WO2018056104A1 - 車両制御装置、車両制御方法、および移動体 - Google Patents

車両制御装置、車両制御方法、および移動体 Download PDF

Info

Publication number
WO2018056104A1
WO2018056104A1 PCT/JP2017/032749 JP2017032749W WO2018056104A1 WO 2018056104 A1 WO2018056104 A1 WO 2018056104A1 JP 2017032749 W JP2017032749 W JP 2017032749W WO 2018056104 A1 WO2018056104 A1 WO 2018056104A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
switching
operation mode
driver
determination unit
Prior art date
Application number
PCT/JP2017/032749
Other languages
English (en)
French (fr)
Inventor
麻子 金子
和幸 丸川
至 清水
新之介 速水
泰宏 湯川
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP17852881.6A priority Critical patent/EP3517384B1/en
Priority to CN201780057441.7A priority patent/CN109715467B/zh
Priority to JP2018540976A priority patent/JP7056569B2/ja
Priority to US16/334,515 priority patent/US20200086886A1/en
Priority to CA3037117A priority patent/CA3037117A1/en
Priority to MX2019003129A priority patent/MX2019003129A/es
Publication of WO2018056104A1 publication Critical patent/WO2018056104A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/007Switching between manual and automatic parameter input, and vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/007Switching between manual and automatic parameter input, and vice versa
    • B60W2050/0071Controller overrides driver automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0095Automatic control mode change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0095Automatic control mode change
    • B60W2050/0096Control during transition between modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/043Identity of occupants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/22Psychological state; Stress level or workload
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/221Physiology, e.g. weight, heartbeat, health or special needs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/30Driving style
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain

Definitions

  • the present technology relates to a vehicle control device, a vehicle control method, and a moving body, and more particularly, to a vehicle control device, a vehicle control method, and a moving body that can realize switching of an appropriate operation mode.
  • Assist driving is an operation mode in which the vehicle control system supports driving by the passenger
  • autonomous driving is an operation mode in which the vehicle control system completely controls driving without requiring driving by the passenger.
  • the operation mode can be switched at any timing by the driver or automatically by the control system.
  • Patent Document 1 discloses that automatic driving of the own vehicle is interrupted based on the interruption history of automatic driving control of other vehicles on the route of the own vehicle. According to this technique, for example, in a section where accidents frequently occurred in the past, the operation mode is switched from automatic operation to manual operation.
  • Patent Document 2 discloses that when the vehicle is traveling in the automatic travel mode, if the driver performs a predetermined driving operation, switching from the automatic travel mode to the manual travel mode is performed. .
  • Patent Document 3 it is described that the accelerator device and the brake device are switched from the manual operation mode to the automatic operation mode before the steering device at the junction from the general road to the highway.
  • Patent Document 4 after a driver requests cancellation of automatic driving, it is determined whether or not the driver performs an appropriate driving operation, and when it is determined that the driver performs an appropriate driving operation, It describes that automatic operation is canceled.
  • each device such as an accelerator device, a brake device, and a steering device has not been switched in stages.
  • the optimal switching timing of the operation mode for each device should be different depending on the driver's condition and the surrounding environment.
  • This technology has been made in view of such a situation, and is intended to realize more appropriate switching of operation modes.
  • the vehicle control device of the present technology includes a control unit that switches the operation modes of the plurality of driving mechanisms at different timings according to a vehicle operation mode switching trigger.
  • the vehicle control method of the present technology includes a step of switching operation modes of a plurality of driving mechanisms at different timings according to a vehicle operation mode switching trigger.
  • the moving body of the present technology includes a control unit that switches the operation modes of the plurality of driving mechanisms at different timings according to the operation mode switching trigger.
  • the operation modes of the plurality of driving mechanisms are switched at different timings according to the vehicle operation mode switching trigger.
  • FIG. 1 is a diagram illustrating a configuration example of an embodiment of a vehicle as a moving body to which the present technology is applied.
  • a vehicle 11 shown in FIG. 1 includes a front sensing camera 21, a front camera ECU (Electronic Control Unit) 22, a position information acquisition unit 23, a display unit 24, a communication unit 25, a steering mechanism 26, a radar 27, a lidar (Light Detection Detection and Ranging). Or LaserLaImaging Detection and Ranging (LIDAR) 28, side view camera 29, side view camera ECU 30, integrated ECU 31, front view camera 32, front view camera ECU 33, braking device 34, engine 35, generator 36, drive motor 37, battery 38, a rear view camera 39, a rear view camera ECU 40, a vehicle speed detection unit 41, a headlight 42, and an in-vehicle sensor 43.
  • a front sensing camera 21 a front camera ECU (Electronic Control Unit) 22
  • a position information acquisition unit 23 includes a display unit 24, a communication unit 25, a steering mechanism 26, a radar 27, a lidar (Light Detection Detection and Ranging). Or LaserLaImaging
  • Each unit provided in the vehicle 11 is connected to each other via a bus for CAN (Controller Area Network) communication or other connection lines.
  • CAN Controller Area Network
  • these buses and connection lines are connected to each other. It is drawn without distinction.
  • the front sensing camera 21 is composed of, for example, a camera dedicated to sensing disposed in the vicinity of a rearview mirror in a vehicle interior, and images the front of the vehicle 11 as a subject, and outputs a sensing image obtained as a result to the front camera ECU 22.
  • the front camera ECU 22 appropriately performs processing for improving the image quality, etc., on the sensing image supplied from the front sensing camera 21, and then performs image recognition on the sensing image. Detect any object.
  • the front camera ECU 22 outputs the image recognition result to a bus for CAN communication.
  • the position information acquisition unit 23 includes a position information measurement system such as a GPS (Global Positioning System) or a Quasi-Zenith Satellite System (QZSS), and detects the position of the vehicle 11 and displays the detection result.
  • the indicated position information is output to the bus for CAN communication.
  • the display unit 24 includes, for example, a liquid crystal display panel, and is disposed at a predetermined position in the vehicle interior such as the center portion of the instrument panel and the interior of the room mirror.
  • the display unit 24 may be a transmissive display provided so as to overlap with a windshield (front glass) part, or may be a display of a car navigation system.
  • the display unit 24 displays various images according to the control of the integrated ECU 31.
  • the communication unit 25 communicates information with surrounding vehicles, portable terminal devices possessed by pedestrians, roadside devices, and external servers through various types of wireless communication such as vehicle-to-vehicle communication, vehicle-to-vehicle communication, and road-to-vehicle communication. Send and receive.
  • the communication unit 25 performs vehicle-to-vehicle communication with surrounding vehicles, receives surrounding vehicle information including information indicating the number of passengers and the running state from the surrounding vehicles, and supplies the information to the integrated ECU 31.
  • the steering mechanism 26 performs control of the traveling direction of the vehicle 11, that is, steering angle control, according to a steering operation by the driver or a control signal supplied from the integrated ECU 31.
  • the radar 27 is a distance measuring sensor that measures the distance to an object such as a vehicle or a pedestrian in each direction such as front and rear using electromagnetic waves such as millimeter waves, and integrates the measurement results of the distance to the object. Output to ECU31 etc.
  • the lidar 28 is a distance measuring sensor that measures the distance to an object such as a vehicle or a pedestrian in each direction such as front and rear using light waves, and outputs the measurement result of the distance to the object to the integrated ECU 31 or the like. To do.
  • the side view camera 29 is, for example, a camera disposed in the case of the side mirror or in the vicinity of the side mirror.
  • the side view camera 29 is an image of a side of the vehicle 11 including an area that is a driver's blind spot (hereinafter also referred to as a side image). An image is taken and supplied to the side view camera ECU 30.
  • the side view camera ECU 30 performs image processing for improving the image quality such as white balance adjustment on the side image supplied from the side view camera 29, and the obtained side image is a CAN communication bus.
  • the integrated ECU 31 is supplied via a different cable.
  • the integrated ECU 31 includes a plurality of ECUs arranged at the center of the vehicle 11 such as the operation control ECU 51 and the battery ECU 52, and controls the operation of the entire vehicle 11.
  • the driving control ECU 51 is an ECU that realizes an ADAS (Advanced Driving Assistant System) function or an autonomous driving function, and recognizes an image recognition result from the front camera ECU 22, position information from the position information acquisition unit 23, and a communication unit.
  • the driving (traveling) of the vehicle 11 is controlled based on various information such as surrounding vehicle information supplied from the vehicle 25, measurement results from the radar 27 and the lidar 28, detection results of travel speed from the vehicle speed detection unit 41, and the like. . That is, the driving control ECU 51 controls the driving of the vehicle 11 by controlling the steering mechanism 26, the braking device 34, the engine 35, the driving motor 37, and the like.
  • the operation control ECU 51 controls the headlight 42 based on the presence or absence of the headlight of the oncoming vehicle supplied as an image recognition result from the front camera ECU 22, and performs beam irradiation by the headlight 42 such as switching between a high beam and a low beam. Control.
  • a dedicated ECU may be provided for each function such as the ADAS function, the autonomous driving function, and the beam control.
  • the battery ECU 52 controls the supply of power by the battery 38 and the like.
  • the front view camera 32 is composed of, for example, a camera disposed in the vicinity of the front grille.
  • the front view camera 32 captures a front image (hereinafter also referred to as a front image) of the vehicle 11 including an area that is a driver's blind spot, and the front view camera ECU 33 receives the image. Supply.
  • the front view camera ECU 33 performs image processing for improving the image quality such as white balance adjustment on the front image supplied from the front view camera 32, and the obtained front image is a cable different from the CAN communication bus. To the integrated ECU 31.
  • the braking device 34 operates according to a brake operation by the driver or a control signal supplied from the integrated ECU 31, and stops or decelerates the vehicle 11.
  • the engine 35 is a power source of the vehicle 11 and is driven according to a control signal supplied from the integrated ECU 31.
  • the generator 36 is controlled by the integrated ECU 31 and generates electricity in accordance with the driving of the engine 35.
  • the drive motor 37 is a power source of the vehicle 11, receives power supplied from the generator 36 and the battery 38, and drives according to a control signal supplied from the integrated ECU 31. Whether the engine 35 or the drive motor 37 is driven when the vehicle 11 is traveling is appropriately switched by the integrated ECU 31.
  • the battery 38 has, for example, a 12V battery, a 200V battery, and the like, and supplies power to each part of the vehicle 11 according to the control of the battery ECU 52.
  • the rear view camera 39 is composed of, for example, a camera arranged in the vicinity of the license plate of the tailgate.
  • the rear view camera 39 captures a rear image of the vehicle 11 (hereinafter also referred to as a rear image) including an area that is a driver's blind spot, and the rear view camera ECU 40 To supply.
  • the rear view camera 39 is activated when a shift lever (not shown) is moved to the reverse (R) position.
  • the rear view camera ECU 40 performs image processing for improving the image quality such as white balance adjustment on the rear image supplied from the rear view camera 39, and the obtained rear image via a cable different from the CAN communication bus. To the integrated ECU 31.
  • the vehicle speed detection unit 41 is a sensor that detects the traveling speed of the vehicle 11 and supplies the traveling speed detection result to the integrated ECU 31. Note that the vehicle speed detection unit 41 may calculate the acceleration and the acceleration differential from the detection result of the traveling speed. For example, the calculated acceleration is used for estimating the time until the vehicle 11 collides with an object.
  • the headlight 42 operates according to a control signal supplied from the integrated ECU 31 and illuminates the front of the vehicle 11 by outputting a beam.
  • the in-vehicle sensor 43 is a sensor that detects the state and attributes of a passenger who is in the vehicle 11 and supplies the detection result to the integrated ECU 31.
  • the in-vehicle sensor 43 detects information such as the state of the driver, which seat in the vehicle 11 the passenger is in, and whether the passenger is an adult or a child.
  • the in-vehicle sensor 43 can also be configured by an in-vehicle camera and an in-vehicle camera ECU. In this case, the in-vehicle sensor 43 performs image recognition on the image captured by the in-vehicle camera, so that the state of the driver, which seat in the vehicle 11 is a passenger, whether the passenger is an adult or a child. Information such as whether or not there is is detected.
  • a plurality of units including a front camera module 71, a communication unit 25, an operation control ECU 51, a steering mechanism 26, a braking device 34, an engine 35, a drive motor 37, and a headlight 42.
  • a bus 72 for CAN communication is connected to each other by a bus 72 for CAN communication.
  • the same reference numerals are given to the portions corresponding to those in FIG. 1, and the description thereof will be omitted as appropriate.
  • the front camera module 71 includes a lens 81, an image sensor 82, a front camera ECU 22, and an MCU (Module Control Unit) 83.
  • the front sensing camera 21 is configured by the lens 81 and the image sensor 82, and the image sensor 82 includes, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • the front camera module 71 In the front camera module 71, light from the subject is collected on the imaging surface of the image sensor 82 by the lens 81.
  • the image sensor 82 captures a sensing image by photoelectrically converting light incident from the lens 81 and supplies the sensing image to the front camera ECU 22.
  • the front camera ECU 22 performs, for example, gain adjustment, white balance adjustment, HDR (High Dynamic Range) processing, etc. on the sensing image supplied from the image sensor 82, and then performs image recognition on the sensing image.
  • gain adjustment for example, gain adjustment, white balance adjustment, HDR (High Dynamic Range) processing, etc.
  • HDR High Dynamic Range
  • image recognition for example, recognition (detection) of white lines, curbs, pedestrians, vehicles, headlights, brake lamps, road signs, time until a collision with a preceding vehicle, and the like is performed.
  • the recognition results of these image recognitions are converted into signals in a CAN communication format by the MCU 83 and output to the bus 72.
  • the information supplied from the bus 72 is converted into a signal in a format defined for the front camera module 71 by the MCU 83 and supplied to the front camera ECU 22.
  • the operation control ECU 51 appropriately controls the steering mechanism 26, the braking device 34, the engine based on the image recognition result output from the MCU 83 to the bus 72 and information supplied from other units such as the radar 27 and the lidar 28. 35, the drive motor 37, the headlight 42, and the like are controlled. As a result, operation control such as change of traveling direction, braking, acceleration, and starting, warning notification control, beam switching control, and the like are realized.
  • the driving control ECU 51 realizes an autonomous driving function or the like, for example, from the image recognition result at each time obtained by the front camera ECU 22, the driving control ECU 51 further recognizes the locus of the position of the target object.
  • the recognition result may be transmitted to an external server via the communication unit 25.
  • the server learns a deep neural network or the like, generates a necessary dictionary or the like, and transmits it to the vehicle 11.
  • the dictionary or the like obtained in this way is received by the communication unit 25, and the received dictionary or the like is used for various predictions in the operation control ECU 51.
  • control performed by the operation control ECU 51 control that can be realized only from the result of image recognition on the sensing image may be performed by the front camera ECU 22 instead of the operation control ECU 51.
  • the front camera ECU 22 may control the headlight 42 based on the presence or absence of the headlight of the oncoming vehicle obtained by image recognition on the sensing image.
  • the front camera ECU 22 generates a control signal instructing switching between a low beam and a high beam, and supplies the control signal to the headlight 42 via the MCU 83 and the bus 72, thereby switching the beam by the headlight 42. Control.
  • the front camera ECU 22 is notified of a collision with a target object or a warning of deviation from the driving lane (lane) based on the recognition result of white lines, curbs, pedestrians, and the like obtained by image recognition on the sensing image.
  • a warning notification may be controlled by generating a notification or the like and outputting it to the bus 72 via the MCU 83.
  • the warning notification output from the front camera ECU 22 is supplied to, for example, the display unit 24 or a speaker (not shown). As a result, a warning message can be displayed on the display unit 24, or a warning message can be output from the speaker.
  • an around view monitor function is realized by displaying a composite image on the display unit 24, for example, when parking.
  • the front image, the rear image, and the side image obtained in each unit are supplied to the image synthesis ECU 101 provided in the integrated ECU 31 via a cable different from the CAN communication bus.
  • a composite image is generated from these images.
  • the same reference numerals are given to the portions corresponding to those in FIG. 1, and the description thereof will be omitted as appropriate.
  • a side view camera 29 ⁇ / b> L disposed on the left side of the vehicle 11 and a side view camera 29 ⁇ / b> R disposed on the right side of the vehicle 11 are provided.
  • a side view camera ECU 30 ⁇ / b> L disposed on the left side of the vehicle 11 and a side view camera ECU 30 ⁇ / b> R disposed on the right side of the vehicle 11 are provided.
  • the front image obtained by the front view camera 32 is supplied from the front view camera ECU 33 to the image composition ECU 101, and the rear image obtained by the rear view camera 39 is supplied from the rear view camera ECU 40.
  • a side image obtained by the side view camera 29L (hereinafter, also referred to as a left side image in particular) is supplied from the side view camera ECU 30L to the image synthesis ECU 101, and a side image obtained by the side view camera 29R ( Hereinafter, the right side image in particular is also supplied from the side view camera ECU 30R.
  • the image synthesis ECU 101 generates a composite image in which the front image, the rear image, the left side image, and the right side image are arranged in the corresponding regions based on these supplied images, and displays the obtained composite image on the display unit. 24 for display.
  • the driver can park safely and easily by driving the vehicle 11 while confirming the composite image displayed in this way.
  • the integrated ECU 31 may control the driving of the vehicle 11 based on the composite image and perform parking.
  • a control unit may be provided for each control content, that is, for each function.
  • portions corresponding to those in FIG. 2 are denoted with the same reference numerals, and description thereof will be omitted as appropriate.
  • the front camera module 71, the communication unit 25, the steering mechanism 26, the braking device 34, the engine 35, the drive motor 37, the headlight 42, the beam control unit 111, and the warning notification are included in the CAN communication bus 72.
  • a plurality of units including a control unit 112, a steering control unit 113, a brake control unit 114, and an accelerator control unit 115 are connected.
  • control performed by the operation control ECU 51 in the example of FIG. 2 is shared by the beam control unit 111, the warning notification control unit 112, the steering control unit 113, the brake control unit 114, and the accelerator control unit 115. Done.
  • the beam control unit 111 performs switching control between the low beam and the high beam by controlling the headlight 42 based on the result of image recognition obtained by the front camera ECU 22 or the like.
  • the warning notification control unit 112 controls warning notifications such as various warning displays on the display unit 24 and output of warning messages from a speaker (not shown) based on the result of image recognition obtained by the front camera ECU 22. I do.
  • the steering control unit 113 controls the traveling direction of the vehicle 11 by controlling the steering mechanism 26 based on the measurement result from the radar 27 and the lidar 28 as a result of the image recognition obtained by the front camera ECU 22.
  • the brake control unit 114 controls the stopping and deceleration of the vehicle 11 by controlling the braking device 34 based on the measurement results from the radar 27 and the lidar 28 as a result of the image recognition obtained by the front camera ECU 22. Do.
  • the accelerator control unit 115 controls the engine 35 and the drive motor 37 based on the image recognition results obtained by the front camera ECU 22 and the measurement results from the radar 27 and the lidar 28, thereby starting the vehicle 11 Control acceleration.
  • FIG. 5 illustrates a configuration example of the vehicle control unit according to the first embodiment of the present technology.
  • the vehicle control unit 201 controls the steering control unit 113, the brake control unit 114, and the accelerator control unit 115, so that the steering mechanism 26 related to the steering of the vehicle 11, the braking device 34 related to the braking of the vehicle 11, and the vehicle 11 switches the operation mode of each operation mechanism such as the engine 35 and the drive motor 37 related to the driving (running) of 11. Specifically, the vehicle control unit 201 switches the operation mode of each driving mechanism at different timings according to the operation mode switching trigger of the vehicle 11.
  • 5 includes a switching trigger detection unit 211, an identification unit 212, a switching timing determination unit 213, and an operation mode switching unit 214.
  • the switching trigger detection unit 211 detects a trigger (switching trigger) for switching the operation mode of the vehicle 11 (own vehicle). When the switching trigger is detected, the switching trigger detection unit 211 supplies information indicating that the switching trigger is detected to the identification unit 212.
  • the identification unit 212 When the information is supplied from the switching trigger detection unit 211, the identification unit 212 performs personal identification of the driver based on identification information for identifying the driver. The identification unit 212 supplies the result of personal identification to the switching timing determination unit 213.
  • the switching timing determination unit 213 determines the switching timing of each driving mechanism (the steering mechanism 26, the braking device 34, the engine 35, or the drive motor 37).
  • the switching timing determination unit 213 determines the switching timing of each driving mechanism according to the result of personal identification supplied from the identification unit 212. Specifically, the switching timing determination unit 213 determines the switching timing of each driving mechanism based on the driver state information indicating the state of the driver specified by the personal identification result. The switching timing determination unit 213 supplies information indicating the determined switching timing of each driving mechanism to the operation mode switching unit 214.
  • the operation mode switching unit 214 controls the operation of each driving mechanism at the switching timing indicated by the information supplied from the switching timing determination unit 213 by controlling the steering control unit 113, the brake control unit 114, and the accelerator control unit 115. Switch modes. For example, the operation mode switching unit 214 instructs the steering control unit 113, the brake control unit 114, and the accelerator control unit 115 to switch the operation mode of each driving mechanism at each switching timing.
  • Steering control unit 113, brake control unit 114, and accelerator control unit 115 control each driving mechanism by generating a control signal based on the output of each sensor or the like when the operation mode is an automatic driving described later. Further, the steering control unit 113, the brake control unit 114, and the accelerator control unit 115 control each driving mechanism by generating a control signal based on a driver's operation when the operation mode is manual driving described later. .
  • the operation mode of the vehicle is broadly divided into three modes: complete manual operation, support operation, and autonomous operation.
  • Complete manual operation is an operation mode in which the driver performs all operations of the vehicle.
  • the authority to drive is on the human side.
  • Assistance driving is an operation mode that supports driving performed by the driver when the vehicle control system performs part of the driving. Even in assisted driving, driving authority is on the human side.
  • Autonomous driving is an operation mode in which the vehicle control system performs all driving of the host vehicle.
  • the driving authority is on the vehicle side.
  • the driving authority is on the human side.
  • step S11 the switching trigger detection unit 211 determines whether an operation mode switching trigger has been detected.
  • the switching trigger is an operation instructed by the driver to switch the operation mode, information indicating that the vehicle 11 is approaching a junction from the general road to the highway, or the like. Further, when the vehicle 11 has a function of switching the operation mode according to the operation mode of the other vehicle traveling around the vehicle 11, the switching trigger indicates the operation mode of the other vehicle acquired by the inter-vehicle communication. It may be information.
  • the switching trigger indicates switching from manual operation to automatic operation.
  • step S11 The process of step S11 is repeated until it is determined that the operation mode switching trigger is detected. If it is determined in step S11 that the operation mode switching trigger has been detected, the process proceeds to step S12, and the identification unit 212 identifies the driver based on the identification information.
  • the identification information is a driver's face image photographed by a camera provided in the passenger compartment, an ID that can be read from an IC chip provided in a driver's license or ID card, and the like.
  • the identification unit 212 performs personal identification of the driver through face authentication.
  • step S13 the switching timing determination unit 213 refers to the driver status information of the identified driver.
  • the driver state information is a profile such as driver history, driving frequency, and age, and a life log such as driving duration, health state, and sleeping time.
  • the switching timing determination part 213 determines the switching timing of each driving mechanism based on the state of the driver indicated by the referred driver state information. Specifically, the switching timing determination unit 213 determines the switching order of the operation modes of each driving mechanism and the switching time interval.
  • the switching timing is determined so that the operation mode of each driving mechanism is switched from manual driving to automatic driving in the order of the engine 35 or the drive motor 37, the braking device 34, and the steering mechanism 26. Further, when the driving skill level of the driver is low, the age is high, etc., for switching the operation mode of each driving mechanism, the time interval from when the switching trigger is detected until the operation mode is actually switched is lengthened. Thus, the switching timing is determined.
  • step S15 the operation mode switching unit 214 controls the steering control unit 113, the brake control unit 114, and the accelerator control unit 115 to switch the operation mode of each driving mechanism at the determined switching timing.
  • the operation mode of each driving mechanism is stepped in accordance with the driver's state. It is possible to switch the operation mode more appropriately for the vehicle 11 as a whole.
  • the switching timing of the operation mode of each driving mechanism is determined based on the state of the driver identified by the individual.
  • the operation mode switching timing may be determined in advance.
  • switching the operation mode of each driving mechanism based on the acquired driver's state without performing personal identification of the driver The timing may be determined.
  • FIG. 7 illustrates a configuration example of the vehicle control unit according to the second embodiment of the present technology.
  • the 7 includes a switching trigger detection unit 311, a determination unit 312, a switching timing determination unit 313, and an operation mode switching unit 314.
  • the switching trigger detection unit 311 detects the switching trigger and supplies information indicating that the switching trigger has been detected to the determination unit 312.
  • the determination unit 312 determines the surrounding situation of the host vehicle based on the surrounding situation information indicating the surrounding situation of the vehicle 11.
  • the determination unit 312 determines the state of the driver based on the driver state information indicating the state of the driver.
  • the determination unit 312 supplies the determination result to the switching timing determination unit 313.
  • the switching timing determination unit 313 determines the switching timing of each driving mechanism (the steering mechanism 26, the braking device 34, the engine 35, or the drive motor 37) based on the determination result supplied from the determination unit 312. Specifically, the switching timing determination unit 313 determines the switching timing of each driving mechanism based on the situation around the host vehicle and the state of the driver. The switching timing determination unit 313 supplies information indicating the determined switching timing of each driving mechanism to the operation mode switching unit 314.
  • the operation mode switching unit 314 controls the operation of each driving mechanism at the switching timing indicated by the information supplied from the switching timing determination unit 313 by controlling the steering control unit 113, the brake control unit 114, and the accelerator control unit 115. Switch modes.
  • step S31 the switching trigger detection unit 311 determines whether or not an operation mode switching trigger has been detected.
  • the switching trigger indicates switching from automatic operation to manual operation.
  • step S31 The process of step S31 is repeated until it is determined that the operation mode switching trigger is detected. If it is determined in step S31 that an operation mode switching trigger has been detected, the process proceeds to step S32, and the determination unit 312 acquires a sensing image as the ambient state information, and based on the acquired sensing image, Determine the weather.
  • the sensing image is an image obtained by the front sensing camera 21 and captured in front of the vehicle 11 as a subject.
  • the determination unit 312 acquires a sensing image via the front camera ECU 22 and determines the weather by analyzing the acquired sensing image.
  • the determination unit 312 determines that the weather is rainy. If no raindrop is shown in the sensing image, the sky color is blue, and the entire image is bright, the determination unit 312 determines that the weather is clear.
  • the switching timing determination unit 313 determines the switching timing of each driving mechanism based on the determined weather. Specifically, the switching timing determination unit 313 determines the order of switching the operation mode of each operating mechanism and the switching time interval.
  • the operation mode of the braking device 34 that controls the brake operation is switched from the automatic operation to the manual operation after the operation mode of the steering mechanism 26, the engine 35, or the drive motor 37.
  • the switching timing is determined. Further, when it is determined that the weather is sunny, the switching timing is set so that the operation mode of the engine 35 or the drive motor 37 is switched from the automatic operation to the manual operation after the operation mode of the steering mechanism 26 or the braking device 34. It is determined.
  • step S34 the operation mode switching unit 314 controls the steering control unit 113, the brake control unit 114, and the accelerator control unit 115 to switch the operation mode of each driving mechanism at the determined switching timing.
  • the switching timing of the operation mode of each driving mechanism is determined based on the weather, the operation mode of each driving mechanism is switched in stages according to the weather, It is possible to realize more appropriate switching of the operation mode.
  • FIG. 9 is a flowchart for explaining another example of the operation mode switching process by the vehicle control unit 301.
  • step S51 the switching trigger detection unit 311 determines whether an operation mode switching trigger is detected.
  • step S51 The process of step S51 is repeated until it is determined that the operation mode switching trigger is detected. If it is determined in step S51 that an operation mode switching trigger has been detected, the process proceeds to step S52, and the determination unit 312 determines the state of the driver based on the driver state information.
  • the driver state information is a profile such as driver history, driving frequency, and age, and a life log such as driving duration, health state, and sleeping time.
  • the determination unit 312 determines the driving skill level and the fatigue level of the driver based on the profile and the life log.
  • the driver state information is the direction of the driver's face detected by the DMS, the eye closed condition, the opening condition, and the like. You can also.
  • step S53 the determination unit 312 determines the situation around the host vehicle based on the surrounding situation information.
  • the surrounding state information is a front image, a rear image, a left side image, and a right side image obtained by the front view camera 32, the rear view camera 39, and the side view camera 29, or a synthesis obtained by the image synthesis ECU 101. It is considered as an image.
  • the determination unit 312 determines the number of other vehicles that travel around the host vehicle (the vehicle 11) based on each image.
  • the determination unit 312 can also determine the number of other vehicles traveling around the host vehicle (vehicle 11) based on the surrounding vehicle information received by the vehicle-to-vehicle communication by the communication unit 25.
  • the switching timing determination unit 313 switches the operation mode of each driving mechanism based on the determined driver state and the situation around the host vehicle. To decide. Specifically, the switching timing determination unit 313 determines the order of switching the operation mode of each operating mechanism and the switching time interval. Furthermore, the switching timing determination unit 313 determines whether it is necessary to switch the operation mode of each driving mechanism at the determined switching timing.
  • step S55 it is determined whether or not the operation mode of each operation mechanism needs to be switched at the determined switching timing.
  • step S56 the operation mode switching unit 314 includes the steering control unit 113, the brake control unit 114, and the accelerator control unit 115. By controlling, the operation mode of each driving mechanism is switched at the determined switching timing.
  • the process proceeds to step S57, and the operation mode switching unit 314 includes the steering control unit 113, the brake control unit 114, and the accelerator control unit. By controlling 115, the operation modes of the respective operation mechanisms are switched simultaneously at a predetermined timing.
  • the switching timing of the operation mode of each driving mechanism and the necessity of switching at the switching timing are determined based on the driver's state and surrounding conditions. According to the surrounding situation, the operation mode of each driving mechanism is switched in stages as necessary, and the vehicle 11 as a whole can realize more appropriate switching of the operation mode.
  • FIG. 10 illustrates a configuration example of the vehicle control unit according to the third embodiment of the present technology.
  • the vehicle control unit 401 in FIG. 10 is also realized by the operation control ECU 51, and switches the operation mode of each driving mechanism at different timings according to the operation mode switching trigger of the vehicle 11.
  • a switching trigger detection unit 411 includes a switching trigger detection unit 411, an identification unit 412, a determination unit 413, a switching timing determination unit 414, an operation mode switching unit 415, and an evacuation processing unit 416.
  • the switching trigger detection unit 411 detects the switching trigger and supplies the identification unit 412 with information indicating that the switching trigger has been detected.
  • the identification unit 412 When the information is supplied from the switching trigger detection unit 411, the identification unit 412 performs personal identification of a plurality of passengers (all the passengers) based on identification information for identifying the passengers. The identification unit 412 supplies the result of personal identification to the determination unit 413.
  • the determination unit 413 determines whether or not there is a passenger who can be a driver (hereinafter referred to as a driver candidate) based on the passenger state information indicating the state of the passenger. .
  • the determination unit 413 supplies information according to the determination result to the switching timing determination unit 414 or the save processing unit 416. Further, the determination unit 413 controls the display of the display unit 24 according to the determination result.
  • the switching timing determination unit 414 determines the switching timing of each driving mechanism (the steering mechanism 26, the braking device 34, the engine 35, or the drive motor 37) based on the information supplied from the determination unit 413. Specifically, the switching timing determination unit 414 determines the switching timing of each driving mechanism based on the passenger state information indicating the state of the driver candidate. The switching timing determination unit 414 supplies information indicating the determined switching timing of each driving mechanism to the operation mode switching unit 415.
  • the operation mode switching unit 415 controls the operation of each driving mechanism at the switching timing indicated by the information supplied from the switching timing determination unit 414 by controlling the steering control unit 113, the brake control unit 114, and the accelerator control unit 115. Switch modes.
  • the evacuation processing unit 416 controls the steering control unit 113, the brake control unit 114, and the accelerator control unit 115 based on the information supplied from the determination unit 413, thereby bringing the traveling vehicle 11 into a safe state. For saving.
  • step S71 the switching trigger detection unit 411 determines whether an operation mode switching trigger is detected.
  • the switching trigger indicates switching from automatic driving to manual driving.
  • step S71 The process of step S71 is repeated until it is determined that the operation mode switching trigger is detected. If it is determined in step S71 that an operation mode switching trigger has been detected, the process proceeds to step S72, and the identification unit 412 identifies all the passengers based on the identification information.
  • the identification information is a face image of the passenger photographed by a camera provided in the passenger compartment, and the identification unit 412 performs personal identification of all the passengers by face authentication.
  • step S73 the determination unit 413 determines whether there are driver candidates among the passengers based on the passenger state information of all the identified passengers. To do.
  • the passenger status information is a profile such as presence / absence of a driver's license, driver history, driving frequency, age, etc., life log such as driving duration, health status, sleeping time, etc.
  • the determination unit 312 determines whether there is a driver candidate based on the profile and the life log.
  • step S73 If it is determined in step S73 that there is a driver candidate among the passengers, the process proceeds to step S74.
  • the determination unit 413 determines one of them as a final driver candidate. For example, the determination unit 413 causes a plurality of driver candidates to select who will be the final driver candidate by displaying on the display unit 24. At this time, an order suitable for the driver candidate is presented to the passenger based on the profile and the life log. For example, a driver candidate with a little sleep time on the previous day is ranked low.
  • step S74 the determination unit 413 causes the display unit 24 to perform display for guiding the driver candidate to arrive at the driver's seat.
  • step S75 the switching timing determination unit 414 refers to the driver candidate's passenger status information (profile and life log).
  • step S76 the switching timing determination unit 414 determines the switching timing of each driving mechanism based on the state of the driver candidate indicated by the referred passenger state information. Specifically, the switching timing determination unit 414 determines the order of switching the operation mode of each operating mechanism and the switching time interval.
  • step S77 the operation mode switching unit 415 controls the steering control unit 113, the brake control unit 114, and the accelerator control unit 115 to switch the operation mode of each driving mechanism at the determined switching timing.
  • step S73 determines that there is no driver candidate among the passengers. If it is determined in step S73 that there is no driver candidate among the passengers, the process proceeds to step S78.
  • step S78 the evacuation processing unit 416 performs the evacuation process for controlling the steering control unit 113, the brake control unit 114, and the accelerator control unit 115 to bring the traveling vehicle 11 into a safe state.
  • the retreat processing unit 416 controls the steering control unit 113, the brake control unit 114, and the accelerator control unit 115 to stop the traveling vehicle 11 at a safe place such as a road shoulder as the retreat process. Like that.
  • traveling by ACC Adaptive Cruise Control
  • CACC Adaptive Cruise Control
  • traveling by CACC for example, the vehicle travels following another vehicle heading to or near the same destination as the host vehicle.
  • a tow vehicle such as a tow truck may be called by wireless communication of the communication unit 25.
  • the switching timing of the operation mode of each driving mechanism is determined based on the state of the driver candidate. According to the state of the driver candidate, the operation modes of the respective driving mechanisms are switched in stages, so that more appropriate operation mode switching can be realized for the vehicle 11 as a whole.
  • the evacuation process is performed, so that the safety of the vehicle 11 is ensured even if the driver becomes suddenly ill during automatic driving. Is possible.
  • a vehicle control device comprising: a control unit that switches operation modes of a plurality of driving mechanisms at different timings in response to a vehicle operation mode switching trigger.
  • a switching timing for switching the operation mode of the plurality of driving mechanisms from the first mode to the second mode is determined.
  • the vehicle control device according to (1) further including a determination unit that performs the operation.
  • An identification unit for personal identification of the driver The vehicle control device according to (2), wherein the determination unit determines switching timings of operation modes of the plurality of driving mechanisms according to a result of personal identification of the driver.
  • the vehicle control device (4) The vehicle control device according to (3), wherein the determination unit determines switching timings of operation modes of the plurality of driving mechanisms based on at least one of the profile and life log of the driver for which personal identification has been performed. . (5) A discriminator for discriminating the situation around the vehicle; The vehicle control device according to (2), wherein the determination unit determines switching timings of operation modes of the plurality of driving mechanisms based on the determined situation around the vehicle. (6) The vehicle control apparatus according to (5), wherein the situation around the vehicle is weather. (7) The determination unit further determines the state of the driver, The determination unit determines whether or not to switch at the operation mode switching timing of the plurality of driving mechanisms based on the determined situation around the vehicle and the state of the driver. The vehicle control device described.
  • An identification unit for personal identification of a plurality of passengers Based on the results of personal identification of the plurality of passengers, further comprising a determination unit for determining the presence or absence of a passenger who can be the driver, The vehicle control device according to (2), wherein the determination unit determines switching timings of operation modes of the plurality of driving mechanisms according to a determination result of the presence or absence of a passenger who can be the driver. (9) When it is determined that there is a passenger who can be the driver, the determination unit is configured to operate the operation modes of the plurality of driving mechanisms based on at least one of a profile and a life log of the passenger who can be the driver. The vehicle control device described in (8).
  • the vehicle control device according to any one of (2) to (9), wherein the determination unit determines at least one of an order and an interval of switching of operation modes of the plurality of driving mechanisms.
  • the vehicle control device according to any one of (2) to (10), further including a switching unit that switches operation modes of the plurality of driving mechanisms at a determined switching timing.
  • a vehicle control method including a step of switching operation modes of a plurality of driving mechanisms at different timings according to a vehicle operation mode switching trigger.
  • a moving body comprising a control unit that switches operation modes of a plurality of driving mechanisms at different timings according to a switching trigger of its own operation mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Medical Informatics (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本技術は、より適切な動作モードの切り替えを実現することができるようにする車両制御装置、車両制御方法、および移動体に関する。 車両制御部は、車両の動作モードの切替トリガに応じて、例えば、個人識別が行われた運転者の状態や、車両の周囲の状況に基づいて、車両の駆動(走行)に関わるエンジンや駆動用モータ、車両の制動に関わる制動装置、車両の操舵に関わるステアリング機構といった各運転機構の動作モードを異なるタイミングで切り替える。本技術は、例えば自動運転を行う車両を制御するECUに適用することができる。

Description

車両制御装置、車両制御方法、および移動体
 本技術は、車両制御装置、車両制御方法、および移動体に関し、特に、適切な動作モードの切り替えを実現することができるようにする車両制御装置、車両制御方法、および移動体に関する。
 現在、自動車の自動運転に関する技術開発が盛んに行われている。自動運転が可能な自動車の動作モードは、例えば、手動運転、支援運転、および自律運転の3モードに大別することができる。支援運転は、車両の制御システムが搭乗者による運転を支援する動作モードであり、自律運転は、搭乗者による運転を必要とせず完全に車両の制御システムが運転を制御する動作モードである。
 動作モードは、運転者が任意のタイミングで切り替えたり、制御システムが自動で切り替えるようにすることができる。
 後者の例として、特許文献1には、自車両の経路における、他車両の自動運転制御の中断履歴に基づいて、自車両の自動運転を中断することが開示されている。この技術によれば、例えば、過去に事故が多発した区間では、動作モードが自動運転から手動運転に切り替わるようになる。
 一方、特許文献2には、自動走行モードで車両が走行しているときに、運転者による所定の運転操作があると、自動走行モードから手動走行モードへの切り替えを行うことが開示されている。
 また、特許文献3には、一般道から高速道路への合流地点において、アクセル装置およびブレーキ装置を、ステアリング装置より先に、手動運転モードから自動運転モードに切り替えることが記載されている。
 さらに、特許文献4には、ドライバが自動運転の解除を要求した後、そのドライバが適正な運転操作を行うか否かを判定し、ドライバが適正な運転操作を行うと判定された場合に、自動運転を解除することが記載されている。
特開2015-153153号公報 特開平10-329575号公報 特開2015-24746号公報 特開2007-196809号公報
 しかしながら、アクセル装置、ブレーキ装置、ステアリング装置といった各装置についての動作モードを段階的に切り替えることは行われていなかった。例えば、運転者の状態や周囲の環境によって、各装置についての動作モードの最適な切替タイミングは異なるはずである。
 本技術は、このような状況に鑑みてなされたものであり、より適切な動作モードの切り替えを実現するようにするものである。
 本技術の車両制御装置は、車両の動作モードの切替トリガに応じて、複数の運転機構の動作モードを異なるタイミングで切り替える制御部を備える。
 本技術の車両制御方法は、車両の動作モードの切替トリガに応じて、複数の運転機構の動作モードを異なるタイミングで切り替えるステップを含む。
 本技術の移動体は、自身の動作モードの切替トリガに応じて、複数の運転機構の動作モードを異なるタイミングで切り替える制御部を備える。
 本技術においては、車両の動作モードの切替トリガに応じて、複数の運転機構の動作モードが異なるタイミングで切り替えられる。
 本技術によれば、より適切な動作モードの切り替えを実現することが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術を適用した車両の一実施の形態の構成例を示す図である。 CAN通信用のバスに接続されるブロックについて説明する図である。 アラウンドビューモニタ機能を実現する車両の構成例を示すブロック図である。 CAN通信用のバスに接続されるブロックの他の例について説明する図である。 第1の実施形態の車両制御部の構成例を示すブロック図である。 動作モード切替処理について説明するフローチャートである。 第2の実施形態の車両制御部の構成例を示すブロック図である。 動作モード切替処理について説明するフローチャートである。 動作モード切替処理について説明するフローチャートである。 第3の実施形態の車両制御部の構成例を示すブロック図である。 動作モード切替処理について説明するフローチャートである。
 以下、図面を参照しながら、本技術の好適な実施の形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複する説明を省略する。
 また、以下の順序で説明を行う。
  1.車両の構成について
  2.第1の実施形態
  3.第2の実施形態
  4.第3の実施形態
<1.車両の構成について>
 図1は、本技術を適用した移動体としての車両の一実施の形態の構成例を示す図である。
 図1に示す車両11は、フロントセンシングカメラ21、フロントカメラECU(Electronic Control Unit)22、位置情報取得部23、表示部24、通信部25、ステアリング機構26、レーダ27、ライダ(Light Detection and RangingまたはLaser Imaging Detection and Ranging:LIDAR)28、サイドビューカメラ29、サイドビューカメラECU30、統合ECU31、フロントビューカメラ32、フロントビューカメラECU33、制動装置34、エンジン35、発電機36、駆動モータ37、バッテリ38、リアビューカメラ39、リアビューカメラECU40、車速検出部41、ヘッドライト42、および車内センサ43を有している。
 車両11に設けられた各ユニットは、CAN(Controller Area Network)通信用のバスや他の接続線などにより相互に接続されているが、ここでは図を見やすくするため、それらのバスや接続線が特に区別されずに描かれている。
 フロントセンシングカメラ21は、例えば車室内のルームミラー近傍に配置されたセンシング専用のカメラからなり、車両11の前方を被写体として撮像し、その結果得られたセンシング画像をフロントカメラECU22に出力する。
 フロントカメラECU22は、フロントセンシングカメラ21から供給されたセンシング画像に対して適宜、画質を向上させる処理等を施した後、センシング画像に対して画像認識を行って、センシング画像から白線や歩行者などの任意の物体を検出する。フロントカメラECU22は、画像認識の結果をCAN通信用のバスに出力する。
 位置情報取得部23は、例えばGPS(Global Positioning System)や準天頂衛星システム(Quasi-Zenith Satellite System:QZSS)などの位置情報計測システムからなり、車両11の位置を検出して、その検出結果を示す位置情報をCAN通信用のバスに出力する。
 表示部24は、例えば液晶表示パネルなどからなり、インストルメントパネルの中央部分、ルームミラー内部などの車室内の所定位置に配置されている。また、表示部24はウィンドシールド(フロントガラス)部分に重畳して設けられた透過型ディスプレイであってもよいし、カーナビゲーションシステムのディスプレイであってもよい。表示部24は、統合ECU31の制御に従って各種の画像を表示する。
 通信部25は、車車間通信や車歩間通信、路車間通信等の各種の無線通信により、周辺車両や、歩行者が所持する携帯型端末装置、路側機、外部のサーバとの間で情報の送受信を行う。例えば通信部25は周辺車両と車車間通信を行って、周辺車両から乗員数や走行状態を示す情報を含む周辺車両情報を受信し、統合ECU31に供給する。
 ステアリング機構26は、運転者によるハンドル操作、または統合ECU31から供給された制御信号に応じて車両11の走行方向の制御、すなわち舵角制御を行う。レーダ27は、ミリ波等の電磁波を用いて前方や後方などの各方向にある車両や歩行者といった対象物までの距離を測定する測距センサであり、対象物までの距離の測定結果を統合ECU31等に出力する。ライダ28は、光波を用いて前方や後方などの各方向にある車両や歩行者といった対象物までの距離を測定する測距センサであり、対象物までの距離の測定結果を統合ECU31等に出力する。
 サイドビューカメラ29は、例えばサイドミラーの筐体内やサイドミラー近傍に配置されたカメラであり、運転者の死角となる領域を含む車両11の側方の画像(以下、側方画像とも称する)を撮像し、サイドビューカメラECU30に供給する。
 サイドビューカメラECU30は、サイドビューカメラ29から供給された側方画像に対して、ホワイトバランス調整などの画質を向上させる画像処理を施すとともに、得られた側方画像をCAN通信用のバスとは異なるケーブルを介して統合ECU31に供給する。
 統合ECU31は、運転制御ECU51やバッテリECU52などの車両11の中央に配置された複数のECUからなり、車両11全体の動作を制御する。
 例えば運転制御ECU51は、ADAS(Advanced Driving Assistant System)機能や自律運転(Self driving)機能を実現するECUであり、フロントカメラECU22からの画像認識結果、位置情報取得部23からの位置情報、通信部25から供給された周辺車両情報等の各種の情報、レーダ27やライダ28からの測定結果、車速検出部41からの走行速度の検出結果などに基づいて、車両11の運転(走行)を制御する。すなわち、運転制御ECU51は、ステアリング機構26や、制動装置34、エンジン35、駆動モータ37等を制御して車両11の運転を制御する。また、運転制御ECU51は、フロントカメラECU22から画像認識結果として供給された、対向車のヘッドライトの有無等に基づいてヘッドライト42を制御してハイビームとロービームの切り替えなどヘッドライト42によるビーム照射を制御する。
 なお、統合ECU31では、ADAS機能や自律運転機能、ビーム制御などの機能ごとに専用のECUを設けるようにしてもよい。
 また、バッテリECU52は、バッテリ38による電力の供給等を制御する。
 フロントビューカメラ32は、例えばフロントグリル近傍に配置されたカメラからなり、運転者の死角となる領域を含む車両11の前方の画像(以下、前方画像とも称する)を撮像し、フロントビューカメラECU33に供給する。
 フロントビューカメラECU33は、フロントビューカメラ32から供給された前方画像に対して、ホワイトバランス調整などの画質を向上させる画像処理を施すとともに、得られた前方画像をCAN通信用のバスとは異なるケーブルを介して統合ECU31に供給する。
 制動装置34は、運転者によるブレーキ操作、または統合ECU31から供給された制御信号に応じて動作し、車両11を停車させたり減速させたりする。エンジン35は、車両11の動力源であり、統合ECU31から供給された制御信号に応じて駆動する。
 発電機36は、統合ECU31により制御され、エンジン35の駆動に応じて発電する。駆動モータ37は、車両11の動力源であり、発電機36やバッテリ38から電力の供給を受け、統合ECU31から供給された制御信号に応じて駆動する。なお、車両11の走行時にエンジン35を駆動させるか、または駆動モータ37を駆動させるかは、適宜、統合ECU31により切り替えられる。
 バッテリ38は、例えば12Vのバッテリや200Vのバッテリなどを有しており、バッテリECU52の制御に従って車両11の各部に電力を供給する。
 リアビューカメラ39は、例えばテールゲートのナンバープレート近傍に配置されるカメラからなり、運転者の死角となる領域を含む車両11の後方の画像(以下、後方画像とも称する)を撮像し、リアビューカメラECU40に供給する。例えばリアビューカメラ39は、図示せぬシフトレバーがリバース(R)の位置に移動されると起動される。
 リアビューカメラECU40は、リアビューカメラ39から供給された後方画像に対して、ホワイトバランス調整などの画質を向上させる画像処理を施すとともに、得られた後方画像をCAN通信用のバスとは異なるケーブルを介して統合ECU31に供給する。
 車速検出部41は、車両11の走行速度を検出するセンサであり、走行速度の検出結果を統合ECU31に供給する。なお、車速検出部41において、走行速度の検出結果から加速度や加速度の微分が算出されるようにしてもよい。例えば算出された加速度は、車両11の物体との衝突までの時間の推定などに用いられる。
 ヘッドライト42は、統合ECU31から供給された制御信号に応じて動作し、ビームを出力することで車両11の前方を照明する。
 車内センサ43は、車両11内に乗車している搭乗者の状態や属性を検出するセンサであり、検出結果を統合ECU31に供給する。車内センサ43は、例えば、運転者の状態や、車両11内のどの座席に搭乗者がいるか、搭乗者が大人であるか子供であるか、などの情報を検出する。なお、車内センサ43が、車載カメラおよび車載カメラECUにより構成されるようにすることもできる。この場合、車内センサ43が、車載カメラにより撮像された画像に対する画像認識を行うことで、運転者の状態や、車両11内のどの座席に搭乗者がいるか、搭乗者が大人であるか子供であるか、などの情報を検出する。
 また、車両11では、図2に示すようにフロントカメラモジュール71、通信部25、運転制御ECU51、ステアリング機構26、制動装置34、エンジン35、および駆動モータ37、およびヘッドライト42を含む複数のユニットがCAN通信用のバス72により相互に接続されている。なお、図2において図1における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
 この例では、フロントカメラモジュール71はレンズ81、イメージセンサ82、フロントカメラECU22、およびMCU(Module Control Unit)83を有している。
 また、レンズ81およびイメージセンサ82によってフロントセンシングカメラ21が構成されており、イメージセンサ82は例えばCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどからなる。
 フロントカメラモジュール71では、被写体からの光がレンズ81によってイメージセンサ82の撮像面上に集光される。イメージセンサ82は、レンズ81から入射した光を光電変換することでセンシング画像を撮像し、フロントカメラECU22に供給する。
 フロントカメラECU22は、イメージセンサ82から供給されたセンシング画像に対して、例えばゲイン調整やホワイトバランス調整、HDR(High Dynamic Range)処理などを施した後、センシング画像に対して画像認識を行う。
 画像認識では、例えば白線や縁石、歩行者、車両、ヘッドライト、ブレーキランプ、道路標識、前方車両との衝突までの時間などの認識(検出)が行われる。これらの画像認識の認識結果は、MCU83でCAN通信用の形式の信号に変換され、バス72へと出力される。
 また、バス72から供給された情報は、MCU83でフロントカメラモジュール71用に定められた形式の信号に変換され、フロントカメラECU22へと供給される。
 運転制御ECU51は、MCU83からバス72に出力された画像認識の結果と、レーダ27やライダ28等の他のユニットから供給された情報とに基づいて、適宜、ステアリング機構26や制動装置34、エンジン35、駆動モータ37、ヘッドライト42などを制御する。これにより走行方向の変更、ブレーキ、加速、発進等の運転制御や、警告通知制御、ビームの切り替え制御などが実現される。
 また、運転制御ECU51が自律運転機能等を実現する場合には、例えばフロントカメラECU22で得られた各時刻の画像認識結果から、運転制御ECU51において、さらに対象物体の位置の軌跡が認識され、その認識結果が通信部25を介して外部のサーバに送信されるようにしてもよい。そのような場合、例えばサーバではディープニューラルネット等の学習が行われて必要な辞書等が生成され、車両11へと送信される。車両11では、このようにして得られた辞書等が通信部25により受信され、受信された辞書等が運転制御ECU51での各種の予測などに用いられる。
 なお、運転制御ECU51により行われる制御のうち、センシング画像に対する画像認識の結果のみから実現できる制御については、運転制御ECU51ではなくフロントカメラECU22により行われるようにしてもよい。
 具体的には、例えばフロントカメラECU22は、センシング画像に対する画像認識により得られた対向車のヘッドライトの有無に基づいて、ヘッドライト42を制御してもよい。この場合、例えばフロントカメラECU22は、ロービームとハイビームの切り替え等を指示する制御信号を生成し、MCU83およびバス72を介してヘッドライト42に制御信号を供給することで、ヘッドライト42によるビーム切り替えを制御する。
 その他、例えばフロントカメラECU22が、センシング画像に対する画像認識により得られた白線や縁石、歩行者などの認識結果に基づいて、対象物への衝突の警告通知や走行車線(レーン)からの逸脱の警告通知等を生成し、MCU83を介してバス72に出力することで、警告通知の制御を行うようにしてもよい。この場合、フロントカメラECU22から出力された警告通知は、例えば表示部24や図示せぬスピーカ等に供給される。これにより、表示部24において警告表示を行ったり、スピーカにより警告メッセージを出力したりすることができる。
 さらに、車両11では、例えば駐車を行う時などにおいて表示部24に合成画像を表示することでアラウンドビューモニタ機能が実現される。
 すなわち、例えば図3に示すように各部で得られた前方画像、後方画像、および側方画像がCAN通信用のバスとは異なるケーブルを介して、統合ECU31に設けられた画像合成ECU101に供給され、それらの画像から合成画像が生成される。なお、図3において図1における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
 図3では、図1に示したサイドビューカメラ29として、車両11の左側に配置されたサイドビューカメラ29Lと、車両11の右側に配置されたサイドビューカメラ29Rとが設けられている。また、サイドビューカメラECU30として、車両11の左側に配置されたサイドビューカメラECU30Lと、車両11の右側に配置されたサイドビューカメラECU30Rとが設けられている。
 画像合成ECU101には、フロントビューカメラ32で得られた前方画像がフロントビューカメラECU33から供給され、リアビューカメラ39で得られた後方画像がリアビューカメラECU40から供給される。また、画像合成ECU101には、サイドビューカメラ29Lで得られた側方画像(以下、特に左側方画像とも称する)がサイドビューカメラECU30Lから供給され、サイドビューカメラ29Rで得られた側方画像(以下、特に右側方画像とも称する)がサイドビューカメラECU30Rから供給される。
 画像合成ECU101は、供給されたこれらの画像に基づいて前方画像、後方画像、左側方画像、および右側方画像を対応する領域に配置した合成画像を生成するとともに、得られた合成画像を表示部24に供給し、表示させる。運転者は、このようにして表示された合成画像を確認しながら車両11を運転することで、安全かつ容易に駐車を行うことができる。なお、統合ECU31が合成画像に基づいて車両11の駆動を制御し、駐車を行うようにしてもよい。
 また、運転制御ECU51により複数の異なる機能の制御を行うのではなく、例えば図4に示すように制御内容ごとに、すなわち機能ごとに制御部を設けるようにしてもよい。なお、図4において図2における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
 図4に示す例では、CAN通信用のバス72にはフロントカメラモジュール71、通信部25、ステアリング機構26、制動装置34、エンジン35、駆動モータ37、ヘッドライト42、ビーム制御部111、警告通知制御部112、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115を含む複数のユニットが接続されている。
 この例では、図2の例において運転制御ECU51により行われていた制御が、ビーム制御部111、警告通知制御部112、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115により分担されて行われる。
 具体的には、例えばビーム制御部111は、フロントカメラECU22で得られた画像認識の結果等に基づいてヘッドライト42を制御することでロービームとハイビームの切り替え制御を行う。また、警告通知制御部112は、フロントカメラECU22で得られた画像認識の結果等に基づいて表示部24への各種の警告表示や図示せぬスピーカでの警告メッセージの出力など、警告通知の制御を行う。
 ステアリング制御部113は、フロントカメラECU22で得られた画像認識の結果、レーダ27やライダ28からの測定結果等に基づいてステアリング機構26を制御することで、車両11の走行方向の制御を行う。ブレーキ制御部114は、フロントカメラECU22で得られた画像認識の結果、レーダ27やライダ28からの測定結果等に基づいて制動装置34を制御することで、車両11の走行停止や減速の制御を行う。
 さらに、アクセル制御部115は、フロントカメラECU22で得られた画像認識の結果、レーダ27やライダ28からの測定結果等に基づいてエンジン35や駆動モータ37を制御することで、車両11の発進や加速の制御を行う。
<2.第1の実施形態>
(車両制御部の構成例)
 図5は、本技術の第1の実施形態に係る車両制御部の構成例を示している。
 図5の車両制御部201は、例えば図1に示される統合ECU31、特に運転制御ECU51により実現され、車両11において行われる運転支援処理を実行する。車両制御部201は、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115を制御することで、車両11の操舵に関わるステアリング機構26、車両11の制動に関わる制動装置34、および、車両11の駆動(走行)に関わるエンジン35や駆動モータ37といった各運転機構の動作モードの切り替えを制御する。具体的には、車両制御部201は、車両11の動作モードの切替トリガに応じて、各運転機構の動作モードを異なるタイミングで切り替える。
 図5の車両制御部201は、切替トリガ検出部211、識別部212、切替タイミング決定部213、および動作モード切替部214から構成される。
 切替トリガ検出部211は、車両11(自車両)の動作モードを切り替えるトリガ(切替トリガ)を検出する。切替トリガが検出されると、切替トリガ検出部211は、切替トリガが検出されたことを示す情報を識別部212に供給する。
 識別部212は、切替トリガ検出部211から情報が供給されると、運転者を識別するための識別用情報に基づいて、運転者の個人識別を行う。識別部212は、個人識別の結果を、切替タイミング決定部213に供給する。
 切替タイミング決定部213は、各運転機構(ステアリング機構26、制動装置34、エンジン35または駆動モータ37)の切替タイミングを決定する。
 例えば、切替タイミング決定部213は、識別部212から供給された個人識別の結果に応じて、各運転機構の切替タイミングを決定する。具体的には、切替タイミング決定部213は、個人識別の結果で特定された運転者の状態を示す運転者状態情報に基づいて、各運転機構の切替タイミングを決定する。切替タイミング決定部213は、決定した各運転機構の切替タイミングを示す情報を動作モード切替部214に供給する。
 動作モード切替部214は、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115を制御することで、切替タイミング決定部213から供給された情報で示される切替タイミングで、各運転機構の動作モードを切り替える。例えば、動作モード切替部214は、各運転機構の動作モードの切り替えを、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115に対して、それぞれの切替タイミングで指示する。
 ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115は、動作モードが後述する自動運転のときは、各センサ等の出力に基づいて制御信号を生成することで各運転機構を制御する。また、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115は、動作モードが後述する手動運転のときには、運転者の操作に基づいて制御信号を生成することで、各運転機構を制御する。
(動作モードについて)
 ここで、車両の動作モードについて説明する。
 ここでは、車両の動作モードを、完全手動運転、支援運転、および自律運転の3モードに大別する。
 完全手動運転は、運転者が自車両の運転全てを行う動作モードである。完全手動運転においては、運転の権限は人間側にある。
 支援運転は、車両の制御システムが運転の一部を行うことで、運転者が行う運転を支援する動作モードである。支援運転においても、運転の権限は人間側にある。
 自律運転は、車両の制御システムが自車両の運転全てを行う動作モードである。自律運転においては、運転の権限は車両側にある。
 このように、支援運転は、車両の制御システムが運転の一部を行うものの、運転の権限は人間側にある。
 ここで、運転の権限が人間側にある動作モードを手動運転とし、運転の権限が車両側にある動作モードを自動運転として扱うものとする。したがって、以下においては、完全手動運転および支援運転を手動運転とし、自律運転を自動運転とする。
(動作モード切替処理)
 次に、図6のフローチャートを参照して、車両制御部201による動作モード切替処理について説明する。なお、この例では、車両11は、動作モードが手動運転の状態で走行しているものとして説明する。
 ステップS11において、切替トリガ検出部211は、動作モードの切替トリガが検出されたか否かを判定する。
 ここで、切替トリガは、運転者による、動作モードの切り替えを指示する操作や、車両11が一般道から高速道路への合流地点に近づいたことを示す情報などとされる。また、車両11が、その周囲を走行する他車両の動作モードに応じて動作モードを切り替える機能を有している場合、切替トリガは、車車間通信により取得される、他車両の動作モードを示す情報であってもよい。
 ここでは、車両11の動作モードは手動運転であるので、切替トリガは、手動運転から自動運転への切り替えを示すものとする。
 ステップS11の処理は、動作モードの切替トリガが検出されたと判定されるまで繰り返される。そして、ステップS11において、動作モードの切替トリガが検出されたと判定された場合、処理はステップS12に進み、識別部212は、識別用情報に基づいて、運転者の個人識別を行う。
 ここで、識別用情報は、車室内に設けられたカメラにより撮影された運転者の顔画像や、運転免許証やIDカードに備えられているICチップから読み取り可能なIDなどとされる。例えば、識別用情報として運転者の顔画像が取得される場合、識別部212は、顔認証により運転者の個人識別を行う。
 運転者の個人識別が行われた後、ステップS13において、切替タイミング決定部213は、識別された運転者の運転者状態情報を参照する。
 ここで、運転者状態情報は、ドライバ歴、運転頻度、年齢などのプロファイルや、運転継続時間、健康状態、睡眠時間などのライフログなどとされる。
 そして、ステップS14において、切替タイミング決定部213は、参照した運転者状態情報で示される運転者の状態に基づいて、各運転機構の切替タイミングを決定する。具体的には、切替タイミング決定部213は、各運転機構の動作モードの切り替えの順序や、切り替えの時間間隔を決定する。
 例えば、エンジン35または駆動モータ37、制動装置34、ステアリング機構26の順に、各運転機構の動作モードを手動運転から自動運転に切り替えるように、切替タイミングが決定される。また、運転者の運転習熟度が低い、年齢が高いなどといった場合には、各運転機構の動作モードの切り替えについて、切替トリガが検出されてから実際に動作モードが切り替わるまでの時間間隔を長くするように、切替タイミングが決定される。
 ステップS15において、動作モード切替部214は、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115を制御することで、決定された切替タイミングで、各運転機構の動作モードを切り替える。
 以上の処理によれば、個人識別された運転者の状態に基づいて、各運転機構の動作モードの切替タイミングが決定されるので、運転者の状態にあわせて、各運転機構の動作モードが段階的に切り替えられ、車両11全体として、より適切な動作モードの切り替えを実現することが可能となる。
 なお、上述した例では、個人識別された運転者の状態に基づいて、各運転機構の動作モードの切替タイミングが決定されるものとしたが、個人識別された運転者毎に、各運転機構の動作モードの切替タイミングがあらかじめ決定されていてもよい。また、運転者の状態をリアルタイムに取得可能な構成を備えるようにすることで、運転者の個人識別を行うことなく、取得された運転者の状態に基づいて、各運転機構の動作モードの切替タイミングが決定されるようにしてもよい。
<3.第2の実施形態>
(車両制御部の構成例)
 図7は、本技術の第2の実施形態に係る車両制御部の構成例を示している。
 図7の車両制御部301もまた、運転制御ECU51により実現され、車両11の動作モードの切替トリガに応じて、各運転機構の動作モードを異なるタイミングで切り替える。
 図7の車両制御部301は、切替トリガ検出部311、判別部312、切替タイミング決定部313、および動作モード切替部314から構成される。
 切替トリガ検出部311は、切替トリガを検出し、切替トリガが検出されたことを示す情報を判別部312に供給する。
 判別部312は、切替トリガ検出部311から情報が供給されると、車両11の周囲の状況を示す周囲状況情報に基づいて、自車両の周囲の状況を判別する。また、判別部312は、運転者の状態を示す運転者状態情報に基づいて、運転者の状態を判別する。判別部312は、判別結果を切替タイミング決定部313に供給する。
 切替タイミング決定部313は、判別部312から供給された判別結果に基づいて、各運転機構(ステアリング機構26、制動装置34、エンジン35または駆動モータ37)の切替タイミングを決定する。具体的には、切替タイミング決定部313は、自車両の周囲の状況や、運転者の状態に基づいて、各運転機構の切替タイミングを決定する。切替タイミング決定部313は、決定した各運転機構の切替タイミングを示す情報を動作モード切替部314に供給する。
 動作モード切替部314は、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115を制御することで、切替タイミング決定部313から供給された情報で示される切替タイミングで、各運転機構の動作モードを切り替える。
(動作モード切替処理)
 次に、図8のフローチャートを参照して、車両制御部301による動作モード切替処理について説明する。なお、この例では、車両11は、動作モードが自動運転の状態で走行しているものとして説明する。
 ステップS31において、切替トリガ検出部311は、動作モードの切替トリガが検出されたか否かを判定する。
 ここでは、車両11の動作モードは自動運転であるので、切替トリガは、自動運転から手動運転への切り替えを示すものとする。
 ステップS31の処理は、動作モードの切替トリガが検出されたと判定されるまで繰り返される。そして、ステップS31において、動作モードの切替トリガが検出されたと判定された場合、処理はステップS32に進み、判別部312は、周囲状況情報としてセンシング画像を取得し、取得したセンシング画像に基づいて、天候を判別する。
 センシング画像は、フロントセンシングカメラ21により得られた、車両11の前方が被写体として撮像された画像である。判別部312は、フロントカメラECU22を介してセンシング画像を取得し、取得したセンシング画像を解析することで天候を判別する。
 例えば、センシング画像に雨粒が写っていたり、空における雲の量が一定の割合を超える場合、判別部312は、天候が雨であると判別する。また、センシング画像に雨粒が写っておらず、空の色が青く、画像全体が明るい場合、判別部312は、天候が晴れであると判別する。
 天候が判別された後、ステップS33において、切替タイミング決定部313は、判別された天候に基づいて、各運転機構の切替タイミングを決定する。具体的には、切替タイミング決定部313は、各運転機構の動作モードの切り替えの順序や、切り替えの時間間隔を決定する。
 例えば、天候が雨の場合、視界が悪く、運転者の誤った判断による急ブレーキでスリップが起きやすい。そこで、天候が雨であると判別された場合、ブレーキ操作をつかさどる制動装置34の動作モードを、ステアリング機構26や、エンジン35または駆動モータ37の動作モードより後に、自動運転から手動運転に切り替えるように、切替タイミングが決定される。また、天候が晴れであると判別された場合、エンジン35または駆動モータ37の動作モードを、ステアリング機構26や制動装置34の動作モードより後に、自動運転から手動運転に切り替えるように、切替タイミングが決定される。
 ステップS34において、動作モード切替部314は、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115を制御することで、決定された切替タイミングで、各運転機構の動作モードを切り替える。
 以上の処理によれば、天候に基づいて、各運転機構の動作モードの切替タイミングが決定されるので、天候にあわせて、各運転機構の動作モードが段階的に切り替えられ、車両11全体として、より適切な動作モードの切り替えを実現することが可能となる。
(動作モード切替処理の他の例)
 図9は、車両制御部301による動作モード切替処理の他の例を説明するフローチャートである。
 ステップS51において、切替トリガ検出部311は、動作モードの切替トリガが検出されたか否かを判定する。
 ステップS51の処理は、動作モードの切替トリガが検出されたと判定されるまで繰り返される。そして、ステップS51において、動作モードの切替トリガが検出されたと判定された場合、処理はステップS52に進み、判別部312は、運転者状態情報に基づいて、運転者の状態を判別する。
 ここで、運転者状態情報は、ドライバ歴、運転頻度、年齢などのプロファイルや、運転継続時間、健康状態、睡眠時間などのライフログなどとされる。この場合、判別部312は、プロファイルやライフログに基づいて、運転者の運転習熟度や疲労度を判別する。
 また、車両11に、車載カメラによるDMS(Driver Monitoring System)を搭載するようにした場合、運転者状態情報は、DMSにより検知された運転者の顔の向きや閉眼具合、開口具合などとすることもできる。
 運転者の状態が判別された後、ステップS53に進み、判別部312は、周囲状況情報に基づいて、自車両の周囲の状況を判別する。
 ここで、周囲状況情報は、フロントビューカメラ32、リアビューカメラ39、およびサイドビューカメラ29で得られた前方画像、後方画像、左側方画像、および右側方画像や、画像合成ECU101により得られた合成画像などとされる。この場合、判別部312は、各画像に基づいて、自車両(車両11)の周囲を走行する他車両の台数を判別する。
 なお、判別部312は、通信部25による車車間通信により受信される周辺車両情報に基づいて、自車両(車両11)の周囲を走行する他車両の台数を判別することもできる。
 自車両の周囲の状況が判別された後、ステップS54において、切替タイミング決定部313は、判別された運転者の状態および自車両の周囲の状況に基づいて、各運転機構の動作モードの切替タイミングを決定する。具体的には、切替タイミング決定部313は、各運転機構の動作モードの切り替えの順序や、切り替えの時間間隔を決定する。さらに、切替タイミング決定部313は、決定した切替タイミングでの各運転機構の動作モードの切り替えの要否を決定する。
 そして、ステップS55においては、決定された切替タイミングでの各運転機構の動作モードの切り替えが必要であるか否かが判定される。
 決定された切替タイミングでの動作モードの切り替えが必要であると判定された場合、処理はステップS56に進み、動作モード切替部314は、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115を制御することで、決定された切替タイミングで、各運転機構の動作モードを切り替える。
 一方、決定された切替タイミングでの動作モードの切り替えが必要でないと判定された場合、処理はステップS57に進み、動作モード切替部314は、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115を制御することで、各運転機構の動作モードを所定のタイミングで一斉に切り替える。
 以上の処理によれば、運転者の状態および周囲の状況に基づいて、各運転機構の動作モードの切替タイミングと、その切替タイミングでの切り替えの要否が決定されるので、運転者の状態および周囲の状況にあわせて、必要に応じて、各運転機構の動作モードが段階的に切り替えられ、車両11全体として、より適切な動作モードの切り替えを実現することが可能となる。
<4.第3の実施形態>
(車両制御部の構成例)
 図10は、本技術の第3の実施形態に係る車両制御部の構成例を示している。
 図10の車両制御部401もまた、運転制御ECU51により実現され、車両11の動作モードの切替トリガに応じて、各運転機構の動作モードを異なるタイミングで切り替える。
 図10の車両制御部401は、切替トリガ検出部411、識別部412、判別部413、切替タイミング決定部414、動作モード切替部415、および退避処理部416から構成される。
 切替トリガ検出部411は、切替トリガを検出し、切替トリガが検出されたことを示す情報を識別部412に供給する。
 識別部412は、切替トリガ検出部411から情報が供給されると、搭乗者を識別するための識別用情報に基づいて、複数の搭乗者(搭乗者全員)の個人識別を行う。識別部412は、個人識別の結果を、判別部413に供給する。
 判別部413は、識別部412から情報が供給されると、搭乗者の状態を示す搭乗者状態情報に基づいて、運転者になり得る搭乗者(以下、運転者候補という)の有無を判別する。判別部413は、判別結果に応じた情報を、切替タイミング決定部414または退避処理部416に供給する。また、判別部413は、判別結果に応じて、表示部24の表示を制御する。
 切替タイミング決定部414は、判別部413から供給された情報に基づいて、各運転機構(ステアリング機構26、制動装置34、エンジン35または駆動モータ37)の切替タイミングを決定する。具体的には、切替タイミング決定部414は、運転者候補の状態を示す搭乗者状態情報に基づいて、各運転機構の切替タイミングを決定する。切替タイミング決定部414は、決定した各運転機構の切替タイミングを示す情報を動作モード切替部415に供給する。
 動作モード切替部415は、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115を制御することで、切替タイミング決定部414から供給された情報で示される切替タイミングで、各運転機構の動作モードを切り替える。
 退避処理部416は、判別部413から供給された情報に基づいて、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115を制御することで、走行中の車両11を安全な状態にするための退避処理を行う。
(動作モード切替処理)
 次に、図11のフローチャートを参照して、車両制御部401による動作モード切替処理について説明する。なお、この例では、車両11は、動作モードが自動運転の状態で走行しているものとして説明する。
 ステップS71において、切替トリガ検出部411は、動作モードの切替トリガが検出されたか否かを判定する。
 なお、ここでは、車両11の動作モードは自動運転であるので、切替トリガは、自動運転から手動運転への切り替えを示すものとする。
 ステップS71の処理は、動作モードの切替トリガが検出されたと判定されるまで繰り返される。そして、ステップS71において、動作モードの切替トリガが検出されたと判定された場合、処理はステップS72に進み、識別部412は、識別用情報に基づいて、搭乗者全員の個人識別を行う。
 ここで、識別用情報は、車室内に設けられたカメラにより撮影された搭乗者の顔画像とされ、識別部412は、顔認証により搭乗者全員の個人識別を行う。
 搭乗者全員の個人識別が行われた後、ステップS73において、判別部413は、識別された搭乗者全員の搭乗者状態情報に基づいて、搭乗者の中に運転者候補がいるか否かを判定する。
 ここで、搭乗者状態情報は、運転免許証の有無、ドライバ歴、運転頻度、年齢などのプロファイルや、運転継続時間、健康状態、睡眠時間などのライフログなどとされる。この場合、判別部312は、プロファイルやライフログに基づいて、運転者候補の有無を判別する。
 ステップS73において、搭乗者の中に運転者候補がいると判定された場合、処理はステップS74に進む。
 なお、運転者候補が複数いる場合、判別部413は、そのうちのいずれか1人を最終的な運転者候補に決定する。例えば、判別部413は、複数の運転者候補に、誰を最終的な運転者候補とするかを、表示部24の表示により選択させるようにする。このとき、プロファイルやライフログに基づいて、運転者候補にふさわしい順位が搭乗者に提示されるようにする。例えば、前日の睡眠時間の少ない運転者候補は低い順位となる。
 ステップS74において、判別部413は、表示部24に、運転者候補を運転席に着くよう案内する表示を行わせる。
 次いで、ステップS75において、切替タイミング決定部414は、運転者候補の搭乗者状態情報(プロファイルやライフログ)を参照する。
 そして、ステップS76において、切替タイミング決定部414は、参照した搭乗者状態情報で示される運転者候補の状態に基づいて、各運転機構の切替タイミングを決定する。具体的には、切替タイミング決定部414は、各運転機構の動作モードの切り替えの順序や、切り替えの時間間隔を決定する。
 ステップS77において、動作モード切替部415は、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115を制御することで、決定された切替タイミングで、各運転機構の動作モードを切り替える。
 一方、ステップS73において、搭乗者の中に運転者候補がいないと判定された場合、処理はステップS78に進む。
 ステップS78において、退避処理部416は、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115を制御することで、走行中の車両11を安全な状態にするための退避処理を行う。
 例えば、搭乗者のいずれもが運転免許証を持っていない場合や、運転免許証を持っている搭乗者の健康状態が運転に耐えられない程悪い場合などには、搭乗者の中に運転者候補がいないと判定される。
 このとき、退避処理部416は、ステアリング制御部113、ブレーキ制御部114、およびアクセル制御部115を制御することで、退避処理として、走行中の車両11を、路肩などの安全な場所に停車させるようにする。
 また、退避処理として、ACC(Adaptive Cruise Control)による走行を行ったり、周囲を走行する他車両と車車間通信を行うことで、CACC(Cooperative ACC)による走行を行うようにしてもよい。CACCによる走行においては、例えば、自車両と同じ目的地またはその近くに向かう他車両に追従走行するようにする。
 さらに、退避処理により車両11が停車した後、通信部25の無線通信により、レッカー車などの牽引自動車を呼び出すようにしてもよい。
 以上の処理によれば、搭乗者の中に運転者になり得る運転者候補がいる場合には、その運転者候補の状態に基づいて、各運転機構の動作モードの切替タイミングが決定されるので、運転者候補の状態にあわせて、各運転機構の動作モードが段階的に切り替えられ、車両11全体として、より適切な動作モードの切り替えを実現することが可能となる。
 また、搭乗者の中に運転者になり得る運転者候補がいない場合には、退避処理が行われるので、自動運転中に運転者が急病になった場合でも、車両11の安全を確保することが可能となる。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 さらに、本技術は以下のような構成をとることができる。
(1)
 車両の動作モードの切替トリガに応じて、複数の運転機構の動作モードを異なるタイミングで切り替える制御部
 を備える車両制御装置。
(2)
 前記車両の動作モードを第1のモードから第2のモードへ切り替える前記切替トリガに応じて、前記複数の運転機構の動作モードを前記第1のモードから前記第2のモードへ切り替える切替タイミングを決定する決定部をさらに備える
 (1)に記載の車両制御装置。
(3)
 運転者の個人識別を行う識別部をさらに備え、
 前記決定部は、前記運転者の個人識別の結果に応じて、前記複数の運転機構の動作モードの切替タイミングを決定する
 (2)に記載の車両制御装置。
(4)
 前記決定部は、個人識別が行われた前記運転者のプロファイルおよびライフログの少なくともいずれかに基づいて、前記複数の運転機構の動作モードの切替タイミングを決定する
 (3)に記載の車両制御装置。
(5)
 前記車両の周囲の状況を判別する判別部をさらに備え、
 前記決定部は、判別された前記車両の周囲の状況に基づいて、前記複数の運転機構の動作モードの切替タイミングを決定する
 (2)に記載の車両制御装置。
(6)
 前記車両の周囲の状況は、天候である
 (5)に記載の車両制御装置。
(7)
 前記判別部は、運転者の状態をさらに判別し、
 前記決定部は、判別された前記車両の周囲の状況、および、前記運転者の状態に基づいて、前記複数の運転機構の動作モードの切替タイミングでの切り替えの要否を決定する
 (5)に記載の車両制御装置。
(8)
 複数の搭乗者の個人識別を行う識別部と、
 前記複数の搭乗者の個人識別の結果に基づいて、前記運転者になり得る搭乗者の有無を判別する判別部とをさらに備え、
 前記決定部は、前記運転者になり得る搭乗者の有無の判別結果に応じて、前記複数の運転機構の動作モードの切替タイミングを決定する
 (2)に記載の車両制御装置。
(9)
 前記決定部は、前記運転者になり得る搭乗者がいると判別された場合、前記運転者になり得る搭乗者のプロファイルおよびライフログの少なくともいずれかに基づいて、前記複数の運転機構の動作モードの切替タイミングを決定する
 (8)に記載の車両制御装置。
(10)
 前記決定部は、前記複数の運転機構の動作モードの切り替えの順序および間隔の少なくともいずれかを決定する
 (2)乃至(9)のいずれかに記載の車両制御装置。
(11)
 前記複数の運転機構の動作モードを、決定された切替タイミングで切り替える切替部をさらに備える
 (2)乃至(10)のいずれかに記載の車両制御装置。
(12)
 車両の動作モードの切替トリガに応じて、複数の運転機構の動作モードを異なるタイミングで切り替える
 ステップを含む車両制御方法。
(13)
 自身の動作モードの切替トリガに応じて、複数の運転機構の動作モードを異なるタイミングで切り替える制御部
 を備える移動体。
 11 車両, 24 表示部, 25 通信部, 26 ステアリング機構, 34 制動装置, 35 エンジン, 37 駆動モータ, 51 運転制御ECU, 113 ステアリング制御部, 114 ブレーキ制御部, 115 アクセル制御部, 201 車両制御部, 212 識別部, 213 切替タイミング決定部, 214 動作モード切替部, 301 車両制御部, 312 判別部, 313 切替タイミング決定部, 314 動作モード切替部, 401 車両制御部, 412 識別部, 413 判別部, 414 切替タイミング決定部, 415 動作モード切替部, 416 退避処理部

Claims (13)

  1.  車両の動作モードの切替トリガに応じて、複数の運転機構の動作モードを異なるタイミングで切り替える制御部
     を備える車両制御装置。
  2.  前記車両の動作モードを第1のモードから第2のモードへ切り替える前記切替トリガに応じて、前記複数の運転機構の動作モードを前記第1のモードから前記第2のモードへ切り替える切替タイミングを決定する決定部をさらに備える
     請求項1に記載の車両制御装置。
  3.  運転者の個人識別を行う識別部をさらに備え、
     前記決定部は、前記運転者の個人識別の結果に応じて、前記複数の運転機構の動作モードの切替タイミングを決定する
     請求項2に記載の車両制御装置。
  4.  前記決定部は、個人識別が行われた前記運転者のプロファイルおよびライフログの少なくともいずれかに基づいて、前記複数の運転機構の動作モードの切替タイミングを決定する
     請求項3に記載の車両制御装置。
  5.  前記車両の周囲の状況を判別する判別部をさらに備え、
     前記決定部は、判別された前記車両の周囲の状況に基づいて、前記複数の運転機構の動作モードの切替タイミングを決定する
     請求項2に記載の車両制御装置。
  6.  前記車両の周囲の状況は、天候である
     請求項5に記載の車両制御装置。
  7.  前記判別部は、運転者の状態をさらに判別し、
     前記決定部は、判別された前記車両の周囲の状況、および、前記運転者の状態に基づいて、前記複数の運転機構の動作モードの切替タイミングでの切り替えの要否を決定する
     請求項5に記載の車両制御装置。
  8.  複数の搭乗者の個人識別を行う識別部と、
     前記複数の搭乗者の個人識別の結果に基づいて、前記運転者になり得る搭乗者の有無を判別する判別部とをさらに備え、
     前記決定部は、前記運転者になり得る搭乗者の有無の判別結果に応じて、前記複数の運転機構の動作モードの切替タイミングを決定する
     請求項2に記載の車両制御装置。
  9.  前記決定部は、前記運転者になり得る搭乗者がいると判別された場合、前記運転者になり得る搭乗者のプロファイルおよびライフログの少なくともいずれかに基づいて、前記複数の運転機構の動作モードの切替タイミングを決定する
     請求項8に記載の車両制御装置。
  10.  前記決定部は、前記複数の運転機構の動作モードの切り替えの順序および間隔の少なくともいずれかを決定する
     請求項2に記載の車両制御装置。
  11.  前記複数の運転機構の動作モードを、決定された切替タイミングで切り替える切替部をさらに備える
     請求項2に記載の車両制御装置。
  12.  車両の動作モードの切替トリガに応じて、複数の運転機構の動作モードを異なるタイミングで切り替える
     ステップを含む車両制御方法。
  13.  自身の動作モードの切替トリガに応じて、複数の運転機構の動作モードを異なるタイミングで切り替える制御部
     を備える移動体。
PCT/JP2017/032749 2016-09-26 2017-09-12 車両制御装置、車両制御方法、および移動体 WO2018056104A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17852881.6A EP3517384B1 (en) 2016-09-26 2017-09-12 Vehicle control device, vehicle control method, and moving body
CN201780057441.7A CN109715467B (zh) 2016-09-26 2017-09-12 车辆控制装置、车辆控制方法以及可移动体
JP2018540976A JP7056569B2 (ja) 2016-09-26 2017-09-12 車両制御装置、車両制御方法、移動体、および車両制御システム
US16/334,515 US20200086886A1 (en) 2016-09-26 2017-09-12 Vehicle control apparatus, vehicle control method, and movable object
CA3037117A CA3037117A1 (en) 2016-09-26 2017-09-12 Vehicle control apparatus, vehicle control method, and movable object
MX2019003129A MX2019003129A (es) 2016-09-26 2017-09-12 Aparato de control del vehiculo, metodo de control del vehiculo y objeto movil.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016186480 2016-09-26
JP2016-186480 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018056104A1 true WO2018056104A1 (ja) 2018-03-29

Family

ID=61690928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032749 WO2018056104A1 (ja) 2016-09-26 2017-09-12 車両制御装置、車両制御方法、および移動体

Country Status (7)

Country Link
US (1) US20200086886A1 (ja)
EP (1) EP3517384B1 (ja)
JP (1) JP7056569B2 (ja)
CN (1) CN109715467B (ja)
CA (1) CA3037117A1 (ja)
MX (1) MX2019003129A (ja)
WO (1) WO2018056104A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193684A1 (ja) * 2018-04-04 2019-10-10 三菱電機株式会社 運転支援装置、運転支援システム及び運転支援方法
KR20200017971A (ko) * 2018-08-10 2020-02-19 현대자동차주식회사 차량 및 그 제어방법
JP2020032872A (ja) * 2018-08-30 2020-03-05 日産自動車株式会社 ヘッドランプ制御方法及びヘッドランプ制御装置
JP2020204998A (ja) * 2019-06-19 2020-12-24 三菱電機株式会社 運転連携装置、運転連携方法、及び運転連携プログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717183B2 (ja) * 2016-12-14 2020-07-01 株式会社オートネットワーク技術研究所 路車間通信システム、路側通信装置、車載通信装置及び路車間通信方法
KR102170283B1 (ko) * 2017-03-23 2020-10-26 엘지전자 주식회사 V2x 통신 장치 및 그의 v2x 메시지의 송수신 방법
JP2019156171A (ja) * 2018-03-13 2019-09-19 本田技研工業株式会社 走行制御装置、車両、走行制御システム、走行制御方法およびプログラム
US20190048809A1 (en) * 2018-08-21 2019-02-14 Intel IP Corporation Engine profile management

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10329575A (ja) 1997-05-29 1998-12-15 Toyota Motor Corp 自動走行車両制御装置
JP2007196809A (ja) 2006-01-25 2007-08-09 Equos Research Co Ltd 自動運転制御装置
JP2008201165A (ja) * 2007-02-16 2008-09-04 Tokai Rika Co Ltd ハイブリッド車両制御装置
JP2013112324A (ja) * 2011-12-01 2013-06-10 Toyota Motor Corp 車両ドライバの特定装置及び車両ドライバの特定方法
JP2015024746A (ja) 2013-07-26 2015-02-05 日産自動車株式会社 自動運転制御装置及び自動運転制御方法
JP2015153153A (ja) 2014-02-14 2015-08-24 アイシン・エィ・ダブリュ株式会社 運転支援装置、運転支援方法及びプログラム
JP2016034782A (ja) * 2014-08-01 2016-03-17 トヨタ自動車株式会社 車両制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309961A (ja) * 1997-05-12 1998-11-24 Toyota Motor Corp 自動走行車両制御装置
CN101405178A (zh) * 2006-03-22 2009-04-08 Gm全球科技运作股份有限公司 特定驾驶者的车辆子系统控制方法和设备
KR20140043536A (ko) * 2012-09-24 2014-04-10 현대자동차주식회사 자율주행 차량의 차량 제어권 전환 방법
US8825258B2 (en) * 2012-11-30 2014-09-02 Google Inc. Engaging and disengaging for autonomous driving
DE102013003187A1 (de) * 2013-02-26 2014-09-11 Audi Ag Verfahren zum Betrieb eines kraftfahrzeugseitigen Fahrerassistenzsystems mit einer kombinierten Längs- und Querführungsfunktion
US9150224B2 (en) * 2013-09-24 2015-10-06 Ford Global Technologies, Llc Transitioning from autonomous vehicle control to to driver control to responding to driver control
JP2016090274A (ja) * 2014-10-30 2016-05-23 トヨタ自動車株式会社 警報装置、警報システム及び携帯端末
JP6442993B2 (ja) * 2014-11-07 2018-12-26 アイシン・エィ・ダブリュ株式会社 自動運転支援システム、自動運転支援方法及びコンピュータプログラム
CN111016926B (zh) * 2014-12-12 2023-06-13 索尼公司 自动驾驶控制设备以及自动驾驶控制方法和程序
JP6470059B2 (ja) * 2015-01-30 2019-02-13 株式会社デンソーテン 情報提供方法、情報提供装置、情報提供システムおよび車両
US11068730B1 (en) * 2016-06-14 2021-07-20 State Farm Mutual Automobile Insurance Company Apparatuses, systems, and methods for determining vehicle operator distractions at particular geographic locations

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10329575A (ja) 1997-05-29 1998-12-15 Toyota Motor Corp 自動走行車両制御装置
JP2007196809A (ja) 2006-01-25 2007-08-09 Equos Research Co Ltd 自動運転制御装置
JP2008201165A (ja) * 2007-02-16 2008-09-04 Tokai Rika Co Ltd ハイブリッド車両制御装置
JP2013112324A (ja) * 2011-12-01 2013-06-10 Toyota Motor Corp 車両ドライバの特定装置及び車両ドライバの特定方法
JP2015024746A (ja) 2013-07-26 2015-02-05 日産自動車株式会社 自動運転制御装置及び自動運転制御方法
JP2015153153A (ja) 2014-02-14 2015-08-24 アイシン・エィ・ダブリュ株式会社 運転支援装置、運転支援方法及びプログラム
JP2016034782A (ja) * 2014-08-01 2016-03-17 トヨタ自動車株式会社 車両制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3517384A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193684A1 (ja) * 2018-04-04 2019-10-10 三菱電機株式会社 運転支援装置、運転支援システム及び運転支援方法
KR20200017971A (ko) * 2018-08-10 2020-02-19 현대자동차주식회사 차량 및 그 제어방법
KR102660838B1 (ko) * 2018-08-10 2024-04-26 현대자동차주식회사 차량 및 그 제어방법
JP2020032872A (ja) * 2018-08-30 2020-03-05 日産自動車株式会社 ヘッドランプ制御方法及びヘッドランプ制御装置
JP7053409B2 (ja) 2018-08-30 2022-04-12 日産自動車株式会社 ヘッドランプ制御方法及びヘッドランプ制御装置
JP2020204998A (ja) * 2019-06-19 2020-12-24 三菱電機株式会社 運転連携装置、運転連携方法、及び運転連携プログラム
JP7221145B2 (ja) 2019-06-19 2023-02-13 三菱電機株式会社 運転連携装置、運転連携方法、及び運転連携プログラム

Also Published As

Publication number Publication date
EP3517384A4 (en) 2019-11-13
JPWO2018056104A1 (ja) 2019-07-04
CN109715467B (zh) 2023-02-17
EP3517384A1 (en) 2019-07-31
MX2019003129A (es) 2019-06-06
CN109715467A (zh) 2019-05-03
US20200086886A1 (en) 2020-03-19
CA3037117A1 (en) 2018-03-29
EP3517384B1 (en) 2022-12-14
JP7056569B2 (ja) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2018056104A1 (ja) 車両制御装置、車両制御方法、および移動体
EP3569461B1 (en) Apparatus for providing around view
US11180164B2 (en) Vehicle control apparatus, vehicle, and control method
CN109564734B (zh) 驾驶辅助装置、驾驶辅助方法、移动体和程序
US20190202451A1 (en) Imaging device, signal processing device, and vehicle control system
WO2018056103A1 (ja) 車両制御装置、車両制御方法、および移動体
KR20170058188A (ko) 차량 운전 보조장치 및 이를 포함하는 차량
WO2018037950A1 (ja) 車両の状態制御装置および方法、並びに車両
CN109562757B (zh) 驾驶辅助装置、驾驶辅助方法、移动体和程序
KR101962348B1 (ko) 차량 운전 보조장치 및 이를 포함하는 차량
US11878670B2 (en) Apparatus and method for controlling vehicle to perform occupant assistance according to detection accuracy of autonomous sensor
KR20190064774A (ko) 카메라 보정 방법 및 장치
KR102420922B1 (ko) 차량 운전 보조장치 및 이를 포함하는 차량
WO2021256411A1 (ja) 信号処理装置、調光制御方法、信号処理プログラム、及び調光システム
JP2022140026A (ja) 画像処理装置、画像処理方法およびプログラム
CN111216636A (zh) 行驶控制装置、控制方法以及存储程序的存储介质
CN114619963A (zh) 用于辅助车辆驾驶员的视觉的方法及装置
CN111216631B (zh) 行驶控制装置、控制方法以及存储程序的存储介质
KR20240126263A (ko) 자율주행 차량의 인터랙티브 주행 안내 시스템
KR20210100345A (ko) 복수의 광원들을 제어하여 이미지를 획득하는 차량의 전자 장치 및 그의 동작 방법
CN117440902A (zh) 车辆用报告控制装置以及车辆用报告控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018540976

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3037117

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017852881

Country of ref document: EP