WO2018043676A1 - 信号処理装置におけるパラメータ設定装置及び方法 - Google Patents

信号処理装置におけるパラメータ設定装置及び方法 Download PDF

Info

Publication number
WO2018043676A1
WO2018043676A1 PCT/JP2017/031458 JP2017031458W WO2018043676A1 WO 2018043676 A1 WO2018043676 A1 WO 2018043676A1 JP 2017031458 W JP2017031458 W JP 2017031458W WO 2018043676 A1 WO2018043676 A1 WO 2018043676A1
Authority
WO
WIPO (PCT)
Prior art keywords
operation mode
adjuster
change
parameter
value
Prior art date
Application number
PCT/JP2017/031458
Other languages
English (en)
French (fr)
Inventor
斉藤 康祐
Original Assignee
ヤマハ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ株式会社 filed Critical ヤマハ株式会社
Priority to JP2018537416A priority Critical patent/JP6614358B2/ja
Priority to CN201780050722.XA priority patent/CN110024417B/zh
Publication of WO2018043676A1 publication Critical patent/WO2018043676A1/ja
Priority to US16/282,711 priority patent/US10620907B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/02Arrangements for generating broadcast information; Arrangements for generating broadcast-related information with a direct linking to broadcast information or to broadcast space-time; Arrangements for simultaneous generation of broadcast information and broadcast-related information
    • H04H60/04Studio equipment; Interconnection of studios
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/008Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels

Definitions

  • the present invention relates to a setting device and method used for setting a parameter for signal adjustment in a signal processing device such as an audio mixer.
  • an audio mixer (hereinafter simply referred to as “mixer”) installed in a concert venue, etc., roughly adjusts the sound characteristics of the input sound signal in each channel, and selectively selects the processed sound signal as a bus.
  • sound signals supplied from one or a plurality of channels are mixed, and the mixing result is output to an output destination.
  • the mixer memory stores values of all parameters used for mixer signal processing including sound characteristic processing for each channel and sound signal path setting processing.
  • the mixer controls the signal processing of the mixer based on the value of each parameter stored in the memory.
  • a mixer has a function called scene or snapshot (hereinafter referred to as a scene function).
  • the scene function saves all or part of parameter values as one scene data in memory, and reads the saved scene data to reproduce the setting status corresponding to the saved scene data at once. It is a function that.
  • a scene function By preparing a plurality of types of scene data corresponding to various scenes, it is possible to quickly transition to a setting state suitable for the scene. For example, by preparing scene data for each song in a concert, it is possible to quickly change the setting according to the progress of the concert program. Also, for example, in theater, by preparing scene data for each curtain, it is possible to quickly change the setting for each curtain.
  • the parameter value is temporarily changed and then returned to the original value.
  • an effector such as reverb
  • the effector is restored to its original state when the performance is finished.
  • the other people's channels are temporarily turned off, and the turned off channels are turned on after the utterance ends.
  • Operation may be performed.
  • the operator manually returns the parameter value to the original value by manually operating the operator.
  • the operation of returning to the original value is sensuous. Therefore, it has not always been possible to return the parameter value to the original value accurately and quickly. In particular, it is difficult for an operator with a low level of operation skill to return the parameter value to the original value accurately and quickly.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a setting device and method that can easily and efficiently adjust parameter values by temporary operation. To do.
  • a setting device for setting a signal processing parameter in a signal processing device includes: an adjuster operable by a user for adjusting the parameter; and the adjustment A mode selector for selecting a temporary operation mode that is a mode for temporarily operating the device; a memory; and (1) an adjustment operation by the adjuster performed in a state where the temporary operation mode is selected.
  • Storage control for storing the parameter adjustment value before the change in the memory as a change history, and (2) changing the parameter adjustment value in the adjuster based on the change history in response to the end of the temporary operation mode.
  • a controller for performing return control to return to the previous parameter adjustment value.
  • the temporary operation mode can be selected by the mode selector at any point during operation of the signal processing device, for example, in accordance with a user operation.
  • the user can temporarily change the parameter adjustment value by operating the adjuster temporarily.
  • the temporary operation mode when the user performs parameter adjustment by operating the adjuster, the parameter adjustment value before the change is stored in the memory as a change history by the storage control by the controller. Thereafter, by the return control by the controller, the parameter adjustment value in the adjuster is returned to the parameter adjustment value before the change based on the change history in accordance with the end of the temporary operation mode.
  • the parameter adjustment value of the adjuster is automatically returned to the parameter adjustment value before the change (for example, the value immediately before the temporary operation mode is started) in accordance with the end of the temporary operation mode. Therefore, it is possible to save the trouble of returning the parameter adjustment value to the original value by a user operation, and to return it to the original value accurately and immediately.
  • the temporary change operation of the parameter adjustment value of the adjuster (use of the adjuster for a temporary purpose) can be performed very easily.
  • the temporary operation mode according to the present invention for example, in a configuration in which a plurality of parameters are adjusted using a plurality of adjusters, values of some parameters among a plurality of parameters set in the plurality of adjusters are used. This can be advantageously used when the value is temporarily changed.
  • the adjuster corresponding to a desired parameter is operated in a state where the temporary operation mode is selected by the mode selector, only the parameter set in the adjuster can be temporarily adjusted / changed arbitrarily. . Thereafter, in response to the end of the temporary operation mode, the operation of returning to the original state (that is, the value before the change) can be performed quickly, easily, and accurately. At that time, it is not necessary to save all of the plurality of parameters as one set of scene data, which is efficient. Therefore, according to the present invention, the operation of temporarily changing the parameter value and then returning it to the value before the change can be performed quickly, easily and accurately. Therefore, it is possible to efficiently adjust the parameters intended by the operator.
  • the temporary operation mode may be terminated by any method, and the scope of the present invention is not limited by the method for terminating the temporary operation mode.
  • the user can operate the mode selector to switch between the start (ON) and end (OFF) of the temporary operation mode. You can do it.
  • the present invention can be implemented and configured not only as an apparatus invention but also as a method invention including steps corresponding to each component constituting the apparatus. Furthermore, the present invention can also be implemented as a non-transitory computer-readable storage medium storing instructions executable by one or more processors to perform the above method.
  • the block diagram which shows the electrical hardware structural example of the audio mixer to which the setting apparatus of FIG. 1 is applied.
  • FIG. 3 is a block diagram illustrating a signal processing configuration example of the audio mixer of FIG. 2.
  • FIG. 3 is a diagram for explaining a configuration example of an operation panel of the audio mixer of FIG.
  • the figure which is another example of a change history list Comprising: An example of the change history list containing change timing information.
  • FIG. 1 is a conceptual block diagram illustrating a configuration example of a setting device 10 in a signal processing device according to the present invention.
  • the setting device 10 is a mode selection for selecting a regulator 11 that can be operated by a user and a temporary operation mode that is a mode in which the regulator 11 is temporarily operated for adjusting parameters.
  • the control unit 14 (1) storage control for storing the parameter adjustment value before the change in the memory as a change history in response to the adjustment operation by the adjuster performed in the state where the temporary operation mode is selected; (2) In response to the end of the temporary operation mode, return control is performed to return the parameter adjustment value in the adjuster to the parameter adjustment value before the change based on the change history.
  • a signal processing device to which the setting device 10 of FIG. 1 is applied is an acoustic device that handles sound signals such as an audio mixer, for example.
  • an audio mixer 20 (hereinafter also simply referred to as “mixer”) will be described.
  • the audio mixer 20 is assumed to be a digital mixer that processes a sound signal exclusively by digital signal processing.
  • FIG. 2 is a block diagram showing an example of the electrical hardware configuration of the mixer 20.
  • the mixer 20 includes a CPU (Central Processing Unit) 21, a memory 22, a display 23, an operator group 24, and a mixing unit (“MIX” in the drawing) 25, and each unit 21-25 Are connected via the bus 26.
  • CPU Central Processing Unit
  • MIX mixing unit
  • the CPU 21 executes various programs stored in the memory 22 and controls the mixer 20.
  • the memory 22 stores various programs executed by the CPU 21 and various data in a nonvolatile manner, and is used for a load area and a work area for programs executed by the CPU 21.
  • the memory 22 may be configured by appropriately combining various memory devices such as a read-only memory, a random access memory, a flash memory, or a hard disk. A part of the storage area of the memory 22 functions as the memory 13 for storing the change history.
  • the display 23 displays various information based on the display control signal given from the CPU 21 by various images and character strings.
  • the operator group 24 includes a plurality of operators arranged on the operation panel of the mixer 20 and related interface circuits.
  • the operator group 24 includes a plurality of fader operators, and rotations used for equalizers, pan adjustments, and the like. A type knob operator and an operation mode switching switch to be described later are included.
  • the operator for adjusting or setting various parameters of the acoustic signal can be manually operated by the user and can be automatically operated by an electric driver such as a motor.
  • the user uses the operator group 24 to perform various operations including operations for setting the sound signal path and adjusting various parameter values.
  • the CPU 21 acquires a detection signal corresponding to an input operation on the operator group 24 or the display 23 by the user, and controls the operation of the mixer 20 based on the detection signal.
  • Each of the operators for adjusting or setting various parameters of the acoustic signal among the plurality of operators in the operator group 24 corresponds to the adjuster 11 described above.
  • the mixing unit 25 includes, for example, a DSP (Digital Signal Processor) or a signal processing arithmetic device virtually realized by software stored in the CPU 21 and the memory 22.
  • the mixing unit 25 executes one or more sound signals supplied from an input device (not shown) by executing a signal processing program, and outputs the processed sound signal to an output device (not shown).
  • a part of the storage area of the memory 22 functions as a current memory, and various parameters used for signal processing in the mixing unit 25 are stored in the current memory. Therefore, the signal processing by the mixing unit 25 is controlled based on the parameter values stored in the current memory in the memory 22.
  • the values of various parameters stored in the current memory are updated according to the operation of the corresponding operator in the operator group 24.
  • FIG. 3 is a block diagram showing a configuration example of signal processing by the mixing unit 25.
  • the mixer 20 includes a plurality of channels 30 and a plurality of buses 40.
  • Each channel 30 performs various signal processing including volume adjustment on the input sound signal, and supplies the processed sound signal to one or a plurality of buses 40 selected by the operator.
  • Each bus 40 mixes sound signals supplied from one or a plurality of channels 30, and outputs the mixed sound signals via corresponding output channels (not shown).
  • the operator of the mixer 20 uses the operator group 24 to adjust the value of the signal processing parameter of each channel 30 and to set the path of the sound signal including the connection between each channel 30 and each bus 40.
  • the CPU 21 changes the value of the parameter stored in the memory 22 in accordance with the operation of the operator in the operator group 24.
  • FIG. 4 shows a configuration example of the operation panel of the mixer 20.
  • the operation panel includes a plurality of channel strips 50.
  • the channel strip 50 includes a fader operator 51 for volume adjustment, a rotary operator 52 to which an arbitrary parameter can be assigned, an on / off switch 53 to the CUE bus, a channel on / off switch 54, and a channel selection switch 55.
  • Each channel strip 50 is assigned one channel 30 as an operation target.
  • the operator can adjust the values of various parameters such as the volume of the assigned channel 30 using various operators provided in each channel strip 50.
  • Various operators 51 to 55 of each channel strip 50 are included in the operator group 24 of FIG.
  • the operation panel is also provided with a display 23.
  • the display 23 displays various information such as various parameter values.
  • the mixer 20 After adjusting a value of a certain parameter, when it is desired to return to a value before the adjustment (also referred to as “original value” or “original state”), it is quickly and accurately performed manually. It is difficult to restore the original value. In particular, when all the parameter values are returned to the original values after adjusting the values of a plurality of parameters, the difficulty is remarkable.
  • the mixer 20 according to this embodiment is configured such that the temporary operation mode can be selected as a mode for temporarily operating the operator group 24. As will be described in detail later, when the temporary operation mode is selected (that is, from the start to the end of the temporary operation mode), the user operates any operation element in the operation element group 24 to operate the operation element.
  • the value of the parameter corresponding to can be temporarily adjusted arbitrarily, and then, after the temporary operation mode ends, the parameter value temporarily adjusted can be quickly returned to the value before adjustment. It can be done easily and accurately.
  • a state where the temporary operation mode is not selected is referred to as “normal operation mode”.
  • the mixer 20 does not change in either the normal operation mode or the temporary operation mode, and accepts a user operation on each operator (that is, the adjuster 11) in the operator group 24. I want to be. Therefore, the operation feeling of the user with respect to the operator group 24 may be not particularly changed regardless of whether the operation mode is the normal operation mode or the temporary operation mode.
  • the temporary operation mode refers to each operator (that is, the adjuster 11) in the operator group 24 by starting the temporary operation mode so that the user can perceive it. ) Is temporarily operated, and the corresponding parameter can be temporarily adjusted.
  • the temporary operation means that the parameter adjustment state is returned to the original state when it is finished, that is, the operation performed during that time (during the temporary operation mode) is automatically canceled. , Has the character of transient operation.
  • the operation panel of the mixer 20 includes a mode switch 60 for switching the operation mode.
  • the mode changeover switch 60 functions as the mode selector 12 for selecting the temporary operation mode.
  • the mode switch 60 starts the temporary operation mode in response to the pressing operation, maintains the temporary operation mode while maintaining the pressing operation, and ends the temporary operation mode when the pressing operation is released. It consists of an unlatch type push button switch that returns to the normal operation mode.
  • the mode changeover switch 60 is configured by a latch-type push button switch that is maintained in a switch-on state when the switch is pressed once and is switched off when the switch is pressed again. In that case, the temporary operation mode is started and maintained by operating the mode changeover switch 60 in the normal operation mode, and the temporary operation mode is ended by pressing the button during the temporary operation mode.
  • the mode switch 60 may be a switch dedicated to operation mode switching, or may be a switch using a general-purpose switch ("User Defined Key") to which a user can assign an arbitrary function.
  • FIG. 5 and 6 are flowcharts illustrating an example of parameter value adjustment processing using the temporary operation mode.
  • the CPU 21 of the mixer 20 detects the presence / absence of operation of the operator group 24 at predetermined intervals, and executes the processing of FIG. 5 when detecting the operation of the mode changeover switch 60, and some value in the channel strip 50.
  • the process of FIG. 6 is executed.
  • the operator operates the mode change switch 60, if the current operation mode is the normal operation mode (YES in step S1), the CPU 21 switches the operation mode from the normal operation mode to the temporary operation mode, and performs a temporary operation.
  • the mode is started (step S2).
  • step S2 performed by the CPU 21 corresponds to selecting (starting or turning on) the temporary operation mode in accordance with the operation of the mode switch 60. Thereafter, the operation mode of the operator group 24 in the mixer 20 is maintained in the temporary operation mode until the temporary operation mode is terminated in step S3 described later.
  • the CPU 21 determines the value of the parameter before being adjusted by the value adjustment operation. (That is, the value stored in the current memory in the memory 22 as the current value of the parameter) is stored in the memory 22 as the change history (step S11). After storing the current value stored in the current memory as the change history, the CPU 21 changes (that is, updates) the current value of the parameter in the current memory to a value corresponding to the current operation (step S12). Then, the process of FIG. By updating the contents of the current memory through the process of step S12, the parameter value adjustment result is reflected in the signal processing of the mixing unit 25.
  • step S11 performed by the CPU 21 corresponds to the storage control performed by the controller 14 in FIG.
  • step S12 performed by CPU21 is corresponded to adjustment of the parameter value according to operation of the adjuster 11 of FIG. 1 by a user.
  • one value adjustment operation refers to an operation until the adjusted value is determined by moving the operation element.
  • one value adjustment operation is to stop the movement of a certain channel fader after moving it from a position of -10 dB to a position of -15 dB.
  • FIG. 7 shows an example of the change history list recorded in the memory 22 as the change history.
  • FIG. 7 shows a change history list when the fader level of channel CH1 is first adjusted, then the fader level of another channel STIN1 is adjusted, and then the mix level of an effector (EFX1) is adjusted.
  • the change history list in FIG. 7 includes information for identifying each value adjustment operation (“operation # 1”, “operation # 2”, “operation # 3” in the figure) for each value adjustment operation, and the value adjustment operation.
  • the information for identifying the value adjustment operation includes a number indicating the order in which the value adjustment operations are performed (“adjustment order”). That is, the change history includes information for specifying the adjustment order of the parameter values.
  • step S3 a process for terminating the temporary operation mode is performed. That is, in step S3, the parameter value adjusted during the temporary operation mode is returned to the value before the adjustment based on the change history stored in step S11.
  • the operation element associated with the value of the parameter is an operation element (electric operation element) capable of automatically controlling the position of the knob portion, such as a moving fader
  • the CPU 21 changes the value according to the change of the value. The position of the knob part of the control is automatically controlled.
  • processing to end the temporary operation mode may include deleting the change history list from the memory 22.
  • the operator of the mixer 20 simply ends the temporary operation mode (switches the operation mode from the temporary operation mode to the normal operation mode), and quickly adjusts the parameter values adjusted during the temporary operation mode. It is possible to easily and accurately return to the value before the adjustment.
  • the change history list stores the value at the start of the temporary operation mode
  • the value of each parameter adjusted during the temporary operation mode can be changed by simply returning the operation mode to the normal operation mode. The value before the start of the temporary operation mode can be restored.
  • step S3 performed by the CPU 21 corresponds to the return control performed by the controller 14 of FIG. If the operator associated with the parameter value is not an automatically controllable operator, the user must manually operate the operator by displaying or instructing the operation position to which the operator should be returned. A configuration may be adopted that prompts the user to quickly return to the original position.
  • step S3 the CPU 21 sequentially returns the values of the parameters to the values before adjustment based on the adjustment order of the parameter values performed during the temporary operation mode.
  • the CPU 21 is in the same order as the parameter value adjustment order performed in the temporary operation mode (in the example of FIG. 7, “operation # 1”, “operation # 2”, “operation # 3”). Returns the parameter value. That is, the fader level of channel CH1 is first returned to “ ⁇ 10 dB”, then the fader level of channel STIN1 is returned to “ ⁇ 15 dB”, and then the mix level of EFX1 is returned to “20%”.
  • the CPU 21 performs the reverse of the adjustment order of the parameter values performed during the temporary operation mode (in the example of FIG.
  • step S3 is performed based on the change history stored in the memory, with one or more parameter adjustment values corresponding to one or more adjustment operations performed in the temporary operation mode, as the change history. In this order, the parameter adjustment values of the adjuster may be temporarily and sequentially reproduced.
  • the CPU 21 may return the values of a plurality of parameters adjusted during the temporary operation mode to the values before adjustment stored as the change history regardless of the adjustment order.
  • the values of a plurality of parameters adjusted during the temporary operation mode may be returned to the values before adjustment all at once (simultaneously in parallel).
  • the values of a plurality of parameters adjusted during the temporary operation mode may be returned to the values before adjustment in the order of channel numbers. For example, when the fader level of channel 1, the send level of channel 2, and the fader level of channel 3 are adjusted, the values are adjusted to the values before adjustment in the order of channels 1, 2, 3 or in the order of channels 3, 2, 1. return. In other words, the values are returned in the order of arrangement of the channel strips 50 on the operation panel of the mixer 20 (in order from the right or in order from the left).
  • the CPU 21 may gradually change the value of the parameter adjusted during the temporary operation mode to the value before the adjustment.
  • the CPU 21 can gradually return the parameter value adjusted during the temporary operation mode to the value before adjustment by the low-pass filter process. For example, when the pre-adjustment value stored as the change history is “ ⁇ 10 dB” and the fader level value after adjustment in the temporary operation mode is “5 dB”, the fader level value is changed from “5 dB” to “5 dB”. If it is changed to “ ⁇ 10 dB”, the sound volume changes abruptly.
  • the fader level value is gradually changed from “5 dB” to “ ⁇ 10 dB” by, for example, low-pass filter processing (continuously or over a plurality of stages). Thereby, it is possible to prevent a sudden change in sound characteristics such as the volume of the sound signal resulting from the processing of the mixing unit 25.
  • the CPU 21 stores the value in the current memory in the memory 22 in accordance with the value adjustment operation.
  • the parameter value is changed (step S13 in FIG. 6), and the process in FIG. 6 is completed. In this case, the CPU 21 does not perform processing for storing the value before adjustment as the change history.
  • the change history list further includes change timing information indicating the timing at which each value adjustment operation is performed, that is, the timing at which the parameter value is adjusted.
  • FIG. 8 shows an example of a change history list including change timing information, in which change histories of eight value adjustment operations “operation # 1” to “operation # 8” are recorded.
  • change timing information indicating the change timing is recorded in association with the change history of each value adjustment operation.
  • the change timing information of each value adjustment operation is, for example, the elapsed time from the start time of the temporary operation mode (that is, the time when the operation mode is switched to the temporary operation mode) to the time when the value adjustment operation is performed. Time (absolute time) is expressed in units of milliseconds (indicated as “ms” in FIG. 8), for example.
  • the CPU 21 stores, as a change history, that the mode switching operation (that is, the temporary operation mode start instruction) has been performed in step S2 of FIG. 22, the change timing information “0 ms” is stored in association with the change history, and time measurement by a timer is started.
  • the timer measures the elapsed time from the start of the temporary operation mode, for example, in milliseconds.
  • the change timing information indicates an elapsed time (absolute time) from the start time of the temporary operation mode to the time when the value adjustment operation is performed.
  • the change timing information “500 ms” is recorded in association with the change history of “operation # 1”.
  • the change timing information “650 ms” is recorded in association with the change history of “# 2”. . .
  • change history and change timing information related to eight value adjustment operations “operation # 1” to “operation # 8” performed during the temporary operation mode are recorded. Thereby, one change history list including change timing information as shown in FIG. 8 is created.
  • FIG. 9 shows a flowchart of a processing example in which the value of each parameter adjusted during the temporary operation mode is returned to the value before adjustment at the processing timing based on the change timing information.
  • the timer measures an elapsed time (for example, an absolute time) from the temporary operation mode end instruction point.
  • the CPU 21 checks whether there is an unprocessed value adjustment operation in the change history list. When no change history of the value adjustment operation is recorded in the change history list, such as when the value adjustment operation has not been performed once in the temporary operation mode (No in step S21), the CPU 21 performs processing shown in FIG. The process ends.
  • the CPU 21 adjusts the value adjustment operation performed during the temporary operation mode based on the change history list.
  • the processing targets are specified one by one in the reverse order. Therefore, first, the operation # 8 is a processing target.
  • step S23 the CPU 21 calculates timing (referred to as “processing timing”) for returning the value of the corresponding parameter to the value before adjustment based on the change timing information of the value adjustment operation specified as the processing target.
  • the processing timing represents, for example, the timing for returning to the value before the adjustment by the elapsed time (absolute time) from the temporary operation mode end instruction time.
  • Step S24 the CPU 21 sets the value of the corresponding parameter to the value before adjustment based on the change history of the value adjustment operation specified for the processing target.
  • the CPU 21 repeats the steps S22 to S24 until the processing is completed for all the value adjustment operations in the change history list (Yes in step S21).
  • the CPU 21 ends the process of FIG.
  • the CPU 21 when the timer is 0 ms, the CPU 21 returns the STIN fader value to ⁇ 5 dB based on the change history of the operation # 8, and then sets the operation # 7 as a processing target (step S22).
  • the processing timing “1400 ms” of operation # 7 is calculated from the difference between the change timing information of 8 and operation # 7 (step S23), and when the elapsed time of 1400 ms is counted by the timer, the mix level of EFX1 is returned to 30% ( Step S24).
  • the CPU 21 sets the operation # 6 as a processing target (step S22), and calculates the processing timing “2500 ms” of the operation # 6 from the difference between the change timing information of the operation # 8 and the operation # 6 (the step S23). )
  • the STIN fader is returned to -10 dB (step S24),. . .
  • the values of all the parameters from the operation # 8 to the operation # 1 can be returned to the values before the adjustment at the processing timing corresponding to the change timing information in the order opposite to the adjustment order.
  • the value adjustment operation performed during the temporary operation mode is restored to the value before adjustment so that it is reproduced in the reverse direction.
  • Processing can be performed.
  • the process for returning to the value before adjustment is also performed quickly.
  • the process for returning to the value before adjustment is also performed slowly. Done.
  • the return control performed in step S3 is based on the change history stored in the memory, and includes one or more parameter adjustment values before change corresponding to one or more adjustment operations performed in the temporary operation mode. Further, it may consist of sequentially reproducing the parameter adjustment values in the adjuster in the order of going back to the change history.
  • the parameter adjustment value in each adjuster is finally stored corresponding to the operation # 1 for the value immediately before the temporary operation mode is started (that is, “CH1 fader”).
  • “STIN fader” is returned to the value stored in correspondence with operation # 3
  • “EFX1_MIX_Value” is returned to the value stored in correspondence with operation # 5).
  • the processing timing calculated in step S23 may be a time interval (relative time) between the timing of the value adjustment operation to be processed and the timing of the value adjustment operation immediately before.
  • the processing timing of the operation # 8 is “0 ms” because there is no previous value adjustment operation
  • the processing timing of the operation # 7 is the changing timing of the operation # 8 (9500 ms) and the changing timing of the operation # 7 (8100 ms).
  • Difference “1400 ms” the processing timing of the operation # 6 is the difference between the change timing of the operation # 7 (8100 ms) and the change timing of the operation # 6 (7000 ms) “1100 ms”,. . . It becomes.
  • the CPU 21 measures the elapsed time from the processing execution time of the previous step S24 by the timer, and determines that the processing timing (relative time) has been reached.
  • the CPU 21 records the time interval (relative time) between two consecutive value adjustment operations as the change timing information associated with the change history in the temporary operation mode. Good.
  • the change timing information (relative time) of a certain value adjusting operation is, for example, a time interval between a certain value adjusting operation and the immediately preceding value adjusting operation.
  • the time interval (relative time) can be calculated based on the absolute time measured by the timer. Alternatively, the timer may measure the time interval (relative time).
  • the CPU 21 determines the value of the processing target based on the change timing information of the value adjustment operation immediately after the value adjustment operation of the processing target (that is, the processing target immediately before).
  • the time interval between a certain value adjustment operation and the value adjustment operation immediately thereafter may be recorded as change timing information (relative time).
  • the change timing information of the certain value adjustment operation is used as it is as the processing timing of the certain value adjustment operation.
  • step S22 the CPU 21 performs value adjustment operations performed during the temporary operation mode on the basis of the change history list one by one in the same order as the adjustment order. You may make it identify as a process target.
  • the CPU 21 performs operations # 1, # 2,. . . In the order of operation # 7 and operation # 8, the value is returned to the value before adjustment according to the processing timing based on the change timing information.
  • the return control performed in step S3 is based on the change history stored in the memory, and the one or more pre-change parameters corresponding to the one or more adjustment operations performed in the temporary operation mode.
  • the adjustment values may be sequentially reproduced as parameter adjustment values in the adjuster in the order of advancement to the change history.
  • the parameter adjustment value in each adjuster is finally set to the last operation performed in the temporary operation mode (that is, the operation # 4 for the “CH1 fader” and the “STIN fader”). Is returned to the value stored in correspondence with the operation # 8 and the operation "EFX1_MIX_Value" corresponding to the operation # 7). Even in the return control according to the order in which the change history is followed, if the operation is performed only once during the temporary operation mode with respect to the same parameter type, the adjustment is performed according to the end of the temporary operation mode. The parameter adjustment value in the device is returned to the value immediately before the temporary operation mode is started.
  • the change timing information included in the change history list may further include information for specifying the movement of the value adjustment operation, for example, the operation speed.
  • the CPU 21 changes the value of the parameter temporarily adjusted from the adjusted value at a speed corresponding to the value adjustment operation performed by the operator in the process of step S3 (specifically, FIG. 9).
  • the value before adjustment can be restored. For example, if the operator moves the controller quickly, the parameter value quickly returns to the value before adjustment.If the operator moves the controller slowly, the parameter value slowly changes to the value before adjustment. Return to value. Therefore, how to return the parameter value can be refined musically or acoustically effectively.
  • the change history list may be a record of only values at the time of starting the temporary operation mode.
  • the step S11 may be executed only when the value of the parameter is adjusted for the first time after the temporary operation mode is started. If at least the value at the start of the temporary operation mode is recorded, it can be restored to the value at the start of the temporary operation mode when the temporary operation mode ends.
  • a rule that is, a transition rule that defines how to return a value according to a parameter type is prepared, and the CPU 21 performs temporary operation according to the rule according to the parameter type in step S3.
  • the value of the parameter adjusted during the mode may be returned to the value before the adjustment.
  • the rule that defines how to return the value according to the parameter type is, for example, that the fader level value is gradually returned from the value at the end of the temporary operation mode to the value before adjustment (at the start of the temporary operation mode).
  • the parameter value related to the reverb effect is a rule that directly returns (that is, shifts) from the value at the end of the temporary operation mode to the value before adjustment. Thereby, the parameter value can be returned by an appropriate method according to the type of parameter.
  • a rule that is, a transition rule that defines how to return a value corresponding to various types of programs to which the mixer 20 (that is, the signal processing device) according to the present embodiment can be applied.
  • the CPU 21 returns the value of the parameter adjusted during the temporary operation mode to the value before the adjustment according to the rule according to the selected type of performance.
  • various types of performances to which the mixer 20 (ie, signal processing device) can be applied include music concerts, theater stages, and conferences.
  • Rules that specify how to return values according to the type of performance include, for example, rules that specify how values are returned at music concerts, rules that specify how values are returned at the theater stage, and how values are returned at meetings. It is a rule to prescribe. Thereby, the parameter value can be returned by an appropriate method according to the type of the performance.
  • the user may arbitrarily set a rule (migration rule) for returning to the value before adjustment in step S3.
  • a rule migration rule
  • parameter values can be returned in a musically or acoustically effective manner.
  • the switching unit 12 that switches the operation mode may be configured by a switch image displayed on the display 23.
  • the display 23 is configured by a touch panel display.
  • switch images corresponding to various parameters for each channel strip 50 are displayed. While the operator is touching a certain switch image, only the parameter corresponding to the switch image is in the “temporary operation mode”.
  • the CPU 21 responds to the value adjustment operation and the CPU 21 selects the operation parameter (i.e. Steps S10 to S12 are performed for the parameter corresponding to the switch image being touched on the display 23).
  • the CPU 21 performs step S3.
  • the mixer 20 includes an operation element operable in two directions, and functions as the adjuster 11 when the operation element is operated in the first direction, and the operation element is operated in the second direction. When configured, it may be configured to function as the mode selector 12.
  • the operation element that can be operated in two directions is, for example, a rotary operation element in which the knob portion can be operated in two directions of a push-in operation and a rotation operation.
  • the CPU 21 activates the value adjustment process of FIG. 6 in response to the rotation operation (operation in the first direction), and the operation mode switching process in FIG. 5 according to the push-in operation (operation in the second direction). Start up.
  • an operation element that can be operated in two directions is a fader operation element in which a knob portion can be operated in two directions of a push-in operation and a linear slide operation.
  • the CPU 21 activates the value adjustment process of FIG. 6 according to the slide operation (operation in the first direction), and the operation mode switching process of FIG. 5 according to the push-in operation (operation in the second direction). Start up.
  • the operation element that can be operated in the two directions may be, for example, an unlatched type that maintains a temporary operation mode by maintaining a depressed state and returns to a normal operation mode by releasing the depression.
  • the temporary parameter in the temporary operation mode can be obtained simply by performing the operation in the first direction (for example, rotating operation or sliding operation of the knob portion) while maintaining the pushing operation of the knob portion (operation in the second direction).
  • the value can be adjusted, and the value before the adjustment can be restored simply by releasing the push-in.
  • the operation element that can be operated in the two directions may be configured as a latch type that switches an operation mode for each pushing operation.
  • the temporary parameter in the temporary operation mode can be obtained simply by performing the operation in the first direction (for example, the rotation operation or the slide operation of the knob portion) after the pushing operation of the knob portion (operation in the second direction).
  • the value can be adjusted, and it can be restored to the value before the adjustment just by pressing the knob once again.
  • the mixer 20 includes an operator with a touch sense as the adjuster 11, and the CPU 21 starts a temporary operation mode in response to the operation of the mode changeover switch 60 or the switch image for mode changeover, Steps S11 and S12 are performed when the touch-sensitive operation element is operated during the temporary operation mode, and the operation end of the touch-sensitive operation element is detected by touch sense during the temporary operation mode.
  • the temporary operation mode may be terminated in step S3. That is, in FIG. 1, the controller 14 detects that the touch operation of the user with respect to the operator with touch sense is finished during the temporary operation mode based on the output of the operator with touch sense (adjuster 11). Accordingly, it may be determined that the temporary operation mode has ended and the return control is performed.
  • the mixer 20 includes an operation element capable of applying a reaction force as the adjuster 11, and generates a reaction force on the operation element in response to a user operation on the operation element.
  • an operation element capable of applying a reaction force as the adjuster 11, and generates a reaction force on the operation element in response to a user operation on the operation element.
  • the temporary operation mode is completed in response to the reaction force not being generated on the operation element.
  • detecting that the reaction force is no longer generated in the operation element functions as the process of step S3 (end of the temporary operation mode by the switching unit 12).
  • the controller that can apply reaction force is, for example, an operator that can automatically control the position of the knob with a motor or the like, and servo-controls to generate an appropriate amount of reaction force in the opposite direction to manual operation by the user. do it.
  • reaction force applied by the servo control when the reaction force applied by the servo control returns from the significant value to substantially 0, it can be detected that the reaction force is no longer generated in the operation element.
  • operation element capable of applying a reaction force is an operation element incorporating a biasing means such as a spring. In that case, when the operating element returns to a predetermined return position by the urging means, it can be detected that the reaction force is no longer generated on the operating element.
  • the temporary operation mode When the temporary operation mode is terminated according to the operation of the mode changeover switch 60 (mode selector), the temporary operation mode is collectively performed for a plurality of operators (adjuster 11) in the operator group 24. May be terminated.
  • the temporary operation mode is ended in response to the end of the operation of each operator (adjuster 11) in the operator group 24, the operator (adjustment) is adjusted in accordance with the end of the operation for each operator (adjuster 11).
  • the temporary operation mode may be terminated every time the device 11), or a plurality of operation devices (adjustment devices 11) in the operation device group 24 are collectively displayed in response to the end of one or an arbitrary number of operations. Then, the temporary operation mode may be terminated.
  • a method for ending the temporary operation mode in the above-described embodiment, a method by alternately switching the start (ON) and the end (OFF) of the temporary operation mode by the operation of the mode selector 12 or adjustment.
  • a technique for automatically terminating the temporary operation mode based on detecting that the adjustment operation has been completed by using an operation element with a touch sense or an operation element capable of applying a reaction force as the device 11.
  • the present invention is not limited to this, and for example, a dedicated switch or button may be prepared so that it can be operated by the user to end the temporary operation mode.
  • the operator himself / herself starts the temporary operation mode with the intention by the mode switching operation, and the adjustment is performed when the parameter value is adjusted after the start time.
  • the value change history is recorded for the adjusted parameter, and at the end of the temporary operation mode, only the adjusted parameter value can be returned to the value before the adjustment. Therefore, the parameter value can be temporarily changed and then returned to the value before the change quickly and easily and accurately.
  • the process of returning the parameter value is only for the parameter adjusted in the temporary operation mode, so it takes more time to return to the original state than the scene function that rewrites a large number of parameter values all at once. The time is short and the processing load is small.
  • the mixer 20 becomes inoperable or there is no problem that the sound signal output from the mixer 20 is cut off. Therefore, it is suitable for the purpose of temporarily changing the parameter value during a performance such as a concert or a play (that is, during the rainy season when the sound signal is output from the mixer 20).
  • this temporary operation mode for example, in the ending part of a music performance, the effect of an effector such as reverb is temporarily strengthened, and the operation of returning to the original state at the end of the performance can be quickly and easily performed accurately. It can be carried out. Also, for example, after temporarily applying an effector such as a delay to the sound signal of a specific channel, or temporarily adjusting the volume of the sound signal of a specific channel, the operation to restore it at an arbitrary timing It can be done quickly, easily and accurately. In theaters, etc., only the channel that processes the voice of the person who is speaking is turned on, each channel that processes the voice of other people is temporarily turned off, and each channel that is turned off after the end of the utterance.
  • the operation of turning on can be quickly and easily performed accurately. As described above, by using the temporary operation mode, it is possible to quickly, easily and accurately perform a dynamic musical or acoustic effect effect by operating the mixer 20. Therefore, the parameter intended by the operator can be adjusted efficiently.
  • the setting device 10 is not limited to the mixer 20 and may be applied to any device such as a recorder or a processor that handles sound signals.
  • the setting device 10 may include a dedicated hardware device (such as an integrated circuit) configured to execute the operations of the units 11, 12, 13, and 14 illustrated in FIG.
  • the setting device 10 may be configured by a processor device having a function of executing a program for performing the operations of the units 11, 12, 13 and 14 shown in FIG.
  • the setting device 10 can be applied to a DAW (Digital Audio Workstation) software application running on a personal computer.
  • DAW Digital Audio Workstation
  • One aspect of the present invention ascertained from the above-described embodiment is a setting device (10) for setting a parameter for signal processing in the signal processing device (20), which is adjusted by a user for adjusting the parameter.
  • a controller (14) for performing a return control for returning the parameter adjustment value in the adjuster to the parameter adjustment value before the change based on the change history.
  • the controller (14) includes a memory (22) and a processor (CPU 21), and the processor (21) is performed in a state where the temporary operation mode is selected.
  • the storage control task (S11) for storing the parameter adjustment value before the change in the memory as the change history, and based on the change history according to the end of the temporary operation mode,
  • a return control task (S3; S20 to S24) for returning the parameter adjustment value in the adjuster to the parameter adjustment value before the change is performed.
  • the embodiment of the present invention according to the control by the CPU 21 described above includes an adjuster (11; 24) operable by a user for adjusting parameters, and a memory (13; 22), and a signal processing device (20 ) Can be grasped as a method for setting parameters for signal processing.
  • This method corresponds to selecting a temporary operation mode that is a mode for temporarily operating the adjuster (S1, S2), and adjusting operation by the adjuster performed in a state where the temporary operation mode is selected.
  • the parameter adjustment value before the change is stored in the memory as a change history (S11), and the parameter adjustment value in the adjuster is changed based on the change history in response to the end of the temporary operation mode.
  • the present invention can be grasped as an invention of a program for causing a computer to execute each step constituting the method or an invention of a non-transitory computer-readable storage medium storing the program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • General Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

この設定装置は、パラメータを調整するためのユーザにより操作可能な調整器11と、該調整器を一時的に操作するモードである一時操作モードを選択するためのモード選択器12と、メモリ13と、制御器14を備える。制御器14は、(1)一時操作モードが選択された状態において行われる調整器による調整操作に対応して、変更前のパラメータ調整値を変更履歴としてメモリに記憶する記憶制御と、(2)一時操作モードの終了に応じて、前記変更履歴に基づき、調整器におけるパラメータ調整値を前記変更前のパラメータ調整値に戻す戻し制御と、を行う。このように、変更履歴に基づき、一時操作モード中に調整されたパラメータの値のみを変更前の値に戻すことができるので、パラメータの値を一時的に変更した後に、素早く簡単に且つ正確に、それを変更前の値に戻すことができる。

Description

信号処理装置におけるパラメータ設定装置及び方法
 この発明は、例えばオーディオミキサなどの信号処理装置において信号調整用のパラメータの設定に用いる設定装置及び方法に関する。
 例えばコンサート会場等に設置されるオーディオミキサ(以下単に「ミキサ」とも言う)は、大略、各チャンネルにおいて、入力された音信号の音特性調整処理を行い、処理後の音信号をバスに選択的に出力し、各バスにおいて、1又は複数のチャンネルから供給された音信号を混合して、混合結果を出力先に出力するように構成される。ミキサのメモリには、チャンネル毎の音特性処理や音信号の経路設定処理を含むミキサの信号処理に用いる全てのパラメータの値が記憶される。ミキサは、メモリに記憶された各パラメータの値に基づいて、ミキサの信号処理を制御する。
 従来、ミキサにおいて、シーン又はスナップショットと呼ばれる機能(以下では、シーン機能と称する)があった。シーン機能は、全ての又は一部のパラメータ値を1つのシーンデータとしてメモリに保存したり、保存されたシーンデータを読み出すことで、保存されたシーンデータに対応する設定状態を一括して再現したりする機能である。様々な場面に応じた複数種類のシーンデータを用意することで、場面に適した設定状態に速やかに遷移することが可能である。例えば、コンサートにおいては曲毎にシーンデータを用意することで、コンサートプログラムの進行に応じた設定変更を速やかに行うことができる。また、例えば、演劇においては幕毎にシーンデータを用意することで、幕毎の設定変更を速やかに行うことができる。
 ところで、ミキサの使い方として、パラメータの値を一時的に変更して、その後、元の値に戻すということがしばしば行われる。例えば、音楽演奏においては、曲のエンディング部でリバーブ等のエフェクタの効き具合を一時的に強くして、演奏終了とともにエフェクタの効き具合を元に戻すというような演出を行うことがある。或いは、演劇などでは、発話中の人物の音声を処理するチャンネルのみをオンにして、その他の人物たちのチャンネルを一時的にオフし、当該発話終了後に該オフされた各チャンネルをオンに戻すという操作を行うことがある。そのような場合、従来は、操作者が、操作子を手動操作することにより、パラメータの値を元の値に戻していた。元の値に戻す操作は、あくまで感覚的なものとなる。したがって、正確に、且つ、素早く元の値に、パラメータの値を戻すことができるとは限らなかった。特に、操作の熟練度の低い操作者の場合、正確に、且つ、素早くパラメータの値を元の値に戻すことは難しい。
 上記のような、一部のパラメータの値を一時的に変更した後に元の値に戻すという操作を行うにあたり、前記のシーン機能を利用することが考えられる。すなわち、或る設定状態をシーンデータとして保存しておき、その設定状態から1又は複数のパラメータの値を一時的に変更した後、該シーンデータを読み出すことで、当該一時的に変更された1又は複数のパラメータの値をその変更以前の値に正確に戻すことができる。しかし、シーン機能を利用する場合、ミキサの信号処理に用いる全てのパラメータの値を一括して上書きするので、元の値に戻す処理に時間がかり、また、処理負荷も大きい、と言った不都合がある。さらには、これら不都合のため、例えばミキサが一時的に操作を受け付けなくなったり、或いは、ミキサの出力する音信号に音切れが生じたりする恐れがある。したがって、例えばコンサートや演劇など実演プログラムの最中にパラメータの値を一時的に変更した後に元の値に戻すという用途には、シーン機能は不向きである。
特開2015-171001号公報
"DIGITAL MIXING CONSOLE LS9 LS9-16/LS9-32 取扱説明書"、[online]、2012年、ヤマハ株式会社[平成28年7月12日検索]、インターネット〈URL:http://download.yamaha.com/api/asset/file?language=ja&site=countrysite-master.prod.wsys.yamaha.com&asset_id=58273〉
 この発明は、上述の点に鑑みてなされたもので、一時的な操作によってパラメータの値を調整することを、容易にかつ効率的にできるようにした設定装置及び方法を提供することを目的とする。
 上記目的を達成するために、この発明に係る、信号処理装置において信号処理用のパラメータを設定するための設定装置は、パラメータを調整するための、ユーザにより操作可能な、調整器と、前記調整器を一時的に操作するモードである一時操作モードを選択するためのモード選択器と、メモリと、(1)前記一時操作モードが選択された状態において行われる前記調整器による調整操作に対応して、変更前のパラメータ調整値を変更履歴として前記メモリに記憶する記憶制御と、(2)前記一時操作モードの終了に応じて、前記変更履歴に基づき、前記調整器におけるパラメータ調整値を前記変更前のパラメータ調整値に戻す戻し制御と、を行う制御器とを備える。
 信号処理装置の稼働中の任意の時点で、例えばユーザ操作に応じて、モード選択器により一時操作モードが選択され得る。該一時操作モードが選択された状態において、ユーザは、調整器を一時的に操作してパラメータ調整値を一時的に変更することができる。該一時操作モードにおいて、ユーザが調整器を操作してパラメータ調整を行うと、制御器による記憶制御により、変更前のパラメータ調整値が変更履歴としてメモリに記憶される。その後、制御器による戻し制御により、該一時操作モードの終了に応じて、前記変更履歴に基づき、前記調整器におけるパラメータ調整値が前記変更前のパラメータ調整値に戻される。こうして、該一時操作モードの終了に応じて、調整器のパラメータ調整値は、自動的に変更前のパラメータ調整値(例えば一時操作モードが開始される直前の値)に戻されるので、該調整器のパラメータ調整値をユーザ操作によって元の値に戻す手間を省くことができ、かつ、正確かつ即座に元の値に戻すことができる。これにより、調整器のパラメータ調整値の一時的な変更操作(一時的な目的による調整器の使用)を、きわめて容易に行うことができる。本発明に従う一時操作モードは、例えば複数の調整器を使用して複数のパラメータを調整するというような構成において、該複数の調整器に設定された複数のパラメータのうち、一部のパラメータの値を一時的に変更するような場合に、有利に利用することができる。すなわち、モード選択器により一時操作モードが選択された状態において、所望のパラメータに対応する調整器を操作すれば、その調整器に設定されているパラメータだけが一時的に任意に調整・変更され得る。その後、一時操作モードの終了に応じて、元の状態(すなわち、変更前の値)に戻すという操作を素早く、簡単、且つ、正確に行うことができる。その際に、複数のパラメータ全部を1セットのシーンデータとして保存しておく必要もないので、効率的である。従って、この発明によれば、パラメータの値を一時的に変更して、その後、変更前の値に戻すという操作を、素早く、簡単、且つ、正確に行うことができる。従って、操作者の意図するパラメータの調整を効率的に行うことが可能となる。
 なお、一時操作モードを終了させることは任意の手法で行ってよく、本発明の範囲は、一時操作モードを終了させるための手法によって限定されるものではない。例えば、モード選択器をトグル式に操作することにより、あるいは切り替え式に操作することにより、ユーザによるモード選択器の操作によって一時操作モードの開始(ON)と終了(OFF)を交互に切り替えることができるようにしてよい。
 この発明は、装置の発明として構成及び実施し得るのみならず、前記装置を構成する各構成要素に対応するステップを備える方法の発明として実施及び構成されてよい。さらに、この発明は、上記方法を実行するために、1以上のプロセッサにより実行可能な命令群を記憶した、非一過性のコンピュータ読み取り可能な記憶媒体として実装することもできる。
この発明に係る設定装置の構成例を示す概念的ブロック図。
図1の設定装置を適用したオーディオミキサの電気的ハードウェア構成例を示すブロック図。
図2のオーディオミキサの信号処理構成例を説明するブロック図。
図2のオーディオミキサの操作パネル構成例を説明する図。
操作モード切替処理例を示すフローチャート。
パラメータ値調整処理例を示すフローチャート。
変更履歴リストの一例を示す図。
変更履歴リストの別の例であって、変更タイミング情報を含む変更履歴リストの一例を示す図。
一時操作中モード中に調整された各パラメータの値を、変更タイミング情報に基づく処理タイミングで、調整前の値に戻す処理例を示すフローチャート。
 以下、添付図面を参照して、この発明の一実施形態について詳細に説明する。
 図1は、この発明に係る信号処理装置における設定装置10の構成例を説明する概念的ブロック図を示す。図1において、設定装置10は、パラメータを調整するための、ユーザにより操作可能な、調整器11と、前記調整器11の一時的に操作するモードである一時操作モードを選択するためのモード選択器12と、メモリ13と、制御部14とを備える。制御部14は、(1)前記一時操作モードが選択された状態において行われる前記調整器による調整操作に対応して、変更前のパラメータ調整値を変更履歴として前記メモリに記憶する記憶制御と、(2)前記一時操作モードの終了に応じて、前記変更履歴に基づき、前記調整器におけるパラメータ調整値を前記変更前のパラメータ調整値に戻す戻し制御と、を行う。
 図1の設定装置10が適用される信号処理装置は、例えば、オーディオミキサ等のような音信号を扱う音響機器である。以下の一実施形態は、一例として、設定装置10が適用される信号処理装置がオーディオミキサ20(以下単に「ミキサ」とも言う)である場合について説明する。このオーディオミキサ20は、専らデジタル信号処理により音信号を処理するデジタルミキサであるとする。
 図2は、ミキサ20の電気的ハードウェア構成例を示すブロック図を示す。図2において、ミキサ20は、CPU(Central Processing Unit、中央処理装置)21、メモリ22、ディスプレイ23、操作子群24、及び、ミキシング部(図において「MIX」)25を含み、各部21~25がバス26を介して接続される。
 CPU21は、メモリ22に記憶された各種のプログラムを実行して、ミキサ20を制御する。メモリ22は、CPU21が実行する各種のプログラムや各種のデータなどを不揮発的に格納するほか、CPU21が実行するプログラムのロード領域やワーク領域に使用される。メモリ22は、リードオンリーメモリ、ランダムアクセスメモリ、フラッシュメモリあるいはハードディスク等の各種メモリ装置を適宜組み合わせて構成されてよい。メモリ22の一部の記憶エリアが前記変更履歴するためのメモリ13として機能する。
 ディスプレイ23は、CPU21から与えられた表示制御信号に基づく各種情報を、各種画像や文字列等により表示する。操作子群24は、ミキサ20の操作パネル上に配置された複数の操作子および関連するインターフェース回路等であり、操作子群24には複数のフェーダ操作子や、イコライザやパン調整等に用いる回転式つまみ操作子や、後述する操作モード切替用のスイッチが含まれる。操作子群24における複数操作子のうち音響信号の種々のパラメータを調整若しくは設定するための操作子は、ユーザにより手動操作可能であり、かつ、モータ等の電気的ドライバーによる自動操作可能でもある。ユーザは、操作子群24を用いて、音信号の経路設定や各種パラメータの値を調整する操作を含む各種操作を行う。CPU21は、ユーザによる操作子群24又はディスプレイ23での入力操作に応じた検出信号を取得して、検出信号に基づいてミキサ20の動作を制御する。操作子群24内の複数操作子のうち音響信号の種々のパラメータを調整若しくは設定するための各操作子は、前述の調整器11に相当する。
 ミキシング部25は、例えばDSP(Digital Signal Processor)や、CPU21およびメモリ22に記憶されたソフトウェアにより仮想的に実現された信号処理用演算装置で構成される。ミキシング部25は、信号処理用のプログラムを実行することにより、図示しない入力機器から供給された1又は複数の音信号を処理して、該処理した音信号を、図示しない出力機器へ出力する。メモリ22の一部の記憶エリアがカレントメモリとして機能し、ミキシング部25における信号処理のための使用される種々のパラメータが、このカレントメモリに記憶される。従って、ミキシング部25による信号処理は、メモリ22内のカレントメモリに記憶されたパラメータの値に基づいて制御される。カレントメモリに記憶された種々のパラメータの値は、操作子群24における対応する操作子の操作に応じて更新される。
 図3は、ミキシング部25による信号処理の構成例を示すブロック図を示す。ミキサ20は、図3に示す通り、複数のチャンネル30と、複数のバス40を有する。各チャンネル30は、入力された音信号に対して音量調整を含む各種信号処理を施し、処理された音信号を操作者により選択された1又は複数のバス40に供給する。各バス40は、1又は複数チャンネル30から供給された音信号を混合して、混合された音信号を、対応する出力チャンネル(不図示)を介して、出力する。ミキサ20の操作者は、操作子群24を用いて、各チャンネル30の信号処理パラメータの値の調整や、個々のチャンネル30と個々のバス40の接続を含む音信号の経路設定を行う。CPU21は、操作子群24内の操作子の操作に応じて、メモリ22に記憶されたパラメータの値を変更する。
 図4は、ミキサ20の操作パネルの構成例を示す。操作パネルは、複数のチャンネルストリップ50を備える。チャンネルストリップ50は、音量調整用のフェーダ操作子51、任意のパラメータを割当可能な回転式操作子52、CUEバスへのオンオフスイッチ53、チャンネルオンオフスイッチ54、及び、チャンネル選択スイッチ55を有する。各チャンネルストリップ50には、それぞれ操作対象として1つのチャンネル30が割り当てられる。操作者は、各チャンネルストリップ50に備わる各種操作子を用いて、該割り当てられたチャンネル30の音量等の各種パラメータの値を調整できる。各チャンネルストリップ50の各種操作子類51~55は、図2の操作子群24に含まれる。操作パネルにはディスプレイ23も備わる。ディスプレイ23は各種パラメータの値等の各種情報を表示する。
 ミキサ20において、或るパラメータの値を調整した後に、その調整を行う前の値(「元の値」又は「元の状態」ともいう)に戻したい場合、手動の操作で迅速に且つ正確に元の値に戻すのは難しい。特に、複数のパラメータの値を調整した後に、全てのパラメータの値を元の値に戻す場合には、その困難さが顕著である。この問題を解決するために、この実施例に係るミキサ20は、操作子群24を一時的に操作するモードとして一時操作モードを選択することができるように構成されている。追って詳しく説明するように、一時操作モードが選択されているとき(つまり、一時操作モードの開始から終了までの間)、ユーザは操作子群24内の任意の操作子を操作して該操作子に対応するパラメータの値を任意に一時的に調整することができ、その後、該一時操作モードの終了に応じて、該一時的に調整したパラメータの値を調整前の値へ戻すことを、素早く、簡単に、且つ、正確にできるようになっている。
 なお、以下では、説明の便宜上、一時操作モードが選択されていない状態を「通常操作モード」と称する。しかし、ミキサ20は、通常操作モード及び一時操作モードのいずれであっても変わりなく、操作子群24内の各操作子(つまり調整器11)に対するユーザ操作を受け付けるようになっていることに注意されたい。従って、操作子群24に対するユーザの操作感覚は、通常操作モードであっても、一時操作モードであっても、特段の変わりが無いようになっていてよい。ただ、一時操作モードとは、ユーザの意志により、あるいはユーザがそのことを知覚しうるように、該一時操作モードが開始されることにより、操作子群24内の各操作子(つまり調整器11)を一時的に操作してそれに対応するパラメータを一時的に調整することができる、という特殊な操作モードであるということを意味している。本発明において、一時的操作とは、それが終わったときにパラメータ調整状態が元の状態に戻される、つまり、その間(一時操作モードの間)に行った操作が自動的にキャンセルされるが故に、一過性の操作という性格を持つ。
 一例として、ミキサ20の操作パネルには、前記操作モードの切替用にモード切替スイッチ60が備わる。モード切替スイッチ60は、一時操作モードを選択するための前記モード選択器12として機能する。モード切替スイッチ60は、例えば、押下操作に応じて一時操作モードを開始し、該押下操作を維持している間は一時操作モードを維持し、該押下操作を解除すると一時操作モードを終了して、通常操作モードに戻る、アンラッチタイプの押しボタン式スイッチにより構成される。
 別の例として、モード切替スイッチ60は、一度スイッチを押下操作することでスイッチオン状態が維持され、再び押下操作することでスイッチオフされるラッチタイプの押しボタンスイッチにより構成される。その場合、通常操作モードのときにモード切替スイッチ60を操作することで、一時操作モードが開始及び維持され、一時操作モード中に押下操作することで、該一時操作モードが終了され、通常操作モードに戻る。
 モード切替スイッチ60は、操作モード切替専用のスイッチであってもよいし、或いは、ユーザが任意の機能を割当可能な汎用スイッチ(「User Defined Key」)を利用したものであってもよい。
 図5及び図6は、一時操作モードを用いたパラメータ値調整処理例を説明するフローチャートを示す。ミキサ20のCPU21は、所定周期毎に、操作子群24の操作有無を検出しており、モード切替スイッチ60の操作を検出したとき図5の処理を実行し、また、チャンネルストリップ50における何らかの値調整操作を検出したとき図6の処理を実行する。操作者によるモード切替スイッチ60の操作があったとき、現在の操作モードが通常操作モードならば(ステップS1のYES)、CPU21は、操作モードを通常操作モードから一時操作モードに切り替えて、一時操作モードを開始する(ステップS2)。CPU21により行われるステップS2の処理は、モード切替スイッチ60の操作に応じて一時操作モードを選択する(開始させる若しくはONする)ことに相当する。以後、後述するステップS3により一時操作モードが終了させられるまでの間、ミキサ20における操作子群24の操作モードは、一時操作モードに維持される。
 一時操作モード中に、操作者が何れかのパラメータの値を調整する操作を行ったとき(図6のステップS10のYes)、CPU21は、その値調整操作により調整される前の当該パラメータの値(つまり、当該パラメータの現在値としてメモリ22内のカレントメモリに記憶されている値)を、変更履歴としてメモリ22に記憶する(ステップS11)。カレントメモリに記憶されている現在値を前記変更履歴として記憶した後に、CPU21は、カレントメモリ内の当該パラメータの現在値を今回の操作に応じた値に変更(つまり更新)して(ステップS12)、図6の処理を終える。前記ステップS12の処理によりカレントメモリの内容が更新されることにより、前記パラメータの値調整結果がミキシング部25の信号処理に反映される。なお、図6の処理を開始する契機となる値調整操作は、例えば、ミキシング部25による信号処理に関する如何なるタイプのパラメータの値調整操作、すなわち、音響の変化を伴う如何なるタイプのパラメータの値調整操作であってもよい。メモリ22内で変更履歴を記憶する領域は、図1のメモリ13に相当する。CPU21により行われる前記ステップS11の処理は、図1の制御器14が行う前記記憶制御に相当する。また、CPU21により行われる前記ステップS12の処理は、使用者による図1の調整器11の操作に応じたパラメータ値の調整に相当する。
 一時操作モード中に複数の値調整操作が行われた場合、CPU21は、値調整操作毎に前記ステップS11を行う。すなわち、或る一時操作モード中に行われた全ての値調整操作についての変更履歴が1つの変更履歴リストとしてメモリ22内に記録される。なお、1回の値調整操作とは、操作子を動かして、調整後の値を確定するまでの操作をいう。例えば、或るチャンネルのフェーダのつまみ部を-10dBの位置から-15dBの位置まで移動させた後、その移動を止めることが1回の値調整操作である。
 図7は、変更履歴としてメモリ22内に記録される変更履歴リストの一例を示す。図7は、先ずチャンネルCH1のフェーダレベルが調整され、次に別の或るチャンネルSTIN1のフェーダレベルが調整され、それから或るエフェクタ(EFX1)のミックスレベルが調整された場合の変更履歴リストを示す。図7の変更履歴リストは、値調整操作毎に、個々の値調整操作を識別する情報(図において「操作#1」、「操作#2」、「操作#3」)と、その値調整操作により調整されたパラメータを特定する情報(図において「CH1 フェーダ」、「STIN1 フェーダ」、「EFX1 MIX Value」)と、その値調整操作による調整前の各パラメータの値(図において「-10dB」、「-15dB」、「20%」)を含む。一例として、値調整操作を識別する情報は、値調整操作の行われた順番(「調整順」)を示す番号を含む。すなわち、変更履歴はパラメータの値の調整順を特定する情報を含む。
 一時操作モード中にモード切替スイッチ60の操作が行われると(図5のステップS1のNo)、CPU21は、使用者によって一時操作モードの終了(若しくはOFF)が指示されたと判定し、図5のステップS3において、一時操作モードを終了させる処理を行う。すなわち、ステップS3では、前記ステップS11で記憶された変更履歴に基づいて、当該一時操作モード中に調整されたパラメータの値を、該調整前の値に戻す。このとき、当該パラメータの値に対応付けられた操作子が、ムービングフェーダなど、つまみ部の位置を自動制御可能な操作子(電動式操作子)である場合、CPU21は、値の変更に応じて操作子のつまみ部の位置を自動制御する。そして、CPU21は、操作モードを一時操作モードから通常操作モードに切り替えて、一時操作モードを終了する(該ステップS3)。一時操作モードを終了する処理は、メモリ22から当該変更履歴リストを消去することを含んでよい。このように、ミキサ20の操作者は、一時操作モードを終了させる(操作モードを一時操作モードから通常操作モードに切り替える)だけで、その一時操作モード中に調整された各パラメータの値を、素早く、簡単に、且つ、正確に、調整を行う前の値に戻すことができる。一例として、変更履歴リストが、一時操作モードの開始時点の値を記憶していれば、操作モードを通常操作モードに戻すだけで、該一時操作モード中に調整された各パラメータの値を、該一時操作モードの開始前の値に戻すことができる。CPU21により行われるステップS3の処理が、図1の制御器14が行う前記戻し制御に相当する。なお、当該パラメータの値に対応付けられた操作子が自動制御可能な操作子でない場合は、該操作子を戻すべき操作位置を表示又は指示する等によって、使用者が操作子を手動操作することで速やかに元の位置に戻せるように促す構成を採用してもよい。
 一例として、CPU21は、前記ステップS3において、一時操作モード中に行われたパラメータの値の調整順に基づいて、各パラメータの値を順番に調整前の値に戻す。例えば、CPU21は、一時操作モード中に行われたパラメータの値の調整順と同じ順(図7の例では「操作#1」、「操作#2」、「操作#3」の順)で、パラメータの値を戻す。すなわち、先ずチャンネルCH1のフェーダレベルを「-10dB」に戻し、次にチャンネルSTIN1のフェーダレベルを「-15dB」に、それから、EFX1のミックスレベルを「20%」に戻す。別の例として、CPU21は、一時操作モード中に行われたパラメータの値の調整順とは逆の順(図7の例では、「操作#3」、「操作#2」、「操作#1」の順)でパラメータの値を戻す。すなわち、先ずEFX1のミックスレベルを「20%」に、次にチャンネルSTIN1のフェーダレベルを「-15dB」に、それからチャンネルCH1のフェーダレベルを「-10dB」に戻す。このように、ステップS3で行う前記戻し制御は、メモリに記憶された前記変更履歴に基づき、一時操作モードにおいて行われた1以上の調整操作に対応する1以上のパラメータ調整値を、該変更履歴の順で、前記調整器のパラメータ調整値として一時的に順次再現することからなっていてよい。
 前記ステップS3の別の例として、CPU21は、一時操作モード中に調整された複数のパラメータの値を、前記調整順に関わりなく、変更履歴として記憶された調整前の値に戻すようにしてもよい。例えば、一時操作モード中に調整された複数のパラメータの値を一斉に(同時平行的に)調整前の値に戻すようにしてもよい。また、別の例として、一時操作モード中に調整された複数のパラメータの値を、チャンネル番号順に、調整前の値に戻すようにしてもよい。例えば、チャンネル1のフェーダレベル、チャンネル2のセンドレベル、チャンネル3のフェーダレベルが調整された場合、チャンネル1、2、3の順に、又は、チャンネル3,2、1の順に、調整前の値に戻す。言い換えれば、ミキサ20の操作パネルのチャンネルストリップ50の配置順に(右から順に、又は、左から順に)、値を戻す。
 また、別の例として、前記ステップS3において、CPU21は、一時操作モード中に調整されたパラメータの値を、調整前の値まで徐々に変化させてもよい。一例として、CPU21は、ローパスフィルタ処理により、一時操作モード中に調整されたパラメータの値を調整前の値まで徐々に戻すことができる。例えば、変更履歴として記憶された調整前の値が「-10dB」で、一時操作モード中に調整された後のフェーダレベルの値が「5dB」の場合、フェーダレベルの値を「5dB」から「-10dB」に変更すると、音量が急激に変化してしまう。そこで、例えばローパスフィルタ処理により、フェーダレベルの値を「5dB」から「-10dB」に徐々に(連続的に、或いは、複数段階にわたり)変化させる。これにより、ミキシング部25の処理結果の音信号の音量等の音特性が急激に変化することを防止できる。
 なお、通常操作モード中にパラメータの値を調整する操作が行われた場合(図6のステップS10のNO)、CPU21は、その値調整操作に応じて、メモリ22内のカレントメモリに記憶された当該パラメータの値を変更(図6のステップS13)して、図6の処理を終える。この場合、CPU21は調整される前の値を変更履歴として記憶する処理を行わない。
 別の実施形態に係る変更履歴リストは、更に、各値調整操作の行われたタイミング、すなわちパラメータの値の調整が行われたタイミングを示す変更タイミング情報を含む。図8は、変更タイミング情報を含む変更履歴リストの一例であって、「操作#1」~「操作#8」の8回の値調整操作の変更履歴を記録したものを示す。この変更履歴リストには、各値調整操作の変更履歴に対応付けて、その変更タイミングを示す変更タイミング情報が記録される。各値調整操作の変更タイミング情報は、例えば、一時操作モードの開始時点(すなわち、操作モードを一時操作モードに切り替える操作が行われた時点)から、その値調整操作の行われた時点までの経過時間(絶対時間)を、例えばミリ秒(図8において「ms」と表記)単位で表す。
 一例として、操作モードを一時操作モードに切り替える操作があったとき、CPU21は、前記図5のステップS2において、モード切替操作(すなわち、一時操作モード開始指示)が行われた旨を変更履歴としてメモリ22に記録するとともに、該変更履歴に対応付けて変更タイミング情報「0ms」を記憶し、そして、タイマによる計時を開始する。タイマは、該一時操作モードの開始時点からの経過時間を例えばミリ秒単位で計時するものである。そして、当該一時操作モード中に値調整操作が行われたとき(前記図6のステップS10のYes)、CPU21は、該値調整操作による調整が行われる前の当該パラメータの値を変更履歴として記憶し、且つ、その変更履歴に対応する変更タイミング情報として、前記タイマの計時する経過時間を記録する(前記ステップS11)。したがって、この例では、変更タイミング情報は、一時操作モードの開始時点からその値調整操作が行われた時点までの経過時間(絶対時間)を示す。そして、一時操作モード中に行われた値調整操作毎に、前記図6の処理を繰り返すことで、「操作#1」の変更履歴に対応付けて変更タイミング情報「500ms」が記録され、「操作#2」の変更履歴に対応付けて変更タイミング情報「650ms」が記録され、...という具合に、当該一時操作モード中に行われた「操作#1」~「操作#8」の8回の値調整操作に関する変更履歴と変更タイミング情報とが記録される。これにより、図8に示すような変更タイミング情報を含む1つの変更履歴リストが作成される。
 図8に示すような、変更タイミング情報を含む変更履歴リストによれば、CPU21は、前記ステップS3において、変更タイミング情報に基づく処理タイミングで、一時操作モード中に調整された各パラメータの値を調整前の値に戻すことができる。図9は、変更タイミング情報に基づく処理タイミングで、一時操作モード中に調整された各パラメータの値を調整前の値に戻す処理例のフローチャートを示す。CPU21は、操作者が前記一時操作モード中にモード切替スイッチ60を操作したときつまり一時操作モードを終了するとき(前記図5のステップS1のNo)、前記図5のステップS3において、図9の処理を実行する。図9のステップS20において、CPU21は、タイマの計時を開始する。タイマは、例えば、一時操作モード終了指示時点からの経過時間(例えば絶対時間)を計時する。ステップS21において、CPU21は、変更履歴リスト中に未処理の値調整操作があるかどうか調べる。一時操作モード中に1回も値調整操作が行われていない場合など、変更履歴リストに1つも値調整操作の変更履歴が記録されていない場合(ステップS21のNo)、CPU21は、図9の処理を終了する。変更履歴リストに未処理の値調整操作の変更履歴がある場合(ステップS21のYes)ステップS22において、CPU21は、変更履歴リストに基づいて、一時操作モード中に行われた値調整操作を、調整順とは逆の順で、1つずつ処理対象として特定する。したがって、先ず、操作#8が処理対象となる。
 ステップS23において、CPU21は、前記処理対象に特定された値調整操作の変更タイミング情報に基づいて、該当するパラメータの値を調整前の値に戻すタイミング(「処理タイミング」という)を算出する。処理タイミングは、例えば、前記調整前の値に戻すタイミングを、一時操作モード終了指示時点からの経過時間(絶対時間)で表す。かかる処理タイミグは、例えば、変更履歴リスト中の最下段の(すなわち最後に行われた)「操作#8」の変更タイミング情報(絶対時間)と、当該処理対象の変更タイミング情報(絶対時間)との差分により算出できる。例えば、操作#8が処理対象の場合、操作#8の処理タイミング=0msとなる。
 そして、CPU21は、前記タイマの計時する経過時間が前記算出された処理タイミングに到達したとき、前記処理対象に特定された値調整操作の変更履歴に基づき、該当するパラメータの値を調整前の値に戻す(ステップS24)。CPU21は、変更履歴リスト中の全ての値調整操作について処理を終えるまで(ステップS21のYes)、前記ステップS22~S24を繰り返す。そして、変更履歴リスト中の全ての値調整操作について処理を終えたら(ステップS21のNo)、CPU21は図9の処理を終える。
 すなわち、CPU21は、前記タイマが0msの時点で、操作#8の変更履歴に基づきSTINのフェーダの値を-5dBに戻し、次に、操作#7を処理対象として(前記ステップS22)、操作#8と操作#7の変更タイミング情報の差分より操作#7の処理タイミング「1400ms」を算出し(前記ステップS23)、前記タイマにより1400ms経過を計時した時、EFX1のミックスレベルを30%に戻す(前記ステップS24)。次に、CPU21は、操作#6を処理対象とし(前記ステップS22)し、操作#8と操作#6の変更タイミング情報の差分より操作#6の処理タイミング「2500ms」を算出し(前記ステップS23)、前記タイマが2500ms経過を計時した時、STINのフェーダを-10dBに戻し(前記ステップS24)、...という具合に、操作#8から操作#1までの全てのパラメータの値を、調整順とは逆の順に、変更タイミング情報に対応する処理タイミングで、調整前の値に戻すことができる。各値調整操作の行われたタイミングを、調整前の値に戻す処理に反映することで、一時操作モード中に行われた値調整操作を逆方向に再生するように、調整前の値に戻す処理を行うことができる。この場合、あたかも手動操作により元の値に戻しているかのように、調整前の値に戻す処理を行うことができる。例えば、各値調整操作が素早く行われたときは、調整前の値に戻す処理も素早く行われるし、また、例えば値調整操作がゆっくり行われたときは、調整前の値に戻す処理もゆっくり行われる。このように、変更タイミング情報に対応する処理タイミングで、調整前の値に戻すことで、値の戻し方を、音楽的或いは音響効果的に凝ったものとすることができる。
 このように、ステップS3で行う前記戻し制御は、前記メモリに記憶された前記変更履歴に基づき、一時操作モードにおいて行われた1以上の調整操作に対応する1以上の変更前のパラメータ調整値を、該変更履歴に逆行する順で、前記調整器におけるパラメータ調整値として順次再現することからなっていてよい。この場合、戻し制御によって、最終的には、各調整器におけるパラメータ調整値は、前記一時操作モードが開始される直前の値(つまり、「CH1フェーダ」については操作#1に対応して記憶したの値、「STINフェーダ」については操作#3に対応して記憶した値、「EFX1_MIX_Value」については操作#5に対応して記憶した値)にそれぞれ戻される。
 上記戻し制御の変形例として、前記ステップS23において算出される処理タイミングは、前記処理対象の値調整操作のタイミングと、その直前の値調整操作のタイミングとの時間間隔(相対時間)であってよい。この場合、操作#8の処理タイミングは、直前の値調整操作が存在しないので「0ms」、操作#7の処理タイミングは、操作#8の変更タイミング(9500ms)と操作#7の変更タイミング(8100ms)の差分「1400ms」、操作#6の処理タイミングは、操作#7の変更タイミング(8100ms)と操作#6の変更タイミング(7000ms)の差分「1100ms」、...となる。この場合、図9のステップS24において、CPU21は、前回のステップS24の処理実行時点からの経過時間を前記タイマにより計時して、処理タイミング(相対時間)に到達を判断する。
 更に別の変形例として、前記図6のS11において、CPU21は、一時操作モード中の変更履歴に対応付ける変更タイミング情報として、連続する2つの値調整操作の時間間隔(相対時間)を記録してもよい。或る値調整操作の変更タイミング情報(相対時間)は、例えば、或る値調整操作と、その直前の値調整操作との時間間隔である。その時間間隔(相対時間)は、前記タイマにより計測された絶対時間に基づき算出し得る。或いは、前記タイマが前記時間間隔(相対時間)を計時してもよい。この場合、前記図9のステップS23において、CPU21は、処理対象の値調整操作の直後(すなわち、直前に処理対象になった)の値調整操作の変更タイミング情報に基づいて、当該処理対象の値調整操作の処理タイミングを算出する。更に別の例として、或る値調整操作と、その直後の値調整操作との時間間隔を、変更タイミング情報(相対時間)として記録してもよい。その場合、当該或る値調整操作の変更タイミング情報が、そのまま当該或る値調整操作の処理タイミングとして利用される。
 また、上記戻し制御の別の例として、前記ステップS22において、CPU21は、変更履歴リストに基づいて、一時操作モード中に行われた値調整操作を、調整順とは同じ順で、1つずつ処理対象として特定するようにしてもよい。この場合、CPU21は、操作#1、操作#2、...操作#7、操作#8の順に、変更タイミング情報に基づく処理タイミングに従って、値を調整前の値に戻すことになる。このように、ステップS3で行う前記戻し制御は、前記メモリに記憶された前記変更履歴に基づき、前記一時操作モードにおいて行われた前記1以上の調整操作に対応する1以上の前記変更前のパラメータ調整値を、前記変更履歴に順行する順で、前記調整器におけるパラメータ調整値として順次再現することからなっていてもよい。この場合、戻し制御によって、最終的には、各調整器におけるパラメータ調整値は、前記一時操作モードにおいて行われた最後の操作(つまり、「CH1フェーダ」については操作#4、「STINフェーダ」については操作#8、「EFX1_MIX_Value」については操作#7)に対応して記憶した値にそれぞれ戻されることになる。このような変更履歴に順行する順に従う戻し制御であっても、同じパラメータ種類に関して一時操作モード中に1回しか操作が行われなかった場合は、一時操作モードの終了に応じて、前記調整器におけるパラメータ調整値が前記一時操作モードが開始される直前の値に戻されることになる。
 なお、このような変更履歴に順行する戻し制御の変形例として、同じパラメータ種類に関して一時操作モード中に複数回操作が行われた場合は、最も古い操作に対応して記憶された値のみを調整器に戻すようにしてもよい。例えば、図8のような変更履歴の場合は、操作#1、操作#3、操作#5に対応して記憶された値のみが、変更履歴に順行する順で、変更タイミング情報に基づく処理タイミングに従って、各調整器に戻されることになる。これにより、変更履歴に順行する戻し制御であっても、最終的には、各調整器におけるパラメータ調整値は、前記一時操作モードが開始される直前の値(つまり、「CH1フェーダ」については操作#1に対応して記憶した値、「STINフェーダ」については操作#3に対応して記憶した値、「EFX1_MIX_Value」については操作#5に対応して記憶した値)にそれぞれ戻されることになる。
 また、更に別の例として、変更履歴リストに含まれる変更タイミング情報は、更に、その値調整操作の動き、例えば操作速度、を特定する情報を含んでもよい。この場合、CPU21は、前記ステップS3(詳しくは前記図9)の処理において、操作者の行った値調整操作に対応する速度で、一時的に調整されたパラメータの値を、調整後の値から調整前の値に戻すことができる。例えば、操作者が操作子を素早く動かした場合は、そのパラメータの値は素早く調整前の値に戻り、また、操作者が操作子をゆっくり動かした場合は、そのパラメータの値はゆっくり調整前の値に戻る。したがって、パラメータの値の戻し方を、音楽的或いは音響効果的に凝ったものとすることができる。
 別の実施形態として、変更履歴リストは、一時操作モード開始時点の値のみを記録したものであってよい。言い換えれば、前記ステップS11を、一時操作モードの開始後初めて当該パラメータの値を調整するときにのみ実行する構成であってもよい。少なくとも一時操作モード開始時点の値を記録しておけば、一時操作モード終了時に、該一時操作モードの開始時点の値に戻すことができる。
 別の実施形態として、パラメータ種類に応じた値の戻し方を規定するルール(つまり、移行ルール)を用意しておき、CPU21は、前記ステップS3において、該パラメータ種類に応じたルールに従って、一時操作モード中に調整されたパラメータの値を該調整される前の値に戻してもよい。パラメータ種類に応じた値の戻し方を規定するルールとは、例えば、フェーダレベルの値は一時操作モード終了時の値から調整前(一時操作モード開始時)の値に徐々に戻す(つまり、移行する)というルールや、リバーブ効果に関するパラメータの値は一時操作モード終了時の値から調整前の値に直接戻す(つまり、移行する)というルール等である。これにより、パラメータの種類に応じた適切な方法でパラメータ値の戻すことができる。
 また、別の実施形態として、本実施例に係るミキサ20(すなわち、信号処理装置)が適用されうる演目の種々の種類に対応して、値の戻し方を規定するルール(つまり、移行ルール)を用意しておき、前記ステップS3において、CPU21は、選択された1つの演目の種類に応じたルールに従って、一時操作モード中に調整されたパラメータの値を該調整される前の値に戻してもよい。例えば、ミキサ20(すなわち、信号処理装置)が適用されうる演目の種々の種類としては、音楽コンサート、演劇舞台、会議などがある。演目種類に応じた値の戻し方を規定するルールとは、例えば、音楽コンサートにおける値の戻し方を規定するルールや、演劇舞台における値の戻し方を規定するルール、会議における値の戻し方を規定するルールなどである。これにより、演目の種類に応じた適切な方法でパラメータ値の戻すことができる。
 また、別の実施形態において、前記ステップS3により調整前の値に戻すルール(移行ルール)をユーザが任意に設定してもよい。
 このようにパラメータの値の戻し方を規定するルールを用いることにより、パラメータの値の戻し方を、音楽的或いは音響効果的に凝ったものとすることができる。
 別の実施形態において、操作モードを切り替える切替部12は、ディスプレイ23に表示されたスイッチ画像により構成されてよい。例えば、ディスプレイ23はタッチパネル式ディスプレイにより構成される。ディスプレイ23には、例えばチャンネルストリップ50毎の各種パラメータに対応するスイッチ画像が表示される。そして、操作者が或るスイッチ画像をタッチしている間、そのスイッチ画像に対応するパラメータのみが「一時操作モード」中となる。操作者が、操作パネル上でそのスイッチ画像に対応するパラメータに対応する物理的操作子(例えばフェーダ操作子51など)を操作すると、その値調整操作に応じて、CPU21は、該操作パラメータ(すなわち、ディスプレイ23でタッチ操作中のスイッチ画像に対応するパラメータ)について、前記ステップS10~S12を行う。そのスイッチ画像へのタッチ操作の終了に応じて、CPU21は、前記ステップS3を行う。
 別の実施形態において、ミキサ20は、二方向に操作可能な操作子を備え、該操作子が第1方向に操作されたとき前記調整器11として機能し、該操作子が第2方向に操作されたとき前記モード選択器12として機能するように構成されていてよい。二方向に操作可能な操作子は、例えば、つまみ部が押し込み操作と回転操作との2方向に操作可能な回転式操作子である。その場合、CPU21は例えば、回転操作(第1方向の操作)に応じて前記図6の値調整処理を起動し、押し込み操作(第2方向の操作)に応じて前記図5の操作モード切替処理を起動する。二方向に操作可能な操作子の別の例は、つまみ部が押し込み操作と直線的スライド操作との2方向に操作可能なフェーダ操作子である。その場合、CPU21は例えば、スライド操作(第1方向の操作)に応じて前記図6の値調整処理を起動し、押し込み操作(第2方向の操作)に応じて前記図5の操作モード切替処理を起動する。
 前記二方向に操作可能な操作子は、例えば、押し込んだ状態を維持することで一時操作モードを維持し、押し込み解除で通常操作モードに戻るアンラッチタイプで構成されてよい。その場合、つまみ部の押し込み操作(第2方向の操作)を維持した状態で第1方向の操作(例えば、つまみ部の回転操作或いはスライド操作)を行うだけで、一時操作モードによる一時的なパラメータ値の調整ができ、押し込みを解除するだけで前記調整を行う前の値に復帰できる。別の例として、前記二方向に操作可能な操作子は、1回の押し込み操作毎に操作モードを切り替えるラッチタイプで構成されてよい。その場合、つまみ部の押し込み操作(第2方向の操作)を行った後に、第1方向の操作(例えば、つまみ部の回転操作或いはスライド操作)を行うだけで、一時操作モードによる一時的なパラメータ値の調整ができ、もう1度つまみ部を押し込み操作するだけで前記調整を行う前の値に復帰できる。
 別の実施形態において、ミキサ20は、前記調整器11として、タッチセンス付き操作子を備え、CPU21は、モード切替スイッチ60やモード切替用のスイッチ画像の操作に応じて一時操作モードを開始し、該一時操作モード中に前記タッチセンス付き操作子の操作が行われたとき、前記ステップS11、S12を行い、また、該一時操作モード中に前記タッチセンス付き操作子の操作終了をタッチセンスにより検知したとき、前記ステップS3により当該一時操作モードを終了するようにしてもよい。すなわち、図1において、前記制御器14は、前記タッチセンス付き操作子(調整器11)の出力に基づき前記一時操作モード中に前記タッチセンス付き操作子に対するユーザのタッチ操作が終了したことを検知することに応じて、該一時操作モードが終了されたと判定し、前記戻し制御を行うようになっていてよい。
 別の実施形態において、ミキサ20は、前記調整器11として、反力を付与可能な操作子を備え、該操作子に対するユーザの操作に応じて該操作子に反力を発生させるようにし、前記一時操作モード中に行われる該操作子に対するユーザの操作が終了したとき、該操作子に反力が発生されなくなることに応じて、前記一時操作モードが終了したと判定するようにしてもよい。この場合、該操作子に反力が発生されなくなったことを検出することが、前記ステップS3の処理(切替部12による一時操作モードの終了)として機能する。反力を付与可能な操作子は、例えば、モータ等によりつまみ部の位置を自動制御可能な操作子であり、ユーザによる手動操作に対して逆方向に適量の反力を発生させるようにサーボ制御すればよい。その場合、サーボ制御により付加する反力が有意値から略0に戻ったとき、該操作子に反力が発生されなくなったことを検出しうる。反力を付与可能な操作子の別の例は、例えばバネ等の付勢手段を内蔵した操作子である。その場合、付勢手段により該操作子が所定の復帰位置に戻ったとき、該操作子に反力が発生されなくなったことを検出しうる。
 なお、モード切替スイッチ60(モード選択器)の操作に応じて一時操作モードが終了される場合は、操作子群24内の複数の操作子(調整器11)に関して、一括して、一時操作モードが終了されるようになっていてよい。他方、操作子群24内の個々の操作子(調整器11)の操作終了に応じて一時操作モードを終了する場合は、操作子(調整器11)毎の操作終了に応じて操作子(調整器11)毎に一時操作モードを終了されるようにしてよいし、あるいは、1又は任意の数の操作終了に応じて、操作子群24内の複数の操作子(調整器11)に関して、一括して、一時操作モードが終了されるようにしてもよい。
 また、一時操作モードを終了させるための手法として、上述の実施例では、モード選択器12の操作によって一時操作モードの開始(ON)と終了(OFF)を交互に切り替えることによる手法、あるいは、調整器11としてタッチセンス付き操作子又は反力を付与可能な操作子を使用することにより調整操作が終了したことを検出することに基づき自動的に一時操作モードを終了させる手法、を開示している。しかし、これに限らず、例えば、一時操作モードを終了させるためにユーザによって操作されうるように専用のスイッチ又はボタンを用意してもよい。
 以上の通り、この実施例に係るミキサ20によれば、操作者自らが、モード切替操作によって、意思を持って一時操作モードを開始し、その開始時点以後にパラメータ値が調整された際、調整されたパラメータについて値の変更履歴を記録し、そして一時操作モードの終了時に、調整されたパラメータの値だけ、該調整を行う前の値に戻すことができる。したがって、素早く簡単に且つ正確に、パラメータの値を一時的に変更した後に、その変更以前の値に戻すことができる。ここで、パラメータの値を戻す処理は、一時操作モード中に調整されたパラメータのみを対象とするので、膨大なパラメータの値を一斉に書き換えるシーン機能に比べて、元の状態に戻すのにかかる時間も短くて済み、また、処理負荷も少ない。したがって、ミキサ20が操作不能になったり、或いは、ミキサ20の出力する音信号に音切れが生じたりする等の不具合が生じる恐れが無い。したがって、例えばコンサートや演劇などの実演の最中に(つまりミキサ20から音信号を出力している際梅雨に)、パラメータの値を一時的に変更する用途に適している。
 また、この一時操作モードを用いれば、例えば、音楽演奏のエンディング部などにおいて、リバーブ等のエフェクタの効き具合を一時的に強くして、演奏終了とともに元に戻す操作を、素早く簡単に且つ正確に行うことができる。また、例えば、特定のチャンネルの音信号にディレイ等のエフェクタを一時的に強くかけたり、特定のチャンネルの音信号の音量を一時的に調整したりした後、任意のタイミングで元に戻す操作を、素早く簡単に且つ正確に行うことができる。また、演劇などにおいて、発話中の人物の音声を処理するチャンネルのみをオンにして、その他の人物たちの音声を処理する各チャンネルを一時的にオフし、当該発話終了後に該オフされた各チャンネルをオンに戻すという操作を、素早く簡単に且つ正確に行うことができる。このように、一時操作モードを用いることで、ミキサ20の操作によるダイナミックな音楽的或いは音響効果的演出を、素早く、簡単に、且つ、正確に行うことが可能となる。したがって、操作者の意図するパラメータの調整を効率的にできるようになる。
 以上、この発明の一実施形態を説明したが、この発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。例えば、設定装置10は、ミキサ20に限らず、レコーダ、プロセッサなど、音信号を扱う装置であればどのような装置に適用されてもよい。また、設定装置10は、図1に示す各部11、12、13及び14の動作を実行するように構成された専用ハードウェア装置(集積回路等)からなっていてもよい。また、設定装置10は、図1に示す各部11、12、13及び14の動作を行なうためのプログラムを実行する機能を持つプロセッサ装置により構成されてよい。例えば、設定装置10は、パーソナルコンピュータ上で実行されるDAW(デジタル・オーディオ・ワークステーション)ソフトウェアアプリケーションに適用され得る。
 上述した実施例から把握される本発明の一形態は、信号処理装置(20)において信号処理用のパラメータを設定するための設定装置(10)であって、パラメータを調整するための、ユーザにより操作可能な、調整器(11)と、前記調整器を一時的に操作するモードである一時操作モードを選択するためのモード選択器(12)と、メモリ(13)と、(a)前記一時操作モードが選択された状態において行われる前記調整器による調整操作に対応して、変更前のパラメータ調整値を変更履歴として前記メモリに記憶する記憶制御と、(b)前記一時操作モードの終了に応じて、前記変更履歴に基づき、前記調整器におけるパラメータ調整値を前記変更前のパラメータ調整値に戻す戻し制御と、を行う制御器(14)とを備える。上述された一具体例において、前記制御器(14)は、メモリ(22)と、プロセッサ(CPU21)とを具備し、前記プロセッサ(21)は、前記一時操作モードが選択された状態において行われる前記調整器による調整操作に対応して、変更前のパラメータ調整値を変更履歴として前記メモリに記憶する記憶制御タスク(S11)と、前記一時操作モードの終了に応じて、前記変更履歴に基づき、前記調整器におけるパラメータ調整値を前記変更前のパラメータ調整値に戻す戻し制御タスク(S3;S20~S24)とを行う。
 また、以上説明したCPU21による制御に従う本発明の実施例は、パラメータを調整するためのユーザにより操作可能な調整器(11;24)と、メモリ(13;22)とを備え信号処理装置(20)において、信号処理用のパラメータを設定するための方法として把握しうる。この方法は、前記調整器を一時的に操作するモードである一時操作モードを選択すること(S1,S2)と、前記一時操作モードが選択された状態において行われる前記調整器による調整操作に対応して、変更前のパラメータ調整値を変更履歴として前記メモリに記憶すること(S11)と、前記一時操作モードの終了に応じて、前記変更履歴に基づき、前記調整器におけるパラメータ調整値を前記変更前のパラメータ調整値に戻すこと(S3;S20~S24)、からなる。また、前記方法を構成する各ステップをコンピュータに実行させるプログラムの発明として、若しくは該プログラムを記憶した非一過性のコンピュータ読取可能な記憶媒体の発明としても、本発明を把握しうる。

Claims (18)

  1. 信号処理装置において信号処理用のパラメータを設定するための設定装置であって、
     パラメータを調整するための、ユーザにより操作可能な、調整器と、
     前記調整器を一時的に操作するモードである一時操作モードを選択するためのモード選択器と、
     メモリと、
     (1)前記一時操作モードが選択された状態において行われる前記調整器による調整操作に対応して、変更前のパラメータ調整値を変更履歴として前記メモリに記憶する記憶制御と、(2)前記一時操作モードの終了に応じて、前記変更履歴に基づき、前記調整器におけるパラメータ調整値を前記変更前のパラメータ調整値に戻す戻し制御と、を行う制御器と
    を備える設定装置。
  2.  前記制御器が行う前記記憶制御は、前記一時操作モードにおいて行われた前記調整器による1以上の調整操作に対応する1以上の前記変更前のパラメータ調整値を前記変更履歴として前記メモリに記憶することを含み、
     前記制御器が行う前記戻し制御は、前記メモリに記憶された前記変更履歴に基づき、前記一時操作モードにおいて行われた前記1以上の調整操作に対応する1以上の前記変更前のパラメータ調整値を、前記調整器におけるパラメータ調整値として順次再現することを含む、請求項1に記載の設定装置。
  3.  前記制御器が行う前記戻し制御は、前記メモリに記憶された前記変更履歴に基づき、前記一時操作モードにおいて行われた前記1以上の調整操作に対応する1以上の前記変更前のパラメータ調整値を、前記変更履歴に逆行する順で、前記調整器におけるパラメータ調整値として順次再現することを含む、請求項2に記載の設定装置。
  4.  前記制御器が行う前記戻し制御は、前記メモリに記憶された前記変更履歴に基づき、前記一時操作モードにおいて行われた前記1以上の調整操作に対応する1以上の前記変更前のパラメータ調整値を、前記変更履歴に順行する順で、前記調整器におけるパラメータ調整値として順次再現することを含む、請求項2に記載の設定装置。
  5.  前記制御器が行う前記記憶制御は、さらに、前記一時操作モードにおいて行われた前記調整器による1以上の調整操作が行われた各タイミングを示す変更タイミング情報を前記変更履歴として前記メモリに記憶することを含み、
     前記制御器が行う前記戻し制御は、前記一時操作モードにおいて行われた前記1以上の調整操作に対応する1以上の前記変更前のパラメータ調整値を、前記変更タイミング情報に基づく処理タイミングに従って、前記調整器におけるパラメータ調整値として順次再現することを含む、請求項2乃至4の何れかに記載の設定装置。
  6.  複数の前記調整器が設けられており、
     前記制御器が行う前記戻し制御は、前記一時操作モードにおいて行われた複数の前記調整器に関するそれぞれの前記変更前のパラメータ調整値を、前記変更履歴に従って、順次再現することを含む、請求項2乃至5の何れかに記載の設定装置。
  7.  前記制御器が行う前記戻し制御は、前記一時操作モードの終了に応じて、前記変更履歴に基づき、前記調整器におけるパラメータ調整値を前記一時操作モードが開始される直前の値に戻すことからなる、請求項1乃至6の何れかに記載の設定装置。
  8.  前記制御器が行う前記戻し制御は、前記調整器におけるパラメータ調整値を、戻すべき又は再現すべき前記変更前のパラメータ調整値まで、徐々に移行させることを行う、請求項1乃至7の何れかに記載の設定装置。
  9.  前記制御器が行う前記戻し制御は、パラメータの種類に応じて規定された移行ルールに従って、前記調整器におけるパラメータ調整値を、戻すべき又は再現すべき前記変更前のパラメータ調整値に、移行させることを行う、請求項1乃至8の何れかに記載の設定装置。
  10.  前記制御器が行う前記戻し制御は、演目の種類に応じて規定された移行ルールに従って、前記調整器におけるパラメータ調整値を、戻すべき又は再現すべき前記変更前のパラメータ調整値に、移行させることを行う、請求項1乃至8の何れかに記載の設定装置。
  11.  前記モード選択器は押しボタン式スイッチからなる、請求項1乃至10の何れかに記載の設定装置。
  12.  前記押しボタン式スイッチは、押下を維持されている間、一時操作モードを維持し、該押下の解除に応じて一時操作モードを終了するように構成されている、請求項11に記載の設定装置。
  13.  前記押しボタン式スイッチは、押下操作に応じて、一時操作モードを開始し、該一時操作モード中の押下操作に応じて一時操作モードを終了するように構成されている、請求項11に記載の設定装置。
  14.  二方向に操作可能な操作子を備え、
     前記操作子は、該操作子が第1方向に操作されたとき前記調整器として機能し、前記操作子が第2方向に操作されたとき前記モード選択器として機能するように構成されている、請求項1乃至10の何れかに記載の設定装置。
  15.  前記調整器はタッチセンス付き操作子からなり、
     前記制御器は、前記タッチセンス付き操作子の出力に基づき前記一時操作モード中に前記タッチセンス付き操作子に対するユーザのタッチ操作が終了したことを検知することに応じて、該一時操作モードが終了されたと判定し、前記戻し制御を行う、請求項1乃至10の何れかに記載の設定装置。
  16.  前記調整器は反力付与可能な操作子からなり、該操作子に対するユーザの操作に応じて該操作子に反力を発生させ、
     前記制御器は、前記一時操作モード中に行われる前記操作子に対するユーザの操作が終了したとき、前記操作子に反力が発生されなくなることに応じて、前記一時操作モードが終了されたと判定し、前記戻し制御を行う、請求項1乃至10の何れかに記載の設定装置。
  17.  信号処理装置において信号処理用のパラメータを設定するための方法であって、前記信号処理装置は、パラメータを調整するためのユーザにより操作可能な調整器と、メモリとを備え、前記方法は、
     前記調整器を一時的に操作するモードである一時操作モードを選択することと、
     前記一時操作モードが選択された状態において行われる前記調整器による調整操作に対応して、変更前のパラメータ調整値を変更履歴として前記メモリに記憶することと、
     前記一時操作モードの終了に応じて、前記変更履歴に基づき、前記調整器におけるパラメータ調整値を前記変更前のパラメータ調整値に戻すこと、
    からなる方法。
  18.  非一過性のコンピュータ読取可能な記憶媒体であって、信号処理装置において信号処理用のパラメータを設定するための方法を実行するためにプロセッサにより実行可能な命令群を記憶してなり、前記信号処理装置は、パラメータを調整するためのユーザにより操作可能な調整器と、メモリとを備え、前記方法は、
     前記調整器を一時的に操作するモードである一時操作モードを選択することと、
     前記一時操作モードが選択された状態において行われる前記調整器による調整操作に対応して、変更前のパラメータ調整値を変更履歴として前記メモリに記憶することと、
     前記一時操作モードの終了に応じて、前記変更履歴に基づき、前記調整器におけるパラメータ調整値を前記変更前のパラメータ調整値に戻すこと、
    からなる記憶媒体。
PCT/JP2017/031458 2016-09-02 2017-08-31 信号処理装置におけるパラメータ設定装置及び方法 WO2018043676A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018537416A JP6614358B2 (ja) 2016-09-02 2017-08-31 信号処理装置におけるパラメータ設定装置及び方法
CN201780050722.XA CN110024417B (zh) 2016-09-02 2017-08-31 信号处理装置中的参数设定装置、方法及存储介质
US16/282,711 US10620907B2 (en) 2016-09-02 2019-02-22 Parameter setting device and method in signal processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-172232 2016-09-02
JP2016172232 2016-09-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/282,711 Continuation US10620907B2 (en) 2016-09-02 2019-02-22 Parameter setting device and method in signal processing apparatus

Publications (1)

Publication Number Publication Date
WO2018043676A1 true WO2018043676A1 (ja) 2018-03-08

Family

ID=61305134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031458 WO2018043676A1 (ja) 2016-09-02 2017-08-31 信号処理装置におけるパラメータ設定装置及び方法

Country Status (4)

Country Link
US (1) US10620907B2 (ja)
JP (1) JP6614358B2 (ja)
CN (1) CN110024417B (ja)
WO (1) WO2018043676A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368559B1 (ja) 2022-07-22 2023-10-24 レノボ・シンガポール・プライベート・リミテッド 情報処理装置および制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021145310A (ja) * 2020-03-13 2021-09-24 ヤマハ株式会社 音響処理装置および音響処理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199611A (ja) * 2010-03-19 2011-10-06 Yamaha Corp 音響信号処理装置
JP2016096469A (ja) * 2014-11-14 2016-05-26 ヤマハ株式会社 パラメータ設定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254480B2 (ja) * 2003-10-28 2009-04-15 ヤマハ株式会社 パラメータ表示方法、パラメータ表示装置およびプログラム
JP4577063B2 (ja) * 2005-03-29 2010-11-10 ヤマハ株式会社 音響制御装置における操作子の操作検出装置
EP2081405B1 (en) * 2008-01-21 2012-05-16 Bernafon AG A hearing aid adapted to a specific type of voice in an acoustical environment, a method and use
WO2015064277A1 (ja) * 2013-10-31 2015-05-07 富士フイルム株式会社 信号処理装置、撮像装置、パラメータ生成方法、信号処理方法及びプログラム
JP6269182B2 (ja) 2014-03-07 2018-01-31 ヤマハ株式会社 音響信号処理装置、パラメータ呼出方法及びプログラム
JP6572580B2 (ja) * 2015-03-24 2019-09-11 ヤマハ株式会社 音響信号処理装置及び方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199611A (ja) * 2010-03-19 2011-10-06 Yamaha Corp 音響信号処理装置
JP2016096469A (ja) * 2014-11-14 2016-05-26 ヤマハ株式会社 パラメータ設定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368559B1 (ja) 2022-07-22 2023-10-24 レノボ・シンガポール・プライベート・リミテッド 情報処理装置および制御方法

Also Published As

Publication number Publication date
US20190187951A1 (en) 2019-06-20
CN110024417B (zh) 2021-01-01
CN110024417A (zh) 2019-07-16
US10620907B2 (en) 2020-04-14
JP6614358B2 (ja) 2019-12-04
JPWO2018043676A1 (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
US8312375B2 (en) Digital mixer
JP4626453B2 (ja) パラメータ設定方法
JP6168418B2 (ja) パラメータ編集装置およびプログラム
JP6614358B2 (ja) 信号処理装置におけるパラメータ設定装置及び方法
JP4059219B2 (ja) デジタルミキサ
JP5565045B2 (ja) ミキシング装置
JP2013110585A (ja) 音響機器
JP2011029816A (ja) ミキシング制御装置
JP4596261B2 (ja) デジタルミキサおよびプログラム
JP5310167B2 (ja) 音響システム
JP2004080735A (ja) 設定更新装置および設定更新プログラム
JP3713710B2 (ja) パラメータ設定装置
JP5610376B2 (ja) パラメータ制御装置および方法
JP2007074359A (ja) 音響信号処理装置
JP6417879B2 (ja) パラメータ設定装置
JP2015076625A (ja) 制御装置、制御方法、プログラム
JP6369259B2 (ja) パラメータ制御装置及びプログラム
JP4596262B2 (ja) デジタルミキサおよびプログラム
JP4265452B2 (ja) 演奏データ再生装置及びプログラム
JP5338633B2 (ja) ミキシングコンソールおよびプログラム
JP6907577B2 (ja) 音処理装置及びパラメータ供給方法
JP2006270667A (ja) ミキサの入出力設定装置及びプログラム
JP2018117245A (ja) 音処理装置及び方法
JP7375003B2 (ja) 音響装置および音響再生プログラム
JP2016095810A (ja) パラメータ編集装置およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846680

Country of ref document: EP

Kind code of ref document: A1