WO2018043062A1 - サージ抑制回路及びインバータ駆動モータシステム - Google Patents

サージ抑制回路及びインバータ駆動モータシステム Download PDF

Info

Publication number
WO2018043062A1
WO2018043062A1 PCT/JP2017/028678 JP2017028678W WO2018043062A1 WO 2018043062 A1 WO2018043062 A1 WO 2018043062A1 JP 2017028678 W JP2017028678 W JP 2017028678W WO 2018043062 A1 WO2018043062 A1 WO 2018043062A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
suppression circuit
voltage
inverter
surge suppression
Prior art date
Application number
PCT/JP2017/028678
Other languages
English (en)
French (fr)
Inventor
美和子 藤田
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to DE112017000284.2T priority Critical patent/DE112017000284B4/de
Priority to JP2018537082A priority patent/JP6746105B2/ja
Priority to CN201780008680.3A priority patent/CN108684212B/zh
Publication of WO2018043062A1 publication Critical patent/WO2018043062A1/ja
Priority to US16/043,516 priority patent/US10581368B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/045Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • the present invention relates to a surge voltage suppression technique in an inverter-driven motor system in which an output voltage waveform is controlled by an inverter formed of semiconductor switching elements (hereinafter simply referred to as switching elements) and power is supplied to a motor via a cable.
  • switching elements semiconductor switching elements
  • FIG. 8 is a schematic block diagram of this type of inverter drive motor system.
  • the input side of the inverter INV is connected to a three-phase alternating current power supply AC such as a commercial power supply via a smoothing capacitor C dc , a converter (rectifier circuit) CONV and a transformer TR sequentially.
  • the output side of the inverter INV is connected to the motor M via the cable 100.
  • D 1 to D 6 are rectifying diodes
  • S 1 to S 6 are switching elements such as IGBTs (Insulated Gate Bipolar Transistors).
  • a three-phase AC voltage input from three-phase AC power supply AC via transformer TR is converted into a DC voltage by converter CONV.
  • This DC voltage is smoothed by the smoothing capacitor C dc of the DC intermediate circuit and supplied to the inverter INV.
  • the inverter INV converts the input DC voltage into a three-phase AC voltage of an arbitrary size and frequency by, for example, the on / off operation of switching elements S 1 to S 6 controlled by PWM (Pulse Width Modulation) to convert the motor Supply to M and rotate this motor M at a desired speed.
  • PWM Pulse Width Modulation
  • the converter CONV may be configured using not only a diode rectification circuit as illustrated, but also a switching element such as an IGBT similarly to the inverter INV.
  • the converter in that case functions as a so-called PWM converter that converts an AC voltage to a DC voltage by PWM control.
  • the switching elements S 1 to S 6 are often turned on and off at frequencies of, for example, several kilohertz to several tens of kilohertz.
  • the output voltage of the inverter INV is a pulse voltage whose rising and falling are sharp.
  • the impedance of the motor M is extremely larger than the characteristic impedance of the cable 100, and the impedance of the inverter INV is extremely smaller than the characteristic impedance of the cable 100. Therefore, when power is supplied from the inverter INV to the motor M, the voltage is specularly reflected at the power receiving end of the motor M and negative reflection occurs at the output end of the inverter INV. As a result, a voltage having a peak value and amplitude about twice that of the output end of the inverter INV is applied to the power receiving end of the motor M as a surge voltage.
  • the surge voltage applied to the receiving end of the motor M propagates inside the motor M to cause insulation breakdown between the wires of the motor M and between the ground, and reduces the life of the insulation of the winding by partial discharge.
  • the sharing ratio of the applied surge voltage is high, and in particular, the steeper the rising of the surge voltage, the higher the sharing ratio. Therefore, when the switching speed of the inverter INV is high, the insulation stress of the winding in the vicinity of the power receiving end of the motor M is high, and the insulation deterioration and the insulation breakdown are likely to occur. For this reason, there is a demand for the realization of a technique for effectively suppressing the surge voltage.
  • the three-phase voltage based on a predetermined potential is a first component obtained by multiplying the value obtained by adding the instantaneous value of each phase voltage by (1/3), and the first added value of the instantaneous value of each phase voltage. It can be separated into a second component from which the component has been subtracted.
  • the above first component is called a zero-phase component, and in a three-phase three-wire circuit, it is a voltage component that causes a current flowing to the ground via a stray capacitance of the circuit. And since it does not become zero even if it adds the three-phase surge voltage with respect to the earth, the zero-phase component is included in the surge voltage.
  • the converter in FIG. 8 is PWM-controlled along with the inverter as a PWM converter, and the inverter is connected via a 3-core shielded cable with a cross-sectional area of 5.5 [mm 2 ] and a length of 100 [m].
  • the present invention is directed to a system for driving an induction motor.
  • the zero-phase component included in the surge voltage of FIG. 9 includes a component generated with the switching operation of the inverter and a component generated with the PWM rectification operation of the converter, and the surge voltage in which both components overlap is the motor Applied to the receiving end of the
  • the three-phase voltage of the second component described above is called a symmetrical component, and becomes zero when the instantaneous value of each phase is added.
  • a component generated with the switching operation of the inverter is applied as a surge voltage to the power receiving end of the motor.
  • FIG. 10 As a method of suppressing such a surge voltage, there is a method shown in FIG. 10, a surge suppression circuit 200 formed of a low pass filter or the like is inserted on the output side of the inverter INV to reduce the rate of change of the output voltage of the inverter INV and remove the surge voltage.
  • a surge suppression circuit 200 formed of a low pass filter or the like is inserted on the output side of the inverter INV to reduce the rate of change of the output voltage of the inverter INV and remove the surge voltage.
  • Patent Document 1 a capacitor is connected to a DC power supply line, and a switching surge is removed by the action of an LC resonance circuit (tank circuit) configured by the wiring inductance of the DC power supply line and the capacitor.
  • LC resonance circuit tank circuit
  • Patent Document 2 in order to form a surge suppression circuit having a suppression effect also on the zero-phase component of the surge voltage, the impedance is matched with the cable for both the zero-phase component and the symmetrical component. And a method of connecting the other end to the DC voltage neutral point of the inverter.
  • the other end of the resistor whose one end is connected to each phase of the power receiving end is star connected via a capacitor, and the connection point is connected to the DC voltage neutral point.
  • the inverter has a DC voltage neutral point terminal.
  • the inverter has a DC voltage neutral point terminal.
  • one end is connected to the power receiving end of the motor and the other end is connected to the DC voltage neutral point terminal of the inverter, so the scale of construction becomes large and much labor and time are required for connection work. It was.
  • the problem to be solved by the present invention is applicable to a low voltage, small capacity inverter without a DC voltage neutral point terminal, and reduces the zero-phase component of the surge voltage only by connection to the output terminal of the inverter. It is an object of the present invention to provide a surge suppression circuit that has become possible. Another object of the present invention is to provide an inverter drive motor system provided with this surge suppression circuit.
  • the surge suppression circuit of the present invention is used in a motor drive system for driving a motor connected to an output end of an inverter via a cable by the inverter, and the output end and the cable Used in connection between.
  • the surge suppression circuit includes an inductance and a resistance connected in parallel to the inductance, and the resistance value of the resistance is set to match the impedance of the zero-phase component of the cable.
  • the resistance value of the resistor is set to be smaller than the impedance of the zero phase component of the cable.
  • L c Inductance value of cable zero-phase component
  • C c Capacitance value of cable zero-phase component
  • l c Cable length
  • R Resistance value of surge suppression circuit
  • a hollow magnetic body penetrate or wind a connecting wire connecting the cable or the output end of the inverter and the cable.
  • a hollow magnetic body penetrates or winds a cable or a connecting wire that connects the output end of the inverter and the cable to a hollow magnetic body, and the resistance element is wound around the magnetic body.
  • any of an inverter for supplying electric power to a motor a cable connecting the motor and the inverter, and any one of the cables connected between the output end of the inverter and the cable And the surge suppression circuit.
  • the output voltage of the inverter is divided by the impedance of the surge suppression circuit and the characteristic impedance of the cable. For this reason, the component which changes sharply with switching of the switching element among the voltages applied to the cable becomes half of the output voltage of the inverter when the resistance component of the surge suppression circuit and the characteristic impedance of the cable are equal. After that, the voltage applied to the cable gradually rises in accordance with the time constant determined by the parallel circuit of the resistance of the surge suppression circuit and the inductance.
  • the output voltage of the inverter is divided by the impedance of the surge suppression circuit and the characteristic impedance of the cable, and this divided voltage is applied to the cable.
  • the component which changes steeply with switching of a switching element among applied voltages to a motor receiving end becomes equivalent to the output voltage of an inverter, and falls to about half compared with the case where there is no surge suppression circuit.
  • the voltage applied to the motor receiving end gradually increases with a time constant determined by the parallel circuit of the resistance of the surge suppression circuit and the inductance, as with the voltage applied to the cable.
  • the component reflected by the motor receiving end returns to the inverter output end via the cable.
  • the impedance mismatch between the cable and the inverter is mitigated by the surge suppression circuit, negative reflection is reduced. Therefore, the reflected voltage component at the inverter output end is greatly reduced, and the voltage fluctuation at the motor receiving end caused by the reflected voltage component propagating to the motor again through the cable is also suppressed.
  • the component that changes sharply with the switching of the switching element becomes approximately the output voltage value of the inverter. It decreases to about 1/2 compared to.
  • the peak value of the surge voltage determined by the slowly rising voltage component is also reduced. That is, by making the voltage rise rate slower, it is possible to reduce the voltage sharing ratio of the windings near the motor power receiving end where the insulation stress is large, and also to reduce the peak value of the surge voltage.
  • the present invention is also applicable to a system using a low voltage, small capacity inverter without a DC voltage neutral point terminal. Moreover, since the operation is completed only by connecting the surge suppression circuit to the output terminal of the inverter, it is possible to reduce the labor and time required for the connection operation.
  • FIG. 7 is a waveform diagram when the zero-phase surge voltage at the motor receiving end of the motor in the first embodiment is theoretically calculated.
  • FIG. 13 is a waveform diagram when the zero-phase surge voltage at the motor receiving end of the motor in the second embodiment is theoretically calculated.
  • FIG. 16 is a diagram showing a relationship between a value obtained by dividing the peak value V cmax of V c shown in Formula 7 by the open circuit voltage V i at the inverter output end and the power of the base e in Formula 7 in Example 3.
  • FIG. 16 is an explanatory diagram of a surge suppression circuit according to a fourth embodiment.
  • FIG. 16 is an explanatory diagram of a surge suppression circuit according to a fifth embodiment. It is a schematic block diagram of the conventional inverter drive motor system. It is a waveform figure at the time of carrying out theoretical calculation of the surge voltage in the motor receiving end of FIG. It is a schematic block diagram of the conventional inverter drive motor system provided with the surge suppression circuit.
  • FIGS. 1 to 7 are for explaining the embodiments of the present invention to the last, and the technical scope of the present invention is not limited at all by these.
  • FIG. 1 is a block diagram of an inverter drive motor system to which the surge suppression circuit of each of the embodiments including the first embodiment is applied.
  • This motor system differs from that of FIG. 8 in that a surge suppression circuit 300 described below is connected between the output end of the inverter INV and one end of the cable 100 for supplying power to the motor M.
  • the surge suppression circuit 300 includes a resistor R whose value is set to match the characteristic impedance Z c of the zero-phase component of the cable 100, and a zero-phase reactor L connected in parallel to the resistor R. And a parallel circuit of.
  • the value of the resistance R (the symbol R is used not only as the sign of the component but also as the resistance value) is set as shown in Formula 2.
  • L c is an inductance value of the zero phase component of the cable 100
  • C c is a capacitance value of the zero phase component of the cable 100.
  • the value of the zero-phase reactor L of the surge suppression circuit 300 (the symbol L is used not only as the symbol of the component but also as the inductance value) satisfies Equation 1 described above.
  • the zero phase reactor L may be configured of a ferrite core or the like.
  • the surge suppression circuit 300 including the resistor R and the zero-phase reactor L is shown as a single element, but a plurality of elements may be connected in parallel or in series. That is, the number of resistors R and zero-phase reactors L and the connection method may be selected so as to obtain an optimal surge suppression effect.
  • the operation of the surge suppression circuit 300 will be described with reference to an example (FIG. 2) in which the zero phase surge voltage (the zero phase component of the surge voltage) of the power receiving end of the motor M in FIG.
  • This calculation is performed by supplying power from the inverter INV to the induction motor through the 3-core shielded cable having a cross-sectional area of 5.5 [mm 2 ] and a length of 100 [m] as described above.
  • a system in which a surge suppression circuit 300 configured by a parallel circuit of a 26 [ ⁇ ] resistance R and a 30 [ ⁇ H] zero-phase reactor L is connected between the output end of the inverter INV and the cable 100
  • a surge suppression circuit 300 configured by a parallel circuit of a 26 [ ⁇ ] resistance R and a 30 [ ⁇ H] zero-phase reactor L is connected between the output end of the inverter INV and the cable 100
  • a surge suppression circuit 300 configured by a parallel circuit of a 26 [ ⁇ ] resistance R and a 30 [ ⁇ H] zero-phase
  • the zero phase voltage at the output end of the inverter INV fluctuates.
  • the output end voltage of the inverter INV is applied to the cable 100 as it is and propagates.
  • the output terminal voltage of the inverter INV is divided by the impedance of the surge suppression circuit 300 and the characteristic impedance of the cable 100.
  • the surge suppression circuit 300 is configured by a parallel circuit of the resistor R and the zero-phase reactor L as described above. Therefore, the initial value of the voltage applied to the cable 100 depends on the output voltage of the inverter INV by the resistance value (26 [ ⁇ ]) of the surge suppression circuit 300 and the characteristic impedance value (26 [ ⁇ ]) of the cable 100. It is a divided value, that is, 0.5 times the output voltage of the inverter INV. Then, with the elapse of time, the voltage applied to the cable 100 is increased depending on the time constant (R / L) of the surge suppression circuit 300.
  • the voltage at the receiving end of the motor M When the voltage applied to the cable 100 rises with the passage of time, the voltage at the receiving end of the motor M also rises accordingly. This rise in the voltage at the receiving end continues over the time for which the reflected wave travels around the cable 100 once (in this calculation example, the time for one round trip of the 100 [m] 3-core shielded cable: about 1.45 [ ⁇ s]).
  • the receiving end voltage of the motor M at the end of the voltage rise is approximately 1.4 times the maximum value of the output end voltage of the inverter INV.
  • the voltage at the receiving end of motor M thereafter is gradually reflected by reflection at the end on the inverter INV side of cable 100 and at the end on the motor M side, resistance R and inductance L of surge suppression circuit 300, etc. Converges to a value equal to the output voltage of.
  • the high voltage application time when the surge suppression circuit 300 is connected as in the first embodiment is As shown in FIG. 2, it becomes about 2.5 [ ⁇ s].
  • the surge suppression circuit 300 having a predetermined resistance value R and an inductance value L between the output end of the inverter INV and one end of the cable 100. Is equipped.
  • the component that changes sharply with the switching operation of the inverter INV becomes approximately 0.9 times the output voltage value of the inverter INV. It is reduced to about 50 [%] to about 1.85 times of 9).
  • the maximum value of the surge voltage is about 1.3 times the output voltage value of the inverter INV, and is reduced to about 70% compared to about 1.85 times the prior art (FIG. 9).
  • the high voltage application time is about 2.5 [ ⁇ s], which is reduced to about 40 [%] compared to about 6 [ ⁇ s] in the prior art (FIG. 9).
  • the resistance value R of the surge suppression circuit 300 is set to match the characteristic impedance Z c for the zero-phase component of the cable 100.
  • the resistance value R is set to Zc or less.
  • L c is the inductance value of the zero phase component of the cable
  • C c is the capacitance value of the zero phase component of the cable, as described above.
  • the standard of the inductance value L of the surge suppression circuit 300 is set by Equation 1 as in the first embodiment. According to the second embodiment, since the range of the resistance value R of the surge suppression circuit 300 is wider than that of the first embodiment, there is an advantage that design freedom is improved.
  • the operation of the surge suppression circuit 300 in the second embodiment will be described with reference to an example (FIG. 3) in which the zero-phase surge voltage at the power receiving end of the motor M in FIG.
  • this calculation supplies power to the induction motor from the inverter INV via a 3-core shielded cable with a cross-sectional area of 5.5 mm 2 and a length of 100 m, as in the first embodiment. I'm going.
  • a system in which a surge suppression circuit 300 including a parallel circuit of a 15 [ ⁇ ] resistor R and a 30 [ ⁇ H] zero-phase reactor L is connected between the output end of the inverter INV and the cable 100 is targeted. .
  • the initial value of the voltage applied from the output end of the inverter INV to the cable 100 is the output end voltage of the inverter INV, the resistance value (15 [ ⁇ ]) of the surge suppression circuit 300 and the characteristic impedance value of the cable 100
  • the value is divided by (26 [ ⁇ ]), that is, about 0.63 times the voltage at the output end of the inverter INV. Then, this voltage rises with the passage of time depending on the time constant (R / L) of the resistance value R and the inductance value L of the surge suppression circuit 300.
  • the initial value of the surge voltage applied to the power receiving end of motor M is a composite value of the voltage component propagated through cable 100 and the reflected voltage component, and the value is approximately 1.17 of the output end voltage of the inverter. It becomes double (0.63 ⁇ (1 + 0.85)).
  • the voltage at the receiving end of the motor M also rises.
  • the voltage rise continues for the time when the reflected wave travels around the cable 100 once (about 1.45 [ ⁇ s] as described above), and the voltage at the receiving end of the motor M at the end of the voltage rise is the output voltage of the inverter INV.
  • the high voltage application time when the surge suppression circuit 300 is connected as in the second embodiment is As shown in FIG. 3, it becomes about 1.5 [ ⁇ s].
  • the surge suppression circuit 300 having a predetermined resistance value R and an inductance value L between the output end of the inverter INV and one end of the cable 100 is Have.
  • the component that changes sharply in the same manner as the switching operation of inverter INV becomes approximately 1.17 times the output voltage value of inverter INV. It is reduced to about 63 [%] to about 1.85 times of 9).
  • the maximum value of the surge voltage is about 1.42 times the output voltage value of the inverter INV, and is reduced to about 77 [%] compared to about 1.85 times the prior art (FIG. 9).
  • the high voltage application time is about 1.5 [ ⁇ s], which is reduced to about 25 [%] compared to about 6 [ ⁇ s] in the prior art (FIG. 9).
  • the inductance value L of the zero-phase reactor of the surge suppression circuit 300 is set as shown in Formula 4.
  • Equation 4 is the same as Equation 1 described above, it will be shown again to facilitate understanding.
  • L c is an inductance value of the zero phase component of the cable 100
  • C c is a capacitance value of the zero phase component of the cable 100
  • l c is a length of the cable 100
  • R is a resistance value of the surge suppression circuit 300.
  • the initial value of the voltage applied to the cable 100 with the switching of the inverter INV corresponds to the voltage of the output end of the inverter INV and the resistance value (26 [ ⁇ ]) of the surge suppression circuit 300 and the cable 100.
  • the value obtained by dividing the voltage by the characteristic impedance value (26 [.OMEGA.]) That is, 0.5 times the voltage at the output end of the inverter INV.
  • the voltage applied to the cable 100 rises depending on the time constant (R / L) of the surge suppression circuit 300.
  • Equation 5 the open voltage of the output end of the inverter INV is V i
  • V c the voltage applied to the cable 100
  • t the elapsed time after the voltage of V i / 2 is applied to the cable 100
  • Equation 6 the time T at which V c reaches a peak value is expressed by Equation 6.
  • Equation 8 a value obtained by dividing the peak value V cmax shown in Equation 7 by the open circuit voltage V i at the output end of the inverter INV is A shown in Equation 8 and B is the power of base e in Equation 7 shown in Equation 9 I assume.
  • the relationship between these A and B is shown in FIG. According to FIG. 4, it can be seen that A in Equation 8 proportional to V c increases exponentially and converges to 1 as B in Equation 9 increases.
  • the reduction effect of the peak value of the surge voltage by the surge suppression circuit 300 is larger as A of Expression 8 is smaller, and smaller as it approaches 1. Therefore, from the relationship shown in FIG. 4, the constant of the surge suppression circuit 300 is set as shown in Equation 10 and Equation 11 (equivalent conversion equation of Equation 10) as a constant range before A in Equation 8 converges to 1. . Thereby, a significant reduction effect of the surge voltage peak value can be obtained.
  • a fourth embodiment of the present invention will now be described with reference to FIG.
  • a cable connecting the output end of the inverter INV to the power receiving end of the motor M or a connection line connecting the output end of the inverter INV to the cable is passed through a hollow magnetic body.
  • the surge suppression circuit 300 shown in the first to third embodiments is configured.
  • FIG. 5A shows a surge suppression circuit according to an example of the fourth embodiment.
  • 100 is a three-core cable
  • 101 is a cable core wire of three-phase each phase
  • 102 is a sheath
  • 301 is a magnetic substance such as soft ferrite in which the cable 100 is penetrated.
  • the magnetic body 301 constitutes a zero-phase reactor that acts as an inductance with respect to a three-phase addition value, ie, a zero-phase component.
  • reference numeral 103 denotes a connection line of each of the three phases, and the connection line 103 of each phase includes a cable core and a sheath.
  • Reference numeral 302 denotes a magnetic substance such as soft ferrite which penetrates the connection line 103, and as in FIG. 5A, a zero-phase acting as an inductance on an addition value of three phases, ie, a zero-phase component. It constitutes a reactor.
  • FIG. 6 shows an example of the characteristic of such a magnetic body as a relationship between impedance and frequency.
  • the magnetic substance has an inductance characteristic in which the impedance increases in proportion to the increase of the frequency in the frequency band of 0.1 MHz or less, and in the frequency band of 0.2 MHz or more It can be seen that it has the characteristic of resistance that is less dependent on frequency. That is, it can be seen that the magnetic body has an impedance characteristic similar to that of a circuit constituted by a parallel circuit of an ideal inductance and a resistor.
  • power lines of all phases such as the cable 100 or the connection line 103 are made to penetrate the magnetic body 301 or 302 using the above-mentioned characteristics of the magnetic body.
  • a surge suppression circuit having impedance characteristics equivalent to a parallel circuit of an inductance and a resistor is configured.
  • the present invention is not limited to this configuration, and may be, for example, the following modified example.
  • Increase the number of turns of the power line (wind the power line to the magnetic material).
  • Increase the number of magnetic substances.
  • Combine different types of magnetic substances. • Connect multiple conductors in parallel to form one phase of the power line. In a motor drive system using a single phase inverter, a single phase power line is penetrated or wound in a hollow magnetic body.
  • Example 5 of the present invention will be described with reference to FIG. Example 5 is different from Example 4 in that both ends of the resistance element are wound around a magnetic body.
  • reference numeral 303 denotes a resistance element wound around the magnetic body 302. 7 corresponds to the configuration of FIG. 5B with the addition of the resistive element 303, but the resistor 303 may be added to the configuration of FIG. 5A.
  • the magnetic body has characteristics of inductance and resistance.
  • the circuit constant of the surge suppression circuit can be changed by changing the number of turns of the power line to the magnetic body, combining different magnetic bodies, or the like.
  • the number of turns of the power line and the type of the magnetic material are changed, it is considered that it may be difficult to obtain a desired circuit constant because both the inductance component and the resistance component change.
  • the resistance component of the surge suppression circuit can be changed by winding both ends of the resistance element 303 around the magnetic body 302. Therefore, it is possible to easily construct a surge suppression circuit with a desired circuit constant with a small number of circuit elements.
  • the resistance element 303 enamel resistance, cement resistance, or the like can be used.
  • a self-arc-extinguishing device such as a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) may be used other than the IGBT shown in FIG.
  • the converter CONV may be a PWM converter or the like configured of a switching element and its control circuit, in addition to the diode rectification circuit.
  • a surge suppression circuit having a configuration satisfying Expression 2 or Equation 3 and further Expression 4 may be connected near the output end of the inverter INV.
  • the control method etc. are not limited at all.
  • the surge suppression circuit and the inverter drive motor system according to the present invention are not limited to the embodiment described above, and various modifications can be made without departing from the scope of the present invention.
  • the present invention can be applied not only to the so-called two-level inverter described above, but also to a motor system using a multi-level inverter such as three levels, etc., and can be applied not only to a three-phase inverter but also to a single phase inverter It is.
  • the present invention can also be applied to a motor system in which a motor is driven by distributing power from one converter to a plurality of inverters.
  • AC Three-phase AC power supply
  • trans CONV Converters
  • C dc smoothing capacitor
  • INV Inverter M: motor
  • D 6 diodes
  • S 1 ⁇ S 6 the semiconductor switching element 100: cable 101: cable core 102: Sheath 103: connection line 300: surge suppression circuit 301, 302: magnetic body 303: resistance element

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Power Conversion In General (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

インバータINVの出力端にケーブル100を介して接続されたモータMをインバータINVにより駆動するために、インバータINVの出力端とケーブル100との間に接続されるサージ抑制回路、及び、このサージ抑制回路を用いたモータ駆動システムに関する。サージ抑制回路300は、インダクタンスLと、このインダクタンスLと並列に接続される抵抗Rとを備え、抵抗Rの抵抗値が、ケーブル100の零相成分のインピーダンスと整合するように、または、零相成分のインピーダンスより小さくなるように設定する。これにより、直流電圧中性点端子のない低圧・小容量のインバータに適用可能とし、かつ、インバータの出力端への接続のみによってサージ電圧の零相成分を低減可能としたサージ抑制回路及びインバータ駆動モータシステムを提供する。

Description

サージ抑制回路及びインバータ駆動モータシステム
 本発明は、半導体スイッチング素子(以下、単にスイッチング素子ともいう)からなるインバータにより出力電圧波形を制御し、ケーブルを介してモータに電力を供給するインバータ駆動モータシステムにおける、サージ電圧の抑制技術に関する。
 図8は、この種のインバータ駆動モータシステムの概略構成図である。
 図8において、インバータINVの入力側は、平滑コンデンサCdc、コンバータ(整流回路)CONV及びトランスTRを順次介して商用電源等の三相交流電源ACに接続されている。また、インバータINVの出力側は、ケーブル100を介してモータMに接続されている。なお、D~Dは整流用のダイオード、S~SはIGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子である。
 このインバータ駆動モータシステムにおいて、三相交流電源ACからトランスTRを介して入力された三相交流電圧は、コンバータCONVにより直流電圧に変換される。この直流電圧は、直流中間回路の平滑コンデンサCdcにより平滑されてインバータINVに供給される。
 インバータINVは、例えばPWM(Pulse Width Modulation)制御されるスイッチング素子S~Sのオン・オフ動作により、入力された直流電圧を任意の大きさ及び周波数の三相交流電圧に変換してモータMに供給し、このモータMを所望の速度で回転させる。なお、図8では、スイッチング素子S~Sを制御する制御回路の図示を省略してある。
 コンバータCONVは、図示するようなダイオード整流回路だけでなく、インバータINVと同様にIGBT等のスイッチング素子を用いて構成しても良い。その場合のコンバータは、PWM制御によって交流電圧を直流電圧に変換する、いわゆるPWMコンバータとして機能する。
 この種のモータシステムにおいて、スイッチング素子S~Sは、例えば数[kHz]~十数[kHz]の周波数でオン・オフされることが多い。その場合、インバータINVの出力電圧は立ち上がりと立ち下がりが急峻なパルス電圧となる。一方、モータMのインピーダンスは、ケーブル100の特性インピーダンスに比べて極めて大きく、インバータINVのインピーダンスは、ケーブル100の特性インピーダンスに比べて極めて小さい。
 このため、インバータINVからモータMに電力が供給されると、モータMの受電端で電圧が正反射し、インバータINVの出力端では負の反射が発生する。これにより、インバータINVの出力端の約2倍程度の波高値及び振幅を有する電圧が、サージ電圧としてモータMの受電端に印加されることになる。
 モータMの受電端に印加されたサージ電圧は、モータMの内部を伝搬してモータMの線間や対地間の絶縁破壊を引き起こしたり、部分放電によって巻線の絶縁部の寿命を低下させたりする原因となる。また、モータMの受電端付近の巻線は、印加されるサージ電圧の分担比率が高く、特にサージ電圧の立ち上りが急峻であるほど分担比率は高くなる。従って、インバータINVのスイッチング速度が速い場合は、モータMの受電端付近における巻線の絶縁ストレスが高く、絶縁劣化や絶縁破壊が起こりやすくなる。
 このため、上記サージ電圧を効果的に抑制する技術の実現が、従来から求められている。
 ここで、従来のサージ電圧抑制技術を説明する前に、零相成分と対称成分とについて説明する。
 所定の電位を基準とした三相電圧は、各相電圧の瞬時値を加算した値に(1/3)を乗じた第1の成分と、各相電圧の瞬時値の加算値から第1の成分を減算した第2の成分とに分離することができる。上記の第1の成分は零相成分と呼ばれており、三相三線式回路では、回路の浮遊容量等を介して大地に流れる電流の原因となる電圧成分である。そして、大地に対する三相のサージ電圧を加算してもゼロにはならないので、サージ電圧には零相成分が含まれている。
 図8に示したモータシステムにおいて、モータMの受電端におけるサージ電圧を理論計算した結果を図9に示す。この計算例は、図8におけるコンバータをPWMコンバータとしてインバータと共にPWM制御し、インバータから断面積が5.5[mm]で長さが100[m]の3心シールド付ケーブルを介して接続された誘導モータを駆動するシステムを対象としている。
 図9のサージ電圧に含まれる零相成分は、インバータのスイッチング動作に伴って発生する成分とコンバータのPWM整流動作に伴って発生する成分とを含んでおり、両成分が重畳したサージ電圧がモータの受電端に印加される。
 一方、前述した第2の成分の三相電圧は対称成分と呼ばれており、各相の瞬時値を加算するとゼロになる。この対称成分に関しては、インバータのスイッチング動作に伴って発生する成分がサージ電圧としてモータの受電端に印加される。
 このようなサージ電圧を抑制する方法としては、図10に示す方法がある。図10では、インバータINVの出力側にローパスフィルタ等からなるサージ抑制回路200を挿入し、インバータINVの出力電圧の変化率を緩和してサージ電圧を除去している。
 また、他の方法としては、特許文献1に記載されている方法がある。特許文献1においては、直流電源ラインにコンデンサを接続し、直流電源ラインの配線インダクタンスとコンデンサとによって構成したLC共振回路(タンク回路)の作用によりスイッチングサージを除去している。
 しかし、これらの従来技術は、サージ電圧の対称成分に対しては抑制効果が認められるものの、サージ電圧の零相成分を抑制することは困難であった。
 一方、特許文献2には、サージ電圧の零相成分にも抑制効果のあるサージ抑制回路を構成するために、零相成分及び対称成分の両方についてケーブルとインピーダンスを整合させ、サージ抑制回路の一端をモータの受電端に接続して他端をインバータの直流電圧中性点に接続する方法が開示されている。このサージ抑制回路は、受電端の各相にそれぞれ一端が接続された抵抗の他端を、コンデンサを介してスター結線し、その接続点を直流電圧中性点に接続している。
特開2010-41790号公報(段落[0017]~[0026]、図1等) 特許第5145762号公報(段落[0022]~[0028]、図1,図2等)
 特許文献2に記載されたサージ抑制回路を適用するには、インバータに直流電圧中性点端子があることが前提となる。しかし、特に低圧・小容量のインバータでは、中性点端子がないものが一般的である。
 また、このサージ抑制回路では、一端をモータの受電端に接続して他端をインバータの直流電圧中性点端子に接続するため、施工規模が大きくなって接続作業に多くの手間や時間を必要としていた。
 そこで、本発明の解決課題は、直流電圧中性点端子のない低圧・小容量のインバータへの適用が可能であり、かつ、インバータの出力端への接続のみによってサージ電圧の零相成分を低減可能としたサージ抑制回路を提供することにある。また、本発明の解決課題は、このサージ抑制回路を備えたインバータ駆動モータシステムを提供することにある。
 上記課題を解決するため、本発明のサージ抑制回路は、インバータの出力端にケーブルを介して接続されたモータを前記インバータにより駆動するモータ駆動システムに使用され、かつ前記出力端と前記ケーブルとの間に接続して使用される。
 そして、このサージ抑制回路は、インダクタンスと、このインダクタンスと並列に接続される抵抗とを備え、この抵抗の抵抗値が、前記ケーブルの零相成分のインピーダンスと整合するように設定されている。
 また、本発明のサージ抑制回路は、前記抵抗の抵抗値が、前記ケーブルの零相成分のインピーダンスより小さくなるように設定されている。
 なお、前記インダクタンスの値Lは、数式1を満足することが望ましい。
Figure JPOXMLDOC01-appb-M000002
 ここで、
 L:ケーブルの零相成分のインダクタンス値
 C:ケーブルの零相成分のキャパシタンス値
 l:ケーブルの長さ
 R:サージ抑制回路の抵抗値
 また、前記ケーブル、または、前記インバータの出力端と前記ケーブルとを接続する接続線を、中空の磁性体に貫通または巻回することが望ましい。
 更に、前記ケーブル、または、前記インバータの出力端と前記ケーブルとを接続する接続線を、中空の磁性体に貫通または巻回すると共に、前記磁性体に抵抗素子を巻回することが望ましい。
 また、本発明のインバータ駆動モータシステムは、モータに電力を供給するインバータと、前記モータと前記インバータとを接続するケーブルと、前記インバータの出力端と前記ケーブルとの間に接続された何れかの前記サージ抑制回路と、を備えている。
 本発明においては、インバータの出力電圧をサージ抑制回路のインピーダンスとケーブルの特性インピーダンスとにより分圧する。このため、ケーブルへの印加電圧のうちスイッチング素子のスイッチングに伴って急峻に変化する成分は、サージ抑制回路の抵抗成分とケーブルの特性インピーダンスとが等しい場合にインバータの出力電圧の半分になる。そして、その後、ケーブルへの印加電圧は、サージ抑制回路の抵抗とインダクタンスとの並列回路によって決まる時定数に従って緩やかに上昇する。
 一方、モータの受電端では、ケーブルの特性インピーダンスに対してモータのインピーダンスが高いため、モータの受電端では、インピーダンスの不整合による反射が生じる。
 このため、ケーブルに印加された電圧値と同等の反射電圧が発生し、モータの受電端に印加される電圧は、ケーブルに印加される電圧に対して最大で2倍となる。
 ところで、前述したように、インバータの出力電圧はサージ抑制回路のインピーダンスとケーブルの特性インピーダンスとによって分圧され、この分圧された電圧がケーブルに印加されている。このため、モータ受電端への印加電圧のうちスイッチング素子のスイッチングに伴って急峻に変化する成分は、インバータの出力電圧と同等程度になり、サージ抑制回路がない場合の半分程度まで低下する。そして、モータ受電端への印加電圧は、ケーブルへの印加電圧と同様に、サージ抑制回路の抵抗とインダクタンスによる並列回路によって決まる時定数によって緩やかに上昇する。
 更に、モータ受電端により反射した成分は、ケーブルを介してインバータ出力端に戻る。本発明では、サージ抑制回路によりケーブルとインバータとのインピーダンス不整合が緩和されているため、負の反射は小さくなる。従って、インバータ出力端における反射電圧成分は大幅に低減され、この反射電圧成分が再びケーブルを介してモータに伝搬することにより生じるモータ受電端の電圧変動も抑制される。
 このようにして、本発明のサージ抑制回路によれば、モータ受電端に印加されるサージ電圧のうち、スイッチング素子のスイッチングに伴って急峻に変化する成分はインバータの出力電圧値程度になり、従来に比べて約1/2まで減少する。同時に、緩やかに上昇する電圧成分によって決まるサージ電圧のピーク値も低減する。すなわち、電圧上昇速度を緩やかにすることで、絶縁ストレスの大きいモータ受電端付近の巻線の電圧分担比率を低下させると共に、サージ電圧のピーク値も低減することが可能となる。
 更に、インバータ出力端における負の反射が起こりにくくなるため、モータ受電端での正反射との組み合わせによって起こる、モータ受電端における反射電圧の振幅値が小さくなる。これにより、モータ受電端に高電圧が印加される時間が短くなり、巻線に加わる絶縁ストレスを低下させることができる。
 加えて、本発明によれば、直流電圧中性点端子のない低圧・小容量のインバータを用いたシステムにも適用可能である。また、インバータの出力端にサージ抑制回路を接続するだけで作業が完了するため、接続作業に要する手間や時間を削減することができる。
本発明の各実施例が適用されるインバータ駆動モータシステムの構成図である。 実施例1におけるモータ受電端の零相サージ電圧を理論計算した場合の波形図である。 実施例2におけるモータ受電端の零相サージ電圧を理論計算した場合の波形図である。 実施例3において、数式7に示すVのピーク値Vcmaxをインバータ出力端の開放電圧Vによって除した値と、数式7における底eのべき数との関係を示す図である。 実施例4に係るサージ抑制回路の説明図である。 磁性体の特性の一例を示す図である。 実施例5に係るサージ抑制回路の説明図である。 従来のインバータ駆動モータシステムの概略構成図である。 図8のモータ受電端におけるサージ電圧を理論計算した場合の波形図である。 サージ抑制回路を備えた従来のインバータ駆動モータシステムの概略構成図である。
 以下、図に沿って本発明の実施形態を説明する。なお、図1~図7は、あくまで本発明の実施形態を説明するためのものであり、これらによって本発明の技術的範囲は何ら限定されない。
 図1は、実施例1を始めとした各実施例のサージ抑制回路が適用されるインバータ駆動モータシステムの構成図である。
 このモータシステムが図8と異なる点は、インバータINVの出力端と、モータMに電力を供給するケーブル100の一端との間に、以下に説明するサージ抑制回路300を接続した点にある。
 実施例1に係るサージ抑制回路300は、ケーブル100の零相成分についての特性インピーダンスZと整合するように値が設定された抵抗Rと、この抵抗Rに並列に接続された零相リアクトルLと、の並列回路によって構成されている。
 ここで、抵抗Rの値(符号Rは、部品の符号だけでなく抵抗値としても用いるものとする)は、数式2のように設定する。
Figure JPOXMLDOC01-appb-M000003
 なお、L:ケーブル100の零相成分のインダクタンス値、C:ケーブル100の零相成分のキャパシタンス値である。
 例えば、断面積が5.5[mm]の3心シールド付ケーブルの回路定数実測値は、L=186[nH/m]、C=282[pF/m]であるため、RをZにほぼ等しい26[Ω]とする。なお、この抵抗Rには、セメント抵抗器、巻線抵抗器、ホウロウ抵抗器等の何れを用いてもよい。
 また、サージ抑制回路300の零相リアクトルLの値(符号Lは、部品の符号だけでなくインダクタンス値としても用いるものとする)の目安は、前述した数式1を満足するものとする。この零相リアクトルLは、フェライトコア等によって構成されたものでも良い。
 図1では、抵抗R及び零相リアクトルLからなるサージ抑制回路300を単一の素子として示しているが、複数の素子を並列または直列に接続して構成しても良い。つまり、最適なサージ抑制効果が得られるように抵抗R及び零相リアクトルLの数量や接続方法を選択すれば良い。
 次に、このサージ抑制回路300の作用を、図1におけるモータMの受電端の零相サージ電圧(サージ電圧の零相成分)を理論計算した一例(図2)を参照しながら説明する。この計算は、インバータINVから、前記同様に断面積が5.5[mm]で長さが100[m]の3心シールド付ケーブルを介して誘導モータに電力を供給して行っている。また、インバータINVの出力端とケーブル100との間に、26[Ω]の抵抗Rと30[μH]の零相リアクトルLとの並列回路により構成されるサージ抑制回路300を接続したシステムを対象としている。
 インバータINVのスイッチング素子がスイッチングすると、インバータINVの出力端の零相電圧に変動が生じる。
 図2に破線で示すように、サージ抑制回路300を有しない図8の従来技術では、インバータINVの出力端電圧がそのままケーブル100に印加されて伝搬する。これに対し、サージ抑制回路300を備えた実施例1によれば、インバータINVの出力端電圧が、サージ抑制回路300のインピーダンスとケーブル100の特性インピーダンスとによって分圧される。
 ここで、サージ抑制回路300は、前述したように抵抗Rと零相リアクトルLとの並列回路によって構成されている。このため、ケーブル100に印加される電圧の初期値は、インバータINVの出力端電圧をサージ抑制回路300の抵抗値(26[Ω])とケーブル100の特性インピーダンス値(26[Ω])とによって分圧した値、すなわち、インバータINVの出力端電圧の0.5倍の値となる。そして、時間の経過と共に、サージ抑制回路300が有する時定数(R/L)に依存して、ケーブル100への印加電圧は上昇する。
 このようにしてケーブル100に印加された電圧が、ケーブル100を伝搬してモータMの受電端に到達すると、ケーブル100の特性インピーダンスとモータMの入力インピーダンスとによって決まる反射が起こる。理論計算したケーブル100とモータMとの組み合わせでは、反射係数の初期値は約0.85である。このため、モータMの受電端に印加されるサージ電圧初期値は、ケーブル100を伝搬した電圧成分と反射電圧成分との合成値となり、その値は、インバータINVの出力端電圧の約0.9倍(=0.5×(1+0.85))となる。
 そして、時間の経過と共にケーブル100への印加電圧が上昇すると、それに伴ってモータMの受電端電圧も上昇する。この受電端電圧の上昇は、反射波がケーブル100を一往復する時間(本計算例では、100[m]の3心シールドケーブルを1往復する時間:約1.45[μs])にわたって継続し、電圧上昇終了時におけるモータMの受電端電圧は、インバータINVの出力端電圧の最大値の約1.4倍となる。
 その後のモータMの受電端電圧は、ケーブル100のインバータINV側の端部とモータM側の端部とにおける反射と、サージ抑制回路300の抵抗値R及びインダクタンス値L等により、徐々にインバータINVの出力端電圧と同等の値に収束する。
 また、モータMの受電端電圧がインバータINVの出力端電圧+20[%]を超える時間を高電圧印加時間とすると、実施例1のようにサージ抑制回路300を接続した場合の高電圧印加時間は、図2に示すごとく約2.5[μs]となる。
 以上述べたように、また、図2からも確認できる通り、実施例1では、インバータINVの出力端とケーブル100の一端との間に所定の抵抗値R及びインダクタンス値Lを有するサージ抑制回路300を備えている。これにより、モータMの受電端に印加されるサージ電圧のうち、インバータINVのスイッチング動作に伴って急峻に変化する成分は、インバータINVの出力電圧値の約0.9倍となり、従来技術(図9)の約1.85倍に対して約50[%]に低減される。
 また、サージ電圧最大値は、インバータINVの出力電圧値の約1.3倍となり、従来技術(図9)の約1.85倍に対して約70[%]に低減される。更に、高電圧印加時間は約2.5[μs]となり、従来技術(図9)の約6[μs]に対して約40[%]に低減される。
 次に、本発明の実施例2を説明する。
 この実施例2が実施例1と異なるところは、実施例1では、サージ抑制回路300の抵抗値Rが、ケーブル100の零相成分についての特性インピーダンスZと整合するように設定されているのに対し、実施例2では、数式3に示すように、抵抗値RがZ以下に設定されていることである。
Figure JPOXMLDOC01-appb-M000004
 数式3において、前記同様に、L:ケーブルの零相成分のインダクタンス値、C:ケーブルの零相成分のキャパシタンス値である。
 また、サージ抑制回路300のインダクタンス値Lの目安は、実施例1と同様に数式1により設定する。
 実施例2によれば、実施例1に比べて、サージ抑制回路300の抵抗値Rの範囲が広くなるため、設計自由度が向上するという利点がある。
 続いて、実施例2におけるサージ抑制回路300の作用を、図1におけるモータMの受電端の零相サージ電圧を理論計算した一例(図3)を参照しながら説明する。なお、この計算は、インバータINVから、実施例1と同様に断面積が5.5[mm]で長さが100[m]の3心シールド付ケーブルを介して誘導モータに電力を供給して行っている。また、インバータINVの出力端とケーブル100との間に、15[Ω]の抵抗Rと30[μH]の零相リアクトルLとの並列回路からなるサージ抑制回路300を接続したシステムを対象としている。
 実施例2において、インバータINVの出力端からケーブル100に印加される電圧の初期値は、インバータINVの出力端電圧をサージ抑制回路300の抵抗値(15[Ω])とケーブル100の特性インピーダンス値(26[Ω])とによって分圧した値、すなわち、インバータINVの出力端電圧の約0.63倍の値となる。そして、この電圧は、時間の経過と共に、サージ抑制回路300の抵抗値R及びインダクタンス値Lによる時定数(R/L)に依存して上昇する。
 ケーブル100に印加された電圧が、ケーブル100を伝搬してモータMの受電端に達すると、ケーブル100の特性インピーダンスとモータMの入力インピーダンスとによって決まる反射が起こる。理論計算したケーブル100とモータMとの組み合わせでは、反射係数の初期値は約0.85である。このため、モータMの受電端に印加されるサージ電圧初期値は、ケーブル100を伝搬した電圧成分と反射電圧成分との合成値になり、その値は、インバータの出力端電圧の約1.17倍(0.63×(1+0.85))となる。
 その後、ケーブル100への印加電圧が上昇するに伴ってモータMの受電端電圧も上昇する。その電圧上昇は、反射波がケーブル100を一往復する時間(前記同様に約1.45[μs])、継続し、電圧上昇終了時におけるモータMの受電端電圧は、インバータINVの出力端電圧の最大値の約1.42倍となる。その後のモータMの受電端電圧は、ケーブル100のインバータINV側の端部とモータM側の端部における反射と、サージ抑制回路300の抵抗値R及びインダクタンス値L等により、徐々にインバータINVの出力端電圧と同等の値に収束する。
 また、モータMの受電端電圧がインバータINVの出力端電圧+20[%]を超える時間を高電圧印加時間とすると、実施例2のようにサージ抑制回路300を接続した場合の高電圧印加時間は、図3に示すごとく約1.5[μs]となる。
 以上述べたように、また図3からも確認できる通り、実施例2では、インバータINVの出力端とケーブル100の一端との間に所定の抵抗値R及びインダクタンス値Lを有するサージ抑制回路300を備えている。これにより、モータMの受電端に印加されるサージ電圧のうち、インバータINVのスイッチング動作と同様に急峻に変化する成分は、インバータINVの出力電圧値の約1.17倍となり、従来技術(図9)の約1.85倍に対して約63[%]に低減される。
 また、サージ電圧最大値は、インバータINVの出力電圧値の約1.42倍となり、従来技術(図9)の約1.85倍に対して約77[%]に低減される。更に、高電圧印加時間は約1.5[μs]となり、従来技術(図9)の約6[μs]に対して約25[%]に低減される。
 実施例3の特徴は、サージ抑制回路300の零相リアクトルのインダクタンス値Lを、数式4のように設定したことにある。なお、この数式4は前述した数式1と同一であるが、理解を容易にするため再掲する。
Figure JPOXMLDOC01-appb-M000005
 前記同様に、L:ケーブル100の零相成分のインダクタンス値、C:ケーブル100の零相成分のキャパシタンス値、l:ケーブル100の長さ、R:サージ抑制回路300の抵抗値である。
 次に、実施例3の作用を、前述した図2を参照しながら説明する。なお、本計算は、実施例1と同様に抵抗値R=26[Ω]、インダクタンス値L=30[μH/m]のサージ抑制回路300を用いており、ケーブル100に関する回路定数も実施例1と同様(C=282[pF/m],L=186[nH/m],l=100[m])である。
 これらの値を数式4に代入すると、L>9.42[μH/m]とすればよく、計算対象の条件(L=30[μH/m])はこれを満たしている。
 実施例1と同様に、インバータINVのスイッチングに伴ってケーブル100に印加される電圧の初期値は、インバータINVの出力端の電圧をサージ抑制回路300の抵抗値(26[Ω])とケーブル100の特性インピーダンス値(26[Ω])とによって分圧した値、すなわち、インバータINVの出力端の電圧の0.5倍の値となる。そして、時間の経過と共に、サージ抑制回路300が有する時定数(R/L)に依存して、ケーブル100に印加される電圧は上昇する。
 ここで、インバータINVの出力端の開放電圧をV、ケーブル100に印加される電圧をV、ケーブル100にV/2の電圧が印加されてからの経過時間をtとおくと、Vがピーク値となるまでの時間的な推移は、数式5によって表される。
Figure JPOXMLDOC01-appb-M000006
 また、Vがピーク値となる時間Tは、数式6によって表される。
Figure JPOXMLDOC01-appb-M000007
 数式5における時間tに数式6を代入して求めたVのピーク値Vcmaxは、数式7となる。
Figure JPOXMLDOC01-appb-M000008
 ここで、数式7に示すピーク値VcmaxをインバータINVの出力端の開放電圧Vによって除算した値を、数式8に示すAとし、数式7における底eのべき数を、数式9に示すBとする。これらのA,Bの関係を図4に示す。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 図4によれば、数式9のBが増加するに伴い、Vと比例関係にある数式8のAは指数関数的に増加し、1に収束していくことが判る。
 ところで、サージ抑制回路300によるサージ電圧のピーク値の低減効果は、数式8のAが小さいほど大きく、1に近づくほど小さくなる。そこで、図4に示した関係から、数式8のAが1に収束する前の定数範囲として、サージ抑制回路300の定数を数式10,数式11(数式10の等価変換式)のように設定する。これにより、有意なサージ電圧ピーク値の低減効果を得ることができる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 次に、本発明の実施例4を、図5を参照しつつ説明する。この実施例4は、中空の磁性体に、インバータINVの出力端とモータMの受電端とを接続するケーブル、または、インバータINVの出力端とケーブルとを接続する接続線を貫通させることにより、実施例1~3に示したサージ抑制回路300を構成する。
 図5(a)は、実施例4の一例に係るサージ抑制回路を示している。図5(a)において、100は3心のケーブル、101は三相各相のケーブル心線、102はシース、301はケーブル100を貫通させたソフトフェライト等の磁性体である。
 この例において、磁性体301は、三相の加算値すなわち零相成分に対してインダクタンスとして作用する零相リアクトルを構成している。
 また、図5(b)は、実施例4の他の例に係るサージ抑制回路を示している。図5(b)において、103は三相各相の接続線であり、各相の接続線103はケーブル心線及びシースを備えている。また、302は、これらの接続線103を貫通させたソフトフェライト等の磁性体であり、図5(a)と同様に、三相の加算値すなわち零相成分に対してインダクタンスとして作用する零相リアクトルを構成している。
 ところで、磁性体は、交流によって励磁するとコアロスが発生する。また、磁性体の透磁率は周波数依存性があり、ある一定以上の周波数を超えると透磁率が低下する。
 図6は、このような磁性体の特性の一例をインピーダンスと周波数との関係として示したものである。図6によれば、磁性体は、0.1[MHz]以下の周波数帯域では周波数の増加に比例してインピーダンスが増加するインダクタンスの特性を有し、0.2[MHz]以上の周波数帯域では、周波数依存性の小さい抵抗の特性を有することが判る。すなわち、磁性体は、理想的なインダクタンスと抵抗との並列回路によって構成される回路と類似したインピーダンス特性を持っていることが判る。
 実施例4では、上記の磁性体の特性を利用して、磁性体301または302にケーブル100または接続線103等の全相の電力線を貫通させる。これにより、インダクタンスと抵抗との並列回路と同等なインピーダンス特性を有するサージ抑制回路を構成している。
 なお、図5では、1個の磁性体301または302に電力線を貫通させているが、本発明はこの構成に限定されず、例えば以下のような変形例でもよい。
 ・電力線のターン数を増やす(磁性体に対し、電力線を巻回する)。
 ・磁性体の数量を増やす。
 ・異なる種類の磁性体を組み合わせる。
 ・複数の導体を並列に接続して電力線の一相を構成する。
 ・単相インバータによるモータ駆動システムでは、単相の電力線を中空の磁性体に貫通または巻回する。
 ・アース線やシールドを備えたケーブルを用い、その際は、アース線やシールドを除く電力線のみを磁性体に貫通または巻回する。
 次いで、本発明の実施例5を、図7を参照しつつ説明する。実施例5が実施例4と異なるところは、磁性体に抵抗素子の両端を巻回した点にある。
 図7において、303は磁性体302に巻回された抵抗素子である。なお、図7は、図5(b)の構成に抵抗素子303を付加したものに相当するが、図5(a)の構成に抵抗素子303を付加しても良い。
 実施例4において説明したように、磁性体はインダクタンス及び抵抗の特性を併せ持つ。そして、磁性体への電力線の巻回数を変える、異種の磁性体を組み合わせる、等の方法により、サージ抑制回路の回路定数を変更することができる。
 しかしながら、電力線の巻回数や磁性体の種類を変更すると、インダクタンス成分及び抵抗成分の両方が変化するため、所望の回路定数を得ることが困難な場合があると考えられる。
 これに対し、実施例5では、抵抗素子303の両端を磁性体302に巻回することで、サージ抑制回路の抵抗成分の値のみを変更することができる。従って、容易に、しかも少ない回路素子により、所望の回路定数のサージ抑制回路を構成することが可能である。
 なお、抵抗素子303としては、ホウロウ抵抗やセメント抵抗等を用いることができる。
 上述した実施形態において、インバータINVのスイッチング素子としては、図1に示したIGBT以外にMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)等の自己消弧形デバイスを用いても良い。また、コンバータCONVは、ダイオード整流回路以外に、スイッチング素子及びその制御回路によって構成されたPWMコンバータ等でも良い。
 本発明に係るサージ抑制回路及びインバータ駆動モータシステムは、数式2または3、更には数式4を満足する構成のサージ抑制回路をインバータINVの出力端付近に接続すれば良く、コンバータやインバータの構成及びその制御方式等は何ら限定されるものではない。
 加えて、本発明に係るサージ抑制回路及びインバータ駆動モータシステムは、上述した実施形態に何ら限定されず、本発明の趣旨を逸脱しない範囲内において種々の変更が可能である。
 本発明は、これまで説明したいわゆる2レベルインバータに限らず、3レベル等のマルチレベルインバータを用いたモータシステムにも利用することができ、三相インバータに限らず、単相インバータにも適用可能である。また、本発明は、1台のコンバータから複数台のインバータに配電してモータを駆動するモータシステムにも適用することができる。
AC:三相交流電源
TR:トランス
CONV:コンバータ
dc:平滑コンデンサ
INV:インバータ
M:モータ
~D:ダイオード
~S:半導体スイッチング素子
100:ケーブル
101:ケーブル心線
102:シース
103:接続線
300:サージ抑制回路
301,302:磁性体
303:抵抗素子

Claims (6)

  1.  インバータの出力端にケーブルを介して接続されたモータを前記インバータにより駆動するモータ駆動システムに使用されるサージ抑制回路であって、前記出力端と前記ケーブルとの間に接続されるサージ抑制回路において、
     前記サージ抑制回路は、インダクタンスと、前記インダクタンスと並列に接続される抵抗とを備え、
     前記抵抗の抵抗値が、前記ケーブルの零相成分のインピーダンスと整合するように設定されていることを特徴とするサージ抑制回路。
  2.  インバータの出力端にケーブルを介して接続されたモータを前記インバータにより駆動するモータ駆動システムに使用されるサージ抑制回路であって、前記出力端と前記ケーブルとの間に接続されるサージ抑制回路において、
     前記サージ抑制回路は、インダクタンスと、前記インダクタンスと並列に接続される抵抗とを備え、
     前記抵抗の抵抗値が、前記ケーブルの零相成分のインピーダンスより小さくなるように設定されていることを特徴とするサージ抑制回路。
  3.  前記インダクタンスの値Lが、数式1を満足することを特徴とする請求項1または2に記載のサージ抑制回路。
    Figure JPOXMLDOC01-appb-M000001
     ここで、
     L:ケーブルの零相成分のインダクタンス値
     C:ケーブルの零相成分のキャパシタンス値
     l:ケーブルの長さ
     R:サージ抑制回路の抵抗値
  4.  前記ケーブル、または、前記インバータの出力端と前記ケーブルとを接続する接続線を、中空の磁性体に貫通または巻回して構成したことを特徴とする請求項1または2に記載のサージ抑制回路。
  5.  前記ケーブル、または、前記インバータの出力端と前記ケーブルとを接続する接続線を、中空の磁性体に貫通または巻回すると共に、前記磁性体に抵抗素子を巻回して構成したことを特徴とする請求項1または2に記載のサージ抑制回路。
  6.  モータに電力を供給するインバータと、
     前記モータと前記インバータとを接続するケーブルと、
     前記インバータの出力端と前記ケーブルとの間に接続された請求項1または2に記載のサージ抑制回路と、
     を備えたことを特徴とするインバータ駆動モータシステム。
     
PCT/JP2017/028678 2016-08-30 2017-08-08 サージ抑制回路及びインバータ駆動モータシステム WO2018043062A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017000284.2T DE112017000284B4 (de) 2016-08-30 2017-08-08 Überspannungsschutzschaltung und system mit überspannungsschutzschaltung
JP2018537082A JP6746105B2 (ja) 2016-08-30 2017-08-08 モータ駆動システム
CN201780008680.3A CN108684212B (zh) 2016-08-30 2017-08-08 浪涌抑制电路和逆变器驱动马达系统
US16/043,516 US10581368B2 (en) 2016-08-30 2018-07-24 Surge suppression circuit and inverter drive motor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-167720 2016-08-30
JP2016167720 2016-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/043,516 Continuation US10581368B2 (en) 2016-08-30 2018-07-24 Surge suppression circuit and inverter drive motor system

Publications (1)

Publication Number Publication Date
WO2018043062A1 true WO2018043062A1 (ja) 2018-03-08

Family

ID=61301540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028678 WO2018043062A1 (ja) 2016-08-30 2017-08-08 サージ抑制回路及びインバータ駆動モータシステム

Country Status (5)

Country Link
US (1) US10581368B2 (ja)
JP (1) JP6746105B2 (ja)
CN (1) CN108684212B (ja)
DE (1) DE112017000284B4 (ja)
WO (1) WO2018043062A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109639129B (zh) * 2018-12-25 2021-01-15 西安理工大学 一种非接触式谐振自耗型emi滤波器及其设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255064A (ja) * 1984-05-29 1985-12-16 Mitsubishi Electric Corp インバ−タ
JPS6122754A (ja) * 1984-07-11 1986-01-31 Fuji Electric Corp Res & Dev Ltd 電力変換装置のノイズ吸収装置
JPH06112048A (ja) * 1992-09-25 1994-04-22 Sony Tektronix Corp 発振防止部材
JP2001204136A (ja) * 2000-01-19 2001-07-27 Mitsubishi Electric Corp Pwmインバータ装置
JP2002057542A (ja) * 2000-08-09 2002-02-22 Soshin Electric Co Ltd 電力変換器用ラインフィルタ
JP2004343832A (ja) * 2003-05-13 2004-12-02 Toshiba Corp マイクロサージ電圧抑制回路
JP2008301555A (ja) * 2007-05-29 2008-12-11 Mitsubishi Electric Corp 電力変換装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145762A (ja) 1974-10-18 1976-04-19 Matsushita Electric Ind Co Ltd Insatsudenkyokuhimaku
US5686806A (en) * 1994-12-19 1997-11-11 Trans-Coil, Inc. Low-pass filter and electronic speed control system for electric motors
US5784236A (en) * 1997-05-22 1998-07-21 Tycor International Corp. Variable frequency drive reflected wave suppressors
US6288915B1 (en) 1997-12-23 2001-09-11 Asea Brown Boveri Ag Converter circuit arrangement having a DC intermediate circuit
US5990654A (en) 1998-01-21 1999-11-23 Allen-Bradley Company, Llc Apparatus for eliminating motor voltage reflections and reducing EMI currents
JP2002095264A (ja) * 2000-09-18 2002-03-29 Meidensha Corp Pwmインバータ
US6703706B2 (en) * 2002-01-08 2004-03-09 International Business Machines Corporation Concurrent electrical signal wiring optimization for an electronic package
US20050213783A1 (en) * 2004-03-29 2005-09-29 Walsh William J Transmission drive line for low level audio analog electrical signals
CN1753294A (zh) * 2004-09-22 2006-03-29 松下电器产业株式会社 直流电源装置、控制方法以及压缩机驱动装置
CN100429855C (zh) * 2005-09-12 2008-10-29 上海浩顺科技有限公司 电源波形矫正滤波器
JP2007166708A (ja) * 2005-12-09 2007-06-28 Hitachi Ltd 電力変換装置とそのサージ電圧抑制方法および風力発電システム
JP5145762B2 (ja) 2007-05-09 2013-02-20 富士電機株式会社 サージ抑制回路およびインバータ駆動モータシステム
US7848122B2 (en) * 2008-04-23 2010-12-07 Rockwell Automation Technologies, Inc. Terminator for reducing differential-mode and common-mode voltage reflections in AC motor drives
JP2010041790A (ja) 2008-08-04 2010-02-18 Fuji Electric Systems Co Ltd 電力変換装置
JP2010148259A (ja) * 2008-12-19 2010-07-01 Yaskawa Electric Corp フィルタ装置および電力変換装置
CN102474218B (zh) * 2009-07-01 2014-09-17 株式会社安川电机 电动机驱动装置
US8325500B2 (en) * 2010-07-13 2012-12-04 Eaton Corporation Inverter filter including differential mode and common mode, and system including the same
US10158314B2 (en) * 2013-01-16 2018-12-18 Rockwell Automation Technologies, Inc. Feedforward control of motor drives with output sinewave filter
JP5980969B2 (ja) * 2015-01-29 2016-08-31 ファナック株式会社 ダイナミックブレーキ回路故障検出機能を備えたモータ駆動装置
CN105365600A (zh) * 2015-10-30 2016-03-02 北京理工大学 电动汽车电机驱动系统差模干扰传播路径
US10389213B2 (en) * 2016-09-22 2019-08-20 Rockwell Automation Technologies, Inc. Apparatus for reduced voltage stress on AC motors and cables

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255064A (ja) * 1984-05-29 1985-12-16 Mitsubishi Electric Corp インバ−タ
JPS6122754A (ja) * 1984-07-11 1986-01-31 Fuji Electric Corp Res & Dev Ltd 電力変換装置のノイズ吸収装置
JPH06112048A (ja) * 1992-09-25 1994-04-22 Sony Tektronix Corp 発振防止部材
JP2001204136A (ja) * 2000-01-19 2001-07-27 Mitsubishi Electric Corp Pwmインバータ装置
JP2002057542A (ja) * 2000-08-09 2002-02-22 Soshin Electric Co Ltd 電力変換器用ラインフィルタ
JP2004343832A (ja) * 2003-05-13 2004-12-02 Toshiba Corp マイクロサージ電圧抑制回路
JP2008301555A (ja) * 2007-05-29 2008-12-11 Mitsubishi Electric Corp 電力変換装置

Also Published As

Publication number Publication date
CN108684212B (zh) 2020-07-21
US10581368B2 (en) 2020-03-03
DE112017000284B4 (de) 2024-02-22
CN108684212A (zh) 2018-10-19
JP6746105B2 (ja) 2020-08-26
US20180331650A1 (en) 2018-11-15
JPWO2018043062A1 (ja) 2018-12-13
DE112017000284T5 (de) 2018-09-20

Similar Documents

Publication Publication Date Title
US5912813A (en) Method and apparatus for controlling reflected voltage using a motor controller
KR100982124B1 (ko) 정류 회로 및 3상 정류 장치
US6028405A (en) Variable frequency drive noise attenuation circuit
US8970148B2 (en) Method and apparatus for reducing radiated emissions in switching power converters
EP2097970B1 (en) Method for controlling a load with a predominantly inductive character and a device applying such a method
JP5145762B2 (ja) サージ抑制回路およびインバータ駆動モータシステム
JP2021190825A (ja) ノイズフィルタ及び電力変換装置
Pastura et al. Dv/dt filtering techniques for electric drives: Review and challenges
JP2005278394A (ja) コンバータの制御装置及び方法並びにその装置を有するコンバータ及び電気装置
WO2017125154A1 (en) Frequency converter with lcl line and common mode filter
CN108521843B (zh) 滤波安排
Zhang et al. Decoupling of interaction between WBG converter and motor load for switching performance improvement
EP3595151A1 (en) Suppressing resonance in ultra long motor cable
WO2018043062A1 (ja) サージ抑制回路及びインバータ駆動モータシステム
US8228698B2 (en) Frequency converter voltage pulse shaping device and method
JP2007166708A (ja) 電力変換装置とそのサージ電圧抑制方法および風力発電システム
US20220166330A1 (en) Switching power supply apparatus for reducing common mode noise due to line-to-ground capacitances
Hwang et al. Analysis of voltage distribution in stator winding of IGBT PWM inverter-fed induction motors
JP4371774B2 (ja) インバータ制御装置
CN110649830B (zh) 电动机过电压保护装置、电力变换装置和驱动装置
US20020117913A1 (en) Damping of resonant peaks in an electric motor, which is operated using a converter with a voltage intermediate circuit, by increasing the losses produced in the region of critical natural frequencies
US20190036414A1 (en) Bus Bar with Integrated Voltage Rise Time Filter
CN110138248B (zh) 浪涌电压抑制装置、电力变换装置和多相电动机驱动装置
FI126063B (en) Limiting electrical interference
Elsayed et al. Mitigation of overvoltages at induction motor terminals fed from an inverter through long cable

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112017000284

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2018537082

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846071

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17846071

Country of ref document: EP

Kind code of ref document: A1