mounting head 122 is heated to the first temperature T1, and then the semiconductor chip 10 is added. Press. At this time, the NCF 20 of the semiconductor chip 10 is heated to near the first temperature T1 by heat transfer from the mounting head 122, softens, and has fluidity. As a result, the NCF 20 flows into the gap between the semiconductor chip 10 and the object to be bonded, and the gap can be reliably filled.
  • the mounting head 122 is heated to the second temperature T2, and then the semiconductor chip 10 is pressurized.
  • the bumps 18 and the NCF 20 of the semiconductor chip 10 are heated to near the second temperature T ⁇ b> 2 by heat transfer from the mounting head 122.
  • the bumps 18 are melted and can be welded to the opposing pressure-bonded bodies.
  • the NCF 20 is cured in a state in which the gap between the semiconductor chip 10 and the object to be pressed is filled, so that the semiconductor chip 10 and the object to be pressed are firmly fixed.
  • FIG. 4 is a diagram illustrating a configuration of a semiconductor device in which a plurality of semiconductor chips 10 are stacked and mounted on a substrate 30.
  • the semiconductor device is configured by stacking and mounting a target number of semiconductor chips 10 in each of a plurality of arrangement regions 34.
  • the target number of layers is “8”
  • eight semiconductor chips 10 are stacked and mounted in one arrangement region 34.
  • a stack of eight semiconductor chips 10 is referred to as a “completed stack ST0”.
  • the completed stacked body ST0 is handled by dividing it into a plurality of chip stacked bodies, specifically, a first chip stacked body ST1 and a second chip stacked body ST2.
  • the first chip stacked body ST ⁇ b> 1 is a stacked body including four semiconductor chips 10 stacked on the substrate 30.
  • the second chip stacked body ST2 is a stacked body including four semiconductor chips 10 stacked on the first chip stacked body ST1.
  • the second stacking step and the second stack for forming the second chip stack ST2 are performed after the first stacking step and the first main press-bonding step are performed to form the first chip stack ST1. Execute the process.
  • the reason why one completed stacked body ST0 is divided into two or more chip stacked bodies ST1 and ST2 is to satisfactorily mount all the semiconductor chips 10, which will be described later. .
  • FIGS. 5 to 7 are image diagrams showing the flow of mounting the semiconductor chip 10.
  • FIG. 5 to FIG. 7 three arrangement regions 34 are illustrated. For convenience of explanation, these regions are referred to as region A, region B, and region C in order from the left side. Further, the mounting procedure described below may be performed under normal pressure, or may be performed in a vacuum in order to prevent air bubbles from being caught.
  • each of the chip stacks ST1 and ST2 is formed by sequentially stacking four semiconductor chips 10 while temporarily press-bonding to form the chip stacks ST1 and ST2 in a temporarily press-bonded state, and the chip stacks ST1 and ST2. Mounting is performed by performing a main press-bonding step of performing main press-bonding of the four semiconductor chips 10 at once by applying heat and pressure at the second temperature T2 from above.
  • the semiconductor chip 10 is arranged in the region A on the substrate 30 using the mounting head 122.
  • the substrate 30 is positioned with respect to the semiconductor chip 10 so that the bumps 18 of the semiconductor chip 10 face the electrode terminals 32 on the substrate 30.
  • the mounting head 122 is heated to the first temperature T1, which is a temperature for temporary pressure bonding.
  • the semiconductor chip 10 is pressurized with a specified first load Ft1 by the mounting head 122 to temporarily press the semiconductor chip 10 to the substrate 30.
  • the NCF 20 is heated to the softening start temperature Ts or higher and exhibits appropriate fluidity.
  • the NCF 20 fills the gap between the semiconductor chip 10 and the substrate 30 without any gaps.
  • the first load Ft1 is not particularly limited as long as the bump 18 pushes the softened NCF 20 so that the bump 18 can contact the electrode terminal 32 of the substrate 30 and the bump 18 is not greatly deformed.
  • the second-layer semiconductor chip 10 is further temporarily bonded onto the temporarily-bonded first-layer semiconductor chip 10.
  • the bumps 18 of the second semiconductor chip 10 are formed on the first semiconductor chip 10 by using the mounting head 122 in the same manner as in the first layer.
  • the second-layer semiconductor chip 10 is disposed on the first-layer semiconductor chip 10 so as to face the electrode terminals 16. In this state, the second-layer semiconductor chip 10 is pressurized at the first load Ft1 while being heated at the first temperature T1, and temporarily bonded to the first-layer semiconductor chip 10.
  • FIG. 5C shows a state where the four layers of semiconductor chips 10 are stacked while being temporarily pressed in the region A.
  • the process of laminating these four semiconductor chips 10 is the first laminating process, and the formed laminated body becomes the first chip laminated body ST1 in a temporarily press-bonded state.
  • FIG. 6A shows a state where four semiconductor chips 10 are stacked while being temporarily bonded to all the arrangement regions 34 to form a first chip stacked body ST1 in a temporarily pressed state.
  • first main press-bonding step for performing the main press-bonding of the first chip stack ST1 is performed. Specifically, first, the mounting head 122 is heated to a second temperature T2, which is a temperature for main press bonding. Then, as shown in FIG. 6B, the first chip stacked body ST1 in the temporarily press-bonded state is pressurized with the second load Ft2 using the mounting head 122 heated to the second temperature T2, and the four semiconductors The chip 10 is finally crimped together.
  • the second load Ft2 is not particularly limited as long as the pushing amount of the bump 18 can be appropriately maintained.
  • the four semiconductor chips 10 constituting the first chip stack ST1 are also heated.
  • the heating temperature decreases as the distance from the mounting head 122 increases.
  • the uppermost layer (fourth layer) semiconductor chip 10 is heated to substantially the same temperature as the second temperature T2, but the lowermost layer (first layer) semiconductor chip 10 starts from the second temperature T2.
  • the second temperature T2 is set so that the lower layer temperature Ta is higher than the melting temperature Tm and the curing start temperature Tt. That is, during the main pressure bonding, all four semiconductor chips 10 constituting the first chip stacked body ST1 are heated to a temperature higher than the melting temperature Tm and the curing start temperature Tt.
  • the NCF 20 of the semiconductor chip 10 is gradually cured. Then, as the NCF 20 is cured, the semiconductor chip 10 and the object to be bonded (the substrate 30 or the lower semiconductor chip 10) are mechanically firmly fixed. Further, the bump 18 is melted by being heated beyond the melting temperature Tm, and can be in close contact with the opposing electrode terminals 32 and 16. As a result, the four semiconductor chips 10 and the substrate 30 are in a mounted state in which they are electrically joined to each other. And the process of carrying out this pressure bonding of the four semiconductor chips 10 which comprise this 1st chip laminated body ST1 collectively becomes a 1st main pressure bonding process.
  • the first final crimping step is executed in all of the two or more arrangement regions 34 such as the region B and the region C.
  • FIG. 6C shows a state in which the first final crimping process is performed on all the arrangement regions 34.
  • the second stacking step of forming the second chip stack ST2 in the temporarily press-bonded state on the first chip stack ST1 is executed. . Specifically, the temperature of the mounting head 122 is lowered to the first temperature T1, which is a temperature for temporary pressure bonding. Thereafter, as shown in FIG. 7A and FIG. 7B, four semiconductor chips 10 are newly stacked on the first chip stack ST1 that has been subjected to the final press-bonding process while being temporarily press-bonded. To go. Thereby, the stacked body to be formed is the second chip stacked body ST2, and the step of forming the second chip stacked body ST2 is the second stacking process.
  • the second stacking step is also executed in all the two or more arrangement regions 34. If the second chip stacked bodies ST2 in the temporarily press-bonded state are formed in all the arrangement regions 34, finally, the second final press-bonding step is executed, and all the second chip stacked bodies ST2 are finally press-bonded. And if all 2nd chip laminated body ST2 is this press-fit, a mounting process will be completed.
  • one completed stacked body ST0 is divided into a plurality (two in this example) of chip stacked bodies ST1 and ST2, and stacked for each chip stacked body ST1 and ST2.
  • the process and the main press bonding process are executed. The reason for this processing procedure will be described in comparison with the prior art.
  • the main pressure bonding is performed after all the target number of semiconductor chips 10 are stacked. That is, in the example of FIG. 4, eight semiconductor chips 10 are stacked while being temporarily pressed and then pressed while heating at the second temperature T ⁇ b> 2 from the upper side of the eighth semiconductor chip 10.
  • the heating temperature of the mounting head 122 is switched only once (switching between the first temperature T1 and the second temperature T2), the time required for raising and lowering the temperature of the mounting head 122 can be reduced. , Time for the entire mounting process can be shortened.
  • the lower semiconductor chip 10 cannot be heated appropriately, and there is a possibility that the NCF 20 is hardened and the bumps 18 are not sufficiently melted.
  • the heated mounting head 122 is pressed against the uppermost (eighth) semiconductor chip 10 to collectively put the eight semiconductor chips 10 together. This is crimped.
  • the distance H from the mounting head 122 to the lower semiconductor chip 10 becomes longer. If the distance H from the mounting head 122, which is a heat source, increases, the heating temperature also decreases accordingly. As a result, the lower semiconductor chip 10 is not sufficiently heated, and there is a possibility that the NCF 20 is hardened or the bumps 18 are not sufficiently melted.
  • the temperature of the mounting head 122 if the temperature of the mounting head 122 is raised, the temperature of the lower semiconductor chip 10 can be kept high.
  • a temperature higher than the first temperature is required.
  • the melting of the bumps 18 of the upper layer chip and the accompanying alloy reaction progress, and further, the hardening and deterioration of the NCF 20 progress, so that the reliability is remarkably impaired. Therefore, the mounting head 122 could not be heated to an excessively high temperature.
  • the completed stacked body ST0 including the semiconductor chips having the target number of stacked layers is divided into a plurality of chip stacked bodies ST1 and ST2, and the stacking process is performed for each chip stacked body ST1 and ST2.
  • the main crimping process is performed.
  • FIG. 8 is an image diagram showing another mounting procedure.
  • This embodiment is different from the first embodiment in that the first chip stacked body ST ⁇ b> 1 is composed of one semiconductor chip 10.
  • next 1st chip laminated body ST1 is formed.
  • one semiconductor chip 10 is arranged in one arrangement region 34 (region A) with the mounting head 122 heated to the first temperature T1.
  • the first load Ft1 is applied, and the semiconductor chip 10 is temporarily bonded.
  • the temperature of the mounting head 122 is raised to the second temperature, and then the semiconductor chip 10 is pressurized with the second load Ft2.
  • FIG. 8A shows a state in which the first chip stack ST1 is formed in all the arrangement regions 34.
  • FIG. 8B is a diagram illustrating a state in which the second chip stacked body ST2 in the temporarily press-bonded state is formed.
  • FIG.8 (c) is a figure which shows the mode of a 2nd main crimping
  • the semiconductor chips 10 for four layers are further temporarily bonded onto each second chip stacked body ST2. Then, after the lamination, the second second laminating step and the second final crimping step for the final press-bonding may be performed. Furthermore, when the target number of layers is “10”, after the second stacking step and the second main press-bonding step of the second time described above, after stacking the semiconductor chips 10 for two layers while temporarily pressing, What is necessary is just to implement the 3rd 2nd lamination
  • the number of stacked chips of the first chip stacked body ST1 is one.
  • the semiconductor chip 10 of the first layer is finally pressure-bonded, and then the semiconductor chips of the second and subsequent layers are stacked.
  • the reason for this configuration is as follows.
  • the substrate 30 in the present embodiment is a semiconductor wafer made of silicon or the like. This semiconductor wafer has a higher thermal conductivity than a normal resin substrate or the like. For this reason, the heat applied to the chip stack in the region A by the main pressure bonding may be transferred to the chip stack in the adjacent region B.
  • FIG. 6B it is assumed that the first layer semiconductor chip 10 is in a temporarily press-bonded state in the region B adjacent to the region A when the chip stacked body in the region A is finally press-bonded. .
  • the heat transferred through the chip stack in the region A and the substrate 30 is also transferred to the first semiconductor chip 10 in the region B.
  • the NCF 20 of the first semiconductor chip 10 in the region B starts to be cured by the transmitted heat. As described above, when the NCF 20 is cured before the main pressure bonding, the semiconductor chip 10 is not sufficiently fixed to the substrate 30.
  • the semiconductor chip 10 in the second and subsequent layers in this region B has a long heat path from the heat source (mounting head 122), so the amount of heat transfer is small, and the NCF 20 is hardly cured. Further, the semiconductor chip 10 that has been subjected to the final press-fitting is interposed in the middle of the heat path from the heat source to the semiconductor chip 10 in the second and subsequent layers in the region B. The NCF 20 is completely cured in the semiconductor chip 10 that has been subjected to this press-bonding, but the cured NCF 20 functions as a shielding material that prevents heat transfer. By interposing the semiconductor chip 10 that has been subjected to this press-bonding, the amount of heat transfer to the semiconductor chips 10 in the second and subsequent layers in the region B can be greatly reduced.
  • the NCF 20 of the second and subsequent semiconductor chips 10 can be hardened unexpectedly. It can. Further, according to the present embodiment, even if the temperature of the mounting head 122 is set high, the NCF 20 does not harden unexpectedly in the adjacent region. As a result, since the temperature of the mounting head 122 can be increased, the degree of freedom in setting the temperature of the mounting head 122 can be improved.
  • the structure demonstrated so far is an example, and when forming one completed laminated body ST0, if a lamination process and a main crimping
  • the execution order of the temporary pressure bonding and the main pressure bonding may be changed as appropriate.
  • the main crimping process is performed after the stacking process is completed in all of the plurality of arrangement regions 34.
  • the stacking process and the main crimping process may be performed serially for each arrangement region 34.
  • Good That is, after continuously performing the first lamination step, the first main pressure bonding step, the second lamination step, and the second main pressure bonding step in the region A, in the region B, the first lamination step, the first main pressure bonding step, the first You may make it perform a 2 lamination
  • the main press-bonding may be continuously performed.
  • the semiconductor chips 10 are stacked while being temporarily pressure-bonded to the third layer in each of the regions A to C. Thereafter, in the region A, the fourth-layer semiconductor chip 10 is pressurized and temporarily pressure-bonded by the mounting head 122 heated to the first temperature T1. If the fourth-layer semiconductor chip 10 can be pressurized, the pressure of the mounting head 122 is increased to the second temperature T2 while the fourth-layer semiconductor chip 10 is being pressed by the mounting head 122, and the main bonding is performed. To do.
  • the mounting head 122 is cooled to the first temperature T1, and then the fourth layer semiconductor chip 10 in the region B is temporarily pressure bonded. Thereafter, the pressure is raised to the second temperature T2 and the final pressure bonding is performed.
  • the number of times the temperature of the mounting head 122 is switched increases, but the amount of movement of the mounting head 122 can be reduced.
  • both the pre-crimping and the main press-bonding are performed by the mounting head 122.
  • the temporary press-bonding mounting head and the main press-bonding mounting head may be provided separately.
  • the mounting head dedicated for temporary crimping is always heated to the first temperature T1
  • the mounting head dedicated for final crimping is always heated to the second temperature T2.
  • the mounting head for main press-bonding may have a size capable of simultaneously heating and pressurizing (main press-bonding) two or more chip laminates.
  • the number of stacked first chip stacks is not particularly limited as long as it is 1 or more. Further, the number of stacked second chip stacks is not particularly limited as long as it is two or more. However, when the number of stacked single chip laminates is excessively large, the heat of the main press applied to the uppermost surface is not sufficiently transmitted to the lowermost layer, resulting in mounting defects. Therefore, the number of stacked chip stacks is set to be equal to or less than the number at which the heat of main press bonding can be appropriately transferred to the lowermost layer. The number of heat transferred appropriately varies depending on the material and configuration of the semiconductor chip 10, but when a general semiconductor chip 10 is used, it is desirable that the number of stacked layers of one chip stack is 4 or less. In this embodiment, a semiconductor wafer is used as the substrate 30. However, the substrate 30 is not limited to a semiconductor wafer and may be other types of substrates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

基板30上に、規定の目標積層数の半導体チップ10を積層して実装する実装方法は、前記基板30の上において、1以上の半導体チップ10を、順次、仮圧着しながら積層することで第一チップ積層体ST1を形成する第一積層工程と、前記第一チップ積層体ST1を上側から加熱しつつ加圧することで、前記1以上の半導体チップ10を一括で本圧着する第一本圧着工程と、本圧着された半導体チップ10の上において、2以上の半導体チップ10を、順次、仮圧着しながら積層することで第二チップ積層体ST2を形成する第二積層工程と、前記第二チップ積層体ST2を上側から加熱しつつ加圧することで、前記2以上の半導体チップ10を一括で本圧着する第二本圧着工程と、を含む。

Description

半導体装置の製造方法および実装装置
 本発明は、複数の半導体チップを積層して半導体装置を製造する製造方法および半導体チップの実装装置に関する。
 従来から、半導体装置の更なる高機能化、小型化が求められている。そこで、一部では、複数の半導体チップを積層して実装することが提案されている。例えば、特許文献1には、複数の半導体チップを積層実装する技術が開示されている。この特許文献1では、半導体チップのうちバンプ形成面に、予め熱硬化性接着剤フィルムをラミネートする。積層実装する際には、複数の半導体チップを、基板または他の半導体チップの上に順次、仮圧着しながら積層して多段仮圧着積層体を形成する。次に、この多段仮圧着積層体を上側から加圧かつ加熱することで、バンプを溶融させるとともに熱硬化性接着剤フィルムを硬化させる本圧着工程を実行する。こうした技術によれば、小さな面積で、より多数の半導体チップを実装できるため、更なる高機能化、小型化が可能となる。
特開2014-60241号公報
 ここで、当然ながら、更なる高機能化、小型化を実現するためには、最終的に得られる半導体チップの積層数(以下「目標層数」という)を増やせばよい。しかし、特許文献1のように、目標層数分の半導体チップを積層した後に、当該目標層数分の半導体チップを一括で本圧着する技術の場合、目標層数が増えると、下層側の半導体チップが適切に実装できないおそれがある。すなわち、本圧着では、多段仮圧着積層体の最上面に、加熱したヒートツールを押し当てることで、当該多段仮圧着積層体を加熱している。熱伝導により上部から下部に向かい温度勾配が生じる。積層数が増えて、ヒートツールからの距離が過度に長くなると、下層側の半導体チップが十分に加熱されないことがある。この場合、当該下層側の半導体チップのバンプが十分に溶融しない、あるいは、熱硬化性接着剤フィルムが十分に硬化しないため、下層側の半導体チップが適切に実装されない。
 そこで、本発明では、半導体チップを積層実装する際、積層数が多くても、各半導体チップを適切に実装できる半導体装置の製造方法および実装装置を提供することを目的とする。
 本発明の実装方法は、基板上に、規定の目標積層数の半導体チップを積層して半導体装置を製造する製造方法であって、前記基板の上において、1以上の半導体チップを、順次、仮圧着しながら積層することで第一チップ積層体を形成する第一積層工程と、前記第一チップ積層体を上側から加熱しつつ加圧することで、前記1以上の半導体チップを一括で本圧着する第一本圧着工程と、本圧着された半導体チップの上において、2以上の半導体チップを、順次、仮圧着しながら積層することで第二チップ積層体を形成する第二積層工程と、前記第二チップ積層体を上側から加熱しつつ加圧することで、前記2以上の半導体チップを一括で本圧着する第二本圧着工程と、を含む、ことを特徴とする。
 好適な態様では、前記第一積層工程および前記第一本圧着工程を実行した後、前記半導体チップの総積層数が、前記目標積層数に達するまで、前記第二積層工程および前記第二本圧着工程を、くり返す。
 他の好適な態様では、前記基板には、複数の配置領域が設定されており、前記第一積層工程および第一本圧着工程では、1つの半導体チップを仮圧着および本圧着しており、2以上の前記配置領域全てにおいて前記第一本圧着工程を実行した後に、前記第二積層工程を実行する。
 他の本発明である実装装置は、基板上に、規定の目標積層数の半導体チップを積層して実装する実装装置であって、前記基板または下層の半導体チップの上に配置された前記半導体チップを、上側から第一温度で加熱しつつ第一荷重で加圧することで仮圧着する仮圧着手段と、1以上の半導体チップの積層体であるチップ積層体を、上側から、第一温度より高い第二温度で加熱しつつ第二荷重で加圧することで、前記チップ積層体を構成する1以上の半導体チップを一括で本圧着する本圧着手段と、前記仮圧着手段および本圧着手段を制御する制御部と、を備え、前記制御部は、前記基板の上において、1以上の半導体チップを、順次、前記仮圧着手段により仮圧着することで第一チップ積層体を形成する第一積層処理と、前記第一チップ積層体を構成する前記1以上の半導体チップを前記本圧着手段により一括で本圧着する第一本圧着処理と、本圧着された半導体チップの上において、2以上の半導体チップを、順次、前記仮圧着手段により仮圧着しながら積層することで第二チップ積層体を形成する第二積層処理と、前記第二チップ積層体を構成する前記2以上の半導体チップを前記本圧着手段により一括で本圧着する第二本圧着処理と、を前記仮圧着手段および本圧着手段に実行させる、ことを特徴とする。
 他の本発明である実装装置は、基板上に規定の目標積層数の半導体チップを積層して実装する実装装置であって、前記基板または下層の半導体チップの上に配置された前記半導体チップを、上側から第一温度で加熱しつつ第一荷重で加圧することで仮圧着するとともに、1以上の半導体チップの積層体であるチップ積層体を、上側から、第一温度より高い第二温度で加熱しつつ第二荷重で加圧することで、前記チップ積層体を構成する1以上の半導体チップを一括で本圧着するボンディング部と、前記ボンディング部を制御する制御部と、を備え、前記制御部は、前記基板の上において、1以上の半導体チップを、順次、前記ボンディング部により仮圧着することで第一チップ積層体を形成する第一積層処理部と、前記第一チップ積層体を構成する前記1以上の半導体チップを前記ボンディング部により一括で本圧着する第一本圧着処理部と、本圧着された半導体チップの上において、2以上の半導体チップを、順次、前記ボンディング部により仮圧着しながら積層することで、第二チップ積層体を形成する第二積層処理部と、前記第二チップ積層体を構成する前記2以上の半導体チップを前記ボンディング部により一括で本圧着する第二本圧着処理部と、を備える、ことを特徴とする。
 本発明によれば、規定の目標積層数の半導体チップを積層する際に、積層工程と本圧着工程とを少なくとも2回くり返す。そのため、目標積層数の半導体チップを一括で本圧着する必要がなく、下層側の半導体チップも確実に加熱できる。その結果、半導体チップを積層実装する際、積層数が多くても、各半導体チップを適切に実装できる。
本発明の実施形態である実装装置の構成を示す図である。 基板として機能する半導体ウェハの概略斜視図である。 実装される半導体チップの構成を示す図である。 半導体装置の構成を示す図である。 複数の半導体チップを積層して実装する流れを示す図である。 複数の半導体チップを積層して実装する流れを示す図である。 複数の半導体チップを積層して実装する流れを示す図である。 複数の半導体チップを積層して実装する他の例の流れを示す図である。
 以下、本発明の実施形態について図面を参照して説明する。図1は、本発明の実施形態である実装装置100の概略構成図である。この実装装置100は、基板30の上に、半導体チップ10を実装する装置である。この実装装置100は、複数の半導体チップ10を積層して実装する場合に特に好適な構成となっている。
 実装装置100は、チップ供給部102、チップ搬送部104、ボンディング部106、および、これらの駆動を制御する制御部(図示せず)と、を備える。チップ供給部102は、チップ供給源から半導体チップ10を取り出し、チップ搬送部104に供給する部位である。このチップ供給部102は、突上部110とダイピッカ114と移送ヘッド116と、実装装置の各部を制御する制御部130を備えている。
 チップ供給部102において、複数の半導体チップ10は、ダイシングテープTE上に載置されている。このとき半導体チップ10は、バンプ18が上側を向いたフェイスアップ状態で載置されている。突上部110は、この複数の半導体チップ10の中から一つの半導体チップ10のみを、フェイスアップ状態のまま、上方に突き上げる。ダイピッカ114は、突上部110により突き上げられた半導体チップ10を受け取る。半導体チップ10を受け取ったダイピッカ114は、当該半導体チップ10のバンプ18が下方を向くように、すなわち、半導体チップ10がフェイスダウン状態になるように、その場で180度回転する。この状態になれば、移送ヘッド116が、ダイピッカ114から半導体チップ10を受け取る。
 移送ヘッド116は、上下および水平方向に移動可能であり、その下端で、半導体チップ10を吸着保持できる。ダイピッカ114が180度回転して、半導体チップ10がフェイスダウン状態となれば、移送ヘッド116は、その下端で、当該半導体チップ10を吸着保持する。その後、移送ヘッド116は、水平および上下方向に移動して、チップ搬送部104へと移動する。
 チップ搬送部104は、鉛直な回転軸Raを中心として回転する回転台118を有している。移送ヘッド116は、回転台118の所定位置に、半導体チップ10を載置する。半導体チップ10が載置された回転台118が回転軸Raを中心として回転することで、当該半導体チップ10が、チップ供給部102と反対側に位置するボンディング部106に搬送される。
 ボンディング部106は、基板30を支持するステージ120や半導体チップ10を保持して基板30に取り付ける実装ヘッド122等を備えている。このボンディング部106は、半導体チップ10を仮圧着する仮圧着手段として機能するとともに、半導体チップ10を本圧着する本圧着手段としても機能する。ステージ120は、水平方向に移動可能であり、載置されている基板30と実装ヘッド122との相対位置関係を調整する。また、このステージ120には、ヒータが内蔵されてもよい。
 実装ヘッド122は、その下端に半導体チップ10を保持でき、また、鉛直な回転軸Rb回りの回転と、昇降と、が可能となっている。この実装ヘッド122は、半導体チップ10をステージ120に載置された基板30または他の半導体チップ10の上に圧着する。具体的には、保持している半導体チップ10を基板30等に押し付けるように、実装ヘッド122が、下降することで、半導体チップ10の仮圧着または本圧着が行われる。この実装ヘッド122には、温度可変のヒータが内蔵されており、実装ヘッド122は、仮圧着実行時には、後述する第一温度T1に、本圧着実行時には、第一温度T1よりも高い第二温度T2に加熱される。また、実装ヘッド122は、仮圧着実行時には、第一荷重Ft1を、本圧着実行時には、第二荷重Ft2を、半導体チップ10に付加する。
 実装ヘッド122の近傍には、カメラ(図示せず)が設けられている。基板30および半導体チップ10には、それぞれ、位置決めの基準となるアライメントマークが付されている。カメラは、このアライメントマークが映るように、基板30および半導体チップ10を撮像する。制御部130は、この撮像により得られた画像データに基づいて、基板30および半導体チップ10の相対位置関係を把握し、必要に応じて、実装ヘッド122の軸Rb回りの回転角度およびステージ120の水平位置を調整する。
 制御部130は、各部の駆動を制御するもので、例えば、各種演算を行うCPUと、各種データやプログラムを記憶する記憶部138と、を備えている。この制御部130は、記憶部138からプログラムを読み込むことにより、第一積層処理部132、第一本圧着処理部134、第二積層処理部135、および、第二本圧着処理部136として機能する。第一積層処理部132は、基板30の上において、1以上の半導体チップ10を、順次、ボンディング部106により仮圧着することで第一チップ積層体を形成する。第一本圧着処理部134は、第一チップ積層体を構成する1以上の半導体チップ10をボンディング部106により一括で本圧着する。第二積層処理部135は、本圧着された半導体チップ10の上において、2以上の半導体チップ10を、順次、ボンディング部106により仮圧着しながら積層することで、第二チップ積層体を形成する。第二本圧着処理部136は、第二チップ積層体を構成する2以上の半導体チップ10をボンディング部106により一括で本圧着する。
 なお、ここで説明した実装装置100の構成は、一例であり、適宜、変更されてもよい。例えば、本実施形態では、一つの実装ヘッド122で、仮圧着および本圧着の双方を行っているが、仮圧着用の加圧ヘッドと、本圧着用の加圧ヘッドとを、設けてもよい。また、本実施形態では、ステージ120が水平移動する構成としているが、ステージ120に替えて、または、加えて、実装ヘッド122が水平移動する構成としてもよい。また、チップ供給部102や、チップ搬送部104等の構成も、適宜、変更されてもよい。
 次に、この実装装置100による半導体チップ10の実装について説明する。本実施形態では、基板30として半導体ウェハを使用し、この半導体ウェハ(基板30)の上に、複数の半導体チップ10を積層実装する。したがって、本実施形態の実装プロセスは、半導体ウェハの回路形成面に半導体チップ10を積層実装する、チップオンウェハプロセスとなる。図2は、本実施形態で使用する基板30(半導体ウェハ)の概略イメージ図である。図2に示すように、基板30には、格子状に並ぶ複数の配置領域34が設定されている。各配置領域34には、複数の半導体チップ10が積層実装される。
 次に、半導体チップ10の構成について簡単に説明する。図3は、実装される半導体チップ10の概略構成を示す図である。半導体チップ10の上下面には、電極端子14,16が形成されている。また、半導体チップ10の片面には、電極端子14に連なってバンプ18が形成されている。バンプ18は、導電性金属からなり、所定の溶融温度Tmで溶融する。
 また、半導体チップ10の片面には、バンプ18を覆うように、非導電性フィルム(以下「NCF」という)20が貼り付けられている。NCF20は、半導体チップ10と、基板30または他の半導体チップ10とを接着する接着剤として機能するもので、非導電性の熱硬化性樹脂、例えば、ポリイミド樹脂、エポキシ樹脂、アクリル樹脂、フェノキシ樹脂、ポリエーテルスルホン樹脂等からなる。このNCF20の厚みは、バンプ18の平均高さよりも大きく、バンプ18は、このNCF20によりほぼ完全に覆われている。NCF20は、常温下では、固体のフィルムであるが、所定の軟化開始温度Tsを超えると、徐々に、軟化して流動性を発揮し、所定の硬化開始温度Ttを超えると、不可逆的に硬化し始める。
 ここで、軟化開始温度Tsは、バンプ18の溶融温度Tmおよび硬化開始温度Ttよりも低い。仮圧着用の第一温度T1は、この軟化開始温度Tsより高く、溶融温度Tmおよび硬化開始温度Ttよりも低い。また、本圧着用の第二温度T2は、溶融温度Tmおよび硬化開始温度Ttよりも高い。すなわち、Ts<T1<(Tm,Tt)<T2となっている。
 半導体チップ10を基板30または下側の半導体チップ10(以下「被圧着体」と呼ぶ)に仮圧着する際には、実装ヘッド122を、第一温度T1に加熱したうえで半導体チップ10を加圧する。このとき、半導体チップ10のNCF20は、実装ヘッド122からの伝熱により、第一温度T1近傍まで加熱され、軟化し、流動性を持つ。そして、これにより、NCF20が、半導体チップ10と被圧着体との隙間に流れ込み、当該隙間を確実に埋めることができる。
 半導体チップ10を、被圧着体に本圧着する際には、実装ヘッド122を、第二温度T2に加熱したうえで、半導体チップ10を加圧する。このとき、半導体チップ10のバンプ18およびNCF20は、実装ヘッド122からの伝熱により、第二温度T2近傍まで加熱される。これにより、バンプ18は、溶融し、対向する被圧着体に溶着できる。また、この加熱により、NCF20が、半導体チップ10と被圧着体との隙間を埋めた状態で硬化するため、半導体チップ10と被圧着体とが強固に固定される。
 次に、半導体チップ10を積層実装して製造される半導体装置について説明する。図4は、基板30に複数の半導体チップ10を積層実装した半導体装置の構成を示す図である。半導体装置は、複数の配置領域34それぞれに、目標積層数の半導体チップ10を積層実装して構成される。本実施形態では、目標積層数を、「8」としており、一つの配置領域34には、8つの半導体チップ10が積層実装される。以下では、8つの半導体チップ10を積層実装したものを「完成積層体ST0」と呼ぶ。
 本実施形態では、完成積層体ST0を、複数のチップ積層体、具体的には、第一チップ積層体ST1と第二チップ積層体ST2とに分けて取り扱う。第一チップ積層体ST1は、基板30の上に積層された4つの半導体チップ10から成る積層体である。また、第二チップ積層体ST2は、第一チップ積層体ST1の上に積層された4つの半導体チップ10から成る積層体である。本実施形態では、第一チップ積層体ST1を形成するために第一積層工程および第一本圧着工程を実行した後に、第二チップ積層体ST2を形成するための第二積層工程および第二積層工程を実行する。このように、一つの完成積層体ST0を、2以上のチップ積層体ST1,ST2に分割して取り扱うのは、全ての半導体チップ10を良好に実装するためであるが、これについては、後述する。
 次に、半導体チップ10の実装の流れについて図5~図7を参照して説明する。図5~図7は、半導体チップ10の実装の流れを示すイメージ図である。図5~図7では、三つの配置領域34を図示しているが、説明の都合上、これらは、左側から順に、領域A、領域B、領域Cと呼ぶ。また、以下で説明する実装の手順は、常圧下で行ってもよいし、気泡の噛みこみ等を防ぐために真空中で実施してもよい。
 本実施形態では、上述したように、まず、第一チップ積層体ST1を実装した後、当該第一チップ積層体ST1の上に、さらに、第二チップ積層体ST2を実装し、最終的に8層の完成積層体ST0を形成している。各チップ積層体ST1,ST2は、4つの半導体チップ10を順次、仮圧着しながら積層して、仮圧着状態のチップ積層体ST1,ST2を形成する積層工程と、このチップ積層体ST1,ST2の上から第二温度T2で加熱加圧することで4つの半導体チップ10を一括で本圧着する本圧着工程と、を実行することで実装される。
 具体的に説明すると、まず、最初に、図5(a)に示すように、実装ヘッド122を用いて、半導体チップ10を基板30上の領域Aに配置する。このとき、半導体チップ10のバンプ18が、基板30上の電極端子32と向かい合うように、基板30を半導体チップ10に対して位置決めする。また、このとき、実装ヘッド122は、仮圧着用の温度である第一温度T1に加熱されている。次に、図5(b)に示すように、実装ヘッド122で、半導体チップ10を、規定の第一荷重Ft1で加圧し、半導体チップ10を基板30に仮圧着する。このとき、実装ヘッド122からの伝熱により、NCF20は、軟化開始温度Ts以上に加熱され、適度な流動性を発揮する。これにより、NCF20は、半導体チップ10と基板30との間隙を隙間なく埋める。なお、第一荷重Ft1は、バンプ18が、軟化したNCF20を押しのけて、基板30の電極端子32に接触でき、かつ、バンプ18が大きく変形しない程度の大きさであれば、特に、限定されない。
 1層目の半導体チップ10が仮圧着できれば、続いて、この仮圧着された1層目の半導体チップ10の上に、さらに、2層目の半導体チップ10を仮圧着する。2層目の半導体チップ10を仮圧着する際は、1層目の場合と同様に、実装ヘッド122を用いて、2層目の半導体チップ10のバンプ18が、1層目の半導体チップ10の電極端子16と向かい合うように、2層目の半導体チップ10を1層目の半導体チップ10の上に配置する。そして、その状態で、2層目の半導体チップ10を第一温度T1で加熱しつつ第一荷重Ft1で加圧して、1層目の半導体チップ10に仮圧着する。
 以降、同様に、2層目の半導体チップ10の上に、3層目の半導体チップ10を、3層目の半導体チップ10の上に4層目の半導体チップ10を、仮圧着していく。図5(c)は、領域Aにおいて、4層の半導体チップ10を仮圧着しながら積層した様子を示している。この4つの半導体チップ10を積層する工程が、第一積層工程であり、形成された積層体が、仮圧着状態の第一チップ積層体ST1となる。
 領域Aにおいて、仮圧着状態の第一チップ積層体ST1が形成できれば、同様の手順で、領域B,領域Cなど、他の配置領域34にも、仮圧着状態の第一チップ積層体ST1を形成する。図6(a)は、全ての配置領域34に、4つの半導体チップ10を仮圧着しながら積層して、仮圧着状態の第一チップ積層体ST1を形成した様子を示している。
 全ての配置領域34に、仮圧着状態の第一チップ積層体ST1が形成できれば、続いて、第一チップ積層体ST1を本圧着する第一本圧着工程を実行する。具体的には、まず、実装ヘッド122を、本圧着用の温度である第二温度T2まで加熱する。そして、図6(b)に示すように、仮圧着状態の第一チップ積層体ST1を、第二温度T2に加熱された実装ヘッド122を用いて、第二荷重Ft2で加圧し、四つの半導体チップ10を一括で本圧着する。なお、第二荷重Ft2は、バンプ18の押し込み量を適切に保てるのであれば、特に限定されない。
 第二温度T2に加熱された実装ヘッド122で押圧されることにより、第一チップ積層体ST1を構成する四つの半導体チップ10も加熱されることになる。ただし、加熱温度は、実装ヘッド122から離れるほど低下していく。具体的には、最上層(4層目)の半導体チップ10は、第二温度T2とほぼ同じ温度に加熱されるが、最下層(1層目)の半導体チップ10は、第二温度T2からΔTだけ低下した下層温度Ta=T2-ΔTで加熱されることになる。第二温度T2は、この下層温度Taが、溶融温度Tmおよび硬化開始温度Ttより大きくなるように、設定されている。つまり、本圧着の際、第一チップ積層体ST1を構成する4つの半導体チップ10は、全て、溶融温度Tmおよび硬化開始温度Ttよりも高い温度に加熱される。
 各半導体チップ10が硬化開始温度Ttを超えて加熱されることで、半導体チップ10のNCF20は、徐々に硬化していく。そして、NCF20が硬化することで、半導体チップ10と被圧着体(基板30または下側の半導体チップ10)とが機械的に強固に固着される。また、溶融温度Tmを超えて加熱されることで、バンプ18が、溶融し、対向する電極端子32,16に密着できる。そして、これにより、四つの半導体チップ10および基板30が、互いに電気的に接合された実装状態となる。そして、この第一チップ積層体ST1を構成する四つの半導体チップ10を一括で本圧着する工程が、第一本圧着工程となる。
 一つの第一チップ積層体ST1を本圧着できれば、続いて、他の第一チップ積層体ST1も、本圧着する。すなわち、領域B,領域C等、2以上の配置領域34全てにおいて、第一本圧着工程を実行する。図6(c)は、全ての配置領域34に、第一本圧着工程を実行した様子を示している。
 全ての配置領域34で、第一本圧着工程を実行すれば、続いて、第一チップ積層体ST1の上に、仮圧着状態の第二チップ積層体ST2を形成する第二積層工程を実行する。具体的には、実装ヘッド122の温度を、仮圧着用の温度である第一温度T1まで低下させる。その後は、図7(a)、図7(b)に示すように、本圧着された第一チップ積層体ST1の上に、新たに、四つの半導体チップ10を順次、仮圧着しながら積層していく。これにより、形成される積層体が、第二チップ積層体ST2であり、この第二チップ積層体ST2を形成する工程が第二積層工程である。第二積層工程も、2以上の配置領域34全てにおいて、実行する。全ての配置領域34に、仮圧着状態の第二チップ積層体ST2が形成されれば、最後に、第二本圧着工程を実行し、全ての第二チップ積層体ST2を本圧着する。そして、全ての第二チップ積層体ST2が本圧着されれば、実装工程は、完了となる。
 以上の説明で明らかな通り、本実施形態では、一つの完成積層体ST0を複数(本例では二つ)のチップ積層体ST1,ST2に分割し、各チップ積層体ST1,ST2ごとに、積層工程と本圧着工程とを実行している。かかる処理手順とする理由について、従来技術と比較して説明する。
 従来から、複数の半導体チップ10を積層して実装する技術が知られている。ただし、従来の実装技術は、目標積層数の半導体チップ10全てを積層した後に、本圧着を実行している。すなわち、図4の例では、8つの半導体チップ10を、仮圧着しながら積層した後、8層目の半導体チップ10の上側から第二温度T2で加熱しつつ加圧していた。かかる手順とした場合、実装ヘッド122の加熱温度の切り替え(第一温度T1-第二温度T2間の切り替え)が1回だけとなるため、実装ヘッド122の昇降温に要する時間を低減でき、ひいては、実装処理全体の時間を短縮できる。しかし、こうした従来技術の場合、下層の半導体チップ10が適切に加熱できず、NCF20の硬化やバンプ18の溶融が不十分になるおそれがあった。
 すなわち、従来技術では、8つの半導体チップ10を積層実装する場合には、最上層(8層目)の半導体チップ10に加熱された実装ヘッド122を押しあてて、8つの半導体チップ10を一括で本圧着する。しかし、この場合、積層数が多いと、実装ヘッド122から下層の半導体チップ10までの距離Hが長くなる。熱源である実装ヘッド122からの距離Hが長くなれば、その分、加熱温度も低下する。その結果、下層の半導体チップ10は、十分に加熱されず、NCF20の硬化や、バンプ18の溶融が不十分となるおそれがあった。
 ここで、当然ながら、実装ヘッド122の温度を高くすれば、下層の半導体チップ10の温度を高く保てる。しかし、先に述べた上層、下層チップ間の温度勾配を考慮すると、第一温度よりも高温が必要となる。それによって、上層チップのバンプ18の溶融、および、それに伴う合金反応が進行、さらには、NCF20の硬化、劣化が進むため、信頼性を著しく損ねる。したがって、実装ヘッド122を過度に高温に加熱することはできなかった。
 そこで、本実施形態では、上述したように、目標積層数の半導体チップからなる完成積層体ST0を、複数のチップ積層体ST1,ST2に分割し、各チップ積層体ST1,ST2ごとに積層工程と本圧着工程とを行っている。かかる処理手順とすることで、本圧着する際、実装ヘッド122から下層の半導体チップ10までの距離を短くできる。そのため、本圧着用の温度である第二温度T2を過度に高温にしなくても、チップ積層体ST1,ST2の下層まで適切に加熱できる。その結果、半導体チップ10を積層実装する際、積層数が多くても、各半導体チップ10を適切に実装できる。
 次に、他の実施形態について、図8を参照して説明する。図8は、他の実装手順を示すイメージ図である。この実施形態では、第一チップ積層体ST1が、一つの半導体チップ10で構成される点で、第一実施形態と異なる。また、本実施形態では、一つの第一チップ積層体ST1を形成してから、次の第一チップ積層体ST1を形成している。具体的に説明すると、本実施形態では、まず、第一温度T1に加熱した実装ヘッド122で、一つの半導体チップ10を、一つの配置領域34(領域A)に配置する。そして、その状態で、第一荷重Ft1を付加し、半導体チップ10を仮圧着する。その後、実装ヘッド122を、第二温度まで昇温したうえで、半導体チップ10を、第二荷重Ft2で加圧する。つまり、第一積層工程と第一本圧着工程を連続して実行する。この工程で、本圧着された一つの半導体チップ10が、第一チップ積層体ST1となる。領域Aに、第一チップ積層体ST1が形成できれば、続いて、残りの配置領域34である領域B,領域Cにも順次、第一チップ積層体ST1を形成する。図8(a)は、全ての配置領域34に、第一チップ積層体ST1を形成した様子を示している。
 この状態になれば、続いて、第二チップ積層体ST2を形成する。この第二チップ積層体ST2の形成手順は、第一実施形態と同じである。すなわち、第一チップ積層体ST1の上に、複数(図示例では3つ)の半導体チップ10を順次、第一温度T1に加熱した実装ヘッド122で仮圧着しながら積層し、仮圧着状態の第二チップ積層体ST2を形成する。一つの第二チップ積層体ST2が形成できれば、他の配置領域34においても、同様に、第二チップ積層体ST2を形成する。すなわち、2以上の配置領域34全てにおいて、第二積層工程を実行する。図8(b)は、仮圧着状態の第二チップ積層体ST2が形成された様子を示す図である。続いて、実装ヘッド122を、本圧着用の第二温度T2まで加熱した状態で、第二チップ積層体ST2を加圧し、4つの半導体チップ10を一括で本圧着していく。図8(c)は、第二本圧着工程の様子を示す図である。一つの配置領域34において、第二本圧着工程が完了すれば、残りの配置領域34においても、同様に、第二本圧着工程を実施する。以降、半導体チップ10の総積層数が、目標積層数に達するまで、第二積層工程と第二本圧着工程と、をくり返す。例えば、目標積層数が「8」の場合において、図8(c)の状態になれば、続いて、各第二チップ積層体ST2の上に、さらに、4層分の半導体チップ10を仮圧着しながら積層した後、本圧着する2回目の第二積層工程および第二本圧着工程を実施すればよい。さらに、目標積層数が「10」の場合は、既述した2回目の第二積層工程および第二本圧着工程の後、さらに、2層分の半導体チップ10を仮圧着しながら積層した後、本圧着する3回目の第二積層工程および第二本圧着工程を実施すればよい。
 ところで、以上の説明から明らかな通り、本実施形態では、第一チップ積層体ST1のチップ積層数を一つとしている。換言すれば、2以上の配置領域34全てにおいて、1層目の半導体チップ10を本圧着してから、2層目以降の半導体チップの積層を行っている。かかる構成とするのは、次の理由による。
 本実施形態における基板30は、シリコン等からなる半導体ウェハである。この半導体ウェハは、通常の樹脂基板等に比して、熱伝導率が高い。そのため、本圧着により領域Aのチップ積層体に付加された熱が、隣接する領域Bのチップ積層体にまで伝達することがある。このとき、図6(b)に示すように、領域Aのチップ積層体を本圧着する際に、領域Aに隣接する領域Bにおいて、1層目の半導体チップ10が仮圧着状態であったとする。この場合、領域Aのチップ積層体、および、基板30を介して伝達された熱が、領域Bの1層目の半導体チップ10にも伝達される。そして、この伝達された熱により、領域Bの1層目の半導体チップ10のNCF20が硬化開始する場合がある。このように、本圧着の前に、NCF20が硬化すると、半導体チップ10の基板30への固定が不十分となる。
 そこで、本実施形態では、意図しないNCF20の硬化を防ぐために、1層目の半導体チップ10を全て、本圧着してから、2層目以降の半導体チップ10の積層を実行している。かかる構成とした場合、図8(c)に示すように、領域Aにおいて2層目以降の半導体チップ10を本圧着するときの熱は、領域Aのチップ積層体、基板を介して、領域Bの1層目の半導体チップ10にも伝達される。しかし、この領域Bの1層目の半導体チップ10は、既に、本圧着されているため、伝熱されても問題は生じない。また、この領域Bの1層目の半導体チップ10を介して、領域Bの2層目以降の半導体チップ10にも伝熱される。しかし、この領域Bの2層目以降の半導体チップ10は、熱源(実装ヘッド122)からの熱経路が長くなるため、伝熱量は小さく、NCF20の硬化は、生じにくい。さらに、熱源から領域Bの2層目以降の半導体チップ10までの熱経路途中には、本圧着済の半導体チップ10が介在する。この本圧着済の半導体チップ10は、そのNCF20が完全に硬化するが、硬化したNCF20は、伝熱を妨げる遮蔽材として機能する。かかる本圧着済の半導体チップ10が介在することで、領域Bの2層目以降の半導体チップ10への伝熱量が大幅に低減できる。
 つまり、予め、全ての配置領域34において、1層目の半導体チップ10を本圧着しておくことで、2層目以降の半導体チップ10のNCF20が意に反して硬化することを効果的に防止できる。また、本実施形態によれば、実装ヘッド122の温度を高めに設定しても、隣接領域においてNCF20が意に反して硬化することがない。その結果、実装ヘッド122の温度を高くすることが可能になるため、実装ヘッド122の温度設定の自由度を向上できる。
 なお、これまで説明した構成は、一例であり、一つの完成積層体ST0を形成するに当たって、積層工程と本圧着工程とを、2回以上くり返すのであれば、その他の構成は、適宜、変更されてもよい。例えば、仮圧着と本圧着との実行順序は、適宜、変更されてもよい。
 例えば、本実施形態では、複数の配置領域34全てで積層工程が終わった後に、本圧着工程を実行しているが、各配置領域34ごとに積層工程および本圧着工程をシリアルに実行してもよい。すなわち、領域Aにおいて第一積層工程、第一本圧着工程、第二積層工程、第二本圧着工程を連続して実行した後、領域Bにおいて、第一積層工程、第一本圧着工程、第二積層工程、第二本圧着工程を行うようにしてもよい。かかる構成とした場合、実装ヘッド122の温度の切り替え回数は増加するが、本圧着を実行する積層体の近傍に、仮圧着状態の積層体は存在しないことになる。その結果、NCF20の意に反した硬化を防止できる。
 また、各チップ積層体ST1,ST2の最上層の半導体チップ10を仮圧着する際に、連続して、本圧着を行うようにしてもよい。具体的には、第一実施形態において第一チップ積層体ST1を形成する際には、各領域A~Cにおいて、3層目まで半導体チップ10を仮圧着しながら積層する。その後、領域Aにおいて、第一温度T1に加熱した実装ヘッド122で、4層目の半導体チップ10を加圧して仮圧着する。4層目の半導体チップ10が加圧できれば、実装ヘッド122で4層目の半導体チップ10を加圧した状態のまま、実装ヘッド122の温度を第二温度T2まで上昇させて、本圧着を実行する。この場合、領域Aの4層目の半導体チップ10の本圧着が完了すれば、実装ヘッド122を第一温度T1まで降温したうえで、領域Bの4層目の半導体チップ10の仮圧着を行い、その後、第二温度T2まで上昇させて本圧着する。かかる構成とした場合、実装ヘッド122の温度の切り替え回数は増加するが、実装ヘッド122の移動量は、低下できる。
 また、これまでの説明では、実装ヘッド122で、仮圧着および本圧着の双方を実行していたが、仮圧着用の実装ヘッドと、本圧着用の実装ヘッドと、を別個に設けてもよい。この場合、仮圧着専用の実装ヘッドは、常に、第一温度T1に、本圧着専用の実装ヘッドは、常に第二温度T2に加熱しておけばよい。かかる構成とすることで、実装ヘッドの温度の切り替えが不要となるため、実装ヘッドの昇降温に要する時間を無くすことができ、実装時間をより短縮できる。また、このとき、本圧着用の実装ヘッドは、2以上のチップ積層体を同時に加熱・加圧(本圧着)できるサイズとしてもよい。
 また、第一チップ積層体の積層数は、1以上であれば、特に限定されない。また、第二チップ積層体の積層数は、2以上であれば特に、限定されない。ただし、一つのチップ積層体の積層数が過度に多い場合、最上面に付与された本圧着の熱が、最下層まで十分に伝わらず、実装不良を生じる。そこで、チップ積層体の積層数は、本圧着の熱が、最下層にまで適切に伝熱され得る個数以下とする。適切に伝熱される個数は、半導体チップ10の材質や構成によって異なるが、一般的な半導体チップ10を用いる場合、一つのチップ積層体の積層数は、4以下であることが望ましい。また、本実施形態では、基板30として半導体ウェハを用いたが、基板30は、半導体ウェハに限らず、他の種類の基板でもよい。
 10 半導体チップ、14,16,32 電極端子、18 バンプ、30 基板、34 配置領域、100 実装装置、102 チップ供給部、104 チップ搬送部、106 ボンディング部、110 突上部、114 ダイピッカ、116 移送ヘッド、118 回転台、120 ステージ、122 実装ヘッド、ST0 完成積層体、ST1 第一チップ積層体、ST2 第二チップ積層体、TE ダイシングテープ。

Claims (5)

  1.  基板上に、規定の目標積層数の半導体チップを積層して半導体装置を製造する製造方法であって、
     前記基板の上において、1以上の半導体チップを、順次、仮圧着しながら積層することで第一チップ積層体を形成する第一積層工程と、
     前記第一チップ積層体を上側から加熱しつつ加圧することで、前記1以上の半導体チップを一括で本圧着する第一本圧着工程と、
     本圧着された半導体チップの上において、2以上の半導体チップを、順次、仮圧着しながら積層することで第二チップ積層体を形成する第二積層工程と、
     前記第二チップ積層体を上側から加熱しつつ加圧することで、前記2以上の半導体チップを一括で本圧着する第二本圧着工程と、
     を含む、ことを特徴とする半導体装置の製造方法。
  2.  請求項1に記載の半導体装置の製造方法であって、
     前記第一積層工程および前記第一本圧着工程を実行した後、前記半導体チップの総積層数が、前記目標積層数に達するまで、前記第二積層工程および前記第二本圧着工程を、くり返す、ことを特徴とする半導体装置の製造方法。
  3.  請求項1または2に記載の半導体装置の製造方法であって、
     前記基板には、複数の配置領域が設定されており、
     前記第一積層工程および第一本圧着工程では、1つの半導体チップを仮圧着および本圧着しており、
     2以上の前記配置領域全てにおいて前記第一本圧着工程を実行した後に、前記第二積層工程を実行する、
     ことを特徴とする半導体装置の製造方法。
  4.  基板上に、規定の目標積層数の半導体チップを積層して実装する実装装置であって、
     前記基板または下層の半導体チップの上に配置された前記半導体チップを、上側から第一温度で加熱しつつ第一荷重で加圧することで仮圧着する仮圧着手段と、
     1以上の半導体チップの積層体であるチップ積層体を、上側から、第一温度より高い第二温度で加熱しつつ第二荷重で加圧することで、前記チップ積層体を構成する1以上の半導体チップを一括で本圧着する本圧着手段と、
     前記仮圧着手段および本圧着手段を制御する制御部と、
     を備え、前記制御部は、
     前記基板の上において、1以上の半導体チップを、順次、前記仮圧着手段により仮圧着することで第一チップ積層体を形成する第一積層処理と、
     前記第一チップ積層体を構成する前記1以上の半導体チップを前記本圧着手段により一括で本圧着する第一本圧着処理と、
     本圧着された半導体チップの上において、2以上の半導体チップを、順次、前記仮圧着手段により仮圧着しながら積層することで第二チップ積層体を形成する第二積層処理と、
     前記第二チップ積層体を構成する前記2以上の半導体チップを前記本圧着手段により一括で本圧着する第二本圧着処理と、
     を前記仮圧着手段および本圧着手段に実行させる、
     ことを特徴とする実装装置。
  5.  基板上に規定の目標積層数の半導体チップを積層して実装する実装装置であって、
     前記基板または下層の半導体チップの上に配置された前記半導体チップを、上側から第一温度で加熱しつつ第一荷重で加圧することで仮圧着するとともに、1以上の半導体チップの積層体であるチップ積層体を、上側から、第一温度より高い第二温度で加熱しつつ第二荷重で加圧することで、前記チップ積層体を構成する1以上の半導体チップを一括で本圧着するボンディング部と、
     前記ボンディング部を制御する制御部と、
     を備え、前記制御部は、
     前記基板の上において、1以上の半導体チップを、順次、前記ボンディング部により仮圧着することで第一チップ積層体を形成する第一積層処理部と、
     前記第一チップ積層体を構成する前記1以上の半導体チップを前記ボンディング部により一括で本圧着する第一本圧着処理部と、
     本圧着された半導体チップの上において、2以上の半導体チップを、順次、前記ボンディング部により仮圧着しながら積層することで、第二チップ積層体を形成する第二積層処理部と、
     前記第二チップ積層体を構成する前記2以上の半導体チップを前記ボンディング部により一括で本圧着する第二本圧着処理部と、
     を備える、ことを特徴とする実装装置。
PCT/JP2017/035469 2016-09-30 2017-09-29 半導体装置の製造方法および実装装置 WO2018062482A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/337,925 US10847434B2 (en) 2016-09-30 2017-09-29 Method of manufacturing semiconductor device, and mounting apparatus
KR1020197012051A KR102147683B1 (ko) 2016-09-30 2017-09-29 반도체 장치의 제조 방법 및 실장 장치
CN201780073516.0A CN110024093A (zh) 2016-09-30 2017-09-29 半导体装置的制造方法以及封装装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-194946 2016-09-30
JP2016194946A JP6349539B2 (ja) 2016-09-30 2016-09-30 半導体装置の製造方法および実装装置

Publications (1)

Publication Number Publication Date
WO2018062482A1 true WO2018062482A1 (ja) 2018-04-05

Family

ID=61759755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035469 WO2018062482A1 (ja) 2016-09-30 2017-09-29 半導体装置の製造方法および実装装置

Country Status (6)

Country Link
US (1) US10847434B2 (ja)
JP (1) JP6349539B2 (ja)
KR (1) KR102147683B1 (ja)
CN (1) CN110024093A (ja)
TW (1) TWI670776B (ja)
WO (1) WO2018062482A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102609475B1 (ko) 2018-10-23 2023-12-06 주식회사 다이셀 반도체 장치 제조 방법
JP7201387B2 (ja) * 2018-10-23 2023-01-10 株式会社ダイセル 半導体装置製造方法
JP7224138B2 (ja) 2018-10-23 2023-02-17 株式会社ダイセル 半導体装置製造方法
US10812017B1 (en) * 2019-08-02 2020-10-20 Advanced Semiconductor Engineering, Inc. Semiconductor package structure
CN113793811B (zh) * 2021-11-16 2022-02-15 湖北三维半导体集成创新中心有限责任公司 芯片堆叠结构的连接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222038A (ja) * 2011-04-05 2012-11-12 Elpida Memory Inc 半導体装置の製造方法
JP2015095499A (ja) * 2013-11-11 2015-05-18 東レ株式会社 半導体装置の製造方法
JP2017183457A (ja) * 2016-03-30 2017-10-05 東レエンジニアリング株式会社 半導体装置の製造方法及び半導体装置の製造装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4425609B2 (ja) * 2003-02-19 2010-03-03 キヤノンマシナリー株式会社 チップマウント方法および装置
JP2010245412A (ja) * 2009-04-09 2010-10-28 Renesas Electronics Corp 半導体集積回路装置の製造方法
JP2013081971A (ja) * 2011-10-06 2013-05-09 Sumitomo Bakelite Co Ltd 加圧加熱装置、及び、電子部品の製造方法
WO2013069798A1 (ja) * 2011-11-11 2013-05-16 住友ベークライト株式会社 半導体装置の製造方法
JP2013138177A (ja) * 2011-11-28 2013-07-11 Elpida Memory Inc 半導体装置の製造方法
JP2014060241A (ja) 2012-09-18 2014-04-03 Toray Ind Inc 半導体装置の製造方法
KR102305310B1 (ko) * 2012-12-28 2021-09-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 및 반도체 장치의 제작 방법
TW201426969A (zh) * 2012-12-28 2014-07-01 Helio Optoelectronics Corp 高壓覆晶led結構及其製造方法
JP2015005637A (ja) * 2013-06-21 2015-01-08 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体装置
JP6349538B2 (ja) * 2016-09-30 2018-07-04 株式会社新川 半導体装置の製造方法および実装装置
TWI673805B (zh) * 2017-01-30 2019-10-01 日商新川股份有限公司 安裝裝置以及安裝系統
TWI692044B (zh) * 2017-05-29 2020-04-21 日商新川股份有限公司 封裝裝置以及半導體裝置的製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222038A (ja) * 2011-04-05 2012-11-12 Elpida Memory Inc 半導体装置の製造方法
JP2015095499A (ja) * 2013-11-11 2015-05-18 東レ株式会社 半導体装置の製造方法
JP2017183457A (ja) * 2016-03-30 2017-10-05 東レエンジニアリング株式会社 半導体装置の製造方法及び半導体装置の製造装置

Also Published As

Publication number Publication date
JP2018060825A (ja) 2018-04-12
US10847434B2 (en) 2020-11-24
JP6349539B2 (ja) 2018-07-04
KR20190051070A (ko) 2019-05-14
US20190311964A1 (en) 2019-10-10
CN110024093A (zh) 2019-07-16
TWI670776B (zh) 2019-09-01
TW201820489A (zh) 2018-06-01
KR102147683B1 (ko) 2020-08-26

Similar Documents

Publication Publication Date Title
WO2018062482A1 (ja) 半導体装置の製造方法および実装装置
JP6349540B2 (ja) 半導体チップの実装装置、および、半導体装置の製造方法
US8377745B2 (en) Method of forming a semiconductor device
US20120252165A1 (en) Method for manufacturing a semiconductor device
WO2018062423A1 (ja) 半導体装置の製造方法および実装装置
JPWO2016158935A1 (ja) 半導体装置の製造方法、半導体実装装置および半導体装置の製造方法で製造されたメモリデバイス
KR102291272B1 (ko) 실장 장치 및 반도체 장치의 제조 방법
CN110476236B (zh) 安装装置以及安装系统
JP6140531B2 (ja) 半導体チップ接合装置および半導体チップ接合方法
JP7317354B2 (ja) 実装装置
JP2001077295A (ja) 半導体装置の製造方法
JP2018137262A (ja) 実装装置および実装方法
JP6119239B2 (ja) 電子装置の製造方法
JP2019125769A (ja) 半導体装置の製造方法
WO2015105149A1 (ja) 半導体装置の実装方法および実装装置
JP2019110187A (ja) 実装装置及び実装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197012051

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17856431

Country of ref document: EP

Kind code of ref document: A1