WO2018052133A1 - 研磨パッド - Google Patents

研磨パッド Download PDF

Info

Publication number
WO2018052133A1
WO2018052133A1 PCT/JP2017/033533 JP2017033533W WO2018052133A1 WO 2018052133 A1 WO2018052133 A1 WO 2018052133A1 JP 2017033533 W JP2017033533 W JP 2017033533W WO 2018052133 A1 WO2018052133 A1 WO 2018052133A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium oxide
polymer
oxide particles
polishing pad
particles
Prior art date
Application number
PCT/JP2017/033533
Other languages
English (en)
French (fr)
Inventor
正敏 赤時
一則 伊藤
良夫 喜多
奈緒子 河井
Original Assignee
ニッタ・ハース株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッタ・ハース株式会社 filed Critical ニッタ・ハース株式会社
Priority to CN201780053882.XA priority Critical patent/CN109689294B/zh
Priority to JP2018539197A priority patent/JP7123799B2/ja
Priority to KR1020197006222A priority patent/KR102449663B1/ko
Publication of WO2018052133A1 publication Critical patent/WO2018052133A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • B24D3/32Resins or natural or synthetic macromolecular compounds for porous or cellular structure
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means

Definitions

  • the present invention relates to a polishing pad.
  • a polishing pad for polishing an object to be polished such as a glass plate
  • a polishing pad formed of a polymer containing polyurethane resin and cerium oxide particles is used (for example, Patent Document 1).
  • an object of the present invention is to provide a polishing pad in which scratches are hardly generated on an object to be polished.
  • a polishing pad is a polishing pad having a polishing surface, Having a pad body formed of a polymer containing polyurethane resin and cerium oxide particles;
  • the pad body is a part constituting the polishing surface,
  • the cerium oxide particles are contained in the polymer as secondary particles in which a plurality of primary particles and primary particles are aggregated, and the proportion of particles contained in the polymer as a particle size of 30 ⁇ m or more. It is 7,000 pieces / cm 3 or less.
  • the cerium oxide particles have a maximum particle diameter of 80 ⁇ m or less and are included in the polymer.
  • a polishing pad according to another aspect of the present invention is a polishing pad having a polishing surface, Having a pad body formed of a polymer containing polyurethane resin and cerium oxide particles;
  • the pad body is a part constituting the polishing surface,
  • the cerium oxide particles are included in the polymer as primary particles and secondary particles in which a plurality of primary particles are aggregated, and are included in the polymer as a maximum particle size of 80 ⁇ m or less.
  • the cerium oxide particles have a volume-based median diameter measured by a laser diffraction method of 0.80 to 2.00 ⁇ m and are included in the polymer. ing.
  • the polishing pad according to the first embodiment has a polishing surface.
  • the polishing pad according to the first embodiment has a pad body formed of a polymer containing polyurethane resin and cerium oxide particles.
  • the polishing pad according to the first embodiment is used to polish a glass plate as an object to be polished.
  • the pad body is a part constituting the polishing surface of the polishing pad.
  • cerium oxide particles are dispersed.
  • the cerium oxide particles are contained in the polymer as primary particles and secondary particles in which a plurality of primary particles are aggregated.
  • the polishing pad which concerns on 1st Embodiment can raise the polishing rate of the glass plate which is a to-be-polished object by containing a cerium oxide particle.
  • the polishing pad according to the first embodiment contains cerium oxide particles, so that an interface is formed between the cerium oxide particles and the polyurethane resin, and as a result, the cut rate can be increased by this interface. That is, the polishing pad according to the first embodiment has excellent dressability by containing cerium oxide particles.
  • the cerium oxide particles have a particle size of 30 ⁇ m or more and are contained in the polymer body at a rate of 7,000 / cm 3 or less, and 200 to 6,000 / cm 3. 3 , more preferably 1,000 to 4,000 / cm 3 , and still more preferably 1,000 to 2,000 / cm 3 .
  • the cerium oxide particles have a particle size of not less than 30 ⁇ m and not more than the maximum particle size, and the ratio of the cerium oxide particles contained in the polymer is 7,000 particles / cm 3 or less. , preferably from 000 / cm 3, more preferably from 1,000 to 4,000 / cm 3, and still more preferably from 1,000 to 2,000 / cm 3.
  • the cerium oxide particles have a particle size of 30 ⁇ m or more, and the ratio of the cerium oxide particles contained in the polymer is 7,000 particles / cm 3 or less. Number is suppressed. As a result, according to the polishing pad according to the first embodiment, it becomes difficult for scratches to occur in the object to be polished.
  • the cerium oxide particles have a particle size of 30 ⁇ m or more, and the ratio of the cerium oxide particles contained in the polymer is 200 particles / cm 3 or more, so that it is easy to increase the cut rate between the cerium oxide particles and the polyurethane resin. There are many interfaces. As a result, the polishing pad according to the first embodiment has excellent dressability.
  • the ratio of the cerium oxide particles contained in the polymer having a particle diameter of 30 ⁇ m or more can be determined using an X-ray CT apparatus.
  • the volume (cm 3 ) of the denominator portion of the ratio (pieces / cm 3 ) means the volume of the polymer.
  • the volume (cm 3 ) of the denominator portion of the ratio (pieces / cm 3 ) means the volume of the polymer as a foam.
  • the volume of each cerium oxide particle contained in two locations in the measurement target range for example, 0.7 mm ⁇ 1.6 mm ⁇ 1.6 mm
  • each cerium oxide particle is determined by measuring and taking the diameter of a true sphere having the same volume as this volume as the diameter of each cerium oxide particle. Next, the number of cerium oxide particles having a particle diameter of 30 ⁇ m or more contained in two measurement target ranges of the polymer is obtained. Then, the ratio of the cerium oxide particles contained in the polymer is determined with a particle size of 30 ⁇ m or more.
  • the cerium oxide particles preferably have a maximum particle size of 80 ⁇ m or less and are contained in the polymer, and more preferably have a maximum particle size of 30 to 70 ⁇ m and are contained in the polymer. More preferably, the maximum particle size is 40 to 50 ⁇ m and it is even more preferable that the polymer is contained in the polymer. Since the maximum particle diameter of the cerium oxide particles is 80 ⁇ m or less and is contained in the polymer, the number of relatively large cerium oxide particles contained in the polymer is suppressed. As a result, according to the polishing pad according to the first embodiment, scratches are less likely to occur on the object to be polished.
  • the maximum particle size of the cerium oxide particles contained in the polymer can be determined using an X-ray CT apparatus. Specifically, the measurement target range of a polymer body measured using an X-ray CT apparatus (for example, 30 mm (vertical) ⁇ 30 mm (horizontal) ⁇ 1 to 3 mm (thickness) (thickness is appropriately adjusted depending on the pad thickness) The volume of each cerium oxide particle contained in (1)) is measured, and the diameter of each cerium oxide particle is determined by taking the diameter of the true sphere having the same volume as this volume as the diameter of each cerium oxide particle. Then, the maximum particle size of the cerium oxide particles contained in the polymer is obtained.
  • the measurement target range of a polymer body measured using an X-ray CT apparatus for example, 30 mm (vertical) ⁇ 30 mm (horizontal) ⁇ 1 to 3 mm (thickness) (thickness is appropriately adjusted depending on the pad thickness)
  • the volume of each cerium oxide particle contained in (1)) is measured, and the diameter of each
  • the cerium oxide particles When the cerium oxide particles have a maximum particle size of 80 ⁇ m or less and are contained in the polymer, the cerium oxide particles have a particle size of 30 to 80 ⁇ m and are contained in the polymer.
  • the contained ratio is preferably 7,000 pieces / cm 3 or less, more preferably 200 to 6,000 pieces / cm 3 , and 1,000 to 4,000 pieces / cm 3. Even more preferable is 1,000 to 2,000 / cm 3 .
  • the average particle diameter of the cerium oxide particles contained in the polymer is preferably 7.0 to 29 ⁇ m, more preferably 10 to 20 ⁇ m, and even more preferably 10 to 15 ⁇ m.
  • the average particle diameter of the cerium oxide particles contained in the polymer can be determined using an X-ray CT apparatus. Specifically, the volume of each cerium oxide particle included in the measurement target range (for example, 0.7 mm ⁇ 1.6 mm ⁇ 1.6 mm) of the polymer measured using an X-ray CT apparatus is measured. And the diameter of each cerium oxide particle is calculated
  • TDM1000H-I manufactured by Yamato Scientific Co., Ltd. can be used.
  • the cerium oxide particles preferably have a volume-based median diameter measured by a laser diffraction method of 0.80 to 2.00 ⁇ m, and more preferably 0.90 to 1.50 ⁇ m. That is, the volume-based median diameter of the cerium oxide particles contained in the polymer, measured by a laser diffraction method, is preferably 0.80 to 2.00 ⁇ m, preferably 0.90 to 1.50 ⁇ m. More preferably.
  • the median diameter is 0.80 ⁇ m or more, the particle diameter of the primary particles of cerium oxide is increased. As a result, there is an advantage that the specific surface area of the primary particles of cerium oxide is reduced and aggregation of the cerium oxide particles is suppressed.
  • the median diameter can be measured as follows. First, a polymer sample of the polishing pad is placed in a platinum crucible, and the platinum crucible containing the sample is heated with a burner to carbonize the sample. During the heating, the polishing pad is prevented from scattering outside the platinum crucible. Next, the platinum crucible containing the carbonized sample is heated in an electric furnace at 400 ° C. in an air atmosphere for 28 hours to ash the carbonized sample and take out cerium oxide. Then, cerium oxide taken out from the polishing pad is dispersed in a dispersion medium (for example, deionized water) to obtain a dispersion.
  • a dispersion medium for example, deionized water
  • the dispersion is subjected to analysis by a laser diffraction particle size distribution analyzer, and the volume-based median diameter of cerium oxide is obtained.
  • the volume-based particle size distribution of cerium oxide contained in the dispersion is obtained by a laser diffraction method, and the volume-based median diameter of the cerium oxide particles contained in the dispersion is obtained from this particle size distribution.
  • the “volume-based median diameter of the cerium oxide particles in the dispersion” is defined as “volume-based median diameter of the cerium oxide particles contained in the polymer, which is measured by a laser diffraction method”.
  • the polymer contains cerium oxide particles, preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and even more preferably 7 to 24% by mass.
  • the polyurethane resin is a resin in which an active hydrogen compound and a polyisocyanate which is an isocyanate compound are combined.
  • the polyurethane resin includes a first structural unit derived from a compound containing active hydrogen (hereinafter also referred to as “active hydrogen compound”) and a compound containing an isocyanate group (hereinafter also referred to as “isocyanate compound”). And a second structural unit derived from.
  • the polyisocyanate includes polyisocyanate and polyisocyanate polymer.
  • polyisocyanate examples include aromatic diisocyanates, aliphatic diisocyanates, and alicyclic diisocyanates.
  • aromatic diisocyanate examples include crude diphenylmethane diisocyanate (crude MDI) obtained by, for example, reacting an amine compound obtained by condensing aniline and formaldehyde with phosgene in an inert solvent, and purifying the crude MDI.
  • Crude MDI crude diphenylmethane diisocyanate
  • polymethylene polyphenylene polyisocyanate polymeric MDI
  • modified products thereof can be used
  • tolylene diisocyanate (TDI) 1,5-naphthalene diisocyanate
  • xylylene diisocyanate 1,3-phenylene diisocyanate
  • 1,4-phenylene diisocyanate and the like can be used.
  • these aromatic diisocyanates can be used alone or in combination.
  • modified product of diphenylmethane diisocyanate examples include a carbodiimide modified product, a urethane modified product, an allophanate modified product, a urea modified product, a burette modified product, an isocyanurate modified product, and an oxazolidone modified product.
  • modified products include carbodiimide-modified diphenylmethane diisocyanate (carbodiimide-modified MDI).
  • aliphatic diisocyanate examples include ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 1,6-hexamethylene diisocyanate.
  • polyisocyanate polymer examples include a polymer in which a polyol and at least any one of an aromatic diisocyanate, an aliphatic diisocyanate, and an alicyclic diisocyanate are bonded.
  • diphenylmethane diisocyanate diphenylmethane diisocyanate (pure MDI), polymeric MDI, or a modified product thereof is preferable in terms of easy control of the working environment because of its lower vapor pressure and less volatilization.
  • carbodiimide-modified MDI, polymeric MDI, or a mixture of these with MDI is preferred in that it has a lower viscosity and is easy to handle.
  • the active hydrogen compound is an organic compound having an active hydrogen group capable of reacting with an isocyanate group in the molecule.
  • Specific examples of the active hydrogen group include functional groups such as a hydroxy group, a primary amino group, a secondary amino group, and a thiol group, and the active hydrogen compound includes the functional group in the molecule. You may have only 1 type and you may have multiple types of this functional group in a molecule
  • the active hydrogen compound for example, a polyol compound having a plurality of hydroxy groups in the molecule, a polyamine compound having a plurality of primary amino groups or secondary amino groups in the molecule, and the like can be used.
  • polyol compound examples include polyol monomers and polyol polymers.
  • polystyrene resin examples include 1,4-benzenedimethanol, 1,4-bis (2-hydroxyethoxy) benzene, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, , 5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol having a molecular weight of 400 or less, Linear aliphatic glycols such as 1,8-octanediol and 1,9-nonanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2-methyl-1,3-propanediol, 2 -Butyl-2-E Branched aliphatic glycols such as 1,4-propan
  • ethylene glycol and diethylene glycol are preferable in that the strength at the time of reaction tends to be higher, the rigidity of the produced polishing pad containing foamed polyurethane is likely to be higher, and the cost is relatively low.
  • polystyrene resin examples include polyether polyol, polyester polyol, polyester polycarbonate polyol, and polycarbonate polyol.
  • polyether polyol examples include polyether polyol, polyester polyol, polyester polycarbonate polyol, and polycarbonate polyol.
  • polyol polymer examples include polyether polyol, polyester polyol, polyester polycarbonate polyol, and polycarbonate polyol.
  • numerator is also mentioned.
  • examples of the polyether polyol include polytetramethylene glycol (PTMG), polypropylene glycol (PPG), polyethylene glycol (PEG), and ethylene oxide-added polypropylene polyol.
  • PTMG polytetramethylene glycol
  • PPG polypropylene glycol
  • PEG polyethylene glycol
  • ethylene oxide-added polypropylene polyol examples include polytetramethylene glycol (PTMG), polypropylene glycol (PPG), polyethylene glycol (PEG), and ethylene oxide-added polypropylene polyol.
  • polyester polyol examples include polybutylene adipate, polyhexamethylene adipate, and polycaprolactone polyol.
  • polyester polycarbonate polyol examples include a reaction product of a polyester glycol such as polycaprolactone polyol and alkylene carbonate, and a reaction product obtained by further reacting a reaction mixture obtained by reacting ethylene carbonate with a polyhydric alcohol with an organic dicarboxylic acid. Etc.
  • polycarbonate polyol examples include diols such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, polyethylene glycol, polypropylene glycol, or polytetramethylene glycol, phosgene, diallyl carbonate ( For example, a reaction product with diphenyl carbonate) or cyclic carbonate (for example, propylene carbonate) can be used.
  • diols such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, polyethylene glycol, polypropylene glycol, or polytetramethylene glycol, phosgene, diallyl carbonate ( For example, a reaction product with diphenyl carbonate) or cyclic carbonate (for example, propylene carbonate) can be used.
  • polystyrene resin those having a number average molecular weight of 800 to 8000 are preferable in that an elastic foamed polyurethane can be easily obtained.
  • polytetramethylene glycol (PTMG), ethylene oxide-added polypropylene polyol Is preferred.
  • the number average molecular weight means a value measured by GPC (gel permeation chromatography).
  • polyamine compound examples include 4,4′-methylenebis (2-chloroaniline) (MOCA), 2,6-dichloro-p-phenylenediamine, 4,4′-methylenebis (2,3-dichloroaniline), 3, 5-bis (methylthio) -2,4-toluenediamine, 3,5-bis (methylthio) -2,6-toluenediamine, 3,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene- 2,6-diamine, trimethylene glycol-di-p-aminobenzoate, 1,2-bis (2-aminophenylthio) ethane, 4,4'-diamino-3,3'-diethyl-5,5'- Examples thereof include dimethyldiphenylmethane.
  • MOCA 4,4′-methylenebis (2-chloroaniline)
  • 2,6-dichloro-p-phenylenediamine 4,4′-methylenebis (2
  • the polishing pad according to the first embodiment is configured as described above. Next, a method for manufacturing the polishing pad according to the first embodiment will be described.
  • a polishing pad having a pad body formed of a polymer containing polyurethane resin and cerium oxide particles is produced.
  • two or more isocyanate groups are mixed with liquid prepolymer and cerium oxide particles to obtain a mixed solution, whereby cerium oxide particles are contained in the mixed solution.
  • the dispersion step is performed so that the particle diameter is 30 ⁇ m or more and the ratio of the cerium oxide particles contained in the polymer is 7,000 particles / cm 3 or less. carry out.
  • the cerium oxide particles contained in the polymer can be reduced by increasing the shear stress and stirring the liquid prepolymer and the cerium oxide particles. Moreover, in the said dispersion
  • the dispersion step it is preferable to carry out the dispersion step so that the maximum particle diameter is 80 ⁇ m or less and the polymer body contains cerium oxide particles.
  • the viscosity of the liquid prepolymer is preferably 1500 to 3000 cps.
  • the cerium oxide particles have a maximum particle diameter of 80 ⁇ m or less and are contained in the polymer, and the maximum particle diameter is 30 to 70 ⁇ m. It is preferably contained in the polymer, and more preferably contained in the polymer with a maximum particle size of 40 to 50 ⁇ m. Since the maximum particle diameter of the cerium oxide particles is 80 ⁇ m or less and is contained in the polymer, the number of relatively large cerium oxide particles contained in the polymer is suppressed. As a result, according to the polishing pad according to the second embodiment, it becomes difficult for scratches to occur in the object to be polished.
  • the cerium oxide particles preferably have a particle size of 30 ⁇ m or more and are contained in the polymer at a rate of 7,000 / cm 3 or less, preferably 200 to 6,000 / cm 3 . More preferably, it is 1,000 to 4,000 / cm 3 , still more preferably 1,000 to 2,000 / cm 3 .
  • the cerium oxide particles have a particle size of 30 ⁇ m or more, and the ratio of the cerium oxide particles contained in the polymer is 7,000 particles / cm 3 or less. Number is suppressed. As a result, according to the polishing pad according to the second embodiment, scratches are less likely to occur on the object to be polished.
  • the cerium oxide particles have a particle size of 30 ⁇ m or more, and the ratio of the cerium oxide particles contained in the polymer is 200 particles / cm 3 or more, so that it is easy to increase the cut rate between the cerium oxide particles and the polyurethane resin. There are many interfaces. As a result, the polishing pad according to the second embodiment has excellent dressability.
  • the dispersion step is performed so that the maximum particle size is 80 ⁇ m or less and the polymer body contains cerium oxide particles.
  • the dispersion step is performed so that the particle diameter is 30 ⁇ m or more and the ratio of the cerium oxide particles contained in the polymer is 7,000 particles / cm 3 or less. It is preferable to implement.
  • polishing pad according to this embodiment is configured as described above, it has the following advantages.
  • the polishing pad according to the first embodiment is a polishing pad having a polishing surface.
  • the polishing pad according to the first embodiment has a pad body formed of a polymer containing polyurethane resin and cerium oxide particles.
  • the pad body is a part constituting the polishing surface.
  • the cerium oxide particles are contained in the polymer as secondary particles in which a plurality of primary particles and primary particles are aggregated.
  • the cerium oxide particles have a particle size of 30 ⁇ m or more and are contained in the polymer body at a rate of 7,000 particles / cm 3 or less.
  • Such a polishing pad can be a polishing pad in which scratches are unlikely to occur in an object to be polished.
  • the cerium oxide particles have a maximum particle diameter of 80 ⁇ m or less and are included in the polymer.
  • the polishing pad according to the second embodiment is a polishing pad having a polishing surface. Moreover, the polishing pad according to the second embodiment has a pad main body formed of a polymer containing polyurethane resin and cerium oxide particles. The pad body is a part constituting the polishing surface. The cerium oxide particles are contained in the polymer as secondary particles in which a plurality of primary particles and primary particles are aggregated. The cerium oxide particles have a maximum particle size of 80 ⁇ m or less and are contained in the polymer. Such a polishing pad can be a polishing pad in which scratches are unlikely to occur in an object to be polished.
  • the cerium oxide particles have a volume-based median diameter measured by a laser diffraction method of 0.80 to 2.00 ⁇ m and the polymer. Included in the body.
  • the polishing pad according to the present invention is not limited to the first and second embodiments. Further, the polishing pad according to the present invention is not limited to the above-described effects. The polishing pad according to the present invention can be variously modified without departing from the gist of the present invention.
  • the polymer body may be a foam.
  • the mixed liquid further including a foaming agent is prepared.
  • the foaming agent is not particularly limited as long as the foamed polyurethane is molded so as to generate gas to form bubbles, and bubbles are formed in the foamed polyurethane.
  • the foaming agent is decomposed by heating.
  • an organic chemical foaming agent that generates gas a low-boiling hydrocarbon having a boiling point of ⁇ 5 to 70 ° C., a halogenated hydrocarbon, water, liquefied carbon dioxide, or the like can be used alone or in combination.
  • organic chemical foaming agent examples include azo compounds (azodicarbonamide, azobisisobutyronitrile, diazoaminobenzene, barium azodicarboxylate, etc.), nitroso compounds (N, N′-dinitrosopentamethylenetetramine, N, N′-dinitroso-N, N′-dimethylterephthalamide and the like), sulfonyl hydrazide compounds [p, p′-oxybis (benzenesulfonyl hydrazide), p-toluenesulfonyl hydrazide and the like] and the like.
  • the low boiling point hydrocarbon examples include butane, pentane, cyclopentane, and mixtures thereof.
  • halogenated hydrocarbon examples include methylene chloride and HFC (hydrofluorocarbons).
  • the foaming agent may be a heat-expandable sphere.
  • the particle size of the heat-expandable sphere is, for example, 2 to 100 ⁇ m.
  • the heat-expandable spherical body includes a hollow body formed of a thermoplastic resin and a liquid hydrocarbon provided in a hollow portion of the hollow body. Examples of the heat-expandable spheroids include Expandel (registered trademark) manufactured by Nippon Philite Co., Ltd., and thermally expandable microcapsules (trade name: Matsumoto Microsphere (registered trademark) manufactured by Matsumoto Yushi Seiyaku Co., Ltd. -48D etc.)).
  • Example 1 Liquid urethane prepolymer having two isocyanate groups as end groups, Mirek (registered trademark) E30 (manufactured by Mitsui Kinzoku Kogyo Co., Ltd.) as cerium oxide particles, and thermally expandable microcapsules (F-48D) as a foaming agent
  • the mixture was placed in a tank and stirred with a stirrer (stirring blade: disk type and paddle type, stirring blade diameter: 115 mm, rotation speed: 1350 rpm) to obtain a mixed solution.
  • the median diameter of the cerium oxide particles used as the material was determined by the method described above.
  • the mixed solution and 4,4′-methylenebis (2-chloroaniline) (MOCA) are mixed and polymerized and foamed to form a polishing pad (discium oxide particle concentration: 20. 0% by mass) (820 mm (diameter) ⁇ 2 mm (thickness)).
  • Example 2 The use of Mirek (registered trademark) E10 (Mitsui Kinzoku Kogyo Co., Ltd.) as the cerium oxide particles, the stirring time for obtaining the mixed solution was 15 minutes, and the concentration of the cerium oxide particles in the polishing pad was 7.
  • a polishing pad as a polymer was obtained in the same manner as in Example 1 except that the content was 0% by mass.
  • Example 3 Stirring was carried out at a higher shear rate than in Example 1, the stirring time for obtaining a mixed solution was 5 minutes, and the concentration of cerium oxide particles in the polishing pad as a polymer was 23.9% by mass.
  • a polishing pad as a polymer was obtained in the same manner as Example 2 except for the above.
  • Example 4 The polymer is the same as in Example 1 except that the stirring time for obtaining the mixed solution is 15 minutes and the concentration of the cerium oxide particles in the polishing pad as the polymer is 10.0% by mass. A polishing pad was obtained.
  • Example 1 The polymer material was the same as in Example 1 except that the stirring time for obtaining the mixed solution was 5 minutes and that the concentration of cerium oxide particles in the polishing pad as the polymer material was 23.9% by mass. A polishing pad was obtained.
  • the ratio of the cerium oxide particles contained in the polymer having a particle diameter of 30 ⁇ m or more (hereinafter also simply referred to as “particle ratio of particle diameter of 30 ⁇ m or more”), and oxidation in the polymer
  • the average particle size of the cerium particles (hereinafter also simply referred to as “average particle size”) was determined.
  • polishing test Two glass plates (400 mm (length) ⁇ 300 mm (width) ⁇ 0.4 mm (thickness)) were polished using a polishing pad as a polymer under the following conditions. Polishing pressure: 90 gf / cm 2 ⁇ Polishing time: 10 min Polishing slurry: Polishing slurry containing cerium oxide particles (Mirek (registered trademark) E30, Mitsui Kinzoku Kogyo Co., Ltd.) and water (Mirek (registered trademark) E30 concentration: 7% by mass) Then, the surface of the polished glass plate is observed using an optical microscope, and the total number of scratches (scratches having a length of 500 ⁇ m or more) in the two glass plates (hereinafter also simply referred to as “total number of scratches”). .)It was confirmed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本発明は、ポリウレタン樹脂と酸化セリウム粒子とを含む高分子体によって形成されたパッド本体を有し、前記パッド本体が、研磨面を構成する部分となっており、前記酸化セリウム粒子は、1次粒子及び1次粒子が複数凝集した2次粒子となって前記高分子体に含まれる、研磨パッド等である。

Description

研磨パッド 関連出願の相互参照
 本願は、日本国特願2016-181919号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。
 本発明は、研磨パッドに関する。
 被研磨物(ガラス板等)を研磨する研磨パッドとしては、ポリウレタン樹脂と酸化セリウム粒子とを含む高分子体によって形成された研磨パッドが用いられている(例えば、特許文献1等)。
日本国特開2007-250166号公報
 ところで、被研磨物の表面には研磨によってスクラッチと称される線状の傷が生じることがある。近年、研磨パッドを用いた研磨では、このスクラッチを低減することが求められている。
 そこで、本発明は、上記要望点に鑑み、被研磨物にスクラッチが生じ難い研磨パッドを提供することを課題とする。
 本発明の一の局面に係る研磨パッドは、研磨面を有する研磨パッドであって、
 ポリウレタン樹脂と酸化セリウム粒子とを含む高分子体によって形成されたパッド本体を有し、
 前記パッド本体が、前記研磨面を構成する部分となっており、
 前記酸化セリウム粒子は、1次粒子及び1次粒子が複数凝集した2次粒子となって前記高分子体に含まれ、且つ、30μm以上の粒径となって前記高分子体に含まれる割合が7,000個/cm以下である。
 また、本発明の一の局面に係る研磨パッドでは、好ましくは、前記酸化セリウム粒子は、最大粒子径が80μm以下となって前記高分子体に含まれる。
 また、本発明の他の局面に係る研磨パッドは、研磨面を有する研磨パッドであって、
 ポリウレタン樹脂と酸化セリウム粒子とを含む高分子体によって形成されたパッド本体を有し、
 前記パッド本体が、前記研磨面を構成する部分となっており、
 前記酸化セリウム粒子は、1次粒子及び1次粒子が複数凝集した2次粒子となって前記高分子体に含まれ、且つ、最大粒子径が80μm以下となって前記高分子体に含まれている。
 また、本発明に係る研磨パッドでは、好ましくは、前記酸化セリウム粒子は、レーザー回折法によって測定される体積基準のメジアン径が、0.80~2.00μmとなって前記高分子体に含まれている。
 以下、発明の一実施形態について説明する。
<第1実施形態>
 まず、第1実施形態に係る研磨パッドについて説明する。
 第1実施形態に係る研磨パッドは、研磨面を有する。
 また、第1実施形態に係る研磨パッドは、ポリウレタン樹脂と酸化セリウム粒子とを含む高分子体によって形成されたパッド本体を有する。
 また、第1実施形態に係る研磨パッドは、被研磨物としてガラス板を研磨するのに用いられる。
 前記パッド本体は、研磨パッドの研磨面を構成する部分となっている。
 前記高分子体では、酸化セリウム粒子が分散している。
 前記酸化セリウム粒子は、1次粒子及び1次粒子が複数凝集した2次粒子となって高分子体に含まれている。
 第1実施形態に係る研磨パッドは、酸化セリウム粒子を含有することで、被研磨物たるガラス板の研磨レートを高めることができる。
 また、第1実施形態に係る研磨パッドは、酸化セリウム粒子を含有することで、酸化セリウム粒子とポリウレタン樹脂との間に界面ができ、その結果、この界面によってカットレートを高めることができる。すなわち、第1実施形態に係る研磨パッドは、酸化セリウム粒子を含有することにより、ドレス性に優れたものとなる。
 また、前記酸化セリウム粒子は、30μm以上の粒径となって前記高分子体に含まれる割合が、7,000個/cm以下であることが重要であり、200~6,000個/cmであることが好ましく、1,000~4,000個/cmであることがより好ましく、1,000~2,000個/cmであることが更により好ましい。
 言い換えれば、前記酸化セリウム粒子は、30μm以上最大粒子径以下の粒径となって前記高分子体に含まれる割合が、7,000個/cm以下であることが重要であり、200~6,000個/cmであることが好ましく、1,000~4,000個/cmであることがより好ましく、1,000~2,000個/cmであることが更により好ましい。
 前記酸化セリウム粒子は、30μm以上の粒径となって前記高分子体に含まれる割合が、7,000個/cm以下であることにより、高分子体に含まれる比較的大きな酸化セリウム粒子の数が抑制される。その結果、第1実施形態に係る研磨パッドによれば、被研磨物にスクラッチが生じ難くなる。
 前記酸化セリウム粒子は、30μm以上の粒径となって前記高分子体に含まれる割合が、200個/cm以上であることにより、カットレートを高めやすい、酸化セリウム粒子とポリウレタン樹脂との間の界面が多くできる。その結果、第1実施形態に係る研磨パッドは、ドレス性に優れたものとなる。
 なお、30μm以上の粒径となって前記高分子体に含まれる前記酸化セリウム粒子の割合は、X線CT装置を用いて求めることができる。なお、該割合(個/cm)の分母部分の体積(cm)は、高分子体の体積を意味する。また、後述するような、高分子体が発泡体である場合でも、該割合(個/cm)の分母部分の体積(cm)は、発泡体たる高分子体の体積を意味する。
 具体的には、X線CT装置を用いて、高分子体の測定対象範囲(例えば、0.7mm×1.6mm×1.6mm)2箇所に含まれている、各酸化セリウム粒子の体積を測定し、この体積と同じ体積の真球の直径を各酸化セリウム粒子の直径とすることにより、各酸化セリウム粒子の直径を求める。
 次に、高分子体の測定対象範囲2箇所に含まれている、粒径30μm以上の酸化セリウム粒子の数を求める。
 そして、30μm以上の粒径となって前記高分子体に含まれる前記酸化セリウム粒子の割合を求める。
 前記酸化セリウム粒子は、最大粒子径が80μm以下となって前記高分子体に含まれていることが好ましく、最大粒子径が30~70μmとなって前記高分子体に含まれていることがより好ましく、最大粒子径が40~50μmとなって前記高分子体に含まれていることが更により好ましい。
 前記酸化セリウム粒子は最大粒子径が80μm以下となって前記高分子体に含まれていることにより、高分子体に含まれる比較的大きな酸化セリウム粒子の数が抑制される。その結果、第1実施形態に係る研磨パッドによれば、被研磨物にスクラッチがより一層生じ難くなる。
 なお、前記高分子体に含まれている前記酸化セリウム粒子の最大粒子径は、X線CT装置を用いて求めることができる。
 具体的には、X線CT装置を用いて測定する高分子体の測定対象範囲(例えば、30mm(縦)×30mm(横)×1~3mm(厚み)(厚みは、パッド厚さによって適宜調整する))に含まれている、各酸化セリウム粒子の体積を測定し、この体積と同じ体積の真球の直径を各酸化セリウム粒子の直径とすることにより、各酸化セリウム粒子の直径を求める。
 そして、前記高分子体に含まれている前記酸化セリウム粒子の最大粒子径を求める。
 なお、前記酸化セリウム粒子は、最大粒子径が80μm以下となって前記高分子体に含まれている場合には、前記酸化セリウム粒子は、30~80μmの粒径となって前記高分子体に含まれる割合が、7,000個/cm以下であることが好ましく、200~6,000個/cmであることがより好ましく、1,000~4,000個/cmであることが更により好ましく、1,000~2,000個/cmであることが特により好ましい。
 前記高分子体に含まれている前記酸化セリウム粒子の平均粒子径は、好ましくは7.0~29μm、より好ましくは10~20μm、更により好ましくは10~15μmである。
 前記高分子体に含まれている前記酸化セリウム粒子の平均粒子径は、X線CT装置を用いて求めることができる。
 具体的には、X線CT装置を用いて測定する高分子体の測定対象範囲(例えば、0.7mm×1.6mm×1.6mm)に含まれている、各酸化セリウム粒子の体積を測定し、この体積と同じ体積の真球の直径を各酸化セリウム粒子の直径とすることにより、各酸化セリウム粒子の直径を求める。
 なお、X線CT装置を用いて各酸化セリウム粒子の直径を求める際には、装置の空間分解能の関係上、4.0μm未満の粒子は観察できないので、4.0μm以上の粒子のみを測定対象の粒子とする。
 そして、酸化セリウム粒子の直径の値を算術平均することにより、前記高分子体に含まれている前記酸化セリウム粒子の平均粒子径を求める。
 前記X線CT装置としては、ヤマト科学株式会社製のTDM1000H-Iを用いることができる。
 前記酸化セリウム粒子は、レーザー回折法によって測定される体積基準のメジアン径が、0.80~2.00μmであることが好ましく、0.90~1.50μmであることがより好ましい。
 すなわち、レーザー回折法によって測定される、前記高分子体に含まれる前記酸化セリウム粒子の体積基準のメジアン径は、0.80~2.00μmであることが好ましく、0.90~1.50μmであることがより好ましい。
 該メジアン径が0.80μm以上であることにより、酸化セリウムの1次粒子の粒径が大きくなる。その結果、酸化セリウムの1次粒子の比表面積が小さくなり、酸化セリウム粒子の凝集が抑制されるという利点がある。
 なお、本明細書において、前記メジアン径は、以下のようにして測定することができる。
 まず、研磨パッドの高分子体の試料を白金るつぼ内に入れ、前記試料が収容された白金るつぼをバーナーで加熱することにより、前記試料を炭化させる。前記加熱の際、研磨パッドが白金るつぼ外に飛散しないようにする。
 次に、電気炉で空気雰囲気下400℃にて、炭化した試料が収容された白金るつぼを28時間加熱することにより、炭化した試料を灰化させ、酸化セリウムを取り出す。
 そして、研磨パッドから取り出した酸化セリウムを分散媒(例えば、脱イオン水など)に分散させて、分散液を得る。
 その後、分散液をレーザー回折式粒度分布測定装置による分析に供し、酸化セリウムの体積基準のメジアン径を求める。言い換えれば、分散液中に含まれる酸化セリウムの体積基準の粒度分布をレーザー回折法で求め、この粒度分布から、分散液に含まれる酸化セリウム粒子の体積基準のメジアン径を求める。
 そして、「分散液中の酸化セリウム粒子の体積基準のメジアン径」を、「レーザー回折法によって測定される、高分子体に含まれる酸化セリウム粒子の体積基準のメジアン径」とする。
 前記高分子体は、酸化セリウム粒子を、好ましくは3~40質量%、より好ましくは5~30質量%、更により好ましくは7~24質量%含有する。
 前記ポリウレタン樹脂は、活性水素化合物と、イソシアネート化合物たるポリイソシアネートとを結合させた樹脂である。
 また、前記ポリウレタン樹脂は、活性水素を含む化合物(以下、「活性水素化合物」ともいう。)に由来する第1の構成単位と、イソシアネート基を含む化合物(以下、「イソシアネート化合物」ともいう。)に由来する第2の構成単位とを備える。
 前記ポリイソシアネートとしては、ポリイソシアネート、ポリイソシアネートポリマーが挙げられる。
 前記ポリイソシアネートとしては、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートなどが挙げられる。
 前記芳香族ジイソシアネートとしては、アニリンとホルムアルデヒドを縮合して得られるアミン化合物を不活性溶媒中でホスゲンと反応させることなどにより得られる粗ジフェニルメタンジイソシアネート(粗MDI)、該粗MDIを精製して得られるジフェニルメタンジイソシアネート(ピュアMDI)、ポリメチレンポリフェニレンポリイソシアネート(ポリメリックMDI)、及びこれらの変性物などを用いることができ、また、トリレンジイソシアネート(TDI)、1,5-ナフタレンジイソシアネート、キシリレンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート等を用いることができる。なお、これらの芳香族ジイソシアネートは、単独物で、又は複数を組み合わせて用いることができる。
 ジフェニルメタンジイソシアネートの変性物としては、例えば、カルボジイミド変性物、ウレタン変性物、アロファネート変性物、ウレア変性物、ビューレット変性物、イソシアヌレート変性物、オキサゾリドン変性物等が挙げられる。斯かる変性物としては、具体的には、例えば、カルボジイミド変性ジフェニルメタンジイソシアネート(カルボジイミド変性MDI)が挙げられる。
 前記脂肪族ジイソシアネートとしては、例えば、エチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネートなどが用いられる。
 前記脂環族ジイソシアネートとしては、例えば、1,4-シクロヘキサンジイソシアネート、4,4’-ジシクロへキシルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、メチレンビス(4,1-シクロヘキシレン)=ジイソシアネートなどが用いられる。
 前記ポリイソシアネートポリマーとしては、ポリオールと、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートの少なくとも何れかのジイソシアネートが結合されてなるポリマー等が挙げられる。
 前記ポリイソシアネートとしては、その蒸気圧がより低く揮発しにくいことから、作業環境を制御しやすいという点で、ジフェニルメタンジイソシアネート(ピュアMDI)、ポリメリックMDI、又はその変性物が好ましい。また、粘度がより低く、取り扱いが容易であるという点で、カルボジイミド変性MDI、ポリメリックMDI、又はこれらとMDIとの混合物が好ましい。
 前記活性水素化合物は、イソシアネート基と反応し得る活性水素基を分子内に有する有機化合物である。該活性水素基としては、具体的には、ヒドロキシ基、第1級アミノ基、第2級アミノ基、チオール基などの官能基が挙げられ、前記活性水素化合物は、分子中に該官能基を1種のみ有していてもよく、分子中に該官能基を複数種有していてもよい。
 前記活性水素化合物としては、例えば、分子中に複数のヒドロキシ基を有するポリオール化合物、分子内に複数の第1級アミノ基又は第2級アミノ基を有するポリアミン化合物などを用いることができる。
 前記ポリオール化合物は、ポリオールモノマーや、ポリオールポリマーが挙げられる。
 該ポリオールモノマーとしては、例えば、1,4-ベンゼンジメタノール、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、分子量400以下のポリエチレングリコール、1,8-オクタンジオール、1,9-ノナンジオール等の直鎖脂肪族グリコールが挙げられ、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-メチル-1,8-オクタンジオール等の分岐脂肪族グリコールが挙げられ、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水添加ビスフェノールA等の脂環族ジオールが挙げられ、グリセリン、トリメチロールプロパン、トリブチロールプロパン、ペンタエリスリトール、ソルビトール等の多官能ポリオールなどが挙げられる。
 前記ポリオールモノマーとしては、反応時の強度がより高くなりやすく、製造された発泡ポリウレタンを含む研磨パッドの剛性がより高くなりやすく、比較的安価であるという点で、エチレングリコール、ジエチレングリコールが好ましい。
 前記ポリオールポリマーとしては、ポリエーテルポリオール、ポリエステルポリオール、ポリエステルポリカーボネートポリオールおよびポリカーボネートポリオールなどが挙げられる。なお、ポリオールポリマーとしては、ヒドロキシ基を分子中に3以上有する多官能ポリオールポリマーも挙げられる。
 詳しくは、前記ポリエーテルポリオールとしては、ポリテトラメチレングリコール(PTMG)、ポリプロピレングリコール(PPG)、ポリエチレングリコール(PEG)、エチレンオキサイド付加ポリプロピレンポリオールなどが挙げられる。
 前記ポリエステルポリオールとしては、ポリブチレンアジペート、ポリヘキサメチレンアジペートおよびポリカプロラクトンポリオールなどが挙げられる。
 前記ポリエステルポリカーボネートポリオールとしては、ポリカプロラクトンポリオールなどのポリエステルグリコールとアルキレンカーボネートとの反応生成物、エチレンカーボネートを多価アルコールと反応させて得られた反応混合物をさらに有機ジカルボン酸と反応させた反応生成物などが挙げられる。
 前記ポリカーボネートポリオールとしては、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、又はポリテトラメチレングリコールなどのジオールと、ホスゲン、ジアリルカーボネート(例えばジフェニルカーボネート)又は環式カーボネート(例えばプロピレンカーボネート)との反応生成物などが挙げられる。
 前記ポリオールポリマーとしては、弾性のある発泡ポリウレタンが得られやすいという点で、数平均分子量が800~8000であるものが好ましく、具体的には、ポリテトラメチレングリコール(PTMG)、エチレンオキサイド付加ポリプロピレンポリオールが好ましい。
 なお、本明細書において、数平均分子量は、GPC(ゲル浸透クロマトグラフィー)によって測定した値を意味する。
 前記ポリアミン化合物としては、4,4’-メチレンビス(2-クロロアニリン)(MOCA)、2,6-ジクロロ-p-フェニレンジアミン、4,4’-メチレンビス(2,3-ジクロロアニリン)、3,5-ビス(メチルチオ)-2,4-トルエンジアミン、3,5-ビス(メチルチオ)-2,6-トルエンジアミン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン、トリメチレングリコール-ジ-p-アミノベンゾエート、1,2-ビス(2-アミノフェニルチオ)エタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタンなどが挙げられる。
 第1実施形態に係る研磨パッドは、上記の如く構成されてなるが、次に、第1実施形態に係る研磨パッドの製造方法について説明する。
 第1実施形態に係る研磨パッドの製造方法は、ポリウレタン樹脂と酸化セリウム粒子とを含む高分子体によって形成されたパッド本体を有する研磨パッドを作製する。
 第1実施形態に係る研磨パッドの製造方法は、イソシアネート基を分子内に2つ以上液状プレポリマーと、酸化セリウム粒子とを混合して混合液を得ることにより、該混合液中に酸化セリウム粒子を分散させる分散工程と、前記混合液と、活性水素を分子内に2つ以上含む有機化合物とを混合することにより、前記液状プレポリマーを硬化させる硬化工程とを実施する。
 第1実施形態に係る研磨パッドの製造方法は、30μm以上の粒径となって前記高分子体に含まれる酸化セリウム粒子の割合が7,000個/cm以下となるように前記分散工程を実施する。
 前記分散工程において、せん断応力を高くして、液状プレポリマーと、酸化セリウム粒子とを撹拌させることによって、高分子体に含まれる酸化セリウム粒子を小さくすることができる。
 また、前記分散工程において、液状プレポリマーと、酸化セリウム粒子との撹拌時間を長くすることによっても、高分子体に含まれる酸化セリウム粒子を小さくすることができる。
 第1実施形態に係る研磨パッドの製造方法は、最大粒子径が80μm以下となって前記高分子体に酸化セリウム粒子が含まれるように前記分散工程を実施することが好ましい。
 前記酸化セリウム粒子の凝集を抑制するという観点から、前記液状プレポリマーの粘度は、1500~3000cpsであることが好ましい。
<第2実施形態>
 次に、第2実施形態の研磨パッド及びその製造方法について説明する。
 尚、第1実施形態と重複する説明は繰り返さない。第2実施形態で特に説明のないものは、第1実施形態で説明したものと同じ内容とする。
 第2実施形態に係る研磨パッドでは、前記酸化セリウム粒子は、最大粒子径が80μm以下となって前記高分子体に含まれていることが重要であり、最大粒子径が30~70μmとなって前記高分子体に含まれていることが好ましく、最大粒子径が40~50μmとなって前記高分子体に含まれていることがより好ましい。
 前記酸化セリウム粒子は最大粒子径が80μm以下となって前記高分子体に含まれていることにより、高分子体に含まれる比較的大きな酸化セリウム粒子の数が抑制される。その結果、第2実施形態に係る研磨パッドによれば、被研磨物にスクラッチが生じ難くなる。
 また、前記酸化セリウム粒子は、30μm以上の粒径となって前記高分子体に含まれる割合が、7,000個/cm以下であることが好ましく、200~6,000個/cmであることがより好ましく、1,000~4,000個/cmであることが更により好ましく、1,000~2,000個/cmであることが特により好ましい。
 前記酸化セリウム粒子は、30μm以上の粒径となって前記高分子体に含まれる割合が、7,000個/cm以下であることにより、高分子体に含まれる比較的大きな酸化セリウム粒子の数が抑制される。その結果、第2実施形態に係る研磨パッドによれば、被研磨物にスクラッチがより一層生じ難くなる。
 前記酸化セリウム粒子は、30μm以上の粒径となって前記高分子体に含まれる割合が、200個/cm以上であることにより、カットレートを高めやすい、酸化セリウム粒子とポリウレタン樹脂との間の界面が多くできる。その結果、第2実施形態に係る研磨パッドは、ドレス性に優れたものとなる。
 第2実施形態に係る研磨パッドの製造方法は、最大粒子径が80μm以下となって前記高分子体に酸化セリウム粒子が含まれるように前記分散工程を実施する。
 第2実施形態に係る研磨パッドの製造方法は、30μm以上の粒径となって前記高分子体に含まれる酸化セリウム粒子の割合が7,000個/cm以下となるように前記分散工程を実施することが好ましい。
 本実施形態に係る研磨パッドは、上記のように構成されているので、以下の利点を有するものである。
 本発明者が鋭意研究したところ、従来の研磨パッドでは、酸化セリウム粒子が凝集により大きなものとなって研磨面に存在し、このことがスクラッチの原因となっていることを見出し、第1、第2実施形態を完成するに至った。
 すなわち、第1実施形態に係る研磨パッドは、研磨面を有する研磨パッドである。
 また、第1実施形態に係る研磨パッドは、ポリウレタン樹脂と酸化セリウム粒子とを含む高分子体によって形成されたパッド本体を有する。
 前記パッド本体は、前記研磨面を構成する部分となっている。
 前記酸化セリウム粒子は、1次粒子及び1次粒子が複数凝集した2次粒子となって前記高分子体に含まれている。
 また、前記酸化セリウム粒子は、30μm以上の粒径となって前記高分子体に含まれる割合が7,000個/cm以下である。
 斯かる研磨パッドは、被研磨物にスクラッチが生じ難い研磨パッドになり得る。
 また、第1実施形態に係る研磨パッドでは、好ましくは、前記酸化セリウム粒子は、最大粒子径が80μm以下となって前記高分子体に含まれる。
 また、第2実施形態に係る研磨パッドは、研磨面を有する研磨パッドである。
 また、第2実施形態に係る研磨パッドは、ポリウレタン樹脂と酸化セリウム粒子とを含む高分子体によって形成されたパッド本体を有する。
 前記パッド本体は、前記研磨面を構成する部分となっている。
 前記酸化セリウム粒子は、1次粒子及び1次粒子が複数凝集した2次粒子となって前記高分子体に含まれている。
 また、前記酸化セリウム粒子は、最大粒子径が80μm以下となって前記高分子体に含まれている。
 斯かる研磨パッドは、被研磨物にスクラッチが生じ難い研磨パッドになり得る。
 さらに、第1、2実施形態に係る研磨パッドでは、好ましくは、前記酸化セリウム粒子は、レーザー回折法によって測定される体積基準のメジアン径が、0.80~2.00μmとなって前記高分子体に含まれている。
 なお、本発明に係る研磨パッドは、第1、第2実施形態に限定されるものではない。また、本発明に係る研磨パッドは、上記した作用効果に限定されるものでもない。本発明に係る研磨パッドは、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 例えば、本発明に係る研磨パッドでは、前記高分子体が発泡体となっていてもよい。
 前記高分子体が発泡体となっている場合には、前記分散工程では、発泡剤をさらに含む前記混合液を作製する。
 前記発泡剤としては、前記発泡ポリウレタンが成形される際に、気体を発生させて気泡となり、前記発泡ポリウレタン中に気泡を形成させるものであれば特に限定されるものではなく、例えば、加熱により分解してガスを発生させる有機化学発泡剤、沸点が-5~70℃の低沸点炭化水素、ハロゲン化炭化水素、水、液化炭酸ガスなどを単独でまたは組み合わせて用いることができる。
 前記有機化学発泡剤としては、例えば、アゾ系化合物(アゾジカルボンアミド、アゾビスイソブチロニトリル、ジアゾアミノベンゼン、アゾジカルボン酸バリウム等)、ニトロソ化合物(N,N’-ジニトロソペンタメチレンテトラミン、N,N’-ジニトロソ-N,N’-ジメチルテレフタルアミド等)、スルホニルヒドラジド化合物〔p,p’-オキシビス(ベンゼンスルホニルヒドラジド)、p-トルエンスルホニルヒドラジド等〕等が挙げられる。
 前記低沸点炭化水素としては、例えば、ブタン、ペンタン、シクロペンタン、及びこれらの混合物などが挙げられる。
 前記ハロゲン化炭化水素としては、塩化メチレン、HFC(ハイドロフルオロカーボン類)等が挙げられる。
 また、前記発泡剤は、加熱膨張性球状体であってもよい。該加熱膨張性球状体の粒径は、例えば、2~100μmである。該加熱膨張性球状体は、熱可塑性樹脂で形成された中空体と、中空体の中空部分に設けられた液状の炭化水素とを備える。前記加熱膨張性球状体としては、例えば、日本フィライト社製のExpancel(登録商標)や、松本油脂製薬社製の熱膨張性マイクロカプセル(商品名:マツモトマイクロスフェアー(登録商標)(例えば、F-48D等))などが挙げられる。
 次に、実施例及び比較例を挙げて本発明についてさらに具体的に説明する。
(実施例1)
 末端基としてイソシアネートを2つ有する液状ウレタンプレポリマーと、酸化セリウム粒子としてのMirek(登録商標)E30(三井金属工業社製)と、発泡剤としての熱膨張性マイクロカプセル(F-48D)とを槽内に入れ撹拌機(撹拌翼:ディスクタイプ及びパドルタイプ、撹拌翼の直径:115mm、回転速度:1350rpm)で10分間撹拌して混合液を得た。なお、材料として用いた酸化セリウム粒子のメジアン径は、上述の方法で求めた。
 そして、該混合液と、4,4’-メチレンビス(2-クロロアニリン)(MOCA)とを混合して重合発泡させ、円板状の高分子体たる研磨パッド(酸化セリウム粒子の濃度:20.0質量%)(820mm(直径)×2mm(厚み))を得た。
 レーザー回折法によって測定される、前記高分子体に含まれる前記酸化セリウム粒子の体積基準のメジアン径は、1.26μmであった。なお、このメジアン径は、上述した方法で求めた。
(実施例2)
 酸化セリウム粒子としてMirek(登録商標)E10(三井金属工業社製)を用いたこと、混合液を得るための撹拌時間を15分間としたこと、及び、研磨パッドにおける酸化セリウム粒子の濃度を7.0質量%とした以外は、実施例1と同様にして高分子体たる研磨パッドを得た。
 レーザー回折法によって測定される、前記高分子体に含まれる前記酸化セリウム粒子の体積基準のメジアン径は、0.97μmであった。なお、このメジアン径は、上述した方法で求めた。
(実施例3)
 実施例1よりも高いせん断速度で撹拌したこと、混合液を得るための撹拌時間を5分間としたこと、及び、高分子体たる研磨パッドにおける酸化セリウム粒子の濃度を23.9質量%とした以外は、実施例2と同様にして高分子体たる研磨パッドを得た。
(実施例4)
 混合液を得るための撹拌時間を15分間としたこと、及び、高分子体たる研磨パッドにおける酸化セリウム粒子の濃度を10.0質量%とした以外は、実施例1と同様にして高分子体たる研磨パッドを得た。
(比較例1)
 混合液を得るための撹拌時間を5分間としたこと、及び、高分子体たる研磨パッドにおける酸化セリウム粒子の濃度を23.9質量%とした以外は、実施例1と同様にして高分子体たる研磨パッドを得た。
(粒子径の測定)
 上述した方法で、30μm以上の粒径となって高分子体に含まれる前記酸化セリウム粒子の割合(以下、単に「粒径30μm以上の粒子割合」ともいう。)、及び、高分子体における酸化セリウム粒子の平均粒子径(以下、単に「平均粒子径」ともいう。)を求めた。
(研磨試験)
 以下の条件下で高分子体たる研磨パッドを用いてガラス板(400mm(縦)×300mm(横)×0.4mm(厚み))を2枚研磨した。
・研磨圧力:90gf/cm
・研磨時間:10min
・研磨スラリー:酸化セリウム粒子(Mirek(登録商標)E30、三井金属工業社製)及び水を含有する研磨スラリー(Mirek(登録商標)E30の濃度:7質量%)
 そして、光学顕微鏡を用いて、研磨後のガラス板の表面を観察し、ガラス板2枚におけるスクラッチ(長さが500μm以上であるスクラッチ)の合計数(以下、単に「スクラッチの合計数」ともいう。)を確認した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~4の研磨パッドを用いた場合ではスクラッチが確認されなかったが、比較例1の研磨パッドを用いた場合ではスクラッチが確認された。

Claims (4)

  1.  研磨面を有する研磨パッドであって、
     ポリウレタン樹脂と酸化セリウム粒子とを含む高分子体によって形成されたパッド本体を有し、
     前記パッド本体が、前記研磨面を構成する部分となっており、
     前記酸化セリウム粒子は、1次粒子及び1次粒子が複数凝集した2次粒子となって前記高分子体に含まれ、且つ、30μm以上の粒径となって前記高分子体に含まれる割合が7,000個/cm以下である、研磨パッド。
  2.  前記酸化セリウム粒子は、最大粒子径が80μm以下となって前記高分子体に含まれる、請求項1に記載の研磨パッド。
  3.  研磨面を有する研磨パッドであって、
     ポリウレタン樹脂と酸化セリウム粒子とを含む高分子体によって形成されたパッド本体を有し、
     前記パッド本体が、前記研磨面を構成する部分となっており、
     前記酸化セリウム粒子は、1次粒子及び1次粒子が複数凝集した2次粒子となって前記高分子体に含まれ、且つ、最大粒子径が80μm以下となって前記高分子体に含まれている、研磨パッド。
  4.  前記酸化セリウム粒子は、レーザー回折法によって測定される体積基準のメジアン径が、0.80~2.00μmとなって前記高分子体に含まれている、請求項1~3の何れか1項に記載の研磨パッド。
PCT/JP2017/033533 2016-09-16 2017-09-15 研磨パッド WO2018052133A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780053882.XA CN109689294B (zh) 2016-09-16 2017-09-15 研磨垫
JP2018539197A JP7123799B2 (ja) 2016-09-16 2017-09-15 研磨パッド
KR1020197006222A KR102449663B1 (ko) 2016-09-16 2017-09-15 연마 패드

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016181919 2016-09-16
JP2016-181919 2016-09-16

Publications (1)

Publication Number Publication Date
WO2018052133A1 true WO2018052133A1 (ja) 2018-03-22

Family

ID=61619530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033533 WO2018052133A1 (ja) 2016-09-16 2017-09-15 研磨パッド

Country Status (5)

Country Link
JP (1) JP7123799B2 (ja)
KR (1) KR102449663B1 (ja)
CN (1) CN109689294B (ja)
TW (1) TWI745432B (ja)
WO (1) WO2018052133A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111558865A (zh) * 2020-05-23 2020-08-21 安徽财经大学 一种大尺寸tft-lcd玻璃基板的面研磨装置及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270883A (ja) * 1990-03-22 1991-12-03 Mitsui Mining & Smelting Co Ltd 酸化セリウム研磨材
JPH10249737A (ja) * 1997-03-14 1998-09-22 Nikon Corp 磁気記録媒体用基板の研磨用パッド及び研磨方法
JP2000114211A (ja) * 1998-08-05 2000-04-21 Showa Denko Kk Lsiデバイス研磨用研磨材組成物及び研磨方法
WO2000073211A1 (fr) * 1999-05-28 2000-12-07 Hitachi Chemical Co., Ltd. Procede de fabrication d'oxyde de cerium, abrasif a base de cet oxyde, procede de polissage de substrat avec cet abrasif et procede de fabrication de dispositif a semiconducteur
JP2002346912A (ja) * 2001-05-18 2002-12-04 Nippon Sheet Glass Co Ltd 情報記録媒体用ガラス基板及びその製造方法
JP2003062754A (ja) * 2001-08-24 2003-03-05 Ricoh Co Ltd 研磨具及び研磨具の製造方法
JP2004358584A (ja) * 2003-06-03 2004-12-24 Fuji Spinning Co Ltd 研磨布及び研磨加工方法
JP2005007520A (ja) * 2003-06-19 2005-01-13 Nihon Micro Coating Co Ltd 研磨パッド及びその製造方法並びに研磨方法
JP2007250166A (ja) * 2006-02-14 2007-09-27 Hoya Corp 磁気ディスク用ガラス基板の製造方法
JP2012502501A (ja) * 2008-09-12 2012-01-26 フエロ コーポレーション 化学的機械研磨用組成物、その製造方法、及びその使用方法
JP2015140402A (ja) * 2014-01-29 2015-08-03 東ソー株式会社 遊離砥粒、遊離砥粒研磨用研磨剤及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128573A (ja) * 1984-07-18 1986-02-08 Mitsubishi Mining & Cement Co Ltd 研磨パツド及びその製造方法
JP2000273443A (ja) * 1999-03-23 2000-10-03 Asahi Glass Co Ltd ディスプレイ用ガラス基板の研磨用砥材、研磨方法および砥材の品質評価方法
KR101186531B1 (ko) * 2009-03-24 2012-10-08 차윤종 폴리우레탄 다공질체의 제조방법과 그 제조방법에 따른 폴리우레탄 다공질체 및 폴리우레탄 다공질체를 구비한 연마패드
CN104552033A (zh) * 2013-10-16 2015-04-29 三芳化学工业股份有限公司 制造研磨垫及研磨装置的方法
CN104552034B (zh) * 2013-10-18 2019-04-09 三芳化学工业股份有限公司 研磨垫、研磨装置及制造研磨垫的方法
KR102398130B1 (ko) * 2014-10-31 2022-05-13 주식회사 쿠라레 연마층용 비다공성 성형체, 연마 패드 및 연마 방법
CN105500225B (zh) * 2015-12-25 2018-03-02 江苏锋芒复合材料科技集团有限公司 一种高综合性能复合研磨片及其制造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270883A (ja) * 1990-03-22 1991-12-03 Mitsui Mining & Smelting Co Ltd 酸化セリウム研磨材
JPH10249737A (ja) * 1997-03-14 1998-09-22 Nikon Corp 磁気記録媒体用基板の研磨用パッド及び研磨方法
JP2000114211A (ja) * 1998-08-05 2000-04-21 Showa Denko Kk Lsiデバイス研磨用研磨材組成物及び研磨方法
WO2000073211A1 (fr) * 1999-05-28 2000-12-07 Hitachi Chemical Co., Ltd. Procede de fabrication d'oxyde de cerium, abrasif a base de cet oxyde, procede de polissage de substrat avec cet abrasif et procede de fabrication de dispositif a semiconducteur
JP2002346912A (ja) * 2001-05-18 2002-12-04 Nippon Sheet Glass Co Ltd 情報記録媒体用ガラス基板及びその製造方法
JP2003062754A (ja) * 2001-08-24 2003-03-05 Ricoh Co Ltd 研磨具及び研磨具の製造方法
JP2004358584A (ja) * 2003-06-03 2004-12-24 Fuji Spinning Co Ltd 研磨布及び研磨加工方法
JP2005007520A (ja) * 2003-06-19 2005-01-13 Nihon Micro Coating Co Ltd 研磨パッド及びその製造方法並びに研磨方法
JP2007250166A (ja) * 2006-02-14 2007-09-27 Hoya Corp 磁気ディスク用ガラス基板の製造方法
JP2012502501A (ja) * 2008-09-12 2012-01-26 フエロ コーポレーション 化学的機械研磨用組成物、その製造方法、及びその使用方法
JP2015140402A (ja) * 2014-01-29 2015-08-03 東ソー株式会社 遊離砥粒、遊離砥粒研磨用研磨剤及びその製造方法

Also Published As

Publication number Publication date
TWI745432B (zh) 2021-11-11
TW201815963A (zh) 2018-05-01
CN109689294A (zh) 2019-04-26
CN109689294B (zh) 2022-01-25
JP7123799B2 (ja) 2022-08-23
JPWO2018052133A1 (ja) 2019-07-04
KR20190043544A (ko) 2019-04-26
KR102449663B1 (ko) 2022-09-29

Similar Documents

Publication Publication Date Title
JP6539910B2 (ja) 研磨パッド及びその製造方法
WO2016158348A1 (ja) 研磨パッド
WO2017138564A1 (ja) 高分子体、研磨パッド、および、高分子体の製造方法
CN109957088B (zh) 研磨垫
WO2019131887A1 (ja) 研磨パッド
JP6983001B2 (ja) 研磨パッド
JP7123799B2 (ja) 研磨パッド
JP2005068168A (ja) ガラス研磨ポリウレタンパッド用2液型組成物、該組成物を用いたガラス研磨ポリウレタンパッド、及びその製造方法
JP2020104235A (ja) 研磨パッド
JP7270330B2 (ja) ポリウレタン樹脂発泡体、および、ポリウレタン樹脂発泡体の製造方法
JP7489808B2 (ja) 研磨パッド、研磨方法及び研磨パッドの評価方法
JP2017064889A (ja) 研磨パッド
JP2018171675A (ja) 研磨パッド
JP6303482B2 (ja) ウレタン組成物、硬化物、及び、研磨材
JP2020040129A (ja) 研磨パッド、研磨パッドの製造方法、及び被研磨物の表面を研磨する方法
WO2019074098A1 (ja) 研磨パッド及びその製造方法
WO2019131886A1 (ja) 研磨パッド
JP2019034385A (ja) 研磨パッド
JP6570404B2 (ja) 研磨パッド
JP2021112801A (ja) 研磨パッド
JP2021160026A (ja) 研磨パッド、研磨パッドの製造方法、光学材料又は半導体材料の表面を研磨する方法、及び研磨パッドの評価方法
JP2022098805A (ja) 研磨パッド
JP2017064885A (ja) 研磨パッド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17851031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539197

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197006222

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17851031

Country of ref document: EP

Kind code of ref document: A1