WO2018056379A1 - 方向性電磁鋼板およびその製造方法 - Google Patents

方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2018056379A1
WO2018056379A1 PCT/JP2017/034170 JP2017034170W WO2018056379A1 WO 2018056379 A1 WO2018056379 A1 WO 2018056379A1 JP 2017034170 W JP2017034170 W JP 2017034170W WO 2018056379 A1 WO2018056379 A1 WO 2018056379A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
grain
annealing
oriented electrical
Prior art date
Application number
PCT/JP2017/034170
Other languages
English (en)
French (fr)
Inventor
早川 康之
雅紀 竹中
今村 猛
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CA3037272A priority Critical patent/CA3037272C/en
Priority to US16/333,729 priority patent/US11560603B2/en
Priority to RU2019111845A priority patent/RU2706990C1/ru
Priority to KR1020197011284A priority patent/KR102239708B1/ko
Priority to CN201780056998.9A priority patent/CN109715840B/zh
Priority to EP17853147.1A priority patent/EP3517646B1/en
Priority to MX2019003208A priority patent/MX2019003208A/es
Publication of WO2018056379A1 publication Critical patent/WO2018056379A1/ja
Priority to US17/938,047 priority patent/US20230045475A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1238Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet, and more particularly to a grain-oriented electrical steel sheet having reduced iron loss.
  • the present invention also relates to a method for producing the grain-oriented electrical steel sheet.
  • Oriented electrical steel sheet is a soft magnetic property material used as an iron core material for electrical equipment such as transformers and generators, and is a set in which the ⁇ 001> orientation, which is the easy axis of iron, is highly aligned in the rolling direction of the steel sheet.
  • Has a texture Such a texture is formed by secondary recrystallization annealing in which the crystal grains oriented in the (110) [001] orientation, called the Goss orientation, are preferentially grown giant.
  • the degree of accumulation of secondary recrystallized grains in the (110) [001] orientation is the “deviationdevangle” of the secondary recrystallized grain orientation from the ideal Goss orientation.
  • the deviation angle includes three rotation axes, that is, a rolling surface normal direction (Normal Direction, ND) axis, a rolling perpendicular direction (Transverse Direction, TD) axis, and a rolling direction (Rolling Direction, RD) axis, respectively.
  • the effects of the shift angles ⁇ , ⁇ , and ⁇ at the respective rotation axes on the magnetic properties of the grain-oriented electrical steel sheet are discussed.
  • the ⁇ angle which is a deviation angle in the ND axis
  • the magnetic flux density of the grain-oriented electrical steel sheet is improved and the iron loss is improved.
  • the ⁇ angle which is the deviation angle on the RD axis, does not affect the angle from the easy magnetization axis ⁇ 001>, and thus is considered to have a small effect on the magnetic flux density and iron loss.
  • Non-Patent Document 1 describes the effect of the ⁇ angle, which is a deviation angle on the TD axis, on the iron loss in a single crystal.
  • the iron loss is the best when the ⁇ angle is 2.0 °, and the magnetic domain width increases and the iron loss increases as the ⁇ angle approaches 0 °.
  • Patent Document 1 proposes a grain-oriented electrical steel sheet in which the deviation angle from the ideal Goss orientation is 8 ° or less in order to improve iron loss.
  • Patent Document 2 proposes a grain-oriented electrical steel sheet with a deviation angle of 5 ° or less.
  • the deviation angle means a combined angle of the ⁇ angle and the ⁇ angle. Therefore, even if the deviation angle as the composite angle is reduced, if the ⁇ angle is close to 0 °, the iron loss cannot always be reduced as expected from the disclosure of Non-Patent Document 1.
  • Patent Documents 3 to 5 propose grain-oriented electrical steel sheets having a ⁇ angle of 4.0 ° or less.
  • Patent Document 5 proposes a grain-oriented electrical steel sheet in which the average value of the rate of change in ⁇ angle along the rolling direction in secondary recrystallized grains is 0.018 to 0.06 ° / mm.
  • Non-Patent Document 1 shows that the iron loss can be reduced by setting the ⁇ angle to 2.0 °.
  • the ⁇ angle is set to 2.0 ° for the following reason. It was impossible. That is, in the manufacturing process of a general grain-oriented electrical steel sheet, secondary recrystallization annealing is performed in a state where the steel sheet is wound in a coil shape, and then the coil is unwound and flattening annealing is performed. Therefore, the ⁇ angle in the product plate, that is, the grain-oriented electrical steel sheet after flattening annealing, changes according to the curvature of the coil during secondary recrystallization annealing.
  • the ⁇ angle changes by 0.57 ° per 10 mm length in the rolling direction. Therefore, in the case of a grain-oriented electrical steel sheet having a secondary recrystallized grain size of about 10 mm or more, it is a principle that the ⁇ angle in the entire product plate is set to 2.0 ° at which the iron loss is best in the case of a single crystal. Is impossible.
  • Patent Documents 3 and 4 secondary recrystallization annealing is performed in a state in which a corrugated shape extending in a direction intersecting with the rolling direction is applied to the steel sheet in order to set the ⁇ angle to 4.0 ° or less, and thereafter Is straightened.
  • the above method is theoretically correct, there is a problem that since it is necessary to impart and correct the corrugation, the productivity is low and it is not suitable for the production of industrial grained electrical steel sheets.
  • Patent Document 5 the ⁇ angle is controlled by increasing the diameter of the coil during secondary recrystallization annealing to 2000 to 6200 mm.
  • this method has a problem that when the ⁇ angle is 0.5 ° or less, the iron loss greatly increases, so that the magnetic domain fragmentation process is essential.
  • a plurality of two types of steel slabs each comprising steel A and steel B having different component compositions were prepared.
  • the composition of steel A and steel B is as follows. “%” Relating to the component composition means “mass%” unless otherwise specified, and “ppm” means “mass ppm” unless otherwise specified.
  • Step A C: 0.030%, Si: 3.4% Mn: 0.10%, Sb: 0.07%, P: 0.05% sol.
  • Step B C: 0.050% Si: 3.4% Mn: 0.08%, Sb: 0.03%, P: 0.10%, Sb: 0.03%, sol. Al: 60 ppm, N: 30 ppm, S: 25 ppm, Se: 1 ppm, balance Fe and inevitable impurities.
  • the hot-rolled steel sheet was subjected to hot-band annealing at 1050 ° C. for 30 seconds.
  • the residence time t 900-700 ° C.
  • the cooling was performed to room temperature at a cooling rate of 40 ° C./sec.
  • FIG. 1 is an example of a cross-sectional structure of an annealed hot-rolled steel sheet obtained from a slab made of steel A.
  • the average crystal grain size in the annealed hot-rolled steel sheet was about 100 to 150 ⁇ m.
  • Figure 2 is a hot-rolled sheet annealing residence time between 900 ⁇ 700 ° C. during the cooling of the (t 900-700 °C) and the area ratio of the carbide particle size of 1 ⁇ m or more in annealed hot rolled steel sheet (R C FIG. From FIG. 2, R C is, towards the high C content steel B is higher than steel A, also can be seen t 900-700 °C is lower longer R C.
  • the annealed hot-rolled steel sheet was cold-rolled under the condition that the maximum temperature reached 220 ° C. to obtain a cold-rolled steel sheet having a final thickness of 0.23 mm.
  • the obtained cold-rolled steel sheet was subjected to primary recrystallization annealing that also served as decarburization annealing.
  • the conditions for the primary recrystallization annealing were soaking temperature: 840 ° C., soaking time: 120 seconds, hydrogen partial pressure: 55%, nitrogen partial pressure 45%, and dew point 55 ° C.
  • the steel sheet On the surface of the obtained primary recrystallized steel sheet, 15 g / m 2 of an annealing separator mainly composed of MgO was applied and dried, and the steel sheet was wound to form a coil. At this time, the inner diameter of the coil was 500 mm, and the outer diameter was 1500 mm.
  • the coil was subjected to secondary recrystallization annealing.
  • the temperature was first raised to 800 ° C. at a rate of 15 ° C./h in a nitrogen atmosphere, and then raised to 850 ° C. at a rate of 5 ° C./h between 800 to 850 ° C. .
  • the hydrogen atmosphere was changed to hold at 1180 ° C. for 5 hours.
  • a coating agent composed of 60% colloidal silica and aluminum phosphate was applied to the surface of the steel sheet and dried.
  • planarization annealing was performed at 835 ° C. for 20 seconds in a mixed atmosphere of nitrogen and hydrogen to correct the shape, and a grain-oriented electrical steel sheet as a product was obtained.
  • a test piece was collected from the obtained grain-oriented electrical steel sheet at a position where the coil diameter was 1000 mm, and the magnetic properties of the test piece were evaluated by an Epstein test.
  • a magnetic flux density (B 8 ) at a magnetizing force of 800 A / m, a maximum magnetic flux density of 1.7 T, and an iron loss (W 17/50 ) at a frequency of 50 Hz were measured.
  • the secondary recrystallized grain orientation in the measurement area of 720 mm ⁇ 280 mm is measured at a pitch of 2 mm, the deviation angle ⁇ from the ideal Goss orientation with respect to the ND rotation axis, and the TD rotation axis
  • the deviation angle ⁇ from the ideal Goss orientation was obtained.
  • ( ⁇ 2 + ⁇ 2 ) 1/2 which is a deviation angle from the ⁇ 100> direction at each measurement position, is calculated, and ( ⁇ 2 + ⁇ 2 ) 1 at all measurement positions. The average value of / 2 was obtained.
  • FIG. 3 is a diagram showing the relationship between t 900-700 ° C. and magnetic flux density (B 8 ). From FIG. 3, it can be seen that in both Steel A and Steel B, the magnetic flux density improves as t 900-700 ° C. increases.
  • FIG. 4 is a t 900-700 °C, a diagram showing the relationship between iron loss (W 17/50). From FIG. 4, it can be seen that the iron loss increases in steel A as t 900-700 ° C. is long, whereas in steel B, the iron loss decreases as the residence time increases.
  • FIG. 5 shows the relationship between the average value of ( ⁇ 2 + ⁇ 2 ) 1/2 and the magnetic flux density
  • FIG. 6 shows the relationship between the average value of ( ⁇ 2 + ⁇ 2 ) 1/2 and the iron loss. From FIG. 5, the correlation between the average value of ( ⁇ 2 + ⁇ 2 ) 1/2 and the magnetic flux density is extremely high, and a good magnetic flux is obtained if the average value of ( ⁇ 2 + ⁇ 2 ) 1/2 is 5 ° or less. It can be seen that a density (B 8 > 1.92T) is obtained.
  • FIG. 6 shows that the relationship between the average value of ( ⁇ 2 + ⁇ 2 ) 1/2 and the iron loss differs between steel A and steel B.
  • FIGS. 7 is a t 900-700 °C, is a diagram showing the relationship R beta. In steel A, t against 900-700 of °C the longer R beta is increased, the tendency of the reverse in the steel B was observed. This tendency is considered to correspond to the change in iron loss shown in FIGS.
  • Figure 8 is a graph showing a relationship between R beta and iron loss, from this figure, it can be seen that indeed there is a good correlation between the iron loss and R beta. More specifically, if R beta is 20% or less, it is possible to obtain good iron loss, if R beta 15% or less, it can be seen that better iron loss can be obtained.
  • FIG. 9 is a diagram showing the relationship between the average value of the deviation angle ⁇ from the ideal Goss direction about the RD rotation axis (hereinafter referred to as “average ⁇ angle”) and the iron loss.
  • average ⁇ angle the average value of the deviation angle ⁇ from the ideal Goss direction about the RD rotation axis
  • the iron loss decreases as the average ⁇ angle increases. Specifically, better iron loss can be obtained if the average ⁇ angle is 3.0 ° or more, and even better iron loss can be obtained if the average ⁇ angle is 4.5 ° or more. I understand.
  • FIG. 10 is a diagram showing the relationship between R C and R ⁇ .
  • the range of R C corresponding to the steel A, in the range of R C corresponding to the steel B, R beta indicates the opposite trend.
  • R ⁇ takes the minimum value when R C is about 5%. As shown in FIG. 8, the lower the R ⁇ , the lower the iron loss. Therefore, it can be seen that setting R C to about 5% is most advantageous in reducing the iron loss. Further, from FIG. 10, in order to set R ⁇ to 20% or less at which the iron loss is good, R C may be set to 0.5 to 20%, and R ⁇ is assumed to have a better iron loss. It can be seen that RC is required to be 2.0 to 15% in order to achieve 15% or less.
  • FIG. 11 is a diagram showing the relationship between R C and the average ⁇ angle of secondary recrystallized grains. As can be seen from FIG. 11, when R C is about 5%, the average ⁇ angle of the secondary recrystallized grains takes the maximum value, which is most advantageous for reducing iron loss. In the case of this experiment, the ⁇ angle and the ⁇ angle change simultaneously, and the contribution of each effect cannot be divided.
  • the magnetic flux density of the grain-oriented electrical steel sheet can be improved by reducing the average value of the deviation angle ( ⁇ 2 + ⁇ 2 ) 1/2 from the ideal Goss orientation.
  • R S 20% or less, preferably 15% or less
  • the iron loss of the grain-oriented electrical steel sheet can be reduced.
  • Iron loss can be further reduced by setting the average ⁇ angle to 3 ° or more, preferably 4.5 ° or more.
  • the RC in the hot-rolled sheet annealed sheet is in the range of 0.5 to 20%, preferably in the range of 2.0 to 15%. There is a need to.
  • FIG. 12 is a diagram showing the relationship between the coil diameter when secondary recrystallization annealing is performed and the magnetic flux density B 8 of the obtained grain-oriented electrical steel sheet.
  • the secondary recrystallization annealing was performed under the condition that t900-700 ° C. was 20 seconds. As can be seen from Figure 12, the steel A, the more B 8 increases both coil diameter steel B has had improved.
  • FIG. 13 is a diagram showing the relationship between the coil diameter and the average value of ( ⁇ 2 + ⁇ 2 ) 1/2 .
  • the average value of ( ⁇ 2 + ⁇ 2 ) 1/2 decreases as the coil diameter increases. This is considered to be due to a change in ⁇ angle due to the influence of coil bending.
  • the average secondary recrystallized grain size in the obtained grain-oriented electrical steel sheet was measured, it was 18 mm for steel A and 11 mm for steel B. It is considered that the influence of the coil diameter is larger in the steel A having a larger secondary recrystallization grain size.
  • FIG. 14 is a diagram showing the relationship between the coil diameter and the iron loss W 17/50 .
  • FIG. 15 is a diagram showing the relationship between the coil diameter and R ⁇ .
  • the coil diameter is larger the R beta have decreased, this result corresponds with the tendency of the iron loss shown in FIG. 14.
  • the larger the coil diameter the closer the ⁇ angle is to the value when secondary recrystallization annealing is performed with the steel plate held flat, and the ⁇ angle at that time is considered to be larger than 0.5 °. It is done.
  • the present invention has been completed based on the above experimental results, and the gist configuration is as follows.
  • the component composition is mass%, Sb: 0.005% or more, 0.1% or less, Sn: 0.005% or more, 0.1% or less, P: 0.005% or more, 0.1% or less, Ni: 0.005% or more, 1.5% or less, Cu: 0.005% or more, 1.5% or less, Cr: 0.005% or more, 0.1% or less, Mo: 0.005% or more, 0.5% or less, Ti: 0.0005% or more, 0.1% or less, Nb: 0.0005% or more, 0.1% or less, V: 0.0005% or more, 0.1% or less, B: 0.0002% or more, 0.0025% or less, Bi: 0.005% or more, 0.1% or less, Te: 0.0005% or more, 0.01% or less, and Ta: 0.0005% or more, 0.01% or less.
  • the above 1 or 2 further containing 1 or 2 selected from the group which consists of these.
  • a steel slab having a component composition consisting of the remaining Fe and inevitable impurities is optionally heated to a heating temperature of 1300 ° C.
  • Hot rolling the steel slab to give a hot rolled steel sheet Subjecting the hot-rolled steel sheet to hot-rolled sheet annealing, Cold rolling the annealed hot-rolled steel sheet to obtain a cold-rolled steel sheet having a final thickness, Primary recrystallization annealing is performed on the cold rolled steel sheet to obtain a primary recrystallized steel sheet, Applying an annealing separator to the primary recrystallized steel sheet, The primary recrystallized steel sheet coated with the annealing separator is wound up into a coil, A method for producing a grain-oriented electrical steel sheet, wherein the coil is subjected to secondary recrystallization annealing, The area ratio of carbide having a particle size of 1 ⁇ m or more at the start of the final cold rolling in the cold rolling: R C is 0.5% to 20.0%, Average grain size at the start of the final cold rolling: D is 50 ⁇ m or more and 300 ⁇ m or less, A method for producing a grain-oriented electrical steel sheet, wherein the maximum
  • the component composition is mass%, Sb: 0.005% or more, 0.1% or less, Sn: 0.005% or more, 0.1% or less, P: 0.005% or more, 0.1% or less, Ni: 0.005% or more, 1.5% or less, Cu: 0.005% or more, 1.5% or less, Cr: 0.005% or more, 0.1% or less, Mo: 0.005% or more, 0.5% or less, Ti: 0.0005% or more, 0.1% or less, Nb: 0.0005% or more, 0.1% or less, V: 0.0005% or more, 0.1% or less, B: 0.0002% or more, 0.0025% or less, Bi: 0.005% or more, 0.1% or less,
  • a grain-oriented electrical steel sheet having excellent magnetic properties can be obtained. Moreover, since the grain-oriented electrical steel sheet of this invention can be manufactured by secondary recrystallization orientation control by coil annealing, it is excellent in productivity.
  • tissue of the annealed hot-rolled steel plate obtained from the slab consisting of steel A Relationship between the residence time between 900-700 ° C. (t 900-700 ° C.) during cooling of hot-rolled sheet annealing and the area ratio (R C ) of carbides having a particle diameter of 1 ⁇ m or more in the annealed hot-rolled steel sheet
  • the residence time between 900 ⁇ 700 ° C. during the cooling of the hot-rolled sheet annealing and (t 900-700 °C) is a diagram showing the relationship between the magnetic flux density (B 8).
  • ⁇ 100> is a diagram showing a relationship between a shift angle ( ⁇ 2 + ⁇ 2) 1/2 of the average value and the magnetic flux density (B 8) of the direction.
  • ⁇ 100> is a diagram showing a relationship between a deviation angle from the direction ( ⁇ 2 + ⁇ 2) 1/2 of the average value and the iron loss (W 17/50).
  • the residence time between 900-700 ° C.
  • the area ratio of the carbide particle size of 1 ⁇ m or more and (R C), is a diagram showing the relationship between the secondary recrystallized grains area ratio of deviation angle beta is 0.50 ° or less (R ⁇ ).
  • the area ratio of the carbide particle size of 1 ⁇ m or more and (R C), is a diagram showing the relationship between the average value of the deviation angle ⁇ from the ideal Goss orientation for RD rotating shaft. Is a diagram showing the relationship between the coil diameter and the magnetic flux density (B 8). And coil diameter, is a drawing showing the relationship between the average value of ⁇ 100> is a deviation angle from the direction ( ⁇ 2 + ⁇ 2) 1/2 . It is a figure which shows the relationship between a coil diameter and iron loss ( W17 / 50 ). It is a figure which shows the relationship between a coil diameter and the area ratio (R ( beta )) of the secondary recrystallized grain whose deviation
  • C 0.005% or less
  • the C content is preferably 0.003% or less, more preferably 0.002 or less, and still more preferably 0.0015% or less.
  • the lower the C content the better. Therefore, the lower limit may be 0%, but industrially it may be more than 0%. However, excessive reduction leads to an increase in manufacturing cost, so the C content can be 0.0001% or more, and can be 0.0005% or more.
  • Si 3.0% or more and 4.0% or less Si is an element having an effect of improving iron loss by increasing electric resistance.
  • Si content shall be 3.0% or more.
  • the Si content is preferably 3.1% or more, and more preferably 3.2% or more.
  • the Si content is 4.0% or less.
  • the Si content is preferably 3.8% or less, and more preferably 3.7% or less.
  • Mn 0.05% or more and 0.50% or less Mn combines with S or Se to form MnS or MnSe, and stabilizes the magnetic properties through stabilization of the primary recrystallized grain size.
  • Mn has an effect of improving hot workability during production.
  • the Mn content is set to 0.05% or more.
  • the Mn content is preferably 0.07% or more, and more preferably 0.09% or more.
  • the Mn content is 0.50% or less.
  • the Mn content is preferably 0.25% or less, more preferably 0.15% or less, and even more preferably 0.10% or less.
  • sol. Al 0.001% or less Al is an inhibitor element. If Al remains in the grain-oriented electrical steel sheet, iron loss deteriorates.
  • the amount of Al (acid-soluble aluminum) is 0.001% or less.
  • the Al content is preferably 0.0008% or less. On the other hand, sol. The lower the amount of Al, the better. Therefore, the lower limit may be 0%, but industrially it may be more than 0%. However, excessive reduction may cause an increase in manufacturing cost.
  • the Al content can also be 0.0001% or more.
  • N is an inhibitor element like Al. If N remains in the grain-oriented electrical steel sheet, the iron loss deteriorates, so the N content is 0.0015% or less.
  • the N content is preferably 0.0010% or less, and more preferably 0.0008% or less.
  • the lower the N content the better. Therefore, the lower limit may be 0%, but industrially it may be more than 0%. However, since excessive reduction may increase the manufacturing cost, the N content can be 0.00001% or more, 0.00005% or more, and 0.0001% or more. You can also
  • S 0.0010% or less
  • S is an inhibitor element. If S remains in the grain-oriented electrical steel sheet, iron loss deteriorates, so the S content is set to 0.0010% or less.
  • the S content is more preferably 0.0008% or less.
  • the lower the S content the better. Therefore, the lower limit may be 0%, but industrially it may be more than 0%. However, since excessive reduction may increase the manufacturing cost, the S content can be 0.00001% or more, 0.00005% or more, and 0.0001% or more. You can also
  • Se 0.0010% or less Se, like S, is an inhibitor element. If Se remains in the grain-oriented electrical steel sheet, iron loss deteriorates, so the Se content is set to 0.0010% or less.
  • the Se content is more preferably 0.0005% or less, and more preferably 0.0002% or less.
  • the lower the Se content the better. Therefore, the lower limit may be 0%, but industrially it may be more than 0%. However, since excessive reduction may lead to an increase in manufacturing cost, the Se content can be 0.00001% or more, 0.00005% or more, or 0.0001% or more. You can also
  • the grain-oriented electrical steel sheet in one embodiment of the present invention has a component composition comprising the above components, the remaining Fe and inevitable impurities.
  • the steel sheet of the present invention has the above-described components as the basic composition, but in order to obtain better magnetic properties, the above-described component composition can further optionally contain the following components.
  • Sb 0.005% or more, 0.1% or less Sn: 0.005% or more, 0.1% or less P: 0.005% or more, 0.1% or less Ni: 0.005% or more, 1.5 %Less than, Cu: 0.005% or more, 1.5% or less, Cr: 0.005% or more, 0.1% or less, Mo: 0.005% or more, 0.5% or less, Ti: 0.0005% or more, 0.1% or less, Nb: 0.0005% or more, 0.1% or less, V: 0.0005% or more, 0.1% or less, B: 0.0002% or more, 0.0025% or less, Bi: 0.005% or more, 0.1% or less, Te: 0.0005% or more, 0.01% or less, and Ta: 0.0005% or more, 0.01% or less.
  • Sb 0.005% or more and 0.1% or less
  • Sb is a grain boundary segregation element, which suppresses nitriding and oxidation of a steel sheet during secondary recrystallization annealing, and is a secondary of crystal grains having a good crystal orientation. It has the effect of promoting recrystallization and effectively improving magnetic properties.
  • Sb content shall be 0.005% or more.
  • the Sb content is preferably 0.010% or more, and more preferably 0.020% or more.
  • Sb content exceeds 0.1%, the cold rollability deteriorates. Therefore, when adding Sb, Sb content shall be 0.1% or less.
  • the Sb content is preferably 0.08% or less, and more preferably 0.07% or less.
  • Sn 0.005% or more and 0.1% or less
  • Sn is also a grain boundary segregation element like Sb, and suppresses nitriding and oxidation of a steel sheet during secondary recrystallization annealing, and has a good crystal orientation. It has the effect of promoting secondary recrystallization of grains and effectively improving magnetic properties.
  • Sn content shall be 0.005% or more.
  • the Sn content is preferably 0.01% or more.
  • Sn content exceeds 0.1%, the cold rollability is lowered. Therefore, when adding Sn, Sn content shall be 0.1% or less.
  • the Sn content is preferably 0.07% or less, and more preferably 0.06% or less.
  • P 0.005% or more and 0.1% or less P improves the primary recrystallization texture, promotes secondary recrystallization of crystal grains having a good crystal orientation, and effectively improves magnetic properties. Has an effect.
  • the P content is set to 0.005% or more in order to obtain the above effect.
  • the P content is preferably 0.01% or more, more preferably 0.03% or more, and even more preferably 0.05% or more.
  • the P content exceeds 0.1%, the cold rollability is lowered. Therefore, when adding P, the P content is 0.1% or less.
  • Ni 0.005% or more, 1.5% or less
  • Ni is an element having an effect of improving magnetic properties by increasing the uniformity of the hot-rolled sheet structure.
  • Ni content shall be 0.005% or more.
  • the Ni content exceeds 1.5%, secondary recrystallization becomes difficult and the magnetic properties deteriorate. Therefore, when adding Ni, the Ni content is set to 1.5% or less.
  • Cu 0.005% or more, 1.5% or less
  • Cu has the effect of suppressing the oxidation of the steel sheet during the secondary recrystallization annealing, promoting the secondary recrystallization of crystal grains having a good crystal orientation, and effectively improving the magnetic properties.
  • Cu content shall be 0.005% or more.
  • the hot rollability is lowered. Therefore, when adding Cu, Cu content shall be 1.5% or less.
  • Cr 0.005% or more, 0.1% or less
  • Cr is an element having an effect of stabilizing the formation of the forsterite undercoat.
  • Cr content shall be 0.005% or more.
  • Cr content shall be 0.1% or less.
  • Mo 0.005% or more, 0.5% or less
  • Mo is an element that has the effect of suppressing high-temperature oxidation and reducing the occurrence of surface defects called scabs.
  • Mo content shall be 0.005% or more.
  • Mo content exceeds 0.5%, the cold rollability is lowered. Therefore, when adding Mo, Mo content is made 0.5% or less.
  • Ti 0.0005% or more, 0.1% or less, Ti has the effect of suppressing the growth of primary recrystallized grains and promoting the secondary recrystallization of crystal grains having a good crystal orientation to improve magnetic properties.
  • Ti content shall be 0.0005% or more.
  • Ti content exceeds 0.1%, Ti remains in the ground iron and deteriorates the iron loss. Therefore, when adding Ti, the Ti content is 0.1% or less.
  • Nb 0.0005% or more, 0.1% or less
  • Nb has the effect of suppressing the growth of primary recrystallized grains and promoting secondary recrystallization of crystal grains having a good crystal orientation to improve magnetic properties.
  • Nb content shall be 0.0005% or more.
  • Nb content exceeds 0.1%, Nb remains in the ground iron and deteriorates the iron loss. Therefore, when adding Nb, Nb content shall be 0.1% or less.
  • V 0.0005% or more, 0.1% or less
  • V has the effect of suppressing the growth of primary recrystallized grains and promoting the secondary recrystallization of crystal grains having a good crystal orientation to improve the magnetic properties.
  • V content shall be 0.0005% or more.
  • V content exceeds 0.1%, V remains in the ground iron and deteriorates the iron loss. Therefore, when V is added, the V content is 0.1% or less.
  • B 0.0002% or more, 0.0025% or less
  • B has the effect of suppressing the growth of primary recrystallized grains and promoting the secondary recrystallization of crystal grains having a good crystal orientation to improve the magnetic properties.
  • B content shall be 0.0002% or more.
  • B content shall be 0.0025% or less.
  • Bi 0.005% or more, 0.1% or less
  • Bi segregates at the grain boundary to suppress the growth of primary recrystallized grains, and has the effect of promoting secondary recrystallization of crystal grains having a good crystal orientation to improve magnetic properties.
  • Bi content shall be 0.005% or more.
  • Bi content shall be 0.1% or less.
  • Te 0.0005% or more and 0.01% or less Te segregates at the grain boundary to suppress the growth of primary recrystallized grains, promotes secondary recrystallization of crystal grains having a good crystal orientation, and magnetically It has the effect of improving the characteristics.
  • Te content shall be 0.0005% or more.
  • Te content exceeds 0.01%, Te remains in the ground iron and deteriorates the iron loss. Therefore, when adding Te, the Te content is set to 0.01% or less.
  • Ta 0.0005% or more and 0.01% or less Ta has an effect of suppressing the growth of primary recrystallized grains and promoting the secondary recrystallization of crystal grains having a good crystal orientation to improve magnetic properties. .
  • Ta content shall be 0.0005% or more.
  • Ta content exceeds 0.01%, Ta remains in the ground iron and deteriorates the iron loss. Therefore, when Ta is added, the Ta content is set to 0.01% or less.
  • the grain-oriented electrical steel sheet in one embodiment of the present invention is mass%, C: 0.005% or less, Si: 3.0% to 4.0%, Mn: 0.05% or more, 0.50% or less, sol. Al: 0.001% or less, N: 0.0015% or less, S: 0.0010% or less, Se: 0.0010% or less, And optionally, Sb: 0.005% or more, 0.1% or less, Sn: 0.005% or more, 0.1% or less, P: 0.005% or more, 0.1% or less, Ni: 0.005% or more, 1.5% or less, Cu: 0.005% or more, 1.5% or less, Cr: 0.005% or more, 0.1% or less, Mo: 0.005% or more, 0.5% or less, Ti: 0.0005% or more, 0.1% or less, Nb: 0.0005% or more, 0.1% or less, V: 0.0005% or more, 0.1% or less, B: 0.0002% or more, 0.0025% or less, Bi: 0.005% or more, 0.1% or less, Te:
  • the grain-oriented electrical steel sheet according to the present invention satisfies the following conditions (a) and (b).
  • the lower limit of the average value of ( ⁇ 2 + ⁇ 2 ) 1/2 is not particularly limited, but ( ⁇ 2 + ⁇ 2 ) 1/2 so that the area ratio of ⁇ ⁇ 0.5 ° does not increase excessively.
  • the average value is preferably 0.5 ° or more.
  • the lower limit of the R ⁇ is not particularly limited, but since it is inevitable that a certain amount of fine particles are contained, the R ⁇ may be 1% or more.
  • the average value of ( ⁇ 2 + ⁇ 2 ) 1/2 is calculated from ⁇ and ⁇ obtained by measuring the ⁇ angle and the ⁇ angle at a plurality of measurement positions of the steel sheet ( ⁇ 2 + ⁇ 2 ) 1 /
  • the value of 2 can be determined by averaging over all measurement positions. Specific measurement conditions may be as described in the examples.
  • the average value (average ⁇ angle) of the deviation angle ⁇ from the ideal Goss direction for the RD rotation axis shall be 3.0 ° or more and 7.0 ° or less.
  • the average ⁇ angle can be obtained by measuring the ⁇ angle at a plurality of measurement positions of the steel sheet and averaging the obtained values for all measurement positions. Specific measurement conditions may be as described in the examples.
  • C 0.025% to 0.060% C is an element useful for improving the primary recrystallization texture. If the C content is less than 0.025%, the ⁇ (austenite) transformation amount decreases. When the amount of ⁇ transformation is decreased, the area ratio of carbides having a particle diameter of 1 ⁇ m or more due to the ⁇ phase: R C cannot be sufficiently secured, and the above-described desirable secondary recrystallized grain orientation can be obtained. Can not. Therefore, the C content is set to 0.025% or more. From the viewpoint of magnetic properties, the C content is preferably 0.030% or more. On the other hand, if the C content exceeds 0.060%, the amount of ⁇ transformation is too large, and R C becomes too high, so that the desired secondary recrystallized grain orientation cannot be obtained. Therefore, the C content is set to 0.060% or less. From the viewpoint of magnetic properties, the C content is preferably 0.050% or less.
  • Si 3.0% or more and 4.0% or less Si is an element having an effect of improving iron loss by increasing electric resistance.
  • Si content shall be 3.0% or more.
  • the Si content is preferably 3.1% or more, and more preferably 3.2% or more.
  • the Si content is 4.0% or less.
  • the Si content is preferably 3.8% or less, and more preferably 3.7% or less.
  • Mn 0.05% or more and 0.50% or less
  • Mn combines with S or Se to form MnS or MnSe, and has the effect of stabilizing the magnetic properties through stabilization of the primary recrystallized grain size.
  • Mn has an effect of improving hot workability during production.
  • the Mn content is set to 0.05% or more.
  • the Mn content is preferably 0.07% or more, and more preferably 0.09% or more.
  • the Mn content is 0.50% or less.
  • the Mn content is preferably 0.25% or less, more preferably 0.15% or less, and even more preferably 0.10% or less.
  • sol. Al less than 0.01%
  • the Al content is set to sol. Al content is less than 0.01%.
  • sol. The lower the amount of Al the better. Therefore, the lower limit may be 0%, but industrially it may be more than 0%. However, excessive reduction may cause an increase in manufacturing cost.
  • the Al content can also be 0.0001% or more.
  • N less than 0.006% N is also present in excess, making secondary recrystallization difficult.
  • the N content is 0.006% or more, secondary recrystallization hardly occurs and the magnetic properties deteriorate. Therefore, the N content is less than 0.006%.
  • the lower the N content the better. Therefore, the lower limit may be 0%, but industrially it may be more than 0%.
  • the N content can be 0.00001% or more, 0.00005% or more, and 0.0001% or more. You can also
  • S, Se: less than 0.010% in total S and Se also make secondary recrystallization difficult when excessively present.
  • the total content of S and Se is set to less than 0.010%.
  • the lower the total content of S and Se the better. Therefore, the lower limit may be 0%, but industrially it may be more than 0%.
  • the total content of S and Se can be 0.00001% or more, and can be 0.00005% or more. % Or more.
  • S content shall be 0.009% or less.
  • Se content is preferably 0.001% or less.
  • the steel slab in one embodiment of the present invention has a component composition composed of the above components, the remaining Fe and inevitable impurities.
  • the steel slab used in the present invention has the above-described components as a basic composition, but in order to obtain better magnetic properties, the above-described component composition can further optionally contain the following components.
  • Sb 0.005% or more, 0.1% or less Sn: 0.005% or more, 0.1% or less P: 0.005% or more, 0.1% or less Ni: 0.005% or more, 1.5 %Less than, Cu: 0.005% or more, 1.5% or less, Cr: 0.005% or more, 0.1% or less, Mo: 0.005% or more, 0.5% or less, Ti: 0.0005% or more, 0.1% or less, Nb: 0.0005% or more, 0.1% or less, V: 0.0005% or more, 0.1% or less, B: 0.0002% or more, 0.0025% or less, Bi: 0.005% or more, 0.1% or less, Te: 0.0005% or more, 0.01% or less, and Ta: 0.0005% or more, 0.01% or less.
  • the reason for limiting the content of each element is the same as the reason for limiting the content of each element in the grain-oriented electrical steel sheet described above.
  • the following treatments are sequentially performed on a steel slab having the above component composition. ⁇ Heating (optional), ⁇ Hot rolling, ⁇ Hot rolled sheet annealing, ⁇ Cold rolling, ⁇ Primary recrystallization annealing, ⁇ Application of annealing separator, Winding and secondary recrystallization annealing.
  • the steel slab having the above component composition can be optionally heated to a heating temperature.
  • the heating temperature is set to 1300 ° C. or lower in order to reduce the amount of scale generated in hot rolling.
  • the lower limit of the heating temperature is not particularly limited, but the heating temperature is preferably 1050 ° C. or higher from the viewpoint of suppressing an increase in rolling load.
  • the steel slab is hot-rolled to obtain a hot-rolled steel sheet.
  • hot rolling is performed on the heated steel slab.
  • the conditions for hot rolling are not particularly limited, and can be performed under arbitrary conditions. However, if the finisher delivery temperature is less than 750 ° C., the rolling load may increase and rolling may be difficult. Therefore, it is preferable that the finishing temperature in the said hot rolling shall be 750 degreeC or more. On the other hand, when the finishing temperature exceeds 950 ° C., the amount of scale generation increases, and it may be difficult to remove the scale by pickling before cold rolling. Therefore, it is preferable that the finishing temperature of hot rolling be 950 ° C. or less.
  • hot-rolled sheet annealing is performed on the hot-rolled steel sheet.
  • the conditions for the hot-rolled sheet annealing are not particularly limited, and can be any conditions.
  • the hot-rolled sheet annealing temperature is less than 900 ° C., a band structure during hot rolling remains, and it becomes difficult to realize a primary recrystallized structure having a uniform particle size. As a result, the development of secondary recrystallization may be inhibited. Therefore, the hot-rolled sheet annealing temperature is preferably 900 ° C. or higher in order to develop a Goss structure highly in the grain-oriented electrical steel sheet finally obtained.
  • the hot-rolled sheet annealing temperature exceeds 1120 ° C.
  • the particles become coarse, and as a result, it may be difficult to obtain a primary recrystallized structure having a uniform particle size. Therefore, in order to develop the Goss structure highly in the grain-oriented electrical steel sheet finally obtained, it is preferable to set the hot-rolled sheet annealing temperature to 1120 ° C. or lower.
  • the annealing time in the hot-rolled sheet annealing is preferably about 10 seconds to 10 minutes.
  • Cold rolling After the hot-rolled sheet annealing, the annealed hot-rolled steel sheet is cold-rolled to obtain a cold-rolled steel sheet.
  • the cold rolling can be performed by any method. Although cold rolling can be performed only once, it can also be performed twice or more with intermediate annealing.
  • the intermediate annealing temperature is preferably 900 ° C. or higher and 1120 ° C. or lower. If the intermediate annealing temperature is less than 900 ° C., the band structure during hot rolling remains, and it becomes difficult to realize a primary recrystallization structure with a uniform particle size, thereby inhibiting the development of secondary recrystallization. There is a case. On the other hand, when the intermediate annealing temperature exceeds 1120 ° C., the particles become coarse, and as a result, it may be difficult to obtain a primary recrystallized structure having a uniform particle size.
  • the intermediate annealing time is preferably about 10 seconds to 10 minutes.
  • final cold rolling refers to cold rolling when the cold rolling is performed only once. Moreover, when performing cold rolling twice or more on both sides of intermediate annealing, the cold rolling performed after the last intermediate annealing is set as "final cold rolling.”
  • the C content in the steel slab used is set in the above range, and the residence time between 900 and 700 ° C. in annealing before the final cold rolling is performed. Can be adjusted. Increasing the residence time promotes transformation from the ⁇ phase to the ⁇ phase, and as a result, Rc can be lowered. Moreover, since the total amount of ⁇ phase varies depending on the C content of the steel sheet, the residence time may be lengthened when the C content is large. Thus, by adjusting the C content and the residence time, RC can be made 0.5% to 20.0%.
  • the residence time between 900-700 ° C. (t 900-700 ° C.) in the annealing before the final cold rolling is not particularly limited, and is adjusted so that R C is 0.5% -20.0 %. It ’s fine.
  • t900-700 ° C. is preferably 6 sec or more, and preferably 10 sec or more. Further, it is preferable that less 200sec a t 900-700 °C, is preferably not greater than 180 sec.
  • “annealing before final cold rolling” refers to hot-rolled sheet annealing before cold rolling when cold rolling is performed only once. Moreover, when performing cold rolling twice or more on both sides of intermediate annealing, let the intermediate annealing performed at the end be "annealing before the last cold rolling".
  • the generation ratio of primary recrystallization nuclei having ⁇ 411 ⁇ ⁇ 148> orientation increases, and as a result, the secondary recrystallization finally obtained is obtained. It is presumed that the crystal grain orientation can be controlled within the above-mentioned range.
  • RC is less than 0.5%
  • the hot rolled band structure is not sufficiently broken, so that a favorable secondary recrystallized grain orientation cannot be obtained.
  • R C exceeds 20%
  • the average crystal grain size (D) in the steel sheet at the start of the final cold rolling is 50 ⁇ m or more and 300 ⁇ m or less.
  • the maximum temperature (T max ) in the final cold rolling is set to 150 ° C. or higher. In other words, the temperature (T) of at least one pass in the final cold rolling is set to 150 ° C. or higher.
  • D is preferably 90 ⁇ m or more, and more preferably 110 ⁇ m or more. Further, D is preferably 250 ⁇ m or less, and more preferably 200 ⁇ m or less.
  • T max is preferably 180 ° C. or higher, and more preferably 200 ° C. or higher.
  • the upper limit of T max is not particularly limited, but is preferably set to 250 ° C. or less from the viewpoint of suppressing an excessive increase in rolling load.
  • Primary recrystallization annealing After the cold rolling, the obtained cold rolled steel sheet is subjected to primary recrystallization annealing.
  • the purpose of this primary recrystallization annealing is to adjust the primary recrystallization grain size optimal for secondary recrystallization by primary recrystallization of a cold-rolled steel sheet having a rolled structure.
  • the conditions for primary recrystallization annealing are not particularly limited, and can be performed under arbitrary conditions. However, from the viewpoint of more reliably achieving the above object, it is preferable to set the annealing temperature of the primary recrystallization annealing to about 800 ° C. or more and less than 950 ° C.
  • the annealing atmosphere in the primary recrystallization annealing is not particularly limited, and can be any atmosphere. Moreover, the said primary recrystallization annealing can also serve as a decarburization annealing. In the case of performing primary recrystallization annealing also serving as decarburization annealing, for example, a wet hydrogen-nitrogen atmosphere or a wet hydrogen-argon atmosphere can be used.
  • the heating rate in the primary recrystallization annealing is not particularly limited and can be any value, but the average heating rate in the temperature range of 500 to 700 ° C. is preferably 50 ° C./sec or more. By setting the average heating rate to 50 ° C./sec or more, the generation rate of primary recrystallization nuclei having ⁇ 411 ⁇ ⁇ 148> orientation is increased, and as a result, better secondary recrystallization grain orientation is obtained. be able to.
  • the upper limit of the average temperature increase rate is not particularly limited, but if the average temperature increase rate is excessively high, an increase in energy (electric power, etc.) used for heating becomes a problem. It is preferable to set it as follows, It is more preferable to set it as 400 degrees C / sec or less, It is more preferable to set it as 300 degrees C / sec or less.
  • an annealing separator After the primary recrystallization annealing, before the secondary recrystallization annealing, an annealing separator is applied to the steel sheet surface.
  • the composition of the annealing separator is not particularly limited, and an annealing separator having an arbitrary composition can be used. Usually, an annealing separator containing an oxide as a main component is used. In the case of forming a forsterite film on the surface of the steel sheet after the secondary recrystallization annealing, MgO is used as the oxide. When it is not necessary to form a forsterite film, any oxide having a melting point higher than the secondary recrystallization annealing temperature can be used as the oxide.
  • the oxide having a melting point higher than the secondary recrystallization annealing temperature examples include Al 2 O 3 and CaO.
  • the lower limit of the content of the oxide as the main component in the annealing separator is not particularly limited, but is preferably 50% by mass or more, and more preferably 70% by mass or more.
  • the upper limit of the oxide content is not particularly limited, and may be 100% by mass or less, but may be 95% by mass or less.
  • the annealing separator may further contain other optional components such as TiO 2 .
  • the annealing separator may contain one or more selected from the group consisting of sulfides, sulfates, selenides, and selenates as additives.
  • the additive decomposes at a temperature of, for example, about 700 ° C., and supplies S and Se, which are inhibitor elements, into the steel sheet. Therefore, by using the additive, it is possible to increase the ability to suppress normal grain growth in secondary recrystallization annealing and further improve the magnetic properties of the grain-oriented electrical steel sheet. Since this effect is obtained even if the amount of the additive is relatively small, the amount of the additive in the annealing separator is not particularly limited.
  • the content of the additive is preferably 1 part by mass or more with respect to 100 parts by mass of the oxide (MgO) as the main component.
  • the content of the additive is preferably 30 parts by mass or less with respect to 100 parts by mass of the oxide (MgO) as the main component.
  • the steel sheet coated with the annealing separator is wound up to form a coil.
  • the coil can be wound according to a conventional method.
  • the lower limit of the diameter of the coil is not particularly limited and may be any value, but is preferably 700 mm or more. If the diameter of the coil is 700 mm or more, deterioration of the secondary recrystallized grain orientation due to the curvature of the coil can be reduced, and a better secondary recrystallized grain orientation can be obtained.
  • the diameter of the coil is more preferably 900 mm or more, and further preferably 1100 mm or more.
  • the upper limit of the coil diameter is not particularly limited, but if the coil diameter is excessively increased, handling becomes difficult. Therefore, the diameter of the coil is preferably 4000 mm or less, more preferably 3000 mm or less, and 2000 mm or less. More preferably.
  • the coil is subjected to secondary recrystallization annealing.
  • the conditions for the secondary recrystallization annealing are not particularly limited, and can be performed according to a conventional method. From the viewpoint of completing the secondary recrystallization, it is preferable to set the average rate of temperature increase in the temperature range of 800 ° C. or more and 900 ° C. or less in the secondary recrystallization annealing to 5 ° C./hour or less.
  • the secondary recrystallization annealing can also serve as a purification annealing.
  • the purification temperature is preferably higher than 1180 ° C.
  • the atmosphere during the purification annealing is preferably an atmosphere containing H 2 gas, and more preferably an atmosphere containing 10% by volume or more of H 2 .
  • a forsterite film is formed on the surface of the grain-oriented electrical steel sheet after the secondary recrystallization annealing.
  • an insulating film can be formed on the surface of the obtained grain-oriented electrical steel sheet.
  • the insulating coating can be formed by unwinding a secondary recrystallized annealed coiled grain-oriented electrical steel sheet, applying a treatment liquid for forming the insulation coating on the surface of the grain-oriented electrical steel sheet, and then baking it.
  • the insulating film is not particularly limited, and any insulating film can be used.
  • As the treatment liquid for example, a coating liquid containing phosphate, chromate, and colloidal silica can be used.
  • the baking can be performed at about 800 ° C., for example.
  • the shape of the grain-oriented electrical steel sheet can be adjusted by performing flattening annealing.
  • the planarization annealing can also serve as a baking process for the insulating film.
  • the manufacturing conditions other than the above may follow a general manufacturing method of grain-oriented electrical steel sheets.
  • Example 1 A grain-oriented electrical steel sheet was manufactured using a plurality of steel slabs having the following component composition.
  • the grain-oriented electrical steel sheet was manufactured according to the following procedure. First, after reheating the steel slab to 1250 ° C., it was hot-rolled to obtain a hot-rolled steel sheet having a thickness of 2.4 mm. Subsequently, hot-rolled sheet annealing was performed on the hot-rolled steel sheet. In the hot-rolled sheet annealing, the hot-rolled steel sheet was held at a soaking temperature shown in Table 1 for 30 seconds. In the hot-rolled sheet annealing, the residence time (t 900-700 ° C.) between 900 and 700 ° C. during cooling was as shown in Table 1. In a temperature range of 700 ° C. or lower, the material was quenched at a cooling rate of 40 ° C./sec.
  • the annealed hot-rolled steel sheet was cold-rolled at the maximum temperature (T max ) shown in Table 1 to obtain a cold-rolled steel sheet having a final thickness of 0.23 mm.
  • the cold-rolled steel sheet was subjected to primary recrystallization annealing also serving as decarburization to obtain a primary recrystallized steel sheet.
  • the conditions for the primary recrystallization annealing were as follows. Temperature increase rate between 500 ° C. and 700 ° C .: 150 ° C./sec, annealing temperature: 850 ° C., annealing time: 120 seconds, annealing atmosphere: H 2 : 55%, N 2 : 45%, dew point: 55 ° C.
  • the coil had an inner diameter of 500 mm and an outer diameter of 1500 mm.
  • the temperature history in the secondary recrystallization annealing was as follows. ⁇ Raise the temperature up to 800 °C at 15 °C / h, ⁇ Temperature increased from 800 ° C to 880 ° C at 2.0 ° C / h, -Hold at 880 ° C for 50 hours, ⁇ Raise the temperature to 1160 ° C at 5.0 ° C / h, -Soaking at 1160 ° C for 5 hours.
  • N 2 gas was used in the temperature range up to 880 ° C.
  • H 2 was used in the temperature range of 880 ° C. or higher.
  • a treatment liquid containing phosphate, chromate, and colloidal silica in a mass ratio of 3: 1: 3 is applied to the surface of the obtained secondary recrystallization annealed plate, and flattening annealing is performed. did.
  • the area ratio: R C of the carbide having a particle diameter of 1 ⁇ m or more at the start of the final cold rolling and the average crystal grain size: D at the start of the final cold rolling were measured by the following methods. The measurement results are as shown in Table 1.
  • Average crystal grain size D
  • the cross-sectional structure at the center position in the plate width direction of the steel plate is photographed with an optical microscope or a scanning electron microscope, and the average value of the equivalent circle diameters of the crystals in the total plate thickness is obtained by counting or image processing, and the average crystal grain size (D) It was.
  • the number of crystal grains for calculating the average value was 100 or more.
  • Table 2 shows the result of chemical analysis of the component composition of the finally obtained grain-oriented electrical steel sheet.
  • each of the grain-oriented electrical steel sheets satisfying the conditions of the present invention has good magnetic properties and can be manufactured by coil annealing with excellent productivity. It was.
  • Example 2 A grain-oriented electrical steel sheet was manufactured using a plurality of steel slabs having the following component composition.
  • the production of the grain-oriented electrical steel sheet was performed according to the following procedure. First, after reheating the steel slab to 1220 ° C., it was hot-rolled to obtain a hot-rolled steel sheet having a thickness of 2.8 mm. Subsequently, hot-rolled sheet annealing was performed on the hot-rolled steel sheet. In the hot-rolled sheet annealing, the hot-rolled steel sheet was held at a soaking temperature: 1000 ° C. for 30 seconds.
  • the annealed hot-rolled steel sheet was cold-rolled at 80 ° C. to obtain an intermediate sheet thickness of 2.2 mm.
  • intermediate annealing was performed.
  • the steel plate was held at a soaking temperature shown in Table 1 for 60 seconds.
  • the residence time (t 900-700 ° C.) between 900 and 700 ° C. during cooling in the intermediate annealing was as shown in Table 2.
  • rapid cooling was performed at a cooling rate of 50 ° C./sec.
  • the cold-rolled steel sheet having a final thickness of 0.23 mm was obtained by subjecting the intermediate-annealed steel sheet to cold rolling at the maximum temperature shown in Table 3.
  • the cold rolling after the intermediate annealing is the final rolling.
  • the cold-rolled steel sheet was subjected to primary recrystallization annealing also serving as decarburization to obtain a primary recrystallized steel sheet.
  • the conditions for the primary recrystallization annealing were as follows. Temperature increase rate between 500 ° C.
  • annealing temperature 840 ° C.
  • annealing time 120 seconds
  • annealing atmosphere H 2 : 55%
  • N 2 45%
  • dew point 53 ° C.
  • the coil had an inner diameter of 500 mm and an outer diameter of 1500 mm.
  • the temperature history in the secondary recrystallization annealing was as follows. ⁇ Raise the temperature up to 800 ° C at 15 ° C / h, ⁇ Temperature increased from 800 ° C to 850 ° C at 2.0 ° C / h, -Hold at 850 ° C for 50 hours, ⁇ Raise the temperature to 1180 ° C. at 5.0 ° C./h, -Soaking at 1180 ° C for 5 hours.
  • N 2 gas was used in the temperature range up to 850 ° C.
  • H 2 was used in the temperature range of 850 ° C. or higher.
  • a treatment liquid containing phosphate, chromate, and colloidal silica in a mass ratio of 3: 1: 3 is applied to the surface of the obtained secondary recrystallization annealed plate, and flattening annealing is performed. did.
  • Table 4 shows the result of chemical analysis of the component composition of the finally obtained grain-oriented electrical steel sheet.
  • each of the grain-oriented electrical steel sheets satisfying the conditions of the present invention has good magnetic properties and can be manufactured by coil annealing with excellent productivity. It was.
  • Example 3 Using steel slabs having the composition shown in Table 5, grain-oriented electrical steel sheets were produced according to the following procedure. First, after reheating the steel slab to 1230 ° C., it was hot-rolled to obtain a hot-rolled steel sheet having a thickness of 2.4 mm. Subsequently, hot-rolled sheet annealing was performed on the hot-rolled steel sheet. In the hot-rolled sheet annealing, the hot-rolled steel sheet was held at a soaking temperature of 1050 ° C. for 30 seconds. Further, in the hot rolled sheet annealing, 900-700 dwell among ° C. time during cooling (t 900-700 °C) and 25 sec, at a temperature range of 700 ° C. or less, cooling rate and quenched with 40 ° C. / sec.
  • the annealed hot-rolled steel sheet was cold-rolled at 200 ° C. to obtain a cold-rolled steel sheet having a final thickness of 0.23 mm.
  • the cold-rolled steel sheet was subjected to primary recrystallization annealing also serving as decarburization to obtain a primary recrystallized steel sheet.
  • the coil had an inner diameter of 500 mm and an outer diameter of 1500 mm.
  • the temperature history in the secondary recrystallization annealing was as follows. ⁇ Raise the temperature up to 800 ° C at 15 ° C / h, ⁇ Temperature is increased from 800 ° C to 870 ° C at 2.0 ° C / h. -Hold at 870 ° C for 50 hours, ⁇ Raise the temperature to 1160 ° C at 5.0 ° C / h, -Soaking at 1160 ° C for 5 hours.
  • N 2 gas was used in the temperature range up to 870 ° C.
  • H 2 was used in the temperature range of 870 ° C. or higher.
  • a treatment liquid containing phosphate, chromate, and colloidal silica in a mass ratio of 3: 1: 3 is applied to the surface of the obtained secondary recrystallization annealed plate, and flattening annealing is performed. did.
  • Table 7 shows the results of chemical analysis of the component composition of the finally obtained grain-oriented electrical steel sheet.
  • the grain-oriented electrical steel sheets satisfying the conditions of the present invention can be manufactured by coil annealing with excellent productivity in addition to having good magnetic properties. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

磁気特性に優れるとともに、生産性のよいコイル焼鈍による二次再結晶方位制御によって製造可能な方向性電磁鋼板を提供する。 特定の成分組成を有し、ND回転軸についての理想Goss方位からのずれ角αと、TD回転軸についての理想Goss方位からのずれ角βとから求められるずれ角(α2+β21/2の平均値が5.0°以下であり、β≦0.50°である結晶粒の面積率:Rβが20%以下である、方向性電磁鋼板。

Description

方向性電磁鋼板およびその製造方法
 本発明は、方向性電磁鋼板(grain-oriented electrical steel sheet)に関するものであり、特に、低減された鉄損を有する方向性電磁鋼板に関するものである。また、本発明は、前記方向性電磁鋼板の製造方法に関するものである。
 方向性電磁鋼板は、変圧器や発電機などの電気機器の鉄心材料として用いられる軟磁気特性材料であり、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った集合組織(texture)を有する。このような集合組織は、ゴス(Goss)方位と称される(110)[001]方位に配向した結晶粒を優先的に巨大成長させる二次再結晶焼鈍により形成される。
 二次再結晶粒の(110)[001]方位(以下、「理想Goss方位」と呼ぶ)への集積度は、理想Goss方位からの二次再結晶粒方位の「ずれ角(deviation angle)」に基づいて評価することができる。そして、前記ずれ角は、3つの回転軸、すなわち、圧延面法線方向(Normal Direction、ND)軸、圧延直角方向(Transverse Direction、TD)軸、および圧延方向(Rolling Direction、RD)軸のそれぞれにおけるずれ角に分けて考えることができ、前記各回転軸におけるずれ角α、β、およびγが、方向性電磁鋼板の磁気特性に与える影響が議論されている。
 ND軸におけるずれ角であるα角については、α角が小さいほど方向性電磁鋼板の磁束密度が向上し、鉄損が向上することが知られている。また、RD軸におけるずれ角であるγ角は、磁化容易軸<001>からの角度には影響を及ぼさないため、磁束密度、鉄損への影響は小さいものと考えられている。
 また、非特許文献1には、単結晶において、TD軸におけるずれ角であるβ角が鉄損に及ぼす影響について記載されている。非特許文献1によると、β角が2.0°の時に鉄損が最も良好であり、β角が0°に近づくほど磁区幅が増大して鉄損は増加する。
 そこで、特許文献1には、鉄損を改善するために、理想Goss方位からのずれ角を8°以下とした方向性電磁鋼板が提案されている。同様に、特許文献2には、ずれ角を5°以下とした方向性電磁鋼板が提案されている。
 しかし、特許文献1、2のように、単に「ずれ角」を規定する場合、該ずれ角は、α角とβ角の合成角を意味する。そのため、合成角としてのずれ角を低減したとしても、β角が0°に近い場合には、非特許文献1の開示から予想されるように、必ずしも鉄損を低減できるとはいえない。
 一方、β角に着目した技術としては、例えば、特許文献3~5に開示された技術がある。特許文献3、4では、β角を4.0°以下とした方向性電磁鋼板が提案されている。また、特許文献5では、二次再結晶粒内における圧延方向に沿ったβ角の変化率の平均値が0.018~0.06°/mmである方向性電磁鋼板が提案されている。
特開平07-268567号公報 特開2009-155731号公報 特開昭59-177349号公報 特公昭57-061102号公報 特許第5286872号公報
IEEE Trans. Magn. 1996, Vol.32, No.2, p.572-589
 しかし、方向性電磁鋼板におけるβ角の制御には、次のような問題がある。
 非特許文献1は、β角を2.0°とすることで鉄損を低減できることを示しているが、一般的な方向性電磁鋼板においてβ角を2.0°とすることは以下の理由により不可能であった。すなわち、一般的な方向性電磁鋼板の製造工程においては、鋼板をコイル状に巻いた状態で二次再結晶焼鈍が行われ、その後、前記コイルを巻き解いて平坦化焼鈍が施される。そのため、製品板、すなわち、平坦化焼鈍後の方向性電磁鋼板におけるβ角は、二次再結晶焼鈍時のコイルの湾曲率に応じて変化する。例えば、コイル直径が1000mmの場合、圧延方向の長さ10mmあたり0.57°、β角が変化することになる。したがって、二次再結晶粒径が10mm程度以上である方向性電磁鋼板の場合、製品板全体におけるβ角を、単結晶の場合に最も鉄損が良好となる2.0°とすることは原理的に不可能である。
 また、α角およびβ角を低減する、すなわち方位集積度を向上させるために、例えば、最終冷延における圧下率を高めるなどの方法が考えられる。しかし、そのような方法を採った場合、ほぼ必然的に二次再結晶粒径が粗大化するため、鋼板をコイル状に巻いた状態で二次再結晶焼鈍を行う方法では鉄損を十分に低減することができない。
 そこで、特許文献3、4では、β角を4.0°以下とするために、圧延方向と交差する方向に延びる波形状を鋼板に付与した状態で二次再結晶焼鈍を行い、その後、鋼板を平坦に矯正している。前記方法は原理的に正しいが、波形状の付与と矯正を行う必要があるため生産性が低く、工業的な方向性電磁鋼板の製造には適さないという問題があった。
 また、特許文献5では、二次再結晶焼鈍時のコイルの径を、2000~6200mmと大きくすることによってβ角を制御している。しかし、この方法では、β角が0.5°以下となる場合には、かえって鉄損が大幅に増加してしまうため、磁区細分化処理が必須となるという問題があった。
 本発明は、上記事情に鑑み、磁気特性に優れるとともに、生産性のよいコイル焼鈍による二次再結晶方位制御によって製造可能な方向性電磁鋼板を提供することを目的とする。 また、本発明は、生産性に優れた前記方向性電磁鋼板の製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を行った。以下、本発明を導くに到った実験結果について説明する。
 まず、成分組成が異なる鋼A、鋼Bのそれぞれからなる2種類の鋼スラブを、それぞれ複数用意した。鋼Aおよび鋼Bの成分組成は、次の通りである。なお、成分組成に関する「%」は、特に断らない限り「質量%」を意味し、「ppm」は、特に断らない限り「質量ppm」を意味する。
(鋼A)
 C :0.030%、
 Si:3.4%、
 Mn:0.10%、
 Sb:0.07%、
 P :0.05%、
 sol.Al:60ppm、
 N :30ppm、
 S :20ppm、
 Se:1ppm、および
 残部のFeおよび不可避不純物。
(鋼B)
 C :0.050%、
 Si:3.4%、
 Mn:0.08%、
 Sb:0.03%、
 P :0.10%、
 Sb:0.03%、
 sol.Al:60ppm、
 N :30ppm、
 S :25ppm、
 Se:1ppm、および
 残部のFeおよび不可避不純物。
 次に、上記鋼スラブを1220℃まで加熱した後、熱間圧延して、板厚:2.4mmの熱延鋼板とした。その後、前記熱延鋼板に、1050℃で30秒の熱延板焼鈍(hot band annealing)を施した。前記熱延板焼鈍においては、冷却時の900~700℃間における滞留時間(t900-700℃)を熱延鋼板ごとに変化させた。700℃以下の温度域では、冷却速度:40℃/secで常温まで冷却した。
 上記の手順で得た、焼鈍された熱延鋼板の断面組織を調査した。図1は、鋼Aからなるスラブから得た、焼鈍された熱延鋼板の断面組織の例である。焼鈍された熱延鋼板における平均結晶粒径は、およそ100~150μmであった。図2は、熱延板焼鈍の冷却時における900~700℃間の滞留時間(t900-700℃)と、焼鈍された熱延鋼板における粒子径が1μm以上である炭化物の面積率(RC)との関係を示す図である。図2より、RCは、C含有量の高い鋼Bのほうが鋼Aよりも高く、また、t900-700℃が長いほどRCが低いことが分かる。
 次に、焼鈍された前記熱延鋼板に、最高到達温度が220℃となる条件で冷間圧延を施して、最終板厚0.23mmの冷延鋼板を得た。次いで、得られた冷延鋼板に、脱炭焼鈍を兼ねる一次再結晶焼鈍を施した。前記一次再結晶焼鈍の条件は、均熱温度:840℃、均熱時間:120秒、水素分圧:55%、窒素分圧45%、および露点55℃とした。
 得られた一次再結晶鋼板の表面に、MgOを主剤とする焼鈍分離剤を15g/m2塗布して乾燥し、前記鋼板を巻き取ってコイルとした。このとき、前記コイルの内径は500mm、外径は1500mmとした。
 次に、前記コイルに対して二次再結晶焼鈍を施した。前記二次再結晶焼鈍では、始めに窒素雰囲気中で、速度15℃/hで800℃まで昇温し、次いで、800~850℃間の昇温速度5℃/hで850℃まで昇温した。850℃で50時間保定した後、水素雰囲気に切り替えて、1180℃で5h保持した。
 前記二次再結晶焼鈍の後、60%のコロイダルシリカとリン酸アルミニウムからなるコーティング剤を、鋼板の表面に塗布し、乾燥した。次いで、窒素と水素の混合雰囲気中で、835℃で20秒の平坦化焼鈍を行って形状矯正し、製品としての方向性電磁鋼板を得た。
 得られた方向性電磁鋼板より、コイル径が1000mmの位置で試験片を採取し、エプスタイン試験により前記試験片の磁気特性を評価した。前記磁気特性としては、磁化力800A/mにおける磁束密度(B8)および最大磁束密度1.7T、周波数50Hzにおける鉄損(W17/50)を測定した。
 さらに、X線ラウエ法を用いて、720mm×280mmの測定領域における二次再結晶粒方位を2mmピッチで測定し、ND回転軸についての理想Goss方位からのずれ角αと、TD回転軸についての理想Goss方位からのずれ角βを求めた。得られたαとβを用いて、各測定位置における<100>方向からのずれ角である(α2+β21/2を算出し、さらにすべての測定位置における(α2+β21/2の平均値を求めた。
 図3は、t900-700℃と磁束密度(B8)との関係を示す図である。図3から、鋼A、鋼Bのいずれにおいても、t900-700℃が長いほど磁束密度が向上することが分かる。また、図4は、t900-700℃と、鉄損(W17/50)の関係を示す図である。図4から、鋼Aではt900-700℃が長いほど鉄損が増加する一方、鋼Bでは前記滞留時間が長いほど鉄損が低下することが分かる。
 次に、<100>方向からのずれ角である(α2+β21/2の平均値と磁気特性との相関を調査した。(α2+β21/2の平均値と磁束密度の関係を図5に、(α2+β21/2の平均値と鉄損の関係を図6に、それぞれ示す。図5より、(α2+β21/2の平均値と磁束密度との間の相関は極めて高く、(α2+β21/2の平均値が5°以下であれば良好な磁束密度(B8>1.92T)が得られることが分かる。一方、図6より、(α2+β21/2の平均値と鉄損との関係は、鋼Aと鋼Bで異なることが分かる。
 以上の結果から、前記滞留時間および(α2+β21/2の平均値は、磁束密度に対しては良い相関を示すものの、鉄損に対しては十分な相関を示さないことが分かった。そこで、鉄損との相関の高い二次再結晶粒方位の指標を調査した。その結果、ずれ角βが0.50°以下である二次再結晶粒の面積率(Rβ)が、鉄損と高い相関を示すことを見出した。図7は、t900-700℃と、Rβの関係を示す図である。鋼Aでは、t900-700℃が長いほどRβが大きくなったのに対して、鋼Bでは逆の傾向がみられた。この傾向は、図4、6に示した鉄損の変化と対応していると考えられる。
 図8は、Rβと鉄損との関係を示す図であり、この図から、確かにRβと鉄損との間に良好な相関が存在することが分かる。さらに具体的には、Rβが20%以下であれば、良好な鉄損を得ることができ、Rβが15%以下であれば、より良好な鉄損が得られることが分かる。
 図9は、RD回転軸についての理想Goss方位からのずれ角γの平均値(以下、「平均γ角」という)と鉄損との関係を示す図である。図9から分かるように、平均γ角と鉄損との間にも明瞭な相関関係があり、平均γ角が大きいほど鉄損が低くなる。具体的には、平均γ角が3.0°以上であればより良好な鉄損を得ることができ、平均γ角が4.5°以上であれば、さらに良好な鉄損が得られることが分かる。
 前記滞留時間が鉄損に及ぼす影響が、鋼Aと鋼Bで異なった理由については、図2に示した滞留時間とRCとの関係に基づいて、以下のように説明できる。図2に示したように、滞留時間を0~600secの間で変化させたとき、鋼AにおけるRCはおよそ5~25%の範囲で、鋼BにおけるRCはおよそ0~5%の範囲で、それぞれ変化している。図10は、RCとRβの関係を示す図である。図10から分かるように、鋼Aに対応するRCの範囲と、鋼Bに対応するRCの範囲では、Rβが反対の傾向を示している。その結果、t900-700℃が鉄損に及ぼす影響が、鋼Aと鋼Bで異なったと考えられる。
 また、図10によれば、Rβは、RCが約5%の時に最小値をとる。図8に示したように、Rβが低いほど鉄損も低くなるため、RCを5%程度とすることが、鉄損を低減する上で最も有利であることが分かる。さらに、図10からは、Rβを、鉄損が良好となる20%以下とするためには、RCを0.5~20%とすればよく、Rβを、鉄損がさらに良好となる15%以下とするためには、RCを2.0~15%とする必要があることが分かる。
 図11は、RCと、二次再結晶粒の平均γ角との関係を示す図である。図11によれば、RCが約5%の時に二次再結晶粒の平均γ角が最大値をとり、鉄損低減に最も有利であることが分かる。なお、本実験の場合、β角とγ角は同時に変化しており、それぞれの効果の寄与は分割できていない。
 鋼Aと鋼Bで平均γ角の傾向が異なった理由としては、鋼Aと鋼Bでは素材C量が異なるため、t900-700℃を変化させた時のRCの変化が異なったためだと考えられる。
 以上の結果から、次の知見を得た。
(1)理想Goss方位からのずれ角(α2+β21/2の平均値を低減することにより、方向性電磁鋼板の磁束密度を改善できる。
(2)RSを20%以下、好ましくは15%以下とすることにより、方向性電磁鋼板の鉄損を低減できる。
(3)平均γ角を3°以上、好ましくは4.5°以上とすることにより、鉄損をさらに低減できる。
(4)上記条件を満足する二次再結晶粒方位を実現するためには、熱延板焼鈍板におけるRCを0.5~20%の範囲、好ましくは2.0~15%の範囲とする必要がある。
 次に、二次再結晶焼鈍時のコイル径が、鋼板の長手方向(圧延方向)における磁気特性に及ぼす影響を調査した。図12は、二次再結晶焼鈍を行った時のコイル径と、得られた方向性電磁鋼板の磁束密度B8との関係を示す図である。前記二次再結晶焼鈍は、t900-700℃が20秒である条件で行った。図12より分かるように、鋼A、鋼B共にコイル径が大きくなるほどB8は向上した。
 図13は、コイル径と(α2+β21/2の平均値との関係を示す図である。図13より分かるように、コイル径が大きくなるほど(α2+β21/2の平均値は減少する。これは、コイル湾曲の影響によるβ角の変化によるものと考えられる。得られた方向性電磁鋼板における平均二次再結晶粒径を測定したところ、鋼Aでは18mm、鋼Bは11mmであった。コイル径の影響は二次再結晶粒径が大きな鋼Aのほうが大きくなったものと考えられる。
 図14は、コイル径と鉄損W17/50との関係を示す図である。コイル径が大きくなるほど鉄損が改善した。また、図15は、コイル径とRβとの関係を示す図である。コイル径が大きくなるほどRβは減少しており、この結果は、図14に示した鉄損の傾向と対応している。コイル径が大きくなるほど、β角が、鋼板を平坦に保持した状態で二次再結晶焼鈍を行った場合の値に近くなり、その際のβ角の値が0.5°より大きかったためと考えられる。
 本発明は、上記した実験結果に基づいて完成されたものであり、その要旨構成は、以下のとおりである。
1.質量%で、
  C :0.005%以下、
  Si:3.0%以上、4.0%以下、
  Mn:0.05%以上、0.50%以下、
  sol.Al:0.001%以下、
  N :0.0015%以下、
  S :0.0010%以下、および
  Se:0.0010%以下を含有し、
  残部Feおよび不可避不純物からなる成分組成を有し、
 ND回転軸についての理想Goss方位からのずれ角αと、TD回転軸についての理想Goss方位からのずれ角βとから求められるずれ角(α2+β21/2の平均値が5.0°以下であり、
 β≦0.50°である結晶粒の面積率:Rβが20%以下である、方向性電磁鋼板。
2.さらに、RD回転軸についての理想Goss方位からのずれ角γの平均値が3.0°以上7.0°以下である、上記1に記載の方向性電磁鋼板。
3.前記成分組成が、質量%で、
  Sb:0.005%以上、0.1%以下、
  Sn:0.005%以上、0.1%以下、
  P :0.005%以上、0.1%以下、
  Ni:0.005%以上、1.5%以下、
  Cu:0.005%以上、1.5%以下、
  Cr:0.005%以上、0.1%以下、
  Mo:0.005%以上、0.5%以下、
  Ti:0.0005%以上、0.1%以下、
  Nb:0.0005%以上、0.1%以下、
  V :0.0005%以上、0.1%以下、
  B :0.0002%以上、0.0025%以下、
  Bi:0.005%以上、0.1%以下、
  Te:0.0005%以上、0.01%以下、および
  Ta:0.0005%以上、0.01%以下
 からなる群より選択される1または2以上をさらに含有する、上記1または2に記載の方向性電磁鋼板。
4.質量%で、
  C :0.025%以上、0.060%以下、
  Si:3.0%以上、4.0%以下、
  Mn:0.05%以上、0.50%以下、
  sol.Al:0.01%未満、
  N :0.006%未満、および
  S、Se:合計0.010%未満を含み、
  残部Feおよび不可避不純物からなる成分組成を有する鋼スラブを、任意に加熱温度:1300℃以下に加熱し、
 前記鋼スラブに熱間圧延を施して熱延鋼板とし、
 前記熱延鋼板に対して熱延板焼鈍を施し、
 焼鈍された前記熱延鋼板に冷間圧延を施して最終板厚の冷延鋼板とし、
 前記冷延鋼板に一次再結晶焼鈍を施して一次再結晶鋼板とし、
 前記一次再結晶鋼板に焼鈍分離剤を塗布し、
 前記焼鈍分離剤が塗布された一次再結晶鋼板を巻き取ってコイルとし、
 前記コイルに二次再結晶焼鈍を施す、方向性電磁鋼板の製造方法であって、
 前記冷間圧延における最終冷延開始時の、粒子径が1μm以上である炭化物の面積率:RCが0.5%~20.0%であり、
 前記最終冷延開始時における平均結晶粒径:Dが50μm以上、300μm以下であり、
 前記最終冷延における最高温度:Tmaxが150℃以上である、方向性電磁鋼板の製造方法。
5.前記成分組成が、質量%で、
  Sb:0.005%以上、0.1%以下、
  Sn:0.005%以上、0.1%以下、
  P :0.005%以上、0.1%以下、
  Ni:0.005%以上、1.5%以下、
  Cu:0.005%以上、1.5%以下、
  Cr:0.005%以上、0.1%以下、
  Mo:0.005%以上、0.5%以下、
  Ti:0.0005%以上、0.1%以下、
  Nb:0.0005%以上、0.1%以下、
  V :0.0005%以上、0.1%以下、
  B :0.0002%以上、0.0025%以下、
  Bi:0.005%以上、0.1%以下、
  Te:0.0005%以上、0.01%以下、および
  Ta:0.0005%以上、0.01%以下
 からなる群より選択される1または2以上をさらに含有する、上記4に記載の方向性電磁鋼板の製造方法。
6.前記二次再結晶焼鈍時の前記コイルの直径が700mm以上である、上記4または5に記載の方向性電磁鋼板の製造方法。
 本発明によれば、磁気特性に優れる方向性電磁鋼板を得ることができる。また、本発明の方向性電磁鋼板は、コイル焼鈍による二次再結晶方位制御によって製造できるため、生産性に優れている。
鋼Aからなるスラブから得た、焼鈍された熱延鋼板の断面組織の例である。 熱延板焼鈍の冷却時における900~700℃間の滞留時間(t900-700℃)と、焼鈍された熱延鋼板における粒子径が1μm以上である炭化物の面積率(RC)との関係を示す図である。 熱延板焼鈍の冷却時における900~700℃間の滞留時間(t900-700℃)と、磁束密度(B8)との関係を示す図である。 熱延板焼鈍の冷却時における900~700℃間の滞留時間(t900-700℃)と、鉄損(W17/50)との関係を示す図である。 <100>方向からのずれ角である(α2+β21/2の平均値と磁束密度(B8)との関係を示す図である。 <100>方向からのずれ角である(α2+β21/2の平均値と鉄損(W17/50)との関係を示す図である。 熱延板焼鈍の冷却時における900~700℃間の滞留時間(t900-700℃)と、ずれ角βが0.50°以下である二次再結晶粒の面積率(Rβ)との関係を示す図である。 ずれ角βが0.50°以下である二次再結晶粒の面積率(Rβ)と、鉄損(W17/50)との関係を示す図である。 RD回転軸についての理想Goss方位からのずれ角γの平均値と、鉄損(W17/50)との関係を示す図である。 粒子径が1μm以上である炭化物の面積率(RC)と、ずれ角βが0.50°以下である二次再結晶粒の面積率(Rβ)との関係を示す図である。 粒子径が1μm以上である炭化物の面積率(RC)と、RD回転軸についての理想Goss方位からのずれ角γの平均値との関係を示す図である。 コイル径と磁束密度(B8)との関係を示す図である。 コイル径と、<100>方向からのずれ角である(α2+β21/2の平均値との関係を示す図である。 コイル径と鉄損(W17/50)との関係を示す図である。 コイル径と、ずれ角βが0.50°以下である二次再結晶粒の面積率(Rβ)との関係を示す図である。
 以下、本発明の一実施形態による方向性電磁鋼板について説明する。
[方向性電磁鋼板の成分組成]
 まず、方向性電磁鋼板の成分組成の限定理由について述べる。なお、本明細書において、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
C:0.005%以下
 Cは、磁気時効による鉄損劣化の原因となる元素である。そのため、C含有量を0.005%以下とする。Cの含有量は、0.003%以下とすることが好ましく、0.002以下とすることがより好ましく、0.0015%以下とすることがさらに好ましい。一方、C含有量は低ければ低いほどよいため、下限は0%であってよいが、工業的には0%超であってよい。ただし、過度の低減は製造コストの増加を招くため、C含有量を0.0001%以上とすることもでき、0.0005%以上とすることもできる。
Si:3.0%以上、4.0%以下
 Siは、電気抵抗を高めることによって鉄損を改善する効果を有する元素である。前記効果を得るために、Si含有量を3.0%以上とする。Si含有量は3.1%以上とすることが好ましく、3.2%以上とすることがより好ましい。一方、Si含有量が4.0%を超えると二次加工性が著しく低下する。そのため、Si含有量を4.0%以下とする。Si含有量は3.8%以下とすることが好ましく、3.7%以下とすることがより好ましい。
Mn:0.05%以上、0.50%以下
 Mnは、SまたはSeと結合してMnSまたはMnSeを形成し、一次再結晶粒径の安定化を通じて磁気特性を安定化する。また、Mnは製造時における熱間加工性を向上させる効果がある。これらの効果を得るために、Mn含有量を0.05%以上とする。Mn含有量は0.07%以上とすることが好ましく、0.09%以上とすることがより好ましい。一方、Mn含有量が0.50%を超えると、一次再結晶集合組織が悪化して磁気特性が劣化する。そのため、Mn含有量は0.50%以下とする。Mn含有量は0.25%以下とすることが好ましく、0.15%以下とすることがより好ましく、0.10%以下とすることがさらに好ましい。
sol.Al:0.001%以下
 Alは、インヒビター元素である。Alが方向性電磁鋼板に残留すると鉄損が劣化するため、sol.Al(酸可溶性アルミニウム)量を0.001%以下とする。sol.Al量は0.0008%以下とすることが好ましい。一方、sol.Al量は低ければ低いほどよいため、下限は0%であってよいが、工業的には0%超であってよい。ただし、過度の低減は製造コストの増大を招く場合があるため、sol.Al量を0.0001%以上とすることもできる。
N:0.0015%以下
 Nは、Alと同様にインヒビター元素である。Nが方向性電磁鋼板に残留すると鉄損が劣化するため、N含有量は0.0015%以下とする。N含有量は0.0010%以下とすることが好ましく、0.0008%以下とすることがより好ましい。一方、N含有量は低ければ低いほどよいため、下限は0%であってよいが、工業的には0%超であってよい。ただし、過度の低減は製造コストの増加を招く場合があるため、N含有量を0.00001%以上とすることもでき、0.00005%以上とすることもでき、0.0001%以上とすることもできる。
S:0.0010%以下
 Sは、インヒビター元素である。Sが方向性電磁鋼板に残留すると鉄損が劣化するため、S含有量は0.0010%以下とする。S含有量は0.0008%以下とすることがより好ましい。一方、S含有量は低ければ低いほどよいため、下限は0%であってよいが、工業的には0%超であってよい。ただし、過度の低減は製造コストの増加を招く場合があるため、S含有量を0.00001%以上とすることもでき、0.00005%以上とすることもでき、0.0001%以上とすることもできる。
Se:0.0010%以下
 Seは、Sと同様にインヒビター元素である。Seが方向性電磁鋼板に残留すると鉄損が劣化するため、Se含有量は0.0010%以下とする。Se含有量は0.0005%以下とすることがより好ましく、0.0002%以下とすることがより好ましい。一方、Se含有量は低ければ低いほどよいため、下限は0%であってよいが、工業的には0%超であってよい。ただし、過度の低減は製造コストの増加を招く場合があるため、Se含有量を0.00001%以上とすることもでき、0.00005%以上とすることもでき、0.0001%以上とすることもできる。
 本発明の一実施形態における方向性電磁鋼板は、以上の成分と、残部のFeおよび不可避不純物とからなる成分組成を有する。
 本発明の鋼板は、上記した成分を基本組成とするが、よりすぐれた磁気特性を得るために、上記成分組成は、さらに以下の成分を任意に含有することができる。
 Sb:0.005%以上、0.1%以下
 Sn:0.005%以上、0.1%以下
 P :0.005%以上、0.1%以下
 Ni:0.005%以上、1.5%以下、
 Cu:0.005%以上、1.5%以下、
 Cr:0.005%以上、0.1%以下、
 Mo:0.005%以上、0.5%以下、
 Ti:0.0005%以上、0.1%以下、
 Nb:0.0005%以上、0.1%以下、
 V :0.0005%以上、0.1%以下、
 B :0.0002%以上、0.0025%以下、
 Bi:0.005%以上、0.1%以下、
 Te:0.0005%以上、0.01%以下、および
 Ta:0.0005%以上、0.01%以下
 からなる群より選択される1または2以上。
Sb:0.005%以上、0.1%以下
 Sbは、粒界偏析元素であり、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる効果を有する。Sbを添加する場合、前記効果を得るためにSb含有量を0.005%以上とする。Sb含有量は0.010%以上とすることが好ましく、0.020%以上とすることがより好ましい。一方、Sb含有量が0.1%を超えると冷間圧延性が劣化する。そのため、Sbを添加する場合、Sb含有量を0.1%以下とする。Sb含有量は0.08%以下とすることが好ましく、0.07%以下とすることがより好ましい。
Sn:0.005%以上、0.1%以下
 Snも、Sbと同様、粒界偏析元素であり、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる効果を有する。Snを添加する場合、前記効果を得るためにSn含有量を0.005%以上とする。Sn含有量は0.01%以上とすることが好ましい。一方、Sn含有量が0.1%を超えると冷間圧延性が低下する。そのため、Snを添加する場合、Sn含有量を0.1%以下とする。Sn含有量は、0.07%以下とすることが好ましく、0.06%以下とすることがより好ましい。
P:0.005%以上、0.1%以下
 Pは、一次再結晶集合組織を改善し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる効果を有する。Pを含有させる場合、前記効果を得るためにP含有量を0.005%以上とする。P含有量は0.01%以上とすることが好ましく、0.03%以上とすることがより好ましく、0.05%以上とすることがさらに好ましい。一方、P含有量が0.1%を超えると冷間圧延性が低下する。そのため、Pを添加する場合、P含有量を0.1%以下とする。
Ni:0.005%以上、1.5%以下、
 Niは、熱延板組織の均一性を高めることにより、磁気特性を改善する効果を有する元素である。Niを添加する場合、前記効果を得るためにNi含有量を0.005%以上とする。一方、Ni含有量が1.5%を超えると二次再結晶が困難となり、磁気特性が劣化する。そのため、Niを添加する場合、Ni含有量を1.5%以下とする。
Cu:0.005%以上、1.5%以下、
 Cuは、二次再結晶焼鈍中の鋼板の酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる効果を有する。Cuを添加する場合、前記効果を得るためにCu含有量を0.005%以上とする。一方、Cu含有量が1.5%を超えると熱間圧延性が低下する。そのため、Cuを添加する場合、Cu含有量を1.5%以下とする。
Cr:0.005%以上、0.1%以下、
 Crは、フォルステライト下地被膜の形成を安定化させる効果を有する元素である。Crを添加する場合、前記効果を得るためにCr含有量を0.005%以上とする。一方、Cr含有量が0.1%を超えると、二次再結晶が困難となり、磁気特性が劣化する。そのため、Crを添加する場合、Cr含有量を0.1%以下とする。
Mo:0.005%以上、0.5%以下、
 Moは、高温酸化を抑制し、へゲ(scab)と呼ばれる表面欠陥の発生を減少させる効果を有する元素である。Moを添加する場合、前記効果を得るためにMo含有量を0.005%以上とする。一方、Mo含有量が0.5%を超えると冷間圧延性が低下する。そのため、Moを添加する場合、Mo含有量を0.5%以下とする。
Ti:0.0005%以上、0.1%以下、
 Tiは、一次再結晶粒の成長を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる効果を有する。Tiを添加する場合、前記効果を得るためにTi含有量を0.0005%以上とする。一方、Ti含有量が0.1%を超えると、Tiが地鉄中に残留して鉄損を劣化させる。そのため、Tiを添加する場合、Ti含有量を0.1%以下とする。
Nb:0.0005%以上、0.1%以下、
 Nbは、一次再結晶粒の成長を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる効果を有する。Nbを添加する場合、前記効果を得るためにNb含有量を0.0005%以上とする。一方、Nb含有量が0.1%を超えると、Nbが地鉄中に残留して鉄損を劣化させる。そのため、Nbを添加する場合、Nb含有量を0.1%以下とする。
V:0.0005%以上、0.1%以下、
 Vは、一次再結晶粒の成長を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる効果を有する。Vを添加する場合、前記効果を得るためにV含有量を0.0005%以上とする。一方、V含有量が0.1%を超えると、Vが地鉄中に残留して鉄損を劣化させる。そのため、Vを添加する場合、V含有量を0.1%以下とする。
B:0.0002%以上、0.0025%以下、
 Bは、一次再結晶粒の成長を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる効果を有する。Bを添加する場合、前記効果を得るためにB含有量を0.0002%以上とする。一方、B含有量が0.0025%を超えると、Bが地鉄中に残留して鉄損を劣化させる。そのため、Bを添加する場合、B含有量を0.0025%以下とする。
Bi:0.005%以上、0.1%以下、
 Biは、粒界に偏析して一次再結晶粒の成長を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる効果を有する。Biを添加する場合、前記効果を得るためにBi含有量を0.005%以上とする。一方、Bi含有量が0.1%を超えると、Biが地鉄中に残留して鉄損を劣化させる。そのため、Biを添加する場合、Bi含有量を0.1%以下とする。
Te:0.0005%以上、0.01%以下
 Teは、粒界に偏析して一次再結晶粒の成長を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる効果を有する。Teを添加する場合、前記効果を得るためにTe含有量を0.0005%以上とする。一方、Te含有量が0.01%を超えると、Teが地鉄中に残留して鉄損を劣化させる。そのため、Teを添加する場合、Te含有量を0.01%以下とする。
Ta:0.0005%以上0.01%以下
 Taは、一次再結晶粒の成長を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる効果を有する。Taを添加する場合、前記効果を得るためにTa含有量を0.0005%以上とする。一方、Ta含有量が0.01%を超えると、Taが地鉄中に残留して鉄損を劣化させる。そのため、Taを添加する場合、Ta含有量を0.01%以下とする。
 本発明の一実施形態における方向性電磁鋼板は、質量%で、
  C :0.005%以下、
  Si:3.0%以上、4.0%以下、
  Mn:0.05%以上、0.50%以下、
  sol.Al:0.001%以下、
  N :0.0015%以下、
  S :0.0010%以下、
  Se:0.0010%以下、
 ならびに、任意に、
  Sb:0.005%以上、0.1%以下、
  Sn:0.005%以上、0.1%以下、
  P :0.005%以上、0.1%以下、
  Ni:0.005%以上、1.5%以下、
  Cu:0.005%以上、1.5%以下、
  Cr:0.005%以上、0.1%以下、
  Mo:0.005%以上、0.5%以下、
  Ti:0.0005%以上、0.1%以下、
  Nb:0.0005%以上、0.1%以下、
  V :0.0005%以上、0.1%以下、
  B :0.0002%以上、0.0025%以下、
  Bi:0.005%以上、0.1%以下、
  Te:0.0005%以上、0.01%以下、および
  Ta:0.0005%以上、0.01%以下
 からなる群より選択される1または2以上、を含有し、
  残部Feおよび不可避不純物からなる成分組成を有することができる。
[二次再結晶粒の方位]
 次に、二次再結晶粒の方位の限定理由について説明する。なお、二次再結晶粒方位の測定には、X線ラウエ法やElectron Back Scatter Difraction(EBSD)法などを用いることができ、X線ラウエ法による測定は、例えば、特開2005-121372号公報に記載されている方法で行うことができる。具体的な測定方法としては、実施例に記載した方法を用いることができる。
・(α2+β21/2の平均値:5.0°以下
・Rβ≦20%
 本発明の方向性電磁鋼板は、次の(a)および(b)の両方の条件を満たす。
(a)ND回転軸についての理想Goss方位からのずれ角αと、TD回転軸についての理想Goss方位からのずれ角βとから求められるずれ角(α2+β21/2の平均値が5.0°以下。
(b)β≦0.50°である結晶粒の面積率:Rβが20%以下。
 二次再結晶粒の方位が上記(a)および(b)の条件を満たすことにより、上述したように良好な磁気特性を得ることができる。なお、前記(α2+β21/2の平均値の下限は特に限定されないが、β≦0.5°の面積率が増加しすぎないように、(α2+β21/2の平均値を0.5°以上とすることが好ましい。同様に、前記Rβの下限も特に限定されないが、ある程度の微細粒の含有は不可避であるため、Rβは1%以上であってよい。
 なお、(α2+β21/2の平均値は、鋼板の複数の測定位置でα角およびβ角を測定し、得られたα、βから計算される(α2+β21/2の値を、すべての測定位置について平均することによって求めることができる。具体的な測定条件は、実施例に記載したとおりとすることができる。
・平均γ角:3.0°以上7.0°以下
 RD回転軸についての理想Goss方位からのずれ角γの平均値(平均γ角)を3.0°以上7.0°以下とすることにより、上述したように鉄損をさらに低減することができる。なお、平均γ角は、鋼板の複数の測定位置でγ角を測定し、得られた値をすべての測定位置について平均することによって求めることができる。具体的な測定条件は、実施例に記載したとおりとすることができる。
 次に、本発明の一実施形態による方向性電磁鋼板の製造方法について説明する。
[鋼スラブの成分組成]
 まず、鋼スラブの成分組成の限定理由について述べる。なお、方向性電磁鋼板の製造過程において鋼は脱炭や純化を受けるため、鋼スラブの成分組成と、該鋼スラブを用いて製造される方向性電磁鋼板の成分組成は異なる。以下の説明においても、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
C:0.025%以上、0.060%以下
 Cは、一次再結晶集合組織を改善する上で有用な元素である。C含有量が0.025%に満たないと、γ(オーステナイト)変態量が減少する。γ変態量が減少すると、γ相に起因する、粒子径が1μm以上である炭化物の面積率:RCを十分に確保することができず、上述した望ましい二次再結晶粒方位を得ることができない。そのため、C含有量を0.025%以上とする。磁気特性の観点からは、C含有量は0.030%以上とすることが好ましい。一方、C含有量が0.060%を超えるとγ変態量が多すぎ、RCが高くなりすぎて、望ましい二次再結晶粒方位を得ることができない。そのため、C含有量を0.060%以下とする。磁気特性の観点からは、C含有量を0.050%以下とすることが好ましい。
Si:3.0%以上、4.0%以下
 Siは、電気抵抗を高めることによって鉄損を改善する効果を有する元素である。前記効果を得るために、Si含有量を3.0%以上とする。Si含有量は3.1%以上とすることが好ましく、3.2%以上とすることがより好ましい。一方、Si含有量が4.0%を超えると二次加工性が著しく劣化する。そのため、Si含有量は4.0%以下とする。Si含有量は3.8%以下とすることが好ましく、3.7%以下とすることがより好ましい。
Mn:0.05%以上、0.50%以下
 Mnは、SまたはSeと結合してMnSまたはMnSeを形成し、一次再結晶粒径の安定化を通じて磁気特性を安定化する効果を有する。また、Mnは製造時における熱間加工性を向上させる効果がある。これらの効果を得るために、Mn含有量を0.05%以上とする。Mn含有量は0.07%以上とすることが好ましく、0.09%以上とすることがより好ましい。一方、Mn含有量が0.50%を超えると、一次再結晶集合組織が悪化して磁気特性が劣化する。そのため、Mn含有量は0.50%以下とする。Mn含有量は0.25%以下とすることが好ましく、0.15%以下とすることがより好ましく、0.10%以下とすることがさらに好ましい。
sol.Al:0.01%未満
 Alが過剰に存在すると二次再結晶が困難となる。特に、sol.Alの含有量が0.01%以上であると最終冷延前における平均結晶粒径が小さくなり、望ましい二次再結晶粒方位を得ることができない。また、低温スラブ加熱の条件では二次再結晶し難くなり、磁気特性が劣化する。そのため、Al含有量を、sol.Al量で0.01%未満とする。一方、sol.Al量は低ければ低いほどよいため、下限は0%であってよいが、工業的には0%超であってよい。ただし、過度の低減は製造コストの増大を招く場合があるため、sol.Al量を0.0001%以上とすることもできる。
N:0.006%未満
 Nもまた、過剰に存在すると、二次再結晶を困難にする。特に、N含有量が0.006%以上になると、二次再結晶が生じ難くなり、磁気特性が劣化する。そのため、N含有量を0.006%未満とする。一方、N含有量は低ければ低いほどよいため、下限は0%であってよいが、工業的には0%超であってよい。ただし、過度の低減は製造コストの増加を招く場合があるため、N含有量を0.00001%以上とすることもでき、0.00005%以上とすることもでき、0.0001%以上とすることもできる。
S、Se:合計0.010%未満
 S、Seもまた、過剰に存在すると、二次再結晶を困難にする。特にS、Seの含有量が合計で0.010%以上であると、二次再結晶が生じ難くなり、磁気特性が劣化する。そのため、SおよびSeの含有量を、合計で0.010%未満とする。一方、SおよびSeの合計含有量は低ければ低いほどよいため、下限は0%であってよいが、工業的には0%超であってよい。ただし、過度の低減は製造コストの増加を招く場合があるため、SおよびSeの合計含有量を0.00001%以上とすることもでき、0.00005%以上とすることもでき、0.0001%以上とすることもできる。
 なお、S含有量は0.009%以下とすることが好ましい。Se含有量は0.001%以下とすることが好ましい。
 本発明の一実施形態における鋼スラブは、以上の成分と、残部のFeおよび不可避不純物とからなる成分組成を有する。
 本発明において用いられる鋼スラブは、上記した成分を基本組成とするが、よりすぐれた磁気特性を得るために、上記成分組成は、さらに以下の成分を任意に含有することができる。
 Sb:0.005%以上、0.1%以下
 Sn:0.005%以上、0.1%以下
 P :0.005%以上、0.1%以下
 Ni:0.005%以上、1.5%以下、
 Cu:0.005%以上、1.5%以下、
 Cr:0.005%以上、0.1%以下、
 Mo:0.005%以上、0.5%以下、
 Ti:0.0005%以上、0.1%以下、
 Nb:0.0005%以上、0.1%以下、
 V :0.0005%以上、0.1%以下、
 B :0.0002%以上、0.0025%以下、
 Bi:0.005%以上、0.1%以下、
 Te:0.0005%以上、0.01%以下、および
 Ta:0.0005%以上、0.01%以下
 からなる群より選択される1または2以上。
 上記各元素の含有量の限定理由は、上述した方向性電磁鋼板における各元素の含有量の限定理由と同様である。
 本発明の一実施形態における方向性電磁鋼板の製造方法においては、上記成分組成を有する鋼スラブに対して、以下の処理が順次施される。
・加熱(任意)、
・熱間圧延、
・熱延板焼鈍、
・冷間圧延、
・一次再結晶焼鈍、
・焼鈍分離剤の塗布、
・巻き取り、および
・二次再結晶焼鈍。
 なお、本発明の目的が妨げられない限りにおいて、上記以外の他の処理を、上記工程の前、途中、または後に、さらに施すこともできる。以下、上記各工程について、具体的に説明する。
[加熱]
 熱間圧延に先立って、上記の成分組成を有する鋼スラブを、任意に加熱温度まで加熱することができる。加熱を行う場合、熱間圧延において生成するスケール量を低減するために、前記加熱温度を1300℃以下とする。また、結晶組織の微細化の観点、および不可避的に混入するインヒビター成分を無害化して均一な一次再結晶組織を実現する観点からも、前記加熱温度を低くすることが望ましい。一方、前記加熱温度の下限は特に限定されないが、圧延荷重の上昇を抑えるという観点からは、前記加熱温度を1050℃以上とすることが好ましい。
 なお、上記加熱を行わない場合は、鋳造後、鋼スラブを再加熱することなく直ちに熱間圧延に供することができる。
[熱間圧延]
 次に、鋼スラブに熱間圧延を施して熱延鋼板とする。上記加熱を行った場合には、加熱された鋼スラブに熱間圧延を施す。熱間圧延の条件は特に限定されず、任意の条件で行うことができる。しかし、仕上温度(finisher delivery temperature)が750℃未満であると、圧延荷重が上昇して圧延が困難となる場合がある。そのため、前記熱間圧延における仕上温度は750℃以上とすることが好ましい。一方、仕上温度が950℃を超えるとスケール生成量が増加し、冷間圧延の前に酸洗などによってスケールを除去することが困難となる場合がある。そのため、熱間圧延の仕上温度は950℃以下とすることが好ましい。
[熱延板焼鈍]
 次いで、上記熱延鋼板に対して熱延板焼鈍を施す。前記熱延板焼鈍の条件は、特に限定されず、任意の条件とすることができる。しかし、熱延板焼鈍温度が900℃未満であると、熱間圧延時のバンド組織が残留し、粒子サイズが均一な一次再結晶組織を実現することが困難になる。そしてその結果、二次再結晶の発達が阻害される場合がある。そのため、最終的に得られる方向性電磁鋼板においてGoss組織を高度に発達させるためには、熱延板焼鈍温度は900℃以上とすることが好ましい。一方、熱延板焼鈍温度が1120℃を超えると、粒子が粗大化し、その結果、粒子サイズが均一な一次再結晶組織を得ることが困難となる場合がある。そのため、最終的に得られる方向性電磁鋼板においてGoss組織を高度に発達させるためには、熱延板焼鈍温度を1120℃以下とすることが好ましい。また、前記熱延板焼鈍における焼鈍時間は、10秒~10分程度とすることが好ましい。
[冷間圧延]
 上記熱延板焼鈍後、焼鈍された熱延鋼板に冷間圧延を施して冷延鋼板とする。前記冷間圧延は、任意の方法で行うことができる。冷間圧延は、1回のみ行うこともできるが、中間焼鈍(intermediate annealing)を挟んで2回以上行うこともできる。
 冷間圧延の間に中間焼鈍を行う場合、中間焼鈍温度は900℃以上、1120℃以下とすることが好ましい。中間焼鈍温度が900℃未満であると、熱間圧延時のバンド組織が残留し、粒子サイズが均一な一次再結晶組織を実現することが困難になる結果、二次再結晶の発達が阻害される場合がある。一方、中間焼鈍温度が1120℃を超えると、粒子が粗大化し、その結果、粒子サイズが均一な一次再結晶組織を得ることが困難となる場合がある。また、中間焼鈍時間は、10秒~10分程度とすることが好ましい。
・RC:0.5%~20.0%
 本発明では、前記冷間圧延における最終冷延開始時の、粒子径が1μm以上である炭化物の面積率:RCを0.5%~20.0%とする必要がある。RCが前記条件を満たさない場合、一次再結晶集合組織が変化し、最終的に得られる方向性電磁鋼板において、上述した二次再結晶粒方位を実現することができない。ここで、「最終冷延」とは、冷間圧延を1回だけ行う場合には、その冷間圧延を指す。また、中間焼鈍を挟んで2回以上の冷間圧延を行う場合には、最後の中間焼鈍の後に行われる冷間圧延を「最終冷延」とする。
 RCを0.5%~20.0%とするためには、使用される鋼スラブにおけるC含有量を上記範囲とするとともに、最終冷延前の焼鈍における900~700℃間での滞留時間を調整すればよい。前記滞留時間を長くするとγ相からα相への変態が促進され、その結果、Rcを低下させることができる。また、鋼板のC含有量によりγ相の総量が変化するので、C含有量が多い場合には、前記滞留時間を長くすればよい。このように、C含有量と前記滞留時間を調整することにより、RCを0.5%~20.0%とすることができる。
 なお、最終冷延前の焼鈍における900~700℃間での滞留時間(t900-700℃)は、特に限定されず、RCが0.5%~20.0%となるように調整すれば良い。C含有量にもよるが、一般的な条件では、t900-700℃を6sec以上とすることが好ましく、10sec以上とすることが好ましい。また、t900-700℃を200sec以下とすることが好ましく、180sec以下とすることが好ましい。ここで、「最終冷延前の焼鈍」とは、冷間圧延を1回だけ行う場合には、その冷間圧延の前の熱延板焼鈍を指す。また、中間焼鈍を挟んで2回以上の冷間圧延を行う場合には、最後に行われる中間焼鈍を「最終冷延前の焼鈍」とする。
 RCを0.5%~20.0%とすることで、二次再結晶粒方位を良好な範囲に制御できる理由については、必ずしも明らかでないが、次のように考えられる。最終冷延開始時における粒子径1μm以上の粗大炭化物は、熱間圧延時にはγ相であったものと推定され、最終冷延前の焼鈍における再結晶時に、熱延に起因するバンド組織の破壊に有利に作用すると考えられる。また、粒子径1μm以上である粗大炭化物は、ほぼ再結晶粒界のみに存在し、結晶粒内には存在しない。最終冷延では、再結晶粒内では変形帯が生成し、{411}<148>方位を有する一次再結晶核を生成することが知られている。粒子径1μm以上の粗大炭化物は硬質であるため、最終冷間圧延時に該粗大炭化物の周囲に圧延ひずみが蓄積する。その結果、前記粗大炭化物は再結晶核サイトとなるが、方位がランダム化することが知られている。この時、粗大炭化物の析出サイトとしては、結晶粒界が優先的に選択されるため、Rcが低い場合には粗大炭化物が結晶粒界のみに存在する。しかし、Rcが高くなると結晶粒界のみでは析出総量をまかなえなくなるため、粒内にも粗大炭化物が析出する。したがって、Rcの値を低くすることによって粒内に析出する粗大炭化物の量を低減することができる。
 上記のように粗大炭化物が粒内に生成しないように制御することにより、{411}<148>方位を有する一次再結晶核の生成割合が増加し、その結果、最終的に得られる二次再結晶粒の方位を上述した範囲に制御できるものと推定される。RCが0.5%未満であると、熱延バンド組織の破壊が不十分なため、良好な二次再結晶粒方位を得ることができない。また、RCが20%を超えると、最終冷延前の焼鈍における再結晶粒内に存在する粗大炭化物が増加する結果、一次再結晶組織がランダム化し、{411}<148>方位を有する一次再結晶核の生成が減少するので、良好な二次再結晶粒方位を得ることができない。
・D:50μm以上、300μm以下
・Tmax:150℃以上
 上記冷間圧延においては、前記最終冷延開始時の鋼板における平均結晶粒径(D)を50μm以上、300μm以下とする。また、前記最終冷延における最高温度(Tmax)を150℃以上とする。言い換えれば、前記最終冷延における少なくとも1パスの温度(T)を150℃以上とする。DおよびTmaxを前記範囲とすることにより、{411}<148>方位を有する一次再結晶核の生成割合を高めて、良好な二次再結晶粒方位を得ることができる。Dは、90μm以上とすることが好ましく、110μm以上とすることがより好ましい。また、Dは、250μm以下とすることが好ましく、200μm以下とすることがより好ましい。Tmaxは、180℃以上とすることが好ましく、200℃以上とすることがより好ましい。一方、Tmaxの上限は特に限定されないが、圧延荷重の過度の上昇を抑えるという観点からは、250℃以下とすることが好ましい。
[一次再結晶焼鈍]
 上記冷間圧延の後、得られた冷延鋼板に一次再結晶焼鈍を施す。この一次再結晶焼鈍の目的は、圧延組織を有する冷延鋼板を一次再結晶させて、二次再結晶に最適な一次再結晶粒径に調整することである。一次再結晶焼鈍の条件は特に限定されず、任意の条件で行うことができる。しかし、前記目的をより確実に達成するという観点からは、一次再結晶焼鈍の焼鈍温度を800℃以上、950℃未満程度とすることが好ましい。一次再結晶焼鈍の際の焼鈍雰囲気は、特に限定されず、任意の雰囲気とすることができる。また、前記一次再結晶焼鈍は、脱炭焼鈍を兼ねることもできる。脱炭焼鈍を兼ねる一次再結晶焼鈍を行う場合には、例えば、湿水素-窒素(wet hydrogen-nitrogen)雰囲気や湿水素-アルゴン(wet hydrogen-argon)雰囲気を用いることができる。
 前記一次再結晶焼鈍における昇温速度は、特に限定されず、任意の値とすることができるが、500~700℃の温度域における平均昇温速度を50℃/sec以上とすることが好ましい。前記平均昇温速度を50℃/sec以上とすることにより、{411}<148>方位を有する一次再結晶核の生成割合を高め、その結果として、より良好な二次再結晶粒方位を得ることができる。なお、前記平均昇温速度の上限は特に限定されないが、平均昇温速度を過度に高くすると加熱に用いるエネルギー(電力など)の増大が問題となるため、前記平均昇温速度は500℃/sec以下とすることが好ましく、400℃/sec以下とすることがより好ましく、300℃/sec以下とすることがさらに好ましい。
[焼鈍分離剤の塗布]
 上記一次再結晶焼鈍の後、二次再結晶焼鈍前に、鋼板表面に焼鈍分離剤を塗布する。前記焼鈍分離剤の組成は特に限定されず、任意の組成の焼鈍分離剤を用いることができるが、通常は、主成分として酸化物を含有する焼鈍分離剤が用いられる。二次再結晶焼鈍後の鋼板表面にフォルステライト被膜を形成する場合には、前記酸化物としてMgOが使用される。フォルステライト被膜を形成する必要がない場合には、前記酸化物として、二次再結晶焼鈍温度よりも高い融点を有する任意の酸化物を用いることができる。二次再結晶焼鈍温度よりも高い融点を有する前記酸化物としては、例えば、Al23やCaOが挙げられる。焼鈍分離剤における、前記主成分としての酸化物の含有量の下限は特に限定されないが、50質量%以上とすることが好ましく、70質量%以上とすることがより好ましい。前記酸化物含有量の上限についても特に限定されず、100質量%以下とすることができるが、95質量%以下であってもよい。前記焼鈍分離剤は、前記主成分としての酸化物に加えて、さらに他の任意の成分、例えば、TiO2などを含有することができる。
 さらに、前記焼鈍分離剤は、添加剤として、硫化物、硫酸塩、セレン化物、およびセレン酸塩からなる群より選択される1または2以上を含有することができる。前記添加剤は、二次再結晶焼鈍中、例えば、700℃程度の温度で分解し、インヒビター元素であるSやSeを鋼板中へ供給する。そのため、前記添加剤を用いることによって二次再結晶焼鈍における正常粒成長の抑制力を高め、方向性電磁鋼板の磁気特性をさらに向上させることができる。この効果は、前記添加剤の量が比較的少量であっても得られるため、焼鈍分離剤における前記添加剤の量は特に限定されない。しかし、十分な磁気特性向上効果を得るという観点からは、前記添加剤の含有量を、前記主成分としての酸化物(MgO):100質量部に対して、1質量部以上とすることが好ましい。一方、前記添加剤が多すぎると、酸化性が高くなりすぎる。酸化性が高すぎると、フォルステライト被膜が過剰に厚くなり、その結果、形成されたフォルステライト被膜の曲げ剥離特性が低下する。そのため、前記添加剤の含有量を、前記主成分としての酸化物(MgO):100質量部に対して、30質量部以下とすることが好ましい。
[巻き取り]
 次に、焼鈍分離剤が塗布された鋼板を巻き取ってコイルとする。コイルへの巻き取りは、常法にしたがって行うことができる。前記コイルの直径の下限は特に限定されず、任意の値とすることができるが、700mm以上とすることが好ましい。コイルの直径が700mm以上であれば、コイルの湾曲に起因する二次再結晶粒方位の劣化を低減し、さらに良好な二次再結晶粒方位を得ることができる。前記コイルの直径は、900mm以上とすることがより好ましく、1100mm以上とすることがさらに好ましい。一方、コイル直径の上限は特に限定されないが、過度にコイル直径を大きくするとハンドリングが困難となるため、前記コイルの直径は4000mm以下とすることが好ましく、3000mm以下とすることがより好ましく、2000mm以下とすることがさらに好ましい。
[二次再結晶焼鈍]
 次に、上記コイルに二次再結晶焼鈍を施す。二次再結晶焼鈍の条件は特に限定されず、常法に従って行うことができる。二次再結晶を完了させるという観点からは、前記二次再結晶焼鈍における800℃以上900℃以下の温度域での平均昇温速度を5℃/時間以下とすることが好ましい。
 また、前記二次再結晶焼鈍は、純化焼鈍を兼ねることができる。純化焼鈍を兼ねる二次再結晶焼鈍を行う場合、純化温度は1180℃より高くすることが好ましい。純化焼鈍の際の雰囲気はH2ガス含有雰囲気とすることが好ましく、H2を10体積%以上含有する雰囲気とすることがより好ましい。前記条件で純化焼鈍を行うことにより、極微量でも磁気特性を低下させる特性を有するCおよびNに加え、Al、S、Seといった成分の徹底した純化が可能となる。純化時間は特に制限されるものではないが、通常、2~20時間程度である。
 なお、MgOを含有する焼鈍分離剤を使用した場合、二次再結晶焼鈍後の方向性電磁鋼板表面には、フォルステライト被膜が形成されている。
[絶縁被膜]
 上記二次再結晶焼鈍の後、得られた方向性電磁鋼板の表面に絶縁被膜を形成することもできる。前記絶縁被膜は、二次再結晶焼鈍されたコイル状の方向性電磁鋼板を巻き戻し、該方向性電磁鋼板の表面に絶縁被膜形成用の処理液を塗布し、次いで焼き付けることによって形成できる。前記絶縁被膜としては、特に限定されず、任意の絶縁被膜を用いることができる。前記処理液としては、例えば、リン酸塩、クロム酸塩、およびコロイダルシリカを含有する塗布液を用いることができる。また、前記焼き付けは、例えば、800℃程度で行うことができる。
[平坦化焼鈍]
 さらに、平坦化焼鈍を行って、方向性電磁鋼板の形状を整えることもできる。前記平坦化焼鈍は、上記絶縁被膜の焼き付け処理を兼ねることもできる。
 上記以外の製造条件は、方向性電磁鋼板の一般的な製造方法に従えばよい。
 次に、実施例に基づいて本発明を具体的に説明する。以下の実施例は、本発明の好適な一例を示すものであり、本発明は、該実施例によって何ら限定されるものではない。本発明の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、そのような態様も本発明の技術的範囲に含まれる。
(実施例1)
 以下の成分組成を有する複数の鋼スラブを用いて、方向性電磁鋼板を製造した。
・鋼スラブの成分組成
 質量%で、
 C :0.038%、
 Si:3.4%、
 Mn:0.12%、
 Sb:0.06%、
 P :0.06%、
 sol.Al:0.007%、
 N :0.004%、
 S :0.003%、
 Se:0.0001%、
 残部Feおよび不可避不純物からなる成分組成。
 前記方向性電磁鋼板の製造は、以下の手順で行った。まず、前記鋼スラブを1250℃に再加熱した後、熱間圧延して板厚2.4mmの熱延鋼板とした。次いで、前記熱延鋼板に対して、熱延板焼鈍を施した。前記熱延板焼鈍においては、熱延鋼板を、表1に示す均熱温度で30秒間保持した。また、前記熱延板焼鈍における、冷却時の900~700℃間における滞留時間(t900-700℃)は表1に示した通りとした。700℃以下の温度域では、冷却速度:40℃/secで急冷した。
 次に、焼鈍された前記熱延鋼板に表1に示される最高温度(Tmax)での冷間圧延を施して、最終板厚:0.23mmの冷延鋼板とした。次いで、前記冷延鋼板に、脱炭を兼ねる一次再結晶焼鈍を施して一次再結晶鋼板を得た。前記一次再結晶焼鈍の条件は次の通りとした。500℃から700℃の間の昇温速度:150℃/sec、焼鈍温度:850℃、焼鈍時間:120秒、焼鈍雰囲気:H2:55%、N2:45%、露点:55℃。
 上記一次再結晶焼鈍の後、MgOを主成分として含有する焼鈍分離剤を、前記一次再結晶鋼板の表面に、12.5g/m2塗布した。前記焼鈍分離剤を乾燥させた後、該焼鈍分離剤が塗布された一次再結晶鋼板を巻き取ってコイルとした。前記コイルは、内径:500mm、外径:1500mmとした。
 その後、前記コイル状に巻かれた鋼板に、純化焼鈍を兼ねる二次再結晶焼鈍を施した。前記二次再結晶焼鈍における温度履歴は以下の通りとした。
・15℃/hで800℃まで昇温、
・800℃から880℃の間、2.0℃/hで昇温、
・880℃で50時間保持、
・1160℃まで5.0℃/hで昇温、
・1160℃で5h均熱。
前記二次再結晶焼鈍における雰囲気ガスとしては、880℃までの温度域ではN2ガスを、880℃以上の温度域ではH2を使用した。
 得られた二次再結晶焼鈍板の表面に、リン酸塩、クロム酸塩、およびコロイダルシリカを、質量比で3:1:3の割合で含有する処理液を塗布し、平坦化焼鈍を実施した。
 上記製造工程の途中、最終冷延開始時における粒子径が1μm以上である炭化物の面積率:RC、および最終冷延開始時における平均結晶粒径:Dを、以下の方法で測定した。測定結果は表1に示した通りである。
[炭化物面積率:RC
 鋼板の板幅方向中心位置における断面組織を光学顕微鏡あるいは走査型電子顕微鏡で撮影し、画像処理により全板厚における粒子径が1μm以上である炭化物の面積率(RC)を測定した。測定領域の圧延方向における長さは、板厚以上とした。
[平均結晶粒径:D]
 鋼板の板幅方向中心位置における断面組織を光学顕微鏡あるいは走査型電子顕微鏡で撮影して、計数または画像処理により全板厚における結晶の円相当径の平均値を求め、平均結晶粒径(D)とした。なお、平均値を算出するための結晶粒数は100個以上とした。
 上記平坦化焼鈍を行った後、得られたコイルの板幅方向中心、コイル径1000mmに相当する位置からサンプルを採取し、鉄損W17/50、および磁束密度B8を測定した。さらに、X線ラウエ法を用いて、前記サンプルにおける720mm×280mmの測定領域における二次再結晶粒方位を5mmピッチで測定し、<100>方向からのずれ角である(α2+β21/2の平均値、β≦0.50°である結晶粒の面積率:Rβ、およびずれ角γの平均値(平均γ角)を求めた。測定結果は表1に示した通りである。
 さらに、最終的に得られた方向性電磁鋼板の成分組成を化学分析した結果を表2に示す。
 表1、2に示した結果から分かるように、本発明の条件を満たす方向性電磁鋼板は、いずれも良好な磁気特性を有することに加え、生産性に優れるコイル焼鈍での製造が可能であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(実施例2)
 以下の成分組成を有する複数の鋼スラブを用いて、方向性電磁鋼板を製造した。
・鋼スラブの成分組成
 質量%で、
 C :0.030%、
 Si:3.5%、
 Mn:0.10%、
 Sb:0.07%、
 P :0.07%、
 Mo:0.03%、
 sol.Al:0.007%、
 N :0.0042%、
 S :0.0025%、
 Se:0.0001%、
 残部Feおよび不可避不純物からなる成分組成。
 前記方向性電磁鋼板の製造は、以下の手順で行った。まず、前記鋼スラブを1220℃に再加熱した後、熱間圧延して板厚2.8mmの熱延鋼板とした。次いで、前記熱延鋼板に対して、熱延板焼鈍を施した。前記熱延板焼鈍においては、熱延鋼板を、均熱温度:1000℃で30秒間保持した。
 次いで、焼鈍された熱延鋼板に対して、80℃での冷間圧延を施して、2.2mmの中間板厚とした。
 前記冷間圧延の後、中間焼鈍を行った。前記中間焼鈍においては、鋼板を、表1に示す均熱温度で60秒間保持した。また、前記中間焼鈍における、冷却時の900~700℃間における滞留時間(t900-700℃)は表2に示した通りとした。700℃以下の温度域では、冷却速度:50℃/secで急冷を行った。
 次に、中間焼鈍された鋼板に表3に示される最高温度での冷間圧延を施して、最終板厚:0.23mmの冷延鋼板とした。本実施例においては、前記中間焼鈍後の冷間圧延が最終圧延となる。次いで、前記冷延鋼板に、脱炭を兼ねる一次再結晶焼鈍を施して一次再結晶鋼板を得た。前記一次再結晶焼鈍の条件は次の通りとした。500℃から700℃の間の昇温速度:250℃/sec、焼鈍温度:840℃、焼鈍時間:120秒、焼鈍雰囲気:H2:55%、N2:45%、露点:53℃。
 上記一次再結晶焼鈍の後、MgOを主成分として含有する焼鈍分離剤を、前記一次再結晶鋼板の表面に、12.5g/m2塗布した。前記焼鈍分離剤を乾燥させた後、該焼鈍分離剤が塗布された一次再結晶鋼板を巻き取ってコイルとした。前記コイルは、内径:500mm、外径:1500mmとした。
 その後、前記コイル状に巻かれた鋼板に、純化焼鈍を兼ねる二次再結晶焼鈍を施した。前記二次再結晶焼鈍における温度履歴は以下の通りとした。
・15℃/hで800℃まで昇温、
・800℃から850℃の間、2.0℃/hで昇温、
・850℃で50時間保持、
・1180℃まで5.0℃/hで昇温、
・1180℃で5h均熱。
前記二次再結晶焼鈍における雰囲気ガスとしては、850℃までの温度域ではN2ガスを、850℃以上の温度域ではH2を使用した。
 得られた二次再結晶焼鈍板の表面に、リン酸塩、クロム酸塩、およびコロイダルシリカを、質量比で3:1:3の割合で含有する処理液を塗布し、平坦化焼鈍を実施した。
 上記製造工程の途中、最終冷延開始時、すなわち中間焼鈍終了時における鋼板の断面組織を光学顕微鏡で観察し、RCおよびDを実施例1と同様の方法で測定した。測定結果は表1に示した通りである。
 また、コイル径1000mmに相当する位置でサンプルを採取し、実施例1と同様の方法および条件で、ずれ角(α2+β21/2の平均値、Rβ、および平均γ角を測定した。測定結果は表3に示した通りであった。
 さらに、最終的に得られた方向性電磁鋼板の成分組成を化学分析した結果を表4に示す。
 表3、4に示した結果から分かるように、本発明の条件を満たす方向性電磁鋼板は、いずれも良好な磁気特性を有することに加え、生産性に優れるコイル焼鈍での製造が可能であった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(実施例3)
 表5に示す成分組成を有する鋼スラブを用い、以下の手順で方向性電磁鋼板を製造した。まず、前記鋼スラブを1230℃に再加熱した後、熱間圧延して板厚2.4mmの熱延鋼板とした。次いで、前記熱延鋼板に対して、熱延板焼鈍を施した。前記熱延板焼鈍においては、熱延鋼板を、均熱温度:1050℃で30秒間保持した。また、前記熱延板焼鈍における、冷却時の900~700℃間における滞留時間(t900-700℃)を25secとし、700℃以下の温度域では、冷却速度:40℃/secで急冷した。
 次に、焼鈍された前記熱延鋼板に200℃での冷間圧延を施して、最終板厚:0.23mmの冷延鋼板とした。次いで、実施例1と同様の条件で、前記冷延鋼板に脱炭を兼ねる一次再結晶焼鈍を施して一次再結晶鋼板を得た。
 上記一次再結晶焼鈍の後、MgOを主成分として含有する焼鈍分離剤を、前記一次再結晶鋼板の表面に、12.5g/m2塗布した。前記焼鈍分離剤を乾燥させた後、該焼鈍分離剤が塗布された一次再結晶鋼板を巻き取ってコイルとした。前記コイルは、内径:500mm、外径:1500mmとした。
 その後、前記コイル状に巻かれた鋼板に、純化焼鈍を兼ねる二次再結晶焼鈍を施した。前記二次再結晶焼鈍における温度履歴は以下の通りとした。
・15℃/hで800℃まで昇温、
・800℃から870℃の間、2.0℃/hで昇温、
・870℃で50時間保持、
・1160℃まで5.0℃/hで昇温、
・1160℃で5h均熱。
前記二次再結晶焼鈍における雰囲気ガスとしては、870℃までの温度域ではN2ガスを、870℃以上の温度域ではH2を使用した。
 得られた二次再結晶焼鈍板の表面に、リン酸塩、クロム酸塩、およびコロイダルシリカを、質量比で3:1:3の割合で含有する処理液を塗布し、平坦化焼鈍を実施した。
 上記製造工程の途中、最終冷延開始時、すなわち熱延板焼鈍終了時における鋼板の断面組織を光学顕微鏡で観察し、RCおよびDを実施例1と同様の方法で測定した。測定結果を表6に示す。
 また、コイル径1000mmに相当する位置でサンプルを採取し、実施例1と同様の方法および条件で、鉄損W17/50、磁束密度B8、(α2+β21/2の平均値、Rβ、および平均γ角を測定した。測定結果は表6に示した通りであった。
 さらに、最終的に得られた方向性電磁鋼板の成分組成を化学分析した結果を表7に示す。
 表6、7に示した結果から分かるように、本発明の条件を満たす方向性電磁鋼板は、いずれも良好な磁気特性を有することに加え、生産性に優れるコイル焼鈍での製造が可能であった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007

Claims (6)

  1.  質量%で、
      C :0.005%以下、
      Si:3.0%以上、4.0%以下、
      Mn:0.05%以上、0.50%以下、
      sol.Al:0.001%以下、
      N :0.0015%以下、
      S :0.0010%以下、および
      Se:0.0010%以下を含有し、
      残部Feおよび不可避不純物からなる成分組成を有し、
     ND回転軸についての理想Goss方位からのずれ角αと、TD回転軸についての理想Goss方位からのずれ角βとから求められるずれ角(α2+β21/2の平均値が5.0°以下であり、
     β≦0.50°である結晶粒の面積率:Rβが20%以下である、方向性電磁鋼板。
  2.  さらに、RD回転軸についての理想Goss方位からのずれ角γの平均値が3.0°以上7.0°以下である、請求項1に記載の方向性電磁鋼板。
  3.  前記成分組成が、質量%で、
      Sb:0.005%以上、0.1%以下、
      Sn:0.005%以上、0.1%以下、
      P :0.005%以上、0.1%以下、
      Ni:0.005%以上、1.5%以下、
      Cu:0.005%以上、1.5%以下、
      Cr:0.005%以上、0.1%以下、
      Mo:0.005%以上、0.5%以下、
      Ti:0.0005%以上、0.1%以下、
      Nb:0.0005%以上、0.1%以下、
      V :0.0005%以上、0.1%以下、
      B :0.0002%以上、0.0025%以下、
      Bi:0.005%以上、0.1%以下、
      Te:0.0005%以上、0.01%以下、および
      Ta:0.0005%以上、0.01%以下
     からなる群より選択される1または2以上をさらに含有する、請求項1または2に記載の方向性電磁鋼板。
  4.  質量%で、
      C :0.025%以上、0.060%以下、
      Si:3.0%以上、4.0%以下、
      Mn:0.05%以上、0.50%以下、
      sol.Al:0.01%未満、
      N :0.006%未満、および
      S、Se:合計0.010%未満を含み、
      残部Feおよび不可避不純物からなる成分組成を有する鋼スラブを、任意に加熱温度:1300℃以下に加熱し、
     前記鋼スラブに熱間圧延を施して熱延鋼板とし、
     前記熱延鋼板に対して熱延板焼鈍を施し、
     焼鈍された前記熱延鋼板に冷間圧延を施して最終板厚の冷延鋼板とし、
     前記冷延鋼板に一次再結晶焼鈍を施して一次再結晶鋼板とし、
     前記一次再結晶鋼板に焼鈍分離剤を塗布し、
     前記焼鈍分離剤が塗布された一次再結晶鋼板を巻き取ってコイルとし、
     前記コイルに二次再結晶焼鈍を施す、方向性電磁鋼板の製造方法であって、
     前記冷間圧延における最終冷延開始時の、粒子径が1μm以上である炭化物の面積率:RCが0.5%~20.0%であり、
     前記最終冷延開始時における平均結晶粒径:Dが50μm以上、300μm以下であり、
     前記最終冷延における最高温度:Tmaxが150℃以上である、方向性電磁鋼板の製造方法。
  5.  前記成分組成が、質量%で、
      Sb:0.005%以上、0.1%以下、
      Sn:0.005%以上、0.1%以下、
      P :0.005%以上、0.1%以下、
      Ni:0.005%以上、1.5%以下、
      Cu:0.005%以上、1.5%以下、
      Cr:0.005%以上、0.1%以下、
      Mo:0.005%以上、0.5%以下、
      Ti:0.0005%以上、0.1%以下、
      Nb:0.0005%以上、0.1%以下、
      V :0.0005%以上、0.1%以下、
      B :0.0002%以上、0.0025%以下、
      Bi:0.005%以上、0.1%以下、
      Te:0.0005%以上、0.01%以下、および
      Ta:0.0005%以上、0.01%以下
     からなる群より選択される1または2以上をさらに含有する、請求項4に記載の方向性電磁鋼板の製造方法。
  6.  前記二次再結晶焼鈍時の前記コイルの直径が700mm以上である、請求項4または5に記載の方向性電磁鋼板の製造方法。
PCT/JP2017/034170 2016-09-21 2017-09-21 方向性電磁鋼板およびその製造方法 WO2018056379A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3037272A CA3037272C (en) 2016-09-21 2017-09-21 Grain-oriented electrical steel sheet and method for manufacturing same
US16/333,729 US11560603B2 (en) 2016-09-21 2017-09-21 Grain-oriented electrical steel sheet and method for manufacturing same
RU2019111845A RU2706990C1 (ru) 2016-09-21 2017-09-21 Текстурированная электротехническая листовая сталь и способ ее изготовления
KR1020197011284A KR102239708B1 (ko) 2016-09-21 2017-09-21 방향성 전자 강판 및 그의 제조 방법
CN201780056998.9A CN109715840B (zh) 2016-09-21 2017-09-21 取向性电磁钢板及其制造方法
EP17853147.1A EP3517646B1 (en) 2016-09-21 2017-09-21 Grain-oriented electrical steel sheet and method for manufacturing same
MX2019003208A MX2019003208A (es) 2016-09-21 2017-09-21 Lamina de acero electrico orientado en grano y metodo para fabricar la misma.
US17/938,047 US20230045475A1 (en) 2016-09-21 2022-10-05 Method for manufacturing a grain-oriented electrical steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016184742A JP6572855B2 (ja) 2016-09-21 2016-09-21 方向性電磁鋼板およびその製造方法
JP2016-184742 2016-09-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/333,729 A-371-Of-International US11560603B2 (en) 2016-09-21 2017-09-21 Grain-oriented electrical steel sheet and method for manufacturing same
US17/938,047 Division US20230045475A1 (en) 2016-09-21 2022-10-05 Method for manufacturing a grain-oriented electrical steel sheet

Publications (1)

Publication Number Publication Date
WO2018056379A1 true WO2018056379A1 (ja) 2018-03-29

Family

ID=61689534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034170 WO2018056379A1 (ja) 2016-09-21 2017-09-21 方向性電磁鋼板およびその製造方法

Country Status (9)

Country Link
US (2) US11560603B2 (ja)
EP (1) EP3517646B1 (ja)
JP (1) JP6572855B2 (ja)
KR (1) KR102239708B1 (ja)
CN (1) CN109715840B (ja)
CA (1) CA3037272C (ja)
MX (1) MX2019003208A (ja)
RU (1) RU2706990C1 (ja)
WO (1) WO2018056379A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210018433A (ko) * 2018-07-13 2021-02-17 닛폰세이테츠 가부시키가이샤 방향성 전자 강판 및 그의 제조 방법
CN112437817A (zh) * 2018-07-13 2021-03-02 日本制铁株式会社 方向性电磁钢板及其制造方法
EP3859038A4 (en) * 2018-09-27 2021-11-24 Posco DOUBLE ORIENTED ELECTRIC STEEL SHEET AND MANUFACTURING PROCESS FOR IT
EP3901311A4 (en) * 2018-12-19 2022-03-02 Posco ORIENTED ELECTRICAL STEEL AND METHOD OF MANUFACTURE THEREOF
WO2022210503A1 (ja) * 2021-03-31 2022-10-06 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2763924C1 (ru) * 2018-06-21 2022-01-11 Ниппон Стил Корпорейшн Лист из электротехнической стали с ориентированной зеренной структурой, имеющий превосходные магнитные свойства
BR112022003971A2 (pt) * 2019-09-06 2022-05-24 Jfe Steel Corp Chapa de aço elétrico de grãos orientados e método de produção da mesma, e chapa de aço laminada a quente para uso na produção de uma chapa de aço elétrico de grãos orientados
EP4101939A4 (en) * 2020-02-05 2023-01-04 Nippon Steel Corporation ORIENTED ELECTROMAGNETIC STEEL SHEET
EP4159335A4 (en) * 2020-06-30 2023-12-20 JFE Steel Corporation METHOD FOR PRODUCING A CORNORIENTED ELECTROMAGNETIC STEEL SHEET
EP4365319A1 (en) * 2022-11-03 2024-05-08 Thyssenkrupp Electrical Steel Gmbh Grain-oriented electrical steel strip and method for its production

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761102B2 (ja) 1977-09-06 1982-12-22 Nippon Steel Corp
JPS59177349A (ja) 1983-08-29 1984-10-08 Nippon Steel Corp 低鉄損一方向性珪素鋼板
JPH07268567A (ja) 1994-03-31 1995-10-17 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板
JP2005121372A (ja) 2003-10-14 2005-05-12 Rigaku Corp X線結晶方位測定装置及びx線結晶方位測定方法
JP2006299297A (ja) * 2005-04-15 2006-11-02 Jfe Steel Kk 磁気特性に優れた方向性電磁鋼板の製造方法
JP2009155731A (ja) 2009-03-30 2009-07-16 Nippon Steel Corp 高磁場鉄損の優れた高磁束密度一方向性電磁鋼板
JP2012087374A (ja) * 2010-10-20 2012-05-10 Jfe Steel Corp 方向性電磁鋼板の製造方法
JP2013108149A (ja) * 2011-11-24 2013-06-06 Jfe Steel Corp 三相変圧器用鉄心
JP5286872B2 (ja) 2008-03-26 2013-09-11 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
KR20160072704A (ko) * 2014-12-15 2016-06-23 주식회사 포스코 방향성 전기강판 및 그 제조방법
JP2016156068A (ja) * 2015-02-25 2016-09-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333685A (en) 1980-06-09 1982-06-08 Federal-Mogul Corporation Road surfacing apparatus
IT1284268B1 (it) * 1996-08-30 1998-05-14 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche, a partire da
JP4075083B2 (ja) * 1996-11-05 2008-04-16 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2007314826A (ja) * 2006-05-24 2007-12-06 Nippon Steel Corp 鉄損特性に優れた一方向性電磁鋼板
CA2808774C (en) * 2010-09-10 2015-05-05 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
JP2012097374A (ja) * 2010-11-02 2012-05-24 Toray Ind Inc マルチフィラメント糸の交絡処理装置および交絡処理方法
WO2013089297A1 (ko) * 2011-12-16 2013-06-20 주식회사 포스코 자성이 우수한 방향성 전기강판의 제조방법
WO2013094777A1 (ko) * 2011-12-19 2013-06-27 주식회사 포스코 저철손 고자속밀도 방향성 전기강판 및 이의 제조방법
KR101636191B1 (ko) * 2012-04-26 2016-07-04 제이에프이 스틸 가부시키가이샤 방향성 전기 강판 및 그 제조 방법
JP5672273B2 (ja) * 2012-07-26 2015-02-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法
WO2016129015A1 (ja) * 2015-02-13 2016-08-18 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761102B2 (ja) 1977-09-06 1982-12-22 Nippon Steel Corp
JPS59177349A (ja) 1983-08-29 1984-10-08 Nippon Steel Corp 低鉄損一方向性珪素鋼板
JPH07268567A (ja) 1994-03-31 1995-10-17 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板
JP2005121372A (ja) 2003-10-14 2005-05-12 Rigaku Corp X線結晶方位測定装置及びx線結晶方位測定方法
JP2006299297A (ja) * 2005-04-15 2006-11-02 Jfe Steel Kk 磁気特性に優れた方向性電磁鋼板の製造方法
JP5286872B2 (ja) 2008-03-26 2013-09-11 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP2009155731A (ja) 2009-03-30 2009-07-16 Nippon Steel Corp 高磁場鉄損の優れた高磁束密度一方向性電磁鋼板
JP2012087374A (ja) * 2010-10-20 2012-05-10 Jfe Steel Corp 方向性電磁鋼板の製造方法
JP2013108149A (ja) * 2011-11-24 2013-06-06 Jfe Steel Corp 三相変圧器用鉄心
KR20160072704A (ko) * 2014-12-15 2016-06-23 주식회사 포스코 방향성 전기강판 및 그 제조방법
JP2016156068A (ja) * 2015-02-25 2016-09-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE TRANS. MAGN., vol. 32, no. 2, 1996, pages 572 - 589
See also references of EP3517646A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210018433A (ko) * 2018-07-13 2021-02-17 닛폰세이테츠 가부시키가이샤 방향성 전자 강판 및 그의 제조 방법
CN112437817A (zh) * 2018-07-13 2021-03-02 日本制铁株式会社 方向性电磁钢板及其制造方法
CN112449656A (zh) * 2018-07-13 2021-03-05 日本制铁株式会社 方向性电磁钢板及其制造方法
EP3822386A4 (en) * 2018-07-13 2022-01-19 Nippon Steel Corporation GRAIN ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD OF MAKING THE SAME
KR102480592B1 (ko) * 2018-07-13 2022-12-26 닛폰세이테츠 가부시키가이샤 방향성 전자 강판 및 그의 제조 방법
EP3859038A4 (en) * 2018-09-27 2021-11-24 Posco DOUBLE ORIENTED ELECTRIC STEEL SHEET AND MANUFACTURING PROCESS FOR IT
EP3901311A4 (en) * 2018-12-19 2022-03-02 Posco ORIENTED ELECTRICAL STEEL AND METHOD OF MANUFACTURE THEREOF
WO2022210503A1 (ja) * 2021-03-31 2022-10-06 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
MX2019003208A (es) 2019-06-10
US20230045475A1 (en) 2023-02-09
RU2706990C1 (ru) 2019-11-21
US20190233914A1 (en) 2019-08-01
KR20190058542A (ko) 2019-05-29
KR102239708B1 (ko) 2021-04-12
CA3037272C (en) 2021-07-13
CA3037272A1 (en) 2018-03-29
EP3517646A4 (en) 2019-07-31
JP6572855B2 (ja) 2019-09-11
CN109715840B (zh) 2021-02-09
EP3517646B1 (en) 2020-11-18
US11560603B2 (en) 2023-01-24
CN109715840A (zh) 2019-05-03
EP3517646A1 (en) 2019-07-31
JP2018048377A (ja) 2018-03-29

Similar Documents

Publication Publication Date Title
WO2018056379A1 (ja) 方向性電磁鋼板およびその製造方法
JP5760504B2 (ja) 方向性電磁鋼板およびその製造方法
US9514868B2 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP5439866B2 (ja) 著しく磁束密度が高い方向性電磁鋼板の製造方法
EP3050979B1 (en) Method for producing grain-oriented electromagnetic steel sheet
WO2012032792A1 (ja) 方向性電磁鋼板およびその製造方法
WO2013058239A1 (ja) 方向性電磁鋼板およびその製造方法
WO2013145784A1 (ja) 方向性電磁鋼板の製造方法
JP6020768B1 (ja) 方向性電磁鋼板およびその製造方法
JP6868030B2 (ja) 方向性電磁鋼板およびその製造方法
JP6079580B2 (ja) 方向性電磁鋼板の製造方法
JP7063032B2 (ja) 方向性電磁鋼板の製造方法
JP4826312B2 (ja) 二方向性電磁鋼板の製造方法
JP6690244B2 (ja) 二方向性電磁鋼板および二方向性電磁鋼板の製造方法
JP2014156633A (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板並びに方向性電磁鋼板用表面ガラスコーティング
WO2017111432A1 (ko) 방향성 전기강판 및 이의 제조방법
JP6056675B2 (ja) 方向性電磁鋼板の製造方法
JP5846390B2 (ja) 方向性電磁鋼板の製造方法
JP5600991B2 (ja) 方向性電磁鋼板の製造方法
JP6866901B2 (ja) 方向性電磁鋼板の製造方法
JP7307354B2 (ja) 磁気特性が優れた方向性電磁鋼板
JP2021139040A (ja) 方向性電磁鋼板の製造方法
JP2024500843A (ja) 無方向性電磁鋼板およびその製造方法
JP2022513169A (ja) 方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3037272

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011284

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017853147

Country of ref document: EP

Effective date: 20190423