WO2018055773A1 - 走路設定方法及び走路設定装置 - Google Patents

走路設定方法及び走路設定装置 Download PDF

Info

Publication number
WO2018055773A1
WO2018055773A1 PCT/JP2016/078297 JP2016078297W WO2018055773A1 WO 2018055773 A1 WO2018055773 A1 WO 2018055773A1 JP 2016078297 W JP2016078297 W JP 2016078297W WO 2018055773 A1 WO2018055773 A1 WO 2018055773A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
travel
locus
traveling
preceding vehicle
Prior art date
Application number
PCT/JP2016/078297
Other languages
English (en)
French (fr)
Inventor
宏寿 植田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to BR112019005696-3A priority Critical patent/BR112019005696B1/pt
Priority to MX2019003386A priority patent/MX2019003386A/es
Priority to RU2019112736A priority patent/RU2719117C1/ru
Priority to KR1020197011675A priority patent/KR20190055192A/ko
Priority to EP16916840.8A priority patent/EP3517381B1/en
Priority to JP2018540601A priority patent/JP6822480B2/ja
Priority to PCT/JP2016/078297 priority patent/WO2018055773A1/ja
Priority to CN201680089606.4A priority patent/CN109789875B/zh
Priority to US16/336,289 priority patent/US10845813B2/en
Priority to CA3038476A priority patent/CA3038476A1/en
Publication of WO2018055773A1 publication Critical patent/WO2018055773A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0027Planning or execution of driving tasks using trajectory prediction for other traffic participants
    • B60W60/00272Planning or execution of driving tasks using trajectory prediction for other traffic participants relying on extrapolation of current movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/163Decentralised systems, e.g. inter-vehicle communication involving continuous checking
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/402Type
    • B60W2554/4026Cycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4049Relationship among other objects, e.g. converging dynamic objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed

Definitions

  • the present invention relates to a runway setting method and a runway setting device.
  • Patent Document 1 when a preceding vehicle such as a two-wheeled vehicle fluctuates from side to side, it is determined not to be parallel, and the following control is not uniformly performed. On the other hand, if the conditions for determining that the vehicle is parallel are relaxed, even if the preceding vehicle fluctuates, the following control is performed, but the own vehicle also fluctuates and becomes unstable.
  • an object of the present invention is to provide a travel path setting method and a travel path setting device that can travel stably so as to continuously follow the travel trajectory of another vehicle such as a preceding vehicle. .
  • the position of another vehicle that travels around the host vehicle is detected, and the travel path of the host vehicle is set based on the travel locus based on the history of the position of the other vehicle.
  • the amount of change in the travel trajectory of the preceding vehicle among the other vehicles is calculated, and when the amount of change in the travel trajectory of the preceding vehicle is equal to or greater than a predetermined threshold, the vehicle is automatically determined based on the travel trajectory of the other vehicle different from the preceding vehicle.
  • the gist of the present invention is a road setting method and a road setting device characterized by setting the road of a vehicle.
  • the traveling locus of the preceding vehicle when the traveling locus of the preceding vehicle is unstable and unstable, the traveling locus of other vehicles other than the preceding vehicle can be tracked. It is possible to provide a road setting method and a road setting device that can stably travel so as to follow the road.
  • the track setting device according to the embodiment of the present invention can be mounted on a vehicle (hereinafter, a vehicle equipped with the track setting device according to the embodiment of the present invention is referred to as “own vehicle”).
  • the runway setting device according to the embodiment of the present invention includes a control device 1, a surrounding vehicle sensor 2, and a vehicle information sensor 3.
  • the surrounding vehicle sensor 2 detects the position of the other vehicle such as the distance and direction of the other vehicle traveling around the host vehicle such as the preceding vehicle, and outputs information on the detected position of the other vehicle to the control device 1.
  • a millimeter wave radar, a laser radar, a laser range finder (LRF), a camera, or the like can be used as the surrounding vehicle sensor 2 for example.
  • LRF laser range finder
  • the type and number of surrounding vehicle sensors 2 and the mounting position are not particularly limited.
  • the vehicle information sensor 3 detects vehicle information (odometry information) including the traveling state of the host vehicle.
  • the vehicle information sensor 3 includes a wheel speed sensor 4 and a yaw rate sensor 5.
  • the wheel speed sensor 4 detects the wheel speed of the host vehicle and outputs information on the detected wheel speed to the control device 1.
  • the yaw rate sensor 5 detects the change rate (yaw rate) of the yaw angle of the host vehicle, and outputs information on the detected yaw rate to the control device 1.
  • the control device 1 is a controller such as an electronic control unit (ECU) and has a processor and a storage device.
  • the processor can be configured by a computer including a central processing unit (CPU), a main storage device, an input / output device, an input / output interface, a data bus, and the like, a semiconductor integrated circuit equivalent to the computer, and the like.
  • a semiconductor integrated circuit including a programmable logic device (PLD) such as a field programmable gate array (FPGA) may be used.
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a functional logic circuit or a logic block set in a general-purpose semiconductor integrated circuit may be used.
  • the storage device can be configured by a semiconductor storage device, a magnetic storage device, an optical storage device, or the like, and may include a register, a cache memory, or the like.
  • the control device 1 includes a movement amount calculation unit 11, a travel locus calculation unit 12, and a travel path setting unit 13 as logical hardware resources.
  • the movement amount calculation unit 11 calculates the movement amount ( ⁇ X, ⁇ Y, ⁇ ) of the host vehicle from the wheel speed detected by the wheel speed sensor 4 and vehicle information (odometry information) such as the yaw rate detected by the yaw rate sensor 5.
  • ⁇ X is a translational movement amount in the vehicle width direction of the host vehicle
  • ⁇ Y is a translational movement amount in the front-rear direction orthogonal to the vehicle width direction of the host vehicle
  • is a rotation amount.
  • the travel locus calculation unit 12 is based on the movement amount ( ⁇ X, ⁇ Y, ⁇ ) of the own vehicle calculated by the movement amount calculation unit 11 and information on the position of the other vehicle detected by the surrounding vehicle sensor 2.
  • a travel locus based on the position history (time series) is calculated.
  • the traveling locus calculation unit 12 extracts other vehicles existing within a predetermined distance from the own vehicle in a range of front, right front, and left front as viewed from the own vehicle, and uses the extracted traveling locus of the other vehicle. calculate.
  • the predetermined distance can be appropriately set as long as the own vehicle can follow other vehicles.
  • the traveling locus calculation unit 12 calculates the traveling locus of each of the plurality of other vehicles.
  • the travel locus calculation unit 12 sequentially stores the center position of the rear part of the other vehicle as the position (reference point) of the other vehicle in the storage device of the control device 1 based on the detection result by the surrounding vehicle sensor 2. Then, the travel locus calculation unit 12 reads the history of the position (reference point) of the other vehicle from the storage device of the control device 1 up to the previous processing cycle, and reverses the movement amount ( ⁇ X, ⁇ Y, ⁇ ) of the own vehicle. By moving in the direction, the history of the position of the other vehicle up to the previous processing cycle is updated.
  • the host vehicle 100 is traveling in the left lane L1 of the one side two lanes L1, L2.
  • Another vehicle (preceding vehicle) 101 is traveling ahead of the host vehicle 100 on the same lane L1 as the host vehicle 100.
  • another vehicle 102 is traveling in front of the host vehicle 100 on the right lane L2.
  • the travel locus calculation unit 12 stores the positions PA (i-1) , PA (i-2) , PA (i-3) , PA (i (i )) from the storage device of the control device 1 until the previous processing cycle. -4) , PA (i-5) , PA (i-6) are read out and moved in the opposite direction by the movement amount ( ⁇ X, ⁇ Y, ⁇ ) of the host vehicle 100, so that the position PA ( i-1) to PA (i-6) are updated. Then, with respect to the updated positions PA (i-1) to PA (i-6) of the preceding vehicle 101, the position PA i of the preceding vehicle 101 detected by the surrounding vehicle sensor 2 in the current processing cycle is newly set. By adding, it is calculated as the travel locus PA i to PA (i-6) of the preceding vehicle 101.
  • the travel locus calculation unit 12 determines the positions PB (i-1) , PB (i-2) , PB (i-3) , PB ( PB (i ) of the other vehicle 102 from the storage device of the control device 1 to the previous processing cycle. i-4) , PB (i-5) , PB (i-6) , PB (i-7) , PB (i-8) , PB (i-9) , PB (i-10) , PB (i -11) is read, and the positions PB (i-1) to PB (i-11) of the other vehicle 102 are updated in the opposite direction by the movement amount ( ⁇ X, ⁇ Y, ⁇ ) of the host vehicle 100.
  • the position PB i of the other vehicle 102 detected by the surrounding vehicle sensor 2 in the current processing cycle is newly set. By adding, it is calculated as the travel trajectories PB i to PB (i-11) of the other vehicle 102.
  • the travel path setting unit 13 shown in FIG. 1 sets the travel path of the host vehicle based on the travel trajectory of the other vehicle calculated by the travel trajectory calculation unit 12.
  • the travel path setting unit 13 includes a travel path evaluation circuit 14 and a travel path setting circuit 15 as logical hardware resources.
  • the travel locus evaluation circuit 14 identifies another vehicle that travels in the same lane as the own vehicle based on the travel locus of the other vehicle calculated by the travel locus calculation unit 12 (in other words, the other vehicle is the same as the own vehicle). Determine if you are driving in a lane).
  • the traveling locus evaluation circuit 14 calculates the distance between the traveling locus of the other vehicle calculated by the traveling locus calculation unit 12 and the host vehicle, and the calculated distance is less than a predetermined threshold (for example, 2.0 m). In addition, it is determined that the other vehicle is traveling in the same lane as the own vehicle. On the other hand, when the calculated distance is equal to or greater than a predetermined threshold value (for example, 2.0 m), the traveling locus evaluation circuit 14 does not travel on the same lane as the other vehicle (in other words, different from the own vehicle). Driving in another lane).
  • the predetermined threshold can be appropriately set according to the width of the traveling lane and the like.
  • the travel trajectories PA i to PA (i-9) of the other vehicle 101 and the travel trajectories PB i to PB (i-7) of the other vehicle 102 are the travel trajectory calculation unit 12. Assume that the above is calculated.
  • the traveling locus evaluation circuit 14 calculates a distance DA in the vehicle width direction of the own vehicle 100 between the center of gravity position P0 of the own vehicle 100 and an approximate curve or the like of the traveling locus PA i to PA (i-9) of the other vehicle 101. .
  • the distance DA is less than a predetermined threshold (for example, 2.0 m), and it is determined that the other vehicle 101 is traveling in the same lane L1.
  • the travel locus evaluation circuit 14 calculates the distance DB in the vehicle width direction of the host vehicle 100 between the center of gravity position P0 of the host vehicle 100 and the approximate curves of the travel tracks PB i to PB (i-7) of the other vehicle 102. calculate.
  • the distance DB is greater than or equal to a predetermined threshold (for example, 2.0 m), and it is determined that the other vehicle 102 is not traveling in the same lane L1 as the host vehicle 100 (traveling in the other lane L2).
  • the traveling locus evaluation circuit 14 further specifies, from among other vehicles determined to travel in the same lane, another vehicle that is closest to the own vehicle in front of the own vehicle as a preceding vehicle. Further, when the preceding vehicle traveling ahead of the preceding vehicle can be detected by the surrounding vehicle sensor 2, the traveling locus evaluation circuit 14 is located in front of the own vehicle among other vehicles determined to travel in the same lane. The other vehicle at the second closest position to the host vehicle is specified as the preceding vehicle.
  • the traveling locus evaluation circuit 14 evaluates the traveling locus of the other vehicle calculated by the traveling locus calculation unit 12. For example, the travel locus evaluation circuit 14 calculates the amount of fluctuation in the left-right direction (the vehicle width direction or the direction orthogonal to the lane) within the predetermined evaluation section of the travel locus of the other vehicle calculated by the travel locus calculation unit 12. Then, the calculated fluctuation amount is output as an evaluation result. For example, as shown in FIG. 4, a case where a preceding vehicle (two-wheeled vehicle) 101 and another vehicle 102 exist is assumed. The travel locus evaluation circuit 14 sets the evaluation section I1 from the position of the preceding vehicle 101 to a position at a predetermined distance (for example, 100 m) behind. The evaluation section I1 can be appropriately set according to the position of the preceding vehicle 101, the relative speed of the preceding vehicle 101, the speed of the host vehicle 100, and the like.
  • the travel locus evaluation circuit 14 approximates the travel locus PA i to PA (i-8) of the preceding vehicle 101 in the evaluation section I1 with a straight line, and the distance between the approximate line and the travel locus PA i to PA (i-9) is When there is a portion that is equal to or greater than a predetermined threshold (for example, 0.2 m), the approximate section is divided, and the distance between the approximate line and the travel locus PA i to PA (i-9) is less than the predetermined threshold (for example, 0.2 m).
  • a predetermined threshold for example, 0.2 m
  • the evaluation of the preceding vehicle 101 is also performed when evaluating the travel trajectories PB i to PB (i-12) of the other vehicle 102.
  • the section I1 is used.
  • the travel trajectory evaluation circuit 14 approximates the travel trajectories PB (i-4) to PB (i-11) of the other vehicles 102 in the evaluation section I1 by straight lines, and the approximate straight line and the travel trajectories PB (i-4) to PB.
  • the approximate section is divided, and the approximate straight line and the travel trajectories PB (i-4) to PB (i-11)
  • the distance is divided so as to be less than a predetermined threshold (for example, 0.2 m).
  • the traveling locus evaluation circuit 14 determines that the other vehicle 102 has an independent section from the evaluation section I1 of the preceding vehicle 101.
  • the position from the position to a position at a predetermined distance is set as the evaluation section I2.
  • the traveling locus evaluation circuit 14 evaluates the traveling locus PB i to PB (i-7) of the other vehicle 102 in the evaluation section I2.
  • the predetermined threshold can be appropriately set according to an evaluation method by the traveling locus evaluation circuit 14 or the like.
  • the travel path setting circuit 15 selects the travel path of the preceding vehicle as the subject to be tracked by the own vehicle (reference for the travel path setting of the own vehicle).
  • the travel path setting circuit 15 excludes the travel locus of the preceding vehicle from the subject to be tracked by the own vehicle and searches for the travel locus of other vehicles other than the preceding vehicle as the subject to be followed by the own vehicle.
  • the travel path setting circuit 15 searches the travel trajectory of other vehicles other than the preceding vehicle to be the subject of tracking of the own vehicle when the fluctuation amount of the travel trajectory of the preceding vehicle traveling in the same lane is equal to or greater than a predetermined threshold. Then, the traveling trajectory of the other vehicle traveling in the same lane such as the preceding vehicle other than the preceding vehicle is preferentially selected as the subject to be tracked by the own vehicle (reference for setting the traveling path of the own vehicle). In addition, after the selection, when the fluctuation amount of the travel locus of the other vehicle traveling in the same lane is equal to or greater than a predetermined threshold, the travel locus of the other vehicle that has not been selected should be set as the follow target of the own vehicle again. Explore.
  • both the preceding vehicle 101 and the preceding vehicle 102 can often be detected by the surrounding vehicle sensor 2. Even when the preceding vehicle 101 is a two-wheeled vehicle, the preceding vehicle 102 may be detectable in advance. Furthermore, if the preceding vehicle 101 and the preceding vehicle 102 are two-wheeled vehicles, and other vehicles ahead of the preceding vehicle 102 can also be detected, the subject vehicle may be followed. When there are a plurality of travel tracks that can follow as the travel track of other vehicles traveling in the same lane other than the preceding vehicle, for example, another vehicle close to the host vehicle such as the preceding vehicle may be preferentially selected.
  • the travel path setting circuit 15 travels in a different lane different from the own vehicle when the fluctuation amount of the travel locus of the other vehicle traveling in the same lane as the preceding vehicle or the preceding vehicle is equal to or greater than a predetermined threshold.
  • a vehicle trajectory is searched for as a tracking target. Then, when the fluctuation amount of the travel trajectory of the other vehicle traveling in the other lane is less than a predetermined threshold, the travel path setting circuit 15 selects the travel trajectory of the other vehicle traveling in the other lane as the subject to be tracked by the own vehicle.
  • another vehicle at a position relatively close to the host vehicle may be preferentially selected.
  • the travel path setting circuit 15 sets the travel path of the host vehicle based on the travel trajectory of the other vehicle selected as the tracking target. For example, as illustrated in FIG. 6, the travel path setting circuit 15 includes travel trajectories PA i to PA (i-8) of the preceding vehicle 101 traveling on the same lane L1 as the host vehicle 100 or travel trajectories PB i to the preceding vehicle 102. When PB (i-12) is selected as the tracking target, the travel path setting circuit 15 travels the travel trajectory PA i to PA (i-8) of the preceding vehicle 101 or the travel trajectory PB i to PB ( i-12) is set as the running path of the vehicle 100 as it is.
  • the travel trajectories PA i to PA (i-8 ) of the preceding vehicle 101 or the travel trajectories PB i to PB (i-12) of the preceding vehicle 102 are first calculated in the lane determination processing of the preceding vehicle 101 or the preceding vehicle 102.
  • a vehicle that is offset toward the host vehicle 100 by the distance in the vehicle width direction between the preceding vehicle 101 or the preceding vehicle 102 and the host vehicle 100 may be set as the running path of the host vehicle 100.
  • the lane determination process of the other vehicle 102 is performed.
  • the travel locus PB of the other vehicle 102 is moved to the own vehicle 100 side (left direction) by the distance DB in the vehicle width direction between the own vehicle 100 and the travel locus PB i to PB (i-7) calculated previously.
  • i to PB (i-7) are offset.
  • the offset travel trajectories PC i to PC (i-7) are set as the travel path of the host vehicle 100.
  • the vehicle control unit 16 sends control signals for performing driving support or automatic driving such as acceleration / deceleration control, braking control or steering control of the host vehicle so as to travel on the track of the host vehicle set by the track setting circuit 15. Output for.
  • step S1 the surrounding vehicle sensor 2 detects the position of another vehicle that travels around the host vehicle, including a preceding vehicle that travels ahead of the host vehicle.
  • step S ⁇ b> 2 the movement amount calculation unit 11 calculates the movement amount ( ⁇ X, ⁇ Y, ⁇ ) of the host vehicle from the wheel speed detected by the wheel speed sensor 4 and the yaw rate detected by the yaw rate sensor 5.
  • step S ⁇ b> 3 the travel locus calculation unit 12 is based on the position information of the other vehicle detected by the surrounding vehicle sensor 2 and the movement amount ( ⁇ X, ⁇ Y, ⁇ ) of the host vehicle calculated by the movement amount calculation unit 11.
  • the travel locus of the other vehicle is calculated based on the position history (time series) of the other vehicle.
  • the travel locus calculation unit 12 stores the position of the other vehicle (for example, the center position of the rear part of the other vehicle) detected by the surrounding vehicle sensor 2 in the current processing cycle in the storage device of the control device 1.
  • the travel locus calculation unit 12 reads out the history (time series) of the position of the other vehicle in the processing cycle up to the previous time from the storage device and updates it so as to move by the movement amount ( ⁇ X, ⁇ Y, ⁇ ) of the own vehicle. To do. Then, the position of the other vehicle detected in the current processing cycle is newly added to the updated history of the position of the other vehicle (time series), thereby calculating the travel locus of the other vehicle.
  • step S4 the travel locus evaluation circuit 14 identifies another vehicle that travels in the same lane as the host vehicle based on the travel locus of the other vehicle calculated by the travel locus calculation unit 12.
  • the travel trajectory calculation unit 12 calculates the distance between the host vehicle and the travel trajectory of the other vehicle, and travels in the same lane as the host vehicle when the calculated distance is less than a predetermined threshold (for example, 2.0 m). Identifies as another vehicle.
  • step S ⁇ b> 5 the travel locus calculation unit 12 is located in front of the host vehicle among the other vehicles identified to travel in the same lane as the host vehicle based on the position information of the other vehicles detected by the surrounding vehicle sensor 2. Therefore, the other vehicle closest to the host vehicle is identified as the preceding vehicle. Further, the travel locus calculation unit 12 is in front of the host vehicle among the other vehicles specified to travel in the same lane as the host vehicle based on the position information of the other vehicles detected by the surrounding vehicle sensor 2. Another vehicle at the second closest position to the host vehicle may be specified as the preceding vehicle.
  • the traveling locus evaluation circuit 14 evaluates the traveling locus of the other vehicle calculated by the traveling locus calculation unit 12. For example, the traveling locus evaluation circuit 14 sets the evaluation section from the position of the preceding vehicle to a position at a predetermined distance (for example, 100 m) behind. Further, the traveling locus evaluation circuit 14 approximates the traveling locus in the set evaluation section with a straight line, and if there is a place where the distance between the approximate straight line and the traveling locus is larger than a predetermined threshold (for example, 0.2 m), the approximated traveling locus is approximated. The section is divided so that the distance between the approximate straight line and the travel locus is equal to or less than a predetermined threshold (for example, 0.2 m). The traveling locus evaluation circuit 14 outputs the number of divisions of the evaluation section as a variation amount (evaluation result) of the traveling locus of another vehicle.
  • a predetermined threshold for example, 0.2 m
  • the vehicle control unit 16 outputs a control signal for performing driving support or automatic driving to various actuators so as to travel on the traveling path of the host vehicle set by the traveling path setting circuit 15.
  • step S7 if it is determined in step S7 that the fluctuation amount of the travel locus of the preceding vehicle is greater than or equal to a predetermined threshold value, the travel locus of the preceding vehicle is considered to be unstable from side to side and therefore follows the travel locus other than the preceding vehicle.
  • step S8 To search for the target, the process proceeds to step S8.
  • step S10 the travel path setting circuit 15 sets the travel path of another vehicle traveling in the same lane such as the preceding vehicle selected as the tracking target in step S8 as the travel path of the host vehicle.
  • the vehicle control unit 16 outputs a control signal for performing driving support or automatic driving to various actuators so as to travel on the traveling path of the host vehicle set by the traveling path setting circuit 15.
  • step S8 determines whether the fluctuation amount of the travel locus of the other vehicle traveling in the same lane is greater than or equal to a predetermined threshold value, the travel locus of the other vehicle traveling in the same lane may fluctuate left and right and be unstable. Therefore, the process proceeds to step S9 in order to search for a travel locus other than the other vehicle traveling in the same lane as a tracking target.
  • step S10 the travel path setting circuit 15 offsets the travel locus of the other vehicle traveling in the other lane selected as the tracking target in step S9 to the own vehicle side by the distance between the own vehicle and the travel locus calculated in step S4. By doing so, the travel locus of the offset other vehicle is set as the travel path of the own vehicle.
  • the vehicle control unit 16 outputs a control signal for performing driving support or automatic driving to various actuators so as to travel on the traveling path of the host vehicle set by the traveling path setting circuit 15.
  • step S9 when it is determined in step S9 that the fluctuation amount of the travel locus of the other vehicle traveling in the other lane is greater than or equal to a predetermined threshold value, the control proceeds to step S11 without performing control for following the other vehicle.
  • step S11 the control device 1 determines whether or not the ignition switch of the host vehicle is off. If it is determined that the ignition switch is not OFF, the procedure of steps S1 to S10 is repeated by returning to the procedure of step S1. If it is determined in step S11 that the ignition switch is off, the process ends.
  • predetermined thresholds that serve as criteria for determining the fluctuation amount of the travel trajectory of other vehicles in steps S7, S8, and S9 may be set to the same value or different values.
  • the runway setting program according to the embodiment of the present invention allows a computer such as the control device 1 constituting the runway setting apparatus shown in FIG. 1 to execute a series of processes of the runway setting method shown in FIG. it can.
  • the track setting program according to the embodiment of the present invention can be stored in, for example, a storage device of the control device 1.
  • the amount of fluctuation in the left-right direction of the traveling locus of the preceding vehicle is calculated, and when the amount of variation of the traveling locus of the preceding vehicle is equal to or greater than a predetermined threshold,
  • the travel path of the own vehicle is set based on the travel trajectory of different other vehicles.
  • the traveling locus of the preceding vehicle is unstable and unstable and is inappropriate as the subject to be tracked, the traveling locus of the preceding vehicle is excluded from the subject to be tracked and other vehicles that are appropriate as the subject to be tracked other than the preceding vehicle.
  • the traveling path of the host vehicle can be set with the traveling locus of the vehicle as the tracking target. Therefore, it is possible to travel stably by following an appropriate travel path of another vehicle among travel paths of other vehicles including the preceding vehicle.
  • the travel path of the host vehicle is set based on the travel locus of the preceding vehicle.
  • the traveling locus of the preceding vehicle is unstable and unstable, and is inappropriate as a target to be tracked, the traveling locus of other vehicles traveling in the same lane such as the preceding vehicle is given priority. Since the vehicle is selected as a tracking target and follows the traveling locus of another vehicle traveling in the same lane such as the preceding vehicle, the traveling path of the host vehicle can be set with high accuracy.
  • the travel path of the host vehicle is set based on the travel locus of the other vehicle traveling in the other lane.
  • the travel trajectory of the other vehicle traveling in the other lane is the subject to be tracked.
  • the traveling locus evaluation circuit 14 sets an evaluation section in the traveling locus of the other vehicle and calculates the number of divisions of the evaluation section as the amount of variation of the traveling locus of the other vehicle is exemplified.
  • the method for calculating the fluctuation amount of the travel locus of the other vehicle is not particularly limited to this.
  • the evaluation section I1 is set in the travel trajectories PA i to PA (i-8) of the preceding vehicle 101, and the travel trajectories PA i to PA (i ⁇ ) of the preceding vehicle 101 in the evaluation section I1.
  • various methods can be used as the method for calculating the amount of change in the travel locus of the other vehicle by the travel locus evaluation circuit 14 (that is, the evaluation method of the travel locus of the other vehicle), and the setting is appropriately set. Is possible.
  • the traveling path setting circuit 15 selects the traveling locus of the preceding vehicle as the tracking target without distinguishing whether the preceding vehicle is a two-wheeled vehicle or a four-wheeled vehicle has been exemplified.
  • the traveling path setting circuit 15 may determine whether the preceding vehicle is a two-wheeled vehicle (a four-wheeled vehicle) based on the detection result by the surrounding vehicle sensor 2 or the like.
  • the traveling locus of the preceding vehicle may be excluded from the tracking target without determining whether the amount of change in the traveling locus of the preceding vehicle is equal to or greater than a predetermined threshold. Good.
  • step S6x the travel path setting circuit 15 determines whether or not the preceding vehicle is a two-wheeled vehicle (a four-wheeled vehicle) based on the detection result by the surrounding vehicle sensor 2 or the like. If it is determined that the preceding vehicle is not a motorcycle, the process proceeds to step S7. On the other hand, when it is determined in step S6x that the preceding vehicle is a motorcycle, the process proceeds to step S8.
  • the preceding vehicle when the preceding vehicle is determined to be a two-wheeled vehicle, the preceding vehicle can be immediately excluded from the tracking target, and the traveling trajectory of a vehicle other than the preceding vehicle can be set as the tracking target.
  • the traveling trajectory of a vehicle other than the preceding vehicle can be set as the tracking target.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Controls For Constant Speed Travelling (AREA)

Abstract

先行車両等の他車両の走行軌跡を継続的に追従するように安定して走行することができる走路設定方法を提供する。自車両に搭載され、自車両の周囲を走行する他車両の位置を検出する周囲車両センサと、他車両の位置の履歴による走行軌跡に基づいて自車両の走路を設定するコントローラとを用いた走路設定方法において、他車両のうちの先行車両の走行軌跡の変動量を算出し(S6)、先行車両の走行軌跡の変動量が閾値以上の場合、先行車両とは異なる他車両の走行軌跡に基づいて自車両の走路を設定する(S7~S10)。

Description

走路設定方法及び走路設定装置
 本発明は、走路設定方法及び走路設定装置に関する。
 先行車に追従する自動運転時のドライバの負担を軽減するために、自車両と同一レーンを走行する先行車両の走行軌跡と、他のレーンを走行する並走車両の走行軌跡をそれぞれ算出し、先行車両の走行軌跡と並走車両の走行軌跡とが並行であるか否かを判定する。そして、並行であると判定した場合には、先行車両の走行軌跡を追従するように自車両を制御する技術が提案されている(特許文献1参照)。
特開2004-322916号公報
 しかしながら、特許文献1に記載の技術では、例えば二輪車等の先行車両が左右にふらついた場合には並行でないと判定され、追従する制御が一律に行われなくなってしまう。一方、並行であると判定する条件を緩和すると、先行車両がふらついても追従する制御は行われるもの、自車両もふらつき不安定な走行となってしまう。
 上記問題点を鑑み、本発明は、先行車両等の他車両の走行軌跡を継続的に追従するように安定して走行することができる走路設定方法及び走路設定装置を提供することを目的とする。
 本発明の態様は、自車両の周囲を走行する他車両の位置を検出し、他車両の位置の履歴による走行軌跡に基づいて自車両の走路を設定する。このとき、他車両のうちの先行車両の走行軌跡の変動量を算出し、先行車両の走行軌跡の変動量が所定の閾値以上の場合、先行車両とは異なる他車両の走行軌跡に基づいて自車両の走路を設定することを特徴とする走路設定方法及び走路設定装置であることを要旨とする。
 本発明によれば、先行車両の走行軌跡がふらつき不安定である場合には、先行車両以外の他車両の走行軌跡に追従することができるので、先行車両等の他車両の走行軌跡を継続的に追従するように安定して走行することができる走路設定方法及び走路設定装置を提供することができる。
本発明の実施形態に係る走路設定装置の一例を示すブロック図である。 本発明の実施形態に係る走行シーンの一例を示す概略図である。 本発明の実施形態に係る他車両の走行車線の判定処理の一例を説明するための概略図である。 本発明の実施形態に係る先行車両の走行軌跡の評価処理の一例を説明するための概略図である。 本発明の実施形態に係る評価区間の設定処理の一例を説明するための概略図である。 本発明の実施形態に係る自車両の走路の設定処理の一例を説明するための概略図である。 本発明の実施形態に係る自車両の走路の設定処理の他の一例を説明するための概略図である。 本発明の実施形態に係る走路設定方法の一例を説明するためのフローチャートである。 本発明の実施形態の第1の変形例に係る他車両の走行軌跡の評価処理の一例を説明するための概略図である。 本発明の実施形態の第2の変形例に係る走路設定方法の一例を説明するためのフローチャートである。
 次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を貼付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、厚みの比率等は現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 本発明の実施形態に係る走路設定装置は、車両に搭載可能である(以下、本発明の実施形態に係る走路設定装置を搭載した車両を「自車両」という)。本発明の実施形態に係る走路設定装置は、図1に示すように、制御装置1、周囲車両センサ2及び車両情報センサ3を備える。
 周囲車両センサ2は、先行車両等の自車両の周囲を走行する他車両の距離と方位等の他車両の位置を検出し、検出された他車両の位置の情報を制御装置1に出力する。周囲車両センサ2としては、例えばミリ波レーダやレーザレーダ、レーザレンジファインダ(LRF)、カメラ等が使用可能である。周囲車両センサ2の種類や数、搭載位置は特に限定されない。
 車両情報センサ3は、自車両の走行状態を含む車両情報(オドメトリ情報)を検出する。車両情報センサ3は、車輪速センサ4及びヨーレートセンサ5を備える。車輪速センサ4は、自車両の車輪速を検出し、検出された車輪速の情報を制御装置1に出力する。ヨーレートセンサ5は、自車両のヨー角の変化速度(ヨーレート)を検出し、検出されたヨーレートの情報を制御装置1に出力する。
 制御装置1は、電子制御ユニット(ECU)等のコントローラであり、プロセッサ及び記憶装置を有する。プロセッサは、例えば中央演算処理装置(CPU)、主記憶装置、入出力装置、入出力インターフェイス、データバス等を含むコンピュータやコンピュータに等価な半導体集積回路等で構成することができる。プロセッサを半導体集積回路で構成する場合は、フィールド・プログラマブル・ゲート・アレイ(FPGA)等のプログラマブル・ロジック・デバイス(PLD)を含む半導体集積回路を利用してもよい。或いは、汎用の半導体集積回路中に設定される機能的な論理回路や論理ブロック等でも構わない。記憶装置は、半導体記憶装置、磁気記憶装置又は光学記憶装置等で構成でき、レジスタ、キャッシュメモリ等を含んだ構成でもよい。
 制御装置1は、移動量算出部11、走行軌跡算出部12及び走路設定部13を論理的なハードウェア資源として備える。移動量算出部11は、車輪速センサ4により検出された車輪速と、ヨーレートセンサ5により検出されたヨーレート等の車両情報(オドメトリ情報)から自車両の移動量(ΔX,ΔY,Δφ)を算出する。ΔXは自車両の車幅方向の並進移動量、ΔYは自車両の車幅方向に直交する前後方向の並進移動量、Δφは回転量である。
 走行軌跡算出部12は、移動量算出部11により算出された自車両の移動量(ΔX,ΔY,Δφ)と、周囲車両センサ2により検出した他車両の位置の情報とに基づいて、他車両の位置の履歴(時系列)による走行軌跡を算出する。例えば、走行軌跡算出部12は、自車両から見て前方、右前方、左前方の範囲において、自車両から所定の距離以内に存在する他車両を抽出して、抽出した他車両の走行軌跡を算出する。所定の距離は、自車両が他車両を追従可能である範囲で適宜設定可能である。周囲車両センサ2により検出した他車両が複数存在する場合には、走行軌跡算出部12は、複数の他車両の走行軌跡をそれぞれ算出する。
 例えば、走行軌跡算出部12は、周囲車両センサ2による検出結果に基づいて、他車両の後部の中央位置を他車両の位置(参照点)として、制御装置1の記憶装置に逐次記憶させる。そして、走行軌跡算出部12は、制御装置1の記憶装置から前回の処理周期までの他車両の位置(参照点)の履歴を読み出して、自車両の移動量(ΔX,ΔY,Δφ)だけ逆方向に移動することにより、前回の処理周期までの他車両の位置の履歴を更新する。そして、更新された前回の処理周期までの他車両の位置の履歴に対して、今回の処理周期において検出した他車両の位置を新たに追加することにより、今回の処理周期までの他車両の位置の履歴を他車両の走行軌跡として算出する。なお、他車両の位置の履歴を曲線等により近似した近似曲線を他車両の走行軌跡として算出してもよい。
 図2を参照しながら、走行軌跡算出部12による他車両の走行軌跡の算出処理の一例を説明する。片側2車線L1,L2の左側の車線L1を自車両100が走行している。自車両100と同一車線L1上の自車両100の前方を他車両(先行車両)101が走行している。また、右側の車線L2上の自車両100の右前方を他車両102が走行している。
 走行軌跡算出部12は、制御装置1の記憶装置から、前回の処理周期までの他車両102の位置PA(i-1),PA(i-2),PA(i-3),PA(i-4),PA(i-5),PA(i-6)を読み出して、自車両100の移動量(ΔX,ΔY,Δφ)だけ逆方向に移動することにより、先行車両101の位置PA(i-1)~PA(i-6)を更新する。そして、更新された先行車両101の位置PA(i-1)~PA(i-6)に対して、今回の処理周期において周囲車両センサ2により検出された先行車両101の位置PAを新たに追加することにより、先行車両101の走行軌跡PA~PA(i-6)として算出する。
 更に、走行軌跡算出部12は、制御装置1の記憶装置から前回の処理周期までの他車両102の位置PB(i-1),PB(i-2),PB(i-3),PB(i-4),PB(i-5),PB(i-6),PB(i-7),PB(i-8),PB(i-9),PB(i-10),PB(i-11)を読み出して、自車両100の移動量(ΔX,ΔY,Δφ)だけ逆方向に他車両102の位置PB(i-1)~PB(i-11)を更新する。そして、更新された他車両102の位置PB(i-1)~PB(i-11)に対して、今回の処理周期において周囲車両センサ2により検出された他車両102の位置PBを新たに追加することにより、他車両102の走行軌跡PB~PB(i-11)として算出する。
 図1に示した走路設定部13は、走行軌跡算出部12により算出された他車両の走行軌跡に基づいて自車両の走路を設定する。走路設定部13は、走行軌跡評価回路14及び走路設定回路15を論理的なハードウェア資源として備える。走行軌跡評価回路14は、走行軌跡算出部12により算出された他車両の走行軌跡に基づいて、自車両と同一車線を走行する他車両を特定する(換言すれば、他車両が自車両と同一車線を走行しているか否かを判定する)。
 例えば、走行軌跡評価回路14は、走行軌跡算出部12により算出された他車両の走行軌跡と自車両との距離を算出し、算出した距離が所定の閾値(例えば2.0m)未満である場合に、他車両が自車両と同一車線を走行していると判定する。一方、算出した距離が所定の閾値(例えば2.0m)以上である場合に、走行軌跡評価回路14は、他車両が自車両と同一車線を走行していない(換言すれば、自車両と異なる他車線を走行している)と判定する。所定の閾値は、走行車線の幅等に応じて適宜設定可能である。
 より具体的には、図3に示すように、他車両101の走行軌跡PA~PA(i-9)及び他車両102の走行軌跡PB~PB(i-7)が走行軌跡算出部12により算出されている場合を想定する。走行軌跡評価回路14は、自車両100の重心位置P0と、他車両101の走行軌跡PA~PA(i-9)の近似曲線等との自車両100の車幅方向における距離DAを算出する。例えば距離DAが所定の閾値(例えば2.0m)未満であり、他車両101は同一車線L1を走行していると判定される。また、走行軌跡評価回路14は、自車両100の重心位置P0と、他車両102の走行軌跡PB~PB(i-7)の近似曲線等との自車両100の車幅方向における距離DBを算出する。例えば距離DBが所定の閾値(例えば2.0m)以上であり、他車両102は自車両100と同一車線L1を走行していない(他車線L2を走行している)と判定される。
 走行軌跡評価回路14は更に、同一車線を走行すると判定された他車両のうち、自車両の前方で自車両に最も近い位置の他車両を先行車両として特定する。更に、周囲車両センサ2により先行車両の前方を走行する先々行車両が検出できている場合には、走行軌跡評価回路14は、同一車線を走行すると判定された他車両のうち、自車両の前方で自車両に2番目に近い位置の他車両を先々行車両として特定する。
 走行軌跡評価回路14は、走行軌跡算出部12により算出された他車両の走行軌跡を評価する。例えば、走行軌跡評価回路14は、走行軌跡算出部12により算出された他車両の走行軌跡の、所定の評価区間内の左右方向(車幅方向、或いは車線と直交する方向)の変動量を算出し、算出した変動量を評価結果として出力する。例えば図4に示すように、先行車両(二輪車)101及び他車両102が存在する場合を想定する。走行軌跡評価回路14は、先行車両101の位置から後方に所定の距離(例えば100m)の位置までを評価区間I1として設定する。評価区間I1は、先行車両101の位置や先行車両101の相対速度、自車両100の速度等に応じて適宜設定可能である。
 走行軌跡評価回路14は、評価区間I1内の先行車両101の走行軌跡PA~PA(i-8)を直線により近似し、近似直線と走行軌跡PA~PA(i-9)の距離が所定の閾値(例えば0.2m)以上の箇所がある場合には近似区間を分割し、近似直線と走行軌跡PA~PA(i-9)の距離が所定の閾値(例えば0.2m)未満となるように分割する。この場合、先行車両101の走行軌跡PA~PA(i-8)は破線で示す5本の近似直線に対応する5つの近似区間IA1~IA5に分割され、分割数=5が先行車両101の走行軌跡PA~PA(i-8)の変動量(評価結果)として算出される。
 図4に示すように、他車両102が先行車両101よりも前方に位置する場合には、他車両102の走行軌跡PB~PB(i-12)を評価する際にも先行車両101の評価区間I1を用いる。走行軌跡評価回路14は、評価区間I1内の他車両102の走行軌跡PB(i-4)~PB(i-11)を直線により近似し、近似直線と走行軌跡PB(i-4)~PB(i-11)の距離が所定の閾値(例えば0.2m)以上の箇所がある場合には近似区間を分割し、近似直線と走行軌跡PB(i-4)~PB(i-11)の距離が所定の閾値(例えば0.2m)未満となるように分割する。この場合、他車両102の走行軌跡PB(i-4)~PB(i-11)は分割されずに、破線で示す1本の近似曲線に対応する1つの近似区間IB1となり、分割数=1が他車両102の走行軌跡PB(i-4)~PB(i-11)の変動量(評価結果)として算出される。
 また、図5に示すように、他車両102が先行車両101より後方に位置する場合には、例えば、走行軌跡評価回路14は、先行車両101の評価区間I1とは個別に、他車両102の位置から後方に所定の距離(例えば100m)の位置までを評価区間I2として設定する。走行軌跡評価回路14は、評価区間I2内の他車両102の走行軌跡PB~PB(i-7)を評価する。
 走路設定回路15は、走行軌跡評価回路14による他車両の走行軌跡の評価結果に基づいて自車両の走路を設定する。例えば、走路設定回路15は、走行軌跡評価回路14により算出された他車両の走行軌跡の変動量が所定の閾値以上か否かを、他車両毎に判定する。例えば図4に示すように、先行車両101の走行軌跡PA~PA(i-8)の変動量として分割数5が算出され、所定の閾値が分割数=3である場合には、先行車両101の走行軌跡PA~PA(i-8)の変動量が所定の閾値以上と判定される。一方、他車両102の走行軌跡PB(i-4)~PB(i-11)の変動量として分割数=1が算出され、所定の閾値が分割数=3である場合には、他車両102の走行軌跡PB(i-4)~PB(i-11)の変動量が所定の閾値以上と判定される。所定の閾値は、走行軌跡評価回路14による評価方法等に応じて適宜設定可能である。
 先行車両の走行軌跡の変動量が所定の閾値未満の場合には、先行車両の走行軌跡は左右にふらつかずに安定しており、自車両の追従対象として適切であると考えられる。このため、走路設定回路15は、先行車両の走行軌跡を自車両の追従対象(自車両の走路設定の基準)として選択する。一方、先行車両の走行軌跡の変動量が所定の閾値以上の場合には、先行車両の走行軌跡が左右にふらつき不安定であり、自車両の追従対象として不適切であると考えられる。このため、走路設定回路15は、先行車両の走行軌跡を自車両の追従対象から除外するとともに、先行車両以外の他車両の走行軌跡を自車両の追従対象とすべく探索する。
 走路設定回路15は、同一車線を走行する先行車両の走行軌跡の変動量が所定の閾値以上であった場合には、先行車両以外の他車両の走行軌跡を自車両の追従対象とすべく探索し、先行車両以外の先々行車両等の同一車線を走行する他車両の走行軌跡を優先的に、自車両の追従対象(自車両の走路設定の基準)として選択する。なお、選択後、同一車線を走行する他車両の走行軌跡の変動量が所定の閾値以上となった場合には、再度、選択していない他車両の走行軌跡を自車両の追従対象とすべく探索する。
 例えば図6に示すように、先々行車両102が大型車の場合には、先行車両101と先々行車両102の両方が周囲車両センサ2により検出可能な場合が多い。また、先行車両101が二輪車である場合にも、先々行車両102を検出可能な場合がある。更に、先行車両101及び先々行車両102が二輪車である場合等、先々行車両102よりも前方の他車両も検出可能であれば、自車両の追従対象としてもよい。先行車両以外の同一車線を走行する他車両の走行軌跡として追従可能な走行軌跡が複数存在する場合には、例えば、先々行車両等の自車両から近い他車両を優先的に選択してもよい。
 走路設定回路15は、先行車両や先々行車両等の自車両と同一車線を走行する他車両の走行軌跡の変動量が所定の閾値以上である場合には、自車両と異なる他車線を走行する他車両の走行軌跡を追従対象として探索する。そして、走路設定回路15は、他車線を走行する他車両の走行軌跡の変動量が所定の閾値未満の場合は、他車線を走行する他車両の走行軌跡を自車両の追従対象として選択する。他車線を走行する他車両の走行軌跡として追従可能な走行軌跡が複数存在する場合には、例えば、自車両から相対的に近い位置の他車両を優先的に選択してもよい。
 走路設定回路15は、追従対象として選択された他車両の走行軌跡に基づいて自車両の走路を設定する。走路設定回路15は、例えば図6に示すように、自車両100と同一車線L1上を走行する先行車両101の走行軌跡PA~PA(i-8)又は先々行車両102の走行軌跡PB~PB(i-12)が追従対象として選択された場合には、走路設定回路15は、先行車両101の走行軌跡PA~PA(i-8)又は先々行車両102の走行軌跡PB~PB(i-12)をそのまま自車両100の走路として設定する。なお、先行車両101の走行軌跡PA~PA(i-8)又は先々行車両102の走行軌跡PB~PB(i-12)を、先行車両101又は先々行車両102の車線判定処理で先に算出した、先行車両101又は先々行車両102と自車両100との車幅方向における距離だけ、自車両100側にオフセットしたものを自車両100の走路として設定してもよい。
 一方、図7に示すように、他車線L2上を走行する他車両102の走行軌跡PB~PB(i-7)が追従対象として選択された場合には、他車両102の車線判定処理で先に算出した、自車両100と他車両102の走行軌跡PB~PB(i-7)との車幅方向の距離DBだけ自車両100側(左方向)に、他車両102の走行軌跡PB~PB(i-7)をオフセットする。そして、オフセットした走行軌跡PC~PC(i-7)を自車両100の走路として設定する。
 車両制御部16は、走路設定回路15により設定された自車両の走路を走行するように自車両の加減速制御、制動制御又は操舵制御等の運転支援又は自動運転を行う制御信号を各種のアクチュエータに対して出力する。
 <走路設定方法>
 次に、図8のフローチャートを参照しながら、本発明の実施形態に係る走路設定方法の一例を説明する。図8のフローチャートの手順は、所定の処理周期で繰り返し実行される。
 ステップS1において、周囲車両センサ2は、自車両の前方を走行する先行車両を含む、自車両の周囲を走行する他車両の位置を検出する。ステップS2において、移動量算出部11は、車輪速センサ4により検出された車輪速と、ヨーレートセンサ5により検出されたヨーレートとから、自車両の移動量(ΔX,ΔY,Δφ)を算出する。
 ステップS3において、走行軌跡算出部12は、周囲車両センサ2により検出された他車両の位置の情報と、移動量算出部11により算出した自車両の移動量(ΔX,ΔY,Δφ)とに基づいて、他車両の位置の履歴(時系列)による他車両の走行軌跡を算出する。例えば、走行軌跡算出部12は、今回の処理周期において周囲車両センサ2により検出された他車両の位置(例えば他車両の後部の中央位置)を制御装置1の記憶装置に記憶する。更に、走行軌跡算出部12は、前回までの処理周期の他車両の位置の履歴(時系列)を記憶装置から読み出して、自車両の移動量(ΔX,ΔY,Δφ)だけ移動するように更新する。そして、更新した他車両の位置の履歴(時系列)に対して、今回の処理周期で検出した他車両の位置を新たに追加することにより、他車両の走行軌跡として算出する。
 ステップS4において、走行軌跡評価回路14は、走行軌跡算出部12により算出された他車両の走行軌跡に基づいて、自車両と同一車線を走行する他車両を特定する。例えば、走行軌跡算出部12は、自車両と他車両の走行軌跡との距離を算出し、算出した距離が所定の閾値(例えば2.0m)未満の場合に、自車両と同一車線を走行する他車両として特定する。
 ステップS5において、走行軌跡算出部12は、周囲車両センサ2により検出された他車両の位置の情報に基づいて、自車両と同一車線を走行すると特定された他車両のうち、自車両の前方であって自車両に最も近い位置の他車両を先行車両として特定する。更に、走行軌跡算出部12は、周囲車両センサ2により検出された他車両の位置の情報に基づいて、自車両と同一車線を走行すると特定された他車両のうち、自車両の前方であって自車両に2番目に近い位置の他車両を先々行車両として特定してもよい。
 ステップS6において、走行軌跡評価回路14は、走行軌跡算出部12により算出された他車両の走行軌跡を評価する。例えば、走行軌跡評価回路14は、先行車両の位置から、後方に所定の距離(例えば100m)の位置までを評価区間として設定する。更に、走行軌跡評価回路14は、設定した評価区間内の走行軌跡を直線により近似し、近似直線と走行軌跡の距離が所定の閾値(例えば0.2m)より大きい箇所がある場合には、近似区間を分割し、近似直線と走行軌跡の距離が所定の閾値(例えば0.2m)以下となるように分割する。走行軌跡評価回路14は、評価区間の分割数を他車両の走行軌跡の変動量(評価結果)として出力する。
 ステップS7において、走路設定回路15が、走行軌跡評価回路14により算出された他車両の走行軌跡の変動量のうち、先行車両の走行軌跡の変動量が所定の閾値(例えば分割数=3)以上か否かを判定する。先行車両の変動量が所定の閾値未満と判定された場合には、左右にふらつかず安定していると考えられるため、先行車両の走行軌跡を追従対象として選択し、ステップS10に移行する。ステップS10において、走路設定回路15は、ステップS7において追従対象として選択された先行車両の走行軌跡を、自車両の走路として設定する。車両制御部16は、走路設定回路15により設定された自車両の走路を走行するように運転支援又は自動運転を行う制御信号を各種のアクチュエータに対して出力する。
 一方、ステップS7において先行車両の走行軌跡の変動量が所定の閾値以上と判定された場合には、先行車両の走行軌跡は左右にふらつき不安定と考えられるため、先行車両以外の走行軌跡を追従対象として探索すべく、ステップS8に移行する。
 ステップS8において、走路設定回路15は、先行車両以外の先々行車両等の同一車線を走行する他車両の走行軌跡の変動量が所定の閾値(例えば分割数=3)以上か否かを判定する。同一車線を走行する他車両の走行軌跡の変動量が所定の閾値未満と判定された場合は、左右にふらつかず安定していると考えられるため、同一車線を走行する他車両の走行軌跡を追従対象として選択し、ステップS10へ移行する。同一車線を走行する他車両が複数ある場合には、先々行車両等の自車両に対して相対的に近い位置の他車両から優先的に追従対象として選択する。ステップS10において、走路設定回路15は、ステップS8において追従対象として選択された先々行車両等の同一車線を走行する他車両の走行軌跡を、自車両の走路として設定する。車両制御部16は、走路設定回路15により設定された自車両の走路を走行するように運転支援又は自動運転を行う制御信号を各種のアクチュエータに対して出力する。
 一方、ステップS8において同一車線を走行する他車両の走行軌跡の変動量が所定の閾値以上と判定された場合には、同一車線を走行する他車両の走行軌跡は左右にふらつき不安定と考えられるため、同一車線を走行する他車両以外の走行軌跡を追従対象として探索すべく、ステップS9に移行する。
 ステップS9において、走路設定回路15は、他車線を走行する他車両の走行軌跡の変動量が所定の閾値(例えば分割数=3)以上か否かを判定する。他車線を走行する他車両の走行軌跡の変動量が所定の閾値未満の場合は、左右にふらつかず安定していると考えられるため、他車線を走行する他車両の走行軌跡を追従対象として選択し、ステップS10へ移行する。他車線を走行する他車両が複数ある場合には、自車両に対して相対的に近い位置の他車両から優先的に追従対象として選択してもよい。ステップS10において、走路設定回路15は、ステップS9において追従対象として選択された他車線を走行する他車両の走行軌跡を、ステップS4で算出された自車両と走行軌跡の距離だけ自車両側にオフセットすることにより、オフセットした他車両の走行軌跡を自車両の走路として設定する。車両制御部16は、走路設定回路15により設定された自車両の走路を走行するように運転支援又は自動運転を行う制御信号を各種のアクチュエータに対して出力する。
 一方、ステップS9において他車線を走行する他車両の走行軌跡の変動量が所定の閾値以上と判定された場合には、他車両を追従する制御は行わずに、ステップS11に移行する。
 ステップS11において、制御装置1が、自車両のイグニションスイッチがオフか否かを判定する。イグニションスイッチがオフではないと判定されている場合には、ステップS1の手順に戻ることにより、ステップS1~S10の手順を繰り返す。ステップS11においてイグニションスイッチがオフと判定された場合には処理を終了する。
 なお、ステップS7,S8,S9の他車両の走行軌跡の変動量の判定基準となる所定の閾値は、互いに同じ値に設定してもよく、異なる値に設定してもよい。
 <走路設定プログラム>
 なお、本発明の実施形態に係る走路設定プログラムは、図8に示した走路設定方法の一連の処理を、図1に示した走路設定装置を構成する制御装置1等のコンピュータに実行させることができる。本発明の実施形態に係る走路設定プログラムは、例えば制御装置1の記憶装置等に格納可能である。
 以上説明したように、本発明の実施形態によれば、先行車両の走行軌跡の左右方向の変動量を算出し、先行車両の走行軌跡の変動量が所定の閾値以上の場合、先行車両とは異なる他車両の走行軌跡に基づいて自車両の走路を設定する。これにより、先行車両の走行軌跡がふらつき不安定であり、追従対象として不適切である場合には、先行車両の走行軌跡を追従対象から除外して、先行車両以外の追従対象として適切な他車両の走行軌跡を追従対象として自車両の走路を設定することができる。したがって、先行車両を含む他車両の走行軌跡のうちの適切な他車両の走行軌跡を追従して、安定して走行することができる。
 更に、先行車両の走行軌跡の変動量が所定の閾値以上の場合、先々行車両の走行軌跡に基づいて自車両の走路を設定する。これにより、先行車両の走行軌跡がふらつきく等して不安定であり、追従対象として不適切である場合であっても、先々行車両等の同一車線を走行する他車両の走行軌跡を優先的に追従対象として選択して、先々行車両等の同一車線を走行する他車両の走行軌跡を追従するので、自車両の走路を精度良く設定することができる。
 更に、同一車線を走行する他車両の走行軌跡の変動量が所定の閾値以上の場合、他車線を走行する他車両の走行軌跡に基づいて自車両の走路を設定する。これにより、同一車線を走行する他車両の走行軌跡がふらつく等して不安定であり、追従対象として不適切である場合であっても、他車線を走行する他車両の走行軌跡を追従対象として選択して、他車線を走行する他車両の走行軌跡を追従することができる。したがって、追従する制御を継続的に行うことができる。
 (第1の変形例)
 本発明の実施形態においては、走行軌跡評価回路14が、他車両の走行軌跡に評価区間を設定して、評価区間の分割数を他車両の走行軌跡の変動量として算出する場合を例示したが、他車両の走行軌跡の変動量の算出方法(即ち、他車両の走行軌跡の評価方法)は特にこれに限定されない。例えば図9に示すように、先行車両101の走行軌跡PA~PA(i-8)に評価区間I1を設定して、評価区間I1内の先行車両101の走行軌跡PA~PA(i-7)を直線LA又は曲線により近似する。そして、近似直線LA又は近似曲線に対する軌跡のズレ量εを用いて、式(1)のようにズレ量εの和Sを先行車両101の走行軌跡PA~PA(i-7)の変動量として算出してもよい。
Figure JPOXMLDOC01-appb-M000001
 第1の変形例によれば、走行軌跡評価回路14による他車両の走行軌跡の変動量の算出方法(即ち、他車両の走行軌跡の評価方法)は種々の方法が採用可能であり、適宜設定可能である。
 (第2の変形例)
 本発明の実施形態においては、走路設定回路15が、先行車両が二輪車又は四輪車であることを区別せずに先行車両の走行軌跡を追従対象として選択する場合を例示した。ここで、二輪車は、四輪車よりも走行中の左右のふらつきが多いと推定される。このため、走路設定回路15は、周囲車両センサ2による検出結果等に基づいて、先行車両が二輪車であるか否(四輪車である)かを判定してもよい。先行車両が二輪車であると判定された場合には、先行車両の走行軌跡の変動量が所定の閾値以上か否かの判定を行わずに、先行車両の走行軌跡を追従対象から除外してもよい。
 例えば図10のフローチャートは、ステップS6,S7の間にステップS6xが追加された点が、図8のフローチャートと異なる。ステップS6xにおいて、走路設定回路15は、周囲車両センサ2による検出結果等に基づいて、先行車両が二輪車であるか否(四輪車である)かを判定する。先行車両が二輪車でないと判定された場合には、ステップS7に移行する。一方、ステップS6xにおいて先行車両が二輪車であると判定された場合には、ステップS8に移行する。
 第2の変形例によれば、先行車両が二輪車と判定された場合には、直ちに先行車両を追従対象から除外して、先行車両以外の他車両の走行軌跡を追従対象とすることができるので、四輪車と比較してふらつきの多い二輪車の走行軌跡を早期に排除することができる。
 (その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
1…制御装置
2…周囲車両センサ
3…車両情報センサ
4…車輪速センサ
5…ヨーレートセンサ
11…移動量算出部
12…走行軌跡算出部
13…走路設定部
14…走行軌跡評価回路
15…走路設定回路
16…車両制御部

Claims (5)

  1.  自車両に搭載され、前記自車両の周囲を走行する他車両の位置を検出する周囲車両センサと、前記他車両の位置の履歴による走行軌跡に基づいて前記自車両の走路を設定するコントローラとを用いた走路設定方法において、
     前記他車両のうちの先行車両の走行軌跡の変動量を算出し、
     前記先行車両の走行軌跡の変動量が第1の閾値以上の場合、前記先行車両とは異なる前記他車両の走行軌跡に基づいて前記自車両の走路を設定する
     ことを特徴とする走路設定方法。
  2.  前記先行車両の走行軌跡の変動量が前記第1の閾値以上の場合、前記先々行車両の走行軌跡に基づいて前記自車両の走路を設定する
     ことを特徴とする請求項1に記載の走路設定方法。
  3.  前記先行車両の走行軌跡の変動量が前記第1の閾値以上の場合、前記自車両の車線と異なる車線を走行する前記他車両の走行軌跡に基づいて前記自車両の走路を設定する
     ことを特徴とする請求項1に記載の走路設定方法。
  4.  前記先行車両が二輪車であるか否かを判定し、
     前記先行車両が二輪車であると判定された場合には、前記先行車両とは異なる前記他車両の走行軌跡に基づいて前記自車両の走路を設定する
     ことを特徴とする請求項1~3のいずれか1項に記載の走路設定方法。
  5.  自車両に搭載され、前記自車両の周囲を走行する他車両の位置を検出する周囲車両センサと、
     前記他車両の位置の履歴による走行軌跡に基づいて前記自車両の走路を設定するコントローラとを備え、
     前記コントローラが、前記他車両のうちの先行車両の走行軌跡の変動量を算出し、前記先行車両の走行軌跡の変動量が第1の閾値以上の場合、前記先行車両とは異なる前記他車両の走行軌跡に基づいて前記自車両の走路を設定することを特徴とする走路設定装置。
PCT/JP2016/078297 2016-09-26 2016-09-26 走路設定方法及び走路設定装置 WO2018055773A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR112019005696-3A BR112019005696B1 (pt) 2016-09-26 2016-09-26 Método de configuração de rota e dispositivo de configuração de rota
MX2019003386A MX2019003386A (es) 2016-09-26 2016-09-26 Metodo de establecimiento de ruta y dispositivo de establecimiento de ruta.
RU2019112736A RU2719117C1 (ru) 2016-09-26 2016-09-26 Способ задания маршрута и устройство задания маршрута
KR1020197011675A KR20190055192A (ko) 2016-09-26 2016-09-26 주로 설정 방법 및 주로 설정 장치
EP16916840.8A EP3517381B1 (en) 2016-09-26 2016-09-26 Route setting method and route setting device
JP2018540601A JP6822480B2 (ja) 2016-09-26 2016-09-26 走路設定方法及び走路設定装置
PCT/JP2016/078297 WO2018055773A1 (ja) 2016-09-26 2016-09-26 走路設定方法及び走路設定装置
CN201680089606.4A CN109789875B (zh) 2016-09-26 2016-09-26 行驶路径设定方法及行驶路径设定装置
US16/336,289 US10845813B2 (en) 2016-09-26 2016-09-26 Route setting method and route setting device
CA3038476A CA3038476A1 (en) 2016-09-26 2016-09-26 Route setting method and route setting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/078297 WO2018055773A1 (ja) 2016-09-26 2016-09-26 走路設定方法及び走路設定装置

Publications (1)

Publication Number Publication Date
WO2018055773A1 true WO2018055773A1 (ja) 2018-03-29

Family

ID=61689833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078297 WO2018055773A1 (ja) 2016-09-26 2016-09-26 走路設定方法及び走路設定装置

Country Status (10)

Country Link
US (1) US10845813B2 (ja)
EP (1) EP3517381B1 (ja)
JP (1) JP6822480B2 (ja)
KR (1) KR20190055192A (ja)
CN (1) CN109789875B (ja)
BR (1) BR112019005696B1 (ja)
CA (1) CA3038476A1 (ja)
MX (1) MX2019003386A (ja)
RU (1) RU2719117C1 (ja)
WO (1) WO2018055773A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020070996A1 (ja) * 2018-10-01 2020-04-09 株式会社デンソー 走行車線推定装置、走行車線推定方法、制御プログラム、及びコンピュータ読み取り可能な非一時的な記憶媒体
WO2021106159A1 (ja) * 2019-11-28 2021-06-03 日産自動車株式会社 運転制御方法及び運転制御装置
RU2799909C1 (ru) * 2019-11-28 2023-07-13 Ниссан Мотор Ко., Лтд. Способ управления вождением и устройство управления вождением

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6592423B2 (ja) * 2016-11-25 2019-10-16 株式会社デンソー 車両制御装置
US10766490B2 (en) 2017-05-18 2020-09-08 Nissan Motor Co., Ltd. Driving assistance method and driving assistance apparatus
CN110789528B (zh) * 2019-08-29 2022-03-25 腾讯科技(深圳)有限公司 一种车辆行驶轨迹预测方法、装置、设备及存储介质
JP2021142907A (ja) * 2020-03-12 2021-09-24 本田技研工業株式会社 車両追従走行システム、車両制御装置、車両、および制御方法
CN111325187B (zh) * 2020-03-23 2023-10-20 北京经纬恒润科技股份有限公司 一种车道位置的识别方法及装置
CN112109703A (zh) * 2020-06-17 2020-12-22 上汽通用五菱汽车股份有限公司 车辆控制方法、车辆控制系统、车及存储介质
CN111731289B (zh) * 2020-06-24 2021-07-20 中国第一汽车股份有限公司 跟车控制方法、装置、车辆及存储介质
CN114996323B (zh) * 2021-03-01 2024-09-17 海信集团控股股份有限公司 电子设备及车道判断方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291100A (ja) * 1989-05-01 1990-11-30 Mazda Motor Corp 移動車の走行制御装置
JP2010070061A (ja) * 2008-09-18 2010-04-02 Toyota Motor Corp 車両走行支援装置
JP2015058920A (ja) * 2013-09-20 2015-03-30 トヨタ自動車株式会社 運転支援装置
JP2016101889A (ja) * 2014-11-28 2016-06-02 株式会社デンソー 車両の走行制御装置
WO2016129646A1 (ja) * 2015-02-10 2016-08-18 株式会社デンソー 走行軌跡選定装置、および走行軌跡選定方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000057498A (ja) * 1998-08-05 2000-02-25 Mitsubishi Motors Corp 車両の走行制御方法
JP4114485B2 (ja) * 2003-01-15 2008-07-09 日産自動車株式会社 車両走行状態検出装置及び車両走行制御装置
JP3966219B2 (ja) 2003-04-25 2007-08-29 三菱自動車工業株式会社 運転支援装置
US8483903B2 (en) * 2006-09-07 2013-07-09 Nissan North America, Inc. Vehicle on-board unit
JP5137617B2 (ja) * 2008-02-27 2013-02-06 富士重工業株式会社 操舵支援装置
WO2010070708A1 (ja) 2008-12-18 2010-06-24 トヨタ自動車株式会社 レーダーシステム
JP2011098586A (ja) 2009-11-04 2011-05-19 Mitsubishi Electric Corp 先行車選択装置及び先行車選択方法
DE102011081456A1 (de) * 2011-08-24 2013-02-28 Ford Global Technologies, Llc Vorrichtung und Verfahren zur Verkehrszeichenerkennung
JP5578331B2 (ja) * 2011-12-26 2014-08-27 トヨタ自動車株式会社 車両の走行軌跡制御装置
CN104067329A (zh) * 2012-01-26 2014-09-24 丰田自动车株式会社 物体识别装置及车辆控制装置
EP2685338B1 (en) * 2012-07-12 2018-04-11 Volvo Car Corporation Apparatus and method for lateral control of a host vehicle during travel in a vehicle platoon
DE102013012324A1 (de) * 2013-07-25 2015-01-29 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren und Vorrichtung zur Fahrwegfindung
JP5994755B2 (ja) * 2013-09-06 2016-09-21 トヨタ自動車株式会社 車両走行制御装置
EP2851886B1 (en) * 2013-09-19 2018-04-11 Volvo Car Corporation Arrangement in a vehicle for providing vehicle driver support, a vehicle, and a method for providing vehicle driver support
JP5939224B2 (ja) * 2013-10-03 2016-06-22 株式会社デンソー 先行車選択装置
JP5991340B2 (ja) * 2014-04-28 2016-09-14 トヨタ自動車株式会社 運転支援装置
JP6404722B2 (ja) 2015-01-21 2018-10-17 株式会社デンソー 車両の走行制御装置
JP6550795B2 (ja) * 2015-03-02 2019-07-31 株式会社Soken 車両制御装置
KR101714145B1 (ko) * 2015-04-09 2017-03-08 현대자동차주식회사 주변차량 식별 장치 및 그 방법
JP6319204B2 (ja) * 2015-06-26 2018-05-09 株式会社デンソー 車両用の前照灯制御装置
JP6222786B2 (ja) * 2015-12-07 2017-11-01 株式会社Subaru 車両の走行制御装置
JP6243931B2 (ja) * 2016-01-08 2017-12-06 株式会社Subaru 車両の走行制御装置
JP6243942B2 (ja) * 2016-03-17 2017-12-06 株式会社Subaru 車両の走行制御装置
JP6520863B2 (ja) * 2016-08-11 2019-05-29 株式会社デンソー 走行制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291100A (ja) * 1989-05-01 1990-11-30 Mazda Motor Corp 移動車の走行制御装置
JP2010070061A (ja) * 2008-09-18 2010-04-02 Toyota Motor Corp 車両走行支援装置
JP2015058920A (ja) * 2013-09-20 2015-03-30 トヨタ自動車株式会社 運転支援装置
JP2016101889A (ja) * 2014-11-28 2016-06-02 株式会社デンソー 車両の走行制御装置
WO2016129646A1 (ja) * 2015-02-10 2016-08-18 株式会社デンソー 走行軌跡選定装置、および走行軌跡選定方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020070996A1 (ja) * 2018-10-01 2020-04-09 株式会社デンソー 走行車線推定装置、走行車線推定方法、制御プログラム、及びコンピュータ読み取り可能な非一時的な記憶媒体
JP2020057146A (ja) * 2018-10-01 2020-04-09 株式会社Soken 走行車線推定装置、走行車線推定方法、及び制御プログラム
JP7087896B2 (ja) 2018-10-01 2022-06-21 株式会社Soken 走行車線推定装置、走行車線推定方法、及び制御プログラム
WO2021106159A1 (ja) * 2019-11-28 2021-06-03 日産自動車株式会社 運転制御方法及び運転制御装置
JPWO2021106159A1 (ja) * 2019-11-28 2021-06-03
JP7215596B2 (ja) 2019-11-28 2023-01-31 日産自動車株式会社 運転制御方法及び運転制御装置
EP4067190A4 (en) * 2019-11-28 2023-03-01 NISSAN MOTOR Co., Ltd. DRIVING CONTROL METHOD AND DRIVING CONTROL DEVICE
RU2799909C1 (ru) * 2019-11-28 2023-07-13 Ниссан Мотор Ко., Лтд. Способ управления вождением и устройство управления вождением

Also Published As

Publication number Publication date
CN109789875A (zh) 2019-05-21
KR20190055192A (ko) 2019-05-22
MX2019003386A (es) 2019-06-06
EP3517381A4 (en) 2019-10-30
US10845813B2 (en) 2020-11-24
JPWO2018055773A1 (ja) 2019-04-18
EP3517381A1 (en) 2019-07-31
CA3038476A1 (en) 2018-03-29
JP6822480B2 (ja) 2021-01-27
BR112019005696B1 (pt) 2022-09-27
US20190227560A1 (en) 2019-07-25
CN109789875B (zh) 2020-04-14
EP3517381B1 (en) 2020-07-15
RU2719117C1 (ru) 2020-04-17
BR112019005696A2 (pt) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2018055773A1 (ja) 走路設定方法及び走路設定装置
JP6874834B2 (ja) 走行支援装置の動作予測方法及び動作予測装置
US9796378B2 (en) Vehicle travel path generating apparatus
JP6363516B2 (ja) 車両の走行制御装置
JP6666883B2 (ja) 走行支援装置
CN108883770B (zh) 行进路推定方法及行进路推定装置
JP6579119B2 (ja) 車両制御装置
WO2020121010A1 (ja) 他車動作予測方法及び他車動作予測装置
JP6574224B2 (ja) 車両制御装置、車両、車両制御方法およびプログラム
JP2015077936A (ja) 車両の走行経路演算装置
RU2755425C1 (ru) Способ помощи движению транспортного средства и устройство помощи движению транспортного средства
JP6943005B2 (ja) 車線変更判定方法及び車線変更判定装置
JP7037956B2 (ja) 車両進路予測方法、車両走行支援方法及び車両進路予測装置
JP6544168B2 (ja) 車両制御装置、及び車両制御方法
CN113561992A (zh) 自动驾驶车辆轨迹生成方法、装置、终端设备及介质
WO2018037508A1 (ja) 走行軌跡推定方法及び走行軌跡推定装置
JP6867257B2 (ja) 車両制御装置、車両、車両制御方法およびプログラム
JP5682302B2 (ja) 走行道路推定装置、方法およびプログラム
US20230242102A1 (en) Position estimation system
JP7191143B2 (ja) 他車両行動予測装置、他車両行動予測方法、及び自動運転システム
JP7169925B2 (ja) 走行車線推薦方法、走行車線推薦装置、走行制御方法及び走行制御装置
JP2019215177A (ja) 軌道設定装置
JP6837948B2 (ja) 車両制御装置、車両、車両制御方法およびプログラム
JP7236279B2 (ja) 走行支援方法及び走行支援装置
WO2021166893A1 (ja) 物標認識装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018540601

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3038476

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019005696

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197011675

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016916840

Country of ref document: EP

Effective date: 20190426

ENP Entry into the national phase

Ref document number: 112019005696

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190322