WO2018061730A1 - 結晶性ポリエステル樹脂および難燃性封止樹脂組成物 - Google Patents

結晶性ポリエステル樹脂および難燃性封止樹脂組成物 Download PDF

Info

Publication number
WO2018061730A1
WO2018061730A1 PCT/JP2017/032647 JP2017032647W WO2018061730A1 WO 2018061730 A1 WO2018061730 A1 WO 2018061730A1 JP 2017032647 W JP2017032647 W JP 2017032647W WO 2018061730 A1 WO2018061730 A1 WO 2018061730A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystalline polyester
polyester resin
mol
flame
component
Prior art date
Application number
PCT/JP2017/032647
Other languages
English (en)
French (fr)
Inventor
雄基 村上
亮 浜崎
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US16/305,488 priority Critical patent/US11118007B2/en
Priority to CN201780058709.9A priority patent/CN109790281B/zh
Priority to EP17855687.4A priority patent/EP3470451B1/en
Priority to JP2017561017A priority patent/JP6376298B1/ja
Priority to KR1020187036730A priority patent/KR102401714B1/ko
Publication of WO2018061730A1 publication Critical patent/WO2018061730A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/676Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/185Acids containing aromatic rings containing two or more aromatic rings
    • C08G63/187Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • C08G63/189Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings containing a naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • C08G63/54Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/553Acids or hydroxy compounds containing cycloaliphatic rings, e.g. Diels-Alder adducts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1034Materials or components characterised by specific properties
    • C09K2003/1078Fire-resistant, heat-resistant materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/04Non-macromolecular organic compounds
    • C09K2200/0417Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0645Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
    • C09K2200/0655Polyesters

Definitions

  • the present invention relates to a crystalline polyester resin and a flame-retardant sealing resin composition using the crystalline polyester resin.
  • Thermoplastic hot melt materials whose viscosity decreases when heated to a temperature above the melting point are excellent in work environment and productivity because they do not contain solvents and have excellent initial adhesive strength, and are widely used in various fields. ing.
  • Examples of applications of the hot melt material as described above include, for example, molding and sealing of electric and electronic parts used in automobiles and electrical appliances. Sealing electrical and electronic parts with a hot-melt material is extremely important from the viewpoint of maintaining electrical insulation from the outside, waterproofing, and dustproofing, and leads to simplification of processes and cost reduction. Especially when sealing electrical and electronic parts with complicated shapes such as circuit boards, it is possible to reliably follow the shape of the electrical and electronic parts and prevent the occurrence of unfilled parts. From the viewpoint of tact, hot melt materials with good fluidity are preferred. On the other hand, from the viewpoint of maintaining the environmental reliability of electrical and electronic parts, heat resistance is required as the sealing material, and the hot melt material needs to have a certain melting point or higher.
  • thermoplastic hot melt material that has both a high melting point and high fluidity has been demanded.
  • an example in which an ethylene copolymer resin is a main component and a wax is used to improve viscosity characteristics at low temperatures is shown (Patent Document 1).
  • an example using a polyamide-based hot melt material can be given (Patent Document 2).
  • the wax described in Patent Document 1 has problems such as bleeding concerns during long-term storage and a decrease in heat resistance above the melting point of the wax.
  • the polyamide described in Patent Document 2 has a problem of handling properties such as high water absorption and difficulty in water management at the time of molding, and also has a problem that adhesiveness is lowered in a humid heat environment.
  • an object of the present invention is to provide a crystalline polyester resin (A) having both a high melting point and a high fluidity and a flame-retardant sealing resin composition using the same.
  • this invention consists of the following structures.
  • the copolymerization ratio of the 1,4-cyclohexanedimethanol component is 60 mol% or more, and the number average molecular weight is 5,000-50. It is preferable that the crystalline melting point is 100 ° C. to 180 ° C.
  • the flame retardant (B) is preferably a phosphate ester or a phosphinic acid metal salt.
  • the ratio W (A) / W (B) of the weight fraction W (A) of the crystalline polyester resin (A) and the weight fraction W (B) of the flame retardant (B) is preferably 3 to 20,
  • the sum of W (A) of the crystalline polyester resin (A) and the weight fraction W (B) of the flame retardant (B) with respect to the total weight of the flame retardant sealing resin composition is preferably 50 to 90% by weight. .
  • the crystalline polyester resin (A) of the present invention can be made low in melt viscosity while maintaining a high melting point by optimizing monomer selection and copolymerization amount. Moreover, even if this crystalline polyester resin (A) mix
  • the crystalline polyester resin (A) of the present invention comprises a polyvalent carboxylic acid component and a polyhydric alcohol component as a copolymerization component.
  • the total polyvalent carboxylic acid component of the crystalline polyester resin (A) is 100 mol%, it is necessary that the 2,6-naphthalenedicarboxylic acid component is copolymerized in an amount of 40 mol% or more.
  • it is 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more, particularly preferably 80 mol% or more, most preferably 90 mol% or more, 100 Even mol% is acceptable. If the amount is too small, the crystallinity may be lowered.
  • the copolymerization ratio of the dimer acid component is preferably 10 mol% or more, more preferably 20 mol% or more. If the amount is too small, the glass transition temperature becomes high and the fluidity may be lowered. Moreover, it is preferable that it is 60 mol% or less, More preferably, it is 50 mol% or less. If the amount is too large, the crystallinity of the crystallized polyester resin (A) may decrease.
  • dicarboxylic acid components other than the 2,6-naphthalenedicarboxylic acid and dimer acid, and trivalent or higher polycarboxylic acid components can be copolymerized.
  • dicarboxylic acid component include terephthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, isophthalic acid, orthophthalic acid, diphenoxyethanedicarboxylic acid, 4,4 ′.
  • -Aromatic dicarboxylic acids such as diphenyl ether dicarboxylic acid, 4,4'-diphenyl ketone dicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, sebacic acid, succinic acid, glutaric acid, hexahydroterephthalic acid, hexahydroisophthalic acid, 1 , 2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and other alicyclic dicarboxylic acids.
  • terephthalic acid is preferable from the viewpoints of polymerizability, cost, and crystallinity.
  • the trivalent or higher polycarboxylic acid component include polycarboxylic acids such as trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, biphenyl sulfone tetracarboxylic acid, biphenyl tetracarboxylic acid, and anhydrides thereof. it can.
  • These dicarboxylic acid components and trivalent or higher polycarboxylic acid components may be used alone or in combination of two or more.
  • the copolymerization ratio of these polyvalent carboxylic acid components is preferably 5 mol% or less, more preferably 2 mol, when the total polyvalent carboxylic acid component of the crystalline polyester resin (A) is 100 mol%. % Or less, more preferably 1 mol% or less, and 0 mol% may be used.
  • the polyhydric alcohol component of the crystalline polyester resin (A) a 1,4-butanediol component is copolymerized, and the copolymerization ratio is 40 mol% or less when the total polyhydric alcohol component is 100 mol%. It is necessary to be. Preferably it is 35 mol% or less, More preferably, it is 30 mol% or less. If the amount is too large, the crystallinity becomes strong, so that the solidification rate becomes fast and the fluidity may deteriorate. Furthermore, in the case of an application that requires flame retardancy, flame retardancy tends to be reduced because combustible gas is generated during combustion.
  • the copolymerization ratio of the 1,4-butanediol component is preferably 5 mol% or more, more preferably 10 mol% or more, and further preferably 20 mol% or more. If the amount is too small, crystallinity may not be sufficiently exhibited, tackiness may occur, and mechanical strength may be reduced. Furthermore, it may cause molding failure and the tact time may be increased.
  • a 1,4-cyclohexanedimethanol component is copolymerized as the polyhydric alcohol component of the crystalline polyester resin (A).
  • the copolymerization ratio of the 1,4-cyclohexanedimethanol component is preferably 60 mol% or more, more preferably 65 mol% or more, and still more preferably, when the total polyhydric alcohol component is 100 mol%. It is 70 mol% or more.
  • the amount is too small, the melt viscosity of the crystalline polyester resin (A) increases, and the fluidity may decrease. Moreover, it is preferable that it is 80 mol% or less. If the amount is too large, the crystallinity may not be sufficiently exhibited, tackiness may occur, and the mechanical strength may decrease. Furthermore, it may cause molding failure and the tact time may be increased.
  • glycol components other than the 1,4-butanediol component and 1,4-cyclohexanedimethanol component, and trihydric or higher polyalcohol components can be copolymerized.
  • examples of other glycol components include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,5 -Pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2-methyl-1,5-pentanediol, 2-methyl-1,3-propanediol, 2-ethyl-1, 3-propanediol, neopentyl glycol, 2-ethyl-2-methyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-methyl-2-
  • ethylene glycol, 1,3-propanediol, or neopentyl glycol is preferable in view of heat resistance, polymerizability, molding, cost, and the like.
  • diethylene glycol may be by-produced during the production of the crystalline polyester resin (A) to become a copolymer component.
  • the trihydric or higher polyalcohol component include trimethylolethane, trimethylolpropane, glycerin and pentaerythritol. These glycol components and trihydric or higher polyalcohol components may be used alone or in combination of two or more.
  • the copolymerization ratio of these polyhydric alcohol components is preferably 5 mol% or less, more preferably 2 mol% or less, when the total polyhydric alcohol component of the crystalline polyester resin (A) is 100 mol%. More preferably, it is 1 mol% or less, and it may be 0 mol%.
  • a polyalkylene ether glycol component may be copolymerized.
  • the copolymerization ratio is preferably 1 mol% or more, more preferably 2 mol% or more, and still more preferably, when the total polyhydric alcohol component of the crystalline polyester resin (A) is 100 mol%. It is 3 mol% or more, and it is preferable that it is 30 mol% or less, More preferably, it is 20 mol% or less, More preferably, it is 10 mol% or less.
  • the polyalkylene ether glycol component is a generic name for triethylene glycol, polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol, polypropylene glycol, and the like.
  • crystallity means that the temperature is raised from ⁇ 130 ° C. to 250 ° C. at 20 ° C./min using a differential scanning calorimeter (DSC) and shows a clear melting peak in the temperature raising process. . Since the polyester resin is crystalline, an effect of improving heat resistance and mechanical properties can be expected.
  • the catalyst used for producing the crystalline polyester resin (A) is not particularly limited, but at least one compound selected from the group consisting of Ge, Sb, Ti, Al, Mn and Mg may be used. preferable. These compounds can be added to the reaction system as, for example, powders, aqueous solutions, ethylene glycol solutions, ethylene glycol slurries, and the like.
  • a stabilizer can be added to the crystalline polyester resin (A) within a range not impairing the effects of the present invention.
  • phosphoric acid other than flame retardant (B) phosphoric acid esters such as polyphosphoric acid and trimethyl phosphate, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinic acid compounds It is preferable to use at least one phosphorus compound selected from the group consisting of a compound and a phosphine compound.
  • the acid value of the crystalline polyester resin (A) is preferably 1 to 40 eq / ton, more preferably 2 to 30 eq / ton, and further preferably 3 to 20 eq / ton.
  • the acid value exceeds 40 eq / ton, light resistance tends to decrease.
  • the acid value is less than 1 eq / ton, the polycondensation reactivity tends to decrease and the productivity tends to deteriorate.
  • the number average molecular weight of the crystalline polyester resin (A) is preferably 5,000 or more, more preferably 10,000 or more, and further preferably 15,000 or more. If it is too small, the mechanical strength cannot be maintained. Moreover, it is preferable that it is 50,000 or less, More preferably, it is 40,000 or less, More preferably, it is 30,000 or less. If it is too large, the melt viscosity becomes high.
  • the melting point of the crystalline polyester resin (A) is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and further preferably 120 ° C. or higher. If it is too low, the heat resistance may decrease. Moreover, it is preferable that it is 180 degrees C or less, More preferably, it is 160 degrees C or less, More preferably, it is 140 degrees C or less. If it is too high, it is necessary to apply high heat during sealing, which may promote heat aging.
  • the glass transition temperature of the crystalline polyester resin (A) is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 40 ° C. or higher, and further preferably ⁇ 30 ° C. or higher. If it is too low, mechanical properties at high temperatures and resin strength may be reduced. Further, it is preferably 10 ° C. or lower, more preferably 0 ° C. or lower, and further preferably ⁇ 10 ° C. or lower. If it is too high, mechanical properties in a low temperature environment may be deteriorated.
  • the reduced viscosity (dl / g) of the crystalline polyester resin (A) is preferably 0.2 or more, more preferably 0.3 or more, and further preferably 0.4 or more. Moreover, it is preferable that it is 1.0 or less, More preferably, it is 0.8 or less, More preferably, it is 0.7 or less. By setting the amount within the above range, a resin having a good balance between mechanical properties and fluidity can be expected.
  • the melt viscosity (dPa ⁇ s) at 220 ° C. of the crystalline polyester resin (A) is preferably 500 or less, more preferably 400 or less, and further preferably 300 or less.
  • the lower limit is not particularly limited, but 10 is sufficient industrially.
  • the crystalline polyester resin (A) of the present invention has a high melting point and high fluidity, it is suitably used as a hot melt sealing material. In particular, it is suitably used as a hot melt sealing material for electric and electronic parts.
  • a flame retardant (B) is mix
  • the flame retardant (B) is not particularly limited, but is preferably a non-halogen phosphorus flame retardant having a phosphorus atom in the structure, more preferably a phosphate ester flame retardant, and even more preferably phosphoric acid. It is an ester or a phosphinic acid metal salt, and a phosphinic acid metal salt is particularly preferred.
  • tris (diethylphosphinic acid) aluminum bisphenol A bis (diphenyl phosphate), triaryl isopropylate, cresyl di-2,6-xylenyl phosphate, and aromatic condensed phosphate.
  • the phosphorus content in the flame retardant (B) is preferably 10% by weight or more, more preferably 15% by weight or more, and further preferably 20% by weight or more. Moreover, it is preferable that it is 40 weight% or less, More preferably, it is 30 weight% or less, More preferably, it is 25 weight% or less. By setting it within the above range, excellent flame retardancy can be exhibited while maintaining good fluidity.
  • the decomposition temperature of the flame retardant (B) is preferably 250 ° C. or higher, more preferably 280 ° C. or higher, and further preferably 300 ° C. or higher. By setting it within the above range, excellent flame retardancy can be expected.
  • flame retardants and flame retardant aids include melamine cyanurate, red phosphorus, nitrogen-containing phosphoric acid compounds, hydrotalcite compounds and alkali compounds.
  • the nitrogen-containing phosphate compound includes a reaction product of melamine or a condensate of melamine such as melam, melem and melon and polyphosphoric acid or a mixture thereof.
  • These flame retardants and flame retardant aids may be used alone or in combination with the flame retardant (B).
  • the flame-retardant sealing resin composition of the present invention is a composition containing the crystalline polyester resin (A) and a flame retardant (B).
  • W (A) / W (B) is preferably 3 or more, more preferably 4 or more, and still more preferably 5 or more.
  • W (A) / W (B) is less than 3, there may be a problem that physical properties such as fluidity and mechanical properties of the crystalline polyester resin (A) are lowered.
  • W (A) / W (B) is preferably 20 or less, more preferably 15 or less, and further preferably 10 or less. If it exceeds 20, the flame retardancy may decrease.
  • the flame retardant encapsulating resin composition of the present invention comprises the weight fraction W (A) of the crystalline polyester resin (A) and the weight fraction W of the flame retardant (B) in the total weight of the flame retardant encapsulating resin composition.
  • the sum of (B) is preferably 50% by weight or more, and more preferably 60% by weight or more. If the amount is too small, the fluidity and flame retardancy of the flame retardant sealing resin composition may not be exhibited. Moreover, it is preferable that it is 90 weight% or less, and it is more preferable that it is 80 weight% or less. If the amount is too large, the adhesiveness may decrease.
  • the melt viscosity (dPa ⁇ s) at 220 ° C. of the flame retardant sealing resin composition is preferably 1500 or less, more preferably 1000 or less, and even more preferably 500 or less.
  • the lower limit is not particularly limited, but 10 is sufficient industrially. By setting it in the above range, a flame-retardant sealing resin composition having good fluidity can be obtained.
  • the flame-retardant sealing resin composition of the present invention has excellent fluidity and flame retardancy, it is suitably used as a flame-retardant hot melt sealant. In particular, it is suitably used as a hot melt sealant for electric and electronic parts.
  • antioxidants include, for example, 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, 1,1,3-tri (4 -Hydroxy-2-methyl-5-tert-butylphenyl) butane, 1,1-bis (3-tert-butyl-6-methyl-4-hydroxyphenyl) butane, 3,5-bis (1,1-dimethyl) Ethyl) -4-hydroxy-benzenepropanoic acid, pentaerythrityltetrakis (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 3- (1,1-dimethylethyl) -4-hydroxy- 5-methyl-benzenepropanoic acid, 3,9-
  • the addition amount is preferably 0.1% by weight or more and 5% by weight or less based on the entire flame-retardant sealing resin composition. If it is less than 0.1% by weight, the antioxidant effect may be poor. On the other hand, if it exceeds 5% by weight, the adhesion and the like may be adversely affected.
  • a light stabilizer for example, as the benzotriazole light stabilizer, 2- (3,5-di-tert-amyl-2′hydroxyphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2H-benzotriazol-2-yl) -p-cresol, 2- (2'- Hydroxy-5′-methylphenyl) -benzotriazole, 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol, 2- [2-hydroxy-3,5-di ( 1,1-dimethylbenzyl)]-2H-benzotriazole, and the like
  • benzophenone light stabilizers examples include 2-hydroxy-4- (octyloxy) benzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone, and 2-hydroxy-4.
  • -Methoxy-benzophenone-5-sulfonic acid 2-hydroxy-4-n-dodecyloxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane
  • 2,2'-dihydroxy-4- Examples include methoxybenzophenone and 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, but are not limited thereto, and any benzophenone light stabilizer can be used as appropriate.
  • the hindered amine light stabilizer is bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, dimethyl succinate, 1- (2-hydroxyethyl) -4-hydroxy-2,2, 6,6-tetramethylpiperidine polycondensate, poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2 , 6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene (2,2,6,6-tetramethyl-4-piperidyl) imino], 1,3,5-tris (3,5-di-tert -Butyl-4-hydroxybenzyl) -s-triazine-2,4,6 (1H, 3H, 5H) trione, tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) -s-triazine -2,4 6- (1H, 3H, 5H
  • Nickel-based light stabilizers include [2,2′-thio-bis (4-tert-octylphenolate)]-2-ethylhexylamine-nickel- (II), nickel dibutyldithiocarbamate, [2 ′, 2 ′ -Thio-bis (4-tert-octylphenolate)] n-butylamine-nickel and the like, but not limited thereto, any nickel-based light stabilizer can be used as appropriate.
  • Examples of the benzoate-based light stabilizer include 2,4-di-t-butylphenyl-3,5′-di-tert-butyl-4′-hydroxybenzoate, but are not limited thereto. Any stabilizer can be used as appropriate.
  • the addition amount is preferably 0.1% by weight or more and 5% by weight or less based on the entire flame-retardant sealing resin composition. If it is less than 0.1% by weight, the weather resistance effect may be poor. If it exceeds 5% by weight, the adhesion may be adversely affected.
  • additives can be used in the crystalline polyester resin (A) or the flame-retardant sealing resin composition of the present invention as long as the effects of the present invention are not impaired.
  • additives include impact modifiers, slidability improvers, colorants, plasticizers, crystal nucleating agents, and thermoplastic resins other than polyester.
  • a crystal nucleating agent may be added to the crystalline polyester resin (A) or the flame-retardant sealing resin composition of the present invention. Transparency can be enhanced by adding 0.01 to 5 parts by weight of a crystal nucleating agent to 100 parts by weight of the crystalline polyester resin (A).
  • the crystal nucleating agent has an effect of accelerating the crystallization speed of the crystalline polyester resin (A), completing the crystallization quickly, and controlling the size of the spherulites by adjusting the number of crystal nuclei.
  • the crystal nucleating agent include inorganic fine particles such as talc, silica, graphite, carbon powder, pyroferrite, gypsum, and neutral clay, metal oxides such as magnesium oxide, aluminum oxide, and titanium dioxide, sulfate, and phosphoric acid. Salt, silicate, oxalate, stearate, benzoate, salicylate, tartrate, sulfonate, montanic acid wax salt, montanic acid wax ester salt, terephthalate, carboxylate, ⁇ -olefin And an ionic copolymer comprising ⁇ , ⁇ -unsaturated carboxylic acid.
  • inorganic fine particles such as talc, silica, graphite, carbon powder, pyroferrite, gypsum, and neutral clay
  • metal oxides such as magnesium oxide, aluminum oxide, and titanium dioxide, sulfate, and phosphoric acid.
  • Salt silicate, oxalate, stearate, benzoate,
  • zinc salts of fatty acids such as hexanoic acid, lauric acid, stearic acid, and montanic acid
  • metal salts such as calcium salt, magnesium salt, sodium salt, and lithium salt are preferable because the crystallization rate can be easily adjusted.
  • a sodium salt of a fatty acid is used, the control of the spherulite size is facilitated, and a transparent molded product is easily obtained.
  • thermoplastic resin different from the crystalline polyester resin (A) is added to the crystalline polyester resin (A) or the flame-retardant sealing resin composition of the present invention within a range not impairing the effects of the present invention, good.
  • thermoplastic resins can be blended in a molten state by melt kneading.
  • the thermoplastic resin may be made into a fiber or particle and dispersed in the crystalline polyester resin (A) of the present invention.
  • An optimum amount of the thermoplastic resin may be selected, but a maximum of 50 parts by weight can be added to 100 parts by weight of the crystalline polyester resin (A).
  • the crystalline polyester resin (A) or the flame-retardant sealing resin composition of the present invention can be produced by blending the above-described constituent components by a conventionally known method. For example, each component is added during the polycondensation reaction of the crystalline polyester resin (A), the crystalline polyester resin (A) and other components are dry blended, or a twin screw type extruder is used. The method of melt-kneading each structural component can be mentioned.
  • Examples of the method for determining the composition and composition ratio of the crystalline polyester resin (A) include 1 H-NMR and 13 C-NMR in which the crystalline polyester resin (A) is dissolved in a solvent such as deuterated chloroform. It is done. Further, quantitative determination by gas chromatography measured after methanolysis of the crystalline polyester resin (A) (hereinafter sometimes abbreviated as methanolysis-GC method), acid value (AV) measurement of the crystalline polyester resin (A), DSC Measurement of melting point (Tm), glass transition temperature (Tg), and the like. In the present invention, when there is a solvent that can dissolve the crystalline polyester resin (A) and is suitable for 1 H-NMR measurement, the composition and composition ratio are determined by 1 H-NMR.
  • ⁇ Measurement of number average molecular weight of crystalline polyester resin (A)> A sample of crystalline polyester resin (A) (0.0050 g) is dissolved by heating in 5 ml of chloroform. Then, it filters with a membrane filter and removes insoluble matter. 80 ⁇ l of the filtrate (sample solution) was measured by GPC “EZChrom Elite for Hitachi” manufactured by Hitachi High-Tech Fielding Co., Ltd., and the number average molecular weight was determined. A polystyrene solution was prepared as a standard substance and used as a sample for a GPC calibration curve.
  • a 0.1 g sample of the crystalline polyester resin (A) is dissolved by heating in 10 ml of benzyl alcohol. Then, the acid value was calculated
  • intersection of the tangent line (1) obtained from the base line before the inflection point and the tangent line (2) obtained from the base line after the inflection point in the portion where the inflection point appears in the DDSC as shown in FIG. was the glass transition temperature, and the minimum point of the endothermic peak (x in the figure) was the melting point.
  • a flat plate (100 mm ⁇ 100 mm ⁇ 10 mm) made of a crystalline polyester resin (A) was molded using a low pressure molding applicator IMC-18F9 manufactured by Imoto Seisakusho as a hot melt molding processing applicator.
  • the gate position was the center of a 100 mm ⁇ 100 mm surface.
  • Molding conditions molding resin temperature 220 ° C., molding pressure 3 MPa, holding pressure 3 MPa, cooling time 15 seconds, discharge rotation 50%.
  • Test pieces made of a flame-retardant sealing resin composition of 125 mm ⁇ 13 mm ⁇ 1.6 mm were produced by injection molding using a vertical injection molding machine (TH40E manufactured by Nissei Plastic Co., Ltd.). The injection molding conditions were a molding resin temperature of 200 ° C., a molding pressure of 25 MPa, a cooling time of 25 seconds, and an injection speed of 20 mm / second.
  • Example 1 Example of production of crystalline polyester resin (A-1)>
  • a reaction vessel equipped with a stirrer, a thermometer, and a condenser for distillation 176 parts by weight of 2,6-naphthalenedicarboxylic acid, 137 parts by weight of 1,4-butanediol, 69 parts by weight of 1,4-cyclohexanedimethanol, 0.1 part by weight of tetrabutyl titanate was added, and esterification was performed at 170 to 220 ° C. for 2 hours. Thereafter, 46 parts by weight of dimer acid was added, and esterification was performed at 200 to 230 ° C. for 2 hours.
  • Examples 2-12 ⁇ Production Example of Crystalline Polyester Resin (A-2 to A-12)> Crystalline polyester resins (A-2 to A-12) were synthesized in the same manner as in Example 1. However, the types and blending ratios of the raw materials were changed as described in Table 1.
  • PTMG1000 polytetramethylene ether glycol (number average molecular weight 1000)
  • PTMG2000 polytetramethylene ether glycol (number average molecular weight 2000)
  • the flame retardant (B) used in Tables 2 and 3 is Exolit (registered trademark) OP1240 (manufactured by Clariant).
  • the crystalline polyester resin of the present invention Since the crystalline polyester resin of the present invention has high fluidity while maintaining a high melting point, it is excellent in environmental reliability and productivity, and is particularly useful as a resin composition for sealing electrical and electronic parts.
  • the flame-retardant encapsulating resin composition using the crystalline polyester resin of the present invention has a low melt viscosity when encapsulating electrical and electronic parts and the like, and is excellent in flame retardancy. It is useful as a sealing resin composition.
  • the flame-retardant encapsulating resin composition of the present invention is particularly excellent in flame retardancy, ignition and fire spread are suppressed against electric leakage and overcurrent from electrical and electronic parts, which are very useful.
  • the electrical and electronic component encapsulated body sealed with the flame retardant encapsulating resin composition of the present invention includes, for example, automobiles, communications, computers, various connectors for household appliances, harnesses or electronic components, switches having printed circuit boards, and sensors. It is useful as a molded product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

高融点と高流動性を両立した結晶性ポリエステル樹脂、および該結晶性ポリエステル樹脂を用いた難燃性封止樹脂組成物を提供することにある。 多価カルボン酸成分と多価アルコール成分を共重合成分とする結晶性ポリエステル樹脂(A)であって、結晶性ポリエステル樹脂(A)の全多価カルボン酸成分を100モル%としたとき、2,6-ナフタレンジカルボン酸成分の共重合比率が40~100モル%であり、多価アルコール成分として1,4-ブタンジオール成分が共重合されており、全多価アルコール成分を100モル%としたとき、1,4-ブタンジオール成分の共重合比率が40モル%以下であることを特徴とする結晶性ポリエステル樹脂(A)。

Description

結晶性ポリエステル樹脂および難燃性封止樹脂組成物
 本発明は結晶性ポリエステル樹脂、および該結晶性ポリエステル樹脂を用いた難燃性封止樹脂組成物に関する。
 融点以上の温度まで加温溶融することで粘度が低下する熱可塑性ホットメルト材は、溶剤を含有しないことや初期接着力に優れることから作業環境や生産性に優れ、各種分野で広範に利用されている。上記のようなホットメルト材の用途例としては、例えば自動車・電化製品に使用されている電気電子部品の成型封止用途が挙げられる。電気電子部品をホットメルト材で封止することは、外部との電気絶縁性の保持、防水、防塵の観点から極めて重要となる上、工程簡略化やコスト削減につながる。特に回路基板等複雑な形状を有する電気電子部品を封止する際には、その電気電子部品の形状に確実に追随し未充填部が発生しないことを始め、電気電子部品へのダメージ低減、生産タクトの観点から流動性良好なホットメルト材が好まれている。一方で、電気電子部品の環境信頼性を保つ観点から、封止材としては耐熱性が求められ、ホットメルト材としては、ある一定以上の融点を有することが必要となる。
 上記のような背景から、高融点と高流動性を両立させる熱可塑性ホットメルト材が求められていた。高融点と高流動性を両立させようとした例としてエチレン系共重合体樹脂を主成分とし、低温での粘度特性を改良するためにワックスを使用した例が示されている(特許文献1)。その他のホットメルト材として、ポリアミド系ホットメルト材を使用した例が挙げられる(特許文献2)。
特開2012-246375号公報 特開2012-67176号公報
 しかしながら、特許文献1に記載されたワックスでは、長期保存におけるブリードの懸念や、ワックスの融点以上での耐熱性の低下などの問題点があった。また、特許文献2に記載のポリアミドは吸水性が高く、成型時の水分管理が難しいなどのハンドリング性に問題がある他、湿熱環境下で接着性が低下するという問題点があった。
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、高融点と高流動性を両立した結晶性ポリエステル樹脂(A)およびそれを用いた難燃性封止樹脂組成物を提供することにある。
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見い出し、本発明に到達した。すなわち本発明は、以下の構成からなる。
 多価カルボン酸成分と多価アルコール成分を共重合成分とする結晶性ポリエステル樹脂(A)であって、結晶性ポリエステル樹脂(A)の全多価カルボン酸成分を100モル%としたとき、2,6-ナフタレンジカルボン酸成分の共重合比率が40~100モル%であり、多価アルコール成分として1,4-ブタンジオール成分が共重合されており、全多価アルコール成分を100モル%としたとき、1,4-ブタンジオール成分の共重合比率が40モル%以下であることを特徴とする結晶性ポリエステル樹脂(A)。
 結晶性ポリエステル樹脂(A)の全多価アルコール成分を100モル%としたとき、1,4-シクロヘキサンジメタノール成分の共重合比率が60モル%以上であり、数平均分子量が5,000~50,000であり、なおかつ、結晶融点が100℃~180℃であることが好ましい。
 前記結晶性ポリエステル樹脂(A)および難燃剤(B)を含有する難燃性封止樹脂組成物。
 難燃剤(B)はリン酸エステルまたはホスフィン酸金属塩であることが好ましい。
 結晶性ポリエステル樹脂(A)の重量分率W(A)と難燃剤(B)の重量分率W(B)の比率W(A)/W(B)が3~20であることが好ましく、難燃性封止樹脂組成物全重量に対する結晶性ポリエステル樹脂(A)のW(A)と難燃剤(B)の重量分率W(B)の和が50~90重量%であることが好ましい。
 本発明の結晶性ポリエステル樹脂(A)は、モノマーの選択および共重合量を最適化することで、高融点を維持しながらも低溶融粘度化が可能となった。また、該結晶性ポリエステル樹脂(A)は難燃剤(B)を配合しても流動性が良好で、かつ優れた難燃性を発現することができる。そのため、特に電気電子部品封止用途に好適に用いられる。
示差走査熱量分析計で測定したチャートの模式図を表す。
 以下、本発明を詳述する。
<結晶性ポリエステル樹脂(A)>
 本発明の結晶性ポリエステル樹脂(A)は、多価カルボン酸成分と多価アルコール成分を共重合成分とするものである。結晶性ポリエステル樹脂(A)の全多価カルボン酸成分を100モル%としたとき、2,6-ナフタレンジカルボン酸成分が40モル%以上共重合していることが必要である。好ましくは50モル%以上であり、より好ましくは60モル%以上であり、さらに好ましくは70モル%以上であり、特に好ましくは80モル%以上であり、最も好ましくは90モル%以上であり、100モル%でも差し支えない。少なすぎると、結晶性が低下することがある。
 結晶性ポリエステル樹脂(A)の多価カルボン酸成分として、ダイマー酸成分を共重合することも好ましい。ダイマー酸成分を共重合することで、結晶性ポリエステル樹脂(A)のガラス転移温度が低下し、流動性が向上することが期待できる。全多価カルボン酸成分を100モル%としたとき、ダイマー酸成分の共重合比率は、10モル%以上であることが好ましく、より好ましくは20モル%以上である。少なすぎると、ガラス転移温度が高くなり、流動性が低下しまうことがある。また、60モル%以下であることが好ましく、より好ましくは50モル%以下である。多すぎると結晶化ポリエステル樹脂(A)の結晶性が低下することがある。
 その他の多価カルボン酸成分として、前記2,6-ナフタレンジカルボン酸やダイマー酸以外のジカルボン酸成分や3価以上のポリカルボン酸成分を共重合することができる。
ジカルボン酸成分としては、テレフタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、イソフタル酸、オルトフタル酸、ジフェノキシエタンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルケトンジカルボン酸等の芳香族ジカルボン酸、アジピン酸、セバシン酸、コハク酸、グルタル酸等の脂肪族ジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環族ジカルボン酸などが挙げられる。これらの中では、重合性、コスト、結晶性の点からテレフタル酸が好ましい。また、3価以上のポリカルボン酸成分としては、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルスルホンテトラカルボン酸、ビフェニルテトラカルボン酸などの多価カルボン酸及びその無水物を挙げることができる。これらジカルボン酸成分や3価以上のポリカルボン酸成分を単独でまたは2種以上を併用しても構わない。これらの多価カルボン酸成分の共重合比率は、結晶性ポリエステル樹脂(A)の全多価カルボン酸成分を100モル%としたとき、5モル%以下であることが好ましく、より好ましくは2モル%以下であり、さらに好ましくは1モル%以下であり、0モル%でも差し支えない。
 結晶性ポリエステル樹脂(A)の多価アルコール成分として、1,4-ブタンジオール成分が共重合されており、その共重合比率は全多価アルコール成分を100モル%としたとき、40モル%以下であることが必要である。好ましくは35モル%以下であり、より好ましくは30モル%以下である。多すぎると結晶性が強くなるため固化速度が速くなり、流動性が悪くなることがある。さらには難燃性が必要な用途の場合は、燃焼時に可燃性ガスが発生することから難燃性が低下する傾向にある。また、1,4-ブタンジオール成分の共重合比率は、5モル%以上であることが好ましく、より好ましくは10モル%以上であり、さらに好ましくは20モル%以上である。少なすぎると結晶性が十分発現せず、タック性が生じたり、機械的強度が低下することがある。さらには成形不良を引き起こし、タクトタイムが長くなることがある。
 結晶性ポリエステル樹脂(A)の多価アルコール成分として、1,4-シクロヘキサンジメタノール成分が共重合されていることが好ましい。1,4-シクロヘキサンジメタノール成分を共重合することで、結晶性ポリエステル樹脂(A)の溶融粘度を低く抑えることができ、流動性良好な難燃性封止樹脂組成物を得ることができる。1,4-シクロヘキサンジメタノール成分の共重合比率は、全多価アルコール成分を100モル%としたとき、60モル%以上であることが好ましく、より好ましくは65モル%以上であり、さらに好ましくは70モル%以上である。少なすぎると結晶性ポリエステル樹脂(A)の溶融粘度が高くなり、流動性が低下することがある。また、80モル%以下であることが好ましい。多すぎると結晶性が十分発現せず、タック性が生じたり、機械的強度が低下することがある。さらには成形不良を引き起こし、タクトタイムが長くなることがある。
 その他の多価アルコール成分として、前記1,4-ブタンジオール成分や1,4-シクロヘキサンジメタノール成分以外のグリコール成分や3価以上のポリアルコール成分を共重合することができる。その他のグリコ-ル成分としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、2-エチル-1,3-プロパンジオール、ネオペンチルグリコール、2-エチル-2-メチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-メチル-2-n-ブチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、2-エチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジ-n-ヘキシル-1,3-プロパンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオールなどの脂肪族グリコール、ヒドロキノン、4,4’-ジヒドロキシビスフェノール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールAのアルキレンオキサイド付加物などの芳香族グリコール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、シス型1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノールなどの脂環族グリコールなどが挙げられる。これらの中では、耐熱性、重合性、成形、コストなどからエチレングリコール、1,3-プロパンジオール、またはネオペンチルグリコールが好ましい。なお、グリコール成分にエチレングリコールを用いた場合、結晶性ポリエステル樹脂(A)の製造時に、ジエチレングリコールが副生し、共重合成分となることがある。また、3価以上のポリアルコール成分としては、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール等が挙げることができる。これらグリコール成分や3価以上のポリアルコール成分を単独でまたは2種以上を併用しても構わない。これら多価アルコール成分の共重合比率は、結晶性ポリエステル樹脂(A)の全多価アルコール成分を100モル%としたとき、5モル%以下であることが好ましく、より好ましくは2モル%以下であり、さらに好ましくは1モル%以下であり、0モル%でも差し支えない。
 また、5-スルホイソフタル酸、4-スルホナフタレン-2,7-ジカルボン酸、5-[4-スルホフェノキシ]イソフタル酸や、そのアルカリ金属塩、または2-スルホ-1,4-ブタンジオール、2,5-ジメチル-3-スルホ-2,5-ヘキサンジオールや、その金属塩などのスルホン酸金属塩基を含有するジカルボン酸成分またはグリコール成分を全多価ジカルボン酸成分または全多価アルコール成分の20モル%以下の範囲で使用してもよい。
 結晶性ポリエステル樹脂(A)の多価アルコール成分として、ポリアルキレンエーテルグリコール成分を共重合しても良い。その共重合比率は、結晶性ポリエステル樹脂(A)の全多価アルコール成分を100モル%としたとき、1モル%以上であることが好ましく、より好ましくは2モル%以上であり、さらに好ましくは3モル%以上であり、また、30モル%以下であることが好ましく、より好ましくは20モル%以下であり、さらに好ましくは10モル%以下である。ポリアルキレンエーテルグリコール成分を共重合することで、結晶性ポリエステル樹脂(A)のガラス転移温度が低くなり、柔軟性や流動性向上の効果が期待できる。しかしながら共重合比率が多すぎると、難燃性が必要な用途の場合は、燃焼時に可燃性ガスが発生することから難燃性が低下する傾向にある。ここで、ポリアルキレンエーテルグリコール成分とは、トリエチレングリコール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール、ポリプロピレングリコールなどの総称を指す。
 本発明において、結晶性とは、示差走査型熱量計(DSC)を用いて-130℃から250℃まで20℃/分で昇温し、該昇温過程に明確な融解ピークを示すものを指す。ポリエステル樹脂が結晶性であることで、耐熱向上や機械特性向上の効果が期待できる。
 結晶性ポリエステル樹脂(A)を製造するに際に使用する触媒として、特に限定がされないが、Ge、Sb、Ti、Al、MnおよびMgからなる群より選ばれる少なくとも一種の化合物が用いられることが好ましい。これらの化合物は、例えば、粉体、水溶液、エチレングリコール溶液、エチレングリコールのスラリー等として反応系に添加することができる。
 また、本願発明の効果を損ねない範囲で結晶性ポリエステル樹脂(A)に安定剤を配合することができる。安定剤として、難燃剤(B)以外の燐酸、ポリ燐酸やトリメチルフォスフェート等の燐酸エステル類、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、およびホスフィン系化合物からなる群より選ばれる少なくとも一種のリン化合物を使用するのが好ましい。
 結晶性ポリエステル樹脂(A)の酸価としては、1~40eq/tonであることが好ましく、2~30eq/tonであることがより好ましく、3~20eq/tonであることがさらに好ましい。酸価が40eq/tonを超えると、耐光性が低下する傾向にある。また、酸価が1eq/ton未満では、重縮合反応性が低下して生産性が悪くなる傾向にある。
 結晶性ポリエステル樹脂(A)の数平均分子量は、5,000以上であることが好ましく、より好ましくは10,000以上であり、さらに好ましくは15,000以上である。小さすぎると機械的強度が保てない。また、50,000以下であることが好ましく、より好ましくは40,000以下であり、さらに好ましくは30,000以下である。大きすぎると溶融粘度が高くなる。
 結晶性ポリエステル樹脂(A)の融点は、100℃以上であることが好ましく、より好ましくは110℃以上であり、さらに好ましくは120℃以上である。低すぎると耐熱性が低下することがある。また、180℃以下であることが好ましく、より好ましくは160℃以下であり、さらに好ましくは140℃以下である。高すぎると封止の際に高熱をかける必要が生じ、熱老化を促進することがある。
 結晶性ポリエステル樹脂(A)のガラス転移温度は、-50℃以上であることが好ましく、より好ましくは-40℃以上であり、さらに好ましくは-30℃以上である。低すぎると高温での機械特性低下や樹脂強度の低下を招くことがある。また、10℃以下であることが好ましく、より好ましくは0℃以下であり、さらに好ましくは-10℃以下である。高すぎると低温環境下での機械特性の低下を招くことがある。
 結晶性ポリエステル樹脂(A)の還元粘度(dl/g)は、0.2以上であることが好ましく、より好ましくは0.3以上であり、さらに好ましくは0.4以上である。また、1.0以下であることが好ましく、より好ましくは0.8以下であり、さらに好ましくは0.7以下である。上記範囲にすることで機械特性と流動性のバランスの良い樹脂が期待できる。
 結晶性ポリエステル樹脂(A)の220℃における溶融粘度(dPa・s)は、500以下であることが好ましく、より好ましくは400以下であり、さらに好ましくは300以下である。下限は特に限定されないが、工業的には10であれば十分である。上記範囲にすることで成型封止材として用いることで流動性良好な封止樹脂組成物を得ることができる。
 本発明の結晶性ポリエステル樹脂(A)は、高融点かつ高流動性であるため、ホットメルト封止材として好適に使用される。特に、電気電子部品用のホットメルト封止材として好適に使用される。
<難燃剤(B)>
 難燃剤(B)は難燃性封止樹脂組成物の難燃性を向上させるために配合されるものである。難燃剤(B)は、特に限定されないが、リン原子を構造中に有する非ハロゲン系のリン系難燃剤であることが好ましく、より好ましくはリン酸エステル系難燃剤であり、さらに好ましくはリン酸エステルまたはホスフィン酸金属塩であり、ホスフィン酸金属塩が特に好ましい。具体的には、トリス(ジエチルホスフィン酸)アルミニウム、ビスフェノールAビス(ジフェニルホスフェート)、リン酸トリアリールイソプロピル化物、クレジルジ2、6-キシレニルホスフェート、芳香族縮合リン酸エステルが挙げられる。
 難燃剤(B)におけるリン含有量は10重量%以上であることが好ましく、より好ましくは15重量%以上であり、さらに好ましくは20重量%以上である。また、40重量%以下であることが好ましく、より好ましくは30重量%以下であり、さらに好ましくは25重量%以下である。上記範囲内にすることで良好な流動性を保持しつつ、優れた難燃性を発現することができる。
 難燃剤(B)の分解温度は250℃以上であることが好ましく、より好ましくは280℃以上であり、さらに好ましくは300℃以上である。上記範囲内とすることで、優れた難燃性を発現することが期待できる。
 その他難燃剤、難燃助剤としてはメラミンシアヌレート、赤リン、含窒素リン酸系の化合物、ハイドロタルサイト系化合物やアルカリ化合物が挙げられる。含窒素リン酸系化合物としては、メラミンまたは、メラム、メレム、メロンのようなメラミンの縮合物とポリリン酸の反応生成物またはそれらの混合物を含む。これらの難燃剤、難燃助剤は単独もしくは難燃剤(B)と併用しても問題ない。
<難燃性封止樹脂組成物>
 本発明の難燃性封止樹脂組成物は、前記結晶性ポリエステル樹脂(A)と難燃剤(B)とを含有する組成物である。難燃性封止樹脂組成物は、結晶性ポリエステル樹脂(A)の重量分率をW(A)とし、難燃剤(B)の重量分率W(B)としたとき、W(A)/W(B)が3以上であることが好ましく、より好ましくは4以上であり、さらに好ましくは5以上である。W(A)/W(B)が3未満であると結晶性ポリエステル樹脂(A)の溶融時の流動性や機械特性などの物性を低下させるといった問題が生じることがある。また、W(A)/W(B)が20以下であることが好ましく、より好ましくは15以下であり、さらに好ましくは10以下である。20を超えると難燃性が低下することがある。
 本発明の難燃性封止樹脂組成物は、難燃性封止樹脂組成物全重量における結晶性ポリエステル樹脂(A)の重量分率W(A)と難燃剤(B)の重量分率W(B)の和が50重量%以上であることが好ましく、60重量%以上であることがより好ましい。少なすぎると難燃性封止樹脂組成物の流動性や難燃性を発現しなくなることがある。また、90重量%以下であることが好ましく、80重量%以下であることがより好ましい。多すぎると接着性が低下することがある。
 難燃性封止樹脂組成物の220℃における溶融粘度(dPa・s)は、1500以下であることが好ましく、より好ましくは1000以下であり、さらに好ましくは500以下である。下限は特に限定されないが、工業的には10であれば十分である。上記範囲にすることで流動性良好な難燃性封止樹脂組成物を得ることができる。
 本発明の難燃性封止樹脂組成物は、優れた流動性と難燃性を有するため、難燃性のホットメルト封止剤として好適に使用される。特に、電気電子部品用のホットメルト封止剤として好適に使用される。
 本発明の結晶性ポリエステル樹脂(A)または難燃性封止樹脂組成物が長期間曝される場合には、本発明の効果を損なわない範囲内で酸化防止剤を添加することが好ましい。好ましい酸化防止剤としては、例えば、ヒンダードフェノール系として、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,1,3-トリ(4-ヒドロキシ-2-メチル-5-t-ブチルフェニル)ブタン、1,1-ビス(3-t-ブチル-6-メチル-4-ヒドロキシフェニル)ブタン、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-ベンゼンプロパノイック酸、ペンタエリトリチルテトラキス(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3-(1,1-ジメチルエチル)-4-ヒドロキシ-5-メチル-ベンゼンプロパノイック酸、3,9-ビス[1,1-ジメチル-2-[(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニロキシ]エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)ベンゼン、リン系として、3,9-ビス(p-ノニルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン、3,9-ビス(オクタデシロキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン、トリ(モノノニルフェニル)フォスファイト、トリフェノキシフォスフィン、イソデシルフォスファイト、イソデシルフェニルフォスファイト、ジフェニル2-エチルヘキシルフォスファイト、ジノニルフェニルビス(ノニルフェニル)エステルフォスフォラス酸、1,1,3-トリス(2-メチル-4-ジトリデシルフォスファイト-5-t-ブチルフェニル)ブタン、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、ペンタエリスリトールビス(2,4-ジ-t-ブチルフェニルフォスファイト)、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)2-エチルヘキシルフォスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジフォスファイト、チオエーテル系として4,4’-チオビス[2-t-ブチル-5-メチルフェノール]ビス[3-(ドデシルチオ)プロピオネート]、チオビス[2-(1,1-ジメチルエチル)-5-メチル-4,1-フェニレン]ビス[3-(テトラデシルチオ)-プロピオネート]、ペンタエリスリトールテトラキス(3-n-ドデシルチオプロピオネート)、ビス(トリデシル)チオジプロピオネートが挙げられ、これらを単独に、または複合して使用できる。添加量は難燃性封止樹脂組成物全体に対して0.1重量%以上5重量%以下が好ましい。0.1重量%未満だと酸化防止効果に乏しくなることがある。また、5重量%を超えると、密着性等に悪影響を与える場合がある。
 さらには本発明の結晶性ポリエステル樹脂(A)または難燃性封止樹脂組成物に耐候性を求められる場合には、光安定剤を添加することが好ましい。例えば、ベンゾトリアゾール系光安定剤としては、2-(3,5-ジ-tert-アミル-2’ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)-ベンゾトリアゾール、2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール,2-[2-ヒドロキシ-3,5-ジ(1,1-ジメチルベンジル)]-2H-ベンゾトリアゾール等が挙げられるが、これらに限ることなく、ベンゾトリアゾール系光安定剤であれば、適宜使用できる。ベンゾフェノン系光安定剤としては、2-ヒドロキシ-4-(オクチルオキシ)ベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン-5-サルフォニックアシッド、2-ヒドロキシ-4-n-ドデシロキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等が挙げられるが、これらに限ることなく、ベンゾフェノン系光安定剤であれば、適宜使用できる。ヒンダートアミン系光安定剤とは、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル} {(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]、1,3,5-トリス(3,5-ジ-tert―ブチル-4-ヒドロキシベンジル)-s-トリアジン-2,4,6(1H,3H,5H)トリオン、トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-s-トリアジン-2,4,6-(1H,3H,5H)トリオン等が挙げられるが、これらに限ることなく、ベヒンダートアミン系光安定剤であれば、適宜使用できる。ニッケル系光安定剤とは、[2,2’-チオ-ビス(4-tert-オクチルフェノレート)]-2-エチルヘキシルアミン-ニッケル-(II)、ニッケルジブチルジチオカルバメート、[2’,2’-チオ-ビス(4-tert-オクチルフェノレート)]n-ブチルアミン-ニッケル等が挙げられるが、これらに限ることなく、ニッケル系光安定剤であれば、適宜使用できる。ベンゾエート系光安定剤とは、2,4-ジ-t-ブチルフェニル-3,5’-ジ-tert-ブチル‐4’‐ヒドロキシベンゾエート等が挙げられるが、これらに限ることなく、ベンゾエート系光安定剤であれば、適宜使用できる。これらの光安定剤を単独に、または複合して使用できる。添加量は難燃性封止樹脂組成物全体に対して0.1重量%以上5重量%以下が好ましい。0.1重量%未満だと耐侯性効果に乏しくなることがある。5重量%を超えると、接着性に悪影響を与える場合がある。
 さらに本発明の本発明の結晶性ポリエステル樹脂(A)または難燃性封止樹脂組成物には、本発明の効果を損なわない範囲内で公知の各種添加剤を使用することができる。添加剤としては、衝撃改良材、摺動性改良材、着色剤、可塑剤、結晶核剤、ポリエステル以外の熱可塑性樹脂などが挙げられる。
 本発明の結晶性ポリエステル樹脂(A)または難燃性封止樹脂組成物には、結晶核剤を添加しても良い。結晶性ポリエステル樹脂(A)100重量部に対して、結晶核剤0.01~5重量部を添加することで透明性を高めることができる。結晶核剤は結晶性ポリエステル樹脂(A)の結晶化速度を速め、速やかに結晶化を完了させると共に、結晶核の数を調節することにより球晶の大きさもコントロールできる効果がある。結晶核剤の具体例としてはタルク、シリカ、グラファイト、炭素粉、ピロフェライト、石膏、中性粘土等の無機質微粒子や、酸化マグネシウム、酸化アルミニウム、二酸化チタン等の金属酸化物、硫酸塩、リン酸塩、ケイ酸塩、シュウ酸塩、ステアリン酸塩、安息香酸塩、サリチル酸塩、酒石酸塩、スルホン酸塩、モンタン酸ワックス塩、モンタン酸ワックスエステル塩、テレフタル酸塩、カルボン酸塩、α-オレフィンとα,β-不飽和カルボン酸とからなるイオン性共重合体等が挙げられる。それらの中でも特にヘキサン酸、ラウリン酸、ステアリン酸、モンタン酸等脂肪酸の亜鉛塩、カルシウム塩、マグネシウム塩、ナトリウム塩、リチウム塩等の金属塩は結晶化速度の調節がしやすく、好ましい。さらには特に脂肪酸のナトリウム塩を使用すると球晶サイズのコントロールが容易となり、透明な成型体を得やすい。
 本発明の結晶性ポリエステル樹脂(A)または難燃性封止樹脂組成物には、本発明の効果を損なわない範囲内で結晶性ポリエステル樹脂(A)とは異なる熱可塑性樹脂を添加しても良い。例えば、ポリアミド(PA)、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリテトラフルオロエチレン(PTFE)、フッ素樹脂、アラミド樹脂、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリエーテルイミド(PEI)、熱可塑性ポリイミド、ポリアミドイミド(PAI)、ポリエーテルケトンケトン(PEKK)、ポリフェニレンエーテル(PPE)、ポリエーテルスルホン(PES)、ポリサルホン(PSU)、ポリアリレート(PAR)、ポリカーボネート(PC)、ポリオキシメチレン(POM)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリメチルペンテン(TPX)、ポリスチレン(PS)、ポリメタクリル酸メチル、アクリロニトリル-スチレン共重合体(AS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)が挙げられる。これら熱可塑性樹脂は、溶融混練により、溶融状態でブレンドすることも可能であるが、熱可塑性樹脂を繊維状、粒子状にし、本発明の結晶性ポリエステル樹脂(A)に分散しても良い。熱可塑性樹脂の添加量は最適な量を選択すれば良いが、結晶性ポリエステル樹脂(A)100重量部に対して最大50重量部を添加することが可能である。
 本発明の結晶性ポリエステル樹脂(A)または難燃性封止樹脂組成物には、上述の各構成成分を従来公知の方法で配合することにより製造することができる。例えば、結晶性ポリエステル樹脂(A)の重縮合反応時に各成分を添加したり、結晶性ポリエステル樹脂(A)とその他の成分をドライブレンドしたり、または、2軸スクリュー型の押出機を用いて各構成成分を溶融混練する方法を挙げることができる。
 結晶性ポリエステル樹脂(A)の組成及び組成比を決定する方法としては、例えば結晶性ポリエステル樹脂(A)を重クロロホルム等の溶媒に溶解して測定するH-NMRや13C-NMRが挙げられる。また、結晶性ポリエステル樹脂(A)のメタノリシス後に測定するガスクロマトグラフィーによる定量(以下、メタノリシス-GC法と略記する場合がある)、結晶性ポリエステル樹脂(A)の酸価(AV)測定、DSCによる融点(Tm)、ガラス転移温度(Tg)測定等が挙げられる。本発明においては、結晶性ポリエステル樹脂(A)を溶解でき、なおかつH-NMR測定に適する溶剤がある場合には、H-NMRで組成及び組成比を決定することとする。適当な溶剤がない場合やH-NMR測定だけでは組成比が特定できない場合には、13C-NMRやメタノリシス-GC法、酸価測定、DSCによる融点測定、ガラス転移温度測定を採用または併用することとする。
 本発明をさらに詳細に説明するために以下に実施例、比較例を挙げるが、本発明は実施例によってなんら限定されるものではない。尚、実施例、比較例に記載された各測定値は次の方法によって測定したものである。また、実施例中、単に「部」とあるのは「重量部」を示し、単に「%」とあるのは「重量%」を示す。
<結晶性ポリエステル樹脂(A)の還元粘度の測定>
 結晶性ポリエステル樹脂(A)のサンプル0.1±0.005gおよびフェノールテトラクロロエタンを25mlのメスフラスコに入れ、加熱溶解させる。25ml溶液を調整し、調整したサンプル溶液を粘度管に入れ、サンプル溶液が30℃になるように30℃の水槽に15~20分入れる。所定の温度になり次第、粘度管の標線を確認しながら落下秒数を測定し、ブランクの溶媒の落下秒数の差から還元粘度を算出する。算出式は式1に示す。
 式1:{(サンプル溶液の落下秒数)―(ブランクの落下秒数)}/(ブランクの落下秒数)/(ポリエステル樹脂の重量×4)
<結晶性ポリエステル樹脂(A)の数平均分子量の測定>
 結晶性ポリエステル樹脂(A)のサンプル0.0050gをクロロホルム5mlで加熱溶解する。その後、メンブレンフィルターにてろ過し、不溶分を除去する。ろ液(サンプル溶液)80μlを株式会社日立ハイテクフィールディング社製のGPC「EZChrom Elite for Hitachi」にて測定し、数平均分子量を求めた。
標準物質としてポリスチレン溶液を調製し、GPC較正曲線用試料とした。
<酸価>
 結晶性ポリエステル樹脂(A)のサンプル0.1gをベンジルアルコール10mlに加熱溶解する。その後、0.1NのNaOHのメタノール/ベンジルアルコール(1/9容積比)の溶液を使用して滴定にて酸価を求めた。
<融点、ガラス転移温度の測定>
 セイコー電子工業株式会社製の示差走査熱量分析計「DSC220型」にて、測定試料(結晶性ポリエステル樹脂(A))5mgをアルミパンに入れ、蓋を押さえて密封する。次いで、一度250℃で5分ホールドした後、液体窒素で急冷して、その後-130℃から250℃まで、20℃/minの昇温速度で測定した。得られた曲線においての図1に示したようなDDSCで変極点が表れる部分の変極点前のベースラインから得られる接線(1)と変極点後のベースラインから得られる接線(2)の交点をガラス転移温度、吸熱ピークの極小点(図内×印)を融点とした。
<溶融特性(流動性)試験>
 結晶性ポリエステル樹脂(A)および難燃性封止樹脂組成物の溶融粘度の評価方法
 島津製作所製、フローテスター(CFT-500C型)にて、220℃に設定した加熱体中央のシリンダー中に水分率0.1%以下に乾燥した結晶性ポリエステル樹脂(A)または難燃性封止樹脂組成物を充填する。充填1分経過後、プランジャーを介して試料に荷重を加え、圧力1MPaで、シリンダー底部のダイ(孔径:1.0mm、厚み:10mm)より、溶融した試料を押出し、プランジャーの降下距離と降下時間を記録し、溶融粘度を算出した。
 評価基準
[結晶性ポリエステル樹脂(A)]
 ◎:300dPa・s以下(測定温度:220℃)
 ○:300dPa・s超、400dPa・s以下(測定温度:220℃)
 △:400dPa・s超、500dPa・s以下(測定温度:220℃)
 ×:500dPa・s超(測定温度:220℃)
[難燃性封止樹脂組成物]
 ◎:500dPa・s以下(測定温度220℃)
 ○:500dPa・s超、1000dPa・s以下(測定温度220℃)
 △:1000dPa・s超、1500dPa・s以下(測定温度220℃)
 ×:1500dPa・s超(測定温度220℃)
 溶融粘度が高すぎると電気電子部品封止時に流動性が低下し、封止不足(ショート)が発生したり、高圧成形が必須となり、電気電子部品に負荷がかかる他、成型品生産時に多数個取りができないなど、生産タクト上、悪影響を及ぼす可能性がある。
<成型性評価>
  平板成型用金型を使用し、ホットメルト成型加工用アプリケーターとして井元製作所製低圧成型アプリケーターIMC-18F9を用いて結晶性ポリエステル樹脂(A)からなる平板(100mm×100mm×10mm)を成型した。なお、ゲート位置は100mm×100mmの面の中心とした。
成型条件:成型樹脂温度220℃、成型圧力3MPa、保圧圧力3MPa、冷却時間15秒、吐出回転50%設定。
 評価基準
 ○:完全に充填される(ショーショット無し)。
 △:ショートショット無く充填されるが、ヒケ有り。
 ×:ショートショット有り。
<難燃性(燃焼性)試験>
 UL-94の評価方法に従い、1.6mm厚の難燃試験片の難燃性を評価した。
 試験片の成形条件
 竪型射出成形機(日精樹脂株式会社製TH40E)を用いて射出成形により、125mm×13mm×1.6mmの難燃性封止樹脂組成物からなる試験片を作製した。射出成形条件は、成形樹脂温度200℃、成形圧力25MPa、冷却時間25秒、射出速度20mm/秒とした。次いでブンゼンバーナーを使用し、高さ2mmの炎を試験片に10秒間、2回接炎させ炎を離した後の燃焼時間の合計を測定した。この操作を5回(n=5)行い、平均を算出した。
 評価基準
 ◎:UL-94 n=5のうち全てV-0
 ○:UL-94 n=5のうち一部V-0であり、残りはV-1またはV-2である
 △:UL-94 n=5のうち全てV-1またはV-2のいずれか
 ×:UL-94 n=5のうち一部規格外(規格外が1個以上あり)
実施例1
<結晶性ポリエステル樹脂(A-1)の製造例>
 撹拌機、温度計、溜出用冷却器を装備した反応缶内に2,6-ナフタレンジカルボン酸176重量部、1,4-ブタンジオール137重量部、1,4-シクロヘキサンジメタノール69重量部、テトラブチルチタネート0.1重量部を加え、170~220℃で2時間エステル化反応を行った。その後、ダイマー酸46重量部を加え、200~230℃で2時間エステル化反応を行った。エステル化終了後、255℃まで昇温する一方、系内をゆっくり減圧にしてゆき、60分かけて255℃で665Paとした。そしてさらに133Pa以下で30分間重縮合反応を行い、結晶性ポリエステル樹脂(A-1)を得た。この結晶性ポリエステル樹脂(A-1)の還元粘度、酸価、融点、数平均分子量、ガラス転移温度および溶融粘度、成型性評価結果を表1に示した。
実施例2~12
<結晶性ポリエステル樹脂(A-2~A-12)の製造例>
 結晶性ポリエステル樹脂(A-2~A-12)を実施例1と同様な方法により合成した。ただし、原料の種類と配合比率は表1に記載したとおりに変更した。
比較例1~9
<結晶性ポリエステル樹脂(A-13~A-21)の製造例>
 結晶性ポリエステル樹脂(A-13~A-21)を実施例1と同様な方法により合成した。それぞれの組成及び物性値、成型性評価結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表中の略号は以下の通りである。
PTMG1000:ポリテトラメチレンエーテルグリコール(数平均分子量1000)、PTMG2000:ポリテトラメチレンエーテルグリコール(数平均分子量2000)
 表1から、実施例1~12においては溶融粘度が低く、成型性も良好であった。一方、比較例1~9においては溶融粘度が高く、流動性が悪いため成型性が悪かった。
実施例13~22、比較例10~18
 表2、3に記載の割合で、結晶性ポリエステル樹脂(A)と難燃剤(B)を、二軸押し出し機を用いてダイ温度160℃~200℃において溶融混練することによって、難燃性封止樹脂組成物を得た。別記した方法により、難燃性封止樹脂組成物の流動性、燃焼性を評価した。評価結果は以下の表2、3の通りである。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2、3で使用した難燃剤(B)は、エクソリット(登録商標)OP1240(クラリアント社製)である。
 表2、3から、実施例は難燃剤の少量添加で難燃性も良好で、溶融粘度の上昇を抑制する事ができた。一方、比較例では、同様の難燃剤の添加量では難燃性を担保する事はできず、難燃性が担保できたとしても流動性が悪く、これら特性を全て満足させることはできなかった。
 本発明の結晶性ポリエステル樹脂は、高融点を維持しながらも高流動性であるため、環境信頼性、生産性に優れ、特に電気電子部品封止用樹脂組成物として有用である。
 また、本発明の結晶性ポリエステル樹脂を用いた難燃性封止樹脂組成物は、電気電子部品等を封止した時の溶融粘度が低く、難燃性に優れている事から、電気電子部品封止用樹脂組成物として有用である。また、本発明の難燃性封止樹脂組成物は、特に難燃性に優れている事から電気電子部品からの漏電や過電流に対して着火、延焼が抑制され、非常に有用である。本発明の難燃性封止樹脂組成物で封止した電気電子部品封止体は、例えば自動車、通信、コンピュータ、家電用途各種のコネクター、ハーネスやあるいは電子部品、プリント基板を有するスイッチ、センサーのモールド成型品として有用である。

Claims (7)

  1.  多価カルボン酸成分と多価アルコール成分を共重合成分とする結晶性ポリエステル樹脂(A)であって、結晶性ポリエステル樹脂(A)の全多価カルボン酸成分を100モル%としたとき、2,6-ナフタレンジカルボン酸成分の共重合比率が40~100モル%であり、多価アルコール成分として1,4-ブタンジオール成分が共重合されており、全多価アルコール成分を100モル%としたとき、1,4-ブタンジオール成分の共重合比率が40モル%以下であることを特徴とする結晶性ポリエステル樹脂(A)。
  2.  結晶性ポリエステル樹脂(A)の全多価アルコール成分を100モル%としたとき、1,4-シクロヘキサンジメタノール成分の共重合比率が60モル%以上であることを特徴とする請求項1に記載の結晶性ポリエステル樹脂(A)。
  3.  数平均分子量が5,000~50,000であり、なおかつ、結晶融点が100℃~180℃であることを特徴とする請求項1または2に記載の結晶性ポリエステル樹脂(A)。
  4.  請求項1~3のいずれかに記載の結晶性ポリエステル樹脂(A)および難燃剤(B)を含有する難燃性封止樹脂組成物。
  5.  難燃剤(B)がリン酸エステルまたはホスフィン酸金属塩であることを特徴とする請求項4に記載の難燃性封止樹脂組成物。
  6.  結晶性ポリエステル樹脂(A)の重量分率W(A)と難燃剤(B)の重量分率W(B)の比率W(A)/W(B)が3~20であることを特徴とする請求項4または5に記載の難燃性封止樹脂組成物。
  7.  難燃性封止樹脂組成物全重量に対する結晶性ポリエステル樹脂(A)のW(A)と難燃剤(B)の重量分率W(B)の和が50~90重量%であることを特徴とする請求項4~6のいずれかに記載の難燃性封止樹脂組成物。
     
PCT/JP2017/032647 2016-09-29 2017-09-11 結晶性ポリエステル樹脂および難燃性封止樹脂組成物 WO2018061730A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/305,488 US11118007B2 (en) 2016-09-29 2017-09-11 Crystalline polyester resin and flame-retardant sealing resin composition
CN201780058709.9A CN109790281B (zh) 2016-09-29 2017-09-11 结晶性聚酯树脂以及阻燃性密封树脂组合物
EP17855687.4A EP3470451B1 (en) 2016-09-29 2017-09-11 Crystalline polyester resin and flame-resistant sealing resin composition
JP2017561017A JP6376298B1 (ja) 2016-09-29 2017-09-11 結晶性ポリエステル樹脂および難燃性封止樹脂組成物
KR1020187036730A KR102401714B1 (ko) 2016-09-29 2017-09-11 결정성 폴리에스테르 수지 및 난연성 밀봉 수지 조성물

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-191082 2016-09-29
JP2016191081 2016-09-29
JP2016-191081 2016-09-29
JP2016191082 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061730A1 true WO2018061730A1 (ja) 2018-04-05

Family

ID=61760347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032647 WO2018061730A1 (ja) 2016-09-29 2017-09-11 結晶性ポリエステル樹脂および難燃性封止樹脂組成物

Country Status (7)

Country Link
US (1) US11118007B2 (ja)
EP (1) EP3470451B1 (ja)
JP (1) JP6376298B1 (ja)
KR (1) KR102401714B1 (ja)
CN (1) CN109790281B (ja)
TW (1) TWI738870B (ja)
WO (1) WO2018061730A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210081A1 (ja) * 2021-03-30 2022-10-06 株式会社ベルポリエステルプロダクツ ポリエステル樹脂

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111975888A (zh) * 2020-08-13 2020-11-24 南京和木新材料科技发展有限公司 一种环保型多层板涂胶工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255753A (ja) * 1991-02-08 1992-09-10 Mitsubishi Kasei Corp ポリエステル樹脂組成物
JPH05209044A (ja) * 1991-09-27 1993-08-20 Nkk Corp ポリエステル共重合体
JPH06287285A (ja) * 1993-04-02 1994-10-11 Nkk Corp ポリエステルエーテル共重合体
JPH06301148A (ja) * 1993-04-12 1994-10-28 Teijin Ltd 写真感光材料用フィルム
JP2003253086A (ja) * 2002-02-28 2003-09-10 Showa Highpolymer Co Ltd 高熱伝導性組成物およびその成形品
JP2012067176A (ja) 2010-09-22 2012-04-05 Daicel-Evonik Ltd 粉末状封止剤及び封止方法
WO2012124435A1 (ja) * 2011-03-17 2012-09-20 東洋紡績株式会社 電気・電子部品封止材用ポリエステル樹脂組成物、封止体およびその製造方法
JP2012246375A (ja) 2011-05-26 2012-12-13 Yasuhara Chemical Co Ltd ホットメルト接着剤組成物
WO2014034474A1 (ja) * 2012-08-29 2014-03-06 東洋紡株式会社 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100299840A1 (en) 2007-05-14 2010-12-02 Koninklijke Philips Electronics N.V. Weight and/or movement sensing in a bed
JP6287285B2 (ja) 2014-02-05 2018-03-07 東洋インキScホールディングス株式会社 粘着剤および粘着シート

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255753A (ja) * 1991-02-08 1992-09-10 Mitsubishi Kasei Corp ポリエステル樹脂組成物
JPH05209044A (ja) * 1991-09-27 1993-08-20 Nkk Corp ポリエステル共重合体
JPH06287285A (ja) * 1993-04-02 1994-10-11 Nkk Corp ポリエステルエーテル共重合体
JPH06301148A (ja) * 1993-04-12 1994-10-28 Teijin Ltd 写真感光材料用フィルム
JP2003253086A (ja) * 2002-02-28 2003-09-10 Showa Highpolymer Co Ltd 高熱伝導性組成物およびその成形品
JP2012067176A (ja) 2010-09-22 2012-04-05 Daicel-Evonik Ltd 粉末状封止剤及び封止方法
WO2012124435A1 (ja) * 2011-03-17 2012-09-20 東洋紡績株式会社 電気・電子部品封止材用ポリエステル樹脂組成物、封止体およびその製造方法
JP2012246375A (ja) 2011-05-26 2012-12-13 Yasuhara Chemical Co Ltd ホットメルト接着剤組成物
WO2014034474A1 (ja) * 2012-08-29 2014-03-06 東洋紡株式会社 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3470451A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210081A1 (ja) * 2021-03-30 2022-10-06 株式会社ベルポリエステルプロダクツ ポリエステル樹脂

Also Published As

Publication number Publication date
TWI738870B (zh) 2021-09-11
JPWO2018061730A1 (ja) 2018-09-27
KR20190055781A (ko) 2019-05-23
US11118007B2 (en) 2021-09-14
EP3470451A4 (en) 2020-01-01
US20200325272A1 (en) 2020-10-15
CN109790281B (zh) 2021-07-16
EP3470451A1 (en) 2019-04-17
EP3470451B1 (en) 2023-03-08
TW201817765A (zh) 2018-05-16
CN109790281A (zh) 2019-05-21
JP6376298B1 (ja) 2018-08-22
KR102401714B1 (ko) 2022-05-26

Similar Documents

Publication Publication Date Title
US8247477B2 (en) Polybutylene terephthalate resin composition exhibiting an improved glow-wire ignition temperature for insulating parts
JP6269783B2 (ja) 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
CN110121525B (zh) 阻燃聚酯组合物
WO2012003182A1 (en) Flame resistant polyester compositions, method of manufacture, and articles thereof
JP6376298B1 (ja) 結晶性ポリエステル樹脂および難燃性封止樹脂組成物
JP6117190B2 (ja) 電子機器用筐体
WO2020241674A1 (ja) 組成物、平板状成形体、および、平板状成形体の製造方法
TWI635113B (zh) 成型品、使用此之絕緣材料、及聚酯樹脂組成物之電絕緣性的改善方法
JP6051775B2 (ja) ポリエステル系樹脂組成物
KR101748243B1 (ko) 유동성과 표면 광택이 우수한 비할로겐 난연성 폴리에스테르 수지 조성물 및 이의 성형품
JP2011144237A (ja) 非ハロゲン難燃性帯電防止性ポリエステル系樹脂組成物、及びその成形体
KR102161115B1 (ko) 난연성 및 내가수분해성이 우수한 폴리부틸렌테레프탈레이트 수지 조성물 및 그로부터 제조되는 성형품
TWI824734B (zh) 磷寡聚物、聚酯樹脂及包含彼之熱塑性樹脂組成物
JPH02245057A (ja) 難燃性ポリエステル組成物
EP4116377A1 (en) Polybutylene terephthalate resin composition having excellent flame retardancy and hydrolysis resistance and molded article produced therefrom
JP6424622B2 (ja) 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
JP5794425B2 (ja) 電気電子部品封止用樹脂組成物、電気電子部品封止体およびその製造方法
JP2006176613A (ja) 難燃性熱可塑性ポリエステル樹脂組成物及び照明部品
JP2014117873A (ja) 難燃性樹脂成形品の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017561017

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036730

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017855687

Country of ref document: EP

Effective date: 20190110

NENP Non-entry into the national phase

Ref country code: DE