WO2018055974A1 - 石英ガラスルツボ及びその製造方法並びに石英ガラスルツボを用いたシリコン単結晶の製造方法 - Google Patents

石英ガラスルツボ及びその製造方法並びに石英ガラスルツボを用いたシリコン単結晶の製造方法 Download PDF

Info

Publication number
WO2018055974A1
WO2018055974A1 PCT/JP2017/030266 JP2017030266W WO2018055974A1 WO 2018055974 A1 WO2018055974 A1 WO 2018055974A1 JP 2017030266 W JP2017030266 W JP 2017030266W WO 2018055974 A1 WO2018055974 A1 WO 2018055974A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz glass
crucible
crystal
glass crucible
crystallization accelerator
Prior art date
Application number
PCT/JP2017/030266
Other languages
English (en)
French (fr)
Inventor
岸 弘史
幸太 長谷部
貴裕 安部
藤原 秀樹
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to JP2018540925A priority Critical patent/JP6773121B2/ja
Priority to CN201780030444.1A priority patent/CN109477239A/zh
Priority to KR1020187034587A priority patent/KR102213151B1/ko
Priority to SG11201811126SA priority patent/SG11201811126SA/en
Priority to DE112017004764.1T priority patent/DE112017004764T5/de
Priority to US16/308,797 priority patent/US11162186B2/en
Publication of WO2018055974A1 publication Critical patent/WO2018055974A1/ja
Priority to US17/485,144 priority patent/US20220018037A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/003General methods for coating; Devices therefor for hollow ware, e.g. containers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0055Other surface treatment of glass not in the form of fibres or filaments by irradiation by ion implantation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/002Continuous growth

Definitions

  • the present invention relates to a quartz glass crucible and a method for producing the same, and more particularly to a quartz glass crucible used for producing a silicon single crystal by the Czochralski method (CZ method) and a method for producing the same.
  • the present invention also relates to a method for producing a silicon single crystal using such a quartz glass crucible.
  • a quartz glass crucible is used in the production of a silicon single crystal by the CZ method.
  • a silicon raw material is heated and melted in a quartz glass crucible, a seed crystal is immersed in this silicon melt, and a single crystal is grown by gradually pulling up the seed crystal while rotating the crucible.
  • the single crystal yield be increased by a single pulling process, but multiple silicon single crystal ingots can be formed from a single crucible. It is necessary to be able to perform so-called multi-pulling, which requires a crucible with a stable shape that can withstand long-term use.
  • a conventional quartz glass crucible has a low viscosity under a thermal environment of 1400 ° C. or higher when pulling a silicon single crystal, and its shape cannot be maintained, and deformation of the crucible such as buckling or inward tilting occurs. Problems such as fluctuations in the liquid level, crucible damage, and contact with furnace components.
  • the inner surface of the crucible is crystallized by contact with the silicon melt during the pulling of the single crystal, and cristobalite called a brown ring is formed, but when this is peeled off and taken into the growing silicon single crystal Causes dislocation.
  • Patent Document 1 describes a quartz glass crucible in which a coating film of a crystallization accelerator of a group 2a element exists within a depth of 1 mm on the inner surface of the quartz glass crucible.
  • a crystal layer is formed on the inner surface of the crucible and heat resistance is improved. For example, even if the silicon single crystal is pulled under reduced pressure, the inner surface is not roughened. Smoothness is maintained, and it can be pulled up for a long time with a high crystallization rate.
  • a devitrification accelerator such as an aqueous barium hydroxide solution is applied to the inner surface of the crucible, and in particular, by adjusting the crystallization speed by changing the concentration of the devitrification accelerator for each crucible site, It is described that crystal peeling is prevented.
  • the crystallization rate is in the order of the corner of the crucible> the wall> the bottom, and the devitrification growth rate is in the range of 0.1 to 0.6 ⁇ m / h for uniform devitrification.
  • Patent Document 3 discloses a surface treatment method for quartz glass products such as a quartz glass crucible, in which the inner surface of the crucible is coated with a reducing coating agent (amine, organosilane halogen, etc.) containing a methyl group. It is described that devitrification point peeling can be prevented by promoting cristobalite formation during crystal pulling.
  • a reducing coating agent amine, organosilane halogen, etc.
  • Patent Document 4 describes a quartz glass crucible whose strength is increased by semi-crystallization of the inner surface.
  • the inner surface of the crucible having a thickness of 1 to 10 ⁇ m contains a crystallization accelerator and has a semi-crystalline layer having a crystallinity of 80 to 95%.
  • Such a semi-crystalline layer is formed by applying a voltage to the mold during arc melting in the rotary mold method to move the crystallization accelerator to the inner surface of the crucible.
  • Patent Document 5 includes a first component such as Ti that acts as a reticulating agent in the silica glass in the outer layer of the crucible side wall and a second component such as Ba that acts as a separation point forming agent in the quartz glass. Consisting of a doping region with a thickness of 0.2 mm or more, and when the quartz glass crucible is heated according to a specific use in crystal pulling, by forming cristobalite in the doping region to promote crystallization of the quartz glass, It is described that the strength of the crucible is increased.
  • a first component such as Ti that acts as a reticulating agent in the silica glass in the outer layer of the crucible side wall
  • Ba acts as a separation point forming agent in the quartz glass.
  • the thickness of the crystal layer may not be sufficient, and the crystal grains may be separated depending on the crystallization state. That is, there is no regularity in the crystal growth direction in the crystal layer, and when the crystal grows in any direction (hereinafter referred to as “random growth”), the crystallization accelerator is trapped in the grain boundary, so that the crystallization occurs The speed is reduced, and crystal growth in the thickness direction of the crucible stops at a relatively early stage in the pulling process. Therefore, there is a problem that a thin crystal layer on the inner surface of the crucible melts into the silicon melt and disappears completely in a high-temperature heat load such as multi-pulling and a very long pulling process.
  • the conventional crucible strengthening method described in Patent Document 3 focuses only on the density of the surface brown ring, and does not consider crystal growth in the thickness direction of the crucible. If the thickness of the crystal layer is not sufficiently secured, there is a problem that the strength of the crucible cannot be maintained and deformation occurs, or the brown ring generated on the surface of the quartz glass is peeled off. Furthermore, since the brown ring does not cover the entire inner surface of the crucible, it does not contribute to increasing the strength of the crucible.
  • the inventors of the present application have found that the structure of the crystal layer, particularly the orientation state of the crystal grains with respect to the thickness direction of the crucible wall. It has been found that crystal growth continues if this is the case, thereby preventing the disappearance of the crystal layer due to peeling of the crystal layer or erosion to the silicon melt.
  • the present invention is based on such technical knowledge, and the quartz glass crucible according to the first aspect of the present invention is used for pulling a silicon single crystal by the Czochralski method and is made of quartz glass.
  • the bottomed cylindrical crucible body and the inner crystal layer composed of a collection of dome-shaped or columnar crystal grains formed on the surface layer of the inner surface of the crucible body by heating during the pulling process of the silicon single crystal.
  • a first crystallization accelerator-containing coating film formed on the inner surface.
  • the present invention it is possible to form a crystal layer having a thickness that does not cause deformation of the crucible wall by providing orientation to the crystal structure of the inner crystal layer to promote crystallization. Accordingly, it is possible to prevent the crucible from being deformed during a very long pulling process such as multi-pulling. In addition, dislocation of the silicon single crystal due to peeling of crystal grains (cristobalite) from the inner wall surface of the crucible can be prevented.
  • a peak intensity maximum value A and a diffraction angle 2 ⁇ at a diffraction angle 2 ⁇ of 20 to 25 ° obtained by analyzing the inner surface of the crucible body on which the inner crystal layer is formed by an X-ray diffraction method are as follows.
  • the ratio A / B to the maximum value B of the peak intensity at 33 to 40 ° is preferably 7 or less.
  • orientation refers to a collection of crystal grains growing along a certain crystal axis
  • “dome-shaped orientation” refers to a collection of dome-shaped crystal grains as XRD (X-RayXDiffraction).
  • XRD X-RayXDiffraction
  • the inner crystal layer includes a dome-shaped crystal layer formed of a collection of dome-shaped crystal grains formed on a surface layer portion of the inner surface of the crucible body, and a columnar shape formed immediately below the dome-shaped crystal layer. It is preferable to have a columnar crystal layer composed of a set of crystal grains.
  • the crystal growth of the inner crystal layer has changed from the dome-shaped orientation to the columnar orientation, and the columnar crystal grains grow in the thickness direction, so that the crystal grains are difficult to peel off even if the crystal grains grow large. It is possible to prevent dislocation of the silicon single crystal.
  • the strength of the crucible can be constantly increased by maintaining the crystal growth.
  • a peak intensity maximum value A and a diffraction angle 2 ⁇ at a diffraction angle 2 ⁇ of 20 to 25 ° obtained by analyzing the inner surface of the crucible body on which the inner crystal layer is formed by an X-ray diffraction method are as follows.
  • the ratio A / B to the maximum value B of the peak intensity at 33 to 40 ° is preferably less than 0.4.
  • the crystallization accelerator contained in the first crystallization accelerator-containing coating film is preferably an element capable of forming a divalent cation and forming glass with quartz glass.
  • barium that causes the alignment growth most strongly is particularly preferable.
  • the crystallization accelerator is barium
  • the concentration of the barium on the inner surface of the crucible body is preferably 3.9 ⁇ 10 16 atoms / cm 2 or more. According to this, innumerable crystal nuclei are generated on the surface of the crucible in a short time, and columnar-oriented crystal growth can be promoted from the earliest possible stage.
  • the quartz glass crucible according to the present invention is formed on the outer surface such that an outer crystal layer composed of a collection of dome-shaped or columnar crystal grains is formed on a surface layer portion of the outer surface of the crucible body by heating during the pulling process. It is preferable to further include a second crystallization accelerator-containing coating film. According to this configuration, it is possible to form a crystal layer having a thickness that prevents the crucible wall from being deformed by imparting orientation to the crystal structure of the outer crystal layer to promote crystallization. Accordingly, it is possible to prevent the crucible from being deformed during a very long pulling process such as multi-pulling. In addition, since the outer crystal layer can have an appropriate thickness in accordance with the pulling time, it is possible to prevent foam peeling from the quartz glass interface of the outer crystal layer.
  • the region having a constant width downward from the rim upper end of the inner surface of the crucible body is preferably a crystallization accelerator uncoated region in which the first crystallization accelerator-containing coating film is not formed. .
  • crystallization piece at the rim upper end can be suppressed, and the fall of the yield of a silicon single crystal can be prevented.
  • the maximum peak intensity A and the diffraction angle 2 ⁇ at a diffraction angle 2 ⁇ of 20 to 25 ° obtained by analyzing the outer surface of the crucible body on which the outer crystal layer is formed by an X-ray diffraction method are as follows.
  • the ratio A / B to the maximum value B of the peak intensity at 33 to 40 ° is preferably 0.4 or more and 7 or less. If the analysis result of the X-ray diffraction method satisfies the above conditions, it can be determined that the outer crystal layer has a dome-oriented crystal structure.
  • the crystallization accelerator contained in the second crystallization accelerator-containing coating film is barium, and the concentration of the barium on the outer surface of the crucible body is 4.9 ⁇ 10 15 atoms / cm 2 or more. It is preferably less than 3.9 ⁇ 10 16 atoms / cm 2 . According to this, the crystal growth of dome-like orientation can be promoted.
  • the region having a constant width downward from the rim upper end of the outer surface of the crucible body is preferably a crystallization accelerator uncoated region in which the first crystallization accelerator-containing coating film is not formed. .
  • crystallization piece at the rim upper end can be suppressed, and the fall of the yield of a silicon single crystal can be prevented.
  • the quartz glass crucible according to the second aspect of the present invention is used for pulling a silicon single crystal by the Czochralski method, and includes a bottomed cylindrical crucible body made of quartz glass, and the silicon single crystal.
  • crystallization can be promoted by imparting orientation to the crystal structure of the outer crystal layer, and a crystal layer having a thickness that does not cause deformation of the crucible wall can be formed. Accordingly, it is possible to prevent the crucible from being deformed during a very long pulling process such as multi-pulling.
  • the outer crystal layer can have an appropriate thickness in accordance with the pulling time, it is possible to prevent foam peeling from the quartz glass interface of the outer crystal layer.
  • the maximum value A of the peak intensity and the diffraction angle 2 ⁇ of 33 to 40 ° when the diffraction angle 2 ⁇ is 20 to 25 ° obtained by analyzing the outer surface of the crucible body on which the outer crystal layer is formed by X-ray diffraction.
  • the ratio A / B with the maximum value B of the peak intensity at is preferably 7 or less, particularly preferably 0.4 or more and 7 or less. From the analysis result of the X-ray diffraction method, when A / B is 7 or less, it can be determined that the outer crystal layer has a dome-shaped or columnar-oriented crystal structure, and is in particular from 0.4 to 7. In some cases, it can be determined that the orientation is dome-shaped.
  • the region having a constant width downward from the rim upper end of the outer surface of the crucible body is a crystallization accelerator uncoated region in which the crystallization accelerator-containing coating film is not formed.
  • the first crystallization accelerator coating liquid containing a thickener is applied to the inner surface of the quartz glass crucible, and the crystallization accelerator on the inner surface is obtained.
  • the density is 3.9 ⁇ 10 16 atoms / cm 2 or more.
  • the first crystallization accelerator coating liquid is applied by a spray method in a state where an area having a certain width is masked downward from the upper end of the rim on the inner surface of the quartz glass crucible.
  • the second crystallization accelerator coating liquid containing the thickener is applied to the outer surface of the quartz glass crucible, and the concentration of the crystallization accelerator on the outer surface is increased. Is preferably 4.9 ⁇ 10 15 atoms / cm 2 or more and less than 3.9 ⁇ 10 16 atoms / cm 2 .
  • the opening of the quartz glass crucible is sealed, and the first crystallization accelerator is applied in a state where a constant width region is masked downward from the rim upper end of the outer surface of the quartz glass crucible. It is preferable to apply the liquid by a spray method. By doing so, a columnar-oriented inner crystal layer can be formed on the inner surface of the crucible, and a dome-shaped outer crystal layer on the outer surface of the crucible can be formed.
  • the crystallization accelerator coating solution is applied to the surface of the quartz glass substrate, and the surface of the quartz glass substrate is subjected to an evaluation heat treatment at 1400 ° C. or higher.
  • a crystal layer is formed on a surface layer portion, the crystallization state of the surface of the quartz glass substrate is analyzed by an X-ray diffraction method, and the crystallization accelerator in the crystallization accelerator coating liquid is analyzed based on the analysis result And adjusting the adjusted crystallization accelerator coating liquid onto the surface of the quartz glass crucible.
  • Crystal grains with dome-like or columnar orientation can be grown by the presence of a high density of crystallization accelerators at the interface between quartz glass and crystal grains. It is not clear how dense the crystallization accelerator is present by applying the liquid. However, by confirming the action of the crystallization accelerator coating solution in advance using a quartz glass substrate, problems such as deformation of the quartz glass crucible in the actual pulling process can be prevented beforehand.
  • a sixth aspect of the present invention is a method for producing a silicon single crystal by the Czochralski method of pulling up a silicon single crystal from a silicon melt in a quartz glass crucible, wherein the first crystal is formed on the inner surface of the quartz glass crucible.
  • a dome-shaped crystal layer comprising a set of dome-shaped crystal grains on a surface layer portion of the inner surface of the quartz glass crucible by heating during the step of pulling up the silicon single crystal, and a dome-shaped crystal layer;
  • An inner crystal layer having a stacked structure of columnar crystal layers made up of a collection of columnar crystal grains is formed immediately below the substrate, and the silicon single crystal is pulled up while maintaining the growth of the inner crystal layer.
  • the present invention it is possible to form a crystal layer having a thickness that does not cause deformation of the crucible wall by providing orientation to the crystal structure of the inner crystal layer to promote crystallization. Accordingly, it is possible to prevent the crucible from being deformed during a very long pulling process such as multi-pulling. In addition, dislocation of the silicon single crystal due to peeling of crystal grains (cristobalite) from the inner wall surface of the crucible can be prevented.
  • the maximum value A of the peak intensity and the diffraction angle 2 ⁇ at a diffraction angle 2 ⁇ of 20 to 25 ° obtained by analyzing the inner surface of the quartz glass crucible with the inner crystal layer formed by X-ray diffraction.
  • the ratio A / B with the maximum value B of the peak intensity at 33 to 40 ° is preferably less than 0.4.
  • the crystallization accelerator contained in the first crystallization accelerator coating solution is barium, and the concentration of the barium applied to the inner surface is 3.9 ⁇ 10 16 atoms / cm 2 or more. It is preferable. According to this, innumerable crystal nuclei are generated on the surface of the crucible in a short time, and columnar-oriented crystal growth can be promoted from the earliest possible stage.
  • the first crystallization accelerator coating liquid is applied to a region of the inner surface of the quartz glass crucible excluding a region having a certain width downward from the upper end of the rim.
  • a second crystallization accelerator coating liquid is applied to the outer surface of the quartz glass crucible, and the outer surface of the quartz glass crucible is heated by heating during the pulling process of the silicon single crystal. It is preferable that an outer crystal layer composed of a collection of dome-shaped crystal grains is formed in the surface layer portion, and the silicon single crystal is pulled up without sustaining the growth of the outer crystal layer.
  • crystallization can be promoted by providing the crystal structure of the outer crystal layer with orientation, and a crystal layer having a thickness that does not cause deformation of the crucible wall can be formed. Accordingly, it is possible to prevent the crucible from being deformed during a very long pulling process such as multi-pulling.
  • the outer crystal layer can have an appropriate thickness in accordance with the pulling time, it is possible to prevent foam peeling from the quartz glass interface of the outer crystal layer.
  • the maximum peak intensity A and the diffraction angle 2 ⁇ obtained when the diffraction angle 2 ⁇ obtained by analyzing the outer surface of the quartz glass crucible on which the outer crystal layer is formed are 20 to 25 ° are
  • the ratio A / B to the maximum value B of the peak intensity at 33 to 40 ° is preferably 0.4 or more and 7 or less. If the analysis result of the X-ray diffraction method satisfies the above conditions, it can be determined that the outer crystal layer has a dome-oriented crystal structure.
  • the crystallization accelerator contained in the second crystallization accelerator coating solution is barium, and the concentration of the barium applied to the outer surface is 4.9 ⁇ 10 15 atoms / cm 2 or more 3 Preferably, it is less than 9 ⁇ 10 16 atoms / cm 2 . According to this, the crystal growth of dome-like orientation can be promoted.
  • the second crystallization accelerator coating solution is applied to a region of the outer surface of the quartz glass crucible excluding a region having a certain width downward from the upper end of the rim.
  • the first and second crystallization accelerator coating solutions further contain a thickener. According to this, it is possible to increase the viscosity of the coating liquid, and it is possible to prevent non-uniformity due to gravity or the like when applied to the crucible. Further, since the crystallization accelerator is dispersed without being aggregated in the coating solution, it can be uniformly applied to the surface of the crucible. Therefore, a high concentration crystallization accelerator can be uniformly and densely fixed on the crucible wall surface, and the growth of crystal grains having a columnar orientation or a dome orientation can be promoted.
  • the method for producing a silicon single crystal according to the present invention analyzes the crystallization state of the inner crystal layer formed by heating during the pulling step, and uses it in the next silicon single crystal pulling step based on the analysis result. It is preferable to adjust the concentration of the crystallization accelerator in the first crystallization accelerator coating solution applied to the inner surface of the new quartz glass crucible. According to this, the crystallization state of the inner surface of the used crucible can be evaluated and fed back to the quality of the subsequent quartz glass crucible, and the durability and reliability of the crucible can be improved.
  • the method for producing a silicon single crystal according to the present invention analyzes the crystallization state of the outer crystal layer formed by heating during the pulling process, and uses it in the next silicon single crystal pulling process based on the analysis result. It is preferable to adjust the concentration of the crystallization accelerator in the second crystallization accelerator coating solution applied to the outer surface of the new quartz glass crucible. According to this, the crystallization state of the inner surface of the used crucible can be evaluated and fed back to the quality of the subsequent quartz glass crucible, and the durability and reliability of the crucible can be improved.
  • the present invention it is possible to provide a quartz glass crucible capable of withstanding a very long single crystal pulling process such as multi-pulling and a method for manufacturing the same. Moreover, according to this invention, the manufacturing method of the silicon single crystal using such a quartz glass crucible can be provided.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a quartz glass crucible according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the structure of a quartz glass crucible whose surface is crystallized by heating.
  • FIGS. 3A to 3C are schematic diagrams for explaining the crystallization mechanism of the crucible surface layer portion by the crystallization accelerator.
  • FIG. 4 is a graph showing the results of measurement of the surface portion of the crucible by surface X-ray diffraction.
  • FIG. 4 (a) shows random orientation
  • FIG. 4 (a) shows dome-like orientation
  • FIG. Each crystal layer is shown.
  • FIG. 5 is a table showing appropriate crystal structures of the inner crystal layer 14A and the outer crystal layer 14B for each part.
  • FIG. 6 is a flowchart for explaining a method for producing a silicon single crystal using the quartz glass crucible 1 according to the present embodiment.
  • FIG. 7A is an image showing the observation result of SEM
  • FIG. 7B is a graph showing the relationship between the heating time of the quartz glass plate and the thickness of the crystal layer formed on the surface layer portion of the quartz glass plate. is there.
  • FIG. 8 shows evaluation results of the crystallization state and deformation when a quartz glass crucible coated with a coating solution containing barium is used in an actual crystal pulling process, and shows the crystal layers of the crucible samples # 1 to # 3. It is a graph of a SEM image and an X-ray diffraction spectrum.
  • FIG. 8 shows evaluation results of the crystallization state and deformation when a quartz glass crucible coated with a coating solution containing barium is used in an actual crystal pulling process, and shows the crystal layers of the crucible samples # 1 to # 3. It is a graph of a SEM image and an X-
  • FIG. 9 is a schematic view for explaining a silicon single crystal pulling step by the CZ method.
  • FIG. 10 is a schematic cross-sectional view showing the structure of a silica glass crucible according to the second embodiment of the present invention.
  • FIG. 11 is a schematic diagram for explaining a method of forming the crystallization accelerator-containing coating film 13B formed on the outer surface of the quartz glass crucible 2 shown in FIG.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a quartz glass crucible according to the first embodiment of the present invention.
  • a quartz glass crucible 1 is a bottomed cylindrical container for supporting a silicon melt. From a cylindrical straight body 1a, a gently curved bottom 1b, and a bottom 1b. Has a large curvature, and has a corner portion 1c connecting the straight body portion 1a and the bottom portion 1b.
  • the diameter D (caliber) of the quartz glass crucible 1 is 24 inches (about 600 mm) or more, preferably 32 inches (about 800 mm) or more. This is because such a large-diameter crucible is used for pulling up a large silicon single crystal ingot having a diameter of 300 mm or more, and is required not to be deformed even when used for a long time. In recent years, the crucible's thermal environment has become severe as the crucible becomes larger and the pulling process takes longer as the silicon single crystal becomes larger, and improving the durability of the large crucible is an extremely important issue.
  • the thickness of the crucible varies slightly depending on the location, the thickness of the straight barrel portion 1a of the crucible of 24 inches or more is preferably 8 mm or more, and the thickness of the straight barrel portion 1a of the large crucible of 32 inches or more is 10 mm.
  • the thickness of the straight body portion 1a of a large crucible having a size of 40 inches (about 1000 mm) or more is more preferably 13 mm or more.
  • the quartz glass crucible 1 has a two-layer structure, and an opaque layer 11 (bubble layer) made of quartz glass containing a large number of minute bubbles and a transparent layer 12 (bubble-free layer) made of quartz glass substantially free of bubbles. ).
  • the opaque layer 11 is provided in order to heat the silicon melt in the crucible as uniformly as possible without the radiant heat from the heater of the single crystal pulling apparatus passing through the crucible wall. Therefore, the opaque layer 11 is provided on the entire crucible from the straight body 1a to the bottom 1b of the crucible.
  • the thickness of the opaque layer 11 is a value obtained by subtracting the thickness of the transparent layer 12 from the thickness of the crucible wall, and varies depending on the portion of the crucible.
  • the bubble content in the quartz glass constituting the opaque layer 11 is 0.8% or more, preferably 1 to 5%.
  • the transparent layer 12 is a layer constituting the inner surface of the crucible wall in contact with the silicon melt, and is required to have high purity in order to prevent contamination of the silicon melt. It is provided to prevent the single crystal from undergoing dislocation due to a crucible fragment when it is ruptured.
  • the thickness of the transparent layer 12 is preferably 0.5 to 10 mm, and it is appropriate for each crucible portion so that the opaque layer 11 is not completely exposed due to melting damage during the pulling process of the single crystal. Thickness is set. Similar to the opaque layer 11, the transparent layer 12 is preferably provided over the entire crucible from the straight body 1a to the bottom 1b of the crucible, but the transparent layer is formed at the upper end (rim) of the crucible that does not contact the silicon melt. The formation of 12 can be omitted.
  • substantially free of bubbles means that the transparent layer 12 has a bubble content that does not decrease the single crystal yield due to crucible fragments when the bubbles burst. It is less than 0.8%, and the average diameter of the bubbles is 100 ⁇ m or less. The change in the bubble content is steep at the boundary between the opaque layer 11 and the transparent layer 12, and the boundary between the two is clear to the naked eye.
  • the bubble content of the transparent layer 12 can be measured nondestructively using optical detection means.
  • the optical detection means includes a light receiving device that receives reflected light of light irradiated on the inner surface of the crucible to be inspected.
  • the light emitting means for irradiating light may be built-in or may use an external light emitting means.
  • the optical detection means is preferably one that can be rotated along the inner surface of the quartz glass crucible.
  • As the irradiation light in addition to visible light, ultraviolet light and infrared light, X-rays or laser light can be used, and any light can be applied as long as it can be reflected to detect bubbles.
  • the light receiving device is selected according to the type of irradiation light. For example, an optical camera including a light receiving lens and an imaging unit can be used.
  • the measurement result by the optical detection means is taken into the image processing apparatus, and the bubble content is calculated.
  • the focal point of the light-receiving lens may be scanned from the surface in the depth direction, and a plurality of images are thus captured, and the bubble content of each image is determined. What is necessary is just to obtain
  • the quartz glass crucible 1 includes a crucible body 10 made of quartz glass, and first and second crystallization accelerator-containing coating films 13A and 13B formed on the inner surface 10a and the outer surface 10b of the crucible body 10, respectively. It has. These coating films serve to promote crystallization of the surface layer portion of the crucible body 10 by heating during the pulling process of the silicon single crystal.
  • the inner surface 10 a of the crucible body 10 is the surface of the transparent layer 12, and the outer surface 10 b is the surface of the opaque layer 11.
  • the first crystallization accelerator-containing coating film 13 A and the opaque layer 11 are formed on the transparent layer 12.
  • Second crystallization accelerator-containing coating films 13B are formed.
  • the crystallization accelerator-containing coating films 13 ⁇ / b> A and 13 ⁇ / b> B contain a water-soluble polymer that acts as a thickener, whereby a hard film is formed on the surface of the crucible body 10.
  • the thickness of the crystallization accelerator-containing coating films 13A and 13B is preferably 0.3 to 100 ⁇ m.
  • the concentration of barium applied to the film is controlled by changing the thickness of the crystallization accelerator-containing coating films 13A and 13B.
  • the crucible body 10 made of quartz glass is not intentionally added with an element that can be a crystallization accelerator.
  • the crucible body 10 is made of natural quartz powder, it is included in the crucible body 10.
  • the barium concentration is preferably less than 0.10 ppm
  • the magnesium concentration is less than 0.10 ppm
  • the calcium concentration is preferably less than 2.0 ppm.
  • synthetic quartz powder is used as a constituent material for the inner surface of the crucible body 10
  • the concentrations of magnesium and calcium contained in the crucible body 10 are both preferably less than 0.02 ppm.
  • the crystallization accelerator contained in the crystallization accelerator-containing coating films 13A and 13B is a group 2a element, and examples thereof include magnesium, calcium, strontium, and barium, but the segregation coefficient to silicon is small, and the crystal Barium is particularly preferred because the crystallization rate does not decay with crystallization and causes the orientational growth to be strongest compared to other elements.
  • the crystallization accelerator-containing coating films 13A and 13B can be formed by coating a coating solution containing barium on the crucible wall surface.
  • the coating liquid containing barium may be a coating liquid composed of a barium compound and water, or may be a coating liquid that does not contain water and contains anhydrous ethanol and a barium compound.
  • the barium compound include barium carbonate, barium chloride, barium acetate, barium nitrate, barium hydroxide, barium oxalate, and barium sulfate. If the surface concentration of the barium element (atoms / cm 2 ) is the same, the crystallization promoting effect is the same regardless of whether it is insoluble or water-soluble, but water-insoluble barium is less likely to be taken into the human body. High safety and advantageous in handling.
  • the coating liquid containing barium further contains a water-soluble polymer (thickener) having a high viscosity such as carboxyvinyl polymer.
  • a coating solution that does not contain a thickener is used, the fixing of barium to the crucible wall surface is unstable, and thus heat treatment for fixing the barium is required. It diffuses and penetrates into the inside of the film and becomes a factor for promoting the random growth of crystals described later.
  • the viscosity of the coating solution is high, so that it can be prevented from flowing due to gravity or the like when applied to a crucible.
  • the barium compound such as barium carbonate is dispersed without being aggregated in the coating solution, and can be uniformly applied to the surface of the crucible. Therefore, high-concentration barium can be uniformly and densely fixed on the crucible wall surface, and the growth of crystal grains having a columnar orientation or a dome-like orientation described later can be promoted.
  • the thickener examples include water-soluble polymers with few metal impurities such as polyvinyl alcohol, cellulose thickener, high-purity glucomannan, acrylic polymer, carboxyvinyl polymer, and polyethylene glycol fatty acid ester. Further, acrylic acid / alkyl methacrylate copolymer, polyacrylate, polyvinyl carboxylic acid amide, vinyl carboxylic acid amide and the like may be used as a thickener.
  • the viscosity of the coating solution containing barium is preferably in the range of 100 to 10,000 MPas, and the boiling point of the solvent is preferably 50 to 100 ° C.
  • a crystallization accelerator coating solution for coating the outer surface of a 32-inch crucible contains barium carbonate: 0.0012 g / mL and carboxyvinyl polymer: 0.0008 g / mL, respectively, and adjusts the ratio of ethanol and pure water. They can be prepared by mixing and stirring them.
  • Application of the crystallization accelerator coating solution to the surface of the crucible can be performed by brush and spray. After application, water and the like evaporate, and a firm film is formed by the thickener. In the conventional method, after applying water or alcohol containing barium carbonate, heating was performed to 200 to 300 ° C. for the purpose of suppressing peeling. Due to this heating, barium on the surface diffuses into the interior, crystal nuclei are generated at the same time, and always grow at random, so the coating film must not be heated after coating and before pulling.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the quartz glass crucible 1 whose surface is crystallized by heating.
  • the surface of the quartz glass crucible coated with the crystallization accelerator is accelerated in the crystallization of the quartz glass by heating during the pulling process of the silicon single crystal, and the inner surface 10 a and the outer surface 10 b of the crucible body 10.
  • the inner crystal layer 14A and the outer crystal layer 14B are formed respectively.
  • the heating during the pulling process of the silicon single crystal can be several tens of hours or more at a temperature higher than the melting point of silicon (about 1400 ° C.). How is the crystal layer formed on the surface layer of the crucible body 10? In addition to performing an evaluation by actually performing a pulling process of a silicon single crystal, it can be evaluated by performing a heat treatment for 1.5 hours or more at a temperature of 1400 ° C. or more and a silica glass softening point or less.
  • the crystallization state of the inner crystal layer 14A is preferably a single dome-shaped crystal layer or a two-layer structure of a dome-shaped crystal layer and a columnar crystal layer (hereinafter referred to as a dome-shaped / columnar crystal layer).
  • the inner crystal layer 14A is preferably a dome-shaped / columnar crystal layer.
  • the inner crystal layer 14A is a dome-shaped crystal layer. It may be a single layer structure consisting of only.
  • the dome-shaped crystal layer refers to a crystal layer composed of a collection of dome-shaped crystal grains
  • the columnar crystal layer refers to a crystal layer composed of a collection of columnar crystal grains.
  • the thickness of the inner crystal layer 14A capable of suppressing the deformation of the crucible is 200 ⁇ m or more, and preferably 400 ⁇ m or more.
  • the thickness of the inner crystal layer 14A in contact with the silicon melt is gradually melted during the pulling of the single crystal, the thickness of the inner crystal layer 14A can be maintained at 400 ⁇ m or more by gradually growing the columnar crystal layer. is there.
  • the extent to which the inner crystal layer 14A is thick can be easily evaluated by a so-called beam bending method using a quartz glass crucible piece on which a crystal layer is formed.
  • the crystallization state of the outer crystal layer 14B is preferably a single-layer structure of a dome-shaped crystal layer. Although details will be described later, in the dome-shaped / columnar crystal layer, the crystal growth is continued, whereby the thickness of the outer crystal layer 14B is increased, and foaming peeling is likely to occur at the interface between the crystal layer and the quartz glass layer. However, when the crucible is used for a relatively short time and the outer crystal layer does not become excessively thick, the outer crystal layer 14B may have a dome-shaped / columnar crystal layer structure.
  • the melting loss of the crucible can be suppressed, and dislocation of the silicon single crystal due to the separation of crystal grains can be prevented.
  • the strength of the crucible can be increased, and deformation of the crucible such as buckling and inward tilting can be suppressed.
  • FIGS. 3A to 3C are schematic diagrams for explaining the crystallization mechanism of the crucible surface layer by the crystallization accelerator.
  • the number of crystal nuclei initially generated on the surface of the crucible is small, so that random crystal growth starts from the crystal nuclei.
  • Ba ions are trapped in the crystal grain boundary, and the crystal growth gradually weakens due to a decrease in Ba ions existing at the interface between the quartz glass and the crystal grains and contributing to crystal growth in the thickness direction of the crucible, and eventually stops.
  • the crystal layer on the inner surface of the crucible melts by reaction with the silicon melt, the crystal layer on the inner surface of the crucible disappears in random growth in which the crystallization of quartz glass stops at the initial stage of heating, which is not suitable for long-time use.
  • the crystal layer on the outer surface of the crucible since the thickness of the crystal layer on the outer surface of the crucible is reduced by the reaction with the carbon susceptor, the crystal layer on the outer surface may be lost in random growth in which crystallization stops at the initial stage of heating.
  • the crystal growth period can be lengthened and the thickness of the crystal layer can be sufficiently secured.
  • the crystal growth period can be further extended, and continuous crystal growth can be realized.
  • the crystallized state of the crucible surface layer can be observed using an SEM (Scanning Electron Microscope), but it can also be evaluated by a surface X-ray diffraction method.
  • FIG. 4 is a graph showing the results of measurement of the surface portion of the crucible by surface X-ray diffraction.
  • FIG. 4 (a) shows random orientation
  • FIG. 4 (a) shows dome-like orientation
  • FIG. 4 (c) shows columnar orientation. Each crystal layer is shown.
  • the maximum value A of the peak intensity when the diffraction angle 2 ⁇ is 20 to 25 ° is very small, and the diffraction angle 2 ⁇ is 33 to 40 °.
  • the maximum value B of the peak intensity at is very large, and the peak intensity ratio A / B is less than 0.4.
  • FIG. 5 is a table showing appropriate crystal structures of the inner crystal layer 14A and the outer crystal layer 14B for each part, and a preferable crystal structure in each part is indicated by “ ⁇ ”, and a more preferable crystal structure is indicated by “ ⁇ ”. .
  • the entire inner surface from the straight body portion (W portion) 1a to the bottom portion (B portion) 1b is formed in a dome-shaped / columnar crystal layer (A / B is 0.4). Less than).
  • the corner portion (R portion) 1c and the bottom portion 1b may be dome-shaped / columnar crystal layers, and the inner surface of the straight body portion 1a may be dome-shaped crystal layers (A / B is 0.4 or more to less than 7). Is possible. This is because the inner surface of the straight body portion 1a has a shorter contact time with the silicon melt than the corner portion 1c and the bottom portion 1b, and therefore it may be sufficient to form a dome-shaped crystal layer.
  • the crystal pulling time is relatively short, it is also preferable to adopt a condition in which the inner surface of the straight body portion 1a of the crucible body 10 is a dome-shaped crystal layer. It is possible to reduce the thickness of the crystallization accelerator-containing coating film 13A at the straight body portion 1a, thereby reducing the incorporation of impurities contained in the coating film into the silicon melt.
  • the entire outer surface from the straight body portion 1a to the bottom portion 1b may be a dome-shaped / columnar crystal layer or a dome-shaped crystal layer regardless of the crucible portion. Particularly preferred is a dome-shaped crystal layer.
  • the strength of the crucible can be increased by giving the outer crystal layer 14B a certain thickness. However, if the thickness of the outer crystal layer 14B is increased, the bubbles in the crystallized quartz glass bubble layer are aggregated and expanded. This is because crucible deformation and crystal layer peeling easily occur. When the thickness of the outer crystal layer 14B is 1.5 mm or more, the outer crystal layer 14B is particularly easily peeled off. Therefore, the crystal growth rate of the outer crystal layer 14B is preferably slowed down as the crystal growth proceeds, and the thickness of the outer crystal layer 14B is preferably suppressed to less than 1.5 mm.
  • the coating liquid used for forming the crystallization accelerator-containing coating films 13A and 13B is preferably used in an actual quartz glass crucible after a crystallization state test is previously performed on a substrate such as a quartz glass plate. .
  • a crystallization state test after a predetermined concentration of a crystallization accelerator coating solution is applied to the surface of the quartz glass substrate, a crystal layer is formed on the surface layer portion of the surface of the quartz glass substrate by an evaluation heat treatment at 1400 ° C. or higher. .
  • the crystallization state of the surface of the quartz glass substrate is analyzed by an X-ray diffraction method, and the concentration of the crystallization accelerator in the crystallization accelerator coating liquid is adjusted based on the analysis result.
  • the concentration-adjusted crystallization accelerator coating liquid is applied to the surface of the quartz glass crucible (crucible body 10), thereby completing the quartz glass crucible 1.
  • a crucible can be realized.
  • FIG. 6 is a flowchart for explaining a method for producing a silicon single crystal using the quartz glass crucible 1 according to the present embodiment.
  • a quartz glass crucible on which the first and second crystallization accelerator-containing coating films 13A and 13B are formed is used. Therefore, a quartz glass crucible (crucible body 10) not coated with a crystallization accelerator is prepared and a barium compound coating solution having an appropriate concentration is applied to the inner and outer surfaces of the quartz glass crucible (step S11).
  • a silicon single crystal pulling step is performed using the quartz glass crucible 1 on which the first and second crystallization accelerator-containing coating films 13A and 13B are formed (step S12).
  • the pulling process may be a multi-pulling that pulls up a plurality of silicon single crystals from the same crucible, or a single pulling up of only one silicon single crystal.
  • FIG. 9 is a schematic diagram for explaining a step of pulling a silicon single crystal by the CZ method.
  • a single crystal pulling apparatus 20 is used in the silicon single crystal pulling step by the CZ method.
  • the single crystal pulling apparatus 20 includes a water-cooled chamber 21, a quartz glass crucible 1 that holds the silicon melt 4 in the chamber 21, a carbon susceptor 22 that holds the quartz glass crucible 1, and a rotation that supports the carbon susceptor 22.
  • the chamber 21 includes a main chamber 21a and an elongated cylindrical pull chamber 21b connected to the upper opening of the main chamber 21a.
  • the quartz glass crucible 1, the carbon susceptor 22, the heater 25, and the heat shield 27 are It is provided in the main chamber 21a.
  • a gas inlet 21c for introducing an inert gas (purge gas) such as argon gas or a dopant gas into the chamber 21 is provided in the upper part of the pull chamber 21b, and in the lower part of the main chamber 21a
  • a gas discharge port 21d for discharging atmospheric gas is provided.
  • a viewing window 21e is provided in the upper part of the main chamber 21a, and the growth state of the silicon single crystal 3 can be observed from the viewing window 21e.
  • the carbon susceptor 22 is used for maintaining the shape of the quartz glass crucible 1 softened by heating, and holds the quartz glass crucible 1 in close contact with the outer surface of the quartz glass crucible 1.
  • the quartz glass crucible 1 and the carbon susceptor 22 constitute a crucible having a double structure that supports the silicon melt 4 in the chamber 21.
  • the carbon susceptor 22 is fixed to the upper end portion of the rotating shaft 23, and the lower end portion of the rotating shaft 23 passes through the bottom portion of the chamber 21 and is connected to a shaft drive mechanism 24 provided outside the chamber 21.
  • the rotating shaft 23 and the shaft drive mechanism 24 constitute a rotating mechanism and a lifting mechanism for the quartz glass crucible 1 and the carbon susceptor 22.
  • the heater 25 is used for melting the silicon raw material filled in the quartz glass crucible 1 to generate the silicon melt 4 and maintaining the molten state of the silicon melt 4.
  • the heater 25 is a resistance heating type carbon heater and is provided so as to surround the quartz glass crucible 1 in the carbon susceptor 22. Further, a heat insulating material 26 is provided outside the heater 25 so as to surround the heater 25, thereby enhancing the heat retention in the chamber 21.
  • the heat shield 27 suppresses temperature fluctuation of the silicon melt 4 to form an appropriate hot zone near the crystal growth interface, and prevents the silicon single crystal 3 from being heated by radiant heat from the heater 25 and the quartz glass crucible 1. Is provided to do.
  • the heat shield 27 is a graphite member that covers a region above the silicon melt 4 excluding the pulling path of the silicon single crystal 3, and has, for example, an inverted frustoconical shape whose opening size increases from the lower end toward the upper end. Have.
  • the diameter of the opening 27 a at the lower end of the heat shield 27 is larger than the diameter of the silicon single crystal 3, thereby securing a pulling path for the silicon single crystal 3. Since the diameter of the opening 27a of the heat shield 27 is smaller than the diameter of the quartz glass crucible 1, and the lower end of the heat shield 27 is located inside the quartz glass crucible 1, the upper end of the rim of the quartz glass crucible 1 is placed on the heat shield. The heat shield 27 does not interfere with the quartz glass crucible 1 even if it is raised above the lower end of 27.
  • the quartz glass crucible 1 Although the amount of melt in the quartz glass crucible 1 decreases as the silicon single crystal 3 grows, the quartz glass crucible 1 is raised so that the gap between the melt surface and the lower end of the heat shield 27 becomes constant. As a result, the temperature fluctuation of the silicon melt 4 can be suppressed, and the evaporation rate of the dopant from the silicon melt 4 can be controlled by making the flow velocity of the gas flowing near the melt surface constant. Therefore, the stability of the silicon single crystal 3 such as the crystal defect distribution, the oxygen concentration distribution, and the resistivity distribution in the pulling axis direction can be improved.
  • FIG. 1 shows a state in which the silicon single crystal 3 being grown is suspended from the wire 28.
  • the silicon single crystal 3 is grown by gradually pulling up the wire 28 while rotating the quartz glass crucible 1 and the silicon single crystal 3 respectively.
  • the CCD camera 30 is installed outside the viewing window 21e. During the single crystal pulling process, the CCD camera 30 takes an image of the boundary between the silicon single crystal 3 and the silicon melt 4 that can be seen through the opening 27a of the heat shield 27 from the viewing window 21e.
  • the image captured by the CCD camera 30 is processed by the image processing unit 31, and the processing result is used by the control unit 32 for controlling the lifting conditions.
  • the inner surface of the quartz glass crucible 1 is melted by reaction with the silicon melt 4, but the crystallization of the inner surface and the outer surface proceeds by the action of the crystallization accelerator applied to the inner surface and the outer surface of the crucible. Therefore, the crystal layer on the inner surface does not disappear, and by ensuring the crystal layer thickness to some extent, the strength of the crucible can be maintained and deformation can be suppressed. Therefore, it is possible to prevent the crucible from being deformed to come into contact with the in-furnace member such as the heat shield 27 or the inner surface of the crucible is changed to change the liquid surface position of the silicon melt 4.
  • the crystal piece peeled from the inner surface of the quartz glass crucible 1 rides on the convection of the silicon melt 4 and reaches the solid-liquid interface, it may be taken into the silicon single crystal 3 to cause dislocation.
  • step S13 the surface of the used crucible after the completion of the pulling process is analyzed by an X-ray diffraction method, and the crystallization state of the crystal layer is evaluated (step S13).
  • the peak intensity ratio A / B is larger than 7, random orientation is obtained, and when the peak intensity ratio A / B is 0.4 or more and 7 or less, dome-shaped orientation and the peak intensity ratio A / B is 0.4. If it is less than this, it can be evaluated as a columnar oriented crystal layer.
  • the analysis / evaluation result is fed back to the concentration adjustment of the barium compound coating solution (step S13).
  • the barium concentration in the barium compound coating solution to be used can be adjusted to be a little lower. Good.
  • the crystallization state of the inner crystal layer 14A is a dome-like orientation and a columnar orientation is desired, the barium concentration in the barium compound coating solution to be used is adjusted to be a little higher. Good.
  • Analysis / evaluation results include crystal orientation (evaluation result by X-ray diffraction: peak ratio), crystal layer thickness, thickness gradient, thickness distribution, crystal grain size, presence / absence of foaming / peeling of crystal layer, and the like. be able to.
  • the adjustment items include concentration (by site), coating thickness (by site), thickener blending, and barium carbonate particle size.
  • concentration by site
  • coating thickness by site
  • thickener blending blending
  • barium carbonate particle size As an item adjustment method, the thermal load changes depending on the crystal pulling conditions for each part of the crucible, so first apply the barium concentration uniformly regardless of the crucible part and pull it up. The thickness distribution and the like are analyzed, and the above items may be adjusted for each region so that the crystal layer is uniform.
  • a new uncoated quartz glass crucible is prepared, and the barium compound coating solution after concentration adjustment is applied to the surface (step S15), and a silicon single crystal pulling process is newly performed using this quartz glass crucible. (Step S16).
  • the crystal layer on the surface of the quartz glass crucible 1 is in an optimal crystallization state for each part, so that the inner surface 10a of the crucible main body 10 is in-plane without peeling of crystal grains.
  • a uniform crystal layer can be formed, and the strength can always be maintained by continuously growing columnar crystals.
  • the outer surface 10b of the crucible main body 10 can prevent problems such as firing peeling while maintaining a certain strength.
  • the inner crystal layer 14A composed of a dome-shaped / columnar crystal layer or a dome-shaped crystal layer is formed on the inner surface 10a of the crucible body 10 by heating during the pulling process. Therefore, the inner crystal layer 14A can have a sufficient thickness. Therefore, the strength of the crucible can be increased and its deformation can be prevented. Further, it is possible to prevent the inner crystal layer 14A from completely disappearing due to melting damage on the inner surface of the crucible.
  • the orientation direction of the columnar crystal layer is the thickness direction of the crucible wall even if the dome-shaped crystal layer is melted. Separation can be prevented, and the crystal growth rate can be increased by concentrating crystal growth in the thickness direction of the crucible wall by columnar orientation.
  • the outer crystal layer 14B made of a dome-shaped crystal layer is formed on the outer surface 10b of the crucible body 10 by heating during the pulling process, so that the outer crystal layer 14B has a sufficient thickness. Can be made. Therefore, the strength of the crucible can be increased and its deformation can be prevented. Further, by forming a dome-shaped crystal layer on the outer surface 10b of the crucible body 10, it is possible to prevent the cracks due to impacts from the outer surface of the crucible from reaching the inside of the crucible by making the grain boundaries dense.
  • the outer crystal layer 14B as a dome-shaped crystal layer instead of a columnar crystal layer, crystal growth does not continue, and the outer crystal layer 14B does not become excessively thick. Therefore, peeling of the crystal layer due to expansion of bubbles at the interface between the thick crystal layer and quartz glass can be prevented, and further, cracks can be prevented from being propagated from the bubbles to the grain boundaries of the columnar crystals. it can.
  • the crystallization state of the crystal layer on the crucible surface (inner surface and outer surface) can be easily evaluated by the X-ray diffraction method. Therefore, based on this evaluation result, the application condition of the crystallization accelerator can be selected, and the quartz glass crucible 1 having the crystallization structure suitable for the pulling condition of the silicon single crystal and the site of the crucible is manufactured. Can do.
  • FIG. 10 is a schematic cross-sectional view showing the structure of a quartz glass crucible according to the second embodiment of the present invention.
  • the quartz glass crucible 2 is characterized in that the crystallization accelerator-containing coating films 13 ⁇ / b> A and 13 ⁇ / b> B respectively formed on the inner surface 10 a and the outer surface 10 b of the crucible body 10 are the upper end of the rim of the crucible body 10. It is in the point that is not formed. That is, a band-like region having a constant width downward from the rim upper end of the inner surface 10a of the crucible body 10 is a crystallization accelerator uncoated region 15A (hereinafter simply referred to as “uncoated region” in which the crystallization accelerator-containing coating film 13A is not formed.
  • a crystallization accelerator uncoated region 15B (hereinafter simply referred to as" uncoated ") in which the crystallization accelerator-containing coating film 13A is not formed. Area 15B).
  • the rim upper end portions (the rim upper end surface and the inner surface 10a and outer surface 10b near the rim upper end) are also provided. Crystallization and particles of crystal fragments generated from the crystallization region may be mixed into the silicon melt in the crucible, which may reduce the yield of the silicon single crystal.
  • the uncoated regions 15A and 15B are provided, crystallization at the upper end of the rim can be suppressed, and a decrease in the yield of silicon single crystals due to generation of particles of crystal pieces at the upper end of the rim can be prevented. Can do.
  • the uncoated areas 15A and 15B are preferably within a range of 2 mm or more and 40 mm or less downward from the upper end of the rim. This is because when the widths of the uncoated areas 15A and 15B are smaller than 2 mm, the effect of providing the uncoated areas 15A and 15B is not sufficient. Further, when the widths of the uncoated areas 15A and 15B are larger than 40 mm, the boundary position between the crystallization accelerator-containing coated film and the uncoated area may exist in the silicon melt. This is because if the boundary between the layer and the glass layer is immersed in the silicon melt, cracks are generated due to stress concentration in the boundary region, and the possibility of generating particles of crystal pieces increases.
  • the quartz glass crucible 1 during the crystal pulling process is accommodated in the carbon susceptor 22, and the rim upper end portion of the quartz glass crucible 1 protrudes upward from the upper end of the carbon susceptor 22. Therefore, it is always free-standing without being supported by the carbon susceptor 22.
  • the uncoated regions 15A and 15B are preferably provided in regions protruding upward from the upper end of the carbon susceptor 22 as described above.
  • the width range of the uncoated areas 15A and 15B is preferably 0.02 to 0.1 times the length of the straight body 1a of the crucible. This is because the effect of providing the uncoated areas 15A and 15B is not sufficient when the width of the uncoated areas 15A and 15B is smaller than 0.02 times the length of the straight body 1a of the crucible. Further, when the widths of the uncoated areas 15A and 15B are larger than 0.1 times the length of the straight body 1a of the crucible, the uncoated areas are formed up to the area supported by the carbon susceptor 22. This is because the crucible may be deformed by the foaming / peeling of the crystal layer and the yield of the silicon single crystal may be deteriorated.
  • FIG. 11 is a schematic diagram for explaining an example of a method for forming the uncoated region 15B together with the crystallization accelerator-containing coating film 13B on the outer surface of the quartz glass crucible 2 shown in FIG.
  • the crystallization accelerator-containing coating film 13B when the crystallization accelerator-containing coating film 13B is formed on the outer surface 10b of the crucible body 10, it can be formed by a spray method.
  • the opening 10d of the crucible body 10 is covered with a polyethylene sheet (PE sheet) 41 to cover the opening 10d, and then the mouth of the opening 10d.
  • the PE sheet 41 is fixed with a polypropylene band (PP band) 42 to seal the opening 10d.
  • PP band polypropylene band
  • the crucible body 10 is placed on the rotary stage 40 with the opening 10d of the crucible body 10 facing downward, as shown in the figure, and the end 41e of the PE sheet 41 spreading outward from the fixing position by the PP band 42 is turned over and turned downward.
  • the end portion 41 e of the PE sheet 41 is fixed to the outer peripheral surface of the rotary stage 40 with the rubber band 43.
  • a region having a constant width (2 to 40 mm) is masked by the PE sheet 41 and the PP band 42 downward from the upper end of the rim of the outer surface 10b of the crucible body 10, and then the entire surface of the outer surface 10b of the crucible body 10 is crystallized using the spray 45.
  • the crystallization accelerator-containing coating solution By applying the crystallization accelerator-containing coating solution, the crystallization accelerator-containing coating film 13B can be formed, and the uncoated region 15B can be formed near the rim upper end of the outer surface 10b of the crucible body 10.
  • the above is an example of a method for forming the uncoated region 15B together with the crystallization accelerator-containing coating film 13B on the outer surface of the quartz glass crucible 2, but the crystallization promoter-containing coating film 13A is not yet formed on the inner surface of the quartz glass crucible 2.
  • the crystallization accelerator coating solution may be applied by a spray method in a state where a region of a certain width is masked downward from the upper end of the rim on the inner surface 10a of the crucible body 10.
  • the quartz glass crucible 2 according to the present embodiment is provided with the crystallization accelerator non-application regions 15A and 15B on the inner surface 10a and the outer surface 10b of the rim upper end portion of the crucible body 10, so In addition to the effect of the invention according to the embodiment, it is possible to prevent the yield of the silicon single crystal from being reduced due to generation of particles of crystal pieces at the upper end of the rim.
  • the crystallization accelerator-containing coating films 13A and 13B are not necessarily formed on both the inner surface 10a and the outer surface 10b of the crucible body 10, and may be formed only on the inner surface 10a of the crucible body 10, and on the outer surface 10b. You may form only. However, since the inner surface 10a of the crucible is in contact with the silicon melt and the amount of erosion is large, the effect of crystallization is greater than that of the outer surface 10b of the crucible, and it is better to form a crystal layer on the inner surface than the outer surface of the crucible. is important.
  • the inner crystal layer 14A may be a single-layer structure of a dome-shaped crystal layer
  • the outer crystal layer 14B may be a random crystal layer or a dome-shaped crystal layer.
  • the case where the crystallized state of the crucible used in the preceding crystal pulling process is fed back to the crucible used in the subsequent crystal pulling process is taken as an example. It is not limited. Therefore, for example, conditions for a simulation test using a quartz piece may be determined based on predetermined crystal pulling conditions, the quartz piece may be evaluated under this condition, and the coating conditions may be determined based on the evaluation result. That is, the crystallization state of the crystal layer formed on the surface layer of the quartz piece by heating during the simulation test simulating the crystal pulling process is analyzed, and used in the actual silicon single crystal pulling process based on the analysis result. You may adjust the density
  • a spray method, a dip method, a curtain coat, etc. may be employed in addition to a method using a brush.
  • the effect of the concentration of the barium compound coating solution on the crystallization state of the crystal layer was evaluated.
  • an aqueous solution having a standard concentration in which 50 g / L of polyvinyl alcohol (thickener) was dissolved in barium acetate (metal ion 0.02M) was prepared, and the concentration of barium acetate in this aqueous solution was set to 0.01.
  • Six types of coating solutions were prepared that were adjusted to double, 0.031 times, 0.063 times, 0.125 times, 0.5 times, and 2 times, respectively.
  • twelve quartz glass plates were prepared and applied by immersing a set of two in a set time for each of six types of coating solutions after concentration adjustment.
  • the barium concentration on the surface of the quartz glass plate was determined.
  • the number of moles of barium is determined from the weight of the barium acetate aqueous solution reduced by immersing the quartz glass plate, and the number of barium atoms is calculated from the number of moles and the Avogadro constant.
  • the barium concentration was determined from the surface area of the quartz glass plate to which the barium aqueous solution was adhered.
  • the crystallization state of the surface layer portion of the 12 quartz glass plates after the heat treatment was observed with an SEM (Scanning Electron Microscope). Furthermore, among the 12 quartz glass plates, the surface of the quartz glass plate that was heat-treated for 90 minutes with a coating solution having a concentration magnification of 0.031 times, 0.125 times, 0.5 times, and 2 times was measured by X-ray diffraction Analysis was performed to determine the above-described peak intensity ratio A / B.
  • the depth (detection depth) from the surface evaluated by X-rays is variable depending on the incident angle of X-rays, but here it was set to several nm to several tens of ⁇ m.
  • Table 1 is a list of the evaluation test results of the quartz glass plate.
  • the barium concentration (surface barium concentration) on the surface of the quartz glass plate sample A1 coated with the barium acetate aqueous solution having a concentration ratio of 0.01 times the reference concentration is 7.8 ⁇ 10 14 atoms / cm. 2
  • the barium concentration on the surface of the quartz glass plate sample A2 coated with an aqueous barium acetate solution having a concentration magnification of 0.031 is 2.4 ⁇ 10 15 atoms / cm 2 , both of which are randomly oriented cristobalite crystals. It was growth.
  • the barium concentration on the surface of the quartz glass plate sample A3 coated with the barium acetate aqueous solution having a concentration factor of 0.063 is 4.9 ⁇ 10 15 atoms / cm 2
  • the acetic acid having a concentration factor of 0.125 is used.
  • the barium concentration on the surface of the quartz glass plate sample A4 coated with the barium aqueous solution was 9.7 ⁇ 10 15 atoms / cm 2 , and both were crystal growths of cristobalite with dome-like orientation.
  • the barium concentration on the surface of the quartz glass plate sample A5 coated with the barium acetate aqueous solution with a concentration magnification of 0.5 times becomes 3.9 ⁇ 10 16 atoms / cm 2
  • the barium acetate aqueous solution with a concentration magnification of 2 times The barium concentration on the surface of the quartz glass plate sample A6 coated with No. was 1.6 ⁇ 10 17 atoms / cm 2 , and both were crystal growths of cristobalite with columnar orientation.
  • FIG. 7A is an image showing the observation result of the crystal layer by SEM.
  • FIG. 7B is a graph showing the relationship between the heating time of the quartz glass plate and the thickness of the crystal layer formed on the surface layer portion of the quartz glass plate, the horizontal axis is the heating time, and the vertical axis is the crystal layer. Each thickness is shown.
  • the thickness of the crystal layer after about 30 minutes from the start of heating is about 200 ⁇ m. In addition, it was about 200 ⁇ m even after 90 minutes, and almost no crystal layer was grown after 30 minutes from the start of heating. That is, the crystal growth rate after 30 minutes from the start of heating was approximately 0 ⁇ m / h.
  • the crystal layer was crystal growth of the cristobalite of random orientation. Further, when the crystal structure of the crystal layer was analyzed by an X-ray diffraction method, a peak pattern as shown in FIG. 4A was obtained, and the above-described peak intensity ratio A / B was 8.
  • the thickness of the crystal layer after about 30 minutes is about 250 ⁇ m, and after about 90 minutes, the thickness is about 400 ⁇ m.
  • the crystal growth rate after 30 minutes from the start was approximately 150 ⁇ m / h.
  • crystallization layer was crystal growth of cristobalite of dome shape orientation from a SEM image. Both the width and length of the dome-shaped crystal grains were about 5 to 30 ⁇ m. Further, when the crystal structure of the crystal layer was analyzed by an X-ray diffraction method, a peak pattern as shown in FIG. 4B was obtained, and the above-described peak intensity ratio A / B was 0.64.
  • the thickness of the crystal layer after about 30 minutes was about 190 ⁇ m, but after about 90 minutes, it was about 600 ⁇ m.
  • the crystal growth rate after 30 minutes from the start of heating was approximately 450 ⁇ m / h.
  • the crystal layer was changing from the dome shape orientation to the crystal growth of columnar orientation from the SEM image.
  • the width of the columnar crystal grains is about 10 to 50 ⁇ m, the length is 50 ⁇ m or more, and many are about 50 to 100 ⁇ m.
  • the crystal structure of the crystal layer was analyzed by an X-ray diffraction method, a peak pattern as shown in FIG. 4C was obtained, and the above-described peak intensity ratio A / B was 0.16.
  • the crystallized state of the crystal layer changes in order from random orientation to dome-like orientation to columnar orientation, which is four times the concentration when the dome orientation grows. From the above, it was found that the crystal layer surely changed from dome-like orientation growth to columnar orientation growth. Therefore, it can be seen that the barium concentration on the surface is 3.9 ⁇ 10 16 atoms / cm 2 or more if the crystal layer has a columnar orientation.
  • the barium concentration on the surface can also be obtained by analysis using fluorescent X-rays.
  • Sample # 1 is obtained by applying the coating solution once to the outer surface of the crucible
  • sample # 2 is obtained by applying the coating solution six times to the inner surface of the crucible
  • sample # 3 is applied to the inner surface of the crucible. The liquid is applied five times. After application, water was evaporated in about 10 minutes and ethanol in about 30 minutes, and a firm film was formed with a thickener. After coating, the barium concentration on the surface of the crucible was determined from the amount of coating solution used.
  • the silicon single crystal ingot was pulled up by the CZ method using the quartz glass crucible samples # 1 to # 3.
  • the shape of the used crucible samples # 1 to # 3 was visually confirmed, and no deformation was observed in any of them. Further, the crystallization state of the crucible was evaluated from the SEM images of the cross sections of the used crucible samples # 1 to # 3, and the crystal structure of the crystal layer was analyzed by the X-ray diffraction method.
  • Table 2 is a table showing the evaluation test results of the quartz glass crucible.
  • FIG. 8 is a graph of SEM images and X-ray diffraction spectra of crystal layers of crucible samples # 1 to # 3.
  • the barium concentration on the outer surface of the sample # 1 of the quartz glass crucible in which the coating solution was applied once to the outer surface of the crucible was 1.1 ⁇ 10 16 atoms / cm 2 , and from the SEM image shown in FIG. I was able to confirm that it was growing.
  • the thickness of the outer crystal layer was about 360 ⁇ m.
  • the X-ray diffraction spectrum of the outer crystal layer has a smaller peak intensity B (right peak with 2 ⁇ of 33 to 40 °) than peak intensity A (left peak with 2 ⁇ of 20 to 25 °) as shown in (b). A pattern was obtained, and the above peak intensity ratio A / B was 1.7.
  • the barium concentration on the inner surface of the crucible sample # 2 in which the coating solution was applied to the inner surface of the crucible six times was 6.6 ⁇ 10 16 atoms / cm 2 , and from the SEM image shown in FIG. I was able to confirm that there was.
  • the thickness of the inner crystal layer was about 380 ⁇ m.
  • the X-ray diffraction spectrum of the inner crystal layer had a peak pattern in which the peak intensity B was larger than the peak intensity A as shown in (d), and the above-described peak intensity ratio A / B was 0.14.
  • the barium concentration on the inner surface of the crucible sample # 3 in which the coating solution was applied to the inner surface of the crucible five times was 5.5 ⁇ 10 16 atoms / cm 2 , and from the SEM image shown in FIG. I was able to confirm that there was.
  • the thickness of the inner crystal layer was approximately 350 ⁇ m.
  • the X-ray diffraction spectrum of the inner crystal layer had a peak pattern in which the peak intensity B was larger than the peak intensity A as shown in (f), and the above-described peak intensity ratio A / B was 0.23.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

【課題】マルチ引き上げなどの非常に長時間の単結晶引き上げ工程に耐えることができる石英ガラスルツボ及びその製造方法を提供する。 【解決手段】石英ガラスルツボ1は、石英ガラスからなる有底円筒状のルツボ本体10と、チョクラルスキー法によるシリコン単結晶の引き上げ工程中の加熱によってルツボ本体10の内面10aの表層部にドーム状又は柱状の結晶粒の集合からなる内側結晶層が形成されるように前記内面10aに形成された第1の結晶化促進剤含有塗布膜13Aとを備える。

Description

石英ガラスルツボ及びその製造方法並びに石英ガラスルツボを用いたシリコン単結晶の製造方法
 本発明は、石英ガラスルツボ及びその製造方法に関し、特に、チョクラルスキー法(CZ法)によるシリコン単結晶の製造に用いられる石英ガラスルツボ及びその製造方法に関する。また本発明は、そのような石英ガラスルツボを用いたシリコン単結晶の製造方法に関するものである。
 CZ法によるシリコン単結晶の製造では石英ガラスルツボが用いられている。CZ法では、シリコン原料を石英ガラスルツボ内で加熱溶融し、このシリコン融液に種結晶を浸漬し、ルツボを回転させながら種結晶を徐々に引き上げて単結晶を成長させる。半導体デバイス用の高品質なシリコン単結晶を低コストで製造するためには、一回の引き上げ工程で単結晶収率を高めることができるだけでなく、一つのルツボから複数本のシリコン単結晶インゴットを引き上げるいわゆるマルチ引き上げを実施できる必要があり、そのためには長時間の使用に耐える形状が安定したルツボが必要となる。
 従来の石英ガラスルツボはシリコン単結晶引き上げ時の1400℃以上の熱環境下で粘性が低くなり、その形状を維持できず、座屈や内倒れなどのルツボの変形が生じ、これによりシリコン融液の液面レベルの変動やルツボの破損、炉内部品との接触などが問題になる。また、ルツボ内表面は単結晶引き上げ中にシリコン融液と接触することによって結晶化し、ブラウンリングと呼ばれるクリストバライトが形成されるが、これが剥離して育成中のシリコン単結晶に取り込まれた場合には有転位化の要因となる。
 このような問題を解決するため、ルツボの壁面を積極的に結晶化させてルツボの強度を高める方法が提案されている。例えば、特許文献1には、石英ガラスルツボ内表面の深さ1mm以内に2a族元素の結晶化促進剤の塗布膜が存在する石英ガラスルツボが記載されている。この石英ガラスルツボを用いてシリコン単結晶の引き上げを行うと、ルツボ内表面に結晶層が形成され、耐熱性が向上し、例えば減圧下でシリコン単結晶の引き上げを行っても内表面が荒れず平滑さが維持され、結晶化率よく長時間の引き上げが可能である。
 また特許文献2には、ルツボ内表面に水酸化バリウム水溶液等の失透促進剤を塗布し、特にルツボの部位毎に失透促進剤の濃度を変化させて結晶化速度を調整することにより、結晶の剥離を防止することが記載されている。結晶化速度はルツボのコーナー部>壁部>底部の順とし、また均一な失透のために失透成長速度は0.1~0.6μm/hの範囲内としている。
 また特許文献3には、石英ガラスルツボ等の石英ガラス製品の表面処理方法であって、メチル基を含有する還元性のコート剤(アミン、オルガノシランハロゲン他)にてルツボ内表面をコートして結晶引き上げ中にクリストバライト化を促進させることにより、失透点の剥離を防ぐことができると記載されている。
 また特許文献4には、内表面を半結晶化させることにより強度が高められた石英ガラスルツボが記載されている。この石英ガラスルツボは、厚さ1~10μmのルツボ内表面が結晶化促進剤を含有し、かつ結晶化度が80~95%の半結晶層を有するものである。このような半結晶層は、回転モールド法においてアーク溶融中のモールドに電圧を印加して結晶化促進剤をルツボ内表面に移動させることによって形成される。
 また特許文献5には、ルツボ側壁の外層が石英ガラス中で網状化剤として作用するTi等の第一成分と石英ガラス中で分離点形成剤として作用するBa等の第二成分とを含む、0.2mm以上の厚さを持つドーピング領域からなり、結晶引き上げにおける特定の使用法に従って石英ガラスるつぼが加熱されるとき、ドーピング領域にクリストバライトを形成して石英ガラスの結晶化を促進させることにより、ルツボの強度をアップさせることが記載されている。
特開平8-2932号公報 特開2003-160393号公報 特開2010-537945号公報 特開2006-206342号公報 特開2005-523229号公報
 しかしながら、特許文献1,2に記載された従来のルツボの強化方法では、結晶層の厚さが十分でない場合があり、結晶化状態によっては結晶粒の剥離が起きることがあった。すなわち、結晶層において結晶成長方向に規則性がなく、結晶があらゆる方向に成長(以下、「ランダム成長」)すると、結晶化促進剤が結晶粒界にトラップされるので、時間の経過と共に結晶化速度が遅くなり、ルツボの厚み方向への結晶成長が引き上げ工程中の比較的早い段階で停止する。したがって、マルチ引き上げなどの高温熱負荷及び非常に長時間の引き上げ工程では、ルツボ内面の薄い結晶層がシリコン融液に溶損して完全に消失するという問題がある。
 特許文献3に記載の従来のルツボの強化方法は、表面のブラウンリングの密度のみに注目しており、ルツボの厚み方向への結晶成長を考慮したものではない。結晶層の厚みが十分に確保されないとルツボの強度を保てず変形を起こしたり、石英ガラスの表面に発生したブラウンリングの剥離が起きたりするという問題がある。さらに、ブラウンリングがルツボ内面の全面を覆うことはないので、ルツボの強度アップには寄与しない。
 特許文献4、5に記載の従来のルツボの強化方法は、結晶化促進剤がガラスマトリックス中に存在するため、結晶化促進剤が同時多発的に結晶核を発生させ、結晶層がランダム成長になるので、結晶化速度の低下により結晶層の厚さが不十分になるという問題がある。ルツボ内面は単結晶引き上げ中に1mm以上溶損する可能性があるため、結晶層が薄い場合には単結晶引き上げ工程の後半で結晶層が消失するおそれがある。
 したがって、本発明の目的は、マルチ引き上げなどの非常に長時間の単結晶引き上げ工程に耐えることができる石英ガラスルツボ及びその製造方法を提供することにある。また本発明は、そのような石英ガラスルツボを用いたシリコン単結晶の製造方法を提供することにある。
 本願発明者らは、結晶引上げ工程中の高温下でルツボ表面が結晶化するメカニズムについて鋭意研究を重ねた結果、結晶層の構造、特にルツボ壁の厚み方向に対する結晶粒の配向状態がどのようになっていれば結晶成長が継続し、これにより結晶層の剥離やシリコン融液への溶損による結晶層の消失を防止できるかということを見出した。
 本発明はこのような技術的知見に基づくものであり、本発明の第1の側面による石英ガラスルツボは、チョクラルスキー法によるシリコン単結晶の引き上げに用いられるものであって、石英ガラスからなる有底円筒状のルツボ本体と、前記シリコン単結晶の引き上げ工程中の加熱によって前記ルツボ本体の内面の表層部にドーム状又は柱状の結晶粒の集合からなる内側結晶層が形成されるように前記内面に形成された第1の結晶化促進剤含有塗布膜とを備えることを特徴とする。
 本発明によれば、内側結晶層の結晶構造に配向性を持たせることで結晶化を促進し、ルツボ壁に変形が生じない厚みを持った結晶層を形成することができる。したがって、マルチ引き上げなどの非常に長時間の引き上げ工程中に生じるルツボの変形を防止することができる。またルツボ内壁面からの結晶粒(クリストバライト)の剥離によるシリコン単結晶の有転位化を防止することができる。
 本発明において、前記内側結晶層が形成された前記ルツボ本体の前記内面をX線回折法で分析することにより得られる回折角度2θが20~25°におけるピーク強度の最大値Aと回折角度2θが33~40°におけるピーク強度の最大値Bとの比A/Bは7以下であることが好ましい。X線回折法の分析結果が上記条件を満たす場合には内側結晶層がドーム状配向又は柱状配向の結晶構造であると判断することができる。なお「配向」とは、結晶軸がある方向に揃って成長している結晶粒の集合のことを言い、「ドーム状配向」とは、ドーム状の結晶粒の集合をXRD(X-Ray Diffraction:X線回折)で評価したとき、結晶軸方向がランダムな結晶粒と配向成長した結晶粒とが混在しており、結晶粒の集合の一部に配向性が確認される結晶構造のことを言う。
 本発明において、前記内側結晶層は、前記ルツボ本体の前記内面の表層部に形成されたドーム状の結晶粒の集合からなるドーム状結晶層と、前記ドーム状結晶層の直下に形成された柱状の結晶粒の集合からなる柱状結晶層とを有することが好ましい。ルツボの内面が平面状に結晶成長すると、大きく成長した結晶粒が剥離するおそれがあり、これによりシリコン単結晶が有転位化するおそれがある。しかし、内側結晶層の結晶成長がドーム状配向から柱状配向に変化しており、柱状の結晶粒が厚み方向に成長するので、結晶粒が大きく成長しても結晶粒が剥離しにくい構造とすることができ、シリコン単結晶の有転位化を防止することができる。また、結晶成長を持続させてルツボの強度を常に高めることができる。
 本発明において、前記内側結晶層が形成された前記ルツボ本体の前記内面をX線回折法で分析することにより得られる回折角度2θが20~25°におけるピーク強度の最大値Aと回折角度2θが33~40°におけるピーク強度の最大値Bとの比A/Bは0.4未満であることが好ましい。X線回折法の分析結果が上記条件を満たす場合には内側結晶層が主として柱状配向の結晶構造であると判断することができる。
 本発明において、前記第1の結晶化促進剤含有塗布膜に含まれる結晶化促進剤は2価の陽イオンとなり石英ガラスとガラスを形成できる元素であることが好ましく、その中でも、他の元素に比べて配向成長を最も強く引き起こさせるバリウムが特に好ましい。結晶化促進剤がバリウムである場合、前記ルツボ本体の前記内面における前記バリウムの濃度は3.9×1016atoms/cm以上であることが好ましい。これによれば、短時間のうちにルツボ表面に無数の結晶核を発生させてできるだけ早い段階から柱状配向の結晶成長を促進させることができる。
 本発明による石英ガラスルツボは、前記引き上げ工程中の加熱によって前記ルツボ本体の外面の表層部にドーム状又は柱状の結晶粒の集合からなる外側結晶層が形成されるように前記外面に形成された第2の結晶化促進剤含有塗布膜をさらに備えることが好ましい。この構成によれば、外側結晶層の結晶構造に配向性を持たせることで結晶化を促進し、ルツボ壁に変形が生じない厚みを持った結晶層を形成することができる。したがって、マルチ引き上げなどの非常に長時間の引き上げ工程中に生じるルツボの変形を防止することができる。また引き上げ時間に合わせて外側結晶層に適度な厚みを持たせることができるので、外側結晶層の石英ガラス界面からの発泡剥離を防止することができる。
 本発明において、前記ルツボ本体の前記内面のリム上端から下方に一定幅の領域は、前記第1の結晶化促進剤含有塗布膜が形成されていない結晶化促進剤未塗布領域であることが好ましい。これにより、リム上端での結晶小片のパーティクルの発生を抑えてシリコン単結晶の歩留りの低下を防止することができる。
 本発明において、前記外側結晶層が形成された前記ルツボ本体の前記外面をX線回折法で分析することにより得られる回折角度2θが20~25°におけるピーク強度の最大値Aと回折角度2θが33~40°におけるピーク強度の最大値Bとの比A/Bは0.4以上7以下であることが好ましい。X線回折法の分析結果が上記条件を満たす場合には外側結晶層がドーム状配向の結晶構造であると判断することができる。
 本発明において、前記第2の結晶化促進剤含有塗布膜に含まれる結晶化促進剤はバリウムであり、前記ルツボ本体の前記外面における前記バリウムの濃度は4.9×1015atoms/cm以上3.9×1016atoms/cm未満であることが好ましい。これによれば、ドーム状配向の結晶成長を促進させることができる。
 本発明において、前記ルツボ本体の前記外面のリム上端から下方に一定幅の領域は、前記第1の結晶化促進剤含有塗布膜が形成されていない結晶化促進剤未塗布領域であることが好ましい。これにより、リム上端での結晶小片のパーティクルの発生を抑えてシリコン単結晶の歩留りの低下を防止することができる。
 また本発明の第2の側面による石英ガラスルツボは、チョクラルスキー法によるシリコン単結晶の引き上げに用いられるものであって、石英ガラスからなる有底円筒状のルツボ本体と、前記シリコン単結晶の引き上げ工程中の加熱によって前記ルツボ本体の外面の表層部にドーム状又は柱状の結晶粒の集合からなる外側結晶層が形成されるように前記外面に形成された結晶化促進剤含有塗布膜とを備えることを特徴とする。
 本発明によれば、外側結晶層の結晶構造に配向性を持たせることで結晶化を促進し、ルツボ壁に変形が生じない厚みを持った結晶層を形成することができる。したがって、マルチ引き上げなどの非常に長時間の引き上げ工程中に生じるルツボの変形を防止することができる。また引き上げ時間に合わせて外側結晶層に適度な厚みを持たせることができるので、外側結晶層の石英ガラス界面からの発泡剥離を防止することができる。
 前記外側結晶層が形成された前記ルツボ本体の前記外面をX線回折法で分析することにより得られる回折角度2θが20~25°におけるピーク強度の最大値Aと回折角度2θが33~40°におけるピーク強度の最大値Bとの比A/Bは7以下であることが好ましく、0.4以上7以下であることが特に好ましい。X線回折法の分析結果からA/Bは7以下である場合には外側結晶層がドーム状配向又は柱状配向の結晶構造であると判断することができ、特に0.4以上7以下である場合にはドーム状配向であると判断することができる。
 本発明において、前記ルツボ本体の前記外面のリム上端から下方に一定幅の領域は、前記結晶化促進剤含有塗布膜が形成されていない結晶化促進剤未塗布領域であることが好ましい。これにより、リム上端での結晶小片のパーティクルの発生を抑えてシリコン単結晶の歩留りの低下を防止することができる。
 また本発明の第3の側面による石英ガラスルツボの製造方法は、増粘剤を含む第1の結晶化促進剤塗布液を石英ガラスルツボの内面に塗布して、当該内面における結晶化促進剤の濃度を3.9×1016atoms/cm以上にすることを特徴とする。この場合、前記石英ガラスルツボの前記内面のうち、リム上端から下方に一定幅の領域をマスキングした状態で、前記第1の結晶化促進剤塗布液をスプレー法により塗布することが好ましい。さらに、本発明による石英ガラスルツボの製造方法は、前記増粘剤を含む第2の結晶化促進剤塗布液を前記石英ガラスルツボの外面に塗布して、当該外面における前記結晶化促進剤の濃度を4.9×1015atoms/cm以上3.9×1016atoms/cm未満にすることが好ましい。この場合、前記石英ガラスルツボの開口部を封止すると共に、前記石英ガラスルツボの前記外面のうち、リム上端から下方に一定幅の領域をマスキングした状態で、前記第1の結晶化促進剤塗布液をスプレー法により塗布することが好ましい。このようにすることで、ルツボの内面に柱状配向の内側結晶層を形成することができ、またルツボの外面のドーム状配向の外側結晶層を形成することができる。
 また本発明の第4の側面による石英ガラスルツボの製造方法は、石英ガラス基材の表面に結晶化促進剤塗布液を塗布し、1400℃以上の評価熱処理によって前記石英ガラス基材の前記表面の表層部に結晶層を形成し、前記石英ガラス基材の前記表面の結晶化状態をX線回折法によって分析し、当該分析結果に基づいて前記結晶化促進剤塗布液中の前記結晶化促進剤の濃度を調整し、調整後の前記結晶化促進剤塗布液を石英ガラスルツボの表面に塗布することを特徴とする。
 ドーム状配向や柱状配向の結晶粒は、石英ガラスと結晶粒との界面に結晶化促進剤が高密度に存在することで成長させることができるが、石英ガラスルツボの表面に結晶化促進剤塗布液を塗布することによって結晶化促進剤がどの程度高密度に存在するかは明らかでない。しかし、予め石英ガラス基材を用いて結晶化促進剤塗布液の作用を確認することで、実際の引き上げ工程での石英ガラスルツボの変形等の問題を未然に防止することができる。
 さらに本発明の第6の側面は、石英ガラスルツボ内のシリコン融液からシリコン単結晶を引き上げるチョクラルスキー法によるシリコン単結晶の製造方法であって、前記石英ガラスルツボの内面に第1の結晶化促進剤塗布液を塗布し、前記シリコン単結晶の引き上げ工程中の加熱によって前記石英ガラスルツボの前記内面の表層部にドーム状の結晶粒の集合からなるドーム状結晶層及び前記ドーム状結晶層の直下に柱状の結晶粒の集合からなる柱状結晶層の積層構造からなる内側結晶層を形成し、前記内側結晶層の成長を持続させながら前記シリコン単結晶の引き上げを行うことを特徴とする。
 本発明によれば、内側結晶層の結晶構造に配向性を持たせることで結晶化を促進し、ルツボ壁に変形が生じない厚みを持った結晶層を形成することができる。したがって、マルチ引き上げなどの非常に長時間の引き上げ工程中に生じるルツボの変形を防止することができる。またルツボ内壁面からの結晶粒(クリストバライト)の剥離によるシリコン単結晶の有転位化を防止することができる。
 本発明において、前記内側結晶層が形成された前記石英ガラスルツボの前記内面をX線回折法で分析することにより得られる回折角度2θが20~25°におけるピーク強度の最大値Aと回折角度2θが33~40°におけるピーク強度の最大値Bとの比A/Bは0.4未満であることが好ましい。X線回折法の分析結果が上記条件を満たす場合には内側結晶層が主として柱状配向の結晶構造であると判断することができる。
 本発明において、前記第1の結晶化促進剤塗布液に含まれる結晶化促進剤はバリウムであり、前記内面に塗布された前記バリウムの濃度は3.9×1016atoms/cm以上であることが好ましい。これによれば、短時間のうちにルツボ表面に無数の結晶核を発生させてできるだけ早い段階から柱状配向の結晶成長を促進させることができる。
 本発明において、前記第1の結晶化促進剤塗布液は、前記石英ガラスルツボの前記内面のうち、リム上端から下方に一定幅の領域を除いた領域に塗布されることが好ましい。これにより、リム上端での結晶小片のパーティクルの発生を抑えてシリコン単結晶の歩留りの低下を防止することができる。
 本発明によるシリコン単結晶の製造方法は、前記石英ガラスルツボの外面に第2の結晶化促進剤塗布液を塗布し、前記シリコン単結晶の引き上げ工程中の加熱によって前記石英ガラスルツボの前記外面の表層部にドーム状の結晶粒の集合からなる外側結晶層を形成し、前記外側結晶層の成長を持続させることなく前記シリコン単結晶の引き上げを行うことが好ましい。
 これによれば、外側結晶層の結晶構造に配向性を持たせることで結晶化を促進し、ルツボ壁に変形が生じない厚みを持った結晶層を形成することができる。したがって、マルチ引き上げなどの非常に長時間の引き上げ工程中に生じるルツボの変形を防止することができる。また引き上げ時間に合わせて外側結晶層に適度な厚みを持たせることができるので、外側結晶層の石英ガラス界面からの発泡剥離を防止することができる。
 本発明において、前記外側結晶層が形成された前記石英ガラスルツボの前記外面のX線回折法で分析するにより得られる回折角度2θが20~25°におけるピーク強度の最大値Aと回折角度2θが33~40°におけるピーク強度の最大値Bとの比A/Bは0.4以上7以下であることが好ましい。X線回折法の分析結果が上記条件を満たす場合には外側結晶層がドーム状配向の結晶構造であると判断することができる。
 本発明において、前記第2の結晶化促進剤塗布液に含まれる前記結晶化促進剤はバリウムであり、前記外面に塗布された前記バリウムの濃度は4.9×1015atoms/cm以上3.9×1016atoms/cm未満であることが好ましい。これによれば、ドーム状配向の結晶成長を促進させることができる。
 本発明において、前記第2の結晶化促進剤塗布液は、前記石英ガラスルツボの前記外面のうち、リム上端から下方に一定幅の領域を除いた領域に塗布されることが好ましい。これにより、リム上端での結晶小片のパーティクルの発生を抑えてシリコン単結晶の歩留りの低下を防止することができる。
 本発明において、前記第1及び第2の結晶化促進剤塗布液は増粘剤をさらに含むことが好ましい。これによれば、塗布液の粘性を高めることができ、ルツボに塗布したときに重力等で流れて不均一がなることを防止することができる。また、結晶化促進剤が塗布液中で凝集せず分散するので、ルツボ表面に均一に塗布することが可能となる。したがってルツボ壁面に高濃度の結晶化促進剤を均一かつ高密度に定着させることができ、柱状配向又はドーム状配向の結晶粒の成長を促進させることができる。
 本発明によるシリコン単結晶の製造方法は、前記引き上げ工程中の加熱によって形成された前記内側結晶層の結晶化状態を分析し、当該分析結果に基づいて、次のシリコン単結晶の引き上げ工程で使用する新たな石英ガラスルツボの内面に塗布する前記第1の結晶化促進剤塗布液中の前記結晶化促進剤の濃度を調整することが好ましい。これによれば、使用済みルツボの内面の結晶化状態を評価してその後の石英ガラスルツボの品質にフィードバックすることができ、ルツボの耐久性及び信頼性を向上させることができる。
 本発明によるシリコン単結晶の製造方法は、前記引き上げ工程中の加熱によって形成された前記外側結晶層の結晶化状態を分析し、当該分析結果に基づいて、次のシリコン単結晶の引き上げ工程で使用する新たな石英ガラスルツボの外面に塗布する前記第2の結晶化促進剤塗布液中の前記結晶化促進剤の濃度を調整することが好ましい。これによれば、使用済みルツボの内面の結晶化状態を評価してその後の石英ガラスルツボの品質にフィードバックすることができ、ルツボの耐久性及び信頼性を向上させることができる。
 本発明によれば、マルチ引き上げなどの非常に長時間の単結晶引き上げ工程に耐えることができる石英ガラスルツボ及びその製造方法を提供することができる。また本発明によれば、そのような石英ガラスルツボを用いたシリコン単結晶の製造方法を提供することができる。
図1は、本発明の第1の実施の形態による石英ガラスルツボの構造を示す略断面図である。 図2は、加熱によって表面が結晶化した状態の石英ガラスルツボの構造を示す略断面図である。 図3(a)~(c)は、結晶化促進剤によるルツボ表層部の結晶化のメカニズムを説明するための模式図である。 図4は、表面X線回折法によるルツボ表層部の測定結果を示すグラフであり、図4(a)はランダム配向、図4(a)はドーム状配向、図4(c)は柱状配向の結晶層をそれぞれ示している。 図5は、内側結晶層14A及び外側結晶層14Bの適切な結晶構造を部位ごとに示す表である。 図6は、本実施形態による石英ガラスルツボ1を用いたシリコン単結晶の製造方法を説明するためのフローチャートである。 図7(a)はSEMの観察結果を示す画像であり、図7(b)は石英ガラス板の加熱時間を石英ガラス板の表層部に形成された結晶層の厚さとの関係を示すグラフである。 図8は、バリウムを含む塗布液を塗布した石英ガラスルツボを実際の結晶引き上げ工程で使用したときの結晶化状態及び変形の評価結果であって、各ルツボサンプル#1~#3の結晶層のSEM画像及びX線回折スペクトルのグラフである。 図9は、CZ法によるシリコン単結晶の引き上げ工程を説明するための模式図である。 図10は、本発明の第2の実施の形態による石英ガラスルツボの構造を示す略断面図である。 図11は、図10に示した石英ガラスルツボ2の外面に形成される結晶化促進剤含有塗布膜13Bの形成方法を説明するための模式図である。
 以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
 図1は、本発明の第1の実施の形態による石英ガラスルツボの構造を示す略断面図である。
 図1に示すように、石英ガラスルツボ1は、シリコン融液を支持するための有底円筒状の容器であり、円筒状の直胴部1aと、緩やかに湾曲した底部1bと、底部1bよりも大きな曲率を有し、直胴部1aと底部1bとを繋ぐコーナー部1cとを有している。
 石英ガラスルツボ1の直径D(口径)は24インチ(約600mm)以上であり、32インチ(約800mm)以上であることが好ましい。このような大口径のルツボは直径300mm以上の大型のシリコン単結晶インゴットの引き上げに用いられ、長時間使用しても変形しにくいことが求められるからである。近年、シリコン単結晶の大型化に伴うルツボの大型化、引き上げ工程の長時間化に伴い、ルツボの熱環境が厳しくなっており、大型ルツボでは耐久性の向上が極めて重要な課題である。ルツボの肉厚はその部位によって多少異なるが、24インチ以上のルツボの直胴部1aの肉厚は8mm以上であることが好ましく、32インチ以上の大型ルツボの直胴部1aの肉厚は10mm以上であることが好ましく、40インチ(約1000mm)以上の大型ルツボの直胴部1aの肉厚は13mm以上であることがより好ましい。
 石英ガラスルツボ1は二層構造であって、多数の微小な気泡を含む石英ガラスからなる不透明層11(気泡層)と、実質的に気泡を含まない石英ガラスからなる透明層12(無気泡層)とを備えている。
 不透明層11は、単結晶引き上げ装置のヒーターからの輻射熱がルツボ壁を透過することなくルツボ内のシリコン融液をできるだけ均一に加熱するために設けられている。そのため、不透明層11はルツボの直胴部1aから底部1bまでのルツボ全体に設けられている。不透明層11の厚さは、ルツボ壁の厚さから透明層12の厚さを差し引いた値であり、ルツボの部位によって異なる。
 不透明層11を構成する石英ガラス中の気泡含有率は0.8%以上であり、1~5%であることが好ましい。不透明層11の気泡含有率は、比重測定(アルキメデス法)により求めることができる。ルツボから単位体積(1cm)の不透明石英ガラス片を切り出し、その質量をAとし、気泡を含まない石英ガラスの比重(石英ガラスの真密度)B=2.2g/cmとするとき、気泡含有率P(%)は、P=(B-A)/B×100となる。
 透明層12は、シリコン融液と接するルツボ壁の内面を構成する層であって、シリコン融液の汚染を防止するため高純度であることが要求され、また気泡を内包していると気泡が破裂したときのルツボ破片などで単結晶が有転位化することを防止するために設けられている。透明層12の厚さは0.5~10mmであることが好ましく、単結晶の引き上げ工程中の溶損によって完全に消失して不透明層11が露出することがないよう、ルツボの部位ごとに適切な厚さに設定される。不透明層11と同様、透明層12はルツボの直胴部1aから底部1bまでのルツボ全体に設けられていることが好ましいが、シリコン融液と接触しないルツボの上端部(リム部)において透明層12の形成を省略することも可能である。
 透明層12が「実質的に気泡を含まない」とは、気泡が破裂したときのルツボ破片が原因で単結晶収率が低下しない程度の気泡含有率を有することを意味し、気泡含有率は0.8%未満であり、気泡の平均直径は100μm以下であることをいう。不透明層11と透明層12との境界において気泡含有率の変化は急峻であり、両者の境界は肉眼で明確である。
 透明層12の気泡含有率は、光学的検出手段を用いて非破壊的に測定することができる。光学的検出手段は、検査対象のルツボの内面に照射した光の反射光を受光する受光装置を備える。照射光の発光手段は内蔵されたものでもよく、また外部の発光手段を利用するものでもよい。また、光学的検出手段は、石英ガラスルツボの内面に沿って回動操作できるものが好ましく用いられる。照射光としては、可視光、紫外線及び赤外線のほか、X線もしくはレーザ光などを利用でき、反射して気泡を検出できるものであれば何れも適用できる。受光装置は照射光の種類に応じて選択されるが、例えば受光レンズ及び撮像部を含む光学カメラを用いることができる。
 上記光学検出手段による測定結果は画像処理装置に取り込まれ、気泡含有率が算出される。詳細には、光学カメラを用いてルツボの内面の画像を撮像し、ルツボの内面を一定面積ごとに区分して基準面積S1とし、この基準面積S1ごとに気泡の占有面積S2を求め、P=(S2/S1)×100により気泡含有率P(%)が算出される。石英ガラスの表面から一定の深さに存在する気泡を検出するには、受光レンズの焦点を表面から深さ方向に走査すればよく、こうして複数の画像を撮影し、各画像の気泡含有率に基づいて空間内の気泡含有率を求めればよい。
 本実施形態による石英ガラスルツボ1は、石英ガラスからなるルツボ本体10と、ルツボ本体10の内面10a及び外面10bにそれぞれ形成された第1及び第2の結晶化促進剤含有塗布膜13A,13Bとを備えている。これらの塗布膜は、シリコン単結晶の引き上げ工程中の加熱によってルツボ本体10の表層部の結晶化を促進させる役割を果たすものである。通常、ルツボ本体10の内面10aが透明層12の表面、外面10bが不透明層11の表面となっており、透明層12上に第1の結晶化促進剤含有塗布膜13A、不透明層11上に第2の結晶化促進剤含有塗布膜13Bがそれぞれ形成される。結晶化促進剤含有塗布膜13A,13Bは、増粘剤として作用する水溶性高分子を含んでおり、これによりルツボ本体10の表面には堅い膜が形成される。
 結晶化促進剤含有塗布膜13A,13Bの厚さは0.3~100μmであることが好ましい。これにより、に塗布されるバリウムの濃度は結晶化促進剤含有塗布膜13A,13Bの厚さを変えることにより制御される。なお、石英ガラスで構成されるルツボ本体10には結晶化促進剤になり得る元素は意図的に添加されておらず、例えば、ルツボ本体10を天然石英粉で構成する場合、ルツボ本体10に含まれるバリウムの濃度は0.10ppm未満、マグネシウムの濃度は0.10ppm未満、カルシウムの濃度は2.0ppm未満であることが好ましい。またルツボ本体10を内表面の構成原料に合成石英粉を使用する場合、ルツボ本体10に含まれるマグネシウム及びカルシウムの濃度は共に0.02ppm未満であることが好ましい。
 結晶化促進剤含有塗布膜13A,13Bに含まれる結晶化促進剤は2a族の元素であり、マグネシウム、カルシウム、ストロンチウム、バリウムなどを挙げることができるが、シリコンへの偏析係数が小さく、また結晶化速度が結晶化と共に減衰せず、他の元素に比べて配向成長を最も強く引き起こすなどの特徴から、バリウムが特に好ましい。結晶化促進剤含有塗布膜13A,13Bは、バリウムを含む塗布液をルツボ壁面に塗布することによって形成することができる。
 バリウムを含む塗布液としては、バリウム化合物と水からなる塗布液であってもよく、水を含まず無水エタノールとバリウム化合物とを含む塗布液であってもよい。バリウム化合物としては炭酸バリウム、塩化バリウム、酢酸バリウム、硝酸バリウム、水酸化バリウム、シュウ酸バリウム、硫酸バリウム等を挙げることができる。なお、バリウム元素の表面濃度(atoms/cm)が同じであれば、不溶か水溶かに関わらず結晶化促進効果は同じであるが、水に不溶のバリウムの方が人体に取り込まれ難いので、安全性が高く、取り扱いの面で有利である。
 バリウムを含む塗布液はカルボキシビニルポリマー等の粘性が高い水溶性高分子(増粘剤)をさらに含むことが好ましい。増粘剤を含まない塗布液を用いる場合にはルツボ壁面へのバリウムの定着が不安定であるため、バリウムを定着させるための熱処理が必要とされ、このような熱処理を施すとバリウムが石英ガラスの内部に拡散浸透し、後述する結晶のランダム成長を促進させる要因となる。しかし、バリウムと共に増粘剤を含む塗布液を用いる場合には、塗布液の粘性が高くなるためルツボに塗布したときに重力等で流れて不均一がなることを防止することができる。また、炭酸バリウム等のバリウム化合物は、塗布液が水溶性高分子を含む場合には、バリウム化合物が塗布液中で凝集せず分散し、ルツボ表面に均一に塗布することが可能となる。したがってルツボ壁面に高濃度のバリウムを均一かつ高密度に定着させることができ、後述する柱状配向又はドーム状配向の結晶粒の成長を促進させることができる。
 増粘剤としては、ポリビニルアルコール、セルロース系増粘剤、高純度グルコマンナン、アクリルポリマー、カルボキシビニルポリマー、ポリエチレングリコール脂肪酸エステル等の金属不純物が少ない水溶性高分子をあげることができる。また、アクリル酸・メタクリル酸アルキル共重合体、ポリアクリル酸塩、ポリビニルカルボン酸アミド、ビニルカルボン酸アミド等を増粘剤として用いてもよい。バリウムを含む塗布液の粘度は、100~10000MPasの範囲であることが好ましく、溶剤の沸点は50~100℃であることが好ましい。
 例えば、32インチルツボの外面塗布用の結晶化促進剤塗布液は、炭酸バリウム:0.0012g/mL及びカルボキシビニルポリマー:0.0008g/mLをそれぞれ含み、エタノールと純水との割合を調整し、それらを混合・攪拌することにより作製することができる。
 ルツボの表面への結晶化促進剤塗布液の塗布は、刷毛及びスプレーにより行うことができる。塗布後は水等が蒸発し、増粘剤による堅い膜が形成される。なお従来の方法では、炭酸バリウムを含む水あるいはアルコール類を塗布した後、剥離抑制の目的で、200~300℃まで加熱していた。この加熱により、表面のバリウムが内部に拡散し、結晶核が同時多発的に発生し、必ずランダム成長になっていたことから、塗布後であって引き上げ前に塗布膜を加熱してはならない。
 図2は、加熱によって表面が結晶化した状態の石英ガラスルツボ1の構造を示す略断面図である。
 図2に示すように、結晶化促進剤が塗布された石英ガラスルツボの表面は、シリコン単結晶の引き上げ工程中の加熱によって石英ガラスの結晶化が促進され、ルツボ本体10の内面10a及び外面10bには内側結晶層14A及び外側結晶層14Bがそれぞれ形成される。シリコン単結晶の引き上げ工程中の加熱は、シリコンの融点(約1400℃)以上の温度で数十時間以上にもなるが、ルツボ本体10の表層部に結晶層がどのように形成されるかは、実際にシリコン単結晶の引き上げ工程を行って評価する以外に、1400℃以上シリカガラス軟化点以下の温度で1.5時間以上の熱処理を行って評価することができる。
 内側結晶層14Aの結晶化の状態は、ドーム状結晶層の単層、あるいはドーム状結晶層及び柱状結晶層の2層構造(以下、ドーム状/柱状結晶層という)であることが好ましい。特に、ルツボの使用時間が非常に長い場合には内側結晶層14Aがドーム状/柱状結晶層であることが好ましく、ルツボの使用時間が比較的短い場合には内側結晶層14Aがドーム状結晶層のみからなる単層構造であってもよい。ここで、ドーム状結晶層とは、ドーム状の結晶粒の集合からなる結晶層のことを言い、柱状結晶層とは、柱状の結晶粒の集合からなる結晶層のことを言う。
 ルツボの変形を抑制できる内側結晶層14Aの厚さは200μm以上であり、400μm以上であることが好ましい。単結晶引き上げ中にシリコン融液と接触する内側結晶層14Aは徐々に溶損するが、柱状結晶層が徐々に成長することにより、内側結晶層14Aの厚さを400μm以上に維持することも可能である。また、内側結晶層14Aの厚さがどの程度であればルツボの変形を抑制できるかは、結晶層を形成した石英ガラスルツボ片を用いていわゆるビームベンディング法により容易に評価することができる。
 外側結晶層14Bの結晶化の状態は、ドーム状結晶層の単層構造とすることが好ましい。詳細は後述するが、ドーム状/柱状結晶層では結晶成長が持続することにより外側結晶層14Bの厚さが増し、結晶層と石英ガラス層との界面で発砲剥離が生じやすくなるからである。ただしルツボの使用時間が比較的短く、外側結晶層が過度に厚くならない場合には、外側結晶層14Bがドーム状/柱状結晶層からなる構造であってもよい。
 このようにルツボ内面が結晶層に覆われることにより、ルツボの溶損を抑え、また結晶粒の剥離によるシリコン単結晶の有転位化を防止することができる。さらにルツボ外面を結晶化させることにより、ルツボの強度を高めることができ、座屈や内倒れなどのルツボの変形を抑えることができる。
 図3(a)~(c)は、結晶化促進剤によるルツボ表層部の結晶化のメカニズムを説明するための模式図である。
 図3(a)に示すように、ルツボ表面(石英ガラス界面)に結晶化促進剤であるバリウム(Ba)が存在し、それがイオン化したBaイオン(Ba2+)の濃度がSiイオン(Si4+)の濃度よりも低い場合には、ルツボ表面に最初に発生する結晶核が少ないことにより、結晶核を起点にランダムな結晶成長が生じる。このときBaイオンが結晶粒界にトラップされ、石英ガラスと結晶粒との界面に存在してルツボの厚み方向の結晶成長に寄与するBaイオンの減少により結晶成長は徐々に弱まり、いずれ停止する。
 しかし、図3(b)に示すように、Baイオンの濃度がSiイオンの濃度以上である場合には、ルツボ表面に多くの結晶核が発生し、これらの結晶核を起点にして結晶が競争的に成長することにより、ドーム状配向の結晶粒が形成される。結晶化がさらに進むと、その競争過程で垂直配向の結晶のみが生き残ることになるが、このときBaイオンが結晶粒界にトラップされ、石英ガラスと結晶粒との界面に存在するBaイオンの減少により結晶成長は徐々に弱まり、いずれ停止する。しかし、このようなドーム状配向の結晶層によれば、ランダム配向の結晶層よりも十分に厚い結晶層の形成が可能である。
 また従来のガラスマトリックス中にBaイオンを存在させておく構造では、Baイオンが結晶核を同時多発的に発生させるものの、結晶がランダム成長になり、厚み方向の結晶成長に寄与するBaイオンが減少するため、結晶層を厚くすることができない。これに対し、図3(b)に示すようにガラス表面から深さ方向に一律に結晶核が成長を開始するモデルでは、垂直配向の結晶が相殺されることはないので、厚い結晶層の形成が可能である。
 さらに、図3(c)に示すように、Baイオンの濃度が非常に高く、特に石英ガラス表面のSiイオンの濃度の50倍以上である場合には、短時間のうちにルツボ表面に無数の結晶核が発生し、より早く垂直方向の選択的な結晶成長が起きることにより、柱状配向の結晶粒が形成される。この結晶粒が成長することにより、Baイオンは結晶粒界にトラップされにくくなり、Baイオンの減少が抑制され、結晶化速度の低下が抑制される。このように、石英ガラスの極表面にBaイオンを高濃度に存在させてガラス内部に向かって一気に結晶化を進めることにより、結晶構造をドーム状配向から柱状配向に持っていくことが可能となる。柱状配向の結晶層によれば、ルツボ表層部の結晶成長を持続させることができ、ドーム状配向の結晶層よりもさらに厚い結晶層の形成が可能である。
 ルツボ内面の結晶層は、シリコン融液との反応により融解するので、石英ガラスの結晶化が加熱初期で止まるランダム成長では、ルツボ内面の結晶層が消失し、長時間の用途に適切ではない。また、ルツボ外面の結晶層もカーボンサセプタとの反応によりその厚さが薄くなるので、結晶化が加熱初期で止まるランダム成長では、外面の結晶層が消失するおそれがある。しかし、ドーム状成長であれば結晶成長期間を長くすることができ、結晶層の厚さを十分に確保することができる。また柱状成長であれば結晶成長期間をさらに長くすることができ、持続的な結晶成長を実現することができる。
 ルツボ表層部の結晶化状態はSEM(Scanning Electron Microscope:走査型電子顕微鏡)を用いて観察することができるが、表面X線回折法により評価することも可能である。
 図4は、表面X線回折法によるルツボ表層部の測定結果を示すグラフであり、図4(a)はランダム配向、図4(a)はドーム状配向、図4(c)は柱状配向の結晶層をそれぞれ示している。
 結晶層がランダム配向の場合には、図4(a)に示すように、(100)の結晶方位に起因する回折角度2θが20~25°におけるピーク強度(counts)の最大値Aが非常に大きく、(200)の結晶方位に起因する回折角度2θが33~40°におけるピーク強度の最大値Bが非常に小さくなり、ピーク強度比A/Bは7よりも大きくなる。
 これに対し、結晶層がドーム状配向の場合には、図4(b)に示すように、回折角度2θが20~25°におけるピーク強度の最大値Aと回折角度2θが33~40°におけるピーク強度の最大値Bとの差が小さくなり、ピーク強度比A/Bは0.4以上7以下となる。
 さらに、結晶層が柱状配向の場合には、図4(c)に示すように、回折角度2θが20~25°におけるピーク強度の最大値Aが非常に小さく、回折角度2θが33~40°におけるピーク強度の最大値Bが非常に大きくなり、ピーク強度比A/Bは0.4未満となる。
 図5は、内側結晶層14A及び外側結晶層14Bの適切な結晶構造を部位ごとに示す表であり、各部位における好ましい結晶構造を「○」、より好ましい結晶構造を「◎」で示している。
 図5に示すように、ルツボ本体10の内面10aについては、直胴部(W部)1aから底部(B部)1bまでの内面全体をドーム状/柱状結晶層(A/Bが0.4未満)としてもよい。また、コーナー部(R部)1c及び底部1bのみをドーム状/柱状結晶層とし、直胴部1aの内面をドーム状結晶層(A/Bが0.4以上~7未満)とすることも可能である。直胴部1aの内面は、コーナー部1cや底部1bに比べてシリコン融液との接触時間が短いので、ドーム状結晶層を形成すれば足りる場合があるからである。結晶引き上げ時間が比較的短い場合には、ルツボ本体10の直胴部1aの内面がドーム状結晶層となる条件を採用することもまた好ましい。直胴部1aで結晶化促進剤含有塗布膜13Aの厚さを薄くすることができ、これにより塗布膜中に含まれる不純物のシリコン融液への取り込みを低減することができる。
 ルツボ本体10の外面10bについては、ルツボの部位によらず直胴部1aから底部1bまでの外面全体がドーム状/柱状結晶層であってもよく、あるいはドーム状結晶層であってもよいが、ドーム状結晶層であることが特に好ましい。外側結晶層14Bにある程度の厚みを持たせることでルツボの強度を高めることができるが、外側結晶層14Bの厚さが厚くなると、結晶化した石英ガラス気泡層中にあった気泡が凝集・膨張することでルツボの変形や結晶層の剥離が起きやすくなるからである。外側結晶層14Bの厚さが1.5mm以上になると、外側結晶層14Bの剥離が特に起きやすくなる。したがって、外側結晶層14Bの結晶成長速度はその結晶成長の進行とともに鈍化することが好ましく、外側結晶層14Bの厚さは1.5mm未満に抑えられることが好ましい。
 結晶化促進剤含有塗布膜13A,13Bの形成に用いる塗布液は、石英ガラス板などの基材に対して予め結晶化状態のテストを行った後、実際の石英ガラスルツボに使用することが好ましい。結晶化状態のテストでは、石英ガラス基材の表面に所定濃度の結晶化促進剤塗布液を塗布した後、1400℃以上の評価熱処理によって石英ガラス基材の表面の表層部に結晶層を形成する。次に、石英ガラス基材の表面の結晶化状態をX線回折法によって分析し、分析結果に基づいて結晶化促進剤塗布液中の結晶化促進剤の濃度を調整する。そして濃度調整後の結晶化促進剤塗布液を石英ガラスルツボ(ルツボ本体10)の表面に塗布し、これにより石英ガラスルツボ1を完成させる。このようにすることで、結晶化促進剤塗布液の濃度、組成、塗布条件等のわずかな条件の違いによらず確実に所望の結晶化状態を再現することができ、信頼性の高い石英ガラスルツボを実現することができる。
 図6は、本実施形態による石英ガラスルツボ1を用いたシリコン単結晶の製造方法を説明するためのフローチャートである。
 図6に示すように、本実施形態によるシリコン単結晶の製造では、第1及び第2の結晶化促進剤含有塗布膜13A,13Bが形成された石英ガラスルツボを用いる。そのため、結晶化促進剤が塗布されていない(未コートの)石英ガラスルツボ(ルツボ本体10)を用意し、その内面及び外面に適切な濃度のバリウム化合物塗布液をそれぞれ塗布する(ステップS11)。
 次に、第1及び第2の結晶化促進剤含有塗布膜13A,13Bが形成された石英ガラスルツボ1を用いてシリコン単結晶の引き上げ工程を実施する(ステップS12)。引き上げ工程は、同一のルツボから複数本のシリコン単結晶の引き上げるマルチ引き上げであってもよく、1本のシリコン単結晶のみを引き上げるシングル引き上げであってもよい。
 図9は、CZ法によるシリコン単結晶の引き上げ工程を説明するための模式図である。
 図9に示すように、CZ法によるシリコン単結晶の引き上げ工程では、単結晶引き上げ装置20が使用される。単結晶引き上げ装置20は、水冷式のチャンバー21と、チャンバー21内においてシリコン融液4を保持する石英ガラスルツボ1と、石英ガラスルツボ1を保持するカーボンサセプタ22と、カーボンサセプタ22を支持する回転シャフト23と、回転シャフト23を回転及び昇降駆動するシャフト駆動機構24と、カーボンサセプタ22の周囲に配置されたヒーター25と、ヒーター25の外側であってチャンバー21の内面に沿って配置された断熱材26と、石英ガラスルツボ1の上方に配置された熱遮蔽体27と、石英ガラスルツボ1の上方であって回転シャフト23と同軸上に配置された結晶引き上げ用ワイヤー28と、チャンバー21の上方に配置されたワイヤー巻き取り機構29とを備えている。
 チャンバー21は、メインチャンバー21aと、メインチャンバー21aの上部開口に連結された細長い円筒状のプルチャンバー21bとで構成されており、石英ガラスルツボ1、カーボンサセプタ22、ヒーター25及び熱遮蔽体27はメインチャンバー21a内に設けられている。プルチャンバー21bの上部にはチャンバー21内にアルゴンガス等の不活性ガス(パージガス)やドーパントガスを導入するためのガス導入口21cが設けられており、メインチャンバー21aの下部にはチャンバー21内の雰囲気ガスを排出するためのガス排出口21dが設けられている。また、メインチャンバー21aの上部には覗き窓21eが設けられており、シリコン単結晶3の育成状況を覗き窓21eから観察可能である。
 カーボンサセプタ22は、加熱によって軟化した石英ガラスルツボ1の形状を維持するために用いられるものであり、石英ガラスルツボ1の外面に密着して石英ガラスルツボ1を包むように保持する。石英ガラスルツボ1及びカーボンサセプタ22はチャンバー21内においてシリコン融液4を支持する二重構造のルツボを構成している。
 カーボンサセプタ22は回転シャフト23の上端部に固定されており、回転シャフト23の下端部はチャンバー21の底部を貫通してチャンバー21の外側に設けられたシャフト駆動機構24に接続されている。回転シャフト23及びシャフト駆動機構24は石英ガラスルツボ1及びカーボンサセプタ22の回転機構及び昇降機構を構成している。
 ヒーター25は、石英ガラスルツボ1内に充填されたシリコン原料を融解してシリコン融液4を生成すると共に、シリコン融液4の溶融状態を維持するために用いられる。ヒーター25は抵抗加熱式のカーボンヒーターであり、カーボンサセプタ22内の石英ガラスルツボ1を取り囲むように設けられている。さらにヒーター25の外側には断熱材26がヒーター25を取り囲むように設けられており、これによりチャンバー21内の保温性が高められている。
 熱遮蔽体27は、シリコン融液4の温度変動を抑制して結晶成長界面近傍に適切なホットゾーンを形成するとともに、ヒーター25及び石英ガラスルツボ1からの輻射熱によるシリコン単結晶3の加熱を防止するために設けられている。熱遮蔽体27は、シリコン単結晶3の引き上げ経路を除いたシリコン融液4の上方の領域を覆う黒鉛製の部材であり、例えば下端から上端に向かって開口サイズが大きくなる逆円錐台形状を有している。
 熱遮蔽体27の下端の開口27aの直径はシリコン単結晶3の直径よりも大きく、これによりシリコン単結晶3の引き上げ経路が確保されている。熱遮蔽体27の開口27aの直径は石英ガラスルツボ1の口径よりも小さく、熱遮蔽体27の下端部は石英ガラスルツボ1の内側に位置するので、石英ガラスルツボ1のリム上端を熱遮蔽体27の下端よりも上方まで上昇させても熱遮蔽体27が石英ガラスルツボ1と干渉することはない。
 シリコン単結晶3の成長と共に石英ガラスルツボ1内の融液量は減少するが、融液面と熱遮蔽体27の下端との間のギャップが一定になるように石英ガラスルツボ1を上昇させることにより、シリコン融液4の温度変動を抑制すると共に、融液面近傍を流れるガスの流速を一定にしてシリコン融液4からのドーパントの蒸発量を制御することができる。したがって、シリコン単結晶3の引き上げ軸方向の結晶欠陥分布、酸素濃度分布、抵抗率分布等の安定性を向上させることができる。
 石英ガラスルツボ1の上方には、シリコン単結晶3の引き上げ軸であるワイヤー28と、ワイヤー28を巻き取るワイヤー巻き取り機構29が設けられている。ワイヤー巻き取り機構29はワイヤー28と共にシリコン単結晶3を回転させる機能を有している。ワイヤー巻き取り機構29はプルチャンバー21bの上方に配置されており、ワイヤー28はワイヤー巻き取り機構29からプルチャンバー21b内を通って下方に延びており、ワイヤー28の先端部はメインチャンバー21aの内部空間まで達している。図1には、育成途中のシリコン単結晶3がワイヤー28に吊設された状態が示されている。シリコン単結晶3の引き上げ時には石英ガラスルツボ1とシリコン単結晶3とをそれぞれ回転させながらワイヤー28を徐々に引き上げることによりシリコン単結晶3を成長させる。
 CCDカメラ30は覗き窓21eの外側に設置されている。単結晶引き上げ工程中、CCDカメラ30は覗き窓21eから熱遮蔽体27の開口27aを通して見えるシリコン単結晶3とシリコン融液4との境界部を斜め上方から撮影する。CCDカメラ30による撮影画像は画像処理部31で処理され、処理結果は制御部32において引き上げ条件の制御に用いられる。
 シリコン単結晶の引き上げ工程中、シリコン融液4との反応により石英ガラスルツボ1の内面が溶損するが、ルツボの内面及び外面に塗布した結晶化促進剤の作用により内面及び外面の結晶化が進むので、内面の結晶層が消失することがなく、結晶層の厚みをある程度確保することによってルツボの強度を維持して変形を抑制することができる。したがって、ルツボが変形することにより熱遮蔽体27等の炉内部材と接触したり、ルツボ内容積が変化してシリコン融液4の液面位置が変動したりすることを防止することができる。
 また、石英ガラスルツボ1の内面から剥離した結晶片がシリコン融液4の対流に乗って固液界面に到達すると、シリコン単結晶3に取り込まれて転位が発生するおそれがある。しかし、本実施形態によれば、ルツボ内面からの結晶片の剥離を防止することができ、これにより単結晶の有転位化を防止することができる。
 次に、引き上げ工程終了後の使用済みルツボの表面をX線回折法で分析し、結晶層の結晶化状態を評価する(ステップS13)。上記のように、ピーク強度比A/Bが7よりも大きければランダム配向、ピーク強度比A/Bが0.4以上7以下であればドーム状配向、ピーク強度比A/Bが0.4未満であれば柱状配向の結晶層と評価することができる。
 次に、分析・評価結果をバリウム化合物塗布液の濃度調整にフィードバックする(ステップS13)。例えば、外側結晶層14Bの結晶化状態が柱状配向となっており、結晶層が過度に厚くなっている場合には、使用するバリウム化合物塗布液中のバリウム濃度がもう少し低くなるように調整すればよい。また、内側結晶層14Aの結晶化状態がドーム状配向となっている場合であって柱状配向を希望する場合には、使用するバリウム化合物塗布液中のバリウム濃度がもう少し高くなるように調整すればよい。
 分析・評価結果としては、結晶の配向度(X線回折による評価結果:ピーク比)、結晶層の厚み、厚み勾配、厚み分布、結晶の粒径、結晶層の発泡・剥離の有無などを挙げることができる。また調整項目としては、濃度(部位別)、塗布膜厚(部位別)、増粘剤配合、炭酸バリウムの粒径などを挙げることができる。項目調整方法としては、結晶引き上げ条件によってルツボの部位ごとに熱負荷が変わるため、最初はバリウム濃度をルツボの部位によらず均一に塗布して引き上げを行い、その使用後のルツボの結晶層の厚み分布等を分析し、結晶層が均一になるように、部位別に上記項目を調整すればよい。
 その後、新たな未コートの石英ガラスルツボを用意し、その表面に濃度調整後のバリウム化合物塗布液を塗布し(ステップS15)、この石英ガラスルツボを用いてシリコン単結晶の引き上げ工程を新たに実施する(ステップS16)。こうして行った引き上げ工程では、石英ガラスルツボ1の表面の結晶層がその部位ごとに最適な結晶化状態となっているので、ルツボ本体10の内面10aでは結晶粒の剥離が生じることなく面内に一様な結晶層を形成することができ、柱状結晶を持続的に成長させることで常に強度を保つことができる。またルツボ本体10の外面10bでは一定の強度を保ちながら発砲剥離等の不具合を防止することができる。
 以上説明したように、本実施形態による石英ガラスルツボ1は、引き上げ工程中の加熱によってルツボ本体10の内面10aにドーム状/柱状結晶層、あるいはドーム状結晶層からなる内側結晶層14Aが形成されるので、内側結晶層14Aに十分な厚みを持たせることができる。したがって、ルツボの強度を高めてその変形を防止することができる。またルツボ内面の溶損によって内側結晶層14Aが完全に消失することを防止することができる。
 また、内側結晶層14Aがドーム状/柱状結晶層である場合には、ドーム状の結晶層が溶損しても柱状結晶層の配向方向がルツボ壁の厚み方向であるため、柱状の結晶粒の剥離を防止することができ、また柱状配向させることで結晶成長をルツボ壁の厚み方向に集中させて結晶成長速度を大きくすることができる。
 また本実施形態による石英ガラスルツボ1は、引き上げ工程中の加熱によってルツボ本体10の外面10bにドーム状結晶層からなる外側結晶層14Bが形成されるので、外側結晶層14Bに十分な厚みを持たせることができる。したがって、ルツボの強度を高めてその変形を防止することができる。また、ルツボ本体10の外面10bにドーム状結晶層を形成することで、結晶粒界を緻密にしてルツボ外面からの衝撃等によるクラックがルツボ内部まで到達することを防ぐことができる。
 また、外側結晶層14Bを柱状結晶層ではなくドーム状結晶層とすることで、結晶成長が持続することはなく、外側結晶層14Bが過度に厚くなることはない。したがって、厚い結晶層と石英ガラスとの界面での気泡の膨張による結晶層の剥離を防止することができ、さらにこの気泡から柱状結晶の粒界を伝わってクラックが発生することを防止することができる。
 また本実施形態によれば、ルツボ表面(内面及び外面)の結晶層の結晶化状態をX線回折法で簡便に評価することができる。したがって、この評価結果に基づいて、結晶化促進剤の塗布条件を選択することができ、シリコン単結晶の引き上げ条件やルツボの部位に合った結晶化構造を持った石英ガラスルツボ1を製造することができる。
 図10は、本発明の第2の実施の形態による石英ガラスルツボの構造を示す略断面図である。
 図10に示すように、本実施形態による石英ガラスルツボ2の特徴は、ルツボ本体10の内面10a及び外面10bにそれぞれ形成される結晶化促進剤含有塗布膜13A,13Bがルツボ本体10のリム上端まで形成されない点にある。すなわち、ルツボ本体10の内面10aのリム上端から下方に一定幅の帯状領域は、結晶化促進剤含有塗布膜13Aが形成されていない結晶化促進剤未塗布領域15A(以下、単に「未塗布領域15A」という)であり、外面10bのリム上端から下方に一定幅の帯状領域は、結晶化促進剤含有塗布膜13Aが形成されていない結晶化促進剤未塗布領域15B(以下、単に「未塗布領域15B」という)である。
 ルツボ本体10の内面10a又は外面10bのリム上端まで結晶化促進剤含有塗布膜13A,13Bをそれぞれ形成する場合には、リム上端部(リム上端面及びリム上端付近の内面10a及び外面10b)も結晶化し、この結晶化領域から発塵した結晶小片のパーティクルがルツボ内のシリコン融液に混入してシリコン単結晶の歩留まりが低下するおそれがある。しかし、未塗布領域15A,15Bを設ける場合にはリム上端部の結晶化を抑制することができ、リム上端部で結晶小片のパーティクルが発生することによるシリコン単結晶の歩留まりの低下を防止することができる。
 未塗布領域15A,15Bは、リム上端から下方に2mm以上40mm以下の範囲内であることが好ましい。未塗布領域15A,15Bの幅が2mmよりも小さい場合には、未塗布領域15A,15Bを設けることによる効果が十分でないからである。また未塗布領域15A,15Bの幅が40mmよりも大きい場合には、結晶化促進剤含有塗布膜と未塗布領域との境界位置がシリコン融液中に存在することになる可能性があり、結晶層とガラス層との境界がシリコン融液に浸かると境界領域における応力集中によりクラックが発生し、結晶小片のパーティクルが発生する可能性が高くなるからである。
 また図9に示すように、結晶引き上げ工程中の石英ガラスルツボ1はカーボンサセプタ22内に収容されているが、石英ガラスルツボ1のリム上端部はカーボンサセプタ22の上端よりも上方に突出しており、そのためカーボンサセプタ22によって支持されることなく常に自立状態である。未塗布領域15A,15Bは、このようなカーボンサセプタ22の上端よりも上方に突出する領域に設けられることが好ましい。このように、カーボンサセプタ22と接触しない石英ガラスルツボ1のリム上端部を未塗布領域とすることにより、シリコン単結晶の歩留まりを改善すると共に、結晶層の発泡・剥離によるルツボの変形を防止することができる。
 未塗布領域15A,15Bの幅の範囲は、ルツボの直胴部1aの長さの0.02倍~0.1倍であることが好ましい。未塗布領域15A,15Bの幅がルツボの直胴部1aの長さの0.02倍よりも小さい場合には、未塗布領域15A,15Bを設けることによる効果が十分でないからである。また、未塗布領域15A,15Bの幅がルツボの直胴部1aの長さの0.1倍よりも大きい場合には、カーボンサセプタ22によって支持される領域まで未塗布領域を形成することになり、結晶層の発泡・剥離によるルツボの変形やシリコン単結晶の歩留まりの悪化のおそれがあるからである。
 図11は、図10に示した石英ガラスルツボ2の外面に結晶化促進剤含有塗布膜13Bと共に未塗布領域15Bを形成する方法の一例を説明するための模式図である。
 図11に示すように、ルツボ本体10の外面10bに結晶化促進剤含有塗布膜13Bを形成する場合、スプレー法により形成することができる。ここで、リム上端部に未塗布領域15Bを設ける場合には、まずルツボ本体10の開口部10dにポリエチレンシート(PEシート)41を被せて開口部10dを覆った後、開口部10dの口元のPEシート41をポリプロピレンバンド(PPバンド)42で固定して開口部10dを封止する。
 その後、図示のようにルツボ本体10の開口部10dを下向きの状態にして回転ステージ40上に載置し、PPバンド42による固定位置よりも外側に広がるPEシート41の端部41eを裏返して下向きの状態にし、このPEシート41の端部41eを回転ステージ40の外周面にゴムバンド43で固定する。
 こうしてルツボ本体10の外面10bのリム上端から下方に一定幅(2~40mm)の領域をPEシート41及びPPバンド42でマスキングした後、スプレー45を用いてルツボ本体10の外面10bの全体に結晶化促進剤含有塗布液を塗布することにより、結晶化促進剤含有塗布膜13Bを形成すると共に、ルツボ本体10の外面10bのリム上端付近に未塗布領域15Bを形成することができる。
 以上は、石英ガラスルツボ2の外面に結晶化促進剤含有塗布膜13Bと共に未塗布領域15Bを形成する方法の一例であるが、石英ガラスルツボ2の内面に結晶化促進剤含有塗布膜13Aと共に未塗布領域15Aを形成する場合も同様に行うことができる。すなわち、ルツボ本体10の内面10aのうち、リム上端から下方に一定幅の領域をマスキングした状態で、結晶化促進剤塗布液をスプレー法により塗布すればよい。
 以上説明したように、本実施形態による石英ガラスルツボ2は、ルツボ本体10のリム上端部の内面10a及び外面10bに結晶化促進剤未塗布領域15A,15Bを設けているので、第1の実施の形態による発明の効果に加えて、リム上端部で結晶小片のパーティクルが発生することによるシリコン単結晶の歩留まりの低下を防止することができる。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
 例えば、結晶化促進剤含有塗布膜13A,13Bは、必ずしもルツボ本体10の内面10a及び外面10bの両方に形成する必要はなく、ルツボ本体10の内面10aにのみ形成してもよく、外面10bにのみ形成してもよい。だたしルツボの内面10aはシリコン融液に接触して溶損量が多いので、ルツボの外面10bよりも結晶化の効果も大きく、ルツボの外面よりも内面に結晶層を形成することのほうが重要である。
 また、上記実施形態において、内側結晶層14Aをドーム状結晶層の単層構造とし、外側結晶層14Bをランダム結晶層又はドーム状結晶層としてもよい。
 また、上記実施形態においては、先行の結晶引き上げ工程で使用したルツボの結晶化状態を後続の結晶引き上げ工程に使用するルツボにフィードバックする場合を例に挙げたが、本発明はこのような場合に限定されない。したがって、例えば、所定の結晶引き上げ条件に基づいて石英片による模擬試験の条件を決定し、この条件下で石英片の評価を行い、評価結果をもとに塗布条件を決定してもよい。すなわち、結晶引き上げ工程を模した模擬試験中の加熱によって石英片の表層に形成された結晶層の結晶化状態を分析し、当該分析結果に基づいて、実際のシリコン単結晶の引き上げ工程で使用する石英ガラスルツボの内面に塗布する結晶化促進剤塗布液中の結晶化促進剤の濃度を調整してもよい。
 また、ルツボの表面への結晶化促進剤塗布液の塗布方法としては、刷毛による方法のほか、スプレー式、ディップ式、カーテンコートなどを採用してもよい。
 バリウム化合物塗布液の濃度が結晶層の結晶化状態に与える影響について評価した。この評価試験では、まず酢酸バリウム(金属イオン0.02M)に50g/Lのポリビニルアルコール(増粘剤)を溶解した基準濃度の水溶液を用意し、この水溶液中の酢酸バリウムの濃度を0.01倍、0.031倍、0.063倍、0.125倍、0.5倍、2倍にそれぞれ調整した6種類の塗布液を用意した。次に、12枚の石英ガラス板を用意し、濃度調整後の6種類の塗布液にそれぞれ2枚一組ずつ一定時間浸漬させることにより塗布した。
 次に、石英ガラス板の表面のバリウム濃度を求めた。バリウム濃度の算出では、石英ガラス板を浸漬させたことで減少した酢酸バリウム水溶液の重量からバリウムのモル数を求め、このモル数及びアボガドロ定数からバリウムの原子数を計算し、この原子数及び酢酸バリウム水溶液が付着した石英ガラス板の表面積からバリウム濃度を求めた。
 次に、12枚の石英ガラス板を1450℃の試験炉内で加熱した。加熱時間は、同一の水溶液を塗布した2枚の石英ガラス板のうちの一方を30分とし、他方を90分とした。
 次に、熱処理後の12枚の石英ガラス板の表層部の結晶化状態をSEM(Scanning Electron Microscope:走査型電子顕微鏡)で観察した。さらに12枚の石英ガラス板のうち、濃度倍率が0.031倍、0.125倍、0.5倍、及び2倍の塗布液で90分熱処理した石英ガラス板の表面をX線回折法で分析し、上述のピーク強度比A/Bを求めた。石英ガラス板のX線回折法による評価では、株式会社リガク製のX線回折装置RINT2500を用い、ターゲット:Cu(λ=1.5418nm)、走査軸:2θ、測定方法:連続、2θ角走査範囲:10~70°、受光スリット:0.15mm、発散スリット:1°、散乱スリット:1°、サンプリング幅:0.02°、スキャンスピード:10°/minとした。X線で評価している表面からの深さ(検出深さ)はX線の入射角により可変であるが、ここでは数nm~数十μmとした。
 表1は、石英ガラス板の評価試験結果の一覧表である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、基準濃度に対する濃度倍率が0.01倍である酢酸バリウム水溶液を塗布した石英ガラス板サンプルA1の表面のバリウム濃度(表面バリウム濃度)は7.8×1014atoms/cmとなり、また濃度倍率が0.031倍である酢酸バリウム水溶液を塗布した石英ガラス板サンプルA2の表面のバリウム濃度は2.4×1015atoms/cmとなり、いずれもランダム配向のクリストバライトの結晶成長であった。
 また濃度倍率が0.063倍である酢酸バリウム水溶液を塗布した石英ガラス板サンプルA3の表面のバリウム濃度は4.9×1015atoms/cmとなり、また濃度倍率が0.125倍である酢酸バリウム水溶液を塗布した石英ガラス板サンプルA4の表面のバリウム濃度は9.7×1015atoms/cmとなり、いずれもドーム状配向のクリストバライトの結晶成長であった。
 また濃度倍率が0.5倍である酢酸バリウム水溶液を塗布した石英ガラス板サンプルA5の表面のバリウム濃度は3.9×1016atoms/cmとなり、また濃度倍率が2倍である酢酸バリウム水溶液を塗布した石英ガラス板サンプルA6の表面のバリウム濃度は1.6×1017atoms/cmとなり、いずれも柱状配向のクリストバライトの結晶成長であった。
 図7(a)はSEMによる結晶層の観察結果を示す画像である。また、図7(b)は石英ガラス板の加熱時間と石英ガラス板の表層部に形成された結晶層の厚さとの関係を示すグラフであり、横軸が加熱時間、縦軸が結晶層の厚さをそれぞれ示している。
 図7(a)に示すように、基準濃度の0.031倍に希釈した酢酸バリウム水溶液を石英ガラス板に塗布した場合には、加熱開始から30分経過後における結晶層の厚さは約200μmであり、また90分経過後においても約200μmであり、加熱開始から30分経過後は結晶層がほとんど成長していなかった。すなわち、加熱開始から30分経過後の結晶成長速度はほぼ0μm/hであった。また図7(b)に示すように、SEM画像から結晶層はランダム配向のクリストバライトの結晶成長であった。さらに結晶層の結晶構造をX線回折法で分析したところ、図4(a)のようなピークパターンとなり、上述のピーク強度比A/Bは8であった。
 基準濃度の0.125倍に希釈した酢酸バリウム水溶液を石英ガラス板に塗布した場合には、30分経過後における結晶層の厚さは約250μmであり、90分経過後には約400μmとなり、加熱開始から30分経過後の結晶成長速度はおおよそ150μm/hであった。また図7(b)に示すように、SEM画像から結晶層はドーム状配向のクリストバライトの結晶成長であった。ドーム状結晶粒の幅及び長さは共に5~30μm程度であった。さらに結晶層の結晶構造をX線回折法で分析したところ、図4(b)のようなピークパターンとなり、上述のピーク強度比A/Bは0.64であった。
 基準濃度の0.5倍に希釈した酢酸バリウム水溶液を石英ガラス板に塗布した場合には、30分経過後における結晶層の厚さは約190μmであったが、90分経過後においては約600μmであり、加熱開始から30分経過後の結晶成長速度はおおよそ450μm/hであった。また図7(b)に示すように、SEM画像から結晶層はドーム状配向から柱状配向の結晶成長に変化していた。柱状結晶粒の幅は10~50μm程度、長さは50μm以上であり、50~100μm程度のものが多かった。さらに結晶層の結晶構造をX線回折法で分析したところ、図4(c)のようなピークパターンとなり、上述のピーク強度比A/Bは0.16であった。
 基準濃度の2倍に調整した酢酸バリウム水溶液を石英ガラス板に塗布した場合には、基準濃度の0.5倍の酢酸バリウム水溶液を用いたときと同様の結果となった。また図7(b)に示すように、SEM画像から結晶層はドーム状配向から柱状配向の結晶成長に変化していたが、ドーム状配向の結晶成長期間が非常に短く、早い段階でドーム状配向から柱状配向に変化することが分かった。
 以上の結果から、酢酸バリウム水溶液の濃度を高くすることで結晶層の結晶化状態がランダム配向→ドーム状配向→柱状配向へと順に変化していき、ドーム配向の成長するときの濃度の4倍以上であれば、結晶層がドーム状配向成長から柱状配向成長に確実に変化することが分かった。したがって結晶層が柱状配向であれば、表面のバリウム濃度は3.9×1016atoms/cm以上であることが分かる。なお表面のバリウム濃度は蛍光X線による解析等でも求めることもできる。
 次に、バリウムを含む塗布液を塗布した石英ガラスルツボを実際の結晶引き上げ工程で使用したときのルツボの表面の結晶化状態及び変形について評価試験を行った。結晶引き上げ工程では32インチの石英ガラスルツボを用いて直径約300mmのシリコン単結晶インゴットを育成した。石英ガラスルツボに塗布する塗布液としては炭酸バリウム塗布液を用いた。炭酸バリウム塗布液としては、炭酸バリウム:0.0012g/mL及びカルボキシビニルポリマー:0.0008g/mLを含み、エタノールと純水との割合を調整したものを用いた。ルツボの表面への塗布は刷毛により行った。
 この評価試験では3種類のルツボサンプルを用意した。サンプル#1は、ルツボの外面に塗布液を1回塗布したものであり、サンプル#2は、ルツボの内面に塗布液を6回塗布したものであり、サンプル#3は、ルツボの内面に塗布液を5回塗布したものである。塗布後は、水が10分程度、またエタノールが30分程度でそれぞれ蒸発し、増粘剤による堅い膜が形成されていた。塗布後、塗布液の使用量からルツボの表面のバリウム濃度を求めた。
 その後、石英ガラスルツボのサンプル#1~#3を用いてシリコン単結晶インゴットをCZ法により引き上げた。引き上げ工程終了後、使用済みのルツボサンプル#1~#3の形状を目視で確認したところ、いずれも変形は見られなかった。また使用済みのルツボサンプル#1~#3の断面のSEM画像からルツボの結晶化状態を評価し、さらに結晶層の結晶構造をX線回折法で分析した。
 表2は、石英ガラスルツボの評価試験結果を示す表である。
Figure JPOXMLDOC01-appb-T000002
 図8、各ルツボサンプル#1~#3の結晶層のSEM画像及びX線回折スペクトルのグラフである。
 ルツボ外面に塗布液を1回塗布した石英ガラスルツボのサンプル#1の外面のバリウム濃度は1.1×1016atoms/cmとなり、(a)に示すSEM画像からドーム状配向のクリストバライトの結晶成長であることを確認できた。また外側結晶層の厚さはおおよそ360μm程度となった。さらに外側結晶層のX線回折スペクトルは(b)のようにピーク強度A(2θが20~25°の左側ピーク)よりもピーク強度B(2θが33~40°の右側ピーク)のほうが小さいピークパターンとなり、上述のピーク強度比A/Bは1.7であった。
 また、ルツボ内面に塗布液を6回塗布したルツボサンプル#2の内面のバリウム濃度は6.6×1016atoms/cmとなり、(c)に示すSEM画像から柱状配向のクリストバライトの結晶成長であることを確認できた。また内側結晶層の厚さはおおよそ380μmとなった。さらに内側結晶層のX線回折スペクトルは(d)のようにピーク強度Aよりもピーク強度Bの方が大きいピークパターンとなり、上述のピーク強度比A/Bは0.14であった。
 また、ルツボ内面に塗布液を5回塗布したルツボサンプル#3の内面のバリウム濃度は5.5×1016atoms/cmとなり、(e)に示すSEM画像から柱状配向のクリストバライトの結晶成長であることを確認できた。また内側結晶層の厚さはおおよそ350μmとなった。さらに内側結晶層のX線回折スペクトルは(f)のようにピーク強度Aよりもピーク強度Bのほうが大きいピークパターンとなり、上述のピーク強度比A/Bは0.23であった。
1、2  石英ガラスルツボ
1a  石英ガラスルツボの直胴部
1b  石英ガラスルツボの底部
1c  石英ガラスルツボのコーナー部
3  シリコン単結晶
4  シリコン融液
10  ルツボ本体
10a  ルツボ本体の内面
10b  ルツボ本体の外面
10d  ルツボ本体の開口部
11  不透明層
12  透明層
13A  第1の結晶化促進剤含有塗布膜
13B  第2の結晶化促進剤含有塗布膜
14A  内側結晶層
14B  外側結晶層
15A  結晶化促進剤未塗布領域
15B  結晶化促進剤未塗布領域
20  単結晶引き上げ装置
21  チャンバー
21a  メインチャンバー
21b  プルチャンバー
21c  ガス導入口
21d  ガス排出口
21e  覗き窓
22  カーボンサセプタ
23  回転シャフト
24  シャフト駆動機構
25  ヒーター
26  断熱材
27  熱遮蔽体
27a  熱遮蔽体の開口
28  結晶引き上げ用ワイヤー
29  ワイヤー巻き取り機構
30  CCDカメラ
31  画像処理部
32  制御部
40  回転ステージ
41  ポリエチレンシート(PEシート)
41e  ポリエチレンシートの端部
42  ポリプロピレンバンド(PPバンド)
43  ゴムバンド
45  スプレー

Claims (30)

  1.  チョクラルスキー法によるシリコン単結晶の引き上げに用いられる石英ガラスルツボであって、石英ガラスからなる有底円筒状のルツボ本体と、前記シリコン単結晶の引き上げ工程中の加熱によって前記ルツボ本体の内面の表層部にドーム状又は柱状の結晶粒の集合からなる内側結晶層が形成されるように前記内面に形成された第1の結晶化促進剤含有塗布膜とを備えることを特徴とする石英ガラスルツボ。
  2.  前記内側結晶層が形成された前記ルツボ本体の前記内面をX線回折法で分析することにより得られる回折角度2θが20~25°におけるピーク強度の最大値Aと回折角度2θが33~40°におけるピーク強度の最大値Bとの比A/Bが7以下である、請求項1に記載の石英ガラスルツボ。
  3.  前記内側結晶層は、前記ルツボ本体の前記内面の表層部に形成されたドーム状の結晶粒の集合からなるドーム状結晶層と、前記ドーム状結晶層の直下に形成された柱状の結晶粒の集合からなる柱状結晶層とを有する、請求項1に記載の石英ガラスルツボ。
  4.  前記内側結晶層が形成された前記ルツボ本体の前記内面をX線回折法で分析することにより得られる回折角度2θが20~25°におけるピーク強度の最大値Aと回折角度2θが33~40°におけるピーク強度の最大値Bとの比A/Bが0.4未満である、請求項3に記載の石英ガラスルツボ。
  5.  前記第1の結晶化促進剤含有塗布膜に含まれる結晶化促進剤がバリウムであり、前記ルツボ本体の前記内面における前記バリウムの濃度が3.9×1016atoms/cm以上である、請求項3又は4に記載の石英ガラスルツボ。
  6.  前記ルツボ本体の前記内面のリム上端から下方に一定幅の領域は、前記第1の結晶化促進剤含有塗布膜が形成されていない結晶化促進剤未塗布領域である、請求項1乃至5のいずれか一項に記載の石英ガラスルツボ。
  7.  前記引き上げ工程中の加熱によって前記ルツボ本体の外面の表層部にドーム状又は柱状の結晶粒の集合からなる外側結晶層が形成されるように前記外面に形成された第2の結晶化促進剤含有塗布膜をさらに備える、請求項1乃至6のいずれか一項に記載の石英ガラスルツボ。
  8.  前記外側結晶層が形成された前記ルツボ本体の前記外面をX線回折法で分析することにより得られる回折角度2θが20~25°におけるピーク強度の最大値Aと回折角度2θが33~40°におけるピーク強度の最大値Bとの比A/Bが0.4以上7以下である、請求項7に記載の石英ガラスルツボ。
  9.  前記第2の結晶化促進剤含有塗布膜に含まれる結晶化促進剤がバリウムであり、前記ルツボ本体の前記外面における前記バリウムの濃度が4.9×1015atoms/cm以上3.9×1016atoms/cm未満である、請求項7又は8に記載の石英ガラスルツボ。
  10.  前記ルツボ本体の前記外面のリム上端から下方に一定幅の領域は、前記第1の結晶化促進剤含有塗布膜が形成されていない結晶化促進剤未塗布領域である、請求項7乃至9のいずれか一項に記載の石英ガラスルツボ。
  11.  チョクラルスキー法によるシリコン単結晶の引き上げに用いられる石英ガラスルツボであって、石英ガラスからなる有底円筒状のルツボ本体と、前記シリコン単結晶の引き上げ工程中の加熱によって前記ルツボ本体の外面の表層部にドーム状又は柱状の結晶粒の集合からなる外側結晶層が形成されるように前記外面に形成された結晶化促進剤含有塗布膜とを備えることを特徴とする石英ガラスルツボ。
  12.  前記外側結晶層が形成された前記ルツボ本体の前記外面をX線回折法で分析することにより得られる回折角度2θが20~25°におけるピーク強度の最大値Aと回折角度2θが33~40°におけるピーク強度の最大値Bとの比A/Bが7以下である、請求項11に記載の石英ガラスルツボ。
  13.  前記外側結晶層が形成された前記ルツボ本体の前記外面をX線回折法で分析することにより得られる回折角度2θが20~25°におけるピーク強度の最大値Aと回折角度2θが33~40°におけるピーク強度の最大値Bとの比A/Bが0.4以上7以下である、請求項12に記載の石英ガラスルツボ。
  14.  前記ルツボ本体の前記外面のリム上端から下方に一定幅の領域は、前記結晶化促進剤含有塗布膜が形成されていない結晶化促進剤未塗布領域である、請求項11乃至13のいずれか一項に記載の石英ガラスルツボ。
  15.  増粘剤を含む第1の結晶化促進剤塗布液を石英ガラスルツボの内面に塗布して、当該内面における結晶化促進剤の濃度を3.9×1016atoms/cm以上にすることを特徴とする石英ガラスルツボの製造方法。
  16.  前記石英ガラスルツボの前記内面のうち、リム上端から下方に一定幅の領域をマスキングした状態で、前記第1の結晶化促進剤塗布液をスプレー法により塗布する、請求項15に記載の石英ガラスルツボの製造方法。
  17.  前記増粘剤を含む第2の結晶化促進剤塗布液を前記石英ガラスルツボの外面に塗布して、当該外面における前記結晶化促進剤の濃度を4.9×1015atoms/cm以上3.9×1016atoms/cm未満にする、請求項15又は16に記載の石英ガラスルツボの製造方法。
  18.  前記石英ガラスルツボの開口部を封止すると共に、前記石英ガラスルツボの前記外面のうち、リム上端から下方に一定幅の領域をマスキングした状態で、前記第1の結晶化促進剤塗布液をスプレー法により塗布する、請求項17に記載の石英ガラスルツボの製造方法。
  19.  石英ガラス基材の表面に結晶化促進剤塗布液を塗布し、
     1400℃以上の評価熱処理によって前記石英ガラス基材の前記表面の表層部に結晶層を形成し、
     前記石英ガラス基材の前記表面の結晶化状態をX線回折法によって分析し、当該分析結果に基づいて前記結晶化促進剤塗布液中の前記結晶化促進剤の濃度を調整し、
     調整後の前記結晶化促進剤塗布液を石英ガラスルツボの表面に塗布することを特徴とする石英ガラスルツボの製造方法。
  20.  石英ガラスルツボ内のシリコン融液からシリコン単結晶を引き上げるチョクラルスキー法によるシリコン単結晶の製造方法であって、
     前記石英ガラスルツボの内面に第1の結晶化促進剤塗布液を塗布し、前記シリコン単結晶の引き上げ工程中の加熱によって前記石英ガラスルツボの前記内面の表層部にドーム状の結晶粒の集合からなるドーム状結晶層及び前記ドーム状結晶層の直下に柱状の結晶粒の集合からなる柱状結晶層の積層構造からなる内側結晶層を形成し、前記内側結晶層の成長を持続させながら前記シリコン単結晶の引き上げを行うことを特徴とするシリコン単結晶の製造方法。
  21.  前記内側結晶層が形成された前記石英ガラスルツボの前記内面をX線回折法で分析することにより得られる回折角度2θが20~25°におけるピーク強度の最大値Aと回折角度2θが33~40°におけるピーク強度の最大値Bとの比A/Bが0.4未満である、請求項20に記載のシリコン単結晶の製造方法。
  22.  前記第1の結晶化促進剤塗布液に含まれる結晶化促進剤がバリウムであり、前記内面に塗布された前記バリウムの濃度が3.9×1016atoms/cm以上である、請求項20又は21に記載のシリコン単結晶の製造方法。
  23.  前記石英ガラスルツボの前記内面のうち、リム上端から下方に一定幅の領域を除いた領域に、前記第1の結晶化促進剤塗布液を塗布する、請求項20乃至22のいずれか一項に記載のシリコン単結晶の製造方法。
  24.  前記石英ガラスルツボの外面に第2の結晶化促進剤塗布液を塗布し、前記シリコン単結晶の引き上げ工程中の加熱によって前記石英ガラスルツボの前記外面の表層部にドーム状の結晶粒の集合からなる外側結晶層を形成し、前記外側結晶層の成長を持続させることなく前記シリコン単結晶の引き上げを行う、請求項20乃至23のいずれか一項に記載のシリコン単結晶の製造方法。
  25.  前記外側結晶層が形成された前記石英ガラスルツボの前記外面のX線回折法で分析するにより得られる回折角度2θが20~25°におけるピーク強度の最大値Aと回折角度2θが33~40°におけるピーク強度の最大値Bとの比A/Bが0.4以上7以下である、請求項24に記載のシリコン単結晶の製造方法。
  26.  前記第2の塗布液に含まれる前記結晶化促進剤がバリウムであり、前記外面に塗布された前記バリウムの濃度が4.9×1015atoms/cm以上3.9×1016atoms/cm未満である、請求項24又は25に記載のシリコン単結晶の製造方法。
  27.  前記石英ガラスルツボの前記外面のうち、リム上端から下方に一定幅の領域を除いた領域に、前記第2の結晶化促進剤塗布液を塗布する、請求項24乃至26のいずれか一項に記載のシリコン単結晶の製造方法。
  28.  前記第1及び第2の結晶化促進剤塗布液が増粘剤をさらに含む、請求項26又は27に記載のシリコン単結晶の製造方法。
  29.  前記引き上げ工程中の加熱によって形成された前記内側結晶層の結晶化状態を分析し、当該分析結果に基づいて、次のシリコン単結晶の引き上げ工程で使用する新たな石英ガラスルツボの内面に塗布する前記第1の結晶化促進剤塗布液中の前記結晶化促進剤の濃度を調整する、請求項20に記載のシリコン単結晶の製造方法。
  30.  前記引き上げ工程中の加熱によって形成された前記外側結晶層の結晶化状態を分析し、当該分析結果に基づいて、次のシリコン単結晶の引き上げ工程で使用する新たな石英ガラスルツボの外面に塗布する前記第2の結晶化促進剤塗布液中の前記結晶化促進剤の濃度を調整する、請求項24に記載のシリコン単結晶の製造方法。
PCT/JP2017/030266 2016-09-23 2017-08-24 石英ガラスルツボ及びその製造方法並びに石英ガラスルツボを用いたシリコン単結晶の製造方法 WO2018055974A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018540925A JP6773121B2 (ja) 2016-09-23 2017-08-24 石英ガラスルツボ及びその製造方法並びに石英ガラスルツボを用いたシリコン単結晶の製造方法
CN201780030444.1A CN109477239A (zh) 2016-09-23 2017-08-24 石英玻璃坩埚及其制造方法以及使用了石英玻璃坩埚的单晶硅的制造方法
KR1020187034587A KR102213151B1 (ko) 2016-09-23 2017-08-24 석영 유리 도가니 및 그 제조 방법과 석영 유리 도가니를 이용한 실리콘 단결정의 제조 방법
SG11201811126SA SG11201811126SA (en) 2016-09-23 2017-08-24 Quartz glass crucible, manufacturing method thereof, and manufacturing method of silicon single crystal using quartz glass crucible
DE112017004764.1T DE112017004764T5 (de) 2016-09-23 2017-08-24 Quarzglastiegel, Herstellungsverfahren dafür und Verfahren zur Herstellung eines Silicium-Einkristalls unter Verwendung eines Quarzglastiegels
US16/308,797 US11162186B2 (en) 2016-09-23 2017-08-24 Quartz glass crucible, manufacturing method thereof, and manufacturing method of silicon single crystal using quartz glass crucible
US17/485,144 US20220018037A1 (en) 2016-09-23 2021-09-24 Quartz glass crucible

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-185293 2016-09-23
JP2016185293 2016-09-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/308,797 A-371-Of-International US11162186B2 (en) 2016-09-23 2017-08-24 Quartz glass crucible, manufacturing method thereof, and manufacturing method of silicon single crystal using quartz glass crucible
US17/485,144 Division US20220018037A1 (en) 2016-09-23 2021-09-24 Quartz glass crucible

Publications (1)

Publication Number Publication Date
WO2018055974A1 true WO2018055974A1 (ja) 2018-03-29

Family

ID=61690297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030266 WO2018055974A1 (ja) 2016-09-23 2017-08-24 石英ガラスルツボ及びその製造方法並びに石英ガラスルツボを用いたシリコン単結晶の製造方法

Country Status (8)

Country Link
US (2) US11162186B2 (ja)
JP (3) JP6773121B2 (ja)
KR (1) KR102213151B1 (ja)
CN (1) CN109477239A (ja)
DE (1) DE112017004764T5 (ja)
SG (1) SG11201811126SA (ja)
TW (1) TWI658177B (ja)
WO (1) WO2018055974A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738479A (zh) * 2019-02-28 2019-05-10 上海强华实业股份有限公司 石英玻璃表面涂层耐高温性能试验方法
WO2019163593A1 (ja) * 2018-02-23 2019-08-29 株式会社Sumco 石英ガラスルツボ
CN111936678A (zh) * 2018-04-06 2020-11-13 信越石英株式会社 石英玻璃坩埚及其制造方法
WO2021140729A1 (ja) * 2020-01-10 2021-07-15 株式会社Sumco 石英ガラスルツボ
US11319643B2 (en) 2017-04-27 2022-05-03 Sumco Corporation Method for pulling up silicon monocrystal
US11473209B2 (en) 2017-05-02 2022-10-18 Sumco Corporation Quartz glass crucible and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109111102A (zh) * 2018-11-02 2019-01-01 宁夏富乐德石英材料有限公司 一种半导体级石英坩埚及其制造方法
CN110820041B (zh) * 2019-11-08 2021-06-01 江阴龙源石英制品有限公司 一种低变形率石英坩埚及其制备方法
US11873574B2 (en) 2019-12-13 2024-01-16 Globalwafers Co., Ltd. Systems and methods for production of silicon using a horizontal magnetic field
DE102020000701A1 (de) 2020-02-03 2021-08-05 Siltronic Ag Quarzglastiegel zur Herstellung von Siliciumkristallen und Verfahren zur Herstellung von Quarzglastiegel
JP2022180696A (ja) 2021-05-25 2022-12-07 株式会社Sumco 石英ガラスルツボ及びその製造方法並びにシリコン単結晶の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110590A (ja) * 1995-06-14 1997-04-28 Memc Electron Materials Inc 向上した無転位性能のための表面処理ルツボ
JP2009143770A (ja) * 2007-12-14 2009-07-02 Japan Siper Quarts Corp 高強度を有する大径シリコン単結晶インゴット引上げ用高純度石英ガラスルツボ
JP2012116702A (ja) * 2010-11-30 2012-06-21 Japan Siper Quarts Corp シリカガラスルツボ
JP2012211082A (ja) * 2012-08-07 2012-11-01 Shinetsu Quartz Prod Co Ltd シリカ容器
JP2013133243A (ja) * 2011-12-26 2013-07-08 Siltronic Ag 単結晶シリコンの製造方法
US20140352605A1 (en) * 2013-05-31 2014-12-04 Heraeus Shin-Etsu America, Inc. Method for making barium-doped crucible and crucible made thereby

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742193B2 (ja) * 1992-04-27 1995-05-10 信越半導体株式会社 単結晶引き上げ用石英るつぼ
JP3100836B2 (ja) 1994-06-20 2000-10-23 信越石英株式会社 石英ガラスルツボとその製造方法
US5980629A (en) 1995-06-14 1999-11-09 Memc Electronic Materials, Inc. Methods for improving zero dislocation yield of single crystals
AU2002230671A1 (en) * 2000-11-15 2002-05-27 Gt Equipment Technologies Inc. Improved crucible coating system
US20030012899A1 (en) * 2001-07-16 2003-01-16 Heraeus Shin-Etsu America Doped silica glass crucible for making a silicon ingot
US6712901B2 (en) * 2001-10-16 2004-03-30 Japan Super Quartz Corporation Surface modification process of quartz glass crucible
JP4288646B2 (ja) 2001-10-16 2009-07-01 ジャパンスーパークォーツ株式会社 石英ガラスルツボの表面改質方法と表面改質ルツボ
JP4004783B2 (ja) 2001-11-26 2007-11-07 シルトロニック・ジャパン株式会社 単結晶成長用石英ルツボ
DE10217946A1 (de) 2002-04-22 2003-11-13 Heraeus Quarzglas Quarzglastiegel und Verfahren zur Herstellung desselben
JP4601437B2 (ja) 2005-01-25 2010-12-22 ジャパンスーパークォーツ株式会社 内表面が半結晶化した石英ガラスルツボとその製造方法
US9139932B2 (en) 2006-10-18 2015-09-22 Richard Lee Hansen Quartz glass crucible and method for treating surface of quartz glass crucible
US20120006254A1 (en) * 2009-02-10 2012-01-12 Masaru Fujishiro Quartz glass crucible for pulling single-crystal silicon and process for producing single-crystal silicon
DE102009013715B4 (de) * 2009-03-20 2013-07-18 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung eines Quarzglaskörpers, insbesondere eines Quarzglastiegels
JP5165024B2 (ja) * 2010-06-07 2013-03-21 ジャパンスーパークォーツ株式会社 石英ガラスルツボ
JP5773496B2 (ja) * 2012-03-30 2015-09-02 コバレントマテリアル株式会社 石英ガラスルツボ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110590A (ja) * 1995-06-14 1997-04-28 Memc Electron Materials Inc 向上した無転位性能のための表面処理ルツボ
JP2009143770A (ja) * 2007-12-14 2009-07-02 Japan Siper Quarts Corp 高強度を有する大径シリコン単結晶インゴット引上げ用高純度石英ガラスルツボ
JP2012116702A (ja) * 2010-11-30 2012-06-21 Japan Siper Quarts Corp シリカガラスルツボ
JP2013133243A (ja) * 2011-12-26 2013-07-08 Siltronic Ag 単結晶シリコンの製造方法
JP2012211082A (ja) * 2012-08-07 2012-11-01 Shinetsu Quartz Prod Co Ltd シリカ容器
US20140352605A1 (en) * 2013-05-31 2014-12-04 Heraeus Shin-Etsu America, Inc. Method for making barium-doped crucible and crucible made thereby

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319643B2 (en) 2017-04-27 2022-05-03 Sumco Corporation Method for pulling up silicon monocrystal
US11473209B2 (en) 2017-05-02 2022-10-18 Sumco Corporation Quartz glass crucible and manufacturing method thereof
US11466381B2 (en) 2018-02-23 2022-10-11 Sumco Corporation Quartz glass crucible
WO2019163593A1 (ja) * 2018-02-23 2019-08-29 株式会社Sumco 石英ガラスルツボ
CN111936678A (zh) * 2018-04-06 2020-11-13 信越石英株式会社 石英玻璃坩埚及其制造方法
CN109738479B (zh) * 2019-02-28 2021-11-30 上海强华实业股份有限公司 石英玻璃表面涂层耐高温性能试验方法
CN109738479A (zh) * 2019-02-28 2019-05-10 上海强华实业股份有限公司 石英玻璃表面涂层耐高温性能试验方法
WO2021140729A1 (ja) * 2020-01-10 2021-07-15 株式会社Sumco 石英ガラスルツボ
JPWO2021140729A1 (ja) * 2020-01-10 2021-07-15
KR20220119145A (ko) 2020-01-10 2022-08-26 가부시키가이샤 사무코 석영 유리 도가니
CN114981489A (zh) * 2020-01-10 2022-08-30 胜高股份有限公司 石英玻璃坩锅
DE112020006496T5 (de) 2020-01-10 2022-11-17 Sumco Corporation Quarzglastiegel
JP7375833B2 (ja) 2020-01-10 2023-11-08 株式会社Sumco 石英ガラスルツボ
CN114981489B (zh) * 2020-01-10 2024-01-02 胜高股份有限公司 石英玻璃坩锅

Also Published As

Publication number Publication date
JP2020200236A (ja) 2020-12-17
KR20190004739A (ko) 2019-01-14
JPWO2018055974A1 (ja) 2019-06-24
TW201825721A (zh) 2018-07-16
JP2021185127A (ja) 2021-12-09
TWI658177B (zh) 2019-05-01
US20220018037A1 (en) 2022-01-20
US20190145019A1 (en) 2019-05-16
US11162186B2 (en) 2021-11-02
JP6954427B2 (ja) 2021-10-27
KR102213151B1 (ko) 2021-02-05
SG11201811126SA (en) 2019-01-30
CN109477239A (zh) 2019-03-15
JP6773121B2 (ja) 2020-10-21
DE112017004764T5 (de) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2018055974A1 (ja) 石英ガラスルツボ及びその製造方法並びに石英ガラスルツボを用いたシリコン単結晶の製造方法
JP7070719B2 (ja) シリコン単結晶の製造方法
JP7074180B2 (ja) 石英ガラスルツボ及びこれを用いたシリコン単結晶の製造方法
US20240011183A1 (en) Quartz glass crucible, manufacturing method therefor, and method for manufacturing silicon single crystal
JP2007091562A (ja) 結晶化促進コーティング用シリカガラスルツボ
US11939695B2 (en) Quartz glass crucible, manufacturing method of silicon single crystal using the same, and infrared transmissivity measurement method and manufacturing method of quartz glass crucible
JP4484208B2 (ja) フッ化金属単結晶体の製造方法
JP2024030551A (ja) シリコン単結晶引き上げ用石英ガラスルツボ及びこれを用いたシリコン単結晶の製造方法
TW202419692A (zh) 矽單結晶上拉用石英玻璃坩堝及使用矽單結晶上拉用石英玻璃坩堝的矽單結晶製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187034587

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018540925

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17852753

Country of ref document: EP

Kind code of ref document: A1