CN105365600A - 电动汽车电机驱动系统差模干扰传播路径 - Google Patents

电动汽车电机驱动系统差模干扰传播路径 Download PDF

Info

Publication number
CN105365600A
CN105365600A CN201510729580.2A CN201510729580A CN105365600A CN 105365600 A CN105365600 A CN 105365600A CN 201510729580 A CN201510729580 A CN 201510729580A CN 105365600 A CN105365600 A CN 105365600A
Authority
CN
China
Prior art keywords
inductance
power switch
phase
lead
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510729580.2A
Other languages
English (en)
Inventor
李广召
翟丽
张新宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201510729580.2A priority Critical patent/CN105365600A/zh
Publication of CN105365600A publication Critical patent/CN105365600A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明涉及一种电动汽车电机驱动系统差模干扰传播路径,由电动汽车电机驱动系统电路结构、电动汽车电机驱动系统差模干扰传播路径一、电动汽车电机驱动系统差模干扰传播路径二、电动汽车电机驱动系统差模干扰传播路径三和电动汽车电机驱动系统差模干扰传播路径四五部分组成。本发明主要用于分析电动汽车电机驱动系统差模干扰的产生机理和抑制电机驱动系统产生的电磁干扰。

Description

电动汽车电机驱动系统差模干扰传播路径
技术领域
本发明涉及一种电动汽车电机驱动系统差模干扰传播路径,用于电动汽车电机驱动系统电磁兼容性分析。
背景技术
随着电动汽车的普及,电动汽车电机驱动系统的电磁兼容问题逐渐被人们关注,目前,电动汽车用交流电机驱动系统由逆变器、电池和电机组成,附图1给出了一种电动汽车电机驱动系统电路图,其中逆变器的主要部件为功率模块或元器件,如PIM或IGBT等。这些功率模块,例如IGBT,在工作时处于高速通断模式,在它的集电极和发射极之间会形成高频dv/dt,从而产生了宽频带电磁干扰,频率范围超过数十兆赫兹。随着电机向轻小化、高效化的方向发展,对功率模块的开关速度的要求也越来越高,这就使得功率模块产生的电磁干扰更为强烈,这些电磁干扰通过传导和辐射两种传播方式影响车载电子零部件的正常工作,对于系统自身可能引起电机端轴承电流过大,使得轴承损伤或者烧坏电机绝缘层,也可能通过线缆、车架、辐射等多种方式影响其他车载电子设备的正常工作。因此电机驱动系统产生的电磁干扰不仅关系到自身的工作可靠性,而且会影响整车及邻车的电磁兼容性、安全运行能力和工作可靠性。所以研究该电磁干扰的传播路径对电动汽车的发展有着实际意义。
电动汽车电机驱动系统的传导电磁干扰分为差模干扰和共模干扰,其中差模干扰在电机驱动系统中随着频率的变化其传播路径也不同,附图2和附图3分别展示了四种差模干扰传播路径。差模干扰源被认为在逆变器桥臂中性点上,它由功率开关的高速通断形成的高频dv/dt产生。差模干扰源的低频成分流过电机绕组经过电池或者X电容流回干扰源,随着频率的增高,电机绕组的阻抗增加,差模干扰变为流过桥臂上另一个功率开关的极间电容再经电池或者X电容流回干扰源。
明晰了差模干扰的传播路径,就可以为设计电动汽车电机驱动系统的差模滤波器提供理论支持,为抑制电动汽车差模干扰提供分析工具。目前,从已公开的专利看,还未有专利涉及到电动车电机驱动系统的差模干扰的传播路径分析。
发明内容
针对以上问题,本发明建立了电机驱动系统差模干扰传播路径,为研究电机驱动系统差模干扰产生的机理和抑制电机驱动系统产生的电磁干扰提供了有效的依据。
技术方案:一种电动汽车电机驱动系统电路结构如附图1所示,在附图2和附图3中给出了四种差模干扰传播路径。
电动汽车电机驱动系统差模干扰传播路径一:
如附图2所示差模干扰传播路径1,差模干扰源产生的差模电流依次流过逆变器交流U相输出电感L24、交流U相动力电缆N3、交流U相动力电缆电感L18、电机U相绕组电感L21、电机V相绕组电感L22(电机W相绕组电感L23)、交流V相动力电缆电感L19(交流W相动力电缆电感L20)、交流V相动力电缆N4(交流W相动力电缆N5)、逆变器交流V相输出电感L25(逆变器交流W相输出电感L26)、功率开关漏极或者集电极的引线电感L14(功率开关漏极或者集电极的引线电感L16)、功率开关U6(功率开关U2)、功率开关源极或者发射极的引线电感L8(功率开关源极或者发射极的引线电感L10)、功率开关源极或者发射极的引线电感L6、逆变器直流负极输入电感L4、负极直流动力线缆电感L2、负极直流动力电缆N2、电池电容Cb、正极直流动力电缆N1、正极直流动力线缆电感L1、逆变器直流正极输入电感L3、功率开关漏极或者集电极的引线电感L5、功率开关U1、功率开关源极或者发射极的引线电感L11、流回干扰源。
电动汽车电机驱动系统差模干扰传播路径二:
如附图2所示差模干扰传播路径2,差模干扰源产生的差模电流依次流过逆变器交流U相输出电感L24、交流U相动力电缆N3、交流U相动力电缆电感L18、电机U相绕组电感L21、电机V相绕组电感L22(电机W相绕组电感L23)、交流V相动力电缆电感L19(交流W相动力电缆电感L20)、交流V相动力电缆N4(交流W相动力电缆N5)、逆变器交流V相输出电感L25(逆变器交流W相输出电感L26)、功率开关漏极或者集电极的引线电感L14(功率开关漏极或者集电极的引线电感L16)、功率开关U6(功率开关U2)、功率开关源极或者发射极的引线电感L8(功率开关源极或者发射极的引线电感L10)、功率开关源极或者发射极的引线电感L6、X电容C9、X电容引线电感L17、功率开关漏极或者集电极的引线电感L5、功率开关U1、功率开关源极或者发射极的引线电感L11、流回干扰源。
电动汽车电机驱动系统差模干扰传播路径三:
如附图3所示,差模干扰传播路径3,差模干扰源产生的差模电流依次流过功率开关漏极或者集电极的引线电感L12、功率开关U4、功率开关源极或者发射极的引线电感L6、逆变器直流负极输入电感L4、负极直流动力线缆电感L2、负极直流动力电缆N2、电池电容Cb、正极直流动力电缆N1、正极直流动力线缆电感L1、逆变器直流正极输入电感L3、功率开关漏极或者集电极的引线电感L5、功率开关U1、功率开关源极或者发射极的引线电感L11、流回干扰源。
电动汽车电机驱动系统差模干扰传播路径四:
如附图3所示,差模干扰传播路径4,差模干扰源产生的差模电流依次流过功率开关漏极或者集电极的引线电感L12、功率开关U4、功率开关源极或者发射极的引线电感L6、X电容C9、X电容引线电感L17、功率开关漏极或者集电极的引线电感L5、功率开关U1、功率开关源极或者发射极的引线电感L11、流回干扰源。
优点功效:
本发明通过建立电动汽车电机驱动系统差模干扰传播路径,为研究电机驱动系统差模干扰产生的机理和抑制电机驱动系统产生的电磁干扰提供了有效的分析方法,为滤波器的设计提供了可靠的依据。
附图说明
图1电动汽车电机驱动系统差模干扰传播路径结构图
图2电动汽车电机驱动系统差模干扰传播路径一和路径二路径图
图3电动汽车电机驱动系统差模干扰传播路径三和路径四路径图
图4电动汽车电机驱动系统电路模型
图5U相交流输出端加滤波器的电机驱动系统电路模型
图6U相交流输出端加滤波器前后传导干扰对比结果
具体实施方式
本发明提供依据电动汽车电机驱动系统差模干扰传播路径设计滤波器的一种实现方法,下面以附图4电机驱动系统电路为实验对象对本发明的技术方案做详细描述。
第一步,在ComputerSimulationTechnology(CST)电磁仿真软件建立附图4所示的电机驱动系统电路模型,图中直流母线的电感为120nH,交流线缆的电感为130nH,电机绕组用电感表示为1.5mH,电池用380V直流电压源表示,Y电容为950pF,X电容为1028uF,功率开关选用IGX01N120H2_L2,功率开关引线电感为30nH。然后,向电路模型的1—6的端口中注入功率开关驱动信号,本例中为注入SPWM信号,同时在逆变器U相交流输出端设置探针,如附图4所示。开始仿真。仿真结束后,查看探针的电流仿真结果并将仿真结果傅立叶变换,如附图6中的“未加差模滤波器”曲线所示。
第二步参照照发明内容中电动汽车电机驱动系统差模干扰传播路径,在逆变器U相交流输出端添加滤波器,滤波器的参数和位置见附图5。再次仿真,并将探针的仿真结果傅立叶变换,得到的仿真结果如附图6中的“加差模滤波器”曲线所示。
对比附图6中的两条曲线可看出,在差模干扰路径上加适当滤波器后,27MHz附近的干扰电流的谐振尖峰被抑制下来。可见这种参考差模路径设计的滤波器,抑制了干扰电流,减少了差模干扰,提高了系统的电磁兼容性。

Claims (5)

1.一种电动汽车电机驱动系统差模干扰传播路径一,其特征在于:差模干扰源产生的差模电流依次流过逆变器交流U相输出电感L24、交流U相动力电缆N3、交流U相动力电缆电感L18、电机U相绕组电感L21、电机V相绕组电感L22(电机W相绕组电感L23)、交流V相动力电缆电感L19(交流W相动力电缆电感L20)、交流V相动力电缆N4(交流W相动力电缆N5)、逆变器交流V相输出电感L25(逆变器交流W相输出电感L26)、功率开关漏极或者集电极的引线电感L14(功率开关漏极或者集电极的引线电感L16)、功率开关U6(功率开关U2)、功率开关源极或者发射极的引线电感L8(功率开关源极或者发射极的引线电感L10)、功率开关源极或者发射极的引线电感L6、逆变器直流负极输入电感L4、负极直流动力线缆电感L2、负极直流动力电缆N2、电池电容Cb、正极直流动力电缆N1、正极直流动力线缆电感L1、逆变器直流正极输入电感L3、功率开关漏极或者集电极的引线电感L5、功率开关U1、功率开关源极或者发射极的引线电感L11、流回干扰源。
2.一种电动汽车电机驱动系统差模干扰传播路径二,其特征在于:差模干扰源产生的差模电流依次流过逆变器交流U相输出电感L24、交流U相动力电缆N3、交流U相动力电缆电感L18、电机U相绕组电感L21、电机V相绕组电感L22(电机W相绕组电感L23)、交流V相动力电缆电感L19(交流W相动力电缆电感L20)、交流V相动力电缆N4(交流W相动力电缆N5)、逆变器交流V相输出电感L25(逆变器交流W相输出电感L26)、功率开关漏极或者集电极的引线电感L14(功率开关漏极或者集电极的引线电感L16)、功率开关U6(功率开关U2)、功率开关源极或者发射极的引线电感L8(功率开关源极或者发射极的引线电感L10)、功率开关源极或者发射极的引线电感L6、X电容C9、X电容引线电感L17、功率开关漏极或者集电极的引线电感L5、功率开关U1、功率开关源极或者发射极的引线电感L11、流回干扰源。
3.一种电动汽车电机驱动系统差模干扰传播路径三,其特征在于:差模干扰源产生的差模电流依次流过功率开关漏极或者集电极的引线电感L12、功率开关U4、功率开关源极或者发射极的引线电感L6、逆变器直流负极输入电感L4、负极直流动力线缆电感L2、负极直流动力电缆N2、电池电容Cb、正极直流动力电缆N1、正极直流动力线缆电感L1、逆变器直流正极输入电感L3、功率开关漏极或者集电极的引线电感L5、功率开关U1、功率开关源极或者发射极的引线电感L11、流回干扰源。
4.一种电动汽车电机驱动系统差模干扰传播路径四,其特征在于:差模干扰源产生的差模电流依次流过功率开关漏极或者集电极的引线电感L12、功率开关U4、功率开关源极或者发射极的引线电感L6、X电容C9、X电容引线电感L17、功率开关漏极或者集电极的引线电感L5、功率开关U1、功率开关源极或者发射极的引线电感L11、流回干扰源。
5.一种差模滤波器,其特征在于滤波器的位置为逆变器输出端与交流线缆之间,滤波器的等效电路为30pF电容、0.3uH的电感和6.8Ohm电阻并联连接。
CN201510729580.2A 2015-10-30 2015-10-30 电动汽车电机驱动系统差模干扰传播路径 Pending CN105365600A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510729580.2A CN105365600A (zh) 2015-10-30 2015-10-30 电动汽车电机驱动系统差模干扰传播路径

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510729580.2A CN105365600A (zh) 2015-10-30 2015-10-30 电动汽车电机驱动系统差模干扰传播路径

Publications (1)

Publication Number Publication Date
CN105365600A true CN105365600A (zh) 2016-03-02

Family

ID=55368425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510729580.2A Pending CN105365600A (zh) 2015-10-30 2015-10-30 电动汽车电机驱动系统差模干扰传播路径

Country Status (1)

Country Link
CN (1) CN105365600A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611503A (zh) * 2017-08-25 2018-01-19 北京新能源汽车股份有限公司 一种动力电池箱及电动汽车
CN108684212A (zh) * 2016-08-30 2018-10-19 富士电机株式会社 浪涌抑制电路和逆变器驱动马达系统
CN110275078A (zh) * 2019-07-16 2019-09-24 国网江苏省电力有限公司电力科学研究院 变电站二次电缆地回路骚扰区分方法、系统及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012068985A1 (zh) * 2010-11-26 2012-05-31 中兴通讯股份有限公司 伪差分音频输入电路及其设置方法
CN203951382U (zh) * 2014-07-11 2014-11-19 衢州市沃思电子技术有限公司 电力二次系统驱动模块的逆变电路
CN104270002A (zh) * 2014-10-25 2015-01-07 哈尔滨理工大学 Pwm功率变换器传导电磁干扰无源抑制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012068985A1 (zh) * 2010-11-26 2012-05-31 中兴通讯股份有限公司 伪差分音频输入电路及其设置方法
CN203951382U (zh) * 2014-07-11 2014-11-19 衢州市沃思电子技术有限公司 电力二次系统驱动模块的逆变电路
CN104270002A (zh) * 2014-10-25 2015-01-07 哈尔滨理工大学 Pwm功率变换器传导电磁干扰无源抑制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
董明承: "电动汽车电机驱动系统功率回路电磁干扰及抑制研究", 《中国优秀硕士论文全文数据库》 *
龙海清: "电动汽车PWM驱动电机系统EMC研究", 《中国优秀硕士论文全文数据库》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108684212A (zh) * 2016-08-30 2018-10-19 富士电机株式会社 浪涌抑制电路和逆变器驱动马达系统
CN108684212B (zh) * 2016-08-30 2020-07-21 富士电机株式会社 浪涌抑制电路和逆变器驱动马达系统
CN107611503A (zh) * 2017-08-25 2018-01-19 北京新能源汽车股份有限公司 一种动力电池箱及电动汽车
CN107611503B (zh) * 2017-08-25 2019-08-30 北京新能源汽车股份有限公司 一种动力电池箱及电动汽车
CN110275078A (zh) * 2019-07-16 2019-09-24 国网江苏省电力有限公司电力科学研究院 变电站二次电缆地回路骚扰区分方法、系统及存储介质

Similar Documents

Publication Publication Date Title
Lai et al. Inverter EMI modeling and simulation methodologies
US7764042B2 (en) Inverter-driven rotating machine system, rotating machine and inverter used in the same and electric vehicle using the same
Zhai et al. Comparison of two design methods of EMI filter for high voltage power supply in DC-DC converter of electric vehicle
CN112966408B (zh) 预测多合一电驱系统高压传导发射电磁干扰风险的方法
Bălţăţanu et al. Comparison of electric motors used for electric vehicles propulsion
JP2013138552A (ja) 負荷駆動装置
CN105365600A (zh) 电动汽车电机驱动系统差模干扰传播路径
WO2024108788A1 (zh) Igbt尖峰电压抑制的协调优化方法
Jia et al. Influence of system layout on CM EMI noise of SiC electric vehicle powertrains
Okubo et al. Common mode EMI reduction structure of EV/HEV inverters for high-speed switching
Marlier et al. Modeling of switching transients for frequency-domain EMC analysis of power converters
Guo et al. Systematic analysis of conducted electromagnetic interferences for the electric drive system in electric vehicles
Wunsch et al. Impact of diode-rectifier on EMC-noise propagation and filter design in AC-fed motor drives
Zhai et al. Conducted EMI from motor drive system of electric vehicle under load operation
He et al. EMI Issues and Reduction in 800 V Electrical Vehicle Systems by Incorporating Cable Effects
Vijayan et al. High‐performance bi‐directional z‐source inverter for locomotive drive application
Spadacini et al. SPICE simulation in time-domain of the CISPR 25 test setup for conducted emissions in electric vehicles
CN206226330U (zh) 无刷直流电机的控制电路及测试电路
Karvonen et al. Co-simulation and harmonic analysis of a hybrid vehicle traction system
Beltramini et al. Comparison of different inverter architectures and controls in terms of conducted EMI
Zhai et al. Mitigation conducted-EMI emission strategy based on distributed parameters of power inverter system in electric vehicle
Stevic et al. Overvoltage Transients in Wide Bandgap-Based Inverter-Fed Variable Speed Electrical Drives
Doorgah et al. EMI circuit modeling of a power train on composite ground plane
CN206148288U (zh) 改善emc性能的薄膜电容及电机驱动器
CN220254770U (zh) 一种车载电源逆变器的pcba板电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Di Li

Inventor after: Song Chao

Inventor after: Li Guangzhao

Inventor after: Zhang Xinyu

Inventor before: Li Guangzhao

Inventor before: Di Li

Inventor before: Zhang Xinyu

CB03 Change of inventor or designer information
RJ01 Rejection of invention patent application after publication

Application publication date: 20160302

RJ01 Rejection of invention patent application after publication