WO2018056188A1 - 非水電解質蓄電素子及びその使用方法 - Google Patents

非水電解質蓄電素子及びその使用方法 Download PDF

Info

Publication number
WO2018056188A1
WO2018056188A1 PCT/JP2017/033349 JP2017033349W WO2018056188A1 WO 2018056188 A1 WO2018056188 A1 WO 2018056188A1 JP 2017033349 W JP2017033349 W JP 2017033349W WO 2018056188 A1 WO2018056188 A1 WO 2018056188A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
storage element
separator
power storage
negative electrode
Prior art date
Application number
PCT/JP2017/033349
Other languages
English (en)
French (fr)
Inventor
智也 土川
剛志 八田
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2018541026A priority Critical patent/JP7159864B2/ja
Publication of WO2018056188A1 publication Critical patent/WO2018056188A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonaqueous electrolyte storage element and a method of using the same.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are frequently used in electronic devices such as personal computers and communication terminals, automobiles and the like because of their high energy density.
  • the non-aqueous electrolyte secondary battery generally includes an electrode body having a pair of electrodes electrically separated by a separator, and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between both electrodes. It is configured to charge and discharge by performing.
  • capacitors such as lithium ion capacitors and electric double layer capacitors are widely used as power storage elements other than secondary batteries.
  • a separator used for such an electricity storage element a resin porous film, a woven fabric, a non-woven fabric, etc. are widely used.
  • a secondary battery using a separator including a polyolefin resin film having a thickness of 12 to 16 ⁇ m has been developed (see Patent Document 1).
  • one of the characteristics required for the storage element is a life characteristic. For example, it is required that the voltage drop after a float charge is left for a while is small.
  • a separator whose main component is polyethylene may have a very large voltage drop when thinned, in other words, the life characteristics may be insufficient.
  • the present invention has been made based on the circumstances as described above, and the purpose thereof is to improve the life characteristics as compared with the case where the same separator is used while using a separator whose main component is polyethylene. It is providing the nonaqueous electrolyte electrical storage element and the usage method of such a nonaqueous electrolyte electrical storage element.
  • One embodiment of the present invention made to solve the above problems includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte, wherein the main component of the separator is polyethylene,
  • the separator has a density of 0.5 g / cm 3 or more, and the non-aqueous electrolyte is a non-aqueous electrolyte storage element containing halogenated toluene.
  • Another aspect of the present invention made to solve the above problems is a nonaqueous electrolyte in which the nonaqueous electrolyte storage element is charged at a positive electrode potential of 4.2 V (vs. Li / Li + ) or higher. This is a method of using a storage element.
  • the non-aqueous electrolyte electricity storage device while using a separator whose main component is polyethylene, the non-aqueous electrolyte electricity storage device has improved life characteristics compared to those using the same separator, and such a non-aqueous electrolyte electricity storage device.
  • a method of use can be provided.
  • FIG. 1 is an external perspective view showing a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a power storage device configured by assembling a plurality of secondary batteries according to an embodiment of the present invention.
  • One embodiment of the present invention includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • the main component of the separator is polyethylene, and the density of the separator is 0.5 g / cm. 3 or more, and the nonaqueous electrolyte is a nonaqueous electrolyte storage element (hereinafter also simply referred to as “storage element”) containing halogenated toluene.
  • the “main component” means a component having the largest content on a mass basis.
  • the power storage element has better life characteristics than those using the same separator while using a separator whose main component is polyethylene.
  • the reason for this is not clear, but is presumed to be due to the following actions.
  • the separator mainly composed of polyethylene is oxidized by the action of the positive electrode. In this oxidation, the following reaction occurs. —CH 2 —CH 2 — ⁇ —CH ⁇ CH— + H 2
  • an unsaturated double bond is generated in polyethylene by the oxidation reaction. Since the conjugated bond is formed by the generation of unsaturated double bonds at a plurality of locations, the oxidized portion has high conductivity.
  • the oxidized portion grows from the positive electrode side surface of the separator toward the negative electrode side, that is, in the thickness direction.
  • the positive electrode and the negative electrode are electrically connected by the oxidized portion, and a voltage drop between the positive and negative electrodes occurs.
  • the halogenated toluene is contained in the nonaqueous electrolyte as in the case of the electric storage element, the oxidative decomposition product of the halogenated toluene covers the positive electrode surface. Thereby, it is assumed that the oxidation of the separator is suppressed and the life characteristics are improved.
  • Halogenated toluene is also preferable because it is an additive that hardly causes deterioration in input / output characteristics.
  • the density of the separator is relatively high, such as 0.5 g / cm 3 or more, a highly conductive oxidized portion is densely formed, so that a voltage drop is likely to occur.
  • the power storage element has good life characteristics despite using such a separator.
  • the separator since the separator has a relatively high density of 0.5 g / cm 3 or more, the amount of resin that dissolves when heat is generated in an abnormal state increases, and the resistance value can be increased. Therefore, according to the power storage element, shutdown at the time of abnormality is likely to occur, and safety is excellent.
  • the average thickness of the separator may be 20 ⁇ m or less. In the case of a thin separator, the oxidation part easily reaches the negative electrode side, so that the life is usually shortened. On the other hand, according to the electric storage element, even if the average thickness is 20 ⁇ m or less, sufficient life characteristics can be exhibited. Further, by using a separator having an average thickness of 20 ⁇ m or less, the power storage element can be made thinner and lighter.
  • the “average thickness” means an average value of 10 arbitrarily selected thicknesses.
  • the density of the separator may be 0.58 g / cm 3 or more. As described above, when the density of the separator is high, a voltage drop is likely to occur. However, in the power storage element, even when such a separator is used, it has good life characteristics equivalent to those having a density of less than 0.58 g / cm 3 . In addition, by using a separator having a density of 0.58 g / cm 3 or more, the shutdown function can be further enhanced and safety can be improved.
  • the “density” of the separator is the mass per unit volume calculated from the average thickness and the mass per unit area, and means the density measured according to JIS-P-8118 (1998). .
  • the halogenated toluene content in the non-aqueous electrolyte is preferably 0.1% by mass or more.
  • the content of halogenated toluene 0.1% by mass or more and preferably using a separator having a density of 0.58 g / cm 3 or more, the life characteristics can be more fully exhibited.
  • the halogenated toluene is preferably fluorinated toluene.
  • fluorinated toluene By using fluorinated toluene, the life characteristics are more satisfactory.
  • the fluorinated toluene is preferably orthofluorotoluene (o-fluorotoluene) or metafluorotoluene (m-fluorotoluene).
  • o-fluorotoluene orthofluorotoluene
  • m-fluorotoluene metafluorotoluene
  • the power storage element preferably has a fully charged positive electrode potential of 4.2 V (vs. Li / Li + ) or higher.
  • 4.2 V vs. Li / Li +
  • the charge / discharge capacity can be increased.
  • Another embodiment of the present invention is a method for using a nonaqueous electrolyte storage element in which a nonaqueous electrolyte storage element is charged at a positive electrode potential of 4.2 V (vs. Li / Li + ) or higher.
  • the positive electrode potential during charging is 4.2 V (vs. Li / Li + ) or more, the charge / discharge capacity can be increased. Further, even when the battery is charged at such a high potential, the voltage drop after charging is suppressed, and the power storage element can be used for a long period of time.
  • a power storage device includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • a non-aqueous electrolyte secondary battery (hereinafter, also simply referred to as “secondary battery”) will be described as an example of a storage element.
  • the positive electrode, the separator, and the negative electrode usually form an electrode body superimposed by stacking or winding.
  • the electrode body is housed in a case, and the case is filled with the nonaqueous electrolyte.
  • the nonaqueous electrolyte is interposed between the positive electrode and the negative electrode.
  • the non-aqueous electrolyte is filled in a case and impregnated in a separator.
  • a known SUS case stainless steel case
  • an aluminum case, a resin case, or the like that is usually used as a case of a secondary battery can be used.
  • the positive electrode has a positive electrode base material and a positive electrode mixture layer disposed on the positive electrode base material directly or via an intermediate layer.
  • the positive electrode is a sheet (film) having the above laminated structure.
  • the positive electrode base material has conductivity.
  • metals such as aluminum, titanium, tantalum, stainless steel, or alloys thereof are used.
  • aluminum and aluminum alloys are preferable from the balance of potential resistance, high conductivity and cost.
  • foil, a vapor deposition film, etc. are mentioned as a formation form of a positive electrode base material, and foil is preferable from the surface of cost. That is, an aluminum foil is preferable as the positive electrode base material.
  • Examples of aluminum or aluminum alloy include A1085P and A3003P defined in JIS-H-4000 (2014).
  • middle layer is a coating layer of the surface of a positive electrode base material, and reduces the contact resistance of a positive electrode base material and a positive electrode compound material layer by including electroconductive particles, such as carbon particle.
  • middle layer is not specifically limited, For example, it can form with the composition containing a resin binder and electroconductive particle.
  • “Conductive” means that the volume resistivity measured according to JIS-H-0505 (1975) is 10 7 ⁇ ⁇ cm or less. Means that the volume resistivity is more than 10 7 ⁇ ⁇ cm.
  • the positive electrode mixture layer is formed from a so-called positive electrode mixture containing a positive electrode active material.
  • the positive electrode mixture forming the positive electrode mixture layer includes optional components such as a conductive agent, a binder (binder), a thickener, and a filler as necessary.
  • Examples of the positive electrode active material include composite oxides represented by Li x MO y (M represents at least one transition metal) (Li x CoO 2 having a layered ⁇ -NaFeO 2 type crystal structure, Li x NiO). 2 , Li x MnO 3 , Li x Ni ⁇ Co (1- ⁇ ) O 2 , Li x Ni ⁇ Mn ⁇ Co (1- ⁇ - ⁇ ) O 2, etc.
  • Li x Mn 2 O 4 having a spinel crystal structure Li x Ni ⁇ Mn (2- ⁇ ) O 4 ), Li w Me x (XO y ) z (Me represents at least one transition metal, and X represents, for example, P, Si, B, V, etc.)
  • the elements or polyanions in these compounds may be partially substituted with other elements or anion species.
  • one kind of these compounds may be used alone, or two or more kinds may be mixed and used.
  • the conductive agent is not particularly limited as long as it is a conductive material that does not adversely affect battery performance.
  • a conductive agent include natural or artificial graphite, furnace black, acetylene black, ketjen black and other carbon blacks, metals, conductive ceramics, and the like.
  • Examples of the shape of the conductive agent include powder and fiber.
  • binder examples include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, and polyimide; ethylene-propylene-diene rubber (EPDM), Examples thereof include elastomers such as sulfonated EPDM, styrene butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.
  • fluororesins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, and polyimide
  • EPDM ethylene-propylene-diene rubber
  • SBR styrene butadiene rubber
  • fluororubber examples include polysaccharide polymers and the like.
  • the thickener examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • methylcellulose a functional group that reacts with lithium
  • the filler is not particularly limited as long as it does not adversely affect battery performance.
  • the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, glass, and carbon.
  • the negative electrode includes a negative electrode base material and a negative electrode mixture layer disposed on the negative electrode base material directly or via an intermediate layer.
  • the negative electrode is a sheet (film) having the laminated structure.
  • the intermediate layer can have the same configuration as the positive electrode intermediate layer.
  • the negative electrode base material can have the same configuration as the positive electrode base material, but as a material, a metal such as copper, nickel, stainless steel, nickel-plated steel or an alloy thereof is used, and copper or a copper alloy is used. preferable. That is, copper foil is preferable as the negative electrode substrate. Examples of the copper foil include rolled copper foil and electrolytic copper foil.
  • the negative electrode mixture layer is formed from a so-called negative electrode mixture containing a negative electrode active material.
  • the negative electrode composite material which forms a negative electrode composite material layer contains arbitrary components, such as a electrically conductive agent, a binder (binder), a thickener, and a filler as needed.
  • Arbitrary components such as a conductive agent, a binder, a thickener, and a filler can be the same as those for the positive electrode mixture layer.
  • negative electrode active material a material that can occlude and release lithium ions is usually used.
  • Specific negative electrode active materials include, for example, metals or semimetals such as Si and Sn; metal oxides or semimetal oxides such as Si oxide and Sn oxide; polyphosphate compounds; graphite (graphite) and amorphous Examples thereof include carbon materials such as carbon (easily graphitizable carbon or non-graphitizable carbon).
  • the negative electrode mixture includes typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, and Ge.
  • Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W may be contained.
  • the separator has polyethylene as a main component and a density of 0.5 g / cm 3 or more.
  • the separator is a polyethylene porous resin film, a polyethylene fiber nonwoven fabric, a woven fabric, or the like, and is preferably a polyethylene porous film.
  • the polyethylene may be high density polyethylene, low density polyethylene, or the like.
  • the polyethylene is not limited to a homopolymer of ethylene, and may be a copolymer of ethylene as a main monomer and another monomer (for example, another monomer of 5 mol% or less).
  • the lower limit of the polyethylene content in the separator is preferably 50% by mass, more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the upper limit of this content may be 100% by mass.
  • separator other than polyethylene include resins other than polyethylene, fillers, and the like.
  • the upper limit of the average thickness of the separator may be, for example, 30 ⁇ m, preferably 25 ⁇ m, and more preferably 20 ⁇ m.
  • the average thickness of the separator is made equal to or less than the above upper limit, it is possible to reduce the thickness and weight of the power storage element.
  • the lifetime shortening which becomes easy to produce notably easily can be suppressed by making a separator into a thin film normally.
  • the lower limit of the average thickness can be set to, for example, 10 ⁇ m or 15 ⁇ m from the viewpoint of preventing a short circuit between the positive and negative electrodes.
  • the lower limit of the density of the separator is 0.5 g / cm 3, preferably 0.53 g / cm 3, more preferably 0.55 g / cm 3, more preferably 0.58 g / cm 3.
  • the density of the separator is preferably 0.53 g / cm 3, more preferably 0.55 g / cm 3, more preferably 0.58 g / cm 3.
  • the upper limit of the density is preferably 0.7 g / cm 3 from the viewpoint of ensuring sufficient conductivity of ions (nonaqueous electrolyte), and may be 0.65 g / cm 3 . It may be 0.6 g / cm 3 .
  • the separator can be produced by a known method, and the density and thickness can be adjusted by a known method. Moreover, what is marketed can be used for the separator.
  • Nonaqueous electrolyte The non-aqueous electrolyte is obtained by dissolving an electrolyte salt in a non-aqueous solvent.
  • the non-aqueous electrolyte contains halogenated toluene.
  • halogenated toluene refers to a compound in which some or all of the hydrogen atoms of toluene are substituted with halogen atoms.
  • a halogenated toluene can be used individually by 1 type or in mixture of 2 or more types.
  • halogen atom examples include a fluorine atom, a chlorine atom, and a bromine atom, and a fluorine atom is preferable.
  • a fluorine atom is a fluorine atom, that is, when fluorinated toluene is used as the halogenated toluene, the life characteristics can be further improved by more effectively covering the positive electrode with the oxidative decomposition product.
  • the number of halogen atoms in the halogenated toluene is not particularly limited and is, for example, from 1 to 4, preferably 1 and 2, and more preferably 1.
  • the plurality of types of halogen atoms may be the same or different.
  • the halogenated toluene is preferably a halogenated toluene in which a hydrogen atom on a benzene ring (aromatic ring) is substituted with a halogen atom.
  • the bonding position of the halogen atom is preferably the ortho position and the meta position, and more preferably the meta position, with respect to the methyl group.
  • halogenated toluene examples include fluorotoluene (o-fluorotoluene, m-fluorotoluene, p-fluorotoluene, ⁇ -fluorotoluene), chlorotoluene, bromotoluene, difluorotoluene, dichlorotoluene, dibromotoluene, tri Fluorotoluene, trichlorotoluene, tribromotoluene, chlorofluorotoluene, bromofluorotoluene and the like can be mentioned.
  • fluorotoluene o-fluorotoluene, m-fluorotoluene, p-fluorotoluene, ⁇ -fluorotoluene
  • chlorotoluene bromotoluene
  • difluorotoluene dichloroto
  • fluorotoluene is preferable, o-fluorotoluene (2-fluorotoluene), m-fluorotoluene (3-fluorotoluene) and p-fluorotoluene (4-fluorotoluene) are more preferable, and o-fluorotoluene and m -Fluorotoluene is more preferred, and m-fluorotoluene is particularly preferred.
  • a fluorinated toluene has a small voltage drop in the float test. That is, by using such fluorinated toluene, the life characteristics of the power storage element can be further improved.
  • the content of the halogenated toluene in the non-aqueous electrolyte is not particularly limited, and the lower limit is, for example, preferably 0.1% by mass, more preferably 0.3% by mass, further preferably 0.5% by mass, and 1% by mass. % Is more preferable, and 3% by mass is more preferable.
  • the life characteristics can be sufficiently exhibited.
  • the density of the separator is 0.58 g / cm 3 or more
  • the life characteristics can be more sufficiently exhibited by setting the content of halogenated toluene to the above lower limit or more.
  • the content of halogenated toluene in the nonaqueous electrolyte refers to the mass of halogenated toluene relative to the mass of the entire nonaqueous electrolyte.
  • the upper limit of the content of the halogenated toluene can be, for example, 10% by mass, preferably 8% by mass, and more preferably 6% by mass. A certain ionic conductivity can be ensured by making content of halogenated toluene below the said upper limit.
  • Non-aqueous solvent As said non-aqueous solvent, the well-known non-aqueous solvent normally used as a non-aqueous solvent of the general non-aqueous electrolyte for electrical storage elements can be used.
  • the non-aqueous solvent include cyclic carbonate, chain carbonate, ester, ether, amide, sulfone, lactone, and nitrile. Among these, it is preferable to use at least cyclic carbonate or chain carbonate, and it is more preferable to use cyclic carbonate and chain carbonate in combination.
  • the volume ratio of the cyclic carbonate to the chain carbonate is not particularly limited, but is, for example, 5:95 or more and 50:50 or less. Is preferred.
  • cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VEC vinylene carbonate
  • FEC fluoroethylene carbonate
  • difluoroethylene examples include carbonate (DFEC), styrene carbonate, catechol carbonate, 1-phenyl vinylene carbonate, 1,2-diphenyl vinylene carbonate, and among these, EC is preferable.
  • chain carbonate examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diphenyl carbonate, etc. Among them, EMC is preferable.
  • electrolyte salt As said electrolyte salt, the well-known electrolyte salt normally used as an electrolyte salt of the general nonaqueous electrolyte for electrical storage elements can be used.
  • the electrolyte salt include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt, and the like, and lithium salt is preferable.
  • lithium salt examples include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO Fluorohydrocarbon groups such as 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3
  • inorganic lithium salts are preferable, and LiPF 6 is more preferable.
  • the lower limit of the content of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1M, more preferably 0.3M, still more preferably 0.5M, and particularly preferably 0.7M.
  • the upper limit is not particularly limited, but is preferably 2.5M, more preferably 2M, and even more preferably 1.5M.
  • the non-aqueous electrolyte may contain components other than the halogenated toluene, the non-aqueous solvent, and the electrolyte salt as long as the effects of the present invention are not impaired.
  • the other components include various additives such as 2-fluoro-6-nitrotoluene contained in a general non-aqueous electrolyte for a power storage element.
  • content of these other components 5 mass% or less may be preferable, and 1 mass% or less may be more preferable.
  • the non-aqueous electrolyte can be obtained by adding and dissolving the electrolyte salt and halogenated toluene in the non-aqueous solvent.
  • the power storage element preferably has a fully charged positive electrode potential of 4.2 V (vs. Li / Li + ) or higher (noble), preferably 4.3 V (vs. Li / Li + ) or higher. Is more preferable.
  • the power storage element has good life characteristics even when charged to such a high potential.
  • the positive electrode potential in the fully charged state is high in this way, the charge / discharge capacity can be increased.
  • the upper limit of the positive electrode potential in the fully charged state is, for example, 5 V (vs. Li / Li + ).
  • the positive electrode potential at the end-of-charge voltage during normal use is preferably 4.2 V (vs. Li / Li + ) or higher (higher), preferably 4.3 V (vs. Li / Li + ). Or it is more preferable that it becomes noble (it becomes higher) than this.
  • the upper limit of the positive electrode potential in the end-of-charge voltage during normal use is, for example, 5 V (vs. Li / Li + ).
  • the normal use is a case where the power storage element is used under the recommended or specified charging conditions for the power storage element, and a charger for the power storage element is prepared Means a case where the battery is used and the quality storage element is used.
  • the power storage element can be obtained by a method according to a known method for manufacturing a power storage element.
  • the method for manufacturing the electricity storage device includes a step of housing an electrode body having a positive electrode, a negative electrode, and a separator in a case, and a step of injecting the nonaqueous electrolyte into the case.
  • the injection can be performed by a known method.
  • the storage element can be obtained by sealing the injection port.
  • the details of each element constituting the power storage element (secondary battery) obtained by the manufacturing method are as described above.
  • the power storage element can be used in the same manner as a known power storage element.
  • the power storage element can be used in the same manner as a known power storage element.
  • the upper limit of the positive electrode potential in the fully charged state is, for example, 5 V (vs. Li / Li + ).
  • the positive electrode potential at the end-of-charge voltage is 4.2 V (vs. Li / Li + ) or higher, or 4.3 V (vs. Li / Li + ) or this It is more preferable to charge so as to be more noble.
  • the upper limit of the positive electrode potential at the end-of-charge voltage is, for example, 5 V (vs. Li / Li + ).
  • the present invention is not limited to the above-described embodiment, and can be implemented in a mode in which various changes and improvements are made in addition to the above-described mode.
  • the intermediate layer may not be provided in the positive electrode or the negative electrode.
  • the description has been made mainly on the case where the power storage element is a secondary battery, but other power storage elements may be used. Examples of other power storage elements include capacitors (electric double layer capacitors, lithium ion capacitors) and the like.
  • FIG. 1 shows a schematic diagram of a rectangular secondary battery 1 which is an embodiment of a power storage device according to the present invention.
  • a battery container 3 In the secondary battery 1 shown in FIG. 1, an electrode body 2 is accommodated in a battery container 3.
  • the electrode body 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material via a separator.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4 ′
  • the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5 ′.
  • the configuration of the power storage device according to the present invention is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), a flat battery, and the like.
  • the present invention can also be realized as a power storage device including a plurality of the above power storage elements.
  • a power storage device is shown in FIG. In FIG. 2, the power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of secondary batteries 1.
  • the power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), and the like.
  • EV electric vehicle
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • Example 1 Production of positive electrode plate A mixture of LiMn 2 O 4 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 at a mass ratio of 65:35 as a positive electrode active material, acetylene black as a conductive assistant, Polyvinylidene fluoride (PVDF) was used as a binder. An appropriate amount of N-methyl-2-pyrrolidone (NMP) is added to a mixture in which the ratio of the positive electrode active material, the conductive auxiliary agent, and the binder is 90% by mass, 5% by mass, and 5% by mass, respectively, to adjust the viscosity. A paste-like positive electrode mixture was prepared.
  • NMP N-methyl-2-pyrrolidone
  • This positive electrode mixture was applied to both sides of an aluminum foil (positive electrode base material) having a thickness of 15 ⁇ m and dried to prepare a positive electrode plate having a positive electrode mixture layer formed on the positive electrode base material. Without forming the positive electrode mixture layer on the positive electrode plate, a portion where the positive electrode base material was exposed was provided, and the portion where the positive electrode base material was exposed and the positive electrode lead were joined.
  • An electrode is formed by winding a positive electrode plate and a negative electrode plate with a separator made of only a base material layer interposed between the positive electrode plate and the negative electrode plate produced as described above.
  • a body power generation element
  • As the separator made of only the base material layer a microporous film made of polyethylene (PE) as a thermoplastic resin and having an average thickness of 20 ⁇ m and a density of 0.58 g / cm 3 was employed.
  • the electrode body was housed inside the battery case from the opening of the battery case.
  • the positive electrode plate lead was bonded to the battery lid, and the negative electrode plate lead was bonded to the negative electrode terminal.
  • the battery lid was fitted into the opening of the battery case, and the battery case and the battery lid were joined by laser welding to produce a non-injected battery in which the nonaqueous electrolyte was not injected.
  • Ethylene carbonate (EC) and Ethyl methyl carbonate (EMC) were mixed at a volume ratio of 30:70 to prepare a non-aqueous solvent.
  • LiPF 6 was dissolved at a concentration of 1 mol / L, and orthofluorotoluene (OFT) was added in an amount of 5% by mass based on the mass of the non-aqueous electrolyte to prepare a non-aqueous electrolyte.
  • OFT orthofluorotoluene
  • the nonaqueous electrolyte storage element of Example 1 having a nominal capacity of 600 mAh is obtained by injecting the nonaqueous electrolyte into the battery case from a liquid injection port provided on the side surface of the battery case, and sealing the liquid injection port with a stopper. (Hereinafter, sometimes simply referred to as “battery”).
  • Example 2 to 12 were carried out in the same manner as in Example 1 except that the types and amounts of additives added to the nonaqueous solvent and the average thickness and density of the separator used were as shown in Tables 1 and 2.
  • the batteries of Comparative Examples 1 to 4 were produced.
  • “OFT” represents o-fluorotoluene
  • “MFT” represents m-fluorotoluene
  • “PFT” represents p-fluorotoluene.
  • “-” indicates that no additive is added or evaluation is not performed.
  • the confirmation method of the voltage drop after the float test of each battery of Examples 10 to 12 and Comparative Example 1 shown in Table 2 was performed by the following method.
  • Each battery was charged to a predetermined voltage (4.2 V) at a constant current of 600 mA at 25 ° C., and further charged at a predetermined constant voltage for a total of 3 hours. Then, it put into the thermostat of predetermined
  • halogenated toluene has a voltage drop suppressing effect regardless of the halogen atom substitution position.
  • o-fluorotoluene (Example 10) and m-fluorotoluene (Example 11) have a large effect on suppressing voltage drop
  • m-fluorotoluene (Example 11) has a particularly large effect on suppressing voltage drop. Recognize.
  • Example 12 using p-fluorotoluene although the voltage drop is somewhat large from the beginning, it can be seen that the voltage drop thereafter is suppressed and the life characteristics are improved.
  • the present invention can be applied to non-aqueous electrolyte storage elements such as non-aqueous electric field secondary batteries used as power sources for electronic devices such as personal computers and communication terminals, and automobiles.
  • non-aqueous electrolyte storage elements such as non-aqueous electric field secondary batteries used as power sources for electronic devices such as personal computers and communication terminals, and automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Abstract

【課題】主成分がポリエチレンであるセパレータを用いながら、同じセパレータが用いられたものと比較して寿命特性が改善された非水電解質蓄電素子、及びこのような非水電解質蓄電素子の使用方法を提供する。 【解決手段】本発明の一態様は、正極、負極、上記正極と負極との間に介在するセパレータ、及び非水電解質を備え、上記セパレータの主成分がポリエチレンであり、上記セパレータの密度が0.5g/cm以上であり、上記非水電解質がハロゲン化トルエンを含有する非水電解質蓄電素子である。

Description

非水電解質蓄電素子及びその使用方法
 本発明は、非水電解質蓄電素子及びその使用方法に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極を有する電極体、及び電極間に介在する非水電解質を備え、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、二次電池以外の蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。
 このような蓄電素子に用いられるセパレータとしては、樹脂多孔性フィルム、織布、不織布などが広く使用されている。例えば、厚さが12~16μmであるポリオレフィン系樹脂膜を含むセパレータが用いられた二次電池が開発されている(特許文献1参照)。
特開2009-302051号公報
 一方、蓄電素子に求められる特性の一つとして寿命特性が挙げられる。例えば、フロート充電を行って暫く放置した後の電圧低下が小さいことなどが要求される。しかしながら、発明者らの知見によれば、主成分がポリエチレンであるセパレータは、薄膜化した場合には電圧低下が非常に大きくなる可能性があり、言い換えるならば寿命特性が不十分になり得る。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、主成分がポリエチレンであるセパレータを用いながら、同じセパレータが用いられたものと比較して寿命特性が改善された非水電解質蓄電素子、及びこのような非水電解質蓄電素子の使用方法を提供することである。
 上記課題を解決するためになされた本発明の一態様は、正極、負極、上記正極と負極との間に介在するセパレータ、及び非水電解質を備え、上記セパレータの主成分がポリエチレンであり、上記セパレータの密度が0.5g/cm以上であり、上記非水電解質がハロゲン化トルエンを含有する非水電解質蓄電素子である。
 上記課題を解決するためになされた本発明の他の一態様は、当該非水電解質蓄電素子に対して、4.2V(vs.Li/Li)以上の正極電位で充電を行う非水電解質蓄電素子の使用方法である。
 本発明によれば、主成分がポリエチレンであるセパレータを用いながら、同じセパレータが用いられたものと比較して寿命特性が改善された非水電解質蓄電素子、及びこのような非水電解質蓄電素子の使用方法を提供することができる。
図1は、本発明の一実施形態に係る二次電池を示す外観斜視図である。 図2は、本発明の一実施形態に係る二次電池を複数個集合して構成した蓄電装置を示す概略図である。
 本発明の一態様は、正極、負極、上記正極と負極との間に介在するセパレータ、及び非水電解質を備え、上記セパレータの主成分がポリエチレンであり、上記セパレータの密度が0.5g/cm以上であり、上記非水電解質がハロゲン化トルエンを含有する非水電解質蓄電素子(以下、単に「蓄電素子」ともいう。)である。なお、「主成分」とは、質量基準で含有量が最も多い成分をいう。
 当該蓄電素子は、主成分がポリエチレンであるセパレータを用いながら、同じセパレータが用いられたものと比較して良好な寿命特性を有する。この理由は定かでは無いが、以下の作用によるものと推察される。ポリエチレンを主成分とするセパレータは、正極の作用により酸化される。この酸化では以下の反応が生じる。
 -CH-CH-→-CH=CH-+H
 このように、上記酸化反応により、ポリエチレン中に不飽和二重結合が生じる。複数箇所で不飽和二重結合が生じることで共役結合が形成されるため、酸化部は導電性が高くなる。また、この酸化は正極の作用によって生じるため、酸化部は、セパレータの正極側表面から負極側に向かって、すなわち厚さ方向に成長する。この酸化部がセパレータの負極側表面まで到達すると、正極と負極との間がこの酸化部により電気的に導通され、正負極間の電圧低下が生じる。これに対し、当該蓄電素子のように、非水電解質にハロゲン化トルエンを含有させた場合、ハロゲン化トルエンの酸化分解物が正極表面を被覆する。これにより、セパレータの酸化が抑制され、寿命特性が改善されるものと推察される。なお、ハロゲン化トルエンは、入出力特性の低下が生じ難い添加剤であることからも好ましい。なお、一般的にセパレータの密度が0.5g/cm以上と比較的高密度の場合は、導電性の高い酸化部が密に形成されるため、電圧低下が生じやすくなる。しかし、当該蓄電素子においては、このようなセパレータを用いているにも拘わらず、良好な寿命特性を有する。また、セパレータの密度が0.5g/cm以上と比較的高密度であることで、異常時の発熱の際に溶解する樹脂量が多くなり、抵抗値を高めることができる。従って、当該蓄電素子によれば、異常時のシャットダウンが生じやすく、安全性にも優れる。
 上記セパレータの平均厚さは20μm以下であってよい。薄いセパレータの場合、酸化部が負極側まで到達しやすくなるため、通常、寿命が短くなる。これに対し、当該蓄電素子によれば、このような平均厚さが20μm以下のセパレータであっても、十分な寿命特性を発揮することができる。また、平均厚さが20μm以下のセパレータを用いることで、蓄電素子の薄型化、軽量化などが可能となる。なお、「平均厚さ」とは、任意に選択した10カ所の厚さの平均値をいう。
 上記セパレータの密度は0.58g/cm以上であってよい。上述のように、セパレータの密度が高い場合、電圧低下が生じやすくなる。しかし、当該蓄電素子においては、このようなセパレータを用いた場合も、密度が0.58g/cm未満のものと同等程度の良好な寿命特性を有する。また、密度が0.58g/cm以上のセパレータを用いることで、シャットダウン機能がより高まり、安全性を高めることができる。なお、セパレータの「密度」とは、平均厚さと単位面積あたりの質量とから計算される単位体積あたりの質量であり、JIS-P-8118(1998年)に準拠して測定される密度をいう。
 上記非水電解質におけるハロゲン化トルエンの含有量が0.1質量%以上であることが好ましい。ハロゲン化トルエンの含有量を0.1質量%以上とし、かつ、好ましくは密度
が0.58g/cm以上のセパレータを用いることにより、寿命特性をより十分に発揮させることができる。
 上記ハロゲン化トルエンがフッ素化トルエンであることが好ましい。フッ素化トルエンを用いることで、寿命特性がより十分なものとなる。
 上記フッ素化トルエンは、オルトフルオロトルエン(o-フルオロトルエン)又はメタフルオロトルエン(m-フルオロトルエン)が好ましい。o-フルオロトルエン又はm-フルオロトルエンを用いることで、寿命特性がより十分なものとなる。そしてより好ましくは、メタフルオロトルエン(m-フルオロトルエン)である。
 当該蓄電素子は、満充電状態の正極電位が4.2V(vs.Li/Li)以上であることが好ましい。このように、満充電状態の正極電位が高い場合、通常、セパレータが酸化されやすく、寿命が短くなりやすくなる。しかし、当該蓄電素子においては、このように高電位まで充電して用いられる場合も、良好な寿命特性を有する。また、このように満充電状態の正極電位が4.2V(vs.Li/Li)以上であることにより、充放電の容量を大きくすることができる。
 本発明の他の一態様は、非水電解質蓄電素子に対して、4.2V(vs.Li/Li)以上の正極電位で充電を行う非水電解質蓄電素子の使用方法である。充電時の正極電位が4.2V(vs.Li/Li)以上であることにより、充放電の容量を大きくすることができる。また、このような高電位で充電して用いる場合も、充電後の電圧低下が抑制され、蓄電素子を長期間使用することができる。
<非水電解質蓄電素子>
 本発明の一実施形態に係る蓄電素子は、正極、負極、上記正極と負極と間に介在するセパレータ、及び非水電解質を備える。以下、蓄電素子の一例として、非水電解質二次電池(以下、単に「二次電池」ともいう。)について説明する。上記正極、セパレータ及び負極は、通常、積層又は巻回により重畳された電極体を形成する。上記電極体はケースに収納され、このケース内に上記非水電解質が充填される。当該二次電池において、上記非水電解質は、正極と負極との間に介在している。また、上記非水電解質は、ケースに充填され、セパレータに含浸している。上記ケースとしては、二次電池のケースとして通常用いられる公知のSUSケース(ステンレスケース)、アルミニウムケース、樹脂ケース等を用いることができる。
(正極)
 上記正極は、正極基材、及びこの正極基材に直接又は中間層を介して配される正極合材層を有する。上記正極は、上記積層構造のシート(フィルム)である。
 上記正極基材は、導電性を有する。基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。また、正極基材の形成形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極基材としてはアルミニウム箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085P、A3003P等が例示できる。
 中間層は、正極基材の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで正極基材と正極合材層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば樹脂バインダー及び導電性粒子を含有する組成物により形成できる。なお、「導電性」を有す
るとは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cm以下であることを意味し、「非導電性」とは、上記体積抵抗率が10Ω・cm超であることを意味する。
 正極合材層は、正極活物質を含むいわゆる正極合材から形成される。また、正極合材層を形成する正極合材は、必要に応じて導電剤、バインダー(結着剤)、増粘剤、フィラー等の任意成分を含む。
 上記正極活物質としては、例えばLiMO(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(層状のα-NaFeO型結晶構造を有するLiCoO,LiNiO,LiMnO,LiNiαCo(1-α),LiNiαMnβCo(1-α-β)等、スピネル型結晶構造を有するLiMn,LiNiαMn(2-α)等)、LiMe(XO(Meは少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、V等を表す)で表されるポリアニオン化合物(LiFePO,LiMnPO,LiNiPO,LiCoPO,Li(PO,LiMnSiO,LiCoPOF等)が挙げられる。これらの化合物中の元素又はポリアニオンは、他の元素又はアニオン種で一部が置換されていてもよい。正極合材層においては、これら化合物の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 上記導電剤としては、電池性能に悪影響を与えない導電性材料であれば特に限定されない。このような導電剤としては、天然又は人造の黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック、金属、導電性セラミックス等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。
 上記バインダー(結着剤)としては、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。
 上記増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。
 上記フィラーとしては、電池性能に悪影響を与えないものであれば特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、ゼオライト、ガラス、炭素等が挙げられる。
(負極)
 上記負極は、負極基材、及びこの負極基材に直接又は中間層を介して配される負極合材層を有する。上記負極は、上記積層構造のシート(フィルム)である。上記中間層は正極の中間層と同様の構成とすることができる。
 上記負極基材は、正極基材と同様の構成とすることができるが、材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられ、銅又は銅合金が好ましい。つまり、負極基材としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。
 負極合材層は、負極活物質を含むいわゆる負極合材から形成される。また、負極合材層を形成する負極合材は、必要に応じて導電剤、バインダー(結着剤)、増粘剤、フィラー等の任意成分を含む。導電剤、結着剤、増粘剤、フィラー等の任意成分は、正極合材層と同様のものを用いることができる。
 負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材質が用いられる。具体的な負極活物質としては、例えばSi、Sn等の金属又は半金属;Si酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;ポリリン酸化合物;黒鉛(グラファイト)、非晶質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。
 さらに、負極合材(負極合材層)は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を含有してもよい。
(セパレータ)
 上記セパレータは、ポリエチレンを主成分とし、かつ0.5g/cm以上の密度を有する。上記セパレータは、ポリエチレン製の多孔質樹脂フィルム、ポリエチレン製繊維の不織布、織布等であり、好ましくは、ポリエチレン製の多孔質フィルムである。
 上記ポリエチレンは、高密度ポリエチレン、低密度ポリエチレン等のいずれであってもよい。上記ポリエチレンは、エチレンの単独重合体に限定されず、主たるモノマーとしてのエチレンと他のモノマー(例えば5モル%以下の他のモノマー)との共重合体であってもよい。
 上記セパレータにおけるポリエチレンの含有量の下限としては、50質量%が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、95質量%以上が特に好ましい。この含有量の上限は100質量%であってよい。
 上記セパレータにおいて、ポリエチレン以外に含有されていてもよい他の成分としては、ポリエチレン以外の樹脂、フィラー等を挙げることができる。
 上記セパレータの平均厚さの上限としては、例えば30μmであってよいが、25μmが好ましく、20μmがより好ましい。セパレータの平均厚さを上記上限以下とすることによって、蓄電素子の薄型化、軽量化などが可能となる。また、当該蓄電素子によれば、通常セパレータを薄膜化することにより顕著に生じやすくなる短寿命化を抑制することができる。一方、この平均厚さの下限としては、正負極間の短絡防止などの観点から、例えば10μmとすることができ、15μmであってもよい。
 上記セパレータの密度の下限としては、0.5g/cmであり、0.53g/cmが好ましく、0.55g/cmがより好ましく、0.58g/cmがさらに好ましい。セパレータの密度を上記下限以上とすることで、シャットダウン機能が高まり、安全性を高めることなどができる。また、当該蓄電素子によれば、セパレータを高密度化することにより生じやすくなる蓄電素子の短寿命化を抑制することができる。一方、この密度の上限としては、イオン(非水電解質)の十分な伝導性を確保することなどの点から、0.7g/cmが好ましく、0.65g/cmであってもよく、0.6g/cmであってもよい。
 上記セパレータは、公知の方法で製造することができ、密度や厚さの調整も公知の方法により行うことができる。また、上記セパレータは、販売されているものを用いることが
できる。
(非水電解質)
 上記非水電解質は、非水溶媒に電解質塩が溶解したものである。上記非水電解質は、ハロゲン化トルエンを含有する。
(ハロゲン化トルエン)
 上記ハロゲン化トルエンとは、トルエンの有する水素原子の一部又は全部がハロゲン原子で置換された化合物をいう。ハロゲン化トルエンは、1種を単独で、又は2種以上を混合して用いることができる。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等を挙げることができるが、フッ素原子が好ましい。上記ハロゲン原子がフッ素原子である場合、すなわち上記ハロゲン化トルエンとしてフッ素化トルエンを用いる場合、酸化分解物の正極への被覆がより効果的に生じることなどにより、寿命特性をより高めることができる。
 上記ハロゲン化トルエンにおけるハロゲン原子の数としては特に限定されず、例えば1以上4以下であり、1及び2が好ましく、1がより好ましい。1つのハロゲン化トルエンが複数のハロゲン原子を有する場合、複数種のハロゲン原子は同一であっても異なっていてもよい。
 上記ハロゲン化トルエンとしては、ベンゼン環(芳香環)上の水素原子が、ハロゲン原子に置換されたハロゲン化トルエンが好ましい。このようなハロゲン化トルエンの場合、ハロゲン原子の結合位置としては、メチル基に対して、オルト位及びメタ位が好ましく、メタ位であることがより好ましい。
 上記ハロゲン化トルエンの具体例としては、フルオロトルエン(o-フルオロトルエン、m-フルオロトルエン、p-フルオロトルエン、α-フルオロトルエン)、クロロトルエン、ブロモトルエン、ジフルオロトルエン、ジクロロトルエン、ジブロモトルエン、トリフルオロトルエン、トリクロロトルエン、トリブロモトルエン、クロロフルオロトルエン、ブロモフルオロトルエン等を挙げることができる。
 これらの中でもフルオロトルエンが好ましく、o-フルオロトルエン(2-フルオロトルエン)、m-フルオロトルエン(3-フルオロトルエン)及びp-フルオロトルエン(4-フルオロトルエン)がより好ましく、o-フルオロトルエン及びm-フルオロトルエンがさらに好ましく、m-フルオロトルエンが特に好ましい。このようなフッ素化トルエンは、フロート試験における電圧低下が小さい。すなわち、このようなフッ素化トルエンを用いることで、当該蓄電素子の寿命特性をより高めることができる。
 上記非水電解質におけるハロゲン化トルエンの含有量は特に限定されず、下限としては、例えば0.1質量%が好ましく、0.3質量%がより好ましく、0.5質量%がさらに好ましく、1質量%がさらに好ましく、3質量%がさらに好ましい。ハロゲン化トルエンの含有量を上記下限以上とすることにより、寿命特性を十分に発揮させることができる。特に、セパレータの密度が0.58g/cm以上であるとき、ハロゲン化トルエンの含有量を上記下限以上とすることにより、寿命特性をより十分に発揮させることができる。なお、非水電解質におけるハロゲン化トルエンの含有量とは、非水電解質全体の質量に対するハロゲン化トルエンの質量をいう。
 一方、このハロゲン化トルエンの含有量の上限としては、例えば10質量%とすることができ、8質量%が好ましく、6質量%がより好ましい。ハロゲン化トルエンの含有量を
上記上限以下とすることで、一定のイオン伝導度を確保できる。
(非水溶媒)
 上記非水溶媒としては、一般的な蓄電素子用非水電解質の非水溶媒として通常用いられる公知の非水溶媒を用いることができる。上記非水溶媒としては、環状カーボネート、鎖状カーボネート、エステル、エーテル、アミド、スルホン、ラクトン、ニトリル等を挙げることができる。これらの中でも、環状カーボネート又は鎖状カーボネートを少なくとも用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比(環状カーボネート:鎖状カーボネート)としては、特に限定されないが、例えば5:95以上50:50以下とすることが好ましい。
 上記環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、カテコールカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等を挙げることができ、これらの中でもECが好ましい。
 上記鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート等を挙げることができ、これらの中でもEMCが好ましい。
(電解質塩)
 上記電解質塩としては、一般的な蓄電素子用非水電解質の電解質塩として通常用いられる公知の電解質塩を用いることができる。上記電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等を挙げることができるが、リチウム塩が好ましい。
 上記リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のフッ化炭化水素基を有するリチウム塩などを挙げることができる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。
 上記非水電解質における上記電解質塩の含有量の下限としては、0.1Mが好ましく、0.3Mがより好ましく、0.5Mがさらに好ましく、0.7Mが特に好ましい。一方、この上限としては、特に限定されないが、2.5Mが好ましく、2Mがより好ましく、1.5Mがさらに好ましい。
 上記非水電解質は、本発明の効果を阻害しない限り、上記ハロゲン化トルエン、非水溶媒、及び電解質塩以外の他の成分を含有していてもよい。上記他の成分としては、一般的な蓄電素子用非水電解質に含有される、例えば2-フルオロ-6-ニトロトルエン等の各種添加剤を挙げることもできる。但し、これらの他の成分の含有量としては、5質量%以下が好ましいこともあり、1質量%以下がより好ましいこともある。
 上記非水電解質は、上記非水溶媒に上記電解質塩及びハロゲン化トルエンを添加し、溶解させることにより得ることができる。
(正極電位)
 当該蓄電素子は、満充電状態の正極電位が4.2V(vs.Li/Li)以上である(貴である)ことが好ましく、4.3V(vs.Li/Li)以上であることがより好ましい。当該蓄電素子においては、このような高電位まで充電して使用する場合も、良好な寿命特性を有する。また、このように満充電状態の正極電位が高いことにより、充放電の容量を大きくすることができる。なお、この満充電状態の正極電位の上限としては、例えば5V(vs.Li/Li)である。
 同様の観点から、通常使用時の充電終止電圧における正極電位が、4.2V(vs.Li/Li)以上となる(高くなる)ことが好ましく、4.3V(vs.Li/Li)又はこれより貴となる(高くなる)ことがより好ましい。この通常使用時の充電終止電圧における正極電位の上限としては、例えば5V(vs.Li/Li)である。ここで、通常使用時とは、当該蓄電素子について推奨され、又は指定される充電条件を採用して当該蓄電素子を使用する場合であり、当該蓄電素子のための充電器が用意されている場合は、その充電器を適用して当該質蓄電素子を使用する場合をいう。
(蓄電素子の製造方法)
 当該蓄電素子は、公知の蓄電素子の製造方法に準じた方法により得ることができる。例えば、当該蓄電素子の製造方法は、正極、負極及びセパレータを有する電極体をケースに収容する工程、及び上記ケースに上記非水電解質を注入する工程を備える。上記注入は、公知の方法により行うことができる。注入後、注入口を封止することにより蓄電素子を得ることができる。当該製造方法によって得られる蓄電素子(二次電池)を構成する各要素についての詳細は上述したとおりである。
<非水電解質蓄電素子の使用方法>
 当該蓄電素子の使用方法は特に限定されず、公知の蓄電素子と同様の方法により使用することができる。なお、当該蓄電素子に対して、4.2V(vs.Li/Li)以上の正極電位で充電を行うことが好ましく、4.3V(vs.Li/Li)以上の正極電位で充電を行うことがより好ましい。充電時の正極電位をこのように高くすることにより、充放電の容量を大きくすることができる。また、このような高電位で充電して使用する場合も、電圧低下が抑制され、蓄電素子を長期間使用することができる。一方、この満充電状態の正極電位の上限としては、例えば5V(vs.Li/Li)である。
 同様に、充電終止電圧における正極電位が、4.2V(vs.Li/Li)以上となるように当該蓄電素子を充電することが好ましく、4.3V(vs.Li/Li)又はこれより貴となるように充電することがより好ましい。この充電終止電圧における正極電位の上限としては、例えば5V(vs.Li/Li)である。
<その他の実施形態>
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。例えば、上記正極又は負極において、中間層を設けなくてもよい。また、上記実施の形態においては、蓄電素子が二次電池である形態を中心に説明したが、その他の蓄電素子であってもよい。その他の蓄電素子としては、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)等が挙げられる。
 図1に、本発明に係る蓄電素子の一実施形態である矩形状の二次電池1の概略図を示す。なお、同図は、容器内部を透視した図としている。図1に示す二次電池1は、電極体2が電池容器3に収納されている。電極体2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
 本発明に係る蓄電素子の構成については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。本発明は、上記の蓄電素子を複数備える蓄電装置としても実現することができる。蓄電装置の一実施形態を図2に示す。図2において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の二次電池1を備えている。上記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
(1)正極板の製造
 正極活物質として65:35の質量比でLiMnとLiNi1/3Co1/3Mn1/3とを混合した混合物、導電助剤としてアセチレンブラック、及び結着剤としてポリフッ化ビニリデン(PVDF)を用いた。正極活物質、導電助剤、及び結着剤の比率をそれぞれ90質量%、5質量%及び5質量%とした混合物にN-メチル-2-ピロリドン(NMP)を適量加えて粘度を調整し、ペースト状の正極合材を作製した。この正極合材を厚み15μmのアルミニウム箔(正極基材)の両面に塗布して乾燥することにより、正極基材上に正極合材層が形成された正極板を作製した。正極板には正極合材層を形成しないで、正極基材が露出した部分を設け、正極基材が露出した部分と正極リードとを接合した。
(2)負極板の製造
 負極活物質としてグラファイト(黒鉛)、結着剤としてスチレン-ブタジエンゴム(SBR)及び増粘剤としてカルボキシメチルセルロース(CMC)用いた。負極活物質、結着剤及び増粘剤をそれぞれ95質量%、3質量%及び2質量%とした混合物に水を適量加えて粘度を調整し、ペースト状の負極合材を作製した。この負極合材を厚み10μmの銅箔(負極基材)の両面に塗布して乾燥させることにより負極板を作製した。負極板には負極合材を形成しないで、負極基材が露出した部分を設け、負極基材が露出した部分と負極板リードとを接合した。
(3)未注液電池の作製
 上記のように作製した正極板と負極板との間に、基材層のみからなるセパレータを介在させて、正極板と負極板とを巻回することにより電極体(発電要素)を作製した。基材層のみからなるセパレータとしては、熱可塑性樹脂であるポリエチレン(PE)からなり、平均厚さ20μm、密度0.58g/cmの微多孔膜を採用した。電極体を電池ケースの開口部から電池ケースの内部に収納した。次いで、正極板リードを電池蓋に接合し、負極板リードを負極端子に接合した。その後、電池蓋を電池ケースの開口部に勘合させてレーザー溶接で電池ケースと電池蓋とを接合することにより、非水電解質が注液されていない未注液状態の電池を作製した。
(4)非水電解質の調製及び注液
 エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを30:70の体積比で混合して非水溶媒を調整した。この非水溶媒に、LiPFを1mol/Lの濃度で溶解させ、オルトフルオロトルエン(OFT)を非水電解質の質量に対して5質量%添加することにより、非水電解質を調整した。この非水電解質を電池ケースの側面に設けた注液口から電池ケース内部に注液し、注液口を栓で封口することにより、公称容量が600mAhである実施例1の非水電解質蓄電素子(以下、単に「電池」ということがある)を作製した。
[実施例2~12、比較例1~4]
 非水溶媒に添加した添加剤の種類及び量、並びに用いたセパレータの平均厚さ及び密度を表1及び表2に示すとおりにしたこと以外は実施例1と同様にして、実施例2~12、及び比較例1~4の各電池を作製した。なお、表中、「OFT」はo-フルオロトルエンを、「MFT」はm-フルオロトルエンを、「PFT」はp-フルオロトルエンをそれぞれ示す。また、「-」は、添加剤を添加していないこと、又は評価を行っていないことを示す。
[評価]
 評価試験(フロート試験後における電圧低下の確認)
 以下の方法により、表1に示す実施例1~9及び比較例1~4の各電池のフロート試験後の電圧低下の確認試験を行った。各電池を、25℃において600mA定電流で所定の電圧(4.1V又は4.2V)まで充電し、さらに所定の定電圧で合計3時間充電した。その後、所定の温度(60℃又は70℃)の恒温槽に入れ、所定の定電圧で6日間充電及び1日休止を繰り返した。1日休止後の電圧の値から、電圧低下量(mV)を確認した。結果を表1に示す。なお、今回の評価に用いた電池においては、電圧が4.1Vの場合、正極電位は4.2V(vs.Li/Li)であり、4.2Vの場合、正極電位は4.3V(vs.Li/Li)であった。
 以下の方法により、表2に示す実施例10~12及び比較例1の各電池のフロート試験後の電圧低下の確認試験を行った。各電池を、25℃において600mA定電流で所定の電圧(4.2V)まで充電し、さらに所定の定電圧で合計3時間充電した。その後、所定の温度(70℃)の恒温槽に入れ、所定の定電圧で2日間充電及び1日休止を繰り返した。1日休止後の電圧の値から、電圧低下量(mV)を確認した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、実施例1~9の電池は、比較例1~4のうちの同じ平均厚さ及び密度を有するものと比べて、フロート試験後の電圧低下が小さいことがわかる。特に、密度が0.58g/cmと高密度な比較例2は、電圧低下が大きい。これに対し、実施例1等のようにOFTを添加することで、他のセパレータと変わらない程度に電圧低下が抑制できることがわかる。
 また、表2に示されるように、ハロゲン原子の置換位置に拘わらず、ハロゲン化トルエンを添加することで電圧低下抑制効果があることがわかる。中でも、o-フルオロトルエン(実施例10)及びm-フルオロトルエン(実施例11)は、電圧低下抑制効果が大きく、m-フルオロトルエン(実施例11)は、特に電圧低下抑制効果が大きいことがわかる。また、p-フルオロトルエンを用いた実施例12は、初期から電圧低下がやや大きいものの、それ以降の電圧低下は抑制され、寿命特性が改善されていることがわかる。
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車などの電源として使用される非水電界二次電池をはじめとした非水電解質蓄電素子に適用できる。
1  二次電池
2  電極体
3  電池容器
4  正極端子
4’ 正極リード
5  負極端子
5’ 負極リード
20  蓄電ユニット
30  蓄電装置

Claims (9)

  1.  正極、負極、上記正極と負極との間に介在するセパレータ、及び非水電解質を備え、
     上記セパレータの主成分がポリエチレンであり、
     上記セパレータの密度が0.5g/cm以上であり、
     上記非水電解質がハロゲン化トルエンを含有する非水電解質蓄電素子。
  2.  上記セパレータの平均厚さが20μm以下である請求項1の非水電解質蓄電素子。
  3.  上記セパレータの密度が0.58g/cm以上である請求項1又は請求項2の非水電解質蓄電素子。
  4.  上記非水電解質におけるハロゲン化トルエンの含有量が0.1質量%以上である請求項3の非水電解質蓄電素子。
  5.  上記ハロゲン化トルエンがフッ素化トルエンである請求項1から請求項4のいずれか1項の非水電解質蓄電素子。
  6.  上記フッ素化トルエンがオルトフルオロトルエン又はメタフルオロトルエンである請求項5の非水電解質蓄電素子。
  7.  上記フッ素化トルエンがメタフルオロトルエンである請求項5の非水電解質蓄電素子。
  8.  満充電状態の正極電位が4.2V(vs.Li/Li)以上である請求項1から請求項7のいずれか1項の非水電解質蓄電素子。
  9.  請求項1から請求項8の非水電解質蓄電素子に対して、4.2V(vs.Li/Li)以上の正極電位で充電を行う非水電解質蓄電素子の使用方法。
PCT/JP2017/033349 2016-09-26 2017-09-14 非水電解質蓄電素子及びその使用方法 WO2018056188A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018541026A JP7159864B2 (ja) 2016-09-26 2017-09-14 非水電解質蓄電素子及びその使用方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-187365 2016-09-26
JP2016187365 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018056188A1 true WO2018056188A1 (ja) 2018-03-29

Family

ID=61689568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033349 WO2018056188A1 (ja) 2016-09-26 2017-09-14 非水電解質蓄電素子及びその使用方法

Country Status (2)

Country Link
JP (1) JP7159864B2 (ja)
WO (1) WO2018056188A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103330A (ja) * 2006-10-17 2008-05-01 Samsung Sdi Co Ltd 高電圧リチウム二次電池用電解液及びそれを用いる高電圧リチウム二次電池
JP2009076486A (ja) * 2007-09-18 2009-04-09 Tomoegawa Paper Co Ltd 電気化学素子用セパレータ
JP2009135540A (ja) * 2009-03-17 2009-06-18 Asahi Kasei Corp 非水系リチウム型蓄電素子および製造方法
JP2010232205A (ja) * 2009-03-25 2010-10-14 Tomoegawa Paper Co Ltd 蓄電デバイス用セパレータ
WO2015045989A1 (ja) * 2013-09-25 2015-04-02 三井化学株式会社 電池用非水電解液、及びリチウム二次電池
US20160006009A1 (en) * 2013-02-28 2016-01-07 Samsung Sdi Co., Ltd. Separator having high tensile strength, manufacturing method therefor, and secondary battery including same
JP2016046125A (ja) * 2014-08-25 2016-04-04 株式会社Gsユアサ 非水電解質二次電池及び非水電解質二次電池の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580662B2 (ja) 2004-02-27 2010-11-17 三井化学株式会社 非水電解質および非水電解質二次電池
JP6572565B2 (ja) 2015-03-11 2019-09-11 株式会社Gsユアサ 非水電解質二次電池及び非水電解質二次電池の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103330A (ja) * 2006-10-17 2008-05-01 Samsung Sdi Co Ltd 高電圧リチウム二次電池用電解液及びそれを用いる高電圧リチウム二次電池
JP2009076486A (ja) * 2007-09-18 2009-04-09 Tomoegawa Paper Co Ltd 電気化学素子用セパレータ
JP2009135540A (ja) * 2009-03-17 2009-06-18 Asahi Kasei Corp 非水系リチウム型蓄電素子および製造方法
JP2010232205A (ja) * 2009-03-25 2010-10-14 Tomoegawa Paper Co Ltd 蓄電デバイス用セパレータ
US20160006009A1 (en) * 2013-02-28 2016-01-07 Samsung Sdi Co., Ltd. Separator having high tensile strength, manufacturing method therefor, and secondary battery including same
WO2015045989A1 (ja) * 2013-09-25 2015-04-02 三井化学株式会社 電池用非水電解液、及びリチウム二次電池
JP2016046125A (ja) * 2014-08-25 2016-04-04 株式会社Gsユアサ 非水電解質二次電池及び非水電解質二次電池の製造方法

Also Published As

Publication number Publication date
JP7159864B2 (ja) 2022-10-25
JPWO2018056188A1 (ja) 2019-07-04

Similar Documents

Publication Publication Date Title
JP2018067501A (ja) 非水電解質蓄電素子
JP2018181772A (ja) 非水電解質蓄電素子及びその製造方法
JP2017208215A (ja) 蓄電素子用非水電解質、非水電解質蓄電素子及びその製造方法
JP6652072B2 (ja) 非水電解質、蓄電素子及び蓄電素子の製造方法
JP7062975B2 (ja) 非水電解質及び非水電解質蓄電素子
JP6911655B2 (ja) 蓄電素子用非水電解質、非水電解質蓄電素子、及び非水電解質蓄電素子の製造方法
JP6747312B2 (ja) 非水電解質、蓄電素子及び蓄電素子の製造方法
JP7137757B2 (ja) 非水電解質蓄電素子
JP2020021596A (ja) 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP7076067B2 (ja) 非水電解質二次電池、及び非水電解質二次電池の製造方法
JP7363792B2 (ja) 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP2019145343A (ja) 非水電解質、非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP2018206642A (ja) 非水電解質、非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP7062976B2 (ja) 非水電解質及び非水電解質蓄電素子
JP7205484B2 (ja) 正極、非水電解質蓄電素子、正極の製造方法、及び非水電解質蓄電素子の製造方法
JP7159864B2 (ja) 非水電解質蓄電素子及びその使用方法
JP6919202B2 (ja) 非水電解質、蓄電素子及び蓄電素子の製造方法
JP6922242B2 (ja) 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP6794656B2 (ja) 二次電池用非水電解質、非水電解質二次電池、及び非水電解質二次電池の製造方法
WO2017145507A1 (ja) 二次電池用非水電解質、非水電解質二次電池、及び非水電解質二次電池の製造方法
JP2020173998A (ja) 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP6819326B2 (ja) 非水電解質蓄電素子及びその製造方法
WO2021241467A1 (ja) 非水電解液蓄電素子
EP3477758B1 (en) Nonaqueous electrolyte, power storage element, and method for producing power storage element
JP6747191B2 (ja) 蓄電素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018541026

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852961

Country of ref document: EP

Kind code of ref document: A1