WO2018053690A1 - 催化剂载体及包括其的催化剂 - Google Patents

催化剂载体及包括其的催化剂 Download PDF

Info

Publication number
WO2018053690A1
WO2018053690A1 PCT/CN2016/099483 CN2016099483W WO2018053690A1 WO 2018053690 A1 WO2018053690 A1 WO 2018053690A1 CN 2016099483 W CN2016099483 W CN 2016099483W WO 2018053690 A1 WO2018053690 A1 WO 2018053690A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalyst carrier
carrier
macroscopic
weight
Prior art date
Application number
PCT/CN2016/099483
Other languages
English (en)
French (fr)
Inventor
柴剑宇
曾建任
占华端
李永烨
Original Assignee
高化学技术株式会社
柴剑宇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高化学技术株式会社, 柴剑宇 filed Critical 高化学技术株式会社
Priority to PCT/CN2016/099483 priority Critical patent/WO2018053690A1/zh
Priority to AU2016423951A priority patent/AU2016423951B2/en
Priority to CA3011265A priority patent/CA3011265A1/en
Priority to US16/335,020 priority patent/US20190247830A1/en
Priority to RU2018122988A priority patent/RU2697704C1/ru
Priority to TR2018/12437A priority patent/TR201812437T1/tr
Priority to CN201680001039.2A priority patent/CN106457227B/zh
Publication of WO2018053690A1 publication Critical patent/WO2018053690A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g

Definitions

  • the present invention relates to a catalyst support for use in the synthesis of a dialkyl oxalate by gas phase catalytic carbon monoxide coupling, and a catalyst comprising the catalyst support for gas phase catalytic carbon monoxide coupling synthesis of a dialkyl oxalate.
  • Coupling of carbon monoxide to dialkyl oxalate is a fast, highly exothermic reaction that requires the use of a suitable catalyst to ensure safe production.
  • Conventional catalysts generally use spherical alumina having micropores, mesopores, and/or macropores as a support, and a noble metal such as palladium is supported thereon.
  • the catalyst has the advantages of easy packing, uniform stacking, high heat dissipation and uniformity, and easy recovery of precious metals after use of the catalyst.
  • the Chinese invention patent application No. 201010191580.9 uses a honeycomb carrier to reduce the pressure drop and reduce the palladium content.
  • the honeycomb carrier is disadvantageous for heat dissipation and is liable to cause flying temperature.
  • the Chinese invention patent application No. 201110131440.7 uses a wire mesh skeleton carrier to improve heat dissipation, reduce pressure drop, and reduce palladium content.
  • the material of the carrier is expensive, the processing is complicated, and the precious metal is not easily recovered after the catalyst is used, resulting in a significantly high use cost.
  • the inventors of the present application conducted intensive and extensive research in the field of synthesizing dialkyl oxalate by gas phase catalytic carbon monoxide coupling, in order to find that one can fully satisfy the gas phase catalysis in large equipment.
  • the catalyst required for the preparation of dialkyl oxalate by carbon monoxide coupling is not only effective for gas phase catalysis of carbon monoxide coupling to form dialkyl oxalate, but also a catalyst suitable for large equipment.
  • the above object can be attained by using a catalyst carrier having one or more macroscopic macropores penetrating the catalyst carrier.
  • the present inventors completed the present invention based on the above findings.
  • one of the objects of the present invention is to provide a synthetic grass for coupling carbon monoxide by gas phase catalysis.
  • Another object of the present invention is to provide a catalyst for gas phase catalytic carbon monoxide coupling synthesis of a dialkyl oxalate.
  • a catalyst support for use in the synthesis of a dialkyl oxalate by gas phase catalytic carbon monoxide coupling having microscopic pores and one or more macroscopic macropores penetrating the catalyst support, wherein each macroscopic macroporous
  • the ratio of the average pore diameter to the average diameter of the catalyst carrier is 0.2 or more.
  • catalyst carrier according to any one of items 1 to 6, wherein the catalyst carrier is made of ⁇ -alumina, ⁇ -alumina, silica, silicon carbide, diatomaceous earth, activated carbon, pumice, zeolite, molecular sieve or titanium dioxide. .
  • a catalyst for gas phase catalytic carbon monoxide coupling synthesis of a dialkyl oxalate comprising: the catalyst carrier according to any one of items 1 to 7, and an active component supported on the catalyst carrier and Selected auxiliaries.
  • the catalyst of item 8 wherein the active component is palladium, platinum, rhodium, ruthenium and/or gold, and the promoter is iron, nickel, cobalt, ruthenium, titanium and/or zirconium.
  • the present invention does not limit the active component to the outer surface of the catalyst carrier and the macroscopic macroporous surface by using a catalyst carrier having one or more macroscopic macropores and mainly limiting the active component to a fluidity and diffusibility. Only effective gas phase catalysis of carbon monoxide coupling to form dialkyl oxalate, and improve heat dissipation, reduce pressure drop, reduce the use of precious metals such as palladium, thereby reducing the cost of catalyst use and the production cost of dialkyl oxalate It helps to achieve large-scale industrial production of dialkyl oxalate.
  • the present invention first provides a catalyst support having microscopic pores and one or more macro macropores extending through the catalyst support.
  • micropores pores with a pore size of less than 2 nm are called micropores; pores with a pore diameter of more than 50 nm are called macropores; pores with a pore diameter of between 2 and 50 nm are called mesopores or Middle hole.
  • mesopores means micropores, mesopores and macropores as defined by the above IUPAC, which are naturally formed during the preparation of the catalyst support.
  • micro macropores are opposed to “microscopic pores” as defined above, and thus do not include the micropores, mesopores and macropores defined by the above IUPAC, but in the process of preparing the catalyst support. Specially formed.
  • through means a macroscopic macroporous, or a plurality of macroscopic macropores penetrate through the entire catalyst carrier independently of each other, and are respectively passed through the atmosphere through the two ends of the macroscopic macropores, thereby A material flow path, such as a gas flow path or a liquid flow path, is formed inside the carrier.
  • pores of microscopic pores i.e., micropores, mesopores, and macropores, and the number thereof are conventional in the field of catalysts, and thus they are not specifically limited.
  • the lower limit of the micropore diameter and the upper limit of the macropore diameter they are also conventional in the field of catalysts and are well known to those skilled in the art.
  • the catalyst support of the invention may have one, or more, for example 2-8 macroscopic macropores, preferably 1, 2, 3, 4 or 5 macroscopic macropores, more preferably 1, 2 or 3 macroscopic macropores, especially preferred 1 or 2 macroscopic macropores, most preferably 1 macroscopic macropore.
  • the one or more macroscopic macropores may be passed through the entire catalyst support in a fold line, curve or straight line, preferably independently of one another in a straight line.
  • the catalyst support of the present invention has a macroscopic macroporous which penetrates the catalyst support in a linear manner.
  • Macroscopic macropores can have any suitable cross-sectional shape. In view of ease of preparation and catalytic effect, it is preferred that the macroscopic macropores have a circular or elliptical cross-sectional shape.
  • the catalyst support of the present invention may be of any suitable shape, preferably spherical or ellipsoidal.
  • the ratio of the average pore diameter of the macroscopic macropores of the catalyst carrier of the present invention to the average diameter of the catalyst carrier is 0.2 or more, preferably 0.5 to 0.8.
  • the average aperture is defined as the average of both the major and minor axes of the ellipse.
  • the average diameter is defined as the average of the two equatorial diameters and one pole diameter of the ellipsoid.
  • the catalyst carrier of the present invention is spherical or ellipsoidal and has a macroscopic macroporous which penetrates the catalyst carrier in a linear manner and with any diameter of the sphere or ellipsoid as a central axis.
  • the macroscopic macropores have a circular or elliptical cross-sectional shape.
  • the catalyst support of the present invention has an average diameter of from 1 to 20 mm.
  • the macroscopic macropores of the catalyst support of the present invention have an average pore diameter of from 0.2 to 10 mm, preferably from 0.5 to 5 mm, in accordance with the ratio of the macroscopic macroporous average pore diameter to the average diameter of the catalyst carrier as described above.
  • the catalyst carrier of the present invention can be made of any material suitable for synthesizing dialkyl oxalate by gas phase catalytic carbon monoxide coupling, such as ⁇ -alumina, ⁇ -alumina, silica, silicon carbide, diatomaceous earth, activated carbon, Pumice, zeolite, molecular sieve or titanium dioxide, preferably alpha-alumina.
  • the preparation method generally comprises the following steps: kneading the raw material powder, extruding into a hollow cylinder having an inner-outer diameter ratio of >0.2, pelletizing, and full circle Drying and calcining, a catalyst carrier having microscopic pores and a macroscopic macroporous which penetrates the catalyst carrier in a linear manner is obtained. Dilute nitric acid or acetic acid can be used during the kneading process.
  • the above steps are conventional in the field of catalysts and are well known to those skilled in the art.
  • the dicing and rounding can be carried out, for example, by a pelletizing machine with a rolling wheel cutter. Drying is preferably carried out, for example, at a temperature of from 90 to 150 ° C, especially from 100 to 130 ° C.
  • the calcination temperature of the catalyst carrier varies between 1,150 and 1,350 ° C depending on, for example, the raw material.
  • the catalyst support of the present invention is suitable for use as a catalyst support in the synthesis of dialkyl oxalate by gas phase catalytic carbon monoxide coupling.
  • the invention also provides a catalyst for gas phase catalytic carbon monoxide coupling synthesis of dialkyl oxalate, the catalyst comprising: the above catalyst carrier of the invention, and the active component supported on the catalyst carrier and optional auxiliary agent .
  • any suitable active component suitable for the synthesis of a dialkyl oxalate by gas phase catalytic carbon monoxide coupling such as palladium, platinum, rhodium, ruthenium and/or gold, may be used, preferably the active component is palladium.
  • auxiliaries any suitable auxiliaries suitable for the synthesis of dialkyl oxalate by gas phase catalytic carbon monoxide coupling, such as iron, nickel, cobalt, ruthenium, titanium and/or zirconium, preferably auxiliaries, can be used.
  • the active component is from 0.1 to 10% by weight, preferably from 0.1 to 1% by weight, based on the total weight of the catalyst, and the auxiliary is from 0 to 5% by weight, preferably from 0.05 to 0.5% by weight.
  • the catalyst of the present invention can be prepared by an excessive impregnation method or an equal volume impregnation method.
  • excess impregnation process reference is made to the "PREPARATION EXAMPLES OF SOLID CATALYST" section of U.S. Patent 4,874,888, which is incorporated herein by reference.
  • equal volume impregnation method it is carried out in accordance with the above excess impregnation method in accordance with the water absorption rate of the catalyst carrier and the required loading amount of the active component and the auxiliary agent.
  • the catalyst of the invention is suitable for the synthesis of dialkyl oxalate by gas phase catalytic carbon monoxide coupling.
  • the dialkyl oxalate may be di(C 1-4 alkyl) oxalate such as dimethyl oxalate, diethyl oxalate, di-n-propyl oxalate, diisopropyl oxalate and di-n-butyl oxalate, preferably oxalic acid Dimethyl ester and diethyl oxalate. Accordingly, methyl nitrite and ethyl nitrite are preferably used as a reaction raw material.
  • the precious metal is easy to recycle after use.
  • the specific surface area was measured by a multi-point BET method.
  • the loading of palladium and iron is determined by, for example, ICP atomic emission spectrometry by means of an inductively coupled plasma atomic emission spectrometer.
  • the space time yield and selectivity of dimethyl oxalate were determined by gas chromatography analysis.
  • a pseudo-boehmite having a purity of 99.99% and a specific surface area of 310 m 2 /g was wetted with a 1% by weight aqueous solution of nitric acid, kneaded, and extruded into hollow cylinders having an inner diameter and an outer diameter of 4.6 mm and 6.5 mm, respectively;
  • the hollow cylinder is pelletized and rounded using a pelletizing machine with a rolling wheel cutter to form a sphere having macroscopic macropores penetrating the ends of the carrier; the hollow sphere is dried overnight at 120 ° C and calcined at 1250 ° C.
  • the catalyst carrier of the present invention is obtained, that is, a hollow spherical ⁇ -alumina carrier having microscopic pores and a circular macroscopic macroporous which penetrates the both ends of the carrier in a straight line and with the diameter of the sphere as a central axis, wherein the carrier
  • the average diameter was 5 mm
  • the macroscopic macroporous average pore diameter was 3.5 mm
  • the average pore diameter/average diameter ratio was 0.7
  • the carrier specific surface area was 5.3 m 2 /g
  • the water absorption ratio was 30.1% by weight
  • the packing density was 0.51 kg/L.
  • Example 1 50 g of the inventive catalyst carrier of Example 1 was immersed in an equal volume for 2 hours using a mixed impregnation solution, wherein the mixed impregnation solution was passed through 0.21 g of palladium chloride, 0.31 g of ferric chloride hexahydrate, 14.5 g of water and 0.12 g of 61% hydrochloric acid.
  • the catalyst of the present invention that is, a hollow spherical ⁇ -alumina catalyst in which the loading amounts of palladium and iron are 0.25 wt% and 0.13 wt%, respectively, and the loading densities are 1.3, respectively. g/L and 0.7 g/L.
  • Example 1 was repeated except that the hollow cylinder having an inner diameter and an outer diameter of 3.3 mm and 6.5 mm, respectively, was extruded to obtain a hollow spherical ⁇ -alumina support having an average pore diameter/average diameter ratio of 0.5, wherein the average diameter was 5 mm.
  • the average pore diameter was 2.5 mm
  • the specific surface area was 5.3 m 2 /g
  • the water absorption was 30.1% by weight
  • the packing density was 0.75 kg/L.
  • Example 2 50 g of the inventive catalyst carrier of Example 2 was immersed in an equal volume for 2 hours using a mixed impregnation solution, wherein the mixed impregnation solution was passed through 0.14 g of palladium chloride, 0.21 g of ferric chloride hexahydrate, 14.6 g of water and 0.08 g of 61% hydrochloric acid.
  • the solution was prepared by heating and the other steps were the same as in Example 1 to obtain a hollow spherical ⁇ -alumina catalyst in which the loading amounts of palladium and iron were 0.17% by weight and 0.09% by weight, respectively, and the loading densities of palladium and iron were 1.3 g, respectively. /L and 0.7g/L.
  • Example 1 was repeated except that a hollow cylinder having an inner diameter and an outer diameter of 2.0 mm and 6.5 mm, respectively, was extruded to obtain a hollow spherical ⁇ -alumina support having an average pore diameter/average diameter ratio of 0.3, wherein the average diameter was 5 mm.
  • the average pore diameter was 1.5 mm
  • the specific surface area was 5.3 m 2 /g
  • the water absorption ratio was 30.1% by weight
  • the packing density was 0.91 kg/L.
  • Example 3 50 g of the inventive catalyst carrier of Example 3 was immersed in an equal volume for 2 hours using a mixed impregnation solution, wherein the mixed impregnation solution was passed through 0.12 g of palladium chloride, 0.17 g of ferric chloride hexahydrate, 14.7 g of water and 0.07 g of 61% hydrochloric acid.
  • the mixture was prepared by heating and the other steps were the same as in Example 1 to obtain a hollow spherical ⁇ -alumina catalyst in which the loading amounts of palladium and iron were 0.14% by weight and 0.07% by weight, respectively, and the loading densities of palladium and iron were 1.3 g, respectively. /L and 0.7g/L.
  • Example 1 was repeated except that the hollow cylinder having an inner diameter and an outer diameter of 2.7 mm and 3.9 mm, respectively, was extruded, and a hollow spherical ⁇ -alumina carrier having an average pore diameter/average diameter ratio of 0.7 was obtained, wherein the average diameter was 3 mm.
  • the average pore diameter was 2.1 mm
  • the specific surface area was 5.3 m 2 /g
  • the water absorption ratio was 30.1% by weight
  • the packing density was 0.51 kg/L.
  • Example 4 50 g of the inventive catalyst carrier of Example 4 was immersed in an equal volume for 2 hours using a mixed impregnation solution, wherein the mixed impregnation solution was passed through 0.21 g of palladium chloride, 0.31 g of ferric chloride hexahydrate, 14.5 g of water and 0.12 g of 61% hydrochloric acid.
  • the solution was prepared by heating and the other steps were the same as in Example 1 to obtain a hollow spherical ⁇ -alumina catalyst in which the loading amounts of palladium and iron were 0.25 wt% and 0.13 wt%, respectively, and the loading densities of palladium and iron were 1.3 g, respectively. /L and 0.7g/L.
  • Example 1 was repeated except that the nitric acid used in the kneading was replaced with acetic acid, and the hollow cylinder having an inner diameter and an outer diameter of 5.1 mm and 7.3 mm, respectively, was extruded to obtain a hollow spherical ⁇ - of an average pore diameter/average diameter ratio of 0.7.
  • the alumina carrier had an average diameter of 5.6 mm, an average pore diameter of 3.9 mm, a specific surface area of 10.1 m 2 /g, a water absorption of 40.2% by weight, and a packing density of 0.42 kg/L.
  • Example 5 50 g of the catalyst support of the invention of Example 5 was immersed in an equal volume for 2 hours using a mixed impregnation solution, wherein the mixed impregnation liquid was passed through 0.26 g of palladium chloride, 0.39 g of ferric chloride hexahydrate, 19.5 g of water and 0.15 g of 61% hydrochloric acid.
  • the solution was prepared by heating and the other steps were the same as in Example 1 to obtain a hollow spherical ⁇ -alumina catalyst in which the loading amounts of palladium and iron were 0.31% by weight and 0.16% by weight, respectively, and the loading densities of palladium and iron were 1.3 g, respectively. /L and 0.7g/L.
  • Example 1 was repeated except that the calcination temperature was raised to 1300 ° C to obtain a hollow spherical ⁇ -alumina support having an average pore diameter/average diameter ratio of 0.7, wherein the average diameter was 4.9 mm, the average pore diameter was 3.4 mm, and the specific surface area was 2.8 m 2 /g, water absorption rate of 19.7% by weight, and packing density of 0.58 kg/L.
  • Example 6 50 g of the inventive catalyst support of Example 6 was immersed in an equal volume for 2 hours using a mixed impregnation solution, wherein the mixed impregnation solution was passed through 0.18 g of palladium chloride, 0.27 g of ferric chloride hexahydrate, 9.4 g of water and 0.11 g of 61% hydrochloric acid.
  • the mixture was prepared by heating and the other steps were the same as in Example 1 to obtain a hollow spherical ⁇ -alumina catalyst in which the loading amounts of palladium and iron were 0.22% by weight and 0.11% by weight, respectively, and the loading densities of palladium and iron were 1.3 g, respectively. /L and 0.7g/L.
  • Example 1 50 g of the inventive catalyst carrier of Example 1 was immersed in an equal volume for 2 hours using a mixed impregnation solution.
  • the mixed impregnation liquid was prepared by dissolving 0.42 g of palladium chloride, 0.62 g of ferric chloride hexahydrate, 14.0 g of water and 0.24 g of 61% hydrochloric acid, and the other steps were the same as in Example 1 to obtain a hollow spherical ⁇ -oxidation.
  • the aluminum catalyst in which the loading amounts of palladium and iron were 0.50% by weight and 0.26% by weight, respectively, and the loading densities of palladium and iron were 2.6 g/L and 1.3 g/L, respectively.
  • Example 1 was repeated except that the hollow mold extrusion was not used, and a comparative catalyst carrier, that is, a spherical ⁇ -alumina carrier having only microscopic pores, having an average diameter of 5 mm and a specific surface area of 5.3 m 2 /g, was obtained.
  • the rate was 30.1% by weight and the packing density was 1.0 kg/L.
  • Example 1 50 g of the catalyst carrier of Comparative Example 1 was immersed in an equal volume for 2 hours using a mixed impregnation liquid, wherein the mixed impregnation liquid was heated by 0.11 g of palladium chloride, 0.16 g of ferric chloride hexahydrate, 14.7 g of water and 0.06 g of 61% hydrochloric acid.
  • the preparation was dissolved, and the other steps were the same as in Example 1 to obtain a spherical ⁇ -alumina catalyst in which the loading amounts of palladium and iron were 0.13 wt% and 0.07 wt%, respectively, and the loading densities of palladium and iron were 1.3 g/L, respectively. And 0.7g/L.
  • Example 1 was repeated except that the hollow cylinder having an inner diameter and an outer diameter of 0.7 mm and 6.5 mm, respectively, was extruded to obtain a hollow spherical ⁇ -alumina support having an average pore diameter/average diameter ratio of 0.1, wherein the average diameter was 5 mm.
  • the average pore diameter was 0.5 mm
  • the specific surface area was 5.3 m 2 /g
  • the water absorption was 30.1% by weight
  • the packing density was 0.99 kg/L.
  • Example 2 50 g of the catalyst carrier of Comparative Example 2 was immersed in an equal volume for 2 hours using a mixed impregnation liquid, wherein the mixed impregnation liquid was heated by 0.11 g of palladium chloride, 0.16 g of ferric chloride hexahydrate, 14.7 g of water and 0.06 g of 61% hydrochloric acid.
  • the preparation was dissolved, and the other steps were the same as in Example 1 to obtain a hollow spherical ⁇ - An alumina catalyst in which the loading amounts of palladium and iron were 0.13 wt% and 0.07 wt%, respectively, and the loading densities of palladium and iron were 1.3 g/L and 0.7 g/L, respectively.
  • Example 1 50 g of the catalyst carrier of Comparative Example 1 was immersed in an equal volume for 2 hours using a mixed impregnation liquid, wherein the mixed impregnation liquid was heated by 0.22 g of palladium chloride, 0.32 g of ferric chloride hexahydrate, 14.5 g of water and 0.13 g of 61% hydrochloric acid.
  • the preparation was dissolved, and the other steps were the same as in Example 1 to obtain a spherical ⁇ -alumina catalyst in which the loading amounts of palladium and iron were 0.26 wt% and 0.13 wt%, respectively, and the loading densities of palladium and iron were 2.6 g/L, respectively. And 1.3g/L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nanotechnology (AREA)

Abstract

一种在通过气相催化一氧化碳偶联合成草酸二烷基酯中使用的催化剂载体,所述催化剂载体具有微观细孔和一个或多个贯通催化剂载体的宏观大孔,其中各宏观大孔的平均孔径与催化剂载体的平均直径之比为0.2以上。一种包括所述催化剂载体以及负载在催化剂载体上的活性组分和任选的助剂的催化剂。该催化剂不仅有效地气相催化一氧化碳偶联生成草酸二烷基酯,而且提高了散热,减少了压降,降低了贵金属如钯的使用量,进而降低了催化剂的使用成本和草酸二烷基酯的生产成本,有助于实现草酸二烷基酯的大规模工业化生产。

Description

催化剂载体及包括其的催化剂 技术领域
本发明涉及在通过气相催化一氧化碳偶联合成草酸二烷基酯中使用的催化剂载体,以及用于气相催化一氧化碳偶联合成草酸二烷基酯的包括所述催化剂载体的催化剂。
背景技术
一氧化碳偶联生成草酸二烷基酯是一个快速、高放热反应,需要使用合适的催化剂以保证安全生产。现有催化剂通常使用具有微孔、中孔和/或大孔的球形氧化铝作为载体,并在其上负载钯等贵金属。该催化剂的优点在于装填容易,堆积均匀,散热高且均匀,催化剂使用后贵金属易回收。
可是,近年来设备的大型化对催化剂提出了更高的要求,尤其需要散热高,压降低,钯含量低,副产物低,使用成本低。
中国发明专利申请第201010191580.9号使用蜂窝载体,降低了压降,减少了钯含量。可是,蜂窝载体对散热不利,容易造成飞温。
中国发明专利申请第201110131440.7号使用金属丝网骨架载体,提高了散热,降低了压降,减少了钯含量。但是,该载体的材料昂贵,加工复杂,催化剂使用后贵金属不易回收,造成使用成本明显偏高。
目前,还没有能够充分满足在大型设备中通过气相催化一氧化碳偶联制备草酸二烷基酯要求的催化剂。
发明内容
鉴于现有技术中的上述状况,本申请发明人在通过气相催化一氧化碳偶联合成草酸二烷基酯领域进行了深入而又广泛的研究,以期发现一种能充分满足在大型设备中通过气相催化一氧化碳偶联制备草酸二烷基酯要求的催化剂,即不仅能有效气相催化一氧化碳偶联生成草酸二烷基酯,而且适用于大型设备的催化剂。结果发现,通过使用具有一个或多个贯通催化剂载体的宏观大孔的催化剂载体可以实现上述目的。本发明人正是基于上述发现完成了本发明。
因此,本发明目的之一在于提供在通过气相催化一氧化碳偶联合成草 酸二烷基酯中使用的催化剂载体。
本发明另一目的在于提供用于气相催化一氧化碳偶联合成草酸二烷基酯的催化剂。
可将实现本发明上述目的的技术方案概括如下:
1.一种在通过气相催化一氧化碳偶联合成草酸二烷基酯中使用的催化剂载体,所述催化剂载体具有微观细孔和一个或多个贯通催化剂载体的宏观大孔,其中各宏观大孔的平均孔径与催化剂载体的平均直径之比为0.2以上。
2.第1项的催化剂载体,其中催化剂载体具有一个以直线方式贯通催化剂载体的宏观大孔。
3.第1或2项的催化剂载体,其中各宏观大孔的平均孔径与催化剂载体的平均直径之比为0.5-0.8。
4.第1-3中任一项的催化剂载体,其中宏观大孔的横截面为圆形或椭圆形。
5.第1-4中任一项的催化剂载体,其中催化剂载体为圆球形或椭球形。
6.第1-5中任一项的催化剂载体,其中催化剂载体的平均直径为1-20毫米。
7.第1-6中任一项的催化剂载体,其中催化剂载体由α-氧化铝、γ-氧化铝、二氧化硅、碳化硅、硅藻土、活性炭、浮石、沸石、分子筛或二氧化钛制成。
8.一种用于气相催化一氧化碳偶联合成草酸二烷基酯的催化剂,所述催化剂包括:根据第1-7中任一项的催化剂载体,以及负载在催化剂载体上的活性组分和任选的助剂。
9.第8项的催化剂,其中活性组分是钯、铂、钌、铑和/或金,助剂为铁、镍、钴、铈、钛和/或锆。
10.第8或9项的催化剂,其中基于催化剂的总重量,活性组分为0.1-10重量%,优选0.1-1重量%,助剂为0-5重量%,优选0.05-0.5重量%。
本发明通过使用具有一个或多个宏观大孔的催化剂载体以及将活性组分主要限制在流动性和扩散性高的催化剂载体外表面和宏观大孔内表面不 仅有效地气相催化一氧化碳偶联生成草酸二烷基酯,而且提高了散热,减少了压降,降低了贵金属如钯的使用量,进而降低了催化剂的使用成本和草酸二烷基酯的生产成本,有助于实现草酸二烷基酯的大规模工业化生产。
本发明的这些和其它目的、特征和优点在整体考虑本发明后,将易于为本领域技术人员所明白。
具体实施方式
催化剂载体
本发明首先提供了一种催化剂载体,所述催化剂载体具有微观细孔和一个或多个贯通催化剂载体的宏观大孔。
根据国际纯粹与应用化学协会(IUPAC)的定义,孔径小于2纳米的孔称为微孔;孔径大于50纳米的孔称为大孔;孔径在2到50纳米之间的孔称为介孔或中孔。在本申请上下文中,“微观细孔”意指上述IUPAC所定义的微孔、中孔和大孔,它们在制备催化剂载体的过程中自然形成。
在本申请上下文中,“宏观大孔”与上文所定义的“微观细孔”相对,并因此不包括上述IUPAC所定义的微孔、中孔和大孔,而是在制备催化剂载体的过程中特别形成的。
如本领域技术人员所理解,“贯通”指一个宏观大孔,或多个宏观大孔彼此独立地贯穿通过整个催化剂载体,并通过所述宏观大孔的两端分别与大气相通,从而在催化剂载体内部形成物料流路,例如气体流路或液体流路。
在本发明中,微观细孔,即微孔、中孔和大孔的孔径及其数量在催化剂领域是常规的,因此不对它们进行具体限定。至于微孔孔径的下限和大孔孔径的上限,它们在催化剂领域也是常规的,且为本领域技术人员所熟知。
本发明催化剂载体可具有一个,或多个,例如2-8个宏观大孔,优选1、2、3、4或5个宏观大孔,更优选1、2或3个宏观大孔,尤其优选1或2个宏观大孔,最优选1个宏观大孔。
一个或多个宏观大孔可以折线、曲线或直线方式,优选以直线方式彼此独立地贯穿通过整个催化剂载体。
优选本发明催化剂载体具有一个以直线方式贯通催化剂载体的宏观大孔。
宏观大孔可具有任何合适的横截面形状。考虑到制备方便程度和催化效果,优选宏观大孔具有圆形或椭圆形的横截面形状。
本发明催化剂载体可为任何合适形状,优选圆球形或椭球形。
本发明催化剂载体宏观大孔的平均孔径与催化剂载体的平均直径之比为0.2以上,优选0.5-0.8。当宏观大孔具有椭圆形横截面形状时,将平均孔径定义为椭圆长轴与短轴二者的平均。当催化剂载体为椭球形时,将平均直径定义为椭球两条赤道直径与一条极直径三者的平均。
在根据本发明的优选实施方案中,本发明催化剂载体为圆球形或椭球形,且具有一个以直线方式并以所述圆球或椭球的任一直径为中心轴贯通催化剂载体的宏观大孔,所述宏观大孔具有圆形或椭圆形的横截面形状。
本发明催化剂载体的平均直径为1-20毫米。
根据上文所述宏观大孔平均孔径与催化剂载体平均直径之比,本发明催化剂载体的宏观大孔的平均孔径相应地为0.2-10毫米,优选0.5-5毫米。
本发明催化剂载体可以由任何适于通过气相催化一氧化碳偶联合成草酸二烷基酯的材料制成,例如α-氧化铝、γ-氧化铝、二氧化硅、碳化硅、硅藻土、活性炭、浮石、沸石、分子筛或二氧化钛,优选α-氧化铝。
催化剂载体的制备方法
以具有一个横截面为圆形的宏观大孔的圆球形催化剂载体为例,其制备方法大致包括以下步骤:将原料粉末捏合,挤条成内外径比>0.2的中空圆柱,切粒,整圆,干燥,焙烧,获得具有微观细孔和一个以直线方式贯通催化剂载体的宏观大孔的催化剂载体。在捏合过程中,可使用稀硝酸或乙酸。上述步骤在催化剂领域是常规的,且为本领域技术人员所熟知。切粒和整圆例如可通过带有滚动轮刀的制丸机进行。干燥例如优选在90-150℃,尤其是100-130℃的温度下进行。催化剂载体的焙烧温度例如根据原料不同而在1150-1350℃之间变动。
在对上述制备方法进行适当改变之后,本领域技术人员可容易地制备具有其它横截面形状宏观大孔的其它形状催化剂载体。
本发明催化剂载体适于在通过气相催化一氧化碳偶联合成草酸二烷基酯中用作催化剂载体。
催化剂
本发明还提供了一种用于气相催化一氧化碳偶联合成草酸二烷基酯的催化剂,所述催化剂包括:上述本发明催化剂载体,以及负载在催化剂载体上的活性组分和任选的助剂。
作为活性组分,可使用适用于通过气相催化一氧化碳偶联合成草酸二烷基酯的任何合适活性组分,例如钯、铂、钌、铑和/或金,优选活性组分是钯。
作为助剂,可使用适用于通过气相催化一氧化碳偶联合成草酸二烷基酯的任何合适助剂,例如铁、镍、钴、铈、钛和/或锆,优选助剂为铁。
基于催化剂的总重量,活性组分为0.1-10重量%,优选0.1-1重量%,助剂为0-5重量%,优选0.05-0.5重量%。
催化剂的制备方法
本发明催化剂可采用过量浸渍法或等体积浸渍法制备。就过量浸渍法而言,可参考美国专利4874888的“PREPARATION EXAMPLES OF SOLID CATALYST”部分,在此通过引用将其结合到本文中。就等体积浸渍法而言,根据催化剂载体的吸水率以及所需的活性组分和助剂的负载量,参照上述过量浸渍法进行。
催化剂的应用
本发明催化剂适于通过气相催化一氧化碳偶联合成草酸二烷基酯。草酸二烷基酯可为草酸二(C1-4烷基)酯,例如草酸二甲酯、草酸二乙酯、草酸二正丙酯、草酸二异丙酯和草酸二正丁酯,优选草酸二甲酯和草酸二乙酯。相应地,优选使用亚硝酸甲酯和亚硝酸乙酯作为反应原料。一氧化碳与亚硝酸酯反应生成草酸二烷基酯的具体条件,例如反应温度、时间和压力等为本领域技术人员所熟知。具体信息可参见中国发明专利申请CN 1218032 A和CN 1445208 A,在此通过引用将二者结合到本文中。
本发明催化剂具有如下优势:
1.装填容易,堆积均匀;散热高且均匀;压降低;
2.贵金属用量小,使用成本低;
3.空速高,时空产率大;单程转化率高;草酸二烷基酯选择性高,副产物低;
4.使用后贵金属易回收;和
5.适用于草酸二烷基酯的大规模工业化生产。
实施例
下文通过参考实施例对本发明进行具体描述,但所述实施例并不对本发明范围构成任何限制。
比表面积通过多点BET法测定。吸水率通过以下方法测定:称取3g载体,置于90℃的水中浸泡1小时,然后取出,擦干后称量,根据下列公式计算载体的吸水率:W=(B-G)/G×100%,其中W为吸水率,G为载体的初始重量,B为载体在水中浸泡1小时后的重量。钯和铁的负载量通过例如借助电感耦合等离子体原子发射光谱仪的ICP原子发射光谱法测定。草酸二甲酯的时空产率和选择性通过气相色谱法分析测定。
实施例1
催化剂载体的制备
将纯度为99.99%,比表面积为310m2/g的拟薄水铝石用1重量%的硝酸水溶液润湿,捏合,挤条成内径和外径分别为4.6毫米和6.5毫米的中空圆柱;接着利用带有滚动轮刀的制丸机将中空圆柱切粒和整圆,制成具有贯通载体两端的宏观大孔的圆球体;将中空圆球体在120℃下干燥过夜,在1250℃下焙烧8小时,获得本发明催化剂载体,即具有微观细孔和一个以直线方式并以所述圆球的直径为中心轴贯通载体两端的圆形宏观大孔的中空圆球形α-氧化铝载体,其中载体平均直径为5毫米,宏观大孔平均孔径为3.5毫米,平均孔径/平均直径之比为0.7,载体比表面积为5.3m2/g,吸水率为30.1重量%,充填密度为0.51kg/L。
催化剂的制备
利用混合浸渍液将50g实施例1的本发明催化剂载体等体积浸渍2小时,其中混合浸渍液由0.21g氯化钯、0.31g六水三氯化铁、14.5g水和0.12g 61%盐酸通过加热溶解制备;然后,在50g 1N氢氧化钠水溶液中浸渍,在60℃ 下搅拌4小时以进行碱处理;用去离子水洗涤,直至通过硝酸银检测洗涤液不含氯离子;在120℃的干燥炉中完全干燥;转移到内径为20毫米的石英玻璃管中,在500℃下利用氢气流还原处理3小时;由此获得本发明催化剂,即中空圆球形α-氧化铝催化剂,其中钯和铁的负载量分别为0.25重量%和0.13重量%,负载密度分别为1.3g/L和0.7g/L。
催化剂的性能评价
将30ml如上制备的本发明催化剂充填在内径为20毫米,长度为55厘米的玻璃反应管中,在其上下部充填玻璃球;将催化剂层内温度控制为120℃;从该反应管上部以5000/h的空速通入由20体积%一氧化碳、15体积%亚硝酸甲酯、15体积%甲醇、3体积%一氧化氮以及47体积%氮气组成的混合气体;使反应产物与甲醇接触,以将其中的草酸二甲酯吸收在甲醇中,将没有吸收的低沸物用干冰-甲醇冷凝捕集。使用气相色谱仪分析反应稳定后所得甲醇吸收液和捕集液的混合液,测定草酸二甲酯的时空产率和选择性,结果见表1。
实施例2
催化剂载体的制备
重复实施例1,只是挤条成内径和外径分别为3.3毫米和6.5毫米的中空圆柱,获得平均孔径/平均直径之比为0.5的中空圆球形α-氧化铝载体,其中平均直径为5毫米,平均孔径为2.5毫米,比表面积为5.3m2/g,吸水率为30.1重量%,充填密度为0.75kg/L。
催化剂的制备
利用混合浸渍液将50g实施例2的本发明催化剂载体等体积浸渍2小时,其中混合浸渍液由0.14g氯化钯、0.21g六水三氯化铁、14.6g水和0.08g 61%盐酸通过加热溶解制备,其它步骤与实施例1相同,从而获得中空圆球形α-氧化铝催化剂,其中钯和铁的负载量分别为0.17重量%和0.09重量%,钯和铁的负载密度分别为1.3g/L和0.7g/L。
催化剂的性能评价
评价方法与实施例1相同,结果见表1。
实施例3
催化剂载体的制备
重复实施例1,只是挤条成内径和外径分别为2.0毫米和6.5毫米的中空圆柱,获得平均孔径/平均直径之比为0.3的中空圆球形α-氧化铝载体,其中平均直径为5毫米,平均孔径为1.5毫米,比表面积为5.3m2/g,吸水率为30.1重量%,充填密度为0.91kg/L。
催化剂的制备
利用混合浸渍液将50g实施例3的本发明催化剂载体等体积浸渍2小时,其中混合浸渍液由0.12g氯化钯、0.17g六水三氯化铁、14.7g水和0.07g 61%盐酸通过加热溶解制备,其它步骤与实施例1相同,从而获得中空圆球形α-氧化铝催化剂,其中钯和铁的负载量分别为0.14重量%和0.07重量%,钯和铁的负载密度分别为1.3g/L和0.7g/L。
催化剂的性能评价
评价方法与实施例1相同,结果见表1。
实施例4
催化剂载体的制备
重复实施例1,只是挤条成内径和外径分别为2.7毫米和3.9毫米的中空圆柱,获得平均孔径/平均直径之比为0.7的中空圆球形α-氧化铝载体,其中平均直径为3毫米,平均孔径为2.1毫米,比表面积为5.3m2/g,吸水率为30.1重量%,充填密度为0.51kg/L。
催化剂的制备
利用混合浸渍液将50g实施例4的本发明催化剂载体等体积浸渍2小时,其中混合浸渍液由0.21g氯化钯、0.31g六水三氯化铁、14.5g水和0.12g 61%盐酸通过加热溶解制备,其它步骤与实施例1相同,从而获得中空圆球形α-氧化铝催化剂,其中钯和铁的负载量分别为0.25重量%和0.13重量%,钯和铁的负载密度分别为1.3g/L和0.7g/L。
催化剂的性能评价
评价方法与实施例1相同,结果见表1。
实施例5
催化剂载体的制备
重复实施例1,只是将捏合时使用的硝酸替换为乙酸,挤条成内径和外径分别为5.1毫米和7.3毫米的中空圆柱,获得平均孔径/平均直径之比为0.7的中空圆球形α-氧化铝载体,其中平均直径为5.6毫米,平均孔径为3.9毫米,比表面积为10.1m2/g,吸水率为40.2重量%,充填密度为0.42kg/L。
催化剂的制备
利用混合浸渍液将50g实施例5的本发明催化剂载体等体积浸渍2小时,其中混合浸渍液由0.26g氯化钯、0.39g六水三氯化铁、19.5g水和0.15g 61%盐酸通过加热溶解制备,其它步骤与实施例1相同,从而获得中空圆球形α-氧化铝催化剂,其中钯和铁的负载量分别为0.31重量%和0.16重量%,钯和铁的负载密度分别为1.3g/L和0.7g/L。
催化剂的性能评价
评价方法与实施例1相同,结果见表1。
实施例6
催化剂载体的制备
重复实施例1,只是将焙烧温度提高到1300℃,获得平均孔径/平均直径之比为0.7的中空圆球形α-氧化铝载体,其中平均直径为4.9毫米,平均孔径为3.4毫米,比表面积为2.8m2/g,吸水率为19.7重量%,充填密度为0.58kg/L。
催化剂的制备
利用混合浸渍液将50g实施例6的本发明催化剂载体等体积浸渍2小时,其中混合浸渍液由0.18g氯化钯、0.27g六水三氯化铁、9.4g水和0.11g 61%盐酸通过加热溶解制备,其它步骤与实施例1相同,从而获得中空圆球形α-氧化铝催化剂,其中钯和铁的负载量分别为0.22重量%和0.11重量%,钯和铁的负载密度分别为1.3g/L和0.7g/L。
催化剂的性能评价
评价方法与实施例1相同,结果见表1。
实施例7
催化剂的制备
利用混合浸渍液将50g实施例1的本发明催化剂载体等体积浸渍2小时, 其中混合浸渍液由0.42g氯化钯、0.62g六水三氯化铁、14.0g水和0.24g 61%盐酸通过加热溶解制备,其它步骤与实施例1相同,从而获得中空圆球形α-氧化铝催化剂,其中钯和铁的负载量分别为0.50重量%和0.26重量%,钯和铁的负载密度分别为2.6g/L和1.3g/L。
催化剂的性能评价
评价方法与实施例1相同,结果见表1。
比较实施例1
催化剂载体的制备
重复实施例1,只是没有使用中空模具挤条,获得对比催化剂载体,即只具有微观细孔的圆球形α-氧化铝载体,其中平均直径为5毫米,比表面积为5.3m2/g,吸水率为30.1重量%,充填密度为1.0kg/L。
催化剂的制备
利用混合浸渍液将50g比较实施例1的催化剂载体等体积浸渍2小时,其中混合浸渍液由0.11g氯化钯、0.16g六水三氯化铁、14.7g水和0.06g 61%盐酸通过加热溶解制备,其它步骤与实施例1相同,从而获得圆球形α-氧化铝催化剂,其中钯和铁的负载量分别为0.13重量%和0.07重量%,钯和铁的负载密度分别为1.3g/L和0.7g/L。
催化剂的性能评价
评价方法与实施例1相同,结果见表1。
比较实施例2
催化剂载体的制备
重复实施例1,只是挤条成内径和外径分别为0.7毫米和6.5毫米的中空圆柱,获得平均孔径/平均直径之比为0.1的中空圆球形α-氧化铝载体,其中平均直径为5毫米,平均孔径为0.5毫米,比表面积为5.3m2/g,吸水率为30.1重量%,充填密度为0.99kg/L。
催化剂的制备
利用混合浸渍液将50g比较实施例2的催化剂载体等体积浸渍2小时,其中混合浸渍液由0.11g氯化钯、0.16g六水三氯化铁、14.7g水和0.06g 61%盐酸通过加热溶解制备,其它步骤与实施例1相同,从而获得中空圆球形α- 氧化铝催化剂,其中钯和铁的负载量分别为0.13重量%和0.07重量%,钯和铁的负载密度分别为1.3g/L和0.7g/L。
催化剂的性能评价
评价方法与实施例1相同,结果见表1。
比较实施例3
催化剂的制备
利用混合浸渍液将50g比较实施例1的催化剂载体等体积浸渍2小时,其中混合浸渍液由0.22g氯化钯、0.32g六水三氯化铁、14.5g水和0.13g 61%盐酸通过加热溶解制备,其它步骤与实施例1相同,从而获得圆球形α-氧化铝催化剂,其中钯和铁的负载量分别为0.26重量%和0.13重量%,钯和铁的负载密度分别为2.6g/L和1.3g/L。
催化剂的性能评价
评价方法与实施例1相同,结果见表1。
Figure PCTCN2016099483-appb-000001

Claims (10)

  1. 一种在通过气相催化一氧化碳偶联合成草酸二烷基酯中使用的催化剂载体,所述催化剂载体具有微观细孔和一个或多个贯通催化剂载体的宏观大孔,其中各宏观大孔的平均孔径与催化剂载体的平均直径之比为0.2以上。
  2. 权利要求1的催化剂载体,其中催化剂载体具有一个以直线方式贯通催化剂载体的宏观大孔。
  3. 权利要求1或2的催化剂载体,其中各宏观大孔的平均孔径与催化剂载体的平均直径之比为0.5-0.8。
  4. 权利要求1-3中任一项的催化剂载体,其中宏观大孔的横截面为圆形或椭圆形。
  5. 权利要求1-4中任一项的催化剂载体,其中催化剂载体为圆球形或椭球形。
  6. 权利要求1-5中任一项的催化剂载体,其中催化剂载体的平均直径为1-20毫米。
  7. 权利要求1-6中任一项的催化剂载体,其中催化剂载体由α-氧化铝、γ-氧化铝、二氧化硅、碳化硅、硅藻土、活性炭、浮石、沸石、分子筛或二氧化钛制成。
  8. 一种用于气相催化一氧化碳偶联合成草酸二烷基酯的催化剂,所述催化剂包括:根据权利要求1-7中任一项的催化剂载体,以及负载在催化剂载体上的活性组分和任选的助剂。
  9. 权利要求8的催化剂,其中活性组分是钯、铂、钌、铑和/或金,助剂为铁、镍、钴、铈、钛和/或锆。
  10. 权利要求8或9的催化剂,其中基于催化剂的总重量,活性组分为0.1-10重量%,优选0.1-1重量%,助剂为0-5重量%,优选0.05-0.5重量%。
PCT/CN2016/099483 2016-09-20 2016-09-20 催化剂载体及包括其的催化剂 WO2018053690A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2016/099483 WO2018053690A1 (zh) 2016-09-20 2016-09-20 催化剂载体及包括其的催化剂
AU2016423951A AU2016423951B2 (en) 2016-09-20 2016-09-20 Catalyst carrier and catalyst comprising same
CA3011265A CA3011265A1 (en) 2016-09-20 2016-09-20 Catalyst carrier and catalyst comprising same
US16/335,020 US20190247830A1 (en) 2016-09-20 2016-09-20 Catalyst carrier and catalyst comprising same
RU2018122988A RU2697704C1 (ru) 2016-09-20 2016-09-20 Носитель катализатора и содержащий его катализатор
TR2018/12437A TR201812437T1 (tr) 2016-09-20 2016-09-20 Katali̇zör taşiyici ve bunu i̇çeren katali̇zör
CN201680001039.2A CN106457227B (zh) 2016-09-20 2016-09-20 催化剂载体及包括其的催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099483 WO2018053690A1 (zh) 2016-09-20 2016-09-20 催化剂载体及包括其的催化剂

Publications (1)

Publication Number Publication Date
WO2018053690A1 true WO2018053690A1 (zh) 2018-03-29

Family

ID=58215702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099483 WO2018053690A1 (zh) 2016-09-20 2016-09-20 催化剂载体及包括其的催化剂

Country Status (7)

Country Link
US (1) US20190247830A1 (zh)
CN (1) CN106457227B (zh)
AU (1) AU2016423951B2 (zh)
CA (1) CA3011265A1 (zh)
RU (1) RU2697704C1 (zh)
TR (1) TR201812437T1 (zh)
WO (1) WO2018053690A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703712C1 (ru) * 2018-10-22 2019-10-22 Пуцзин Кемикал Индастри Ко., Лтд Катализатор очистки хвостового газа, а также способ его получения

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109894155B (zh) * 2017-12-11 2022-03-08 中国石油化工股份有限公司 一种用于渣油加氢处理的催化剂载体、催化剂及其制法
CN109897670B (zh) * 2017-12-11 2021-04-06 中国石油化工股份有限公司 一种重烃原料的加氢处理方法
CN109897668B (zh) * 2017-12-11 2021-04-06 中国石油化工股份有限公司 一种含酸原油的加工处理方法
CN109897669B (zh) * 2017-12-11 2021-04-06 中国石油化工股份有限公司 含酸原油的加氢处理方法
CN109897665B (zh) * 2017-12-11 2021-04-06 中国石油化工股份有限公司 采用上流式反应器处理重烃原料的方法
CN109897667B (zh) * 2017-12-11 2021-04-06 中国石油化工股份有限公司 一种采用上流式反应器加工处理重烃原料的方法
CN109897664B (zh) * 2017-12-11 2021-04-06 中国石油化工股份有限公司 一种含酸原油的加氢处理方法
CN109894107B (zh) * 2017-12-11 2022-03-08 中国石油化工股份有限公司 用于渣油加氢处理的催化剂载体、催化剂及其制备方法
CN109894156B (zh) * 2017-12-11 2022-03-08 中国石油化工股份有限公司 渣油加氢处理催化剂载体、催化剂及其制备方法
CN109897666B (zh) * 2017-12-11 2021-04-06 中国石油化工股份有限公司 一种采用上流式反应器处理重烃原料的方法
CN112569917A (zh) * 2019-09-27 2021-03-30 中国石油化工股份有限公司 催化剂载体、催化剂及饱和烃脱氢生产不饱和烃的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1446635A (zh) * 2003-01-20 2003-10-08 华东理工大学 基于纳米碳纤维为载体的催化剂以及制备草酸酯的方法
CN101850273A (zh) * 2010-06-04 2010-10-06 天津大学 由co气相偶联合成草酸酯的规整催化剂及其制备方法
US20130062557A1 (en) * 2011-09-08 2013-03-14 Geonano Environmental Technology, Inc. Polymeric complex supporter with zero-valent metals and manufacturing method thereof
CN104190415A (zh) * 2014-08-29 2014-12-10 中国科学院福建物质结构研究所 一种采用阴离子调控制备Pd/α-Al2O3催化剂的制备方法
CN105289589A (zh) * 2015-11-04 2016-02-03 中国科学院福建物质结构研究所 Co气相偶联合成草酸二甲酯用催化剂及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856708A (en) * 1972-04-10 1974-12-24 Reynolds Metals Co Alumina catalyst support
BE832072A (fr) * 1974-08-12 1975-12-01 Compositions ameliorees pour catalyse et leur procede de preparation
FR2449474A1 (fr) * 1979-02-26 1980-09-19 Rhone Poulenc Ind Billes d'alumine a double porosite, leur procede de preparation et leurs applications comme supports de catalyseurs
CN1026557C (zh) * 1990-09-19 1994-11-16 中国石油化工总公司 顺丁烯二酸酐催化剂及其应用
CN1066070C (zh) * 1995-10-20 2001-05-23 中国科学院福建物质结构研究所 草酸酯合成催化剂
DE19812468A1 (de) * 1998-03-23 1999-09-30 Basf Ag Verfahren zur Herstellung von 1,2-Dichlorethan
US8575063B2 (en) * 2008-10-27 2013-11-05 Hongying He Nickel-based reforming catalysts
CN101851160B (zh) * 2010-06-04 2013-03-06 天津大学 使用规整催化剂由co气相偶联合成草酸酯的生产方法
US8586769B2 (en) * 2010-06-04 2013-11-19 Scientific Design Company, Inc. Carrier for ethylene oxide catalysts
CN104053500B (zh) * 2011-09-01 2018-01-12 先进炼制技术有限公司 催化剂载体和由其制备的催化剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1446635A (zh) * 2003-01-20 2003-10-08 华东理工大学 基于纳米碳纤维为载体的催化剂以及制备草酸酯的方法
CN101850273A (zh) * 2010-06-04 2010-10-06 天津大学 由co气相偶联合成草酸酯的规整催化剂及其制备方法
US20130062557A1 (en) * 2011-09-08 2013-03-14 Geonano Environmental Technology, Inc. Polymeric complex supporter with zero-valent metals and manufacturing method thereof
CN104190415A (zh) * 2014-08-29 2014-12-10 中国科学院福建物质结构研究所 一种采用阴离子调控制备Pd/α-Al2O3催化剂的制备方法
CN105289589A (zh) * 2015-11-04 2016-02-03 中国科学院福建物质结构研究所 Co气相偶联合成草酸二甲酯用催化剂及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703712C1 (ru) * 2018-10-22 2019-10-22 Пуцзин Кемикал Индастри Ко., Лтд Катализатор очистки хвостового газа, а также способ его получения

Also Published As

Publication number Publication date
AU2016423951A1 (en) 2018-08-30
US20190247830A1 (en) 2019-08-15
CN106457227A (zh) 2017-02-22
CN106457227B (zh) 2020-07-10
AU2016423951B2 (en) 2019-12-12
CA3011265A1 (en) 2018-03-29
RU2697704C1 (ru) 2019-08-19
TR201812437T1 (tr) 2018-11-21

Similar Documents

Publication Publication Date Title
WO2018053690A1 (zh) 催化剂载体及包括其的催化剂
WO2018121326A1 (zh) 一种草酸二甲酯加氢合成乙醇用催化剂的制备方法以及由此得到的催化剂和其应用
JP5947337B2 (ja) 2,2,3,3−テトラフルオロ−1−プロペンの製造方法
CN104907065B (zh) 氟化催化剂、制备方法及用途
ES2725112T3 (es) Precursor de catalizador a base de cobre, método para su fabricación y método de hidrogenación
KR102203848B1 (ko) 에틸렌 옥사이드의 제조 방법
JP2011503200A (ja) 接触水素化による1,1,1,2,3,3−ヘキサフルオロプロパンおよび1,1,1,2−テトラフルオロプロパンの製造
JP2024036466A (ja) パーフルオロアルキン化合物の製造方法
JP6379781B2 (ja) 不均一系触媒および1,2−ジクロロエタンの製造用触媒システム
JPWO2014188843A1 (ja) テトラヒドロフランの製造方法
JP2014210755A (ja) ブタジエンの製造方法
CN103108857B (zh) 假紫罗兰酮的制备方法
US10399060B2 (en) High pore volume alumina supported catalyst for vinyl acetate monomer (VAM) process
JP5834143B2 (ja) 7−オクテナールの製造方法
KR20120103323A (ko) 알코올의 환원성 아민화에 의한 알킬아민 제조용 촉매
WO2018093909A9 (en) Crush strength and porosity of an alumina carrier for enhanced catalysts for the production of vinyl acetate monomer
US20190022629A1 (en) Composite Material Containing A Bismuth-Molybdenum-Nickel Mixed Oxide Or A Bismuth-Molybdenum-Cobalt Mixed Oxide And SIO2
JP4150771B2 (ja) シクロヘキサノール脱水素反応用触媒
KR101178940B1 (ko) 알킬아민 제조용 촉매 및 이의 제조방법
CN111250153B (zh) 一种Al2O3-多级孔分子筛负载Mo型催化材料的制备方法及其在歧化制丙烯中的应用
JP2004339118A (ja) モノヒドロキシアセトンの製造方法
JP4095724B2 (ja) 銅を含有する触媒の活性化方法並びにテトラヒドロ−2h−ピラン−2−オン及び/又は3,4−ジヒドロ−2h−ピランの製造法
JP2013184924A (ja) メチルアセチレンの製造方法及び触媒
TW202204039A (zh) 用於乙酸乙烯酯製造之催化劑的製備方法
JP2013193977A (ja) メチルアセチレンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 3011265

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016423951

Country of ref document: AU

Date of ref document: 20160920

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916431

Country of ref document: EP

Kind code of ref document: A1